1
|
Li Y, Tang J, Jing G, Li Y, Ma R, Kang X, Rong L, Liu W, Yao L, Lv X, Deng A, Wu W, Yang X. Orbital Clinicopathological Differences in Thyroid Eye Disease: An Analysis of Cytokines With Histopathological and Clinical Correlation. Invest Ophthalmol Vis Sci 2025; 66:33. [PMID: 40100205 PMCID: PMC11927299 DOI: 10.1167/iovs.66.3.33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 02/05/2025] [Indexed: 03/20/2025] Open
Abstract
Purpose To explore the pathological differences in orbital adipose/connective tissue between active and inactive thyroid eye disease (TED) subjects and their correlations with clinical characteristics. Methods Orbital adipose/connective tissue samples from 42 TED subjects (20 active, 22 inactive) were collected during decompression surgery. We analyzed cytokine expression, inflammatory cell infiltration, inherent cell populations, and interstitial changes by Luminex and histopathology. Correlations were analyzed using Pearson and Spearman correlation analyses. Results Among the 108 cytokines detected, active TED exhibited elevated platelet endothelial cell adhesion molecule 1 (PECAM-1), interleukin-23 (IL-23), a proliferation-inducing ligand (APRIL), IL-6, C-C motif chemokine ligand 2 (CCL2), β-nerve growth factor (NGF), and lower CCL21 and CCL5. The extent of infiltration by helper T (Th) cells and monocytes was significantly greater in the active group than in the inactive group. Adipocyte density was significantly elevated in active TED, whereas fibrosis was more prominent in inactive TED. Fifteen cytokines were significantly associated with inflammatory cell infiltration, with IL-16 showing the strongest correlations with T cells. Ten cytokines showed significant positive correlations with fibrosis. Four cytokines (IL-6, PECAM-1, IL-23 and transforming growth factor β1), Th cell infiltration and adipocyte density were significantly positively correlated with clinical activity score (CAS). Sixteen cytokines, along with adipocyte density, were significantly positively correlated with disease severity of TED. Conclusions The orbital adipose/connective tissues of active and inactive TED subjects showed significant differences in terms of cytokines, inflammatory cells infiltration, inherent cells and interstitium. These pathological changes were correlated with clinical characteristics of TED.
Collapse
Affiliation(s)
- Yue Li
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, China
- Senior Department of Ophthalmology, 3rd Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jiaqi Tang
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, China
- Senior Department of Ophthalmology, 3rd Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Gaojing Jing
- Senior Department of Ophthalmology, 3rd Medical Center of Chinese PLA General Hospital, Beijing, China
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yueyue Li
- Senior Department of Ophthalmology, 3rd Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Rui Ma
- Senior Department of Ophthalmology, 3rd Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xin Kang
- Senior Department of Ophthalmology, 3rd Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Liyuan Rong
- Senior Department of Ophthalmology, 3rd Medical Center of Chinese PLA General Hospital, Beijing, China
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing, China
| | - Wenlu Liu
- Senior Department of Ophthalmology, 3rd Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Lan Yao
- Senior Department of Ophthalmology, 3rd Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiaohui Lv
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, China
| | - Aijun Deng
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, China
| | - Wei Wu
- Senior Department of Ophthalmology, 3rd Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xinji Yang
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, China
- Senior Department of Ophthalmology, 3rd Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
2
|
Mussakulova A, Balmukhanova A, Aubakirova A, Khamdiyeva O, Zhunussova G, Balmukhanova A. IL-17 and IL-38 gene polymorphisms in thyroid-associated ophthalmopathy. Int Ophthalmol 2024; 44:379. [PMID: 39292290 DOI: 10.1007/s10792-024-03317-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 09/14/2024] [Indexed: 09/19/2024]
Abstract
BACKGROUND Thyroid-associated ophthalmopathy (TAO) is an autoimmune condition commonly linked with Graves' disease (GD), characterized by orbital tissue inflammation and fibrosis. It is hypothesized that gene polymorphisms may influence production of the IL-17 and IL-38 cytokines, thereby impacting TAO development and progression. This study focused on investigating the gene polymorphisms of IL-17 (rs9463772 C/T in IL17F) and IL-38 (rs3811058 C/T, rs7570267 A/G in IL1F10) in patients with GD. METHODS A case-control study was conducted on 132 patients with TAO and 153 patients without TAO according to eligibility criteria. After clinical examination blood samples were collected for further investigations. Genotyping was performed with the TaqMan™ Master Mix kit. Allele and genotype frequencies were compared between studied groups and subgroups. RESULTS No significant differences were found in age, duration of GD, or thyroid hormone between patients with and without TAO. However, a higher predisposition to develop TAO was observed among smokers (OR = 1.682, p = 0.03). Overall, no significant associations between gene polymorphisms and TAO development were identified in GD patients. Further analysis revealed that the CC genotype in IL1F10 rs3811058 polymorphism among Caucasians was associated with an increased risk of TAO (OR = 2.7, p = 0.02), as well as allele differences were also significant (OR = 2.8, p = 0.001). CONCLUSIONS These findings shed light on TAO genetic predispositions in Kazakhstani GD patients, notably among Caucasians, underscoring the need for further research. These results may offer valuable targets for the development of novel treatments for TAO.
Collapse
Affiliation(s)
| | - Altynay Balmukhanova
- Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan.
