1
|
Yousefi P, Soltani S, Siri G, Rezayat SA, Gholami A, Zafarani A, Razizadeh MH, Alborzi E, Mokhtary‐Irani G, Abedi B, Karampoor S, Tabibzadeh A, Farahani A. Coagulopathy and thromboembolic events a pathogenic mechanism of COVID-19 associated with mortality: An updated review. J Clin Lab Anal 2023; 37:e24941. [PMID: 37431777 PMCID: PMC10431412 DOI: 10.1002/jcla.24941] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/24/2023] [Accepted: 06/26/2023] [Indexed: 07/12/2023] Open
Abstract
During 2019, the SARS-CoV-2 emerged from China, and during months, COVID-19 spread in many countries around the world. The expanding data about pathogenesis of this virus could elucidate the exact mechanism by which COVID-19 caused death in humans. One of the pathogenic mechanisms of this disease is coagulation. Coagulation disorders that affect both venous and arterial systems occur in patients with COVID-19. The possible mechanism involved in the coagulation could be excessive inflammation induced by SARS-CoV-2. However, it is not yet clear well how SARS-CoV-2 promotes coagulopathy. However, some factors, such as pulmonary endothelial cell damage and some anticoagulant system disorders, are assumed to have an important role. In this study, we assessed conducted studies about COVID-19-induced coagulopathy to obtain clearer vision of the wide range of manifestations and possible pathogenesis mechanisms.
Collapse
Affiliation(s)
- Parastoo Yousefi
- Department of Virology, School of MedicineIran University of Medical SciencesTehranIran
| | - Saber Soltani
- Department of Virology, School of Public HealthTehran University of Medical SciencesTehranIran
| | - Goli Siri
- Department of Internal Medicine, Amir Alam HospitalTehran University of Medical SciencesTehranIran
| | - Sara Akhavan Rezayat
- Department of Health Care Management and Economics, School of Public HealthTehran University of Medical SciencesTehranIran
| | - Ali Gholami
- School of MedicineArak University of Medical SciencesArakIran
| | - Alireza Zafarani
- Department of Hematology and Blood Banking, Faculty of Allied MedicineIran University of Medical SciencesTehranIran
| | | | - Ehsan Alborzi
- Department of Virology, School of MedicineIran University of Medical SciencesTehranIran
| | - Golnaz Mokhtary‐Irani
- Department of Virology, Faculty of MedicineAhvaz Jondishapur University of Medical SciencesAhvazIran
| | - Behnam Abedi
- Department of Medical Laboratory SciencesKhomein University of Medical SciencesKhomeinIran
| | - Sajad Karampoor
- Department of Virology, School of MedicineIran University of Medical SciencesTehranIran
- Gastrointestinal and Liver Diseases Research CenterIran University of Medical SciencesTehranIran
| | - Alireza Tabibzadeh
- Department of Virology, School of MedicineIran University of Medical SciencesTehranIran
| | - Abbas Farahani
- Department of Medical Laboratory SciencesKhomein University of Medical SciencesKhomeinIran
- Molecular and Medicine Research CenterKhomein University of Medical SciencesKhomeinIran
| |
Collapse
|
2
|
Alhossan A, Alsaran AK, Almahmudi AH, Aljohani ZS, Albishi MR, Almutairi AK. Adverse Events of COVID-19 Vaccination among the Saudi Population: A Systematic Review and Meta-Analysis. Vaccines (Basel) 2022; 10:2089. [PMID: 36560499 PMCID: PMC9783010 DOI: 10.3390/vaccines10122089] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022] Open
Abstract
This systematic review and meta-analysis aimed to synthesize the evidence on the adverse events (AEs) of coronavirus disease 2019 (COVID-19) vaccinations in Saudi Arabia. A computerized search in MEDLINE via PubMed and OVID, Scopus, CENTRAL, and Web of Science was conducted using relevant keywords. The NIH tools were used for the quality assessment. A total of 14 studies (16 reports) were included. The pooled analysis showed that the incidence of AEs post-COVID-19 vaccination was 40.4% (95% CI:6.4% to 87%). Compared to the AstraZeneca vaccine, the Pfizer-BioNTech vaccine was associated with a lower risk ratio (RR) of wheezing (RR = 0.04), fever (RR = 0.32), chills (RR = 0.41), headache (RR = 0.47), dizziness (RR = 0.49), and joint pain (RR = 0.51). The Pfizer-BioNTech vaccine was associated with significantly higher RR of general allergic reactions (RR = 1.62), dyspnea (RR = 1.68), upper respiratory tract symptoms (RR = 1.71), and lymphadenopathy (RR = 8.32). The current evidence suggests that the incidence of AEs following COVID-19 vaccines is 40%; however, most of these AEs were mild and for a short time. The overall number of participants with AEs was higher in the Pfizer group compared to the AstraZeneca group; however, the AstraZeneca vaccine was associated with a higher RR of several AEs.
Collapse
Affiliation(s)
- Abdulaziz Alhossan
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh P.O. Box 11451, Saudi Arabia
| | | | | | - Ziad Saad Aljohani
- Faculty of Pharmacy, University of Hail, Hail P.O. Box 2440, Saudi Arabia
| | - Mohammed Rajeh Albishi
- Faculty of Pharmacy, Umm Al Qura University, Makkah P.O. Box 21955, Saudi Arabia
- Ministry of National Guard Health Affairs (MNGHA), Riyadh P.O. Box 22490, Saudi Arabia
| | | |
Collapse
|
3
|
Jasim SA, Mahdi RS, Bokov DO, Najm MAA, Sobirova GN, Bafoyeva ZO, Taifi A, Alkadir OKA, Mustafa YF, Mirzaei R, Karampoor S. The deciphering of the immune cells and marker signature in COVID-19 pathogenesis: An update. J Med Virol 2022; 94:5128-5148. [PMID: 35835586 PMCID: PMC9350195 DOI: 10.1002/jmv.28000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/28/2022] [Accepted: 07/13/2022] [Indexed: 12/15/2022]
Abstract
The precise interaction between the immune system and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is critical in deciphering the pathogenesis of coronavirus disease 2019 (COVID-19) and is also vital for developing novel therapeutic tools, including monoclonal antibodies, antivirals drugs, and vaccines. Viral infections need innate and adaptive immune reactions since the various immune components, such as neutrophils, macrophages, CD4+ T, CD8+ T, and B lymphocytes, play different roles in various infections. Consequently, the characterization of innate and adaptive immune reactions toward SARS-CoV-2 is crucial for defining the pathogenicity of COVID-19. In this study, we explain what is currently understood concerning the conventional immune reactions to SARS-CoV-2 infection to shed light on the protective and pathogenic role of immune response in this case. Also, in particular, we investigate the in-depth roles of other immune mediators, including neutrophil elastase, serum amyloid A, and syndecan, in the immunopathogenesis of COVID-19.
