1
|
McIlvried LA, Martel Matos AA, Yuan MM, Atherton MA, Obuekwe F, Nilsen ML, Nikpoor AR, Talbot S, Bruno TC, Taggart DN, Johnson LK, Ferris RL, P Zandberg D, Scheff NN. Morphine treatment restricts response to immunotherapy in oral squamous cell carcinoma. J Immunother Cancer 2024; 12:e009962. [PMID: 39551606 PMCID: PMC11574397 DOI: 10.1136/jitc-2024-009962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2024] [Indexed: 11/19/2024] Open
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) are becoming the standard of care for recurrent and metastatic cancer. Opioids, the primary treatment for cancer-related pain, are immunosuppressive raising concerns about their potential to interfere with the efficacy of ICIs. We hypothesize that exogenous opioids given for analgesia suppress antitumor immunity via T cell-mediated mu opioid receptor 1 (OPRM1) signaling. METHODS In silico bioinformatics were used to assess OPRM1 receptor expression on tumor-infiltrating immune cells in patients with head and neck squamous cell carcinoma (HNSCC) and across different cancer types. A syngeneic orthotopic mouse model of oral squamous cell carcinoma was used to study the impact of morphine and OPRM1 antagonism on tumor-infiltrating immune cells, tumor growth and antitumor efficacy of anti-Programmed cell death protein 1 (PD-1) monoclonal antibody treatment. RESULTS In patients with HNSCC, OPRM1 expression was most abundant in CD8+ T cells, particularly in patients who had not been prescribed opioids prior to resection and exhibited increased expression of exhaustion markers. Exogenous morphine treatment in tumor-bearing mice reduced CD4+ and CD8+ T-cell infiltration and subsequently anti-PD1 ICI efficacy. Peripherally acting mu opioid receptor antagonism, when administered in the adjunctive setting, was able to block morphine-induced immunosuppression and recover the antitumor efficacy of anti-PD1. CONCLUSIONS These findings suggest that morphine acts via a peripheral OPRM1-mediated mechanism to suppress CD8+ T cells, thereby fostering a pro-tumor-impaired immune response. Importantly, peripherally-restricted OPRM1 antagonism can effectively block this morphine-induced immunosuppression while still allowing for centrally-mediated analgesia, indicating a potential therapeutic strategy for mitigating the adverse effects of opioid pain relief in cancer treatment.
Collapse
Affiliation(s)
- Lisa A McIlvried
- Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Andre A Martel Matos
- Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Mona M Yuan
- Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Megan A Atherton
- Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Fendi Obuekwe
- Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Marci L Nilsen
- Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Acute and Tertiary Care, School of Nursing, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Amin Reza Nikpoor
- Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Sebastien Talbot
- Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
- Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Tullia C Bruno
- Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Hillman Cancer Center, University of Pittsburgh Medical Center Health System, Pittsburgh, Pennsylvania, USA
| | | | | | - Robert L Ferris
- Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Hillman Cancer Center, University of Pittsburgh Medical Center Health System, Pittsburgh, Pennsylvania, USA
| | - Dan P Zandberg
- Hillman Cancer Center, University of Pittsburgh Medical Center Health System, Pittsburgh, Pennsylvania, USA
| | - Nicole N Scheff
- Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Hillman Cancer Center, University of Pittsburgh Medical Center Health System, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
2
|
Skiba D, Jaskuła K, Nawrocka A, Poznański P, Łazarczyk M, Szymański Ł, Żera T, Sacharczuk M, Cudnoch-Jędrzejewska A, Gaciong Z. The Role of Opioid Receptor Antagonists in Regulation of Blood Pressure and T-Cell Activation in Mice Selected for High Analgesia Induced by Swim Stress. Int J Mol Sci 2024; 25:2618. [PMID: 38473865 DOI: 10.3390/ijms25052618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/09/2024] [Accepted: 02/14/2024] [Indexed: 03/14/2024] Open
Abstract
Opioid peptides and their G protein-coupled receptors are important regulators within the cardiovascular system, implicated in the modulation of both heart and vascular functions. It is known that naloxone-an opioid antagonist-may exert a hypertensive effect. Recent experimental and clinical evidence supports the important role of inflammatory mechanisms in hypertension. Since opioids may play a role in the regulation of both blood pressure and immune response, we studied these two processes in our model. We aimed to evaluate the effect of selective and non-selective opioid receptor antagonists on blood pressure and T-cell activation in a mouse model of high swim stress-induced analgesia. Blood pressure was measured before and during the infusion of opioid receptor antagonists using a non-invasive tail-cuff measurement system. To assess the activation of T-cells, flow cytometry was used. We discovered that the non-selective antagonism of the opioid system by naloxone caused a significant elevation of blood pressure. The selective antagonism of μ and κ but not δ opioid receptors significantly increased systolic blood pressure. Subsequently, a brief characterization of T-cell subsets was performed. We found that the blockade of μ and δ receptors is associated with the increased expression of CD69 on CD4 T-cells. Moreover, we observed an increase in the central memory CD4 and central memory CD8 T-cell populations after the δ opioid receptor blockade. The antagonism of the μ opioid receptor increased the CD8 effector and central memory T-cell populations.