- Al-Farabi Kazakh National University, Almaty, Kazakhstan.
| | | | | | | | | |
Collapse
|
3
|
Zhang Z, Wu H, Gong X, Yan Y, Li X, Yang R, Wu M, Xu M. A comprehensive epigenetic network can influence the occurrence of thyroid-associated ophthalmopathy by affecting immune and inflammatory response. Sci Rep 2024; 14:13545. [PMID: 38867076 PMCID: PMC11169257 DOI: 10.1038/s41598-024-64415-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 06/08/2024] [Indexed: 06/14/2024] Open
Abstract
The primary objective of this study is to understand the regulatory role of epigenetics in thyroid-associated ophthalmopathy (TAO) using multi-omics sequencing data. We utilized tRFs sequencing data, DNA methylation sequencing data, and lncRNA/circRNA/mRNA sequencing data, as well as several RNA methylation target prediction websites, to analyze the regulatory effect of DNA methylation, non-coding RNA, and RNA methylation on TAO-associated genes. Through differential expression analysis, we identified 1019 differentially expressed genes, 985 differentially methylated genes, and 2601 non-coding RNA. Functional analysis showed that differentially expressed genes were mostly associated with the PI3K signaling pathway and the IL17 signaling pathway. Genes regulated by DNA epigenetic regulatory networks were mainly related to the Cytokine-cytokine receptor interaction pathway, whereas genes regulated by RNA epigenetic regulatory networks were primarily related to the T cell receptor signaling pathway. Finally, our integrated regulatory network analysis revealed that epigenetics mainly impacts the occurrence of TAO through its effects on key pathways such as cell killing, cytokine production, and immune response. In summary, this study is the first to reveal a new mechanism underlying the development of TAO and provides new directions for future TAO research.
Collapse
Affiliation(s)
- Zhuo Zhang
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hongshi Wu
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xun Gong
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuerong Yan
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaohui Li
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Rongxue Yang
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Muchao Wu
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Mingtong Xu
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
4
|
Buonfiglio F, Ponto KA, Pfeiffer N, Kahaly GJ, Gericke A. Redox mechanisms in autoimmune thyroid eye disease. Autoimmun Rev 2024; 23:103534. [PMID: 38527685 DOI: 10.1016/j.autrev.2024.103534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 03/27/2024]
Abstract
Thyroid eye disease (TED) is an autoimmune condition affecting the orbit and the eye with its adnexa, often occurring as an extrathyroidal complication of Graves' disease (GD). Orbital inflammatory infiltration and the stimulation of orbital fibroblasts, triggering de novo adipogenesis, an overproduction of hyaluronan, myofibroblast differentiation, and eventual tissue fibrosis are hallmarks of the disease. Notably, several redox signaling pathways have been shown to intensify inflammation and to promote adipogenesis, myofibroblast differentiation, and fibrogenesis by upregulating potent cytokines, such as interleukin (IL)-1β, IL-6, and transforming growth factor (TGF)-β. While existing treatment options can manage symptoms and potentially halt disease progression, they come with drawbacks such as relapses, side effects, and chronic adverse effects on the optic nerve. Currently, several studies shed light on the pathogenetic contributions of emerging factors within immunological cascades and chronic oxidative stress. This review article provides an overview on the latest advancements in understanding the pathophysiology of TED, with a special focus of the interplay between oxidative stress, immunological mechanisms and environmental factors. Furthermore, cutting-edge therapeutic approaches targeting redox mechanisms will be presented and discussed.
Collapse
Affiliation(s)
- Francesco Buonfiglio
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.
| | - Katharina A Ponto
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.
| | - Norbert Pfeiffer
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.
| | - George J Kahaly
- Medicine I (GJK), University Medical Center of the Johannes Gutenberg- University, Mainz, Germany.
| | - Adrian Gericke
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
5
|
Ren Z, Zhang H, Yu H, Zhu X, Lin J. Roles of four targets in the pathogenesis of graves' orbitopathy. Heliyon 2023; 9:e19250. [PMID: 37810014 PMCID: PMC10558314 DOI: 10.1016/j.heliyon.2023.e19250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 06/29/2023] [Accepted: 08/16/2023] [Indexed: 10/10/2023] Open
Abstract
Graves' orbitopathy (GO) is an autoimmune disease that involves complex immune systems. The mainstays of clinical management for this disease are surgery, targeted drugs therapy, and no-targeted drugs drug therapy. targeted drugs can improve therapeutic efficacy and enhance the quality of life for GO patients. However, as a second-line treatment for GO, targeted drugs such as tocilizumab and rituximab have very limited therapeutic effects and may be accompanied by side effects. The introduction of Teprotumumab, which targets IGF-IR, has made significant progress in the clinical management of GO. The pathophysiology of GO still remains uncertain as it involves a variety of immune cells and fibroblast interactions as well as immune responses to relevant disease targets of action. Therfore, learning more about immune response feedback pathways and potential targets of action will assist in the treatment of GO. In this discussion, we explore the pathogenesis of GO and relevant work, and highlight four potential targets for GO: Interleukin-23 receptor (IL-23 R), Leptin receptor (LepR), Orbital fibroblast activating factors, and Plasminogen activator inhibitor-1 (PAI-1). A deeper understanding of the pathogenesis of GO and the role of potential target signaling pathways is crucial for effective treatment of this disease.
