1
|
Liu CM, Killion EA, Hammoud R, Lu SC, Komorowski R, Liu T, Kanke M, Thomas VA, Cook K, Sivits GN, Ben AB, Atangan LI, Hussien R, Tang A, Shkumatov A, Li CM, Drucker DJ, Véniant MM. GIPR-Ab/GLP-1 peptide-antibody conjugate requires brain GIPR and GLP-1R for additive weight loss in obese mice. Nat Metab 2025:10.1038/s42255-025-01295-w. [PMID: 40301582 DOI: 10.1038/s42255-025-01295-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 03/28/2025] [Indexed: 05/01/2025]
Abstract
Glucose-dependent insulinotropic polypeptide receptor (GIPR) and glucagon-like peptide 1 receptor (GLP-1R) are expressed in the central nervous system (CNS) and regulate food intake. Here, we demonstrate that a peptide-antibody conjugate that blocks GIPR while simultaneously activating GLP-1R (GIPR-Ab/GLP-1) requires both CNS GIPR and CNS GLP-1R for maximal weight loss in obese, primarily male, mice. Moreover, dulaglutide produces greater weight loss in CNS GIPR knockout (KO) mice, and the weight loss achieved with dulaglutide + GIPR-Ab is attenuated in CNS GIPR KO mice. Wild-type mice treated with GIPR-Ab/GLP-1 and CNS GIPR KO mice exhibit similar changes in gene expression related to tissue remodelling, lipid metabolism and inflammation in white adipose tissue and liver. Moreover, GIPR-Ab/GLP-1 is detected in circumventricular organs in the brain and activates c-FOS in downstream neural substrates involved in appetite regulation. Hence, both CNS GIPR and GLP-1R signalling are required for the full weight loss effect of a GIPR-Ab/GLP-1 peptide-antibody conjugate.
Collapse
Affiliation(s)
- Clarissa M Liu
- Department of Cardiometabolic Disorders, Amgen Research, Thousand Oaks, CA, USA
- Amgen R&D Postdoctoral Fellows Program, Amgen Inc., Thousand Oaks, CA, USA
| | - Elizabeth A Killion
- Department of Cardiometabolic Disorders, Amgen Research, Thousand Oaks, CA, USA
| | - Rola Hammoud
- The Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Shu-Chen Lu
- Department of Cardiometabolic Disorders, Amgen Research, Thousand Oaks, CA, USA
| | - Renee Komorowski
- Department of Cardiometabolic Disorders, Amgen Research, Thousand Oaks, CA, USA
| | - Tongyu Liu
- Center for Research Acceleration by Digital Innovation, Amgen Research, Thousand Oaks, CA, USA
| | - Matt Kanke
- Department of Research Technologies, Amgen Research, South San Francisco, CA, USA
| | - Veena A Thomas
- Department of Pharmacokinetics and Drug Metabolism, Amgen Research, South San Francisco, CA, USA
| | - Kevin Cook
- Department of Pharmacokinetics and Drug Metabolism, Amgen Research, South San Francisco, CA, USA
| | - Glenn N Sivits
- Department of Cardiometabolic Disorders, Amgen Research, Thousand Oaks, CA, USA
| | - Aerielle B Ben
- Department of Cardiometabolic Disorders, Amgen Research, Thousand Oaks, CA, USA
| | - Larissa I Atangan
- Department of Cardiometabolic Disorders, Amgen Research, Thousand Oaks, CA, USA
| | - Rajaa Hussien
- Department of Translational Safety and Bioanalytical Sciences, Amgen Research, South San Francisco, CA, USA
| | - Amy Tang
- Department of Translational Safety and Bioanalytical Sciences, Amgen Research, South San Francisco, CA, USA
| | - Artem Shkumatov
- Department of Translational Safety and Bioanalytical Sciences, Amgen Research, South San Francisco, CA, USA
| | - Chi-Ming Li
- Department of Research Technologies, Amgen Research, South San Francisco, CA, USA
| | - Daniel J Drucker
- The Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Murielle M Véniant
- Department of Cardiometabolic Disorders, Amgen Research, Thousand Oaks, CA, USA.
| |
Collapse
|
2
|
Kim MS, Choi SH, Park HY, Jang SY, Ko J, Kim JW, Yoon JS. Role of SerpinA3 in the Pathogenesis of Graves' Orbitopathy in Orbital Fibroblasts. Invest Ophthalmol Vis Sci 2025; 66:20. [PMID: 40202736 PMCID: PMC11993136 DOI: 10.1167/iovs.66.4.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 03/16/2025] [Indexed: 04/10/2025] Open
Abstract
Purpose We investigated the implications of SerpinA3, a secretory serine protease inhibitor, in inflammation and adipogenesis of Graves' orbitopathy (GO). To identify its precise function in GO pathogenesis, we evaluated the role of SerpinA3 in the inflammation and adipogenesis of GO. Methods SerpinA3 expression was compared between GO (n = 30) and normal participants (n = 28) in orbital tissue explants using real-time PCR. Orbital fibroblasts from GO (n = 3) and normal participants (n = 3) were transfected with or without small interfering RNA against SerpinA3 before IL-1β stimulation. Western blotting assessed inflammatory cytokine and signaling molecule expression. Adipogenic differentiation was assessed using Oil Red O staining, and adipogenic marker expression was determined through Western blotting. Enzyme-linked immunosorbent assay was used to compare prostaglandin E2 (PGE2) and hyaluronan levels in GO (n = 4) and normal participants (n = 3). Results SerpinA3 transcript levels were significantly higher in GO orbital tissues. Silencing SerpinA3 suppressed the IL-1β-induced expression of IL-6, IL-8, monocyte chemotactic protein 1, intercellular adhesion molecule 1, cyclooxygenase 2, and PGE2 and attenuated the levels of phosphorylated nuclear factor κB, Akt, extracellular signal-regulated kinase, p38, and c-Jun N-terminal kinase. Moreover, silencing SerpinA3 reduced hyaluronan production, adipogenic differentiation, and adipogenic marker expression, including peroxisome proliferator-activated receptor-γ, CCAAT/enhancer-binding proteins α and β, adipocyte protein 2, adiponectin, and leptin. Conclusions Silencing SerpinA3 attenuated the expression of proinflammatory mediators, adipogenic differentiation, and hyaluronan production. Our results indicate that SerpinA3 plays a significant role in GO and may serve as a novel therapeutic target.