Collapse
Affiliation(s)
- Dominik Skiba
- Department of Experimental Genomics, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postepu 36A Street, Jastrzebiec, 05-552 Magdalenka, Poland
| | - Kinga Jaskuła
- Department of Experimental Genomics, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postepu 36A Street, Jastrzebiec, 05-552 Magdalenka, Poland
| | - Agata Nawrocka
- Department of Experimental Genomics, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postepu 36A Street, Jastrzebiec, 05-552 Magdalenka, Poland
| | - Piotr Poznański
- Department of Experimental Genomics, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postepu 36A Street, Jastrzebiec, 05-552 Magdalenka, Poland
| | - Marzena Łazarczyk
- Department of Experimental Genomics, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postepu 36A Street, Jastrzebiec, 05-552 Magdalenka, Poland
| | - Łukasz Szymański
- Department of Experimental Genomics, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postepu 36A Street, Jastrzebiec, 05-552 Magdalenka, Poland
| | - Tymoteusz Żera
- Department of Experimental and Clinical Physiology, Center for Preclinical Research, Medical University of Warsaw, Banacha 1B Street, 02-097 Warsaw, Poland
| | - Mariusz Sacharczuk
- Department of Experimental Genomics, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postepu 36A Street, Jastrzebiec, 05-552 Magdalenka, Poland
- Department of Pharmacodynamics, Medical University of Warsaw, Zwirki i Wigury 81 Street, 02-091 Warsaw, Poland
| | - Agnieszka Cudnoch-Jędrzejewska
- Department of Experimental and Clinical Physiology, Center for Preclinical Research, Medical University of Warsaw, Banacha 1B Street, 02-097 Warsaw, Poland
| | - Zbigniew Gaciong
- Department and Clinic of Internal Diseases, Hypertension and Angiology, Medical University of Warsaw, Banacha 1A Street, 02-097 Warsaw, Poland
| |
Collapse
|
3
|
Qu N, Meng Y, Zhai J, Griffin N, Shan Y, Gao Y, Shan F. Methionine enkephalin inhibited cervical cancer migration as well as invasion and activated CD11b + NCR1 + NKs of tumor microenvironment. Int Immunopharmacol 2023; 124:110967. [PMID: 37741126 DOI: 10.1016/j.intimp.2023.110967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 09/16/2023] [Accepted: 09/17/2023] [Indexed: 09/25/2023]
Abstract
This study was to study the role of methionine enkephalin (menk) in cell invasion and migration as well as NK cells activation of tumor microenvironment in cervical cancer. The results showed that menk inhibited cervical cancer migration and invasion. In addition, we found menk affected epithelial to mesenchymal transition (EMT) related indicators, with increasing E-cadherin level, decreasing N-cadherin and vimentin level. Through in vivo mouse model, we found that menk IFNγ and NKP46 expression was upregulated in tumor tissues by menk compared with controls, while LAG3 expression was inhibited by menk, besides, there was an upregulation of CD11b+ NCR1+ NKs of tumor microenvironment in cervical cancer. Therefore, we concluded that menk inhibited cancer migration and invasion via affecting EMT related indicators and activated CD11b+ NCR1+ NKs of tumor microenvironment in cervical cancer, laying a theoretical foundation for the further clinical treatment of menk.
Collapse
Affiliation(s)
- Na Qu
- Department of Gynecological Radiotherapy Ward, Cancer Hospital of Dalian University of Technology (Liaoning Cancer Institute and Hospital), No. 44, Xiaoheyan Road, Shenyang 110042, Liaoning Province, China
| | - Yiming Meng
- Central Laboratory, Cancer Hospital of Dalian University of Technology (Liaoning Cancer Institute and Hospital), No. 44, Xiaoheyan Road, Shenyang 110042, Liaoning Province, China
| | - Jingbo Zhai
- Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Medical College, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Noreen Griffin
- Biostax Inc. 1317 Edgewater Dr., Ste 4882, Orlando, FL 32804, USA
| | - Yuanye Shan
- Biostax Inc. 1317 Edgewater Dr., Ste 4882, Orlando, FL 32804, USA
| | - Yuhua Gao
- Department of Gynecological Radiotherapy Ward, Cancer Hospital of Dalian University of Technology (Liaoning Cancer Institute and Hospital), No. 44, Xiaoheyan Road, Shenyang 110042, Liaoning Province, China.
| | - Fengping Shan
- Department of Immunology, School of Basic Medical Science, China Medical University, No. 77, Puhe Road, Shenyang 110122, Liaoning Province, China.