Collapse
Affiliation(s)
- Ziqiang Ren
- College of Life Sciences, Yantai University, Shandong, China
- Fengjin Biomedical Co., Ltd, Shandong, China
| | - Hailing Zhang
- College of Life Sciences, Yantai University, Shandong, China
| | - Haiwen Yu
- College of Life Sciences, Yantai University, Shandong, China
| | - Xiqiang Zhu
- Fengjin Biomedical Co., Ltd, Shandong, China
| | - Jian Lin
- College of Life Sciences, Yantai University, Shandong, China
| |
Collapse
|
6
|
Mussakulova A, Balmukhanova A, Aubakirova A, Zhunusova G, Balmukhanova A, Issakhanova J, Saliev T, Tanabayeva S, Fakhradiyev I. Assessment of the levels of interleukin-17 and interleukin-38 in thyroid-associated ophthalmopathy patients. Int Ophthalmol 2023; 43:2811-2824. [PMID: 36894821 DOI: 10.1007/s10792-023-02679-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 02/25/2023] [Indexed: 03/11/2023]
Abstract
PURPOSE The objective of the study was to analyse the levels of IL-17 and IL-38 in the samples of unstimulated tears, orbital adipose tissues, and sera of patients diagnosed with active forms of TAO. The correlation of the levels of IL-17 and IL-38 with clinical activity score (CAS) was scrutinized. METHODS A study was conducted at the Kazakhstan Scientific Research Institute of Eye Diseases (Almaty city, Kazakhstan). Study participants (n = 70) were sub-divided into 3 groups: (1) a group of patients diagnosed with active TAO (n = 25), (2) a group of patients with an inactive form of TAO (n = 28), and (3) a "control group" (patients diagnosed with orbital fat prolapse, n = 17). All patients underwent a clinical assessment and diagnostics. The activity of the disease and its severity were assessed using the CAS and NOSPECS scales. Thyroid function tests were performed, including the study of the levels of thyroid-stimulating hormone, triiodothyronine, free thyroxine, and antibodies to the thyroid-stimulating hormone receptor. IL-17 and IL-38 levels in non-stimulated tear samples, orbital tissue, and patients' sera were measured using commercial ELISA kits. RESULTS The results showed that the number of former smokers prevailed among patients with active TAO (48%) in comparison with patients with inactive TAO (15.4%), p = 0.001. The concentration of IL-17 significantly increased in the samples of non-stimulated tears, adipose tissues of the orbit and sera of patients with active forms of TAO. The level of IL-38 was reduced in all types of samples (p ≤ 0.05). The results of a histological study of orbital adipose tissues in the group of patients with an active form of TAO showed the presence of focal infiltration with lymphocytes, histiocytes, plasma cells, severe sclerosis and vascular plethora. We observed an association between the CAS of patients with active TAO and the level of IL-17 in sera (r = 0.885; p = 0.001). On the contrary, a negative correlation was detected for the level of IL-38 in sera. CONCLUSIONS The results highlighted the systemic effect of IL-17 and the local effect of IL-38 in TAO. We observed a significant increase in the production of IL-17, and a decrease in IL-38 in samples of sera and unstimulated tears (the active form of TAO). Our data indicate a correlation of IL-17 and IL-38 levels with the clinical activity of TAO.
Collapse
Affiliation(s)
- Ainura Mussakulova
- S.D. Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan
| | - Aigul Balmukhanova
- S.D. Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan
| | | | | | | | | | - Timur Saliev
- S.D. Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan
| | - Shynar Tanabayeva
- S.D. Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan
| | - Ildar Fakhradiyev
- S.D. Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan.
| |
Collapse
|
7
|
Chen W, Xi S, Ke Y, Lei Y. The emerging role of IL-38 in diseases: A comprehensive review. Immun Inflamm Dis 2023; 11:e991. [PMID: 37647430 PMCID: PMC10461426 DOI: 10.1002/iid3.991] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/30/2023] [Accepted: 08/07/2023] [Indexed: 09/01/2023] Open
Abstract
INTRODUCTION Interleukin-38 (IL-38) is a new type of anti-inflammatory cytokine, which is mainly expressed in the immunity-related organs and is involved in various diseases including cardiovascular and cerebrovascular diseases, lung diseases, viral infectious diseases and autoimmune diseases. AIM This review aims to detail the biological function, receptors and signaling of IL-38, which highlights its therapeutic potential in related diseases. CONCLUSION This article provides a comprehensive review of the association between interleukin-38 and related diseases, using interleukin-38 as a keyword and searching the relevant literature through Pubmed and Web of science up to July 2023.
Collapse
Affiliation(s)
- Weijun Chen
- Center of Forensic ExpertiseAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
- School of Forensic MedcineZunyi Medical UniversityZunyiGuizhouChina
| | - Shuangyun Xi
- Center of Forensic ExpertiseAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
- School of Forensic MedcineZunyi Medical UniversityZunyiGuizhouChina
| | - Yong Ke
- Center of Forensic ExpertiseAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
- School of Forensic MedcineZunyi Medical UniversityZunyiGuizhouChina
| | - Yinlei Lei
- Center of Forensic ExpertiseAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
- School of Forensic MedcineZunyi Medical UniversityZunyiGuizhouChina
| |
Collapse
|
8
|
Lu Y, Xing C, Zhang C, Lv X, Liu G, Chen F, Hou Z, Zhang D. Promotion of IL‑17/NF‑κB signaling in autoimmune thyroid diseases. Exp Ther Med 2022; 25:51. [PMID: 36588813 PMCID: PMC9780515 DOI: 10.3892/etm.2022.11750] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/19/2022] [Indexed: 12/12/2022] Open
Abstract
IL-17 and other cytokines have a number of immunomodulatory effects on thyroid cells. The present study investigated the changes and correlations amongst IL-17, NF-κB, IL-6, IL-10, interferon-γ (IFN-γ), TNF-α, IL-2 and IL-4 in patients with different autoimmune thyroid diseases in order to further clarify the pathogenesis of autoimmune thyroid disease. A total of 82 patients with autoimmune thyroid diseases (41 with Graves' disease and 41 with Hashimoto's thyroiditis) and 53 healthy controls were enrolled. All relevant thyroid hormones were detected by electrochemiluminescence analyzer. The serum levels of IL-17 and other cytokines were detected using flow cytometry, NF-κB was detected by ELISA, reverse transcription-quantitative PCR was used to detect the protein expression of various mRNAs, and the correlations between IL-17 and these factors were analyzed. Significant differences occurred amongst all groups. NF-κB, TNF-α, IL-6, IL-17 and their mRNA levels were significantly higher in the healthy controls compared with those in the patients; whereas IFN-γ and IL-10 levels were significantly lower in the healthy controls compared with those in the patients . Correlation analysis showed that the expression levels of IL-17 and its mRNA were significantly positively correlated with the expression levels of NF-κB, IL-6, thyroid peroxidase antibody, thyroid gland globulin, thyroglobulin antibody, TNF-α and IFN-γ, and were also significantly negatively correlated with IL-10 . These findings suggested that IL-17 was elevated in patients with autoimmune thyroid disease and that IL-17 could activate the NF-κB signaling pathway, stimulate the production and release of inflammatory factors such as TNF-α, IL-6 and IFN-γ and participate in the pathogenesis of autoimmune thyroid injury.