Collapse
Affiliation(s)
| | - Roaa Salih Mahdi
- Department of Pathology, College of MedicineUniversity of BabylonHillaIraq
| | - Dmitry Olegovich Bokov
- Institute of PharmacySechenov First Moscow State Medical UniversityMoscowRussian Federation
- Laboratory of Food ChemistryFederal Research Center of Nutrition, Biotechnology and Food SafetyMoscowRussian Federation
| | - Mazin A. A. Najm
- Pharmaceutical Chemistry Department, College of PharmacyAl‐Ayen UniversityThi‐QarIraq
| | - Guzal N. Sobirova
- Department of Rehabilitation, Folk Medicine and Physical EducationTashkent Medical AcademyTashkentUzbekistan
| | - Zarnigor O. Bafoyeva
- Department of Rehabilitation, Folk Medicine and Physical EducationTashkent Medical AcademyTashkentUzbekistan
| | | | | | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of PharmacyUniversity of MosulMosulIraq
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research CenterPasteur Institute of IranTehranIran
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research CenterIran University of Medical SciencesTehranIran
| |
Collapse
|
4
|
Ahmad S, Manzoor S, Siddiqui S, Mariappan N, Zafar I, Ahmad A, Ahmad A. Epigenetic underpinnings of inflammation: Connecting the dots between pulmonary diseases, lung cancer and COVID-19. Semin Cancer Biol 2022; 83:384-398. [PMID: 33484868 PMCID: PMC8046427 DOI: 10.1016/j.semcancer.2021.01.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/08/2020] [Accepted: 01/07/2021] [Indexed: 12/11/2022]
Abstract
Inflammation is an essential component of several respiratory diseases, such as chronic obstructive pulmonary disease (COPD), asthma and acute respiratory distress syndrome (ARDS). It is central to lung cancer, the leading cancer in terms of associated mortality that has affected millions of individuals worldwide. Inflammation and pulmonary manifestations are also the major causes of COVID-19 related deaths. Acute hyperinflammation plays an important role in the COVID-19 disease progression and severity, and development of protective immunity against the virus is greatly sought. Further, the severity of COVID-19 is greatly enhanced in lung cancer patients, probably due to the genes such as ACE2, TMPRSS2, PAI-1 and furin that are commonly involved in cancer progression as well as SAR-CoV-2 infection. The importance of inflammation in pulmonary manifestations, cancer and COVID-19 calls for a closer look at the underlying processes, particularly the associated increase in IL-6 and other cytokines, the dysregulation of immune cells and the coagulation pathway. Towards this end, several reports have identified epigenetic regulation of inflammation at different levels. Expression of several key inflammation-related cytokines, chemokines and other genes is affected by methylation and acetylation while non-coding RNAs, including microRNAs as well as long non-coding RNAs, also affect the overall inflammatory responses. Select miRNAs can regulate inflammation in COVID-19 infection, lung cancer as well as other inflammatory lung diseases, and can serve as epigenetic links that can be therapeutically targeted. Furthermore, epigenetic changes also mediate the environmental factors-induced inflammation. Therefore, a better understanding of epigenetic regulation of inflammation can potentially help develop novel strategies to prevent, diagnose and treat chronic pulmonary diseases, lung cancer and COVID-19.
Collapse
Affiliation(s)
- Shama Ahmad
- Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Shajer Manzoor
- Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Simmone Siddiqui
- Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nithya Mariappan
- Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Iram Zafar
- Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Aamir Ahmad
- Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Aftab Ahmad
- Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
5
|
Alagheband Bahrami A, Azargoonjahromi A, Sadraei S, Aarabi A, Payandeh Z, Rajabibazl M. An overview of current drugs and prophylactic vaccines for coronavirus disease 2019 (COVID-19). Cell Mol Biol Lett 2022; 27:38. [PMID: 35562685 PMCID: PMC9100302 DOI: 10.1186/s11658-022-00339-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 04/21/2022] [Indexed: 02/06/2023] Open
Abstract
Designing and producing an effective vaccine is the best possible way to reduce the burden and spread of a disease. During the coronavirus disease 2019 (COVID-19) pandemic, many large pharmaceutical and biotechnology companies invested a great deal of time and money in trying to control and combat the disease. In this regard, due to the urgent need, many vaccines are now available earlier than scheduled. Based on their manufacturing technology, the vaccines available for COVID-19 (severe acute respiratory syndrome coronavirus 2 (SAR-CoV2)) infection can be classified into four platforms: RNA vaccines, adenovirus vector vaccines, subunit (protein-based) vaccines, and inactivated virus vaccines. Moreover, various drugs have been deemed to negatively affect the progression of the infection via various actions. However, adaptive variants of the SARS-CoV-2 genome can alter the pathogenic potential of the virus and increase the difficulty of both drug and vaccine development. In this review, along with drugs used in COVID-19 treatment, currently authorized COVID-19 vaccines as well as variants of the virus are described and evaluated, considering all platforms.
Collapse
Affiliation(s)
- Armina Alagheband Bahrami
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Samin Sadraei
- Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aryan Aarabi
- Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Payandeh
- Department Medical Biochemistry and Biophysics, Division Medical Inflammation Research, Karolinska Institute, Stockholm, Sweden
| | - Masoumeh Rajabibazl
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Agwa SHA, Elghazaly H, El Meteini MS, Yahia YA, Khaled R, Abd Elsamee AM, Darwish RM, Elsayed SM, Hafez H, Mahmoud BS, Em F, Matboli M. Identifying SARS-CoV-2 Lineage Mutation Hallmarks and Correlating Them With Clinical Outcomes in Egypt: A Pilot Study. Front Mol Biosci 2022; 9:817735. [PMID: 35350713 PMCID: PMC8958014 DOI: 10.3389/fmolb.2022.817735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/08/2022] [Indexed: 12/15/2022] Open
Abstract
The SARS-CoV-2 pandemic has led to over 4.9 million deaths as of October 2021. One of the main challenges of creating vaccines, treatment, or diagnostic tools for the virus is its mutations and emerging variants. A couple of variants were declared as more virulent and infectious than others. Some approaches were used as nomenclature for SARS-CoV-2 variants and lineages. One of the most used is the Pangolin nomenclature. In our study, we enrolled 35 confirmed SARS-CoV-2 patients and sequenced the viral RNA in their samples. We also aimed to highlight the hallmark mutations in the most frequent lineage. We identified a seven-mutation signature for the SARS-CoV-2 C36 lineage, detected in 56 countries and an emerging lineage in Egypt. In addition, we identified one mutation which was highly negatively correlated with the lineage. On the other hand, we found no significant correlation between our clinical outcomes and the C36 lineage. In conclusion, the C36 lineage is an emerging SARS-CoV-2 variant that needs more investigation regarding its clinical outcomes compared to other strains. Our study paves the way for easier diagnosis of variants of concern using mutation signatures.
Collapse
Affiliation(s)
- Sara H A Agwa
- Clinical Pathology and Molecular Genomics Unit of Medical Ain Shams Research Institute (MASRI), Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Hesham Elghazaly
- Oncology Department, Medical Ain Shams Research Institute (MASRI), Cairo, Egypt
| | - Mahmoud Shawky El Meteini
- Department of General Surgery, The School of Medicine, University of Ain Shams, Abbassia, Cairo, Egypt
| | - Yahia A Yahia
- Biochemistry Department, Faculty of Pharmacy, Misr University for Science and Technology, Giza, Egypt
| | - Radwa Khaled
- Biotechnology/Biomolecular Chemistry Program, Faculty of Science, Cairo University, Cairo, Egypt
- Biochemistry Department, Faculty of Medicine, Modern University for Technology and Information, Cairo, Egypt
| | - Aya M Abd Elsamee
- Biochemistry and Molecular Genomics Unit of Medical Ain Shams Research Institute (MASRI), Ain Shams University, Cairo, Egypt
| | - Reham M Darwish
- Biochemistry and Molecular Genomics Unit of Medical Ain Shams Research Institute (MASRI), Ain Shams University, Cairo, Egypt
| | - Shaimaa M Elsayed
- Biochemistry and Molecular Genomics Unit of Medical Ain Shams Research Institute (MASRI), Ain Shams University, Cairo, Egypt
| | - Hala Hafez
- Clinical Pathology Department, Infection Control Unit, University of Ain Shams, Cairo, Egypt
| | - Basma S Mahmoud
- Clinical Pathology Department, Infection Control Unit, University of Ain Shams, Cairo, Egypt
| | - Fouda Em
- Pediatric Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Marwa Matboli
- Medicinal Biochemistry and Molecular Biology Department, Faculty of Medicine, University of Ain Shams, Cairo, Egypt
| |
Collapse
|
7
|
Mirzaei R, Sabokroo N, Ahmadyousefi Y, Motamedi H, Karampoor S. Immunometabolism in biofilm infection: lessons from cancer. Mol Med 2022; 28:10. [PMID: 35093033 PMCID: PMC8800364 DOI: 10.1186/s10020-022-00435-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 01/10/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Biofilm is a community of bacteria embedded in an extracellular matrix, which can colonize different human cells and tissues and subvert the host immune reactions by preventing immune detection and polarizing the immune reactions towards an anti-inflammatory state, promoting the persistence of biofilm-embedded bacteria in the host. MAIN BODY OF THE MANUSCRIPT It is now well established that the function of immune cells is ultimately mediated by cellular metabolism. The immune cells are stimulated to regulate their immune functions upon sensing danger signals. Recent studies have determined that immune cells often display distinct metabolic alterations that impair their immune responses when triggered. Such metabolic reprogramming and its physiological implications are well established in cancer situations. In bacterial infections, immuno-metabolic evaluations have primarily focused on macrophages and neutrophils in the planktonic growth mode. CONCLUSION Based on differences in inflammatory reactions of macrophages and neutrophils in planktonic- versus biofilm-associated bacterial infections, studies must also consider the metabolic functions of immune cells against biofilm infections. The profound characterization of the metabolic and immune cell reactions could offer exciting novel targets for antibiofilm therapy.