| |
Collapse
|
4
|
Tian J, Fu W, Xie Z, Wang X, Miao M, Shan F, Yu X. Methionine enkephalin(MENK) upregulated memory T cells in anti-influenza response. BMC Immunol 2023; 24:38. [PMID: 37828468 PMCID: PMC10571428 DOI: 10.1186/s12865-023-00573-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 09/20/2023] [Indexed: 10/14/2023] Open
Abstract
Novel prophylactic drugs and vaccination strategies for protection against influenza virus should induce specific effector T-cell immune responses in pulmonary airways and peripheral lymphoid organs. Designing approaches that promote T-cell-mediated responses and memory T-cell differentiation would strengthen host resistance to respiratory infectious diseases. The results of this study showed that pulmonary delivery of MENK via intranasal administration reduced viral titres, upregulated opioid receptor MOR and DOR, increased the proportions of T-cell subsets including CD8+ T cells, CD8+ TEM cells, NP/PA-effector CD8+ TEM cells in bronchoalveolar lavage fluid and lungs, and CD4+/CD8+ TCM cells in lymph nodes to protect mice against influenza viral challenge. Furthermore, we demonstrated that, on the 10th day of infection, the proportions of CD4+ TM and CD8+ TM cells were significantly increased, which meant that a stable TCM and TEM lineage was established in the early stage of influenza infection. Collectively, our data suggested that MENK administered intranasally, similar to the route of natural infection by influenza A virus, could exert antiviral activity through upregulating T-cell-mediated adaptive immune responses against influenza virus.
Collapse
Affiliation(s)
- Jing Tian
- Department of Immunology, School of Basic Medical Science, Jinzhou Medical University, Jinzhou, 121001, China
- Department of Immunology, School of Basic Medical Science, China Medical University, Shenyang, 110122, China
| | - Wenrui Fu
- Department of Immunology, School of Basic Medical Science, Jinzhou Medical University, Jinzhou, 121001, China
| | - Zifeng Xie
- Department of Immunology, School of Basic Medical Science, Jinzhou Medical University, Jinzhou, 121001, China
| | - Xiaonan Wang
- Biostax Inc., 1317 Edgewater Dr., Ste 4882, Orlando, FL, 32804, USA
| | - Miao Miao
- Biostax Inc., 1317 Edgewater Dr., Ste 4882, Orlando, FL, 32804, USA
| | - Fengping Shan
- Department of Immunology, School of Basic Medical Science, China Medical University, Shenyang, 110122, China.
| | - Xiaodong Yu
- Department of Nursing, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, China.
| |
Collapse
|
5
|
Zhang S, Geng J, Shan F, Shan Y, Griffin N, Wu B, Wang X. Methionine enkephalin suppresses lung cancer metastasis by regulating the polarization of tumor-associated macrophages and the distribution of myeloid-derived suppressor cells in the tumor microenvironment and inhibiting epithelial-mesenchymal transition. Int Immunopharmacol 2023; 118:110064. [PMID: 36989897 DOI: 10.1016/j.intimp.2023.110064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/10/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023]
Abstract
Metastasis is one of the most difficult challenges for clinical lung cancer treatment. Epithelial-mesenchymal transition (EMT) is the crucial step of tumor metastasis. Immune cells in the tumor microenvironment (TME), such as tumor-associated macrophages (TAMs) and myeloid-derived suppressor cells (MDSCs), promote cancer cell EMT. In this study, we explored the effect of methionine enkephalin (MENK) on the EMT process in vitro and in vivo, and its influence on TAMs, MDSCs, and associated cytokines in vivo. The results showed that MENK suppressed growth, migration, and invasion of lung cancer cells and inhibited the EMT process by interacting with opioid growth factor receptor. MENK reduced the number of M2 macrophages and MDSC infiltration, and downregulated the expression of interleukin-10 and transforming growth factor-β1 in both primary and metastatic tumors of nude mice. The present findings suggest that MENK is a potential target for suppressing metastasis in lung cancer treatment.
