1
|
Zhong R, Guo X, Wu C, Guo Y, Kang Y, You J, Chen F, Chen Q, Chen L. Identification of new HLA-A*0201-restricted cytotoxic T lymphocyte epitopes from LDHC in lung adenocarcinoma. Front Immunol 2025; 16:1564731. [PMID: 40270965 PMCID: PMC12014551 DOI: 10.3389/fimmu.2025.1564731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 03/19/2025] [Indexed: 04/25/2025] Open
Abstract
Background Lactate dehydrogenase C (LDHC) is a kind of cancer-testis antigen (CTA) that has been reported to be a biomarker for diagnosis, efficacy evaluation, and recurrence monitoring of lung adenocarcinoma (LUAD). This study aims to assess the value of LDHC in peptide-based vaccines for LUAD immunotherapy. Methods The LDHC recombinant protein was purified and its effect on PC9 cells was evaluated by wound healing assay, Transwell invasion, and migration assay. Ten HLA-A2-restricted LDHC-derived peptides were predicted and synthesized, and the affinity for the HLA-A2 molecule was analyzed by T2 binding assay and molecule docking. Enzyme-linked immunospot (ELISpot) and LDH cytotoxicity assay were performed to determine the interferon-γ (IFN-γ) release level and tumor cell lysis ability of peptide-induced specific cytotoxic T lymphocytes (CTLs). Results The LDHC recombinant protein promoted invasion and migration of PC9 cells. Three HLA-A2-restricted LDHC-derived peptides P2 (LDHC170-180, FRYLIGEKLGV), P5 (LDHC116-124, IMKSIIPAI), and P6 (LDHC172-180, YLIGEKLGV) had high affinity for the HLA-A2 molecule at 50 μg/mL. P6 (LDHC172-180, YLIGEKLGV) elicited the strongest IFN-γ-secreting cytotoxic T lymphocyte (CTL) response and exhibited potent cytotoxicity against HLA-A2-positive cells with high LDHC expression. Conclusions LDHC may serve as a targetable biomarker for peptide-based immunotherapy of LUAD.
Collapse
Affiliation(s)
- Ruifang Zhong
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Xiaohong Guo
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Chuncai Wu
- Department of Clinical Laboratory, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, China
| | - Yangyi Guo
- Department of Clinical Laboratory, The Third Hospital Of LongYan, LongYan, China
| | - Yanli Kang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Clinical Laboratory, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian, China
| | - Jianbin You
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Clinical Laboratory, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian, China
| | - Falin Chen
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Clinical Laboratory, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian, China
| | - Qianshun Chen
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Thoracic Surgery, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian, China
| | - Liangyuan Chen
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Clinical Laboratory, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian, China
| |
Collapse
|
2
|
Liu YC, Yu CH, Wang QY, Zhong JT, Bao YY, Fu ZM, Chen Z, Chen HC, Cao ZZ, Zhou SH. MAGEA9 Expression in Vocal Fold Leukoplakia and Its Enhancement of Vocal Fold Leukoplakia Epithelial Cell Proliferation, Migration, and Invasion Through the NF-kB-MMP-2/9 Pathway. J Voice 2025:S0892-1997(25)00042-6. [PMID: 39979188 DOI: 10.1016/j.jvoice.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/31/2025] [Accepted: 02/03/2025] [Indexed: 02/22/2025]
Abstract
PURPOSE The expression of MAGE-A9 in vocal fold leukoplakia (VFL) tissues and the mechanism underlying its role in the malignant transformation of VFL remain unclear. This study investigated the role of MAGE-A9 in the proliferation, migration, and invasion of VFL epithelial cells as well as the underlying regulatory mechanism. METHODS MAGE-A9 expression in VFL tissues was detected by immunohistochemistry. The CCK-8 assay, flow cytometry, and transwell assays were performed to determine the viability, cell cycle distribution and apoptosis, as well as migration and invasion, respectively, of primary cultured VFL epithelial cells. Ki67, cell cycle proteins, and proteins in the NF-kB-MMP-2/9 pathway were assessed by Western blotting. RESULTS MAGE-A9 expression was detected in 54.5% (18/33) of vocal fold polyps, 48.9% (44/90) of VFLs, and 84.8% (28/33) of laryngeal cancers. Significantly higher levels of expression were found in laryngeal cancer than in vocal fold polyps and VFL tissues (P < 0.001). The expression of MAGE-A9 tended to increase with the severity of VFL dysplasia. In VFL epithelial cells, the overexpression of MAGE-A9 significantly increased the viability, proliferation, migration, and invasion of the cells and reduced the level of apoptosis. The cell cycle effects of MAGE-A9 overexpression included an increased proportion of cells in the G2 and S phases and a decreased proportion of those in the G1 phase (P = 0.002), leading to an altered G1/S phase transition. MAGE-A9 overexpression also significantly increased p-IKBα, p-p65, MMP2, and MMP9 levels while decreasing those of IKBα. All of the effects of MAGE-A9 were inhibited by treating the cells with the IκBα phosphorylation inhibitor BAY 11-7082. CONCLUSION MAGE-A9 expression tended to increase with the severity of dysplasia in VFL and was significantly higher in laryngeal cancer than in VFL. MAGE-A9 was shown to promote the proliferation, migration, and invasion of VFL epithelial cells via the NF-kB pathway and downstream targets such as MMP-2/9.
Collapse
Affiliation(s)
- Yong-Cai Liu
- Department of Otolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, PR China
| | - Chun-Hai Yu
- Department of Otolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, PR China
| | - Qin-Ying Wang
- Department of Otolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, PR China
| | - Jiang-Tao Zhong
- Department of Otolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, PR China
| | - Yang-Yang Bao
- Department of Otolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, PR China
| | - Zi-Ming Fu
- Department of Otolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, PR China
| | - Zhe Chen
- Department of Otolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, PR China
| | - Heng-Chao Chen
- Department of Otolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, PR China
| | - Zai-Zai Cao
- Department of Otolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, PR China
| | - Shui-Hong Zhou
- Department of Otolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, PR China.
| |
Collapse
|
3
|
Adewuyi E, Chorya H, Muili A, Moradeyo A, Kayode A, Naik A, Odedele T, Opabode M. Chemotherapy, immunotherapy, and targeted therapy for osteosarcoma: Recent advancements. Crit Rev Oncol Hematol 2025; 206:104575. [PMID: 39581243 DOI: 10.1016/j.critrevonc.2024.104575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/22/2024] [Accepted: 11/17/2024] [Indexed: 11/26/2024] Open
Abstract
Recent advancements in the treatment of osteosarcoma, a rare and aggressive form of bone cancer, have seen significant progress with chemotherapy, immunotherapy, and targeted therapy. Chemotherapy, the conventional approach, has witnessed refined drug regimens and novel agents tailored to enhance efficacy while minimizing adverse effects. This evolution aims to strike a balance between eradicating cancer cells and preserving patients' overall well-being. Immunotherapy has emerged as a promising avenue, leveraging the body's immune system to recognize and combat cancer cells. Innovative immunotherapeutic strategies, including immune checkpoint inhibitors, adoptive T cell therapy, and chimeric antigen receptor (CAR)-T cell therapy, exhibit the potential to enhance immune responses against osteosarcoma. Moreover, targeted therapy, designed to disrupt specific molecular pathways crucial for cancer growth, has gained traction in the treatment of osteosarcoma. Precision medicine approaches, such as identifying biomarkers and employing targeted agents, aim to tailor therapies to individual patients, maximizing effectiveness while minimizing collateral damage to healthy tissues. This article analyzes the current state of these three treatment modalities while comparing the efficacies of current chemotherapy, immunotherapy and targeted therapy agents.
Collapse
Affiliation(s)
- Esther Adewuyi
- Department of Medicine and Surgery, Ladoke Akintola University, Ogbomoso, Nigeria; Ladoke Akintola University Medical Journal Club, Ogbomoso, Nigeria.
| | - Harshal Chorya
- Department of Medicine and Surgery, Baroda Medical College, India
| | - Abdulbasit Muili
- Department of Medicine and Surgery, Ladoke Akintola University, Ogbomoso, Nigeria; Ladoke Akintola University Medical Journal Club, Ogbomoso, Nigeria
| | - Abdulrahmon Moradeyo
- Department of Medicine and Surgery, Ladoke Akintola University, Ogbomoso, Nigeria; Ladoke Akintola University Medical Journal Club, Ogbomoso, Nigeria
| | - Ayomide Kayode
- Department of Medicine and Surgery, Ladoke Akintola University, Ogbomoso, Nigeria; Ladoke Akintola University Medical Journal Club, Ogbomoso, Nigeria
| | - Aastha Naik
- Department of Medicine and Surgery, Parul Institute of Medical Sciences and Research, Parul University, India
| | - Temitayo Odedele
- Department of Medicine and Surgery, Ladoke Akintola University, Ogbomoso, Nigeria; Ladoke Akintola University Medical Journal Club, Ogbomoso, Nigeria
| | - Muntaqim Opabode
- Department of Medicine and Surgery, Ladoke Akintola University, Ogbomoso, Nigeria; Ladoke Akintola University Medical Journal Club, Ogbomoso, Nigeria
| |
Collapse
|
4
|
Li L, Zhang X, Yan J, Guo J, Liu F, Wei X, Liu Q, Wang K, Liu B. A panel of cancer testis antigens in squamous cell carcinoma of the lung, head and neck, and esophagus: implication for biomarkers and therapeutic targets. Discov Oncol 2025; 16:88. [PMID: 39864021 PMCID: PMC11769918 DOI: 10.1007/s12672-025-01804-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
This study aims to investigate the expression of seven cancer testis antigens (MAGE-A1, MAGE-A4, MAGE-A10, MAGE-A11, PRAME, NY-ESO-1 and KK-LC-1) in pan squamous cell carcinoma and their prognostic value, thus assessing the potential of these CTAs as immunotherapeutic targets. The protein expression of these CTAs was evaluated by immunohistochemistry in 60 lung squamous cell carcinoma (LUSC), 62 esophageal squamous cell carcinoma (ESCA) and 62 head and neck squamous cell carcinoma (HNSC). The relationship between CTAs expression and progression-free survival (PFS) was assessed. PD-L1 expression and tumor-infiltrating lymphocytes were also collected and correlated with CTAs expression. The prognostic impact of CTAs gene expression was evaluated using the Kaplan-Meier Plotter website. CTAs expression was 0-48% in ESCA, 3%-77% in LUSC, and 3%-71% in HNSC. Analysis of PFS showed that MAGE-A1 expression in HNSC (**p < 0.01), PRAME in LUSC (p = 0.008, **p < 0.01), MAGE-A10 (p = 0.012, *p < 0.05) and PRAME (p = 0.021, *p < 0.05) in ESCA were significantly correlated with PFS. In all three cancers, coexpression of three CTAs was used as a cutoff value for grouping, and the results showed a significant difference in PFS between these two groups. Moreover, CTAs expression was significantly correlated with PD-L1 expression and T cell infiltration. These findings indicate a high incidence of CTA expression in HNSC, LUSC and ESCA, which was correlated with PD-L1 expression, T cell infiltration, and tumor progression. The results suggest that cancer testis antigens could be feasible vaccine targets in squamous cell carcinoma.
Collapse
Affiliation(s)
- Lin Li
- Department of Pathology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, Jiangsu, China
- Department of Oncology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, Jiangsu, China
| | - Xin Zhang
- Department of Pathology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, Jiangsu, China
| | - Jiayao Yan
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, Jiangsu, China
| | - Jingyi Guo
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of China Pharmaceutical University, Nanjing, 210008, Jiangsu, China
| | - Fangcen Liu
- Department of Pathology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, Jiangsu, China
| | - Xiao Wei
- Department of Pathology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, Jiangsu, China
| | - Qin Liu
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, Jiangsu, China
| | - Kongcheng Wang
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, Jiangsu, China.
| | - Baorui Liu
- Department of Oncology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, Jiangsu, China.
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, Jiangsu, China.
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of China Pharmaceutical University, Nanjing, 210008, Jiangsu, China.
| |
Collapse
|
5
|
Giuliani J, Tebano U, Mandarà M, Franceschetto A, Giorgi C, Missiroli S, Gabbani M, Napoli G, Luca N, Mangiola D, Muraro M, Perrone M, Pinton P, Fiorica F. "Add More Arrows to Your Quiver": The Role of Adding Another Chemotherapy Drug to Fluoropyrimidine and Long Term Radiotherapy in Locally Advanced Rectal Cancer: A Systematic Review and Meta-Analysis. J Clin Med 2025; 14:345. [PMID: 39860350 PMCID: PMC11765640 DOI: 10.3390/jcm14020345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/23/2024] [Accepted: 01/04/2025] [Indexed: 01/27/2025] Open
Abstract
Objectives: Despite optimal local control obtained with neoadjuvant chemoradiotherapy (CRT), data on overall survival (OS) and disease-free survival (DFS) of local advanced rectal cancer patients are still equivocal. This meta-analysis aimed to estimate the pathological complete response (pCR), regression rate, DFS, and OS probabilities of rectal cancer patients treated with a second chemotherapy drug added to fluoropyrimidine and long-term radiotherapy. Methods: Computerized bibliographic searches of MEDLINE, PUBMED, Web of Science and the Cochrane Central Register of Controlled Trials databases (1970-2023) were supplemented with hand searches of reference lists. Studies were included if they were randomised controlled trials (RCTs) comparing intensified chemotherapy with CRT to preoperative CRT and if they had patients with resectable, histologically proven rectal adenocarcinoma without metastases. Results: Eighteen RCTs (7695 patients) were analysed. Data on population, intervention, and outcomes were extracted from each RCT, following the intention-to-treat method, by three independent observers and combined using the DerSimonian and Laird methods. A chemotherapy with two drug and long-term radiotherapy CRT, compared to preoperative CRT (fluoropyrimidine and long-term radiotherapy), significantly increases the rate of pathological complete response (OR 1.37 (95% CI, 1.16-1.63) p = 0.0003) and the regression rate (OR 1.57 (95% CI, 1.16-2.14) p < 0.00001). Furthermore, it increases DFS (HR 0.87 (95% CI, 0.79 to 0.95) p = 0.002 and OS HR 0.84 (95% CI, 0.74 to 0.95) p = 0.007). The risk of severe adverse events (≥G3) is increased OR 1.96 (95% CI 1.35-2.85), p = 0.0005. Conclusions: In patients with resectable rectal cancer, intensified chemotherapy can reduce by 13% the risk of disease progression and by 16% the risk of death.