Collapse
Affiliation(s)
- Rasoul Mirzaei
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| | - Niloofar Sabokroo
- Department of Microbiology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Yaghoub Ahmadyousefi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
- Research Center for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hamid Motamedi
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Adli A, Rahimi M, Khodaie R, Hashemzaei N, Hosseini SM. Role of Genetic Variants and Host Polymorphisms on COVID‐19: From Viral Entrance Mechanisms to Immunological Reactions. J Med Virol 2022; 94:1846-1865. [PMID: 35076118 PMCID: PMC9015257 DOI: 10.1002/jmv.27615] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/04/2022] [Accepted: 01/18/2022] [Indexed: 11/24/2022]
Abstract
Coronavirus disease 2019 (COVID‐19), caused by a highly pathogenic emerging virus, is called severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2). Knowledge regarding the pathogenesis of this virus is in infancy; however, investigation on the pathogenic mechanisms of the SARS‐CoV‐2 is underway. In COVID‐19, one of the most remarkable characteristics is the wide range of disease manifestation and severity seen across individuals of different ethnic backgrounds and geographical locations. To effectively manage COVID‐19 in the populations, beyond SARS‐CoV‐2 detection, serological response assessment, and analytic techniques, it is critical to obtain knowledge about at‐risk individuals and comprehend the identified variations in the disease's severity in general and also in the populations' levels. Several factors can contribute to variation in disease presentation, including population density, gender and age differences, and comorbid circumstances including diabetes mellitus, hypertension, and obesity. Genetic factors presumably influence SARS‐CoV‐2 infection susceptibility. Besides this, COVID‐19 has also been linked with a higher risk of mortality in men and certain ethnic groups, revealing that host genetic characteristics may affect the individual risk of death. Also, genetic variants involved in pathologic processes, including virus entrance into cells, antiviral immunity, and inflammatory response, are not entirely understood. Regarding SARS‐CoV‐2 infection characteristics, the present review suggests that various genetic polymorphisms influence virus pathogenicity and host immunity, which might have significant implications for understanding and interpreting the matter of genetics in SARS‐CoV‐2 pathogenicity and customized integrative medical care based on population investigation. Genetic factors presumably influence SARS‐CoV‐2 infection susceptibility. Genetic variants were involved in the pathologic processes of SARS‐CoV‐2 infection. Various genetic polymorphisms influence virus pathogenicity and host immunity. Human leukocyte antigens (HLAs) may play a vital role in SARS‐CoV‐2 susceptibility. Polymorphisms in several genes such as IL‐6, TMPRSS2, IFITM3, CD26, ACE, and DBP were associated with the COVID‐19 severity.
Collapse
Affiliation(s)
- Abolfazl Adli
- Human Genetic Research Center, Baqiyatallah University of Medical SciencesTehran1435916471Iran
| | - Mandana Rahimi
- Department of Pathology, School of Medicine, Hasheminejad Kidney Center, Iran University of Medical SciencesTehranIran
| | - Reza Khodaie
- Department of Biology, East Tehran Branch, Islamic Azad UniversityTehranIran
| | | | - Sayed Mostafa Hosseini
- Human Genetic Research Center, Baqiyatallah University of Medical SciencesTehran1435916471Iran
| |
Collapse
|
9
|
Alfaleh A, Alkattan A, Radwan N, Elzohri M, Alzaher A, Ibrahim M, Alsalameen E, Alsultan A, Alhabib D, Alshelwah A, Mahmoud N, Sagor K, Alabdulkareem K. Adverse drug reactions from two COVID-19 vaccines reported in Saudi Arabia. DRUGS & THERAPY PERSPECTIVES 2022; 38:84-92. [PMID: 35095267 PMCID: PMC8783585 DOI: 10.1007/s40267-022-00893-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2022] [Indexed: 12/23/2022]
Abstract
Background Several reports have been published about the impact of coronavirus disease 2019 (COVID-19) vaccines on human health, and each vaccine has a different safety and efficacy profile. The aim of this study was to reveal the nature and classification of reported adverse drug reactions (ADRs) of the two COVID-19 vaccines (tozinameran and ChAdOx1) among citizens and residents living in Saudi Arabia, and show possible differences between the two vaccines and the differences between each batch on the health of populations. Methods A cross-sectional study was conducted in Saudi Arabia between December 2020 and March 2021. Saudi citizens and residents aged ≥ 16 years who had at least one dose of any batch of either of the two approved COVID-19 vaccines (tozinameran and ChAdOx1) and who reported at least one ADR from the vaccines were included. The study excluded people who reported ADRs after receiving tozinameran or ChAdOx1 vaccines but no information was provided about the vaccine's batch number. Results During the study period, 12,868 vaccinated people, including a high-risk group (i.e., those with chronic illness or pregnant women), reported COVID-19 vaccine ADRs that had been documented in the General Directorate of Medical Consultations, Saudi Ministry of Health. The study reported several ADRs associated with COVID-19 vaccines, with the most common (> 25%) being fever/chills, general pain/weakness, headache, and injection site reactions. Among healthy and high-risk people, the median onset of all reported ADRs for tozinameran and ChAdOx1 vaccine batches were 1.96 and 1.64 days, respectively (p < 0.01). Furthermore, significant differences (p < 0.05) were recorded between the two studied vaccines in regard to fever/chills, gastrointestinal symptoms, headache, general pain/weakness, and neurological symptoms, with higher incidence rates of these ADRs observed with the ChAdOx1 vaccine than the tozinameran vaccine. However, the tozinameran vaccine was found to cause significantly (p < 0.05) more palpitation, blood pressure variations, upper respiratory tract symptoms, lymph node swelling, and other unspecified ADRs than the ChAdOx1 vaccine. Among patients vaccinated with seven different batches of the tozinameran vaccine, people vaccinated with the T4 and T5 batches reported the most ADRs. Conclusion There were significant differences regarding most of the reported ADRs and their onset among tozinameran and ChAdOx1 vaccines on both healthy people and high-risk individuals living in Saudi Arabia. Moreover, the study found that the frequencies of most listed ADRs were statistically different when seven batches of tozinameran vaccine were compared.