Collapse
|
6
|
Wang X, Li S, Yan S, Shan Y, Wang X, Jingbo Z, Wang Y, Shan F, Griffin N, Sun X. Methionine enkephalin inhibits colorectal cancer by remodeling the immune status of the tumor microenvironment. Int Immunopharmacol 2022; 111:109125. [PMID: 35988519 DOI: 10.1016/j.intimp.2022.109125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/30/2022] [Accepted: 08/01/2022] [Indexed: 12/24/2022]
Abstract
There is evidence that methionine enkephalin (MENK), an opioid peptide, promotes anti-tumor immune responses. In this study, the effect of MENK on colorectal cancer (CRC) and its mechanisms of action were examined in vivo. The intraperitoneal administration of 20 mg/kg MENK effectively inhibited MC38 subcutaneous colorectal tumor growth in mice. MENK inhibited tumor progression by increasing the immunogenicity and recognition of MC38 cells. MENK down-regulated the oncogene Kras and anti-apoptotic Bclxl and Bcl2, suppressed Il1b, Il6, iNOS, and Arg1 (encoding inflammatory cytokines), and increased Il17a and Il10 levels. MENK promoted a tumor suppressive state by decreasing the immune checkpoints Pd-1, Pd-l1, Lag3, Flgl1, and 2b4 in CRC. MENK also altered the immune status of the tumor immune microenvironment (TIME). It increased the infiltration of M1-type macrophages, CD8+T cells, and CD4+T cells and decreased the proportions of G-MDSCs, M-MDSCs, and M2-type macrophages. MENK accelerated CD4+TEM and CD8+TEM cell activation in the TIME and up-regulated IFN-γ, TNF-α, and IL-17A in CD4+T cells and Granzyme B in CD8+T cells. In addition, analyses of PD-1 and PD-L1 expression indicated that MENK promoted the anti-tumor immune response mediated by effector T cells. Finally, OGFr was up-regulated at the protein and mRNA levels by MENK, and the inhibitory effects of MENK on tumor growth were blocked by NTX, a specific blocker of OGFr. These finding indicate that MENK remodels the TIME in CRC to inhibit tumor progression by binding to OGFr. MENK is a potential therapeutic agent for CRC, especially for improving the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Xiaonan Wang
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang 110122, China.
| | - Shunlin Li
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang 110122, China
| | - Siqi Yan
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang 110122, China
| | - Yuanye Shan
- Immune Therapeutics Inc., 2431 Aloma Ave #124 Winter Park, FL 32792, USA
| | - Xiao Wang
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang 110122, China.
| | - Zhai Jingbo
- Medical College, Inner Mongolia Minzu University, Tongliao 028000, China; Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Tongliao 028000, China.
| | - Yuanyuan Wang
- Department of Anesthesiology, Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Fengping Shan
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang 110122, China.
| | - Noreen Griffin
- Immune Therapeutics Inc., 2431 Aloma Ave #124 Winter Park, FL 32792, USA
| | - Xun Sun
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang 110122, China.
| |
Collapse
|
7
|
Mori S, Fujiwara-Tani R, Kishi S, Sasaki T, Ohmori H, Goto K, Nakashima C, Nishiguchi Y, Kawahara I, Luo Y, Kuniyasu H. Enhancement of Anti-Tumoral Immunity by β-Casomorphin-7 Inhibits Cancer Development and Metastasis of Colorectal Cancer. Int J Mol Sci 2021; 22:ijms22158232. [PMID: 34360996 PMCID: PMC8348766 DOI: 10.3390/ijms22158232] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/14/2021] [Accepted: 07/28/2021] [Indexed: 01/24/2023] Open
Abstract
β-Casomorphin-7 (BCM) is a degradation product of β-casein, a milk component, and has been suggested to affect the immune system. However, its effect on mucosal immunity, especially anti-tumor immunity, in cancer-bearing individuals is not clear. We investigated the effects of BCM on lymphocytes using an in vitro system comprising mouse splenocytes, a mouse colorectal carcinogenesis model, and a mouse orthotopic colorectal cancer model. Treatment of mouse splenocytes with BCM in vitro reduced numbers of cluster of differentiation (CD) 20+ B cells, CD4+ T cells, and regulatory T cells (Tregs), and increased CD8+ T cells. Administration of BCM and the CD10 inhibitor thiorphan (TOP) to mice resulted in similar alterations in the lymphocyte subsets in the spleen and intestinal mucosa. BCM was degraded in a concentration- and time-dependent manner by the neutral endopeptidase CD10, and the formed BCM degradation product did not affect the lymphocyte counts. Furthermore, degradation was completely suppressed by TOP. In the azoxymethane mouse colorectal carcinogenesis model, the incidence of aberrant crypt foci, adenoma, and adenocarcinoma was reduced by co-treatment with BCM and TOP. Furthermore, when CT26 mouse colon cancer cells were inoculated into the cecum of syngeneic BALB/c mice and concurrently treated with BCM and TOP, infiltration of CD8+ T cells was promoted, and tumor growth and liver metastasis were suppressed. These results suggest that by suppressing the BCM degradation system, the anti-tumor effect of BCM is enhanced and it can suppress the development and progression of colorectal cancer.
Collapse
Affiliation(s)
- Shiori Mori
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Japan; (S.M.); (R.F.-T.); (S.K.); (T.S.); (H.O.); (K.G.); (C.N.); (Y.N.); (I.K.)
| | - Rina Fujiwara-Tani
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Japan; (S.M.); (R.F.-T.); (S.K.); (T.S.); (H.O.); (K.G.); (C.N.); (Y.N.); (I.K.)
| | - Shingo Kishi
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Japan; (S.M.); (R.F.-T.); (S.K.); (T.S.); (H.O.); (K.G.); (C.N.); (Y.N.); (I.K.)
| | - Takamitsu Sasaki
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Japan; (S.M.); (R.F.-T.); (S.K.); (T.S.); (H.O.); (K.G.); (C.N.); (Y.N.); (I.K.)