Collapse
Affiliation(s)
- Min Seok Kim
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Soo Hyun Choi
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyun Young Park
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sun Young Jang
- Department of Ophthalmology, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Republic of Korea
| | - JaeSang Ko
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jae-woo Kim
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, Korea
| | - Jin Sook Yoon
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
3
|
An Y, Cao Z, Du Y, Xu G, Wang J, Ma Y, Wang Z, Zheng J, Lu Y. SERPINA3: A Novel Therapeutic Target for Diabetes-Related Cognitive Impairment Identified Through Integrated Machine Learning and Molecular Docking Analysis. Int J Mol Sci 2025; 26:1947. [PMID: 40076571 PMCID: PMC11899970 DOI: 10.3390/ijms26051947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 02/19/2025] [Accepted: 02/22/2025] [Indexed: 03/14/2025] Open
Abstract
Diabetes-related cognitive impairment (DCI) is a severe complication of type 2 diabetes mellitus (T2DM), with limited understanding of its molecular mechanisms hindering effective therapeutic development. This study identified SERPINA3 as a potential therapeutic target for DCI through integrated machine learning and molecular docking analyses. Transcriptomic data from cortical neuronal samples of T2DM patients were analysed using support vector machine recursive feature elimination (SVM-RFE) and least absolute shrinkage and selection operator (LASSO) regression, revealing SERPINA3 as a significantly upregulated gene in DCI. Experimental validation via Western blot confirmed elevated SERPINA3 protein levels in DCI patient plasma. Molecular docking demonstrated the stable binding of sulfonylurea hypoglycaemic agents, such as gliclazide and glimepiride, to SERPINA3, with binding energies of -6.8 and -6.6 kcal/mol, respectively. These findings suggest that SERPINA3 plays a pivotal role in DCI pathogenesis and that sulfonylurea drugs may exert neuroprotective effects through SERPINA3-mediated pathways. This study provides novel insights into the molecular mechanisms of DCI and highlights the potential of SERPINA3-targeted therapies for early intervention and treatment. Further research is warranted to validate these findings in larger cohorts and explore their clinical applicability.
Collapse
Affiliation(s)
- Yu An
- Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China;
| | - Zhaoming Cao
- School of Nursing, Peking University, Beijing 100191, China; (Z.C.); (G.X.); (J.W.)
| | - Yage Du
- School of Nursing, Peking University, Beijing 100191, China; (Z.C.); (G.X.); (J.W.)
| | - Guangyi Xu
- School of Nursing, Peking University, Beijing 100191, China; (Z.C.); (G.X.); (J.W.)
| | - Jingya Wang
- School of Nursing, Peking University, Beijing 100191, China; (Z.C.); (G.X.); (J.W.)
| | - Yinchao Ma
- NHC Key Laboratory of Medical Immunology, School of Basic Medical Sciences, Peking University, Beijing 100191, China (Z.W.)
- Beijing Life Science Academy, Beijing 100191, China
| | - Ziyuan Wang
- NHC Key Laboratory of Medical Immunology, School of Basic Medical Sciences, Peking University, Beijing 100191, China (Z.W.)
| | - Jie Zheng
- School of Nursing, Peking University, Beijing 100191, China; (Z.C.); (G.X.); (J.W.)
| | - Yanhui Lu
- School of Nursing, Peking University, Beijing 100191, China; (Z.C.); (G.X.); (J.W.)
| |
Collapse
|
4
|
Zhu J, Huang L, Zhang W, Li H, Yang Y, Lin Y, Zhang C, Du Z, Xiang H, Wang Y. Single-nucleus transcriptional profiling reveals TCF7L2 as a key regulator in adipogenesis in goat skeletal muscle development. Int J Biol Macromol 2024; 281:136326. [PMID: 39389483 DOI: 10.1016/j.ijbiomac.2024.136326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/11/2024] [Accepted: 10/03/2024] [Indexed: 10/12/2024]
Abstract
Intramuscular adipogenesis plays an important role in muscle development, which determines the quality of goat meat. However, its underlying cellular and molecular mechanisms remain poorly understood. In this study, we provided detailed cellular atlases of goat longissimus dorsi during muscle development at single-nucleus resolution, and identified the subpopulations of fibroblasts/fibro-adipogenic progenitors (FAPs) and muscle satellite cell (MuSC), as well as the differentiation trajectory of FAPs subpopulations. Cellular ligand-receptor interaction analysis revealed enriched BMP and IGF pathways implicated in within-tissue crosstalk centered around FAPs. Through single-nucleus gene regulatory network analysis and in vitro interference verification, we found that TCF7L2 was a critical transcriptional factor (TF) in early adipogenesis in skeletal muscle. Overall, our work reveals the cellular intricacies and diversity of goat longissimus dorsi during muscle development, implementing insights into the critical roles of BMP, IGF pathways and TCF7L2 TF in intramuscular adipogenesis.