Collapse
Affiliation(s)
- Jacopo Giuliani
- Department of Clinical Oncology, Section of Medical Oncology, AULSS 9 Scaligera, 37045 Legnago, Italy; (J.G.); (M.M.); (D.M.)
| | - Umberto Tebano
- Department of Clinical Oncology, Section of Radiation Oncology and Nuclear Medicine, AULSS 9 Scaligera, 37045 Legnago, Italy; (U.T.); (A.F.); (M.G.); (G.N.); (N.L.); (M.M.)
| | - Marta Mandarà
- Department of Clinical Oncology, Section of Medical Oncology, AULSS 9 Scaligera, 37045 Legnago, Italy; (J.G.); (M.M.); (D.M.)
| | - Antonella Franceschetto
- Department of Clinical Oncology, Section of Radiation Oncology and Nuclear Medicine, AULSS 9 Scaligera, 37045 Legnago, Italy; (U.T.); (A.F.); (M.G.); (G.N.); (N.L.); (M.M.)
| | - Carlotta Giorgi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 48033 Ferrara, Italy; (C.G.); (S.M.); (M.P.); (P.P.)
| | - Sonia Missiroli
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 48033 Ferrara, Italy; (C.G.); (S.M.); (M.P.); (P.P.)
| | - Milena Gabbani
- Department of Clinical Oncology, Section of Radiation Oncology and Nuclear Medicine, AULSS 9 Scaligera, 37045 Legnago, Italy; (U.T.); (A.F.); (M.G.); (G.N.); (N.L.); (M.M.)
| | - Giuseppe Napoli
- Department of Clinical Oncology, Section of Radiation Oncology and Nuclear Medicine, AULSS 9 Scaligera, 37045 Legnago, Italy; (U.T.); (A.F.); (M.G.); (G.N.); (N.L.); (M.M.)
| | - Nicoletta Luca
- Department of Clinical Oncology, Section of Radiation Oncology and Nuclear Medicine, AULSS 9 Scaligera, 37045 Legnago, Italy; (U.T.); (A.F.); (M.G.); (G.N.); (N.L.); (M.M.)
| | - Daniela Mangiola
- Department of Clinical Oncology, Section of Medical Oncology, AULSS 9 Scaligera, 37045 Legnago, Italy; (J.G.); (M.M.); (D.M.)
| | - Marco Muraro
- Department of Clinical Oncology, Section of Radiation Oncology and Nuclear Medicine, AULSS 9 Scaligera, 37045 Legnago, Italy; (U.T.); (A.F.); (M.G.); (G.N.); (N.L.); (M.M.)
| | - Mariasole Perrone
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 48033 Ferrara, Italy; (C.G.); (S.M.); (M.P.); (P.P.)
| | - Paolo Pinton
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 48033 Ferrara, Italy; (C.G.); (S.M.); (M.P.); (P.P.)
| | - Francesco Fiorica
- Department of Clinical Oncology, Section of Medical Oncology, AULSS 9 Scaligera, 37045 Legnago, Italy; (J.G.); (M.M.); (D.M.)
- Department of Clinical Oncology, Section of Radiation Oncology and Nuclear Medicine, AULSS 9 Scaligera, 37045 Legnago, Italy; (U.T.); (A.F.); (M.G.); (G.N.); (N.L.); (M.M.)
| |
Collapse
|
6
|
Liu X, Jiang D, Liu Y, Xie K, Zhao Y, Liu F. Crispr-Cas9-based long non-coding RNA interference and activation identified that the aberrant expression of Myc-regulated ST8SIA6 antisense RNA 1 promotes tumorigenesis and metastasis in hepatocellular carcinoma. Cytojournal 2024; 21:53. [PMID: 39737136 PMCID: PMC11683396 DOI: 10.25259/cytojournal_109_2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/26/2024] [Indexed: 01/01/2025] Open
Abstract
Objective Long non-coding RNAs (lncRNAs) participate in the formation, progression, and metastasis of cancer. This study aimed to explore the roles of the lncRNA ST8SIA6 antisense RNA 1 (ST8SIA6-AS1) in tumorigenesis and elucidate the underlying molecular mechanism of its upregulation in hepatocellular carcinoma (HCC). Material and Methods A total of 56 in-house pairs of HCC tissues were examined, and ST8SIA6-AS1 levels were determined through real-time polymerase chain reaction (PCR). The biological behavior of ST8SIA6-AS1 by Crispr-Cas9-based gene repression and activation was determined in vitro and in vivo. The binding sites and biological behavior of Myc proto-oncogene and forkhead box A on chromatin were investigated through luciferase reporter assays, chromatin immunoprecipitation-quantitative PCR, and co-immunoprecipitation (co-IP) assays. The regulatory mechanisms of ST8SIA6-AS1 expression were analyzed with encyclopedia of DNA elements and gene expression profiling interactive analysis. Results The expression of ST8SIA6-AS1 significantly increased in multiple HCC cell lines and the 56 in-house pairs of HCC tissues (P = 0.0018). Functionally, high-efficiency Crispr-Cas9-based knockdown of ST8SIA6-AS1 revealed that ST8SIA6-AS1 knockdown attenuated the proliferation, migration, and infiltration of HCC cells and considerably reduced the growth rate of subcutaneous and orthotopic HCC tumors. Conversely, ST8SIA6-AS1 overexpression considerably improved the oncogenic characteristics of the HCC cells. Furthermore, ST8SIA6-AS1 upregulation was regulated by the direct binding of transcription factor Myc to the -260 bp to+155 bp and +1003 bp to +1312 bp regions of the ST8SIA6-AS1 transcription start site, which is a segment with high level of H3K27 acetylation. Myc knockdown or treatment with the BET bromodomain inhibitor JQ-1 considerably reduced ST8SIA6-AS1 RNA expression in the HCC cells. Conclusion Our study has established the oncogenic role of ST8SIA6-AS1 and elucidated the Myc-dependent upregulation mechanism of ST8SIA6-AS1 in HCC, providing a profound theoretical molecular basis for the carcinogenic function of ST8SIA6-AS1 in HCC.
Collapse
Affiliation(s)
- Xueqian Liu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Dong Jiang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yang Liu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Kun Xie
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yijun Zhao
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Fubao Liu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
7
|
Fischer J, Shutta KH, Chen C, Fanfani V, Saha E, Mandros P, Ben Guebila M, Xiu J, Nieva J, Liu S, Uprety D, Spetzler D, Lopes-Ramos CM, DeMeo D, Quackenbush J. Selective loss of Y chromosomes in lung adenocarcinoma modulates the tumor immune environment through cancer/testis antigens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.19.613876. [PMID: 39345481 PMCID: PMC11430018 DOI: 10.1101/2024.09.19.613876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
There is increasing recognition that the sex chromosomes, X and Y, play an important role in health and disease that goes beyond the determination of biological sex. Loss of the Y chromosome (LOY) in blood, which occurs naturally in aging men, has been found to be a driver of cardiac fibrosis and heart failure mortality. LOY also occurs in most solid tumors in males and is often associated with worse survival, suggesting that LOY may give tumor cells a growth or survival advantage. We analyzed LOY in lung adenocarcinoma (LUAD) using both bulk and single-cell expression data and found evidence suggesting that LOY affects the tumor immune environment by altering cancer/testis antigen expression and consequently facilitating tumor immune evasion. Analyzing immunotherapy data, we show that LOY and changes in expression of particular cancer/testis antigens are associated with response to pembrolizumab treatment and outcome, providing a new and powerful biomarker for predicting immunotherapy response in LUAD tumors in males.
Collapse
Affiliation(s)
- Jonas Fischer
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, 02115, MA, United States
- Department for Computer Vision and Machine Learning, Max Planck Institute for Informatics, Stuhlsatzenhausweg E1 4, Saarbrücken, 66123, Germany
| | - Katherine H. Shutta
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, 02115, MA, United States
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, 181 Longwood Avenue, Boston, 02115, MA, United States
| | - Chen Chen
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, 02115, MA, United States
| | - Viola Fanfani
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, 02115, MA, United States
| | - Enakshi Saha
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, 02115, MA, United States
| | - Panagiotis Mandros
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, 02115, MA, United States
| | - Marouen Ben Guebila
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, 02115, MA, United States
| | - Joanne Xiu
- Caris Life Sciences, 4610 South 44th Place, Phoenix, 85040, AZ, United States
| | - Jorge Nieva
- Department of Medicine, Keck School of Medicine of USC, 1975 Zonal Avenue, Los Angeles, 90033, CA, United States
| | - Stephen Liu
- Department of Medicine, Georgetown University School of Medicine, 3900 Reservoir Road NW, Washington, 20007, DC, United States
| | - Dipesh Uprety
- Karmanos Cancer Center, 4100 John R , Detroit, 48201, MI, United States
| | - David Spetzler
- Caris Life Sciences, 4610 South 44th Place, Phoenix, 85040, AZ, United States
| | - Camila M. Lopes-Ramos
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, 02115, MA, United States
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, 181 Longwood Avenue, Boston, 02115, MA, United States
- Department of Medicine, Harvard Medical School, 25 Shattuck St, Boston, 02115, MA, United States
| | - Dawn DeMeo
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, 181 Longwood Avenue, Boston, 02115, MA, United States
- Department of Medicine, Harvard Medical School, 25 Shattuck St, Boston, 02115, MA, United States
| | - John Quackenbush
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, 02115, MA, United States
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, 181 Longwood Avenue, Boston, 02115, MA, United States
| |
Collapse
|
8
|
Kalvapudi S, Pachimatla AG, Seager RJ, Conroy J, Pabla S, Mukherjee S. Cancer/testis antigen expression and co-expression patterns in gastroesophageal adenocarcinoma. Med Oncol 2024; 41:227. [PMID: 39143271 PMCID: PMC11324668 DOI: 10.1007/s12032-024-02475-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/11/2024] [Indexed: 08/16/2024]
Abstract
Gastroesophageal adenocarcinoma (GEAC) poses a significant challenge due to its poor prognosis and limited treatment options. Recently, Cancer/testis antigens (CTAs) have emerged as potential therapy targets due to their high expression in tumor cells and their immunogenic nature. We aimed to explore the expression and co-expression of CTAs in GEAC. We analyzed 63 GEAC patients initially and validated our findings in 329 patients from The Cancer Genome Atlas (TCGA) database. CTA expression was measured after RNA sequencing, while clinical information, including survival outcomes and treatment details, was collected from an institutional database. Co-expression patterns among CTAs were determined using Spearman correlation analysis. The majority of the study cohort were male (87%), Caucasian (94%), and had stage IV disease (64%). CTAs were highly prevalent, ranging from 58 to 19%. The MAGE gene family showed the highest expression, consistent across both cohorts. The correlation matrix revealed a distinct cluster of significantly co-expressed genes, including MAGEA3, NY-ESO-1, and others (0.27 ≤ r ≤ 0.73). Survival analysis revealed that individual CTAs were associated with poorer survival outcomes in patients not receiving immunotherapy while showing potential for improved survival in those undergoing immunotherapy, although these findings lacked robust reliability. Our study provides a comprehensive characterization of CTA expression and co-expression in GEAC. The strong correlation among CTAs like MAGE, NY-ESO-1, and GAGE suggests a potential for therapies targeting multiple CTAs simultaneously. Further research, including prospective trials, is warranted to assess the prognostic value of CTAs and their suitability as therapeutic targets.
Collapse
Affiliation(s)
- Sukumar Kalvapudi
- Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14206, USA
| | - Akhil Goud Pachimatla
- Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14206, USA
| | - R J Seager
- Labcorp Oncology, 700 Ellicott Street, Buffalo, NY, 14203, USA
| | - Jeffrey Conroy
- Labcorp Oncology, 700 Ellicott Street, Buffalo, NY, 14203, USA
| | - Sarabjot Pabla
- Labcorp Oncology, 700 Ellicott Street, Buffalo, NY, 14203, USA
| | - Sarbajit Mukherjee
- Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14206, USA.
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA.
| |
Collapse
|
9
|
Olotu O, Koskenniemi AR, Ma L, Paramonov V, Laasanen S, Louramo E, Bourgery M, Lehtiniemi T, Laasanen S, Rivero-Müller A, Löyttyniemi E, Sahlgren C, Westermarck J, Ventelä S, Visakorpi T, Poutanen M, Vainio P, Mäkelä JA, Kotaja N. Germline-specific RNA helicase DDX4 forms cytoplasmic granules in cancer cells and promotes tumor growth. Cell Rep 2024; 43:114430. [PMID: 38963760 DOI: 10.1016/j.celrep.2024.114430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 05/15/2024] [Accepted: 06/18/2024] [Indexed: 07/06/2024] Open
Abstract
Cancer cells undergo major epigenetic alterations and transcriptomic changes, including ectopic expression of tissue- and cell-type-specific genes. Here, we show that the germline-specific RNA helicase DDX4 forms germ-granule-like cytoplasmic ribonucleoprotein granules in various human tumors, but not in cultured cancer cells. These cancerous DDX4 complexes contain RNA-binding proteins and splicing regulators, including many known germ granule components. The deletion of DDX4 in cancer cells induces transcriptomic changes and affects the alternative splicing landscape of a number of genes involved in cancer growth and invasiveness, leading to compromised capability of DDX4-null cancer cells to form xenograft tumors in immunocompromised mice. Importantly, the occurrence of DDX4 granules is associated with poor survival in patients with head and neck squamous cell carcinoma and higher histological grade of prostate cancer. Taken together, these results show that the germ-granule-resembling cancerous DDX4 granules control gene expression and promote malignant and invasive properties of cancer cells.
Collapse
Affiliation(s)
- Opeyemi Olotu
- Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, 20520 Turku, Finland
| | - Anna-Riina Koskenniemi
- Department of Pathology, Laboratory Division, Turku University Hospital and University of Turku, 20520 Turku, Finland
| | - Lin Ma
- Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, 20520 Turku, Finland
| | - Valeriy Paramonov
- Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, 20520 Turku, Finland; Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, 20500 Turku, Finland; Turku Bioscience, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Sini Laasanen
- Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, 20520 Turku, Finland
| | - Elina Louramo
- Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, 20520 Turku, Finland
| | - Matthieu Bourgery
- Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, 20520 Turku, Finland; Centre for Population Health Research, Turku University Hospital and University of Turku, 20520 Turku, Finland
| | - Tiina Lehtiniemi
- Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, 20520 Turku, Finland
| | - Samuli Laasanen
- Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, 20520 Turku, Finland
| | - Adolfo Rivero-Müller
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Eliisa Löyttyniemi
- Department of Biostatistics, University of Turku and Turku University Hospital, 20520 Turku, Finland
| | - Cecilia Sahlgren
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, 20500 Turku, Finland; Turku Bioscience, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Jukka Westermarck
- Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, 20520 Turku, Finland; Turku Bioscience, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Sami Ventelä
- Turku Bioscience, University of Turku and Åbo Akademi University, 20520 Turku, Finland; Department for Otorhinolaryngology, Head, and Neck Surgery, University of Turku and Turku University Hospital, 20520 Turku, Finland
| | - Tapio Visakorpi
- Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, 33520 Tampere, Finland; Fimlab Laboratories, Tampere University Hospital, 33520 Tampere, Finland
| | - Matti Poutanen
- Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, 20520 Turku, Finland; Turku Center for Disease Modeling, University of Turku, 20520 Turku, Finland; FICAN West Cancer Center, University of Turku, Turku University Hospital, 20500 Turku, Finland
| | - Paula Vainio
- Department of Pathology, Laboratory Division, Turku University Hospital and University of Turku, 20520 Turku, Finland
| | - Juho-Antti Mäkelä
- Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, 20520 Turku, Finland
| | - Noora Kotaja
- Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, 20520 Turku, Finland.
| |
Collapse
|
10
|
Ma Y, Yang QQ, Gu DM, Yuan X, Wang YH, Guo LC. Canadine inhibits epithelial mesenchymal transformation of HPV-negative cervical cancer. Tissue Barriers 2024; 12:2256641. [PMID: 37819188 PMCID: PMC11262239 DOI: 10.1080/21688370.2023.2256641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/04/2023] [Indexed: 10/13/2023] Open
Abstract
Although the majority of the population will be protected due to the advent and widespread use of the HPV vaccine, the treatment of cervical cancer for all causes, including HPV-negative cervical cancer, is still worthy of further research. The focal point of this study was Canadine's inhibition of epithelial-mesenchymal transformation (EMT) in cervical cancer. Immunoblotting, wound healing and tumor invasion experiments showed that low concentration of Canadine could inhibit the EMT process, proliferation and migration of HT-3 cells (HPV-negative cell line). Combined with GEO database, it was found that the expression levels of several genes highly expressed in cervical tumor tissues could be inhibited by Canadine, especially MAGEA3. Further experiments confirmed that the inhibition of Canadine on MAGEA3 protein increased with time. The small interference and overexpression plasmid of MAGEA3 were designed and verified. In HT-3 cells, when MAGEA3 levels were directly decreased, mesenchymal phenotypic markers were decreased and epithelial phenotypic markers were increased. The opposite result was obtained by overexpression of MAGEA3. In addition, the inhibition of EMT due to the reduction of endogenous MAGEA3 by Canadine was also offset by the overexpression of exogenous MAGEA3. The study concludes that Canadine inhibits EMT of cervical cancer by inhibiting MAGEA3.