| | - Hitoshi Ohmori
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Japan; (S.M.); (R.F.-T.); (S.K.); (T.S.); (H.O.); (K.G.); (C.N.); (Y.N.); (I.K.)
| | - Kei Goto
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Japan; (S.M.); (R.F.-T.); (S.K.); (T.S.); (H.O.); (K.G.); (C.N.); (Y.N.); (I.K.)
| | - Chie Nakashima
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Japan; (S.M.); (R.F.-T.); (S.K.); (T.S.); (H.O.); (K.G.); (C.N.); (Y.N.); (I.K.)
| | - Yukiko Nishiguchi
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Japan; (S.M.); (R.F.-T.); (S.K.); (T.S.); (H.O.); (K.G.); (C.N.); (Y.N.); (I.K.)
| | - Isao Kawahara
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Japan; (S.M.); (R.F.-T.); (S.K.); (T.S.); (H.O.); (K.G.); (C.N.); (Y.N.); (I.K.)
| | - Yi Luo
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
- Correspondence: (Y.L.); (H.K.)
| | - Hiroki Kuniyasu
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Japan; (S.M.); (R.F.-T.); (S.K.); (T.S.); (H.O.); (K.G.); (C.N.); (Y.N.); (I.K.)
- Correspondence: (Y.L.); (H.K.)
| |
Collapse
|
8
|
Zhang S, Huang H, Handley M, Griffin N, Bai X, Shan F. A novel mechanism of lung cancer inhibition by methionine enkephalin through remodeling the immune status of the tumor microenvironment. Int Immunopharmacol 2021; 99:107999. [PMID: 34315116 DOI: 10.1016/j.intimp.2021.107999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 07/14/2021] [Accepted: 07/18/2021] [Indexed: 12/25/2022]
Abstract
This study examined the antitumor effect of methionine enkephalin (MENK) against lung cancer in vivo and in vitro and explored the underlying mechanisms. Changes in the immune status of the tumor microenvironment (TME) in response to MENK administration were examined in mice. MENK significantly inhibited the proliferation of lung cancer cells in vivo and in vitro by regulating the Wnt/β-catenin pathway and causing cell cycle arrest at the G0/G1 phase. Knockdown of opioid growth factor receptor abolished the effect of MENK on lung cancer cells. The immune status of the TME of mice differed between the MENK and control groups. MENK increased the infiltration of M1-type macrophages, natural killer cells, CD8+ T cells, CD4+ T cells, and dendritic cells into the TME, and decreased the proportion of myeloid inhibitory cells and M2-type macrophages. Immunohistochemical analysis of the expression of cytokines in the TME showed that MENK upregulated IL-15, IL-21, IFN-γ, and granzyme B and downregulated IL-10 and TGF-β1 in mice. Taken together, these finding indicate that MENK may be a potential agent for lung cancer treatment in the future, especially for overcoming immune escape and immune resistance.
Collapse
Affiliation(s)
- Shuling Zhang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110004, China; Department of Immunology, School of Basic Medical Science, China Medical University, Shenyang 110122, China
| | - Hai Huang
- Department of Orthopedic Oncology, the People's Hospital of Liaoning Province, Shenyang 110016, China
| | - Mike Handley
- Cytocom Inc, 3001 Aloma Ave., Winter Park, FL 32792, USA
| | - Noreen Griffin
- Cytocom Inc, 3001 Aloma Ave., Winter Park, FL 32792, USA
| | - Xueli Bai
- Department of Gynecology, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110004, China.
| | - Fengping Shan
- Department of Immunology, School of Basic Medical Science, China Medical University, Shenyang 110122, China.
| |
Collapse
|
9
|
Liu Q, He H, Mai L, Yang S, Fan W, Huang F. Peripherally Acting Opioids in Orofacial Pain. Front Neurosci 2021; 15:665445. [PMID: 34017236 PMCID: PMC8129166 DOI: 10.3389/fnins.2021.665445] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/12/2021] [Indexed: 12/12/2022] Open
Abstract
The activation of opioid receptors by exogenous or endogenous opioids can produce significant analgesic effects in peripheral tissues. Numerous researchers have demonstrated the expression of peripheral opioid receptors (PORs) and endogenous opioid peptides (EOPs) in the orofacial region. Growing evidence has shown the involvement of PORs and immune cell-derived EOPs in the modulation of orofacial pain. In this review, we discuss the role of PORs and EOPs in orofacial pain and the possible cellular mechanisms involved. Furthermore, the potential development of therapeutic strategies for orofacial pain is also summarized.