Collapse
Affiliation(s)
- Amjad Alfaleh
- Department of Research, General Directorate of Medical Consultations, Ministry of Health, Riyadh, Saudi Arabia
- Research and Development Department, General Directorate of School Health, Ministry of Health, Riyadh, Saudi Arabia
| | - Abdullah Alkattan
- Department of Research, General Directorate of Medical Consultations, Ministry of Health, Riyadh, Saudi Arabia
- Research and Development Department, General Directorate of School Health, Ministry of Health, Riyadh, Saudi Arabia
| | - Nashwa Radwan
- Department of Public Health and Community Medicine, Faculty of Medicine, Tanta University, Tanta, Egypt
- Department of Research, Assisting Deputyship for Primary Health Care, Ministry of Health, Riyadh, Saudi Arabia
| | - Mona Elzohri
- Department of Research, General Directorate of Medical Consultations, Ministry of Health, Riyadh, Saudi Arabia
- Department of Internal Medicine, Rheumatology and Clinical Immunology Unit, Faculty of Medicine, Assiut University, Asyût, Egypt
| | - Abrar Alzaher
- Research and Development Department, General Directorate of School Health, Ministry of Health, Riyadh, Saudi Arabia
| | - Mona Ibrahim
- Research and Development Department, General Directorate of School Health, Ministry of Health, Riyadh, Saudi Arabia
- Department of Community, Environmental and Occupational Medicine, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Eman Alsalameen
- Department of Pharmacy, King Khalid University Hospital, Medical City King Saud University, Riyadh, Saudi Arabia
| | - Amani Alsultan
- Department of Sales, Sanofi Aventis Arabia, Jeddah, Saudi Arabia
| | - Dina Alhabib
- Research and Development Department, General Directorate of School Health, Ministry of Health, Riyadh, Saudi Arabia
| | - Alanood Alshelwah
- Research and Development Department, General Directorate of School Health, Ministry of Health, Riyadh, Saudi Arabia
| | - Nagla Mahmoud
- Department of Research, Assisting Deputyship for Primary Health Care, Ministry of Health, Riyadh, Saudi Arabia
| | - Khlood Sagor
- Research and Development Department, General Directorate of School Health, Ministry of Health, Riyadh, Saudi Arabia
| | - Khaled Alabdulkareem
- Department of Research, Assisting Deputyship for Primary Health Care, Ministry of Health, Riyadh, Saudi Arabia
- Department of Family Medicine, College of Medicine, Al-Imam Mohammad Bin Saud Islamic University, Riyadh, Saudi Arabia
| |
Collapse
|
10
|
Immunoinformatics and reverse vaccinomic approaches for effective design. COMPUTATIONAL APPROACHES FOR NOVEL THERAPEUTIC AND DIAGNOSTIC DESIGNING TO MITIGATE SARS-COV-2 INFECTION 2022. [PMCID: PMC9300457 DOI: 10.1016/b978-0-323-91172-6.00004-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The emergence of mutagenic strains of severe acute respiratory syndrome-Coronavirus-2 (SARS-CoV-2) worst hit the world which already suffered from the Coronavirus disease-2019 (COVID-19) pandemic for 2 years. Due to recent advances in vaccinomics, many vaccine candidates are available but their efficacy against a mutant version of SARS-CoV-2 has remained uncertain. The immune-informatics-based reverse vaccinomic approaches have shown promising investigations recently for the development of cost-effective vaccinomics candidates in a very short period of time. The strategic vaccine development of selected epitopes using artificial intelligence for both B- and T-cells is a very crucial step in this process. This approach provides a highly effective and immunogenic vaccine that offers immunological safety against autoimmunity and other adverse effects over ethnicities, pregnant women, and vulnerable age groups. Several researchers have developed effective vaccine candidates using computational vaccinology and the immune-informatics approach. In this process, a unique peptide sequence of viral proteins such as Nucleocapsid, spike, envelope protein was identified by various in silico tools which are acting as immunological epitopes against TLRs, T-cells, and B-cells. While the conventional immunological vaccine studies take years for vaccine candidature, the immunoinformatics approach is a time-efficient way for the next generation research to study host-pathogen interactions and vaccine development. It is also cost-effective and leads to a better understanding of disease pathogenesis, diagnosis, and immunological response. Owing to the advantage of immunoinformatics-based vaccine approaches the present chapter aimed to discuss vaccine development using immunoinformatics approaches. Besides, the current challenges and future aspects have also been discussed herewith.
Collapse
|
11
|
Karampoor S, Hesamizadeh K, Shams Z, Ghafari Novin A, Farahmand M, Zahednasab H, Mirzaei R, Zamani F, Hajibaba M, Bouzari B, Laali A, Tabibzadeh A, Hadi Karbalaie Niya M, Keyvani H. The role of lovastatin in the attenuation of COVID-19. Int Immunopharmacol 2021; 101:108192. [PMID: 34607230 PMCID: PMC8461262 DOI: 10.1016/j.intimp.2021.108192] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/05/2021] [Accepted: 09/20/2021] [Indexed: 01/08/2023]
Abstract
The mounting evidence regarding the pathogenesis of COVID-19 indicated that the cytokine storm has an axial role in the severity of this disease, which may lead to thrombotic complications, acute respiratory distress syndrome (ARDS), and myocardial damage, among other consequences. It has recently been demonstrated that statins are known to have anti-viral, anti-inflammatory, anti-thrombotic, and immunomodulatory features; however, their advantage has not been evaluated in COVID-19. This study aimed to investigate the protective effects of lovastatin in intensive care unit (ICU) patients with COVID-19. The case-control study consists of 284 ICU patients, which classified into three groups as follows: 1) the patients who no received lovastatin as a control (92 patients), 2) patients received 20 mg per day lovastatin (99 patients), and 3) patients received 40 mg per day lovastatin (93 patients). Each group's demographic and clinical parameters, along with CRP, interleukin (IL)-6, IL-8 levels, and mortality rate, were studied in three-time points. The results showed that there was no statistically significant difference between our study groups in terms of age and sex. (P > 0.05). Besides, in patients, receiving lovastatin the CRP, IL-6, IL-8 levels were significantly decreased from T1 to T3 than to the control group. Our results also showed that the use of lovastatin in COVID-19 patients significantly reduced the length of hospitalization in the ICU compared with the control group. In addition, our results showed that the mortality rate in patients receiving lovastatin was lower when compared to the control group; however, this difference was not statistically significant. Since the cytokine storm is a significant factor in the pathology of SARS-CoV-2, our findings highlighted the potential use of lovastatin to mitigate the inflammatory response induced by SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Khashayar Hesamizadeh
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Middle East Liver Diseases (MELD) Center, Tehran, Iran
| | - Zinat Shams
- Department of Biological Science, Kharazmi University, Tehran, Iran
| | - Arefeh Ghafari Novin
- Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Farahmand
- Department of Medical Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Zahednasab
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Rasoul Mirzaei
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Farhad Zamani
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Marzieh Hajibaba
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Behnaz Bouzari
- Department of Pathology, Firouzgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Azadeh Laali
- Department of Infectious Disease, School of Medicine, Firoozgar General Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Tabibzadeh
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Hossein Keyvani
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Shafaati M, Saidijam M, Soleimani M, Hazrati F, Mirzaei R, Amirheidari B, Tanzadehpanah H, Karampoor S, Kazemi S, Yavari B, Mahaki H, Safaei M, Rahbarizadeh F, Samadi P, Ahmadyousefi Y. A brief review on DNA vaccines in the era of COVID-19. Future Virol 2021; 17:10.2217/fvl-2021-0170. [PMID: 34858516 PMCID: PMC8629371 DOI: 10.2217/fvl-2021-0170] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 11/05/2021] [Indexed: 02/08/2023]
Abstract
This article provides a brief overview of DNA vaccines. First, the basic DNA vaccine design strategies are described, then specific issues related to the industrial production of DNA vaccines are discussed, including the production and purification of DNA products such as plasmid DNA, minicircle DNA, minimalistic, immunologically defined gene expression (MIDGE) and Doggybone™. The use of adjuvants to enhance the immunogenicity of DNA vaccines is then discussed. In addition, different delivery routes and several physical and chemical methods to increase the efficacy of DNA delivery into cells are explained. Recent preclinical and clinical trials of DNA vaccines for COVID-19 are then summarized. Lastly, the advantages and obstacles of DNA vaccines are discussed.