Collapse
Affiliation(s)
- Yan Ma
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P.R. China
| | - Qian-Qian Yang
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P.R. China
| | - Dong-Mei Gu
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P.R. China
| | - Xiao Yuan
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P.R. China
| | - Yu-Hong Wang
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P.R. China
| | - Ling-Chuan Guo
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P.R. China
| |
Collapse
|
11
|
Lai TJ, Sun L, Li K, Prins TJ, Treger J, Li T, Sun MZ, Nathanson DA, Liau LM, Lai A, Prins RM, Everson RG. Epigenetic Induction of Cancer-Testis Antigens and Endogenous Retroviruses at Single-Cell Level Enhances Immune Recognition and Response in Glioma. CANCER RESEARCH COMMUNICATIONS 2024; 4:1834-1849. [PMID: 38856710 PMCID: PMC11275559 DOI: 10.1158/2767-9764.crc-23-0566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/22/2024] [Accepted: 06/05/2024] [Indexed: 06/11/2024]
Abstract
Glioblastoma (GBM) is the most common malignant primary brain tumor and remains incurable. Previous work has shown that systemic administration of Decitabine (DAC) induces sufficient expression of cancer-testis antigens (CTA) in GBM for targeting by adoptive T-cell therapy in vivo. However, the mechanisms by which DAC enhances immunogenicity in GBM remain to be elucidated. Using New York esophageal squamous cell carcinoma 1 (NY-ESO-1) as a representative inducible CTA, we demonstrate in patient tissue, immortalized glioma cells, and primary patient-derived gliomaspheres that basal CTA expression is restricted by promoter hypermethylation in gliomas. DAC treatment of glioma cells specifically inhibits DNA methylation silencing to render NY-ESO-1 and other CTA into inducible tumor antigens at single-cell resolution. Functionally, NY-ESO-1 T-cell receptor-engineered effector cell targeting of DAC-induced antigen in primary glioma cells promotes specific and polyfunctional T-cell cytokine profiles. In addition to induction of CTA, DAC concomitantly reactivates tumor-intrinsic human endogenous retroviruses, interferon response signatures, and MHC-I. Overall, we demonstrate that DAC induces targetable tumor antigen and enhances T-cell functionality against GBM, ultimately contributing to the improvement of targeted immune therapies in glioma. SIGNIFICANCE This study dissects the tumor-intrinsic epigenetic and transcriptional mechanisms underlying enhanced T-cell functionality targeting decitabine-induced cancer-testis antigens in glioma. Our findings demonstrate concomitant induction of tumor antigens, reactivation of human endogenous retroviruses, and stimulation of interferon signaling as a mechanistic rationale to epigenetically prime human gliomas to immunotherapeutic targeting.
Collapse
Affiliation(s)
- Thomas J. Lai
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California.
| | - Lu Sun
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California.
| | - Kevin Li
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California.
| | - Terry J. Prins
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California.
| | - Janet Treger
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California.
| | - Tie Li
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California.
| | - Matthew Z. Sun
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California.
| | - David A. Nathanson
- Department of Medical and Molecular Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California.
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California.
| | - Linda M. Liau
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California.
- Department of Medical and Molecular Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California.
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California.
| | - Albert Lai
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California.
- UCLA Neuro-Oncology Program, University of California, Los Angeles, Los Angeles, California.
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California.
| | - Robert M. Prins
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California.
- Department of Medical and Molecular Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California.
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California.
- Parker Institute for Cancer Immunotherapy, San Francisco, California.
| | - Richard G. Everson
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California.
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California.
| |
Collapse
|
12
|
Kalvapudi S, Pachimatla AG, Seager RJ, Conroy J, Pabla S, Mukherjee S. Cancer/testis antigen expression and co-expression patterns in Gastroesophageal Adenocarcinoma. RESEARCH SQUARE 2024:rs.3.rs-4499622. [PMID: 38947068 PMCID: PMC11213187 DOI: 10.21203/rs.3.rs-4499622/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Gastroesophageal adenocarcinoma (GEAC) poses a significant challenge due to its poor prognosis and limited treatment options. Recently, Cancer/testis antigens (CTAs) have emerged as potential therapy targets due to their high expression in tumor cells and their immunogenic nature. We aimed to explore the expression and co-expression of CTAs in GEAC. We analyzed 63 GEAC patients initially and validated our findings in 329 patients from The Cancer Genome Atlas (TCGA) database. CTA expression was measured after RNA sequencing, while clinical information, including survival outcomes and treatment details, was collected from an institutional database. Co-expression patterns among CTAs were determined using Pearson correlation analysis. The majority of the study cohort were male (87%), Caucasian (94%), and had stage IV disease (64%). CTAs were highly prevalent, ranging from 58-19%. The MAGE gene family showed the highest expression, consistent across both cohorts. The correlation matrix revealed a distinct cluster of significantly co-expressed genes, including MAGEA3, NY-ESO-1, and others (0.27 ≤ r ≤ 0.73). Survival analysis revealed that individual CTAs were associated with poorer survival outcomes in patients not receiving immunotherapy while showing potential for improved survival in those undergoing immunotherapy, although these findings lacked robust reliability. Our study provides a comprehensive characterization of CTA expression and co-expression in GEAC. The strong correlation among CTAs like MAGE, NY-ESO-1, and GAGE suggests a potential for therapies targeting multiple CTAs simultaneously. Further research, including prospective trials, is warranted to assess the prognostic value of CTAs and their suitability as therapeutic targets.
Collapse
|
13
|
Yao P, Gao M, Hu W, Wang J, Wang Y, Wang Q, Ji J. Proteogenomic analysis identifies neoantigens and bacterial peptides as immunotherapy targets in colorectal cancer. Pharmacol Res 2024; 204:107209. [PMID: 38740147 DOI: 10.1016/j.phrs.2024.107209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 05/08/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
Considerable progress has recently been made in cancer immunotherapy, including immune checkpoint blockade, cancer vaccine, and adoptive T cell methods. The lack of effective targets is a major cause of the low immunotherapy response rate in colorectal cancer (CRC). Here, we used a proteogenomic strategy comprising immunopeptidomics, whole exome sequencing, and 16 S ribosomal DNA sequencing analyses of 8 patients with CRC to identify neoantigens and bacterial peptides that can serve as antitumor targets. This study directly identified several personalized neoantigens and bacterial immunopeptides. Immunoassays showed that all neoantigens and 5 of 8 bacterial immunopeptides could be recognized by autologous T cells. Additionally, T cell receptor (TCR) αβ sequencing revealed the TCR repertoire of epitope-reactive CD8+ T cells. Functional studies showed that T cell receptor-T (TCR-T) could be activated by epitope pulsed lymphoblastoid cells. Overall, this study comprehensively profiled the CRC immunopeptidome, revealing several neoantigens and bacterial peptides with potential to serve as immunotherapy targets in CRC.
Collapse
Affiliation(s)
- Pengju Yao
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Mingjie Gao
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Weiyi Hu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Jiahao Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Institute of Molecular Medicine, Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
| | - Yuhao Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Qingsong Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Jianguo Ji
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China.
| |
Collapse
|
14
|
Meng M, Guo Y, Chen Y, Li X, Zhang B, Xie Z, Liu J, Zhao Z, Liu Y, Zhang T, Qiao Y, Shang B, Zhou Q. Cancer/testis-45A1 promotes cervical cancer cell tumorigenesis and drug resistance by activating oncogenic SRC and downstream signaling pathways. Cell Oncol (Dordr) 2024; 47:657-676. [PMID: 37924456 PMCID: PMC11090944 DOI: 10.1007/s13402-023-00891-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2023] [Indexed: 11/06/2023] Open
Abstract
BACKGROUND Cancer/testis antigen-45A1 (CT45A1) is overexpressed in various types of cancer but is not expressed in healthy women. The role of CT45A1 in cervical cancer has not yet been described in the literature. PURPOSE The aim of this research was to study the role of CT45A1 in cervical cancer progression and drug resistance, elucidate the mechanisms underlying CT45A1-mediated tumorigenesis and investigate CT45A1 as a biomarker for cervical cancer diagnosis, prognostic prediction, and targeted therapy. METHODS The CT45A1 levels in the tumors from cervical cancer patients were measured using immunohistochemical staining. The role and mechanisms underlying CT45A1-mediated cervical cancer cell tumor growth, invasion, and drug resistance were studied using xenograft mice, cervical cancer cells, immunohistochemistry, RNA-seq, real-time qPCR, Chromatin immunoprecipitation and Western blotting. RESULTS CT45A1 levels were notably high in the tumor tissues of human cervical cancer patients compared to the paracancerous tissues (p < 0.001). Overexpression of CT45A1 was closely associated with poor prognosis in cervical cancer patients. CT45A1 promoted cervical cancer cell tumor growth, invasion, neovascularization, and drug resistance. Mechanistically, CT45A1 promoted the expression of 128 pro-tumorigenic genes and concurrently activated key signaling pathways, including the oncogenic SRC, ERK, CREB, and YAP/TAZ signaling pathways. Furthermore, CT45A1-mediated tumorigenesis and drug resistance were markedly inhibited by the small molecule lycorine. CONCLUSION CT45A1 promotes cervical cancer cell tumorigenesis, neovascularization, and drug resistance by activating oncogenic SRC and downstream tumorigenic signaling pathways. These findings provide new insight into the pathogenesis of cervical cancer and offer a new platform for the development of novel therapeutics against cervical cancer.
Collapse
Affiliation(s)
- Mei Meng
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, People's Republic of China
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu, 215123, People's Republic of China
- National Clinical Research Center for Hematologic Diseases, The Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215123, People's Republic of China
- 2011 Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, 215123, People's Republic of China
- The Ninth Affiliated Hospital, Soochow University, Suzhou, Jiangsu, 215123, People's Republic of China
| | - Yan Guo
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, People's Republic of China.
| | - Yu Chen
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, People's Republic of China
| | - Xu Li
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, People's Republic of China
| | - Bin Zhang
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Zhijia Xie
- Department of Obstetrics and Gynecology, The Ninth Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215123, People's Republic of China
| | - Juntao Liu
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, People's Republic of China
| | - Zhe Zhao
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, Jiangsu, China
| | - Yuxi Liu
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, People's Republic of China
| | - Tong Zhang
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, People's Republic of China
| | - Yingnan Qiao
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, People's Republic of China
| | - Bingxue Shang
- Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- Suzhou Institute of Systems Medicine, Suzhou, China.
| | - Quansheng Zhou
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, People's Republic of China.
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu, 215123, People's Republic of China.
- National Clinical Research Center for Hematologic Diseases, The Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215123, People's Republic of China.
- 2011 Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, 215123, People's Republic of China.
- The Ninth Affiliated Hospital, Soochow University, Suzhou, Jiangsu, 215123, People's Republic of China.
| |
Collapse
|
15
|
Gan Y, Kang Y, Zhong R, You J, Chen J, Li L, Chen J, Chen L. Cancer testis antigen MAGEA3 in serum and serum-derived exosomes serves as a promising biomarker in lung adenocarcinoma. Sci Rep 2024; 14:7573. [PMID: 38555374 PMCID: PMC10981702 DOI: 10.1038/s41598-024-58003-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/25/2024] [Indexed: 04/02/2024] Open
Abstract
Cancer testis antigen (CTA) Melanoma Antigen Gene A3 (MAGEA3) were overexpressed in multiple tumor types, but the expression pattern of MAGEA3 in the serum of lung adenocarcinoma (LUAD) remains unclear. Clinically derived serum and serum exosome samples were used to assess the mRNA expression of MAGEA3 and MAGEA4 by qRT-PCR, and serum MAGEA3 and MAGEA4 protein expression were evaluated by ELISA in total 133 healthy volunteers' and 289 LUAD patients' serum samples. An analysis of the relationship of the mRNA and protein expression of MAGEA3 and MAGEA4 with clinicopathologic parameters was performed and the diagnostic value of MAGEA3 and MAGEA4 was plotted on an ROC curve. In addition, the correlation of MAGEA3 mRNA with infiltrating immune cells was investigated through TIMER, the CIBERSORT algorithm and the TISIDB database. Expression of serum and serum exosome MAGEA3 and MAGEA4 mRNA were significantly higher in LUAD patients than in healthy donors. MAGEA3 mRNA associated with tumor diameter, TMN stage, and NSE in LUAD serum samples, and MAGEA3 mRNA correlated with N stage in serum-derived exosomes, possessing areas under the curve (AUC) of 0.721 and 0.832, respectively. Besides, serum MAGEA3 protein levels were elevated in LUAD patients, and were closely related to stage and NSE levels, possessing AUC of 0.781. Further analysis signified that the expression of MAGEA3 mRNA was positive correlation with neutrophil, macrophages M2, dendritic cells resting, and eosinophilic, but negatively correlated with B cells, plasma cells, CD8 + T cells, CD4 + T cells, Th17 cells, macrophages and dendritic cells. Collectively, our results suggested that the MAGEA3 expression in mRNA and protein were upregulated in LUAD, and MAGEA3 could be used as a diagnostic biomarker and immunotherapy target for LUAD patients.