Collapse
Affiliation(s)
- Qing Liu
- Department of Pediatric Dentistry, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Hongwen He
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Department of Oral Anatomy and Physiology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Lijia Mai
- Department of Pediatric Dentistry, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Shengyan Yang
- Department of Pediatric Dentistry, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Wenguo Fan
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Fang Huang
- Department of Pediatric Dentistry, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| |
Collapse
|
10
|
Budka J, Kowalski S, Chylinska M, Dzierzbicka K, Inkielewicz-Stepniak I. Opioid Growth Factor and its Derivatives as Potential Non-toxic Multifunctional Anticancer and Analgesic Compounds. Curr Med Chem 2021; 28:673-686. [PMID: 32129162 DOI: 10.2174/0929867327666200304122406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 10/02/2019] [Accepted: 10/14/2019] [Indexed: 11/22/2022]
Abstract
Despite significant research progress on the pathogenesis, molecular biology, diagnosis, treatment, and prevention of cancer, its morbidity and mortality are still high around the world. The emerging resistance of cancer cells to anticancer drugs remains still a significant problem in oncology today. Furthermore, an important challenge is the inability of anticancer drugs to selectively target tumor cells thus sparing healthy cells. One of the new potential options for efficient and safe therapy can be provided by opioid growth factor (OGF), chemically termed Met-enkephalin. It is an endogenous pentapeptide (Tyr-Gly-Gly-Phe-Met) with antitumor, analgesic, and immune-boosting properties. Clinical trials have demonstrated that OGF therapy alone, as well as in combination with standard chemotherapies, is a safe, non-toxic anticancer agent that reduces tumor size. In this paper, we review the structure-activity relationship of OGF and its analogues. We highlight also OGF derivatives with analgesic, immunomodulatory activity and the ability to penetrate the blood-brain barrier and may be used as safe agents enhancing chemotherapy efficacy and improving quality of life in cancer patients. The reviewed papers indicate that Met-enkephalin and its analogues are interesting candidates for the development of novel, non-toxic, and endowed with an analgesic activity anticancer drugs. More preclinical and clinical studies are needed to explore these opportunities.
Collapse
Affiliation(s)
- Justyna Budka
- Department of Medical Chemistry, Faculty of Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Szymon Kowalski
- Department of Medical Chemistry, Faculty of Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Monika Chylinska
- Department of Medical Chemistry, Faculty of Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Krystyna Dzierzbicka
- Department of Organic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | | |
Collapse
|
11
|
Wang X, Zhang R, Wu T, Shi Y, Zhou X, Tang D, Yu W, So EC, Wu X, Pan Z, Tian J. Successive treatment with naltrexone induces epithelial-mesenchymal transition and facilitates the malignant biological behaviors of bladder cancer cells. Acta Biochim Biophys Sin (Shanghai) 2021; 53:238-248. [PMID: 33410473 DOI: 10.1093/abbs/gmaa169] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Indexed: 12/31/2022] Open
Abstract
Naltrexone is widely used for alleviating opioid-related side effects in cancer patients. However, the effects of naltrexone on cancer progression are controversial in the literature. The present study was carried out to investigate the effects of successive treatment with clinically relevant doses of naltrexone on the malignant biological behaviors of bladder cancer cells. The human bladder cancer T24 cells and mouse bladder cancer MB49 cells were treated with naltrexone. Cell proliferation, migration, and invasion abilities were analyzed. Morphological changes of the cells were confirmed by F-actin immunofluorescence staining. Epithelial-mesenchymal transition (EMT)-related markers and transcriptional factors, as well as activation of the phosphatidylinositol 3 kinase (PI3K)/AKT signaling pathway, were analyzed. Results showed that, compared with the control group, successive treatment with naltrexone significantly promoted the proliferation and decreased the apoptosis of bladder cancer cells, together with increase in cell migration and invasion ability. Continuous treatment with naltrexone also significantly reduced the expression of epithelial markers (E-cadherin and cytokeratin 19), increased the expression of mesenchymal markers (N-cadherin and vimentin) and EMT-inducing transcription factors (Snail and Slug), and further shifted the morphological phenotype of bladder cancer cells to a mesenchymal phenotype. The PI3K/AKT signaling pathway was activated by successive treatment with naltrexone. Notably, incubation with the specific PI3K inhibitor LY294002 together with naltrexone reversed the naltrexone-induced EMT progression. In conclusion, successive treatment with naltrexone may be favorable for the progression of bladder tumors by activating the PI3K/AKT signaling pathway and inducing EMT. Long-term exposure to naltrexone should be used cautiously in patients with bladder cancer.