Collapse
Affiliation(s)
- Maryam Shafaati
- Department of Microbiology, Faculty of Sciences, Jahrom Branch, Islamic Azad University, Jahrom, Iran
| | - Massoud Saidijam
- Department of Medical Biotechnology, School of Advanced Medical Sciences & Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
- Research Center for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Meysam Soleimani
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Fereshte Hazrati
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rasoul Mirzaei
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Bagher Amirheidari
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
- Extremophile and Productive Microorganisms Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamid Tanzadehpanah
- Department of Medical Biotechnology, School of Advanced Medical Sciences & Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
- Research Center for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sajad Karampoor
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sima Kazemi
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Bahram Yavari
- Department of Medical Biotechnology, School of Advanced Medical Sciences & Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
- Research Center for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hanie Mahaki
- Vascular & Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Safaei
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Fatemeh Rahbarizadeh
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Pouria Samadi
- Department of Medical Biotechnology, School of Advanced Medical Sciences & Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
- Research Center for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Yaghoub Ahmadyousefi
- Department of Medical Biotechnology, School of Advanced Medical Sciences & Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
- Research Center for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
13
|
Karampoor S, Zahednasab H, Farahmand M, Mirzaei R, Zamani F, Tabibzadeh A, Bouzari B, Ajdarkosh H, Nikkhah M, Hashemi MR, Laali A, Keyvani H. A possible pathogenic role of Syndecan-1 in the pathogenesis of coronavirus disease 2019 (COVID-19). Int Immunopharmacol 2021; 97:107684. [PMID: 33932696 PMCID: PMC8052477 DOI: 10.1016/j.intimp.2021.107684] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/13/2021] [Accepted: 04/13/2021] [Indexed: 02/08/2023]
Abstract
A cell-surface heparan proteoglycan called Syndecan-1 (SDC-1) has multiple roles in healthy and pathogenic conditions, including respiratory viral infection. In this study, we explore the dynamic alternation in the levels of SDC-1 in cases with COVID-19. A total of 120 cases definitely diagnosed with COVID-19 were admitted to the Firoozgar Hospital, Tehran, Iran, from December 1, 2020, to January 29, 2021, and included in our study. Also, 58 healthy subjects (HS) were chosen as the control group. Patients were classified into two groups: 1) ICU patients and (63 cases) 2) non-ICU patients (57 cases). The dynamic changes of serum SCD-1, CRP, IL-6, IL-10, IL-18, and Vit D levels a well as the disease activity were investigated in three-time points (T1-T3). Our results indicated that the COVID-19 patients had significantly increased SCD-1, CRP, IL-6, IL-10, and IL-18 levels than in HS, while the Vit D levels in COVID-19 patients were significantly lower than HS. Further analysis demonstrated that the SCD-1, CRP, IL-6, IL-10, and IL-18 levels in ICU patients were significantly higher than in non-ICU patients. Tracking dynamic changes in the above markers indicated that on the day of admission, the SCD-1, CRP, IL-6, IL-10, and IL-18 levels were gradually increased on day 5 (T2) and then gradually decreased on day 10 (T3). ROC curve analysis suggests that markers mentioned above, SDC-1, IL-6, and IL-18 are valuable indicators in evaluating the activity of COVID-19. All in all, it seems that the serum SDC-1 levels alone or combined with other markers might be a good candidate for disease activity monitoring.
Collapse
Affiliation(s)
- Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Hamid Zahednasab
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Mohammad Farahmand
- Department of Medical Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Rasoul Mirzaei
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Farhad Zamani
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Tabibzadeh
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Behnaz Bouzari
- Department of Pathology, Firouzgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Ajdarkosh
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Nikkhah
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Melika Razavi Hashemi
- Department of Pathology, Firouzgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Azadeh Laali
- Department of Infectious Disease, School of Medicine, Firoozgar General Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Keyvani
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Dong J, Wu H, Zhou D, Li K, Zhang Y, Ji H, Tong Z, Lou S, Liu Z. Application of Big Data and Artificial Intelligence in COVID-19 Prevention, Diagnosis, Treatment and Management Decisions in China. J Med Syst 2021; 45:84. [PMID: 34302549 PMCID: PMC8308073 DOI: 10.1007/s10916-021-01757-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/12/2021] [Indexed: 01/08/2023]
Abstract
COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), spread rapidly and affected most of the world since its outbreak in Wuhan, China, which presents a major challenge to the emergency response mechanism for sudden public health events and epidemic prevention and control in all countries. In the face of the severe situation of epidemic prevention and control and the arduous task of social management, the tremendous power of science and technology in prevention and control has emerged. The new generation of information technology, represented by big data and artificial intelligence (AI) technology, has been widely used in the prevention, diagnosis, treatment and management of COVID-19 as an important basic support. Although the technology has developed, there are still challenges with respect to epidemic surveillance, accurate prevention and control, effective diagnosis and treatment, and timely judgement. The prevention and control of sudden infectious diseases usually depend on the control of infection sources, interruption of transmission channels and vaccine development. Big data and AI are effective technologies to identify the source of infection and have an irreplaceable role in distinguishing close contacts and suspicious populations. Advanced computational analysis is beneficial to accelerate the speed of vaccine research and development and to improve the quality of vaccines. AI provides support in automatically processing relevant data from medical images and clinical features, tests and examination findings; predicting disease progression and prognosis; and even recommending treatment plans and strategies. This paper reviews the application of big data and AI in the COVID-19 prevention, diagnosis, treatment and management decisions in China to explain how to apply big data and AI technology to address the common problems in the COVID-19 pandemic. Although the findings regarding the application of big data and AI technologies in sudden public health events lack validation of repeatability and universality, current studies in China have shown that the application of big data and AI is feasible in response to the COVID-19 pandemic. These studies concluded that the application of big data and AI technology can contribute to prevention, diagnosis, treatment and management decision making regarding sudden public health events in the future.
Collapse
Affiliation(s)
- Jiancheng Dong
- Medical Big Data Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
- Department of Medical Informatics, Medical School of Nantong University, Nantong, China.
| | - Huiqun Wu
- Department of Medical Informatics, Medical School of Nantong University, Nantong, China
| | - Dong Zhou
- Department of Medical Informatics, Medical School of Nantong University, Nantong, China
| | - Kaixiang Li
- Medical Big Data Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuanpeng Zhang
- Department of Medical Informatics, Medical School of Nantong University, Nantong, China
- Department of Health Technology and Informatics, The Hong Kong Polytechnical University, Hong Kong, China
| | - Hanzhen Ji
- The Third Affiliated Hospital of Nantong University, Nantong, China
| | - Zhuang Tong
- Medical Big Data Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuai Lou
- Jiangsu Zhongkang Software Co, Ltd, Nantong, China
| | - Zhangsuo Liu
- Medical Big Data Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
15
|
Chen J, Li S, Lei Z, Tang Q, Mo L, Zhao X, Xie F, Zi D, Tan J. Inhibition of SARS-CoV-2 pseudovirus invasion by ACE2 protecting and Spike neutralizing peptides: An alternative approach to COVID19 prevention and therapy. Int J Biol Sci 2021; 17:2957-2969. [PMID: 34345219 PMCID: PMC8326117 DOI: 10.7150/ijbs.61476] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 06/26/2021] [Indexed: 12/31/2022] Open
Abstract
SARS-CoV-2 invades host cells mainly through the interaction of its spike-protein with host cell membrane ACE2. Various antibodies targeting S-protein have been developed to combat COVID-19 pandemic; however, the potential risk of antibody-dependent enhancement and novel spike mutants-induced neutralization loss or antibody resistance still remain. Alternative preventative agents or therapeutics are still urgently needed. In this study, we designed series of peptides with either ACE2 protecting or Spike-protein neutralizing activities. Molecular docking predicted that, among these peptides, ACE2 protecting peptide AYp28 and Spike-protein neutralizing peptide AYn1 showed strongest intermolecular interaction to ACE2 and Spike-protein, respectively, which were further confirmed by both cell- and non-cell-based in vitro assays. In addition, both peptides inhibited the invasion of pseudotype SARS-CoV-2 into HEK293T/hACE2 cells, either alone or in combination. Moreover, the intranasal administration of AYp28 could partially block pseudovirus invasion in hACE2 transgenic mice. Much more importantly, no significant toxicity was observed in peptides-treated cells. AYp28 showed no impacts on ACE2 function. Taken together, the data from our present study predicted promising preventative and therapeutic values of peptides against COVID-19, and may prove the concept that cocktail containing ACE2 protecting peptides and spike neutralizing peptides could serve as a safe and effective approach for SARS-CoV-2 prevention and therapy.