Collapse
Affiliation(s)
- Yuhan Gan
- Department of Clinical Laboratory, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Yanli Kang
- Department of Clinical Laboratory, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Ruifang Zhong
- Department of Clinical Laboratory, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Jianbin You
- Department of Clinical Laboratory, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Jiahao Chen
- Department of Clinical Laboratory, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Ling Li
- Department of Clinical Laboratory, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Jinhua Chen
- Department of Clinical Laboratory, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China.
| | - Liangyuan Chen
- Department of Clinical Laboratory, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China.
| |
Collapse
|
16
|
Dehghankhold M, Sadat Abolmaali S, Nezafat N, Mohammad Tamaddon A. Peptide nanovaccine in melanoma immunotherapy. Int Immunopharmacol 2024; 129:111543. [PMID: 38301413 DOI: 10.1016/j.intimp.2024.111543] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/03/2024] [Accepted: 01/11/2024] [Indexed: 02/03/2024]
Abstract
Melanoma is an especially fatal neoplasm resistant to traditional treatment. The advancement of novel therapeutical approaches has gained attention in recent years by shedding light on the molecular mechanisms of melanoma tumorigenesis and their powerful interplay with the immune system. The presence of many mutations in melanoma cells results in the production of a varied array of antigens. These antigens can be recognized by the immune system, thereby enabling it to distinguish between tumors and healthy cells. In the context of peptide cancer vaccines, generally, they are designed based on tumor antigens that stimulate immunity through antigen-presenting cells (APCs). As naked peptides often have low potential in eliciting a desirable immune reaction, immunization with such compounds usually necessitates adjuvants and nanocarriers. Actually, nanoparticles (NPs) can provide a robust immune response to peptide-based melanoma vaccines. They improve the directing of peptide vaccines to APCs and induce the secretion of cytokines to get maximum immune response. This review provides an overview of the current knowledge of the utilization of nanotechnology in peptide vaccines emphasizing melanoma, as well as highlights the significance of physicochemical properties in determining the fate of these nanovaccines in vivo, including their drainage to lymph nodes, cellular uptake, and influence on immune responses.
Collapse
Affiliation(s)
- Mahvash Dehghankhold
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Samira Sadat Abolmaali
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Navid Nezafat
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Computational vaccine and Drug Design Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ali Mohammad Tamaddon
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
17
|
Seager RJ, Senosain MF, Van Roey E, Gao S, DePietro P, Nesline MK, Dash DP, Zhang S, Ko H, Hastings SB, Strickland KC, Previs RA, Jensen TJ, Eisenberg M, Caveney BJ, Severson EA, Ramkissoon S, Conroy JM, Pabla S. Cancer testis antigen burden (CTAB): a novel biomarker of tumor-associated antigens in lung cancer. J Transl Med 2024; 22:141. [PMID: 38326843 PMCID: PMC10851610 DOI: 10.1186/s12967-024-04918-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/21/2024] [Indexed: 02/09/2024] Open
Abstract
BACKGROUND Cancer-testis antigens (CTAs) are tumor antigens that are normally expressed in the testes but are aberrantly expressed in several cancers. CTA overexpression drives the metastasis and progression of lung cancer, and is associated with poor prognosis. To improve lung cancer diagnosis, prognostic prediction, and drug discovery, robust CTA identification and quantitation is needed. In this study, we examined and quantified the co-expression of CTAs in lung cancer to derive cancer testis antigen burden (CTAB), a novel biomarker of immunotherapy response. METHODS Formalin fixed paraffin embedded (FFPE) tumor samples in discovery cohort (n = 5250) and immunotherapy and combination therapy treated non-small cell lung cancer (NSCLC) retrospective (n = 250) cohorts were tested by comprehensive genomic and immune profiling (CGIP), including tumor mutational burden (TMB) and the mRNA expression of 17 CTAs. PD-L1 expression was evaluated by IHC. CTA expression was summed to derive the CTAB score. The median CTAB score for the discovery cohort of 170 was applied to the retrospective cohort as cutoff for CTAB "high" and "low". Biomarker and gene expression correlation was measured by Spearman correlation. Kaplan-Meier survival analyses were used to detect overall survival (OS) differences, and objective response rate (ORR) based on RECIST criteria was compared using Fisher's exact test. RESULTS The CTAs were highly co-expressed (p < 0.05) in the discovery cohort. There was no correlation between CTAB and PD-L1 expression (R = 0.011, p = 0.45) but some correlation with TMB (R = 0.11, p = 9.2 × 10-14). Kaplan-Meier survival analysis of the immunotherapy-treated NSCLC cohort revealed better OS for the pembrolizumab monotherapy treated patients with high CTAB (p = 0.027). The combination group demonstrated improved OS compared to pembrolizumab monotherapy group (p = 0.04). The pembrolizumab monotherapy patients with high CTAB had a greater ORR than the combination therapy group (p = 0.02). CONCLUSIONS CTA co-expression can be reliably measured using CGIP in solid tumors. As a biomarker, CTAB appears to be independent from PD-L1 expression, suggesting that CTAB represents aspects of tumor immunogenicity not measured by current standard of care testing. Improved OS and ORR for high CTAB NSCLC patients treated with pembrolizumab monotherapy suggests a unique underlying aspect of immune response to these tumor antigens that needs further investigation.
Collapse
Affiliation(s)
- R J Seager
- OmniSeq (Labcorp Oncology), Buffalo, NY, USA
| | | | | | - Shuang Gao
- OmniSeq (Labcorp Oncology), Buffalo, NY, USA
| | | | | | | | | | - Heidi Ko
- Labcorp Oncology, Durham, NC, USA
| | | | - Kyle C Strickland
- Labcorp Oncology, Durham, NC, USA
- Duke University Medical Center, Duke Cancer Institute, Durham, NC, USA
| | - Rebecca A Previs
- Labcorp Oncology, Durham, NC, USA
- Duke University Medical Center, Duke Cancer Institute, Durham, NC, USA
| | | | | | | | | | - Shakti Ramkissoon
- Labcorp Oncology, Durham, NC, USA
- Wake Forest Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | | | | |
Collapse
|
18
|
Verma S, Swain D, Kushwaha PP, Brahmbhatt S, Gupta K, Sundi D, Gupta S. Melanoma Antigen Family A (MAGE A) as Promising Biomarkers and Therapeutic Targets in Bladder Cancer. Cancers (Basel) 2024; 16:246. [PMID: 38254738 PMCID: PMC10813664 DOI: 10.3390/cancers16020246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/19/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
The Melanoma Antigen Gene (MAGE) is a large family of highly conserved proteins that share a common MAGE homology domain. Interestingly, many MAGE family members exhibit restricted expression in reproductive tissues but are abnormally expressed in various human malignancies, including bladder cancer, which is a common urinary malignancy associated with high morbidity and mortality rates. The recent literature suggests a more prominent role for MAGEA family members in driving bladder tumorigenesis. This review highlights the role of MAGEA proteins, the potential for them to serve as diagnostic or prognostic biomarker(s), and as therapeutic targets for bladder cancer.
Collapse
Affiliation(s)
- Shiv Verma
- Department of Urology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (S.V.); (P.P.K.); (K.G.)
- The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Diya Swain
- College of Arts and Sciences, Case Western Reserve University, Cleveland, OH 44106, USA; (D.S.); (S.B.)
| | - Prem Prakash Kushwaha
- Department of Urology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (S.V.); (P.P.K.); (K.G.)
- The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Smit Brahmbhatt
- College of Arts and Sciences, Case Western Reserve University, Cleveland, OH 44106, USA; (D.S.); (S.B.)
| | - Karishma Gupta
- Department of Urology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (S.V.); (P.P.K.); (K.G.)
- The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Debasish Sundi
- Department of Urology, Division of Urologic Oncology, The Ohio State University Comprehensive Cancer Center, James Cancer Hospital & Wexner Medical Center, Columbus, OH 43210, USA;
| | - Sanjay Gupta
- Department of Urology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (S.V.); (P.P.K.); (K.G.)
- The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Nutrition, Case Western Reserve University, Cleveland, OH 44106, USA
- Division of General Medical Sciences, Case Comprehensive Cancer Center, Cleveland, OH 44106, USA
| |
Collapse
|
19
|
Wang ZW, Yu QY, Xu MJ, Zhou CY, Li JP, Liao XH. MAGE-A11 is a potential prognostic biomarker and immunotherapeutic target in gastric cancer. Aging (Albany NY) 2024; 16:285-298. [PMID: 38180746 PMCID: PMC10817374 DOI: 10.18632/aging.205368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/15/2023] [Indexed: 01/06/2024]
Abstract
Gastric cancer poses a serious threat to human health and affects the digestive system. The lack of early symptoms and a dearth of effective identification methods make diagnosis difficult, with many patients only receiving a definitive diagnosis at a malignant stage, causing them to miss out on optimal therapeutic interventions. Melanoma-associated antigen-A (MAGE-A) is part of the MAGE family and falls under the cancer/testis antigen (CTA) category. The MAGE-A subfamily plays a significant role in tumorigenesis, proliferation and migration. The expression, prognosis and function of MAGE-A family members in GC, however, remain unclear. Our research and screening have shown that MAGE-A11 was highly expressed in GC tissues and was associated with poor patient prognosis. Additionally, MAGE-A11 functioned as an independent prognostic factor in GC through Cox regression analysis, and its expression showed significant correlation with both tumour immune cell infiltration and responsiveness to immunotherapy. Our data further indicated that MAGE-A11 regulated GC cell proliferation and migration. Subsequently, our findings propose that MAGE-A11 may operate as a prognostic factor, having potential as an immunotherapy target for GC.
Collapse
Affiliation(s)
- Zhi-Wen Wang
- Institute of Biology and Medicine, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430081, Hubei, P.R. China
- Key Laboratory of Chronic Noncommunicable Diseases, Yueyang Vocational Technical College, Yueyang 414006, Hunan, P.R. China
| | - Qi-Ying Yu
- Central Laboratory, Tumor Hospital Affiliated to Nantong University, Nantong 226361, Jiangsu, P.R. China
| | - Meng-Jiao Xu
- Zhaoyuan Linglong Central Health Center, Zhaoyuan 265400, Shandong, P.R. China
| | - Chuan-Yi Zhou
- Yueyang People’s Hospital, Yueyang Hospital Affiliated to Hunan Normal University Neoplasm Ward 1, Yueyang 414000, Hunan, P.R. China
| | - Jia-Peng Li
- Institute of Biology and Medicine, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430081, Hubei, P.R. China
- College of Science, Wuhan University of Science and Technology, Wuhan 430081, Hubei, P.R. China
| | - Xing-Hua Liao
- Institute of Biology and Medicine, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430081, Hubei, P.R. China
| |
Collapse
|
20
|
Zeng X, Nong WX, Zou XQ, Li F, Ge YY, Zhang QM, Luo B, Huang W, Zou JX, Fan R, Xie XX. Prediction and identification of HLA-A*0201-restricted epitopes from cancer testis antigen CT23. Hum Vaccin Immunother 2023; 19:2293299. [PMID: 38100550 PMCID: PMC10730135 DOI: 10.1080/21645515.2023.2293299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023] Open
Abstract
Cancer-testis antigen CT23 is a class of tumor-associated antigens (TAA) characterized by restricted expression in male germ cells and a variety of tumor tissues. Numerous studies have shown that CT23 is closely related to tumor cell viability, proliferation, metastasis and invasion. CT23 is immunogenic and can cause specific immune response in tumor patients. Therefore, it is considered to be one of the best target antigens for designing therapeutic tumor vaccines and T-cell-mediated tumor immunotherapy. In this study, we initially obtained seven HLA-A*0201-restricted CT23 epitope candidate peptides through the T cell epitope prediction program. Subsequently, a T2 cell binding assay revealed the potential binding of all candidate peptides with HLA-A2 molecules. Notably, peptide P7 (ALLVLCYSI) exhibited the highest affinity, as evidenced by a fluorescence index (FI) of 2.19. Dendritic cells (DCs) loaded with CT23 candidate peptide can stimulate CD8+T cell activation and proliferation, and compared with other candidate peptides, candidate peptide P7 is superior. The cytotoxic T lymphocytes (CTLs) stimulated by the peptide P7 had killing effect on tumor cells (HLA-A*0201+, CT23+), but no killing effect on tumor cells (HLA-A*0201-, CT23+). The CTLs induced by the peptide P7 also had a specific killing effect on T2 cells bearing the peptide P7. In summary, our findings suggest that the CT23 peptide P7 (ALLVLCYSI) can induce immune responses and holds potential for tumor-specific CTL therapy.
Collapse
Affiliation(s)
- Xia Zeng
- Department of Immunology, School of Basic Medicine Science, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P. R. China
| | - Wei-Xia Nong
- Department of Histology and Embryology, School of Basic Medicine Science, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P. R. China
| | - Xiao-Qiong Zou
- Department of Histology and Embryology, School of Basic Medicine Science, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P. R. China
| | - Feng Li
- Department of Histology and Embryology, School of Basic Medicine Science, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P. R. China
| | - Ying-Ying Ge
- Department of Histology and Embryology, School of Basic Medicine Science, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P. R. China
| | - Qing-Mei Zhang
- Department of Histology and Embryology, School of Basic Medicine Science, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P. R. China
- Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of Basic Research on Regional Diseases (Guangxi Medical University), Nanning, P. R. China
| | - Bin Luo
- Department of Histology and Embryology, School of Basic Medicine Science, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P. R. China
- Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of Basic Research on Regional Diseases (Guangxi Medical University), Nanning, P. R. China
| | - Wei Huang
- Department of Gynecology, First Affiliated Hospital, Guangxi University of Traditional Chinese Medicine, Nanning, Guangxi Zhuang Autonomous Region, P. R. China
| | - Jian-Xia Zou
- Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P. R. China
| | - Rong Fan
- Department of Histology and Embryology, School of Pre-Clinical Medicine, Guangxi University of Traditional Chinese Medicine, Nanning, Guangxi Zhuang Autonomous Region, P. R. China
| | - Xiao-Xun Xie
- Department of Histology and Embryology, School of Basic Medicine Science, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P. R. China
- Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of Basic Research on Regional Diseases (Guangxi Medical University), Nanning, P. R. China
- Ministry of Education, Key Laboratory of Early Prevention and Treatment of Regional High Frequency Tumor (Guangxi Medical University), Nanning, P. R. China
| |
Collapse
|
21
|
Desai N, Katare P, Makwana V, Salave S, Vora LK, Giri J. Tumor-derived systems as novel biomedical tools-turning the enemy into an ally. Biomater Res 2023; 27:113. [PMID: 37946275 PMCID: PMC10633998 DOI: 10.1186/s40824-023-00445-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/11/2023] [Indexed: 11/12/2023] Open
Abstract
Cancer is a complex illness that presents significant challenges in its understanding and treatment. The classic definition, "a group of diseases characterized by the uncontrolled growth and spread of abnormal cells in the body," fails to convey the intricate interaction between the many entities involved in cancer. Recent advancements in the field of cancer research have shed light on the role played by individual cancer cells and the tumor microenvironment as a whole in tumor development and progression. This breakthrough enables the utilization of the tumor and its components as biological tools, opening new possibilities. This article delves deeply into the concept of "tumor-derived systems", an umbrella term for tools sourced from the tumor that aid in combatting it. It includes cancer cell membrane-coated nanoparticles (for tumor theranostics), extracellular vesicles (for tumor diagnosis/therapy), tumor cell lysates (for cancer vaccine development), and engineered cancer cells/organoids (for cancer research). This review seeks to offer a complete overview of the tumor-derived materials that are utilized in cancer research, as well as their current stages of development and implementation. It is aimed primarily at researchers working at the interface of cancer biology and biomedical engineering, and it provides vital insights into this fast-growing topic.