Collapse
Affiliation(s)
- Xiaoqiang Wang
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200127, China
| | - Ruirui Zhang
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200127, China
| | - Tong Wu
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200127, China
| | - Yumiao Shi
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200127, China
| | - Xiao Zhou
- Department of Intensive Care, Renji Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200127, China
| | - Dan Tang
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200127, China
| | - Weifeng Yu
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200127, China
| | - Edmund Cheung So
- Department of Anesthesia, An Nan Hospital, China Medical University, Tainan 709010
| | - Xiaodan Wu
- Department of Anesthesiology, Fujian Provincial Hospital, Fujian Provincial Clinical Medical College, Fujian Medical University, Fuzhou 350001, China
| | - Zhiying Pan
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200127, China
| | - Jie Tian
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200127, China
| |
Collapse
|
12
|
Abstract
This paper is the forty-first consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2018 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (2), the roles of these opioid peptides and receptors in pain and analgesia in animals (3) and humans (4), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (5), opioid peptide and receptor involvement in tolerance and dependence (6), stress and social status (7), learning and memory (8), eating and drinking (9), drug abuse and alcohol (10), sexual activity and hormones, pregnancy, development and endocrinology (11), mental illness and mood (12), seizures and neurologic disorders (13), electrical-related activity and neurophysiology (14), general activity and locomotion (15), gastrointestinal, renal and hepatic functions (16), cardiovascular responses (17), respiration and thermoregulation (18), and immunological responses (19).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY, 11367, United States.
| |
Collapse
|
13
|
Casado-Bedmar M, Keita ÅV. Potential neuro-immune therapeutic targets in irritable bowel syndrome. Therap Adv Gastroenterol 2020; 13:1756284820910630. [PMID: 32313554 PMCID: PMC7153177 DOI: 10.1177/1756284820910630] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 02/11/2020] [Indexed: 02/04/2023] Open
Abstract
Irritable bowel syndrome (IBS) is a functional gastrointestinal (GI) disorder characterized by recurring abdominal pain and disturbed bowel habits. The aetiology of IBS is unknown but there is evidence that genetic, environmental and immunological factors together contribute to the development of the disease. Current treatment of IBS includes lifestyle and dietary interventions, laxatives or antimotility drugs, probiotics, antispasmodics and antidepressant medication. The gut-brain axis comprises the central nervous system, the hypothalamic pituitary axis, the autonomic nervous system and the enteric nervous system. Within the intestinal mucosa there are close connections between immune cells and nerve fibres of the enteric nervous system, and signalling between, for example, mast cells and nerves has shown to be of great importance during GI disorders such as IBS. Communication between the gut and the brain is most importantly routed via the vagus nerve, where signals are transmitted by neuropeptides. It is evident that IBS is a disease of a gut-brain axis dysregulation, involving altered signalling between immune cells and neurotransmitters. In this review, we analyse the most novel and distinct neuro-immune interactions within the IBS mucosa in association with already existing and potential therapeutic targets.
Collapse
Affiliation(s)
- Maite Casado-Bedmar
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Åsa V. Keita
- Department of Biomedical and Clinical Sciences, Medical Faculty, Linköping University, Campus US, Linköping, 581 85, Sweden
| |
Collapse
|
14
|
Mazahery C, Benson BL, Cruz-Lebrón A, Levine AD. Chronic Methadone Use Alters the CD8 + T Cell Phenotype In Vivo and Modulates Its Responsiveness Ex Vivo to Opioid Receptor and TCR Stimuli. THE JOURNAL OF IMMUNOLOGY 2020; 204:1188-1200. [PMID: 31969385 DOI: 10.4049/jimmunol.1900862] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 12/26/2019] [Indexed: 12/18/2022]
Abstract
Endogenous opioid peptides are released at sites of injury, and their cognate G protein-coupled opioid receptors (ORs) are expressed on immune cells. Although drugs of misuse appropriate ORs, conflicting reports indicate immunostimulatory and immunosuppressive activity, in that opioid users have elevated infection risk, opioids activate innate immune cells, and opioids attenuate inflammation in murine T cell-mediated autoimmunity models. The i.v. use of drugs transmits bloodborne pathogens, particularly viruses, making the study of CD8+ T cells timely. From a cohort of nonuser controls and methadone users, we demonstrate, via t-Stochastic Neighbor Embedding and k-means cluster analysis of surface marker expression, that chronic opioid use alters human CD8+ T cell subset balance, with notable decreases in T effector memory RA+ cells. Studying global CD8+ T cell populations, there were no differences in expression of OR and several markers of functionality, demonstrating the need for finer analysis. Purified CD8+ T cells from controls respond to opioids ex vivo by increasing cytoplasmic calcium, a novel finding for OR signal transduction, likely because of cell lineage. CD8+ T cells from controls exposed to μ-OR agonists ex vivo decrease expression of activation markers CD69 and CD25, although the same markers are elevated in μ-OR-treated cells from methadone users. In contrast to control cells, T cell subsets from methadone users show decreased expression of CD69 and CD25 in response to TCR stimulus. Overall, these results indicate a direct, selective role for opioids in CD8+ T cell immune regulation via their ability to modulate cell responses through the opioid receptors and TCRs.