Collapse
Affiliation(s)
- Yamin Lu
- Department of Nuclear Medicine, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China,Correspondence to: Professor Yamin Lu, Department of Nuclear Medicine, Hebei General Hospital, 348 Hepingxi Road, Shijiazhuang, Hebei 050051, P.R. China
| | - Chenhao Xing
- Department of Clinical Laboratory Diagnostics, Graduate School, Hebei North University, Zhangjiakou, Hebei 075000, P.R. China
| | - Cuigai Zhang
- Physical Examination Center, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Xiuqin Lv
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Guangxia Liu
- Department of Nuclear Medicine, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Fang Chen
- Department of Nuclear Medicine, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Zhan Hou
- Department of Nuclear Medicine, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Donghui Zhang
- Clinical Research Center, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| |
Collapse
|
9
|
Zhang P, Zhu H. Cytokines in Thyroid-Associated Ophthalmopathy. J Immunol Res 2022; 2022:2528046. [PMID: 36419958 PMCID: PMC9678454 DOI: 10.1155/2022/2528046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 09/07/2023] Open
Abstract
Thyroid-associated ophthalmopathy (TAO), also known as thyroid eye disease (TED) or Graves' orbitopathy (GO), is a complex autoimmune condition causing visual impairment, disfigurement, and harm to patients' physical and mental health. The pathogenesis of TAO has not been fully elucidated, and the mainstream view is that coantigens shared by the thyroid and orbit trigger remodeling of extraocular muscles and orbital connective tissues through an inflammatory response. In recent years, cytokines and the immune responses they mediate have been crucial in disease progression, and currently, common evidence has shown that drugs targeting cytokines, such as tocilizumab, infliximab, and adalimumab, may be novel targets for therapy. In this review, we summarize the research development of different cytokines in TAO pathogenesis in the hope of discovering new therapeutic targets.
Collapse
Affiliation(s)
- Pengbo Zhang
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Huang Zhu
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| |
Collapse
|
10
|
Zhang P, Zhang X, Xu F, Xu W, Zhu H. Elevated expression of interleukin-27, IL-35, and decreased IL-12 in patients with thyroid-associated ophthalmopathy. Graefes Arch Clin Exp Ophthalmol 2022; 261:1091-1100. [PMID: 36370169 DOI: 10.1007/s00417-022-05856-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/26/2022] [Accepted: 10/03/2022] [Indexed: 11/13/2022] Open
Abstract
PURPOSE Thyroid-associated ophthalmopathy (TAO) is a chronic autoimmune disease. The interleukin-12 (IL-12) family includes IL-12, IL-23, IL-27, and IL-35, all of which play important roles in autoimmunity. Thus far, the relationship between IL-12, IL-27, and IL-35 and the TAO has not been evaluated. METHODS Seventy-five serum samples from patients with TAO were collected. Serum samples from 90 healthy controls (HC), 55 patients with Graves' disease (GD), 38 patients with uveitis (UV), 17 patients with Sjogren's syndrome (SS), and 65 patients with rheumatoid arthritis (RA) were collected as controls. The associations between IL-27, IL-35, IL-12, and other clinical parameters were analyzed. RESULTS Elevated serum levels of IL-27/IL-35 and decreased serum IL-12 levels were observed in TAO patients compared to those in HC (p < 0.001). For HC, we observed good diagnostic ability to predict TAO (area under the curve = 0.74, 0.78, and 0.78, for IL-27, IL-35, and IL-12, respectively). For other autoimmune diseases, IL-27, IL-35, and IL-12 had the ability to discriminate between UV, RA, and SS (area under the curve = 0.80, 0.83, and 0.85 for IL-27; 0.52, 0.69, and 0.67 for IL-35). The positive detection rates of IL-12 were significantly lower in the TAO group than in the UV and RA groups (p = 0.002, 0.01). CONCLUSION IL-12, IL-27, and IL-35 have the potential as biomarkers for TAO.