Collapse
Affiliation(s)
- Jiangjiang Zhu
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu, China
| | - Lian Huang
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu, China
| | - Wenyang Zhang
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu, China
| | - Haiyang Li
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu, China
| | - Yuling Yang
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu, China
| | - Yaqiu Lin
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu, China
| | - Changhui Zhang
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu, China
| | - Zhanyu Du
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu, China
| | - Hua Xiang
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu, China
| | - Yong Wang
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu, China; Sichuan Qinghai Tibet Plateau Herbivore Livestock Engineering Technology Center, Southwest Minzu University, Chengdu, China.
| |
Collapse
|
5
|
Lugtmeijer C, Bowtell JL, O’Leary M. Tissue-Level Effect of Andrographis and Ashwagandha Metabolites on Metabolic and Inflammatory Gene Expression in Skeletal Muscle and Adipose Tissue: An Ex Vivo/In Vitro Investigation. Nutrients 2024; 16:2291. [PMID: 39064738 PMCID: PMC11279956 DOI: 10.3390/nu16142291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Adipose tissue and skeletal muscle dysfunction play a central role in cardiometabolic morbidity. Ashwagandha and Andrographis are purported to have anti-inflammatory and antioxidant activity, but this is based on exposure of cells to the parent compounds ignoring phytochemical absorption and metabolism. We explored the anti-inflammatory/antioxidant effects of ashwagandha and Andrographis in ex vivo human models of skeletal muscle and adipose tissue. Healthy participants supplemented with 2000 mg/day Andrographis (n = 10) or 1100 mg/day ashwagandha (n = 10) for 28 days. Sera collected pre (D0) and post (D28) supplementation were pooled by timepoint and added to adipose explant (AT) and primary human myotube (SKMC) culture media (15% v/v) for treatment. A Taqman panel of 56 genes was used to quantify these. In AT, treatment with ashwagandha sera decreased the expression of genes involved in antioxidant defence and inflammatory response (CCL5, CD36, IL6, IL10, ADIPOQ, NFEL2, UCP2, GPX3, GPX4; geometric 95% CI for fold change > 1) and altered the expression of genes involved in fatty acid metabolism. In SKMC, ashwagandha sera altered FOXO1 and SREBF1 expression. Andrographis sera decreased IL18 and SERPINEA3 expression in AT. This physiologically relevant in vitro screening characterises the effects of ashwagandha in AT to guide future clinical trials.
Collapse
Affiliation(s)
| | | | - Mary O’Leary
- Faculty of Health and Life Sciences, Department of Public Health and Sport Sciences, University of Exeter, Exeter EX1 2LU, UK; (C.L.); (J.L.B.)
| |
Collapse
|
6
|
Alhaddad H, Ospina OE, Khaled ML, Ren Y, Vallebuona E, Boozo MB, Forsyth PA, Pina Y, Macaulay R, Law V, Tsai KY, Cress WD, Fridley B, Smalley I. Spatial transcriptomics analysis identifies a tumor-promoting function of the meningeal stroma in melanoma leptomeningeal disease. Cell Rep Med 2024; 5:101606. [PMID: 38866016 PMCID: PMC11228800 DOI: 10.1016/j.xcrm.2024.101606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/08/2024] [Accepted: 05/16/2024] [Indexed: 06/14/2024]
Abstract
Leptomeningeal disease (LMD) remains a rapidly lethal complication for late-stage melanoma patients. Here, we characterize the tumor microenvironment of LMD and patient-matched extra-cranial metastases using spatial transcriptomics in a small number of clinical specimens (nine tissues from two patients) with extensive in vitro and in vivo validation. The spatial landscape of melanoma LMD is characterized by a lack of immune infiltration and instead exhibits a higher level of stromal involvement. The tumor-stroma interactions at the leptomeninges activate tumor-promoting signaling, mediated through upregulation of SERPINA3. The meningeal stroma is required for melanoma cells to survive in the cerebrospinal fluid (CSF) and promotes MAPK inhibitor resistance. Knocking down SERPINA3 or inhibiting the downstream IGR1R/PI3K/AKT axis results in tumor cell death and re-sensitization to MAPK-targeting therapy. Our data provide a spatial atlas of melanoma LMD, identify the tumor-promoting role of meningeal stroma, and demonstrate a mechanism for overcoming microenvironment-mediated drug resistance in LMD.