Collapse
Affiliation(s)
- Claire Mazahery
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106
| | - Bryan L Benson
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106
| | - Angélica Cruz-Lebrón
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106
| | - Alan D Levine
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106; .,Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106.,Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106.,Department of Medicine, Case Western Reserve University, Cleveland, OH 44106.,Department of Pediatrics, Case Western Reserve University, Cleveland, OH 44106; and.,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106
| |
Collapse
|
15
|
Tian J, Qu N, Jiao X, Wang X, Geng J, Griffin N, Shan F. Methionine enkephalin inhibits influenza A virus infection through upregulating antiviral state in RAW264.7 cells. Int Immunopharmacol 2019; 78:106032. [PMID: 31835089 DOI: 10.1016/j.intimp.2019.106032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 01/27/2023]
Abstract
MENK, as an immune adjuvant, has potential immune-regulatory activity on innate and adaptive immune cells. The aim of this work was to investigate the antiviral effect of MENK on influenza virus-infected murine macrophage cells (RAW264.7) and its underlying mechanisms. The results showed that MENK markedly inhibited influenza A virus (H1N1) replication in pre- and post-MENK treatment, especially in pre-MENK treatment. The mechanisms exploration revealed that MENK (10 mg/mL) significantly inhibited the nucleoprotein (NP) of influenza virus and up-regulated levels of IL-6, TNF-α and IFN-β compared with those in H1N1 control group. Further experiments confirmed that antiviral effects of MENK was associated with promotion of opioid receptor (MOR) as well as activation of NF-κB p65 inducing cellular antiviral status. The data suggest that MENK should be potential candidate for prophylactic or therapeutic treatment against H1N1 influenza virus.
Collapse
Affiliation(s)
- Jing Tian
- Department of Immunology, School of Basic Medical Science, Jinzhou Medical University, Jinzhou 121001, China; Department of Immunology, School of Basic Medical Science, China Medical University, Shenyang 110122, China
| | - Na Qu
- Department of Gynecology, Cancer Hospital, China Medical University, Shenyang 110042, China
| | - Xue Jiao
- Department of Translational Medicine, No.4 Teaching Hospital, China Medical University, Shenyang 110032, China
| | - Xiaonan Wang
- Department of Immunology, School of Basic Medical Science, China Medical University, Shenyang 110122, China
| | - Jin Geng
- Department of Ophthalmology, No.1 Teaching Hospital, China Medical University, Shenyang 110001, China
| | - Noreen Griffin
- Immune Therapeutics, Inc., 37 North Orange Avenue, Suite 607, Orlando, FL 32801, USA
| | - Fengping Shan
- Department of Immunology, School of Basic Medical Science, China Medical University, Shenyang 110122, China.
| |
Collapse
|
16
|
Geng J, Yuan Y, Jiao X, Wang R, Liu N, Chen H, Griffin N, Shan F. Novel modulation on myeloid-derived suppressor cells (MDSCs) by methionine encephalin (MENK). Int Immunopharmacol 2019; 68:193-203. [PMID: 30654309 DOI: 10.1016/j.intimp.2019.01.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/08/2019] [Accepted: 01/08/2019] [Indexed: 12/21/2022]
Abstract
The purpose of this study was to identify the modulatory effect of MENK on MDSCs and to investigate the relationship between this modulation and the expression of opioid receptors. Our results showed that MENK could inhibit the proliferation of MDSCs from both marine bone marrow and spleen. MENK also could promote the expression of opioid receptors MOR and DOR. MENK suppressed the PMN-MDSCs generated from splenocyte while up-regulated M-MDSCs. The stimulation of MENK increased the production of IL-4 secreted by MDSCs from slpenocytes. Our currently data indicated that MENK could suppress the accumulation of MDSCs in tumor-bearing mice via binding to and up-regulating expressions of subunits of opioid receptors. Therefore, it is concluded that MENK, through triggering opioid receptors could exert inhibiting modulation on MDSCs.
Collapse
Affiliation(s)
- Jin Geng
- Department of Immunology, School of Basic Medical Science, China Medical University, Shenyang 110122, China; Department of Ophthalmology, No. 1 Teaching Hospital, China Medical University, Shenyang 110001, China
| | - Ye Yuan
- Department of Neurosurgery, Shengjing Hospital, China Medical University, Shenyang 110016, China
| | - Xue Jiao
- Department of Immunology, School of Basic Medical Science, China Medical University, Shenyang 110122, China
| | - Ruizhe Wang
- Department of Immunology, School of Basic Medical Science, China Medical University, Shenyang 110122, China; Department of Gynecology, No. 1 Teaching Hospital, China Medical University, Shenyang 110001, China
| | - Ning Liu
- Department of Immunology, School of Basic Medical Science, China Medical University, Shenyang 110122, China; Department of Gynecology Oncology, Shengjing Hospital, China Medical University, Shenyang 110016, China
| | - Hao Chen
- Department of Immunology, School of Basic Medical Science, China Medical University, Shenyang 110122, China
| | - Noreen Griffin
- Immune Therapeutics, Inc., 37 North Orange Avenue, Suite 607, Orlando, FL 32801, USA
| | - Fengping Shan
- Department of Immunology, School of Basic Medical Science, China Medical University, Shenyang 110122, China.
| |
Collapse
|