Collapse
Affiliation(s)
- Nimeet Desai
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | - Pratik Katare
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | - Vaishali Makwana
- Center for Interdisciplinary Programs, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | - Sagar Salave
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), Gujarat, India
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK.
| | - Jyotsnendu Giri
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India.
| |
Collapse
|
22
|
Grard M, Idjellidaine M, Arbabian A, Chatelain C, Berland L, Combredet C, Dutoit S, Deshayes S, Dehame V, Labarrière N, Fradin D, Boisgerault N, Blanquart C, Tangy F, Fonteneau JF. Oncolytic attenuated measles virus encoding NY-ESO-1 induces HLA I and II presentation of this tumor antigen by melanoma and dendritic cells. Cancer Immunol Immunother 2023; 72:3309-3322. [PMID: 37466668 PMCID: PMC10992919 DOI: 10.1007/s00262-023-03486-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 06/26/2023] [Indexed: 07/20/2023]
Abstract
Antitumor virotherapy stimulates the antitumor immune response during tumor cell lysis induced by oncolytic viruses (OVs). OV can be modified to express additional transgenes that enhance their therapeutic potential. In this study, we armed the spontaneously oncolytic Schwarz strain of measles viruses (MVs) with the gene encoding the cancer/testis antigen NY-ESO-1 to obtain MVny. We compared MV and MVny oncolytic activity and ability to induce NY-ESO-1 expression in six human melanoma cell lines. After MVny infection, we measured the capacity of melanoma cells to present NY-ESO-1 peptides to CD4 + and CD8 + T cell clones specific for this antigen. We assessed the ability of MVny to induce NY-ESO-1 expression and presentation in monocyte-derived dendritic cells (DCs). Our results show that MVny and MV oncolytic activity are similar with a faster cell lysis induced by MVny. We also observed that melanoma cell lines and DC expressed the NY-ESO-1 protein after MVny infection. In addition, MVny-infected melanoma cells and DCs were able to stimulate NY-ESO-1-specific CD4 + and CD8 + T cells. Finally, MVny was able to induce DC maturation. Altogether, these results show that MVny could be an interesting candidate to stimulate NY-ESO-1-specific T cells in melanoma patients with NY-ESO-1-expressing tumor cells.
Collapse
Affiliation(s)
- Marion Grard
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, F-44000, Nantes, France
- Labex IGO, Immunology Graft Oncology, Nantes, France
| | - Mohamed Idjellidaine
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, F-44000, Nantes, France
- Labex IGO, Immunology Graft Oncology, Nantes, France
| | - Atousa Arbabian
- Vaccines Innovation Laboratory, Institut Pasteur, Université de Paris Cité, 75015, Paris, France
| | - Camille Chatelain
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, F-44000, Nantes, France
- Labex IGO, Immunology Graft Oncology, Nantes, France
| | - Laurine Berland
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, F-44000, Nantes, France
- Labex IGO, Immunology Graft Oncology, Nantes, France
| | - Chantal Combredet
- Vaccines Innovation Laboratory, Institut Pasteur, Université de Paris Cité, 75015, Paris, France
| | - Soizic Dutoit
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, F-44000, Nantes, France
- Labex IGO, Immunology Graft Oncology, Nantes, France
| | - Sophie Deshayes
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, F-44000, Nantes, France
- Labex IGO, Immunology Graft Oncology, Nantes, France
| | - Virginie Dehame
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, F-44000, Nantes, France
- Labex IGO, Immunology Graft Oncology, Nantes, France
| | - Nathalie Labarrière
- Labex IGO, Immunology Graft Oncology, Nantes, France
- Nantes Université, Université d'Angers, Inserm, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302, 44000, Nantes, France
| | - Delphine Fradin
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, F-44000, Nantes, France
- Labex IGO, Immunology Graft Oncology, Nantes, France
| | - Nicolas Boisgerault
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, F-44000, Nantes, France
- Labex IGO, Immunology Graft Oncology, Nantes, France
| | - Christophe Blanquart
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, F-44000, Nantes, France
- Labex IGO, Immunology Graft Oncology, Nantes, France
| | - Frédéric Tangy
- Vaccines Innovation Laboratory, Institut Pasteur, Université de Paris Cité, 75015, Paris, France
- Oncovita, 75015, Paris, France
| | - Jean-François Fonteneau
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, F-44000, Nantes, France.
- Labex IGO, Immunology Graft Oncology, Nantes, France.
| |
Collapse
|
23
|
Sasaki N, Homme M, Kitajima S. Targeting the loss of cGAS/STING signaling in cancer. Cancer Sci 2023; 114:3806-3815. [PMID: 37475576 PMCID: PMC10551601 DOI: 10.1111/cas.15913] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/28/2023] [Accepted: 07/09/2023] [Indexed: 07/22/2023] Open
Abstract
The cGAS/STING pathway provides a key host defense mechanism by detecting the accumulation of cytoplasmic double-stranded DNA (dsDNA) and mediating innate and adaptive immune signaling. In addition to detecting pathogen-derived dsDNA, cGAS senses intrinsic dsDNA, such as those associated with defective cell cycle progression and mitophagy that has leaked from the nucleus or mitochondria, and subsequently evokes host immunity to eliminate pathogenic cells. In cancer cells, dysregulation of DNA repair and cell cycle caused at the DNA replication checkpoint and spindle assembly checkpoint results in aberrant cytoplasmic dsDNA accumulation, stimulating anti-tumor immunity. Therefore, the suppression of cGAS/STING signaling is beneficial for survival and frequently observed in cancer cells as a way to evade detection by the immune system, and is likely to be related to immune checkpoint blockade (ICB) resistance. Indeed, the mechanisms of ICB resistance overlap with those acquired in cancers during immunoediting to evade immune surveillance. This review highlights the current understanding of cGAS/STING suppression in cancer cells and discusses how to establish effective strategies to regenerate effective anti-tumor immunity through reactivation of the cGAS/STING pathway.
Collapse
Affiliation(s)
- Nobunari Sasaki
- Department of Cell BiologyCancer Institute, Japanese Foundation for Cancer ResearchTokyoJapan
| | - Mizuki Homme
- Department of Cell BiologyCancer Institute, Japanese Foundation for Cancer ResearchTokyoJapan
| | - Shunsuke Kitajima
- Department of Cell BiologyCancer Institute, Japanese Foundation for Cancer ResearchTokyoJapan
| |
Collapse
|
24
|
Li J, Xiao Z, Wang D, Jia L, Nie S, Zeng X, Hu W. The screening, identification, design and clinical application of tumor-specific neoantigens for TCR-T cells. Mol Cancer 2023; 22:141. [PMID: 37649123 PMCID: PMC10466891 DOI: 10.1186/s12943-023-01844-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/16/2023] [Indexed: 09/01/2023] Open
Abstract
Recent advances in neoantigen research have accelerated the development of tumor immunotherapies, including adoptive cell therapies (ACTs), cancer vaccines and antibody-based therapies, particularly for solid tumors. With the development of next-generation sequencing and bioinformatics technology, the rapid identification and prediction of tumor-specific antigens (TSAs) has become possible. Compared with tumor-associated antigens (TAAs), highly immunogenic TSAs provide new targets for personalized tumor immunotherapy and can be used as prospective indicators for predicting tumor patient survival, prognosis, and immune checkpoint blockade response. Here, the identification and characterization of neoantigens and the clinical application of neoantigen-based TCR-T immunotherapy strategies are summarized, and the current status, inherent challenges, and clinical translational potential of these strategies are discussed.
Collapse
Affiliation(s)
- Jiangping Li
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.
| | - Zhiwen Xiao
- Department of Otolaryngology Head and Neck Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, People's Republic of China
| | - Donghui Wang
- Department of Radiation Oncology, The Third Affiliated Hospital Sun Yat-Sen University, Guangzhou, 510630, People's Republic of China
| | - Lei Jia
- International Health Medicine Innovation Center, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Shihong Nie
- Department of Radiation Oncology, West China Hospital, Sichuan University, Cancer Center, Chengdu, 610041, People's Republic of China
| | - Xingda Zeng
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Wei Hu
- Division of Vascular Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, People's Republic of China
| |
Collapse
|
25
|
Li D, Xia L, Huang P, Wang Z, Guo Q, Huang C, Leng W, Qin S. Serine protease PRSS56, a novel cancer-testis antigen activated by DNA hypomethylation, promotes colorectal and gastric cancer progression via PI3K/AKT axis. Cell Biosci 2023; 13:124. [PMID: 37400936 DOI: 10.1186/s13578-023-01060-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/27/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND Cancer/testis (CT) antigens/genes are usually overexpressed in cancers and exhibit high immunogenicity, making them promising targets for immunotherapy and cancer vaccines. The role of serine protease PRSS56 in cancers remains unknown to date. METHODS RNA sequencing studies were performed to screen CT genes in gastric cancer (GC) and colorectal cancer (CRC) cells exposed to DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine (5-AZA-CdR). Bioinformatics analysis was conducted to analyze the correlation between PRSS56 expression and DNA methylation. Functional experiments were performed to explore the biological function of PRSS56 in GC and CRC. RESULTS In this study, we identified the testis-specific serine proteases PRSS56 as a novel CT antigen. PRSS56 was frequently overexpressed in various cancers, especially in gastrointestinal cancer. PRSS56 expression was negatively associated with promoter DNA methylation level, and positively associated with gene body methylation level. PRSS56 expression was significantly activated in colorectal and gastric cancer cells exposed to DNA methyltransferase inhibitors. Importantly, our finding highlights that the decreased methylation level of the CpG site cg10242318 in the PRSS56 promoter region resulted in its overexpression in GC and CRC. Additionally, functional assays verified that PRSS56 overexpression activated PI3K-AKT signaling in GC and CRC. CONCLUSION Serine protease PRSS56 is a novel CT antigen that is reactivated in cancers by promoter DNA hypomethylation. PRSS56 functions oncogenic roles in GC and CRC by activating of PI3K/AKT axis. Our results presented here represent the first data on the function of the serine protease PRSS56 in cancers.
Collapse
Affiliation(s)
- Dandan Li
- Department of Stomatology, Taihe Hospital and Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, 442000, P.R. China
- Laboratory of Tumor biology, Academy of Bio-Medicine Research, Hubei University of Medicine, Shiyan, Hubei, 442000, P.R. China
| | - Lingyun Xia
- Department of Stomatology, Taihe Hospital and Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, 442000, P.R. China
| | - Pan Huang
- Department of Stomatology, Taihe Hospital and Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, 442000, P.R. China
- Laboratory of Tumor biology, Academy of Bio-Medicine Research, Hubei University of Medicine, Shiyan, Hubei, 442000, P.R. China
| | - Zidi Wang
- Laboratory of Tumor biology, Academy of Bio-Medicine Research, Hubei University of Medicine, Shiyan, Hubei, 442000, P.R. China
| | - Qiwei Guo
- Laboratory of Tumor biology, Academy of Bio-Medicine Research, Hubei University of Medicine, Shiyan, Hubei, 442000, P.R. China
| | - Congcong Huang
- Department of Stomatology, Taihe Hospital and Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, 442000, P.R. China
- Laboratory of Tumor biology, Academy of Bio-Medicine Research, Hubei University of Medicine, Shiyan, Hubei, 442000, P.R. China
| | - Weidong Leng
- Department of Stomatology, Taihe Hospital and Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, 442000, P.R. China.
| | - Shanshan Qin
- Department of Stomatology, Taihe Hospital and Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, 442000, P.R. China.
- Laboratory of Tumor biology, Academy of Bio-Medicine Research, Hubei University of Medicine, Shiyan, Hubei, 442000, P.R. China.
| |
Collapse
|
26
|
Grizzi F, Chiriva-Internati M, Miranda E, Zaharie R, Hajjar NA, Zaharie F, Del Arco CD, Fernández-Aceñero MJ, Bresalier RS, Moiş E. Sperm protein antigen 17 and Sperm flagellar 1 cancer testis antigens are expressed in a rare case of ciliated foregut cyst of the common hepatic duct. Pathol Res Pract 2023; 247:154546. [PMID: 37224658 DOI: 10.1016/j.prp.2023.154546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/10/2023] [Accepted: 05/16/2023] [Indexed: 05/26/2023]
Abstract
Ciliated foregut cysts (CFCs) are frequently described in liver, pancreas and gallbladder and generally considered benign although one case of squamous cell metaplasia and five cases of squamous cell carcinoma arising from a ciliated hepatic foregut cyst have been reported. Here we explore two cancer-testis antigens (CTAs), Sperm protein antigen 17 (SPA17) and Sperm flagellar 1 (SPEF1) expression in a rare case of CFC of the common hepatic duct MATERIALS AND METHODS: 3 µm-thick CFC sections were immunohistochemically treated with antibodies raised against human SPA17 or SPEF1. In silico Protein-Protein Interaction (PPI) network and differential protein expression were also investigated RESULTS: Immunohistochemistry revealed SPA17 and SPEF1 in the cytoplasm of ciliated epithelium. SPA17, but not SPEF1, was also detected in cilia. The PPI networks demonstrated that other CTAs are significantly predicted functional partners with SPA17 and SPEF1. The differential protein expression demonstrated that SPA17 was higher in breast cancer, cholangiocarcinoma, liver hepatocellular carcinoma, uterine corpus endometrial carcinoma, gastric adenocarcinoma, cervical squamous cell carcinoma, bladder urothelial carcinoma. SPEF1 expression was higher in breast cancer, cholangiocarcinoma, uterine corpus endometrial carcinoma and kidney renal papillary cell carcinoma CONCLUSIONS: Our study suggests that further characterization of SPA17 and SPEF1 in patients with CFCs might provide significant insights to understand the mechanisms underlying their potential to malignant transformation.
Collapse
Affiliation(s)
- Fabio Grizzi
- Department of Immunology and Inflammation, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy.
| | - Maurizio Chiriva-Internati
- Departments of Gastroenterology, Hepatology & Nutrition, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Roxana Zaharie
- Iuliu Hațieganu University of Medicine and Pharmacy, Regional Institute of Gastroenterology and Hepatology, Cluj-Napoca, Romania
| | - Nadim Al Hajjar
- Iuliu Hațieganu University of Medicine and Pharmacy, Regional Institute of Gastroenterology and Hepatology, Cluj-Napoca, Romania
| | - Florin Zaharie
- Iuliu Hațieganu University of Medicine and Pharmacy, Regional Institute of Gastroenterology and Hepatology, Cluj-Napoca, Romania
| | | | | | - Robert S Bresalier
- Departments of Gastroenterology, Hepatology & Nutrition, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Emil Moiş
- Iuliu Hațieganu University of Medicine and Pharmacy, Regional Institute of Gastroenterology and Hepatology, Cluj-Napoca, Romania
| |
Collapse
|
27
|
Tang Y, Zhang C, Ye C, Tian K, Zeng J, Cheng S, Zeng W, Yang B, Liu Y, Yu Y. Construction and validation of programmed cell death-based molecular clusters for prognostic and therapeutic significance of clear cell renal cell carcinoma. Heliyon 2023; 9:e15693. [PMID: 37305457 PMCID: PMC10256830 DOI: 10.1016/j.heliyon.2023.e15693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/08/2023] [Accepted: 04/19/2023] [Indexed: 06/13/2023] Open
Abstract
As the dominant histological subtype of kidney cancer, clear cell renal cell carcinoma (ccRCC) poorly responds to conventional chemotherapy and radiotherapy. Although novel immunotherapies such as immune checkpoint inhibitors could have a durable effect in treating ccRCC patients, the limited availability of dependable biomarkers has restricted their application in clinic. In the study of carcinogenesis and cancer therapies, there has been a recent emphasis on researching programmed cell death (PCD). In the current study, we discovered the enriched and prognostic PCD in ccRCC utilizing gene set enrichment analysis (GSEA) and investigate the functional status of ccRCC patients with different PCD risks. Then, genes related to PCD that had prognostic value in ccRCC were identified for the conduction of non-negative matrix factorization to cluster ccRCC patients. Next, the tumor microenvironment, immunogenicity, and therapeutic response in different molecular clusters were analyzed. Among PCD, apoptosis and pyroptosis were enriched in ccRCC and correlated with prognosis. Patients with high PCD levels were related to poor prognosis and a rich but suppressive immune microenvironment. PCD-based molecular clusters were identified to differentiate the clinical status and prognosis of ccRCC. Moreover, the molecular cluster with high PCD levels may correlate with high immunogenicity and a favorable therapeutic response to ccRCC. Furthermore, a simplified PCD-based gene classifier was established to facilitate clinical application and used transcriptome sequencing data from clinical ccRCC samples to validate the applicability of the gene classifier. We thoroughly extended the understanding of PCD in ccRCC and constructed a PCD-based gene classifier for differentiation of the prognosis and therapeutic efficacy in ccRCC.