Collapse
Affiliation(s)
- Hasan Alhaddad
- Department of Metabolism and Physiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Oscar E Ospina
- Department of Biostatistics and Bioinformatics at the Moffitt Cancer Center, Tampa, FL, USA
| | - Mariam Lotfy Khaled
- Department of Metabolism and Physiology, Moffitt Cancer Center, Tampa, FL, USA; Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Yuan Ren
- Department of Metabolism and Physiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Ethan Vallebuona
- Department of Metabolism and Physiology, Moffitt Cancer Center, Tampa, FL, USA; Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL, USA
| | | | - Peter A Forsyth
- Department of Tumor Biology, Moffitt Cancer Center, Tampa, FL, USA; Department of NeuroOncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Yolanda Pina
- Department of NeuroOncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Robert Macaulay
- Department of Pathology, Moffitt Cancer Center, Tampa, FL, USA
| | - Vincent Law
- Department of Tumor Biology, Moffitt Cancer Center, Tampa, FL, USA; Department of NeuroOncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Kenneth Y Tsai
- Department of Pathology, Moffitt Cancer Center, Tampa, FL, USA
| | - W Douglas Cress
- Department of Molecular Oncology at the Moffitt Cancer Center, Tampa, FL, USA
| | - Brooke Fridley
- Department of Biostatistics and Bioinformatics at the Moffitt Cancer Center, Tampa, FL, USA; Division of Health Services & Outcomes Research, Children's Mercy Hospital, Kansas City, MO 64108, USA.
| | - Inna Smalley
- Department of Metabolism and Physiology, Moffitt Cancer Center, Tampa, FL, USA; Department of Cutaneous Oncology at the Moffitt Cancer Center, Tampa, FL, USA.
| |
Collapse
|
7
|
Argentato PP, Guerra JVDS, Luzia LA, Ramos ES, Maschietto M, Rondó PHDC. Integrative network analysis of differentially methylated regions to study the impact of gestational weight gain on maternal metabolism and fetal-neonatal growth. Genet Mol Biol 2024; 47:e20230203. [PMID: 38530405 PMCID: PMC10993311 DOI: 10.1590/1678-4685-gmb-2023-0203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 02/10/2024] [Indexed: 03/28/2024] Open
Abstract
Integrative network analysis (INA) is important for identifying gene modules or epigenetically regulated molecular pathways in diseases. This study evaluated the effect of excessive gestational weight gain (EGWG) on INA of differentially methylated regions, maternal metabolism and offspring growth. Brazilian women from "The Araraquara Cohort Study" with adequate pre-pregnancy body mass index were divided into EGWG (n=30) versus adequate gestational weight gain (AGWG, n=45) groups. The methylome analysis was performed on maternal blood using the Illumina MethylationEPIC BeadChip. Fetal-neonatal growth was assessed by ultrasound and anthropometry, respectively. Maternal lipid and glycemic profiles were investigated. Maternal triglycerides-TG (p=0.030) and total cholesterol (p=0.014); fetus occipito-frontal diameter (p=0.005); neonate head circumference-HC (p=0.016) and thoracic perimeter (p=0.020) were greater in the EGWG compared to the AGWG group. Multiple linear regression analysis showed that maternal DNA methylation was associated with maternal TG and fasting insulin, fetal abdominal circumference, and fetal and neonate HC. The DMRs studied were enriched in 142 biological processes, 21 molecular functions,and 17 cellular components with terms directed for the fatty acids metabolism. Three DMGMs were identified:COL3A1, ITGA4 and KLRK1. INA targeted chronic diseases and maternal metabolism contributing to an epigenetic understanding of the involvement of GWG in maternal metabolism and fetal-neonatal growth.
Collapse
Affiliation(s)
- Perla Pizzi Argentato
- Universidade de São Paulo, Faculdade de Saúde Pública, Departamento de Nutrição, São Paulo, SP, Brazil
| | - João Victor da Silva Guerra
- Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Laboratório Nacional de Biociências (LNBio). Campinas, SP, Brazil
- Universidade Estadual de Campinas, Faculdade de Ciências Farmacêuticas, Programa de Pós-Graduação em Ciências Farmacêuticas, Campinas, SP, Brazil
| | - Liania Alves Luzia
- Universidade de São Paulo, Faculdade de Saúde Pública, Departamento de Nutrição, São Paulo, SP, Brazil
| | - Ester Silveira Ramos
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Genética, Ribeirão Preto, SP, Brazil
| | - Mariana Maschietto
- Universidade Estadual de Campinas, Instituto de Biologia, Departamento de Biologia Estrutural e Funcional, Campinas, SP, Brazil
- Centro Infantil Boldrini, Campinas, SP, Brazil
| | | |
Collapse
|
8
|
Alhaddad H, Ospina OE, Khaled ML, Ren Y, Forsyth P, Pina Y, Macaulay R, Law V, Tsai KY, Cress WD, Fridley B, Smalley I. Spatial transcriptomics analysis identifies a unique tumor-promoting function of the meningeal stroma in melanoma leptomeningeal disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.18.572266. [PMID: 38187574 PMCID: PMC10769278 DOI: 10.1101/2023.12.18.572266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Leptomeningeal disease (LMD) remains a rapidly lethal complication for late-stage melanoma patients. The inaccessible nature of the disease site and lack of understanding of the biology of this unique metastatic site are major barriers to developing efficacious therapies for patients with melanoma LMD. Here, we characterize the tumor microenvironment of the leptomeningeal tissues and patient-matched extra-cranial metastatic sites using spatial transcriptomic analyses with in vitro and in vivo validation. We show the spatial landscape of melanoma LMD to be characterized by a lack of immune infiltration and instead exhibit a higher level of stromal involvement. We show that the tumor-stroma interactions at the leptomeninges activate pathways implicated in tumor-promoting signaling, mediated through upregulation of SERPINA3 at the tumor-stroma interface. Our functional experiments establish that the meningeal stroma is required for melanoma cells to survive in the CSF environment and that these interactions lead to a lack of MAPK inhibitor sensitivity in the tumor. We show that knocking down SERPINA3 or inhibiting the downstream IGR1R/PI3K/AKT axis results in re-sensitization of the tumor to MAPK-targeting therapy and tumor cell death in the leptomeningeal environment. Our data provides a spatial atlas of melanoma LMD, identifies the tumor-promoting role of meningeal stroma, and demonstrates a mechanism for overcoming microenvironment-mediated drug resistance unique to this metastatic site.