Collapse
Affiliation(s)
- Pengbo Zhang
- Department of Ophthalmology, Xinhua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Xibo Zhang
- Department of Ophthalmology, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Fen Xu
- Department of Cardiology, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Wangdong Xu
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, China
| | - Huang Zhu
- Department of Ophthalmology, Xinhua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
11
|
Mermoud L, Shutova M, Diaz‐Barreiro A, Talabot‐Ayer D, Drukala J, Wolnicki M, Kaya G, Boehncke W, Palmer G, Borowczyk J. IL-38 orchestrates proliferation and differentiation in human keratinocytes. Exp Dermatol 2022; 31:1699-1711. [PMID: 35833307 PMCID: PMC9796879 DOI: 10.1111/exd.14644] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 05/25/2022] [Accepted: 07/11/2022] [Indexed: 01/07/2023]
Abstract
Interleukin (IL)-38 is a member of the IL-1 cytokine family with reported anti-inflammatory activity. The highest constitutive IL-38 expression is detected in the skin, where it is mainly produced by differentiating keratinocytes. However, little data are available regarding its biological functions. In this study, we investigated the role of IL-38 in skin physiology. We demonstrate here that dermal fibroblasts and epithelial cells of skin appendages, such as eccrine sweat glands and sebaceous glands, also express IL-38. Next, using two- and three-dimensional cell cultures, we show that endogenous expression of IL-38 correlates with keratinocyte differentiation and its ectopic overexpression inhibits keratinocyte proliferation and enhances differentiation. Accordingly, immunohistochemical analysis revealed downregulation of IL-38 in skin pathologies characterized by keratinocyte hyperproliferation, such as psoriasis and basal or squamous cell carcinoma. Finally, intracellular IL-38 can shuttle between the nucleus and the cytoplasm and its overexpression modulates the activity of the transcription regulators YAP and ID1. Our results indicate that IL-38 can act independently from immune system activation and suggest that it may affect the epidermis directly by decreasing proliferation and promoting differentiation of keratinocytes. These data suggest an important role of keratinocyte-derived IL-38 in skin homeostasis and pathologies characterized by epidermal alterations.
Collapse
Affiliation(s)
- Loïc Mermoud
- Department of Pathology and Immunology, Faculty of MedicineUniversity of GenevaGenevaSwitzerland,Division of Rheumatology, Department of Medicine, Faculty of MedicineUniversity of GenevaGenevaSwitzerland
| | - Maria Shutova
- Department of Pathology and Immunology, Faculty of MedicineUniversity of GenevaGenevaSwitzerland
| | - Alejandro Diaz‐Barreiro
- Department of Pathology and Immunology, Faculty of MedicineUniversity of GenevaGenevaSwitzerland,Division of Rheumatology, Department of Medicine, Faculty of MedicineUniversity of GenevaGenevaSwitzerland
| | - Dominique Talabot‐Ayer
- Department of Pathology and Immunology, Faculty of MedicineUniversity of GenevaGenevaSwitzerland,Division of Rheumatology, Department of Medicine, Faculty of MedicineUniversity of GenevaGenevaSwitzerland
| | - Justyna Drukala
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and BiotechnologyJagiellonian UniversityCracowPoland
| | - Michal Wolnicki
- Department of Pediatric UrologyJagiellonian University Medical CollegeCracowPoland
| | - Gürkan Kaya
- Department of Pathology and Immunology, Faculty of MedicineUniversity of GenevaGenevaSwitzerland,Division of Clinical PathologyUniversity Hospital of GenevaGenevaSwitzerland
| | - Wolf‐Henning Boehncke
- Department of Pathology and Immunology, Faculty of MedicineUniversity of GenevaGenevaSwitzerland,Division of Dermatology and VenereologyUniversity HospitalsGenevaSwitzerland
| | - Gaby Palmer
- Department of Pathology and Immunology, Faculty of MedicineUniversity of GenevaGenevaSwitzerland,Division of Rheumatology, Department of Medicine, Faculty of MedicineUniversity of GenevaGenevaSwitzerland
| | - Julia Borowczyk
- Department of Pathology and Immunology, Faculty of MedicineUniversity of GenevaGenevaSwitzerland
| |
Collapse
|
12
|
Fernando R, Smith TJ. Teprotumumab Divergently Alters Fibrocyte Gene Expression: Implications for Thyroid-associated Ophthalmopathy. J Clin Endocrinol Metab 2022; 107:e4037-e4047. [PMID: 35809263 PMCID: PMC9516078 DOI: 10.1210/clinem/dgac415] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Indexed: 11/19/2022]
Abstract
CONTEXT Teprotumumab, an IGF-I receptor (IGF-IR) inhibitor, is effective in thyroid-associated ophthalmopathy (TAO). The drug can modulate induction by TSH of IL-6 and IL-8 in CD34+ fibrocytes and their putative derivatives, CD34+ orbital fibroblasts (CD34+ OF). Fibrocytes express multiple thyroid autoantigens and cytokines implicated in TAO, which are downregulated by Slit2. Inflammation and disordered hyaluronan (HA) accumulation occur in TAO. Whether teprotumumab alters these processes directly in fibrocytes/CD34+ OF remains uncertain. OBJECTIVE Determine teprotumumab effects on expression/synthesis of several TAO-relevant molecules in fibrocytes and GD-OF. DESIGN/SETTING/PARTICIPANTS Patients with TAO and healthy donors were recruited from an academic endocrine and oculoplastic practice. MAIN OUTCOME MEASURES Real-time PCR, specific immunoassays. RESULTS Teprotumumab attenuates basal and TSH-inducible autoimmune regulator protein, thyroglobulin, sodium iodide symporter, thyroperoxidase, IL-10, and B-cell activating factor levels in fibrocytes. It downregulates IL-23p19 expression/induction while enhancing IL-12p35, intracellular and secreted IL-1 receptor antagonists, and Slit2. These effects are mirrored by linsitinib. HA production is marginally enhanced by teprotumumab, the consequence of enhanced HAS2 expression. CONCLUSION Teprotumumab affects specific gene expression in fibrocytes and GD-OF in a target-specific, nonmonolithic manner, whereas IGF-IR control of these cells appears complex. The current results suggest that the drug may act on cytokine expression and HA production systemically and locally, within the TAO orbit. These findings extend our insights into the mechanisms through which IGF-IR inhibition might elicit clinical responses in TAO, including a potential role of Slit2 in attenuating inflammation and tissue remodeling.