Collapse
Affiliation(s)
- Jiang Chen
- Key Laboratory of Endemic and Ethnic Diseases, Laboratory of Molecular Biology, Ministry of Education, Guizhou Medical University, Guiyang 550004, China
| | - Song Li
- The First Affiliated Hospital of Dalian Medical University, Dalian 116021, China
| | - Zhifeng Lei
- Key Laboratory of Endemic and Ethnic Diseases, Laboratory of Molecular Biology, Ministry of Education, Guizhou Medical University, Guiyang 550004, China
| | - Qinmin Tang
- Key Laboratory of Endemic and Ethnic Diseases, Laboratory of Molecular Biology, Ministry of Education, Guizhou Medical University, Guiyang 550004, China
| | - Ling Mo
- Key Laboratory of Endemic and Ethnic Diseases, Laboratory of Molecular Biology, Ministry of Education, Guizhou Medical University, Guiyang 550004, China
| | - Xing Zhao
- Key Laboratory of Adult Stem Cell Transformation Research, Chinese Academy of Medical Sciences/Stem Cell and Tissue Engineering Research Center, Guizhou Medical University, Guiyang 550004, China
| | - Feifei Xie
- Anyu Biopharmaceutical (Hangzhou) Co., Ltd. 9F, Building I, No. 265, Chengrui Street, Qiantang New District, Hangzhou 310018, China
| | - Dan Zi
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Jun Tan
- Key Laboratory of Endemic and Ethnic Diseases, Laboratory of Molecular Biology, Ministry of Education, Guizhou Medical University, Guiyang 550004, China
| |
Collapse
|
16
|
Lobiuc A, Dimian M, Gheorghita R, Sturdza OAC, Covasa M. Introduction and Characteristics of SARS-CoV-2 in North-East of Romania During the First COVID-19 Outbreak. Front Microbiol 2021; 12:654417. [PMID: 34305826 PMCID: PMC8292954 DOI: 10.3389/fmicb.2021.654417] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 06/14/2021] [Indexed: 12/23/2022] Open
Abstract
Romania officially declared its first Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) case on February 26, 2020. The first and largest coronavirus disease 2019 (COVID-19) outbreak in Romania was recorded in Suceava, North-East region of the country, and originated at the Suceava regional county hospital. Following sheltering-in-place measures, infection rates decreased, only to rise again after relaxation of measures. This study describes the spread of SARS-CoV-2 in Suceava and other parts of Romania and analyses the mutations and their association with clinical manifestation of the disease during the period of COVID-19 outbreak. Sixty-two samples were sequenced via high-throughput platform and screened for variants. For selected mutations, putative biological significance was assessed, and their effects on disease severity. Phylogenetic analysis was conducted on Romanian genomes (n = 112) and on sequences originating from Europe, United Kingdom, Africa, Asia, South, and North America (n = 876). The results indicated multiple introduction events for SARS-CoV-2 in Suceava, mainly from Italy, Spain, United Kingdom, and Russia although some sequences were also related to those from the Czechia, Belgium, and France. Most Suceava genomes contained mutations common to European lineages, such as A20268G, however, approximately 10% of samples were missing such mutations, indicating a possible different arrival route. While overall genome regions ORF1ab, S, and ORF7 were subject to most mutations, several recurring mutations such as A105V were identified, and these were mainly present in severe forms of the disease. Non-synonymous mutations, such as T987N (Thr987Asn in NSP3a domain), associated with changes in a protein responsible for decreasing viral tethering in human host were also present. Patients with diabetes and hypertension exhibited higher risk ratios (RR) of acquiring severe forms of the disease and these were mainly related to A105V mutation. This study identified the arrival routes of SARS-CoV-2 in Romania and revealed potential associations between the SARS-CoV-2 genomic organization circulating in the country and the clinical manifestation of COVID-19 disease.
Collapse
Affiliation(s)
- Andrei Lobiuc
- Department of Human Health and Development, Stefan cel Mare University of Suceava, Suceava, Romania
| | - Mihai Dimian
- Department of Computers, Electronics and Automation, Stefan cel Mare University of Suceava, Suceava, Romania
- Integrated Center for Research, Development and Innovation in Advanced Materials, Nanotechnologies, and Distributed Systems for Fabrication and Control, Stefan cel Mare University of Suceava, Suceava, Romania
| | - Roxana Gheorghita
- Department of Human Health and Development, Stefan cel Mare University of Suceava, Suceava, Romania
- Integrated Center for Research, Development and Innovation in Advanced Materials, Nanotechnologies, and Distributed Systems for Fabrication and Control, Stefan cel Mare University of Suceava, Suceava, Romania
| | - Olga Adriana Caliman Sturdza
- Department of Human Health and Development, Stefan cel Mare University of Suceava, Suceava, Romania
- Regional County Emergency Hospital, Suceava, Romania
| | - Mihai Covasa
- Department of Human Health and Development, Stefan cel Mare University of Suceava, Suceava, Romania
| |
Collapse
|
17
|
Mirzaei R, Attar A, Papizadeh S, Jeda AS, Hosseini-Fard SR, Jamasbi E, Kazemi S, Amerkani S, Talei GR, Moradi P, Jalalifar S, Yousefimashouf R, Hossain MA, Keyvani H, Karampoor S. The emerging role of probiotics as a mitigation strategy against coronavirus disease 2019 (COVID-19). Arch Virol 2021; 166:1819-1840. [PMID: 33745067 PMCID: PMC7980799 DOI: 10.1007/s00705-021-05036-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/28/2021] [Indexed: 02/06/2023]
Abstract
COVID-19 is an acute respiratory infection accompanied by pneumonia caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which has affected millions of people globally. To date, there are no highly efficient therapies for this infection. Probiotic bacteria can interact with the gut microbiome to strengthen the immune system, enhance immune responses, and induce appropriate immune signaling pathways. Several probiotics have been confirmed to reduce the duration of bacterial or viral infections. Immune fitness may be one of the approaches by which protection against viral infections can be reinforced. In general, prevention is more efficient than therapy in fighting viral infections. Thus, probiotics have emerged as suitable candidates for controlling these infections. During the COVID-19 pandemic, any approach with the capacity to induce mucosal and systemic reactions could potentially be useful. Here, we summarize findings regarding the effectiveness of various probiotics for preventing virus-induced respiratory infectious diseases, especially those that could be employed for COVID-19 patients. However, the benefits of probiotics are strain-specific, and it is necessary to identify the bacterial strains that are scientifically established to be beneficial.
Collapse
Affiliation(s)
- Rasoul Mirzaei
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Adeleh Attar
- Department of Microbiology and Virology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Saher Papizadeh
- Department of Microbiology and Virology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Salimi Jeda
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Reza Hosseini-Fard
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Elaheh Jamasbi
- Department of Anatomical Sciences, Kermanshah University of Medical Science, Kermanshah, Iran
| | - Sima Kazemi
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Saman Amerkani
- Department of Microbiology and Virology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Gholam Reza Talei
- Department of Virology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Lorestan, Iran
| | - Pouya Moradi
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Saba Jalalifar
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Rasoul Yousefimashouf
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Akhter Hossain
- The Florey University of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, 3010, Australia.