Collapse
Affiliation(s)
- Hasan Alhaddad
- Department of Metabolism and Physiology at the Moffitt Cancer Center, Tampa, Florida, USA
| | - Oscar E. Ospina
- Department of Biostatistics and Bioinformatics at the Moffitt Cancer Center, Tampa, Florida, USA
| | - Mariam Lotfy Khaled
- Department of Metabolism and Physiology at the Moffitt Cancer Center, Tampa, Florida, USA
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Egypt
| | - Yuan Ren
- Department of Metabolism and Physiology at the Moffitt Cancer Center, Tampa, Florida, USA
| | - Peter Forsyth
- Department of Tumor Biology at the Moffitt Cancer Center, Tampa, Florida, USA
- Department of NeuroOncology at the Moffitt Cancer Center, Tampa, Florida, USA
| | - Yolanda Pina
- Department of NeuroOncology at the Moffitt Cancer Center, Tampa, Florida, USA
| | - Robert Macaulay
- Department of Pathology at the Moffitt Cancer Center, Tampa, Florida, USA
| | - Vincent Law
- Department of Tumor Biology at the Moffitt Cancer Center, Tampa, Florida, USA
- Department of NeuroOncology at the Moffitt Cancer Center, Tampa, Florida, USA
| | - Kenneth Y. Tsai
- Department of Pathology at the Moffitt Cancer Center, Tampa, Florida, USA
| | - W Douglas Cress
- Department of Molecular Oncology at the Moffitt Cancer Center, Tampa, Florida, USA
| | - Brooke Fridley
- Department of Biostatistics and Bioinformatics at the Moffitt Cancer Center, Tampa, Florida, USA
- Division of Health Services & Outcomes Research, Children’s Mercy Hospital, Kansas City, MO 64108
| | - Inna Smalley
- Department of Metabolism and Physiology at the Moffitt Cancer Center, Tampa, Florida, USA
- Department of Cutaneous Oncology at the Moffitt Cancer Center, Tampa, Florida, USA
| |
Collapse
|
9
|
Li Y, Guo L. The versatile role of Serpina3c in physiological and pathological processes: a review of recent studies. Front Endocrinol (Lausanne) 2023; 14:1189007. [PMID: 37288300 PMCID: PMC10242157 DOI: 10.3389/fendo.2023.1189007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 05/10/2023] [Indexed: 06/09/2023] Open
Abstract
Murine Serpina3c belongs to the family of serine protease inhibitors (Serpins), clade "A" and its human homologue is SerpinA3. Serpina3c is involved in some physiological processes, including insulin secretion and adipogenesis. In the pathophysiological process, the deletion of Serpina3c leads to more severe metabolic disorders, such as aggravated non-alcoholic fatty liver disease (NAFLD), insulin resistance and obesity. In addition, Serpina3c can improve atherosclerosis and regulate cardiac remodeling after myocardial infarction. Many of these processes are directly or indirectly mediated by its inhibition of serine protease activity. Although its function has not been fully revealed, recent studies have shown its potential research value. Here, we aimed to summarize recent studies to provide a clearer view of the biological roles and the underlying mechanisms of Serpina3c.
Collapse
Affiliation(s)
| | - Liang Guo
- School of Exercise and Health and Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
10
|
Hou X, Zhang Z, Ma Y, Jin R, Yi B, Yang D, Ma L. Mechanism of hydroxysafflor yellow A on acute liver injury based on transcriptomics. Front Pharmacol 2022; 13:966759. [PMID: 36120318 PMCID: PMC9478418 DOI: 10.3389/fphar.2022.966759] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Objective: To investigate how Hydroxysafflor yellow A (HSYA) effects acute liver injury (ALI) and what transcriptional regulatory mechanisms it may employ.Methods: Rats were randomly divided into five groups (n = 10): Control, Model, HSYA-L, HSYA-M, and HSYA-H. In the control and model groups, rats were intraperitoneally injected with equivalent normal saline, while in the HSYA groups, they were also injected with different amounts of HSYA (10, 20, and 40 mg/kg/day) once daily for eight consecutive days. One hour following the last injection, the control group was injected into the abdominal cavity with 0.1 ml/100 g of peanut oil, and the other four groups got the same amount of a peanut oil solution containing 50% CCl4. Liver indexes were detected in rats after dissection, and hematoxylin and eosin (HE) dyeing was utilized to determine HSYA’s impact on the liver of model rats. In addition, with RNA-Sequencing (RNA-Seq) technology and quantitative real-time PCR (qRT-PCR), differentially expressed genes (DEGs) were discovered and validated. Furthermore, we detected the contents of anti-superoxide anion (anti-O2−) and hydrogen peroxide (H2O2), and verified three inflammatory genes (Icam1, Bcl2a1, and Ptgs2) in the NF-kB pathway by qRT-PCR.Results: Relative to the control and HSYA groups, in the model group, we found 1111 DEGs that were up-/down-regulated, six of these genes were verified by qRT-PCR, including Tymp, Fabp7, Serpina3c, Gpnmb, Il1r1, and Creld2, indicated that these genes were obviously involved in the regulation of HSYA in ALI model. Membrane rafts, membrane microdomains, inflammatory response, regulation of cytokine production, monooxygenase activity, and iron ion binding were significantly enriched in GO analysis. KEGG analysis revealed that DEGs were primarily enriched for PPAR, retinol metabolism, NF-kB signaling pathways, etc. Last but not least, compared with the control group, the anti-O2− content was substantially decreased, the H2O2 content and inflammatory genes (Icam1, Bcl2a1, and Ptgs2) levels were considerably elevated in the model group. Compared with the model group, the anti-O2− content was substantially increased, the H2O2 content and inflammatory genes (Icam1, Bcl2a1, and Ptgs2) levels were substantially decreased in the HSYA group (p < 0.05).Conclusion: HSYA could improve liver function, inhibit oxidative stress and inflammation, and improve the degree of liver tissue damage. The RNA-Seq results further verified that HSYA has the typical characteristics of numerous targets and multiple pathway. Protecting the liver from damage by regulating the expression of Tymp, Fabp7, Serpina3c, Gpnmb, Il1r1, Creld2, and the PPAR, retinol metabolism, NF-kappa B signaling pathways.