Collapse
Affiliation(s)
- Roshini Fernando
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, Ann Arbor, MI 48105, USA
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| | - Terry J Smith
- Correspondence: Terry J. Smith, MD, Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, Brehm Tower, 1000 Wall St, Ann Arbor, MI 48105, USA.
| |
Collapse
|
13
|
Haghshenas MR, Zamir MR, Sadeghi M, Fattahi MJ, Mirshekari K, Ghaderi A. Clinical relevance and therapeutic potential of IL-38 in immune and non-immune-related disorders. Eur Cytokine Netw 2022; 33:54-69. [PMID: 37052152 PMCID: PMC10134710 DOI: 10.1684/ecn.2022.0480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2022] [Indexed: 04/14/2023]
Abstract
Interleukin-38 (IL-38) is the most recent member of the IL-1 family that acts as a natural inflammatory inhibitor by binding to cognate receptors, particularly the IL-36 receptor. In vitro, animal and human studies on autoimmune, metabolic, cardiovascular and allergic diseases, as well sepsis and respiratory viral infections, have shown that IL-38 exerts an anti-inflammatory activity by modulating the generation and function of inflammatory cytokines (e.g. IL-6, IL-8, IL-17 and IL-36) and regulating dendritic cells, M2 macrophages and regulatory T cells (Tregs). Accordingly, IL-38 may possess therapeutic potential for these types of diseases. IL-38 down-regulates CCR3+ eosinophil cells, CRTH2+ Th2 cells, Th17 cells, and innate lymphoid type 2 cells (ILC2), but up-regulates Tregs, and this has influenced the design of immunotherapeutic strategies based on regulatory cells/cytokines for allergic asthma in future studies. In auto-inflammatory diseases, IL-38 alleviates skin inflammation by regulating γδ T cells and limiting the production of IL-17. Due to its ability to suppress IL-1β, IL-6 and IL-36, this cytokine could reduce COVID-19 severity, and might be employed as a therapeutic tool. IL-38 may also influence host immunity and/or the components of the cancer microenvironment, and has been shown to improve the outcome of colorectal cancer, and may participate in tumour progression in lung cancer possibly by modulating CD8 tumour infiltrating T cells and PD-L1 expression. In this review, we first briefly present the biological and immunological functions of IL-38, and then discuss the important roles of IL-38 in various types of diseases, and finally highlight its use in therapeutic strategies.
Collapse
Affiliation(s)
- Mohammad Reza Haghshenas
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mina Roshan Zamir
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahboubeh Sadeghi
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Javad Fattahi
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kimia Mirshekari
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Ghaderi
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
14
|
Teufel LU, de Graaf DM, Netea MG, Dinarello CA, Joosten LAB, Arts RJW. Circulating interleukin-38 concentrations in healthy adults. Front Immunol 2022; 13:964365. [PMID: 36016926 PMCID: PMC9396651 DOI: 10.3389/fimmu.2022.964365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Interleukin (IL)-38 is the latest discovered member of the interleukin-1 family, which has anti-inflammatory properties similar to IL-36Ra. Several studies compared circulating IL-38 concentrations in healthy and diseased populations to characterize its role in both auto-immune and inflammatory pathologies, with both higher and lower concentrations being associated with certain diseases. However, in order to use IL-38 as a biomarker, a reference range in healthy adults is needed. To establish a reference IL-38 circulating concentration, accessible data from 25 eligible studies with IL-38 concentrations in healthy adults was collected. To validate the values found in literature, we measured IL-38 concentrations by enzyme-linked immunosorbent assay (ELISA) in several cohorts from our own institute. Additionally, the effect of blood collection techniques, freeze thawing cycles, and hemolysis on IL-38 measurements was assessed. To evaluate the importance of the genetic background of individuals as confounding factor of IL-38 synthesis, we used publicly available eQTL databases with matched data on allele frequencies in individuals of different ethnicities. Mean IL-38 concentrations in the various studies were weighted by their corresponding sample size, resulting in a weighted mean, and weighted upper and lower limits were calculated by mean ± 2 SD. Differences of over 10.000-fold were found in the weighted means between studies, which could not be attributed to the blood collection method or assessment of IL-38 in plasma or serum. Although IL-38 concentrations were markedly higher in Chinese then in European population studies, we could not show an association with the genetic background. From our analysis, a reference range for circulating IL-38 in healthy adults could thus not yet be established.