Collapse
Affiliation(s)
- Yanlin Tang
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Shantou University Medical College, Shantou, China
| | - Changzheng Zhang
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Chujin Ye
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Kaiwen Tian
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Jiayi Zeng
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Shouyu Cheng
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Weinan Zeng
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Shantou University Medical College, Shantou, China
| | - Bowen Yang
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yanjun Liu
- Department of Immunology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Yuming Yu
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
28
|
Hedrich V, Breitenecker K, Ortmayr G, Pupp F, Huber H, Chen D, Sahoo S, Jolly MK, Mikulits W. PRAME Is a Novel Target of Tumor-Intrinsic Gas6/Axl Activation and Promotes Cancer Cell Invasion in Hepatocellular Carcinoma. Cancers (Basel) 2023; 15:2415. [PMID: 37173882 PMCID: PMC10177160 DOI: 10.3390/cancers15092415] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/14/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
(1) Background: Activation of the receptor tyrosine kinase Axl by Gas6 fosters oncogenic effects in hepatocellular carcinoma (HCC), associating with increased mortality of patients. The impact of Gas6/Axl signaling on the induction of individual target genes in HCC and its consequences is an open issue. (2) Methods: RNA-seq analysis of Gas6-stimulated Axl-proficient or Axl-deficient HCC cells was used to identify Gas6/Axl targets. Gain- and loss-of-function studies as well as proteomics were employed to characterize the role of PRAME (preferentially expressed antigen in melanoma). Expression of Axl/PRAME was assessed in publicly available HCC patient datasets and in 133 HCC cases. (3) Results: Exploitation of well-characterized HCC models expressing Axl or devoid of Axl allowed the identification of target genes including PRAME. Intervention with Axl signaling or MAPK/ERK1/2 resulted in reduced PRAME expression. PRAME levels were associated with a mesenchymal-like phenotype augmenting 2D cell migration and 3D cell invasion. Interactions with pro-oncogenic proteins such as CCAR1 suggested further tumor-promoting functions of PRAME in HCC. Moreover, PRAME showed elevated expression in Axl-stratified HCC patients, which correlates with vascular invasion and lowered patient survival. (4) Conclusions: PRAME is a bona fide target of Gas6/Axl/ERK signaling linked to EMT and cancer cell invasion in HCC.
Collapse
Affiliation(s)
- Viola Hedrich
- Center for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria; (V.H.)
| | - Kristina Breitenecker
- Center for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria; (V.H.)
| | - Gregor Ortmayr
- Center for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria; (V.H.)
| | - Franziska Pupp
- Center for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria; (V.H.)
| | - Heidemarie Huber
- Center for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria; (V.H.)
| | - Doris Chen
- Department of Chromosome Biology, Max Perutz Labs Vienna, University of Vienna, 1030 Vienna, Austria
| | - Sarthak Sahoo
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Wolfgang Mikulits
- Center for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria; (V.H.)
| |
Collapse
|
29
|
Inchakalody VP, Hydrose SP, Krishnankutty R, Merhi M, Therachiyil L, Sasidharan Nair V, Elashi AA, Khan AQ, Taleb S, Raza A, Yoosuf ZSKM, Fernandes Q, Al-Zaidan L, Mestiri S, Taib N, Bedhiafi T, Moustafa D, Assami L, Maalej KM, Elkord E, Uddin S, Al Homsi U, Dermime S. The molecular mechanisms of apoptosis accompanied with the epigenetic regulation of the NY-ESO-1 antigen in non-small lung cancer cells treated with decitabine (5-aza-CdR). Eur J Pharmacol 2023; 945:175612. [PMID: 36822455 DOI: 10.1016/j.ejphar.2023.175612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/23/2023]
Abstract
Dysregulated epigenetic modifications are common in lung cancer but have been reversed using demethylating agent like 5-Aza-CdR. 5-Aza-CdR induces/upregulates the NY-ESO-1 antigen in lung cancer. Therefore, we investigated the molecular mechanisms accompanied with the epigenetic regulation of NY-ESO-1 in 5-Aza-CdR-treated NCI-H1975 cell line. We showed significant induction of the NY-ESO-1 protein (**p < 0.0097) using Cellular ELISA. Bisulfite-sequencing demonstrated 45.6% demethylation efficiency at the NY-ESO-1 gene promoter region and RT-qPCR analysis confirmed the significant induction of NY-ESO-1 at mRNA level (128-fold increase, *p < 0.050). We then investigated the mechanism by which 5-Aza-CdR inhibits cell proliferation in the NCI-H1975 cell line. Upregulation of the death receptors TRAIL (2.04-fold *p < 0.011) and FAS (2.1-fold *p < 0.011) indicate activation of the extrinsic apoptotic pathway. The upregulation of Voltage-dependent anion-selective channel protein 1 (1.9-fold), Major vault protein (1.8-fold), Bax (1.16-fold), and Cytochrome C (1.39-fold) indicate the activation of the intrinsic pathway. We also observed the differential expression of protein Complement C3 (3.3-fold), Destrin (-5.1-fold), Vimentin (-1.7-fold), Peroxiredoxin 4 (-1.6-fold), Fascin (-1.8-fold), Heme oxygenase-2 (-0.67-fold**p < 0.0055), Hsp27 (-0.57-fold**p < 0.004), and Hsp70 (-0.39-fold **p < 0.001), indicating reduced cell growth, cell migration, and metastasis. The upregulation of 40S ribosomal protein S9 (3-fold), 40S ribosomal protein S15 (4.2-fold), 40S ribosomal protein S18 (2.5-fold), and 60S ribosomal protein L22 (4.4-fold) implied the induction of translation machinery. These results reiterate the decisive role of 5-Aza-CdR in lung cancer treatment since it induces the epigenetic regulation of NY-ESO-1 antigen, inhibits cell proliferation, increases apoptosis, and decreases invasiveness.
Collapse
Affiliation(s)
- Varghese P Inchakalody
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar; Translational Cancer Research Facility, Interim Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Shereena P Hydrose
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar; Translational Cancer Research Facility, Interim Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Roopesh Krishnankutty
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Maysaloun Merhi
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar; Translational Cancer Research Facility, Interim Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Lubna Therachiyil
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; College of Pharmacy, Qatar University, Doha, Qatar
| | - Varun Sasidharan Nair
- Department of Experimental Immunology, Helmholtz Centre for Infection Research, Germany
| | - Asma A Elashi
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Abdul Q Khan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Sara Taleb
- Genomics and Precision Medicine, Hamad Bin Khalifa University, Doha, Qatar
| | - Afsheen Raza
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar; Translational Cancer Research Facility, Interim Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Zeenath Safira K M Yoosuf
- Translational Cancer Research Facility, Interim Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Queenie Fernandes
- Translational Cancer Research Facility, Interim Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; College of Medicine, Qatar University, Doha, Qatar
| | - Lobna Al-Zaidan
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar; Translational Cancer Research Facility, Interim Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Sarra Mestiri
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar; Translational Cancer Research Facility, Interim Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Nassiba Taib
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar; Translational Cancer Research Facility, Interim Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Takwa Bedhiafi
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar; Translational Cancer Research Facility, Interim Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Dina Moustafa
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar; Translational Cancer Research Facility, Interim Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Laila Assami
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar; Translational Cancer Research Facility, Interim Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Karama Makni Maalej
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar; Translational Cancer Research Facility, Interim Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Eyad Elkord
- Natural and Medical Sciences Research Center, University of Nizwa, Oman; Biomedical Research Center, School of Science, Engineering and Environment, University of Salford, Manchester, UK
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Translational Research Institute and Dermatology Institute, Academic Health System, Doha, Qatar
| | - Ussama Al Homsi
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar; Translational Cancer Research Facility, Interim Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Said Dermime
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar; Translational Cancer Research Facility, Interim Translational Research Institute, Hamad Medical Corporation, Doha, Qatar.
| |
Collapse
|
30
|
Magara T, Nakamura M, Nojiri Y, Yoshimitsu M, Kano S, Kato H, Morita A. Tumor immune microenvironment of cutaneous angiosarcoma with cancer testis antigens and the formation of tertiary lymphoid structures. Front Oncol 2023; 13:1106434. [PMID: 37081973 PMCID: PMC10112511 DOI: 10.3389/fonc.2023.1106434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 03/21/2023] [Indexed: 04/07/2023] Open
Abstract
Cutaneous angiosarcoma (CAS) is a highly malignant tumor with few effective treatments. Although the indication for immune checkpoint inhibitors such as anti-PD-1 antibodies is expected to expand, there are many unknowns regarding the tumor immune microenvironment in CAS, which is generally considered an immunologically “cold” tumor. Our previous study demonstrated that tertiary lymphoid structures (TLSs) were associated with a favorable prognosis in CAS. However, we still don’t know what the difference is between cases of TLS-rich and TLS-poor. Furthermore, the number of TLSs can vary significantly between lesions in the same case, for example, between primary and recurrence. To analyze the changes in the tumor immune microenvironment in CAS in more detail, we performed comprehensive RNA sequencing using a Next-generation sequencer (NGS). Sixty-two samples from 31 cases of CAS treated at Nagoya City University were collected. NGS and gene set enrichment analysis (GSEA) were performed on 15 samples among them. Immunohistochemistry and prognostic analysis by Kaplan-Meier method were performed on all 62 samples. NGS results showed that NY-ESO-1 (CTAG1B) was significantly upregulated in the TLS-positive cases. Immune checkpoint molecules including programmed death-1 (PD-1) and programmed death-ligand 1 (PD-L1) were upregulated in TLS-negative or TLS-low cases and seemed to associate with the suppression of TLS formation. In a comparison of primary and recurrent lesions, other cancer-testis antigens (CTAs) including XAGE-1B were significantly upregulated in recurrent lesions. The number of infiltrating CD8-positive cells and TLSs showed no significant trend between primary and recurrent lesions. However, the PD-L1 expression of tumor cells was significantly lower in recurrent than in primary lesions. Chemokines correlated with NY-ESO-1 expression were CCL21 and CXCL8, and only CCL21 correlated with the number of TLS. There was no chemokine associated with XAGE-1. NY-ESO-1 and XAGE-1 are detectable by immunohistochemistry. Although each cannot be a prognostic marker by itself, they can be a helpful marker in combination with the number of TLSs. CTAs play an essential role in forming the tumor immune microenvironment in CAS. These findings are evidence that CAS is an immunologically “hot” tumor and provides us with potential therapeutic targets and encourages the expansion of immunotherapy indications.
Collapse
Affiliation(s)
- Tetsuya Magara
- Department of Geriatric and Environmental Dermatology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Motoki Nakamura
- Department of Geriatric and Environmental Dermatology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Yuka Nojiri
- Department of Geriatric and Environmental Dermatology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Maki Yoshimitsu
- Department of Geriatric and Environmental Dermatology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Shinji Kano
- Department of Geriatric and Environmental Dermatology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Hiroshi Kato
- Department of Geriatric and Environmental Dermatology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Akimichi Morita
- Department of Geriatric and Environmental Dermatology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| |
Collapse
|
31
|
Xu Y, Xu X, Ni X, Pan J, Chen M, Lin Y, Zhao Z, Zhang L, Ge N, Song G, Zhang J. Gene-based cancer-testis antigens as prognostic indicators in hepatocellular carcinoma. Heliyon 2023; 9:e13269. [PMID: 36950598 PMCID: PMC10025098 DOI: 10.1016/j.heliyon.2023.e13269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/11/2023] [Accepted: 01/24/2023] [Indexed: 03/08/2023] Open
Abstract
Cancer/testis antigens (CTAs) are reproductive tissue-restricted genes, frequently ectopic expressed in tumors. CTA genes associate with a poor prognosis in some solid tumors, due to their potential roles in the tumorigenesis and progression. However, whether CTAs relate with hepatocellular carcinoma (HCC) remains unclear. In this study, the prognostic signatures based on CTA genes were investigated and validated in three cohorts including Chinese HCC patients with hepatitis B virus infection (CHCC-HBV), International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA) cohorts. Univariate, LASSO, and multivariate Cox regression analyses were used to screen prognostic genes and develop the prognostic gene signature. A prognosis model was established with six CTA genes (SSX1, CTCFL, OIP5, CEP55, NOL4, and TPPP2) in CHCC-HBV cohort, and further validated in the ICGC and TCGA cohorts. The CTA signature was an essential prognostic predictor independent of other clinical pathological factors. High-risk group exhibited up-regulated cell cycle-related and tumor-related pathways and more M0 macrophage, activated mast cell, activated memory CD4+ T cell, and memory B cell infiltration. Furthermore, CTA signature correlated with the sensitivity to multiple chemotherapy drugs. Our results highlighted that the CTA gene profiling was a prognostic assessment tool for HCC patients.
Collapse
Affiliation(s)
- Yingyu Xu
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Xin Xu
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Xiaojian Ni
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiaomeng Pan
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - MaoPei Chen
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Youpei Lin
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Zhiying Zhao
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Lan Zhang
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Ningling Ge
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Guohe Song
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Juan Zhang
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| |
Collapse
|
32
|
Alsadat Mahmoudian R, Amirhosein M, Mahmoudian P, Fardi Golyan F, Mokhlessi L, Maftooh M, Khazaei M, Nassiri M, Mahdi Hassanian S, Ghayour-Mobarhan M, Ferns GA, Shahidsales S, Avan A. The therapeutic potential value of Cancer-testis antigens in immunotherapy of gastric cancer. Gene 2023; 853:147082. [PMID: 36464170 DOI: 10.1016/j.gene.2022.147082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/15/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022]
Abstract
Gastric cancer (GC) is the fourth most common cause of mortality and the fifth for incidence, globally. Diagnosis, early prognosis, and therapy remains challenging for this condition, and new tumor-associated antigens are required for its detection and immunotherapy. Cancer-testis antigens (CTAs) are a subfamily of tumor-associated antigens (TAAs) that have been identified as potential biomarkers and targets for cancer immunotherapy. The CTAs-restricted expression pattern in tumor cells and their potential immunogenicity identify them as attractive target candidates in CTA-based diagnosis or prognosis or immunotherapy. To date, numerous studies have reported the dysregulation of CTAs in GC. Several clinical trials have been done to assess CTA-based immunotherapeutic potential in the treatment of GC patients. NY-ESO-1, MAGE, and KK-LC-1 have been used in GC clinical trials. We review recent studies that have investigated the potential of the CTAs in GC regarding the expression, function, aggressive phenotype, prognosis, and immunological responses as well as their possible clinical significance as immunotherapeutic targets with a focus on challenges and future interventions.