Collapse
|
11
|
Li BY, Guo YY, Xiao G, Guo L, Tang QQ. SERPINA3C ameliorates adipose tissue inflammation through the Cathepsin G/Integrin/AKT pathway. Mol Metab 2022; 61:101500. [PMID: 35436587 PMCID: PMC9062745 DOI: 10.1016/j.molmet.2022.101500] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/10/2022] [Accepted: 04/13/2022] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE Due to the increasing prevalence of obesity and insulin resistance, there is an urgent need for better treatment of obesity and its related metabolic disorders. This study aimed to elucidate the role of SERPINA3C, an adipocyte secreted protein, in obesity and related metabolic disorders. METHODS Male wild type (WT) and knockout (KO) mice were fed with high-fat diet (HFD) for 16 weeks, adiposity, insulin resistance, and inflammation were assessed. AAV-mediated overexpression of SERPINA3C was injected locally in inguinal white adipose tissue (iWAT) to examine the effect of SERPINA3C. In vitro analyses were conducted in 3T3-L1 adipocytes to explore the molecular pathways underlying the function of SERPINA3C. RESULTS Functional exploration of the SERPINA3C knockout mice revealed that SERPINA3C deficiency led to an impaired metabolic phenotype (more severe obesity, lower metabolic rates, worse glucose intolerance and insulin insensitivity), which was associated with anabatic inflammation and apoptosis of white adipose tissues. Consistent with these results, overexpression of SERPINA3C in inguinal adipose tissue protected mice against diet-induced obesity and metabolic disorders with less inflammation and apoptosis in adipose tissue. Mechanistically, SERPINA3C inhibited Cathepsin G activity, acting as a serine protease inhibitor, which blocked Cathepsin G-mediated turnover of α5/β1 Integrin protein. Then, the preserved integrity (increase) of α5/β1 Integrin signaling activated AKT to decrease JNK phosphorylation, thereby inhibiting inflammation and promoting insulin sensitivity in adipocytes. CONCLUSIONS/INTERPRETATION These findings demonstrate a previously unknown SERPINA3C/Cathepsin G/Integrin/AKT pathway in regulating adipose tissue inflammation, and suggest the therapeutic potential of targeting SERPINA3C/Cathepsin G axis in adipose tissue for the treatment of obesity and metabolic diseases.
Collapse
Affiliation(s)
- Bai-Yu Li
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Ying-Ying Guo
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Gang Xiao
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Liang Guo
- School of Kinesiology, and Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, 200438, China.
| | - Qi-Qun Tang
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
12
|
Qian LL, Ji JJ, Jiang Y, Guo JQ, Wu Y, Yang Z, Ma G, Yao YY. Serpina3c deficiency induced necroptosis promotes non‐alcoholic fatty liver disease through β‐catenin/Foxo1/TLR4 signaling. FASEB J 2022; 36:e22316. [PMID: 35429042 DOI: 10.1096/fj.202101345rrr] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 03/23/2022] [Accepted: 04/04/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Ling Lin Qian
- Department of Cardiology Zhongda Hospital, School of Medicine, Southeast University Nanjing China
| | - Jing Jing Ji
- Department of Cardiology Zhongda Hospital, School of Medicine, Southeast University Nanjing China
| | - Yu Jiang
- Department of Cardiology Zhongda Hospital, School of Medicine, Southeast University Nanjing China
| | - Jia Qi Guo
- Department of Cardiology Zhongda Hospital, School of Medicine, Southeast University Nanjing China
| | - Ya Wu
- Department of Cardiology Zhongda Hospital, School of Medicine, Southeast University Nanjing China
| | - Ziwei Yang
- Department of Cardiology Zhongda Hospital, School of Medicine, Southeast University Nanjing China
| | - Gen Shan Ma
- Department of Cardiology Zhongda Hospital, School of Medicine, Southeast University Nanjing China
| | - Yu Yu Yao
- Department of Cardiology Zhongda Hospital, School of Medicine, Southeast University Nanjing China
| |
Collapse
|
13
|
Guo J, Qian L, Ji J, Ji Z, Jiang Y, Wu Y, Yang Z, Ma G, Yao Y. Serpina3c regulates adipose differentiation via the Wnt/β-catenin-PPARγ pathway. Cell Signal 2022; 93:110299. [PMID: 35263629 DOI: 10.1016/j.cellsig.2022.110299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/22/2022] [Accepted: 03/01/2022] [Indexed: 12/15/2022]
Abstract
OBJECTIVE The Serpin protein family plays an important role in regulating the functioning of the adipose tissue. This study aimed to study the underlying mechanisms of Serpina3c in regulating adipogenesis. METHODS We developed a Serpina3c knockout (Serpina3c-/-) mouse model and Serpina3c knockdown and overexpression 3 T3-L1 preadipocyte models to evaluate the role of Serpina3c in adipose differentiation. Mice were fed on ND for 12-month or HFD for one month. The body weight, glucose tolerance, and insulin tolerance of the mice were subsequently measured. Lipid depositions and adipose tissue morphology were then detected using Oil red O staining and HE staining. qRT-PCR and Western blot were used to detect the expression of adipose differentiation transcription factors. RESULTS Serpina3c-/- mice exhibited lower body weight and white adipose tissue (WAT) weight than WT mice after 12 months of being fed on ND. Additionally, there was an increase in serum and hepatic triglyceride (TG) levels in Serpina3c-/- mice, without changes in glucose metabolism. Wnt/β-catenin was upregulated while PPARγ expression was decreased in knockout mice WAT. Impaired adipocyte differentiation caused by Serpina3c knockdown was reversed by IWR-1 and kallistatin through an increase in PPARγ expression. Serpina3c-/- mice fed on HFD for one month had a lower body weight and WAT than WT, accompanied by increased lipid depositions in the liver and muscles and severe insulin resistance. CONCLUSION Serpina3c promotes adipogenesis and maintains normal fat function by inhibiting the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Jiaqi Guo