Collapse
Affiliation(s)
- Lisa U. Teufel
- Department of Internal Medicine, Radboud Institute of Molecular Life Sciences (RIMLS) and Radboudumc Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, Netherlands
| | - Dennis M. de Graaf
- Department of Internal Medicine, Radboud Institute of Molecular Life Sciences (RIMLS) and Radboudumc Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, Netherlands
- Department of Medicine, University of Colorado, Aurora, CO, United States
- Institute of Innate Immunity, University Hospital, University of Bonn, Bonn, Germany
| | - Mihai G. Netea
- Department of Internal Medicine, Radboud Institute of Molecular Life Sciences (RIMLS) and Radboudumc Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, Netherlands
- Department of Immunology and Metabolism, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Charles A. Dinarello
- Department of Internal Medicine, Radboud Institute of Molecular Life Sciences (RIMLS) and Radboudumc Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, Netherlands
- Department of Medicine, University of Colorado, Aurora, CO, United States
| | - Leo A. B. Joosten
- Department of Internal Medicine, Radboud Institute of Molecular Life Sciences (RIMLS) and Radboudumc Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, Netherlands
- Department of Medical Genetics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Rob J. W. Arts
- Department of Internal Medicine, Radboud Institute of Molecular Life Sciences (RIMLS) and Radboudumc Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, Netherlands
- *Correspondence: Rob J. W. Arts,
| |
Collapse
|
15
|
Zhou H, Zhao Q, Yue C, Yu J, Zheng H, Hu J, Hu Z, Zhang H, Teng X, Liu X, Wei X, Zhou Y, Zeng F, Hao Y, Hu Y, Wang X, Zhang C, Gu L, Wu W, Zhou Y, Cui K, Huang N, Li W, Wang Z, Li J. Interleukin-38 promotes skin tumorigenesis in an IL-1Rrp2-dependent manner. EMBO Rep 2022; 23:e53791. [PMID: 35578812 DOI: 10.15252/embr.202153791] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 03/16/2022] [Accepted: 03/30/2022] [Indexed: 02/05/2023] Open
Abstract
Interleukin-38 (IL-38) is strongly associated with chronic inflammatory diseases; however, its role in tumorigenesis is poorly understood. We demonstrated that expression of IL-38, which exhibits high expression in the skin, is downregulated in human cutaneous squamous cell carcinoma and 7,12-dimethylbenzanthracene/12-O-tetradecanoyl phorbol-13-acetate-induced mouse skin tumorigenesis. IL-38 keratinocyte-specific knockout mice displayed suppressed skin tumor formation and malignant progression. Keratinocyte-specific deletion of IL-38 was associated with reduced expression of inflammatory cytokines, leading to reduced myeloid cell infiltration into the local tumor microenvironment. IL-38 is dispensable for epidermal mutagenesis, but IL-38 keratinocyte-specific deletion reduces proliferative gene expression along with epidermal cell proliferation and hyperplasia. Mechanistically, we first demonstrated that IL-38 activates the c-Jun N-terminal kinase (JNK)/activator protein 1 signal transduction pathway to promote the expression of cancer-related inflammatory cytokines and proliferation and migration of tumor cells in an IL-1 receptor-related protein 2 (IL-1Rrp2)-dependent manner. Our findings highlight the role of IL-38 in the regulation of epidermal cell hyperplasia and pro-tumorigenic microenvironment through IL-1Rrp2/JNK and suggest IL-38/IL-1Rrp2 as a preventive and potential therapeutic target in skin cancer.
Collapse
Affiliation(s)
- Hong Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Qixiang Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Chengcheng Yue
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Jiadong Yu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Huaping Zheng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Jing Hu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Zhonglan Hu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Haozhou Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Xiu Teng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Xiao Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Xiaoqiong Wei
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yuxi Zhou
- Department of Dermatovenereology, West China Hospital, Sichuan University, Chengdu, China
| | - Fanlian Zeng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yan Hao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yawen Hu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Xiaoyan Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Chen Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Linna Gu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Wenling Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yifan Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Kaijun Cui
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Nongyu Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Wei Li
- Department of Dermatovenereology, West China Hospital, Sichuan University, Chengdu, China
| | - Zhen Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China.,Department of Liver Surgery & Liver Transplantation, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Jiong Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| |
Collapse
|
16
|
Interleukin-38 in Health and Disease. Cytokine 2022; 152:155824. [DOI: 10.1016/j.cyto.2022.155824] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/31/2022] [Accepted: 02/04/2022] [Indexed: 12/13/2022]
|
17
|
Diaz-Barreiro A, Huard A, Palmer G. Multifaceted roles of IL-38 in inflammation and cancer. Cytokine 2022; 151:155808. [DOI: 10.1016/j.cyto.2022.155808] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/08/2022] [Accepted: 01/11/2022] [Indexed: 12/11/2022]
|
18
|
Li H, Zhu L, Wang R, Xie L, Chen Y, Duan R, Liu X, Huang Z, Chen B, Li Z, Wang X, Su W. Therapeutic Effect of IL-38 on Experimental Autoimmune Uveitis: Reprogrammed Immune Cell Landscape and Reduced Th17 Cell Pathogenicity. Invest Ophthalmol Vis Sci 2021; 62:31. [PMID: 34967854 PMCID: PMC8727319 DOI: 10.1167/iovs.62.15.31] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 12/13/2021] [Indexed: 11/24/2022] Open
Abstract
Purpose The purpose of this study was to elucidate the effects of interleukin (IL)-38 on experimental autoimmune uveitis (EAU) and its underlying mechanisms. Methods Mice with EAU were treated with IL-38, and the retinas and cervical draining lymph nodes (CDLNs) were analyzed by flow cytometry. Single-cell RNA sequencing (scRNA-seq) was conducted to analyze the immune cell profiles of CDLNs from normal, EAU, and IL-38-treated mice. Results Administration of IL-38 attenuated EAU symptoms and reduced the proportion of T helper 17 (Th17) and T helper 1 (Th1) cells in the retinas and CDLNs. In scRNA-seq analysis, IL-38 downregulated the IL-17 signaling pathway and reduced the expression of Th17 cell pathogenicity-related genes (Csf2 and Il23r), findings which were also confirmed by flow cytometry. In vitro, IL-38 reduced the granulocyte-macrophage colony-stimulating factor (GM-CSF) stimulation function of IL-23 and inhibited IL-23R expression in Th17 cells. Moreover, when co-cultured with Th17 cells, IL-38 prevented IL-23 production in antigen-presenting cells (APCs). Conclusions Our data demonstrate the therapeutic effect of IL-38 on EAU, and suggest that the effect of IL-38 may be caused by dampening of the GM-CSF/IL-23R/IL-23 feedback loop between Th17 cells and APCs.