| | - Hossein Keyvani
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Sajad Karampoor
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
18
|
Rahimi NR, Fouladi-Fard R, Aali R, Shahryari A, Rezaali M, Ghafouri Y, Ghalhari MR, Asadi-Ghalhari M, Farzinnia B, Conti Gea O, Fiore M. Bidirectional association between COVID-19 and the environment: A systematic review. ENVIRONMENTAL RESEARCH 2021; 194:110692. [PMID: 33385384 PMCID: PMC7833965 DOI: 10.1016/j.envres.2020.110692] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 11/10/2020] [Accepted: 12/24/2020] [Indexed: 05/17/2023]
Abstract
The global crisis caused by SARS-CoV-2 (COVID-19) affected economics, social affairs, and the environment, not to mention public health. It is estimated that near 82% of the SARS-CoV-2 genome is similar to the severe acute respiratory syndrome. The purpose of the review is to highlight how the virus is impacted by the environment and how the virus has impacted the environment. This review was based on an electronic search of the literature in the Scopus, Science Direct, and PubMed database published from December 2019 to July 2020 using combinations of the following keywords: SARS-CoV-2 transmission, COVID-19 transmission, coronavirus transmission, waterborne, wastewater, airborne, solid waste, fomites, and fecal-oral transmission. Studies suggest the thermal properties of ambient air, as well as relative humidity, may affect the transmissibility and viability of the virus. Samples taken from the wastewater collection network were detected contaminated with the novel coronavirus; consequently, there is a concern of its transmission via an urban sewer system. There are concerns about the efficacy of the wastewater treatment plant disinfection process as the last chance to inactivate the virus. Handling solid waste also requires an utmost caution as it may contain infectious masks, etc. Following the PRISMA approach, among all reviewed studies, more than 36% of them were directly or indirectly related to the indoor and outdoor environment, 16% to meteorological factors, 11% to wastewater, 14% to fomites, 8% to water, 9% to solid waste, and 6% to the secondary environment. The still growing body of literature on COVID-19 and air, suggests the importance of SARS-CoV-2 transmission via air and indoor air quality, especially during lockdown interventions. Environmental conditions are found to be a factor in transmitting the virus beyond geographical borders. Accordingly, countries need to pay extra attention to sustainable development themes and goals.
Collapse
Affiliation(s)
- Nayereh Rezaie Rahimi
- Research Center for Environmental Pollutants, Department of Environmental Health Engineering, Faculty of Health, Qom University of Medical Sciences, Qom, Iran; Student Research Committee, Qom University of Medical Sciences, Qom, Iran
| | - Reza Fouladi-Fard
- Research Center for Environmental Pollutants, Department of Environmental Health Engineering, Faculty of Health, Qom University of Medical Sciences, Qom, Iran.
| | - Rahim Aali
- Research Center for Environmental Pollutants, Department of Environmental Health Engineering, Faculty of Health, Qom University of Medical Sciences, Qom, Iran.
| | - Ali Shahryari
- Department of Environmental Health Engineering, Gorgan University of Medical Sciences, Gorgan, Iran
| | | | - Yadollah Ghafouri
- Research Center for Environmental Pollutants, Department of Environmental Health Engineering, Faculty of Health, Qom University of Medical Sciences, Qom, Iran
| | - Mohammad Rezvani Ghalhari
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Asadi-Ghalhari
- Research Center for Environmental Pollutants, Department of Environmental Health Engineering, Faculty of Health, Qom University of Medical Sciences, Qom, Iran
| | - Babak Farzinnia
- Research Center for Environmental Pollutants, Department of Environmental Health Engineering, Faculty of Health, Qom University of Medical Sciences, Qom, Iran
| | - Oliveri Conti Gea
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy
| | - Maria Fiore
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy
| |
Collapse
|
19
|
Chung JY, Thone MN, Kwon YJ. COVID-19 vaccines: The status and perspectives in delivery points of view. Adv Drug Deliv Rev 2021; 170:1-25. [PMID: 33359141 PMCID: PMC7759095 DOI: 10.1016/j.addr.2020.12.011] [Citation(s) in RCA: 234] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 12/29/2022]
Abstract
Due to the high prevalence and long incubation periods often without symptoms, the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has infected millions of individuals globally, causing the coronavirus disease 2019 (COVID-19) pandemic. Even with the recent approval of the anti-viral drug, remdesivir, and Emergency Use Authorization of monoclonal antibodies against S protein, bamlanivimab and casirimab/imdevimab, efficient and safe COVID-19 vaccines are still desperately demanded not only to prevent its spread but also to restore social and economic activities via generating mass immunization. Recent Emergency Use Authorization of Pfizer and BioNTech's mRNA vaccine may provide a pathway forward, but monitoring of long-term immunity is still required, and diverse candidates are still under development. As the knowledge of SARS-CoV-2 pathogenesis and interactions with the immune system continues to evolve, a variety of drug candidates are under investigation and in clinical trials. Potential vaccines and therapeutics against COVID-19 include repurposed drugs, monoclonal antibodies, antiviral and antigenic proteins, peptides, and genetically engineered viruses. This paper reviews the virology and immunology of SARS-CoV-2, alternative therapies for COVID-19 to vaccination, principles and design considerations in COVID-19 vaccine development, and the promises and roles of vaccine carriers in addressing the unique immunopathological challenges presented by the disease.
Collapse
Affiliation(s)
- Jee Young Chung
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, United States of America
| | - Melissa N Thone
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, United States of America
| | - Young Jik Kwon
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, United States of America; Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA 92697, United States of America; Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, United States of America; Department of Biomedical Engineering, University of California, Irvine, CA 92697, United States of America.
| |
Collapse
|
20
|
Salian VS, Wright JA, Vedell PT, Nair S, Li C, Kandimalla M, Tang X, Carmona Porquera EM, Kalari KR, Kandimalla KK. COVID-19 Transmission, Current Treatment, and Future Therapeutic Strategies. Mol Pharm 2021; 18:754-771. [PMID: 33464914 PMCID: PMC7839412 DOI: 10.1021/acs.molpharmaceut.0c00608] [Citation(s) in RCA: 161] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023]
Abstract
At the stroke of the New Year 2020, COVID-19, a zoonotic disease that would turn into a global pandemic, was identified in the Chinese city of Wuhan. Although unique in its transmission and virulence, COVID-19 is similar to zoonotic diseases, including other SARS variants (e.g., SARS-CoV) and MERS, in exhibiting severe flu-like symptoms and acute respiratory distress. Even at the molecular level, many parallels have been identified between SARS and COVID-19 so much so that the COVID-19 virus has been named SARS-CoV-2. These similarities have provided several opportunities to treat COVID-19 patients using clinical approaches that were proven to be effective against SARS. Importantly, the identification of similarities in how SARS-CoV and SARS-CoV-2 access the host, replicate, and trigger life-threatening pathological conditions have revealed opportunities to repurpose drugs that were proven to be effective against SARS. In this article, we first provided an overview of COVID-19 etiology vis-à-vis other zoonotic diseases, particularly SARS and MERS. Then, we summarized the characteristics of droplets/aerosols emitted by COVID-19 patients and how they aid in the transmission of the virus among people. Moreover, we discussed the molecular mechanisms that enable SARS-CoV-2 to access the host and become more contagious than other betacoronaviruses such as SARS-CoV. Further, we outlined various approaches that are currently being employed to diagnose and symptomatically treat COVID-19 in the clinic. Finally, we reviewed various approaches and technologies employed to develop vaccines against COVID-19 and summarized the attempts to repurpose various classes of drugs and novel therapeutic approaches.