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao, Nanjing, Jiangsu 210009, China
| | - Linglin Qian
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao, Nanjing, Jiangsu 210009, China
| | - Jingjing Ji
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao, Nanjing, Jiangsu 210009, China
| | - Zhenjun Ji
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao, Nanjing, Jiangsu 210009, China
| | - Yu Jiang
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao, Nanjing, Jiangsu 210009, China
| | - Ya Wu
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao, Nanjing, Jiangsu 210009, China
| | - Ziwei Yang
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao, Nanjing, Jiangsu 210009, China
| | - Genshan Ma
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao, Nanjing, Jiangsu 210009, China
| | - Yuyu Yao
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao, Nanjing, Jiangsu 210009, China.
| |
Collapse
|
14
|
Mao F, Wang E, Xu J, Lu J, Yan G, Fu L, Jiao Y, Wu L, Liu T, Li Y. Transcriptome Analysis of Multiple Metabolic Tissues in High-Salt Diet-Fed Mice. Front Endocrinol (Lausanne) 2022; 13:887843. [PMID: 35655797 PMCID: PMC9152432 DOI: 10.3389/fendo.2022.887843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/01/2022] [Indexed: 11/17/2022] Open
Abstract
High-salt diet (HSD) is associated with dysregulated metabolism and metabolic disorders. Although previous studies have indicated its effect on metabolic tissues, the involving molecular mechanisms are not quite understood. In the present study, we provided a comprehensive transcriptome analysis on multiple metabolic tissues of HSD-fed mouse model by RNA sequencing. We observed that several genes associated with de novo lipogenesis and cholesterol biosynthesis were significantly downregulated in white adipose tissue and liver tissue of HSD mice group, such as Fasn, Scd1, Acaca, and Thrsp. Furthermore, combined with secretome datasets, our results further demonstrated that HSD could alter expression levels of organokines in metabolic tissues, for example, Tsk and Manf, in liver tissue and, thus, possibly mediate cross-talk between different metabolic tissues. Our study provided new insight about molecular signatures of HSD on multiple metabolic tissues.
Collapse
Affiliation(s)
- Fei Mao
- School of Life Sciences, Fudan University, Shanghai, China
| | - E. Wang
- Department of Laboratory Animal Science, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jing Xu
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jin Lu
- Department of Laboratory Animal Science, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guofeng Yan
- Department of Laboratory Animal Science, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Li Fu
- Department of Laboratory Animal Science, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yang Jiao
- Department of Laboratory Animal Science, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ling Wu
- Department of Assisted Reproduction, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Yao Li, ; Tiemin Liu, ; Ling Wu,
| | - Tiemin Liu
- School of Life Sciences, Fudan University, Shanghai, China
- *Correspondence: Yao Li, ; Tiemin Liu, ; Ling Wu,
| | - Yao Li
- Department of Laboratory Animal Science, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Yao Li, ; Tiemin Liu, ; Ling Wu,
| |
Collapse
|
15
|
Effect of repeated bouts of fasting and refeeding on body composition and proteolysis gene expression in skeletal muscles and liver of C57BL/6J mice. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00873-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Mae J, Nagaya K, Okamatsu-Ogura Y, Tsubota A, Matsuoka S, Nio-Kobayashi J, Kimura K. Adipocytes and Stromal Cells Regulate Brown Adipogenesis Through Secretory Factors During the Postnatal White-to-Brown Conversion of Adipose Tissue in Syrian Hamsters. Front Cell Dev Biol 2021; 9:698692. [PMID: 34291052 PMCID: PMC8287570 DOI: 10.3389/fcell.2021.698692] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/07/2021] [Indexed: 11/13/2022] Open
Abstract