Collapse
Affiliation(s)
- Reihaneh Alsadat Mahmoudian
- Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Maharati Amirhosein
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Parvaneh Mahmoudian
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Fatemeh Fardi Golyan
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Leila Mokhlessi
- Centre for Biomedical Education and Research, Institute of Pharmacology and Toxicology, Witten/Herdecke University, Witten, Germany.
| | - Mina Maftooh
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Majid Khazaei
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mohammadreza Nassiri
- Recombinant Proteins Research Group, The Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Seyed Mahdi Hassanian
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Majid Ghayour-Mobarhan
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Department of Medical Education, Falmer, Brighton, Sussex BN1 9PH, UK.
| | | | - Amir Avan
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
33
|
Dror Levinsky M, Brenner B, Yalon M, Levi Z, Livneh Z, Cohen Z, Paz-Elizur T, Grossman R, Ram Z, Volovitz I. A Highly Sensitive Flow Cytometric Approach to Detect Rare Antigen-Specific T Cells: Development and Comparison to Standard Monitoring Tools. Cancers (Basel) 2023; 15:574. [PMID: 36765532 PMCID: PMC9913544 DOI: 10.3390/cancers15030574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/04/2023] [Accepted: 01/11/2023] [Indexed: 01/20/2023] Open
Abstract
Personalized vaccines against patient-unique tumor-associated antigens represent a promising new approach for cancer immunotherapy. Vaccine efficacy is assessed by quantification of changes in the frequency and/or the activity of antigen-specific T cells. Enzyme-linked immunosorbent spot (ELISpot) and flow cytometry (FCM) are methodologies frequently used for assessing vaccine efficacy. We tested these methodologies and found that both ELISpot and standard FCM [monitoring CD3/CD4/CD8/IFNγ/Viability+CD14+CD19 (dump)] demonstrate background IFNγ secretion, which, in many cases, was higher than the antigen-specific signal measured by the respective methodology (frequently ranging around 0.05-0.2%). To detect such weak T-cell responses, we developed an FCM panel that included two early activation markers, 4-1BB (CD137) and CD40L (CD154), in addition to the above-cited markers. These two activation markers have a close to zero background expression and are rapidly upregulated following antigen-specific activation. They enabled the quantification of rare T cells responding to antigens within the assay well. Background IFNγ-positive CD4 T cell frequencies decreased to 0.019% ± 0.028% and CD8 T cells to 0.009% ± 0.013%, which are 19 and 13 times lower, respectively, than without the use of these markers. The presented methodology enables highly sensitive monitoring of T-cell responses to tumor-associated antigens in the very low, but clinically relevant, frequencies.
Collapse
Affiliation(s)
- Meytal Dror Levinsky
- The Cancer Immunotherapy Laboratory, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
- The Neurosurgery Department, The Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
- The Sackler Faculty of Medicine, The Tel Aviv University, Tel Aviv 6997801, Israel
| | - Baruch Brenner
- The Sackler Faculty of Medicine, The Tel Aviv University, Tel Aviv 6997801, Israel
- The Institute of Oncology, Davidoff Cancer Center, The Rabin Medical Center, Beilinson Hospital, Petach Tikva 4941492, Israel
| | - Michal Yalon
- The Sackler Faculty of Medicine, The Tel Aviv University, Tel Aviv 6997801, Israel
- The Pediatric Hematology-Oncology Department, Safra Children’s Hospital, Sheba Medical Center, Ramat Gan 52621, Israel
| | - Zohar Levi
- The Sackler Faculty of Medicine, The Tel Aviv University, Tel Aviv 6997801, Israel
- The Gastroenterology Department; The Rabin Medical Center, Petach Tikva 4941492, Israel
| | - Zvi Livneh
- The Biomolecular Sciences Department, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Zoya Cohen
- The Sackler Faculty of Medicine, The Tel Aviv University, Tel Aviv 6997801, Israel
- The Felsenstein Medical Research Center, The Rabin Medical Center, Petach Tikva 4941492, Israel
| | - Tamar Paz-Elizur
- The Biomolecular Sciences Department, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Rachel Grossman
- The Neurosurgery Department, The Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
- The Sackler Faculty of Medicine, The Tel Aviv University, Tel Aviv 6997801, Israel
| | - Zvi Ram
- The Neurosurgery Department, The Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
- The Sackler Faculty of Medicine, The Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ilan Volovitz
- The Cancer Immunotherapy Laboratory, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
- The Neurosurgery Department, The Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
- The Sackler Faculty of Medicine, The Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
34
|
Chen Q, Zhu S, Jiao N, Zhang Z, Gao G, Zheng W, Feng G, Han W. Improvement in the performance of an autoantibody panel in combination with heat shock protein 90a for the detection of early‑stage lung cancer. Exp Ther Med 2023; 25:82. [PMID: 36741915 PMCID: PMC9852419 DOI: 10.3892/etm.2023.11781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/09/2022] [Indexed: 01/04/2023] Open
Abstract
The early diagnosis of lung cancer is closely associated with the decline of mortality. A panel consisting of seven lung cancer-related autoantibodies (7-AABs) has been shown to be a reliable and specific indicator for the early detection of lung cancer, with a specificity of ~90% and a positive predictive value of ~85%. However, its low sensitivity and negative predictive value limit its wide application. To improve its diagnostic value, the diagnostic efficiencies of 7-AABs in combination with non-specific tumor markers were retrospectively investigated for the detection of early-stage lung cancer. A total of 217 patients with small lung nodules who presented with ground-glass opacity or solid nodules as well as 30 healthy controls were studied. The concentrations of 7-AABs and heat shock protein 90a (HSP90a) were assessed using ELISA. Automated flow fluorescence immune analysis was used for the assessment of CEA, CYFRA21-1, CA199 and CA125 levels. The results showed that 7-AABs + HSP90a possessed a remarkably improved diagnostic efficiency for patients with small pulmonary nodules or for patients with lung nodules of different types, which suggested that 7-AABs in combination with HSP90a could have a high clinical value for the improvement of the diagnostic efficiency of early-stage lung cancer.
Collapse
Affiliation(s)
- Qing Chen
- Department of Nuclear Medicine, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| | - Shaojin Zhu
- Department of Thoracic Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| | - Nanlin Jiao
- Department of Pathology, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| | - Ziyu Zhang
- The First Clinical College, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Guangjian Gao
- Department of Nuclear Medicine, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| | - Wenqiang Zheng
- Department of Nuclear Medicine, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| | - Gang Feng
- Clinical Laboratory, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241001, P.R. China,Correspondence to: Dr Wenzheng Han or Dr Gang Feng, Clinical Laboratory, The First Affiliated Hospital of Wannan Medical College, 2 Zheshan West Road, Wuhu, Anhui 241001, P.R. China
| | - Wenzheng Han
- Clinical Laboratory, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241001, P.R. China,Correspondence to: Dr Wenzheng Han or Dr Gang Feng, Clinical Laboratory, The First Affiliated Hospital of Wannan Medical College, 2 Zheshan West Road, Wuhu, Anhui 241001, P.R. China
| |
Collapse
|
35
|
Tang Y, Ye C, Zeng J, Zhu P, Cheng S, Zeng W, Yang B, Liu Y, Yu Y. Identification of a basement membrane-based risk scoring system for prognosis prediction and individualized therapy in clear cell renal cell carcinoma. Front Genet 2023; 14:1038924. [PMID: 36816030 PMCID: PMC9935575 DOI: 10.3389/fgene.2023.1038924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/20/2023] [Indexed: 02/05/2023] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) belongs to one of the 10 most frequently diagnosed cancers worldwide and has a poor prognosis at the advanced stage. Although multiple therapeutic agents have been proven to be curative in ccRCC, their clinical application was limited due to the lack of reliable biomarkers. Considering the important role of basement membrane (BM) in tumor metastasis and TME regulation, we investigated the expression of BM-related genes in ccRCC and identified prognostic BM genes through differentially expression analysis and univariate cox regression analysis. Then, BM-related ccRCC subtypes were recognized through consensus non-negative matrix factorization based on the prognostic BM genes and evaluated with regard to clinical and TME features. Next, utilizing the differentially expressed genes between the BM-related subtypes, a risk scoring system BMRS was established after serial analysis of univariate cox regression analysis, lasso regression analysis, and multivariate cox regression analysis. Time-dependent ROC curve revealed the satisfactory prognosis predictive capacity of BMRS with internal, and external validation. Multivariate analysis proved the independent predictive ability of BMRS and a BMRS-based nomogram was constructed for clinical application. Some featured mutants were discovered through genomic analysis of the BMRS risk groups. Meanwhile, the BMRS groups were found to have distinct immune scores, immune cell infiltration levels, and immune-related functions. Moreover, with the help of data from The Cancer Immunome Atlas (TCIA) and Genomics of Drug Sensitivity in Cancer (GDSC), the potential of BMRS in predicting therapeutic response was evaluated and some possible therapeutic compounds were proposed through ConnectivityMap (CMap). For the practicability of BMRS, we validated the expression of BMRS-related genes in clinical samples. After all, we identified BM-related ccRCC subtypes with distinct clinical and TME features and constructed a risk scoring system for the prediction of prognosis, therapeutic responses, and potential therapeutic agents of ccRCC. As ccRCC systemic therapy continues to evolve, the risk scoring system BMRS we reported may assist in individualized medication administration.
Collapse
Affiliation(s)
- Yanlin Tang
- Shantou University Medical College, Shantou, China
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Chujin Ye
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Jiayi Zeng
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Ping Zhu
- Department of Immunology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Shouyu Cheng
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Weinan Zeng
- Shantou University Medical College, Shantou, China
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Bowen Yang
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yanjun Liu
- Department of Immunology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
- *Correspondence: Yuming Yu, ; Yanjun Liu,
| | - Yuming Yu
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- *Correspondence: Yuming Yu, ; Yanjun Liu,
| |
Collapse
|
36
|
MAGE-A3 regulates tumor stemness in gastric cancer through the PI3K/AKT pathway. Aging (Albany NY) 2022; 14:9579-9598. [PMID: 36367777 PMCID: PMC9792200 DOI: 10.18632/aging.204373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 10/27/2022] [Indexed: 11/11/2022]
Abstract
Gastric cancer remains a malignant disease of the digestive tract with high mortality and morbidity worldwide. However, due to its complex pathological mechanisms and lack of effective clinical therapies, the survival rate of patients after receiving treatment is not satisfactory. A increasing number of studies have focused on cancer stem cells and their regulatory properties. In this study, we first constructed a co-expression network based on the WGCNA algorithm to identify modules with different degrees of association with tumor stemness indices. After selecting the most positively correlated modules of the stemness index, we performed a consensus clustering analysis on gastric cancer samples and constructed the co-expression network again. We then selected the modules of interest and applied univariate COX regression analysis to the genes in this module for preliminary screening. The results of the screening were then used in LASSO regression analysis to construct a risk prognostic model and subsequently a sixteen-gene model was obtained. Finally, after verifying the accuracy of the module and screening for risk genes, we identified MAGE-A3 as the final study subject. We then performed in vivo and in vitro experiments to verify its effect on tumor stemness and tumour proliferation. Our data supports that MAGE-A3 is a tumor stemness regulator and a potent prognostic biomarker which can help the prediction and treatment of gastric cancer patients.
Collapse
|
37
|
Hua Z, Han Y, Liu K, Yang H, Zhou C, Chen F, Nie S, Li M, Yu Q, Wei Y, Wu CCN, Wang X. Antitumor effect and mechanism of FZD7 polypeptide vaccine. Front Oncol 2022; 12:925495. [PMID: 36276155 PMCID: PMC9579692 DOI: 10.3389/fonc.2022.925495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
The resistant cells that proliferate after radiotherapy and chemotherapy are primarily tumor stem cells with high stem marker expression, and their presence is the primary cause of tumor dispersion. The Wnt signaling receptor Frizzled family receptor 7 (FZD7) is linked to the maintenance of stem cell features as well as cancer progression. Frizzled-7 (FZD7), a key receptor for Wnt/-catenin signaling, is overexpressed in TNBC, suggesting that it could be a viable target for cancer therapy. We employed bioinformatics to find the best-scoring peptide, chemically synthesized FZD7 epitope antigen, and binding toll-like receptor 7 agonists (T7). Under GMP conditions, peptides for vaccines were produced and purified (>95%). In vivo and vitro tests were used to assess tumor cell inhibition. In vitro, the FZD7-T7 vaccination can boost the maturity of BMDC cells considerably. In mice, the FZD7 - T7 vaccine elicited the greatest immunological response. Significant tumor development inhibition was seen in BALB/c mice treated with FZD7 - T7 in prevention experiments (P < 0.01). Multiple cytokines that promote cellular immune responses, such as interferon (IFN)-γ (P < 0.05), interleukin (IL)-12 (P < 0.05), and IL-2 (P < 0.01), were shown to be considerably elevated in mice inoculated with FZD7- T7. Furthermore, we evaluated safety concerns in terms of vaccine composition to aid in the creation of successful next-generation vaccines. In conclusion, the FZD7-T7 vaccine can activate the immune response in vivo and in vitro, and play a role in tumor suppression. Our findings reveal a unique tumor-suppressive role for the FZD7 peptide in TNBC.