Collapse
Affiliation(s)
- Vrishali S. Salian
- Department of Pharmaceutics, College of Pharmacy,
University of Minnesota, Minneapolis, Minnesota 55455,
United States
| | - Jessica A. Wright
- Department of Pharmacy Services, Mayo
Clinic, Rochester, Minnesota 55905, United States
| | - Peter T. Vedell
- Division of Biostatistics and Informatics, Department of
Health Sciences Research, Mayo Clinic, Rochester, Minnesota
55905, United States
| | - Sanjana Nair
- Department of Pharmaceutics, College of Pharmacy,
University of Minnesota, Minneapolis, Minnesota 55455,
United States
| | - Chenxu Li
- Department of Pharmaceutics, College of Pharmacy,
University of Minnesota, Minneapolis, Minnesota 55455,
United States
| | - Mahathi Kandimalla
- College of Letters and Science,
University of California, Berkeley, Berkeley, California
55906, United States
| | - Xiaojia Tang
- Division of Biostatistics and Informatics, Department of
Health Sciences Research, Mayo Clinic, Rochester, Minnesota
55905, United States
| | - Eva M. Carmona Porquera
- Division of Pulmonary and Critical Care Medicine,
Department of Internal Medicine, Mayo Clinic, Rochester,
Minnesota 55905, United States
| | - Krishna R. Kalari
- Division of Biostatistics and Informatics, Department of
Health Sciences Research, Mayo Clinic, Rochester, Minnesota
55905, United States
| | - Karunya K. Kandimalla
- Department of Pharmaceutics, College of Pharmacy,
University of Minnesota, Minneapolis, Minnesota 55455,
United States
| |
Collapse
|
21
|
Kumar S, Paul A, Chatterjee S, Pütz S, Nehra N, Wang DS, Nisar A, M. Jennings C, Parekh SH. Effect of ambient temperature on respiratory tract cells exposed to SARS-CoV-2 viral mimicking nanospheres-An experimental study. Biointerphases 2021; 16:011006. [PMID: 33706521 PMCID: PMC8043160 DOI: 10.1116/6.0000743] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/14/2020] [Accepted: 01/05/2021] [Indexed: 12/23/2022] Open
Abstract
The novel coronavirus caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has reached more than 160 countries and has been declared a pandemic. SARS-CoV-2 infects host cells by binding to the angiotensin-converting enzyme 2 (ACE-2) surface receptor via the spike (S) receptor-binding protein (RBD) on the virus envelope. Global data on a similar infectious disease spread by SARS-CoV-1 in 2002 indicated improved stability of the virus at lower temperatures facilitating its high transmission in the community during colder months (December-February). Seasonal viral transmissions are strongly modulated by temperatures, which can impact viral trafficking into host cells; however, an experimental study of temperature-dependent activity of SARS-CoV-2 is still lacking. We mimicked SARS-CoV-2 with polymer beads coated with the SARS-CoV-2 S protein to study the effect of seasonal temperatures on the binding of virus-mimicking nanospheres to lung epithelia. The presence of the S protein RBD on nanosphere surfaces led to binding by Calu-3 airway epithelial cells via the ACE-2 receptor. Calu-3 and control fibroblast cells with S-RBD-coated nanospheres were incubated at 33 and 37 °C to mimic temperature fluctuations in the host respiratory tract, and we found no temperature dependence in contrast to nonspecific binding of bovine serum ablumin-coated nanospheres. Moreover, the ambient temperature changes from 4 to 40 °C had no effect on S-RBD-ACE-2 ligand-receptor binding and minimal effect on the S-RBD protein structure (up to 40 °C), though protein denaturing occurred at 51 °C. Our results suggest that ambient temperatures from 4 to 40 °C have little effect on the SARS-CoV-2-ACE-2 interaction in agreement with the infection data currently reported.
Collapse
Affiliation(s)
- Sachin Kumar
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas 78712
| | - Alexandra Paul
- Authors to whom correspondence should be addressed:, , and
| | - Sayantan Chatterjee
- Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, Mainz 55128, Germany
| | - Sabine Pütz
- Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, Mainz 55128, Germany
| | - Natasha Nehra
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas 78712
| | - Daniel S. Wang
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas 78712
| | - Arsalan Nisar
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas 78712
| | - Christian M. Jennings
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas 78712
| | | |
Collapse
|
22
|
Malik JA, Mulla AH, Farooqi T, Pottoo FH, Anwar S, Rengasamy KRR. Targets and strategies for vaccine development against SARS-CoV-2. Biomed Pharmacother 2021; 137:111254. [PMID: 33550049 PMCID: PMC7843096 DOI: 10.1016/j.biopha.2021.111254] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/17/2020] [Accepted: 01/03/2021] [Indexed: 12/16/2022] Open
Abstract
The SARS-CoV-2, previously called a novel coronavirus, that broke out in the Wuhan city of China caused a significant number of morbidity and mortality in the world. It is spreading at peak levels since the first case reported and the need for vaccines is in immense demand globally. Numerous treatment and vaccination strategies that were previously employed for other pathogens including coronaviruses are now being been adopted to guide the formulation of new SARS-CoV-2 vaccines. Several vaccine targets can be utilized for the development of the SARS-CoV-2 vaccine. In this review, we highlighted the potential of various antigenic targets and other modes for formulating an effective vaccine against SARS-CoV-2. There are a varying number of challenges encountered during developing the most effective vaccines, and measures for tackling such challenges will assist in fast pace development of vaccines. This review will give a concise overview of various aspects of the vaccine development process against SARS-CoV-2, including 1) potential antigen targets 2) different vaccination strategies from conventional to novel platforms, 3) ongoing clinical trials, 4) varying challenges encountered during developing the most effective vaccine and the futuristic approaches.
Collapse
Affiliation(s)
- Jonaid Ahmad Malik
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Guwahati, Assam, India; Department of Biomedical Engineering, Indian Institute of Technology (IIT), Ropar, Punjab, India
| | | | - Tahmeena Farooqi
- Department of Pharmacology and Toxicology National Institute of Pharmaceutical Education and Research, Hyderabad Telangana, India
| | - Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O.BOX 1982, Dammam, 31441, Saudi Arabia.
| | - Sirajudheen Anwar
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Hail, Hail, 81442, Saudi Arabia
| | - Kannan R R Rengasamy
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam; Faculty of Environment and Chemical Engineering, Duy Tan University, Da Nang, 550000, Viet Nam; Indigenous Knowledge Systems Centre, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2745, North West Province, South Africa.
| |
Collapse
|
23
|
Mirzaei R, Mahdavi F, Badrzadeh F, Hosseini-Fard SR, Heidary M, Jeda AS, Mohammadi T, Roshani M, Yousefimashouf R, Keyvani H, Darvishmotevalli M, Sani MZ, Karampoor S. The emerging role of microRNAs in the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Int Immunopharmacol 2021; 90:107204. [PMID: 33221169 PMCID: PMC7664359 DOI: 10.1016/j.intimp.2020.107204] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/10/2020] [Accepted: 11/10/2020] [Indexed: 12/19/2022]
Abstract
The novel coronavirus disease 2019 (COVID-19) pandemic has imposed significant public health problems for the human populations worldwide after the 1918 influenza A virus (IVA) (H1N1) pandemic. Although numerous efforts have been made to unravel the mechanisms underlying the coronavirus, a notable gap remains in our perception of the COVID-19 pathogenesis. The innate and adaptive immune systems have a pivotal role in the fate of viral infections, such as COVID-19 pandemic. MicroRNAs (miRNAs) are known as short noncoding RNA molecules and appear as indispensable governors of almost any cellular means. Several lines of evidence demonstrate that miRNAs participate in essential mechanisms of cell biology, regulation of the immune system, and the onset and progression of numerous types of disorders. The immune responses to viral respiratory infections (VRIs), including influenza virus (IV), respiratory syncytial virus (RSV), and rhinovirus (RV), are correlated with the ectopic expression of miRNAs. Alterations of the miRNA expression in epithelial cells may contribute to the pathogenesis of chronic and acute airway infections. Hence, analyzing the role of these types of nucleotides in antiviral immune responses and the characterization of miRNA target genes might contribute to understanding the mechanisms of the interplay between the host and viruses, and in the future, potentially result in discovering therapeutic strategies for the prevention and treatment of acute COVID-19 infection. In this article, we present a general review of current studies concerning the function of miRNAs in different VRIs, particularly in coronavirus infection, and address all available therapeutic prospects to mitigate the burden of viral infections.
Collapse
Affiliation(s)
- Rasoul Mirzaei
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Farzad Mahdavi
- Department of Medical Parasitology and Mycology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Fariba Badrzadeh
- Faculty of Medicine, Golestan University of Medical Sciences, Golestan, Iran
| | - Seyed Reza Hosseini-Fard
- Department of Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Heidary
- Department of Environmental Health Engineering, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Ali Salimi Jeda
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Tayeb Mohammadi
- Department of Biostatistics, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mahdane Roshani
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rasoul Yousefimashouf
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hossein Keyvani
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Darvishmotevalli
- Research Center For Health, Safety And Environment (RCHSE), Alborz University of Medical Sciences, Karaj, Iran
| | | | - Sajad Karampoor
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|