Brown adipose tissue (BAT) is a specialized tissue that regulates non-shivering thermogenesis. In Syrian hamsters, interscapular adipose tissue is composed primarily of white adipocytes at birth, which is converted to BAT through the proliferation and differentiation of brown adipocyte progenitors and the simultaneous disappearance of white adipocytes. In this study, we investigated the regulatory mechanism of brown adipogenesis during postnatal BAT formation in hamsters. Interscapular adipose tissue of a 10-day-old hamster, which primarily consists of brown adipocyte progenitors and white adipocytes, was digested with collagenase and fractioned into stromal–vascular (SV) cells and white adipocytes. SV cells spontaneously differentiated into brown adipocytes that contained multilocular lipid droplets and expressed uncoupling protein 1 (Ucp1), a marker of brown adipocytes, without treatment of adipogenic cocktail such as dexamethasone and insulin. The spontaneous differentiation of SV cells was suppressed by co-culture with adipocytes or by the addition of white adipocyte-conditioned medium. Conversely, the addition of SV cell-conditioned medium increased the expression of Ucp1. These results indicate that adipocytes secrete factors that suppress brown adipogenesis, whereas SV cells secrete factors that promote brown adipogenesis. Transcriptome analysis was conducted; however, no candidate suppressing factors secreted from adipocytes were identified. In contrast, 19 genes that encode secretory factors, including bone morphogenetic protein (BMP) family members, BMP3B, BMP5, and BMP7, were highly expressed in SV cells compared with adipocytes. Furthermore, the SMAD and MAPK signaling pathways, which represent the major BMP signaling pathways, were activated in SV cells, suggesting that BMPs secreted from SV cells induce brown adipogenesis in an autocrine manner through the SMAD/MAPK signaling pathways. Treatment of 5-day-old hamsters with type I BMP receptor inhibitor, LDN-193189, for 5 days reduced p38 MAPK phosphorylation and drastically suppressed BAT formation of interscapular adipose tissue. In conclusion, adipocytes and stromal cells regulate brown adipogenesis through secretory factors during the postnatal white-to-brown conversion of adipose tissue in Syrian hamsters.
Collapse
Affiliation(s)
- Junnosuke Mae
- Laboratory of Biochemistry, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Kazuki Nagaya
- Laboratory of Biochemistry, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Yuko Okamatsu-Ogura
- Laboratory of Biochemistry, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Ayumi Tsubota
- Laboratory of Biochemistry, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Shinya Matsuoka
- Laboratory of Biochemistry, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Junko Nio-Kobayashi
- Laboratory of Histology and Cytology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Kazuhiro Kimura
- Laboratory of Biochemistry, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
17
|
Qian LL, Ji JJ, Guo JQ, Wu YP, Ma GS, Yao YY. Protective role of serpina3c as a novel thrombin inhibitor against atherosclerosis in mice. Clin Sci (Lond) 2021; 135:447-463. [PMID: 33458764 DOI: 10.1042/cs20201235] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 01/13/2021] [Accepted: 01/18/2021] [Indexed: 12/26/2022]
Abstract
Abnormal vascular smooth muscle cell (VSMC) proliferation is a critical step in the development of atherosclerosis. Serpina3c is a serine protease inhibitor (serpin) that plays a key role in metabolic diseases. The present study aimed to investigate the role of serpina3c in atherosclerosis and regulation of VSMC proliferation and possible mechanisms. Serpina3c is down-regulated during high-fat diet (HFD)-induced atherosclerosis. An Apoe-/-/serpina3c-/--double-knockout mouse model was used to determine the role of serpina3c in atherosclerosis after HFD for 12 weeks. Compared with Apoe-/- mice, the Apoe-/-/serpina3c-/- mice developed more severe atherosclerosis, and the number of VSMCs and macrophages in aortic plaques was significantly increased. The present study revealed serpina3c as a novel thrombin inhibitor that suppressed thrombin activity. In circulating plasma, thrombin activity was high in the Apoe-/-/serpina3c-/- mice, compared with Apoe-/- mice. Immunofluorescence staining showed thrombin and serpina3c colocalization in the liver and aortic cusp. In addition, inhibition of thrombin by dabigatran in serpina3c-/- mice reduced neointima lesion formation due to partial carotid artery ligation. Moreover, an in vitro study confirmed that thrombin activity was also decreased by serpina3c protein, supernatant and cell lysate that overexpressed serpina3c. The results of experiments showed that serpina3c negatively regulated VSMC proliferation in culture. The possible mechanism may involve serpina3c inhibition of ERK1/2 and JNK signaling in thrombin/PAR-1 system-mediated VSMC proliferation. Our results highlight a protective role for serpina3c as a novel thrombin inhibitor in the development of atherosclerosis, with serpina3c conferring protection through the thrombin/PAR-1 system to negatively regulate VSMC proliferation through ERK1/2 and JNK signaling.
Collapse
Affiliation(s)
- Ling-Lin Qian
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao, Nanjing, Jiangsu 210009, China
| | - Jing-Jing Ji
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao, Nanjing, Jiangsu 210009, China
| | - Jia-Qi Guo
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao, Nanjing, Jiangsu 210009, China
| | - Yan-Ping Wu
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao, Nanjing, Jiangsu 210009, China
| | - Gen-Shan Ma
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao, Nanjing, Jiangsu 210009, China
| | - Yu-Yu Yao
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao, Nanjing, Jiangsu 210009, China
| |
Collapse
|