Collapse
Affiliation(s)
- He Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Lei Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Rong Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Lihui Xie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yuxi Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Runping Duan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xiuxing Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Zhaohao Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Binyao Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Zhaohuai Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xianggui Wang
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
| | - Wenru Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| |
Collapse
|
19
|
Xu J, Huang G, Weng L, Gong L, Mao Y, Li Y, Li M. Low serum interleukin-38 levels in patients with Graves' disease and Hashimoto's thyroiditis. J Clin Lab Anal 2021; 36:e24101. [PMID: 34799942 PMCID: PMC8761401 DOI: 10.1002/jcla.24101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/23/2021] [Accepted: 10/25/2021] [Indexed: 01/09/2023] Open
Abstract
Background Autoimmune thyroid disease (AITD) mainly includes Graves’ disease (GD) and Hashimoto's thyroiditis (HT), which is caused by individual genetics, autoimmune dysfunction, and a variety of external environmental factors. Interleukin (IL)‐38 is involved in a wide range of autoimmune diseases, but little is known about IL‐38 expression in AITD. Methods Fifty patients with GD, 50 with HT, and 50 healthy controls (HC) were enrolled in this study. Basic information of the participants was obtained through a physical examination. Immunological data were obtained by an automatic chemiluminescence immunoanalyzer. C‐reactive protein (CRP) concentrations and the white blood cell count were measured. Serum IL‐38 levels were determined by an enzyme‐linked immunosorbent assay. Results Serum IL‐38 levels were significantly lower in the GD and HT groups than in the HC group (both p < 0.01). Serum CRP concentrations were significantly lower in the HT group than in the HC group (p < 0.05). Receiver operating characteristic curve analysis showed that the area under the curve was 0.7736 (p < 0.01) for IL‐38 and 0.7972 (p < 0.01) for IL‐38 combined with CRP in the GD group. In the HT group, the area under the curve was 0.7276 (p < 0.01) for IL‐38 and 0.7300 for IL‐38 combined with CRP (p < 0.01). Conclusions The results suggest that serum IL‐38 level is a potential new diagnostic biomarker in patients with GD and HT.
Collapse
Affiliation(s)
- Jialu Xu
- Department of Clinical Laboratory, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China.,Department of Immunology, Zhejiang Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo, China
| | - Guoqing Huang
- Department of Immunology, Zhejiang Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo, China.,Department of Endocrinology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
| | - Linjie Weng
- Department of Immunology, Zhejiang Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo, China
| | - Luping Gong
- Department of Immunology, Zhejiang Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo, China
| | - Yushan Mao
- Department of Endocrinology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
| | - Yan Li
- Department of Immunology, Zhejiang Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo, China.,Department of Endocrinology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
| | - Mingcai Li
- Department of Immunology, Zhejiang Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo, China
| |
Collapse
|
20
|
Han MM, Yuan XR, Shi X, Zhu XY, Su Y, Xiong DK, Zhang XM, Zhou H, Wang JN. The Pathological Mechanism and Potential Application of IL-38 in Autoimmune Diseases. Front Pharmacol 2021; 12:732790. [PMID: 34539413 PMCID: PMC8443783 DOI: 10.3389/fphar.2021.732790] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/17/2021] [Indexed: 12/19/2022] Open
Abstract
Interleukin-38 (IL-38), a new cytokine of interleukin-1 family (IL-1F), is expressed in the human heart, kidney, skin, etc. Recently, new evidence indicated that IL-38 is involved in the process of different autoimmune diseases. Autoimmune diseases are a cluster of diseases accompanied with tissue damage caused by autoimmune reactions, including rheumatoid arthritis (RA), psoriasis, etc. This review summarized the links between IL-38 and autoimmune diseases, as well as the latest knowledge about the function and regulatory mechanism of IL-38 in autoimmune diseases. Especially, this review focused on the differentiation of immune cells and explore future prospects, such as the application of IL-38 in new technologies. Understanding the function of IL-38 is helpful to shed light on the progress of autoimmune diseases.
Collapse
Affiliation(s)
- Miao-Miao Han
- School of Health Management, Anhui Medical University, Hefei, China
| | - Xin-Rong Yuan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiang Shi
- School of Health Management, Anhui Medical University, Hefei, China
| | - Xing-Yu Zhu
- School of Pharmacy, Bengbu Medical College, Bengbu, China.,National Drug Clinical Trial Institution, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Yue Su
- National Drug Clinical Trial Institution, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China.,Public Basic College, Bengbu Medical College, Bengbu, China
| | - De-Kai Xiong
- School of Health Management, Anhui Medical University, Hefei, China
| | - Xing-Min Zhang
- School of Health Management, Anhui Medical University, Hefei, China
| | - Huan Zhou
- School of Pharmacy, Bengbu Medical College, Bengbu, China.,National Drug Clinical Trial Institution, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Ji-Nian Wang
- Department of Education, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| |
Collapse
|
21
|
Xia HS, Liu Y, Fu Y, Li M, Wu YQ. Biology of interleukin-38 and its role in chronic inflammatory diseases. Int Immunopharmacol 2021; 95:107528. [PMID: 33725637 DOI: 10.1016/j.intimp.2021.107528] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/08/2021] [Accepted: 02/21/2021] [Indexed: 02/07/2023]
Abstract
Interleukin (IL)-38 is the tenth member of the IL-1 cytokine family. IL-38 shares high similarity with IL-36Ra and IL-1Ra and can bind to their receptors, thus exerting an anti-inflammatory effect. Despite the lack of a signal peptide, IL-38 can be released from several cell types, but its maturation process remains obscure. The role of IL-38 in numerous inflammatory diseases, especially in autoimmune diseases, has been extensively studied. In this review, we discuss the characteristics, biological functions and pathways of IL-38, as well as its role in several chronic inflammatory diseases. Better understanding the role of IL-38 will pave the way for clinical treatments in the near future.
Collapse
Affiliation(s)
- Hua-Song Xia
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Yue Liu
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Yang Fu
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Meng Li
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Yan-Qing Wu
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China.
| |
Collapse
|