Collapse
Affiliation(s)
- Zhongke Hua
- International Cancer Center, Shenzhen Key Lab of Synthetic Biology, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, China
| | - Yu Han
- International Cancer Center, Shenzhen Key Lab of Synthetic Biology, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, China
| | - Kan Liu
- International Cancer Center, Shenzhen Key Lab of Synthetic Biology, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, China
| | - Hua Yang
- International Cancer Center, Shenzhen Key Lab of Synthetic Biology, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, China
| | - Cai Zhou
- International Cancer Center, Shenzhen Key Lab of Synthetic Biology, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, China
| | - Fengyi Chen
- International Cancer Center, Shenzhen Key Lab of Synthetic Biology, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, China
| | - Shenglan Nie
- International Cancer Center, Shenzhen Key Lab of Synthetic Biology, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, China
| | - Mengqing Li
- International Cancer Center, Shenzhen Key Lab of Synthetic Biology, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, China
| | - Qinyao Yu
- International Cancer Center, Shenzhen Key Lab of Synthetic Biology, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, China
| | - Yunpeng Wei
- International Cancer Center, Shenzhen Key Lab of Synthetic Biology, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, China
| | - Christina C. N. Wu
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, United States
- *Correspondence: Xiaomei Wang, ; Christina C. N. Wu,
| | - Xiaomei Wang
- International Cancer Center, Shenzhen Key Lab of Synthetic Biology, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, China
- *Correspondence: Xiaomei Wang, ; Christina C. N. Wu,
| |
Collapse
|
38
|
Eakins RA, Chobrutskiy A, Teer JK, Patel DN, Hsiang M, Huda TI, Zaman S, Sexton WJ, Coppola D, Falasiri S, Blanck G, Chobrutskiy BI. Chemical complementarity between tumor resident, T-cell receptor CDR3s and MAGEA3/6 correlates with increased melanoma survival: Potential relevance to MAGE vaccine auto-reactivity. Mol Immunol 2022; 150:58-66. [PMID: 35987136 DOI: 10.1016/j.molimm.2022.08.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/18/2022] [Accepted: 08/03/2022] [Indexed: 11/18/2022]
Abstract
Cancer testis antigens have been of interest as possible targets for cancer immunotherapies. To better understand the opportunities for the use of such immunotherapy targets, we used a chemical complementarity scoring algorithm and an original web tool to establish aspects of electrostatic complementarity of the CTAs, MAGEA3 and MAGEA6, with melanoma specimen resident, T-cell receptor (TCR) complementarity determining region 3 (CDR3) amino acid sequences. Greater electrostatic complementarity between T-cell receptor CDR3 and tumor CTAs MAGEA3/6 was associated with a greater probability of overall survival, for both the cancer genome atlas and Moffitt Cancer Center samples; and was associated with high levels of T-cell cytotoxicity-related gene expression. Most importantly, this approach allowed for the highly efficient screening of specific segments of the MAGEA3/6 antigens which indicated that certain MAGE segments would have either more or less risk of auto-reactivity. In sum, the chemical complementarity algorithm, and its efficient application via the web tool, adaptivematch.com, offers a convenient opportunity to identify likely parameters important for immunotherapy considerations and melanoma patient risk stratifications.
Collapse
Affiliation(s)
- Rachel A Eakins
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida 33612, USA
| | - Andrea Chobrutskiy
- Department of Pediatrics, Oregon Health and Science University Hospital, Portland, OR 97239, USA
| | - Jamie K Teer
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Dhruv N Patel
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida 33612, USA
| | - Monica Hsiang
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida 33612, USA
| | - Taha I Huda
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida 33612, USA
| | - Saif Zaman
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida 33612, USA
| | - Wade J Sexton
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Domenico Coppola
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Shayan Falasiri
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida 33612, USA
| | - George Blanck
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida 33612, USA; Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA.
| | - Boris I Chobrutskiy
- Department of Internal Medicine, Oregon Health and Science University Hospital, Portland, OR 97239, USA
| |
Collapse
|
39
|
Ahmed T. Immunotherapy for neuroblastoma using mRNA vaccines. ADVANCES IN CANCER BIOLOGY - METASTASIS 2022; 4:100033. [DOI: 10.1016/j.adcanc.2022.100033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
40
|
Meng X, Liu Z, Zhang L, He Y. Plac1 Remodels the Tumor Immune Evasion Microenvironment and Predicts Therapeutic Response in Head and Neck Squamous Cell Carcinoma. Front Oncol 2022; 12:919436. [PMID: 35814442 PMCID: PMC9263085 DOI: 10.3389/fonc.2022.919436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/23/2022] [Indexed: 12/24/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC or HNSC) is the sixth most common cancer worldwide. Placenta-specific 1 (Plac1) belongs to the cancer testis antigen family and is highly expressed in malignant cells in HNSC. However, the biological function and prognostic value of plac1 in HNSC are still unclear. In the current research, we performed a comprehensive analysis of plac1 using The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) bulk RNA sequencing databases as well as a single-cell sequencing dataset. We constructed a 15-gene prognostic signature through screening plac1-related immunomodulators and validated its efficiency and accuracy in immunotherapy cohorts and a pancancer database. We found that plac1 expression level is a prognostic predictor of poor overall survival in patients with HNSC. Plac1 is associated with epithelial–mesenchymal transition and tumor invasion. Plac1 has a “dual immunosuppressive function” on tumor microenvironment. On one hand, plac1-positive cells promote extracellular matrix formation and suppress immune cell infiltration. On the other hand, plac1-positive cells enhance the interaction between dendritic cells and macrophages, which further suppresses antitumor immunity. Finally, we constructed a 15-gene prognostic signature, the efficiency and accuracy of which were validated in immunotherapy cohorts and a pancancer database. In conclusion, plac1 is a promising candidate biomarker for prognosis, a potential target for immunotherapy, and a novel point for studying the immunosuppressive mechanisms of the tumor microenvironment in HNSC.
Collapse
Affiliation(s)
- Xiaoyan Meng
- Department of Oral Maxllofacial & Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Zhonglong Liu
- Department of Oral Maxllofacial & Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Lingfang Zhang
- R&D Department, Suzhou Lingdian Biotechnology Co., Ltd., Suzhou, China
| | - Yue He
- Department of Oral Maxllofacial & Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- *Correspondence: Yue He,
| |
Collapse
|
41
|
O'Donnell L, Smith LB, Rebourcet D. Sperm-specific proteins: new implications for diagnostic development and cancer immunotherapy. Curr Opin Cell Biol 2022; 77:102104. [PMID: 35671587 DOI: 10.1016/j.ceb.2022.102104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/29/2022] [Accepted: 05/05/2022] [Indexed: 11/03/2022]
Abstract
Spermatozoa are comprised of many unique proteins not expressed elsewhere. Sperm-specific proteins are first expressed at puberty, after the development of immune tolerance to self-antigens, and have been assumed to remain confined inside the seminiferous tubules, protected from immune cell recognition by various mechanisms of testicular immune privilege. However, new data has shown that sperm-specific proteins are released by the tubules into the surrounding interstitial fluid; from here they can contact immune cells, potentially promote immune tolerance, and enter the circulation. These new findings have clinical implications for diagnostics and therapeutics targeted at a specific class of proteins known as cancer-testis antigens (CTA), the opportunity to identify new communication pathways in the testis, and to discover new ways to monitor testis function.
Collapse
Affiliation(s)
- Liza O'Donnell
- College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW 2308, Australia; Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, 3168, Victoria, Australia; Monash University, Clayton, 3168, Victoria, Australia.
| | - Lee B Smith
- College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW 2308, Australia; MRC Centre for Reproductive Health, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK; Griffith University, Parklands Drive, Southport, 4222, Queensland, Australia
| | - Diane Rebourcet
- College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
42
|
Cui J, Chen Y, Ou Y, Liu G, Wen Q, Zhu W, Liang L, Chen Z, Yang H, Wang L, Wei M. Cancer germline antigen gene MAGEB2 promotes cell invasion and correlates with immune microenvironment and immunotherapeutic efficiency in laryngeal cancer. Clin Immunol 2022; 240:109045. [PMID: 35618211 DOI: 10.1016/j.clim.2022.109045] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/24/2022] [Accepted: 05/16/2022] [Indexed: 12/26/2022]
Abstract
By multiple transcriptome datasets (TCGA, GSE59102, GSE25727, GSE27020 and GSE65858) and multi-omics (RNA-seq, SNP, CNV, DNA methylation) in-depth analysis, we found that cancer germline antigen (CGA) family/genes MAGEB2 is involved in the imitation, progression and prognosis in LC as well as correlated positively with lymphatic metastasis and negatively with DNA methylation. Then, in vitro experiment verified that MAGEB2 expression renders significant alteration in LC tissues and cells via immunohistochemical (IHC), qRT-PCR and western blot (WB), and up-regulation of MAGEB2 expression could facilitate the proliferation, migration and invasion of LC cells and vice versa. Subsequently, MAGEB2 knockdown suppressed tumor growth and lung metastasis in vivo animal experiment, while MAGEB2 overexpression promoted tumor growth and lung metastasis. Lastly, MAGEB2 is significantly associated with immune cell infiltration (CD8+ T cells particularly, IHC staining confirmed that as the protein expression of MAGEB2 increased, the protein level of CD8 (representing tumor-infiltrating CD8 + T cells) decreased in vitro), immunomodulators (knockdown or overexpression of MAGEB2 on LC cell lines can significantly affect the chemokine/cytokine secretion in vitro), and immunogenicity(TMB) in LC, which hints that MAGEB2 is tightly correlated with immune characteristics and might guide more effective immunotherapy strategies for LC patients.
Collapse
Affiliation(s)
- Jie Cui
- Department of Head and Neck Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, Guangdong Province, PR China
| | - Yongsheng Chen
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou 510095, Guangdong Province, PR China
| | - Yangpeng Ou
- Department of Oncology, Huizhou Third People's Hospital, Guangzhou Medical University, Huizhou 516000, Guangdong Province, PR China
| | - Genglong Liu
- Department of Pathology, The Third Affiliated Hospital of Guangdong Medical University (Longjiang Hospital of Shunde District), Foshan 528318, Guangdong Province, PR China.
| | - Qingquan Wen
- Department of Head and Neck Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou 510095, Guangdong Province, PR China
| | - Weiyu Zhu
- Department of Head and Neck Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, Guangdong Province, PR China
| | - Longfei Liang
- Department of Head and Neck Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, Guangdong Province, PR China
| | - Zhen Chen
- Department of Intensive Care Unit, Shunde Hospital, Southern Medical University (The First people's hospital of Shunde), Foshan 528308, Guangdong Province, PR China.
| | - Hong Yang
- Department of Head and Neck Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou 510095, Guangdong Province, PR China.
| | - Liping Wang
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou 570102, Hainan Province, PR China.
| | - Minghui Wei
- Department of Head and Neck Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, Guangdong Province, PR China.
| |
Collapse
|
43
|
Patel AR, Patel DN, Tu YN, Yeagley M, Chobrutskiy A, Chobrutskiy BI, Blanck G. Chemical complementarity between immune receptor CDR3s and candidate cancer antigens correlating with reduced survival: evidence for outcome mitigation with corticosteroid treatments. J Biomol Struct Dyn 2022:1-9. [PMID: 35538689 DOI: 10.1080/07391102.2022.2070546] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The evaluation of physicochemical characteristics of extensive adaptive immune receptor (IR) recombination sequence collections has led to the discovery of many correlations of those sequences and a variety of diseases, including cancer. In the cancer setting, these evaluations have recently focused on the adaptive IR, complementarity determining region-3 (CDR3) amino acid (AA) sequences, which play a major role in antigen binding. For example, the chemical complementarities of the tumor resident, CDR3 AA sequences and the BRAFV600E mutant, common in melanoma, have proved informative with regard to outcomes. Many of these evaluations led to the conclusion that a high affinity match, efficiently, algorithmically designated as a high chemical complementarity score (CS) for the patient specific, IR CDR3 AA sequences and the cancer antigens, correlated with improved survival outcomes. In this report, the complementarity scoring algorithms were used to investigate the opposite phenomenon, high complementarity chemistry between CRD3 AAs and cancer antigens that correlated with a worse survival, an approach that revealed potential risk stratification biomarkers for lung adenocarcinoma, lung squamous carcinoma, and likely other cancer types. Most importantly, analyses suggested that high IR CDR3 AA-candidate antigen CS, low overall survival results for low grade glioma were mitigated by neoadjuvant corticosteroid treatments. Overall, the analyses of this report, coupled with earlier work establishing the CS approach for identifying likely good outcomes, have the potential to distinguish patients who will benefit from (i) immune activating or (ii) immune augmenting or (iii) even immunosuppressive treatment strategies.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Anishaa R Patel
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, FL, USA
| | - Dhruv N Patel
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, FL, USA
| | - Yaping N Tu
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, FL, USA
| | - Michelle Yeagley
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, FL, USA
| | - Andrea Chobrutskiy
- Department of Pediatrics, Oregon Health and Science University Hospital, Portland, OR, USA
| | - Boris I Chobrutskiy
- Department of Internal Medicine, Oregon Health and Science University Hospital, Portland, OR, USA
| | - George Blanck
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, FL, USA.,Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| |
Collapse
|
44
|
Zhan CH, Ding DS, Zhang W, Wang HL, Mao ZY, Liu GJ. The cancer-testis antigen a-kinase anchor protein 3 facilitates breast cancer progression via activation of the PTEN/PI3K/AKT/mTOR signaling. Bioengineered 2022; 13:8478-8489. [PMID: 35322748 PMCID: PMC9161980 DOI: 10.1080/21655979.2022.2051687] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The cancer-testis antigen A-kinase anchor protein 3 (AKAP3) has been shown to have a strong association with breast cancer (BC). However, its role in BC progression received scant attention. We aimed to explore the prognostic implication of aberrant AKAP3 expression for a better knowledge of BC progression and improved treatment. AKAP3 expression was quantitated using tissue microarrays and immunohistochemistry (IHC). Cell viability, invasion, migration, apoptosis, and expressions of PTEN/PI3K/AKT/mTOR signaling components were assessed in AKAP3-overexpressed or si-AKAP3-transfected BC cells. Finally, elevated AKAP3 expression was observed in BC versus paracancerous tissues. BC patients with high AKAP3 expression showed a worse prognosis than low expression patients (P < 0.0001). AKAP3 overexpressions fueled cell growth, proliferation, migration, and invasion in HCC1937 and MDA-MB-468 BC cell lines, alongside increased expressions of PI3K/AKT/mTOR signaling components and PTEN suppression. These effects were pronouncedly reversed, together with elevated apoptosis, in cells transfected with si-AKAP3. Therefore, AKAP3 is upregulated in BC and promotes BC cell growth, invasion, and migration via PTEN/PI3K/AKT/mTOR signaling activation. It may serve as a prognosis indicator for BC survival.
Collapse
Affiliation(s)
- Chuan-Hua Zhan
- Department of Clinical Laboratory, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, P.R. China.,Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention, Huangshi, P.R. China
| | - Dong-Shen Ding
- Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention, Huangshi, P.R. China.,Department of Medical Oncology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, P.R. China
| | - Wei Zhang
- Department of Clinical Laboratory, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, P.R. China.,Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention, Huangshi, P.R. China
| | - Hong-Liang Wang
- Department of Clinical Laboratory, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, P.R. China.,Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention, Huangshi, P.R. China
| | - Zhe-Yu Mao
- Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention, Huangshi, P.R. China.,Department of Breast Cancer Surgery, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, P.R. China
| | - Guo-Jun Liu
- Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention, Huangshi, P.R. China.,Department of Breast Cancer Surgery, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, P.R. China
| |
Collapse
|
45
|
Truong CS, Yoo SY. Oncolytic Vaccinia Virus in Lung Cancer Vaccines. Vaccines (Basel) 2022; 10:240. [PMID: 35214699 PMCID: PMC8875327 DOI: 10.3390/vaccines10020240] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 11/26/2022] Open
Abstract
Therapeutic cancer vaccines represent a promising therapeutic modality via the induction of long-term immune response and reduction in adverse effects by specifically targeting tumor-associated antigens. Oncolytic virus, especially vaccinia virus (VV) is a promising cancer treatment option for effective cancer immunotherapy and thus can also be utilized in cancer vaccines. Non-small cell lung cancer (NSCLC) is likely to respond to immunotherapy, such as immune checkpoint inhibitors or cancer vaccines, since it has a high tumor mutational burden. In this review, we will summarize recent applications of VV in lung cancer treatment and discuss the potential and direction of VV-based therapeutic vaccines.
Collapse
Affiliation(s)
| | - So Young Yoo
- BIO-IT Foundry Technology Institute, Pusan National University, Busan 46241, Korea;
| |
Collapse
|