1
|
Fakih Z, Germain H. Implication of ribosomal protein in abiotic and biotic stress. PLANTA 2025; 261:85. [PMID: 40067484 DOI: 10.1007/s00425-025-04665-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 03/03/2025] [Indexed: 03/29/2025]
Abstract
MAIN CONCLUSION This review article explores the intricate role, and regulation of ribosomal protein in response to stress, particularly emphasizing their pivotal role to ameliorate abiotic and biotic stress conditions in crop plants. Plants must coordinate ribosomes production to balance cellular protein synthesis in response to environmental variations and pathogens invasion. Over the past decade, research has revealed ribosome subgroups respond to adverse conditions, suggesting that this tight coordination may be grounded in the induction of ribosome variants resulting in differential translation outcomes. Furthermore, an increasing snumber of studies on plant ribosomes have made it possible to explore the stress-regulated expression pattern of ribosomal protein large subunit (RPL) and ribosomal protein small subunit (RPS) genes. In this perspective, we reviewed the literature linking ribosome heterogeneity to plants' abiotic and biotic stress responses to offer an overview on the expression and biological function of ribosomal components including specialized translation of individual transcripts and its implications for the regulation and expression of important gene regulatory networks, along with phenotypic analysis in ribosomal gene mutations in physiologic and pathologic processes. We also highlight recent advances in understanding the molecular mechanisms behind the transcriptional regulation of ribosomal genes linked to stress events. This review may serve as the foundation of novel strategies to customize cultivars tolerant to challenging environments without the yield penalty.
Collapse
Affiliation(s)
- Zainab Fakih
- Department of Chemistry, Biochemistry and Physics and Groupe de Recherche en Biologie Végétale, Université du Québec À Trois-Rivières, Trois-Rivières, Québec, G9A 5H9, Canada
| | - Hugo Germain
- Department of Chemistry, Biochemistry and Physics and Groupe de Recherche en Biologie Végétale, Université du Québec À Trois-Rivières, Trois-Rivières, Québec, G9A 5H9, Canada.
| |
Collapse
|
2
|
Martinez-Seidel F, Suwanchaikasem P, Gentry-Torfer D, Rajarathinam Y, Ebert A, Erban A, Firmino A, Nie S, Leeming M, Williamson N, Roessner U, Kopka J, Boughton BA. Remodelled ribosomal populations synthesize a specific proteome in proliferating plant tissue during cold. Philos Trans R Soc Lond B Biol Sci 2025; 380:20230384. [PMID: 40045790 PMCID: PMC11883437 DOI: 10.1098/rstb.2023.0384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 06/21/2024] [Accepted: 09/11/2024] [Indexed: 03/09/2025] Open
Abstract
Plant acclimation occurs through system-wide mechanisms that include proteome shifts, some of which occur at the level of protein synthesis. All proteins are synthesized by ribosomes. Rather than being monolithic, transcript-to-protein translation machines, ribosomes can be selective and cause proteome shifts. In this study, we use apical root meristems of germinating seedlings of the monocotyledonous plant barley as a model to examine changes in protein abundance and synthesis during cold acclimation. We measured metabolic and physiological parameters that allowed us to compare protein synthesis in the cold to optimal rearing temperatures. We demonstrated that the synthesis and assembly of ribosomal proteins are independent processes in root proliferative tissue. We report the synthesis and accumulation of various macromolecular complexes and propose how ribosome compositional shifts may be associated with functional proteome changes that are part of successful cold acclimation. Our study indicates that translation initiation is limiting during cold acclimation while the ribosome population is remodelled. The distribution of the triggered ribosomal protein heterogeneity suggests that altered compositions may confer 60S subunits selective association capabilities towards translation initiation complexes. To what extent selective translation depends on heterogeneous ribo-proteome compositions in barley proliferative root tissue remains a yet unresolved question.This article is part of the discussion meeting issue 'Ribosome diversity and its impact on protein synthesis, development and disease'.
Collapse
Affiliation(s)
- Federico Martinez-Seidel
- Molecular Physiology Department, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, USA
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO, USA
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Pipob Suwanchaikasem
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Dione Gentry-Torfer
- Molecular Physiology Department, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Yogeswari Rajarathinam
- Molecular Physiology Department, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Alina Ebert
- Molecular Physiology Department, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Alexander Erban
- Molecular Physiology Department, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Alexandre Firmino
- Molecular Physiology Department, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Shuai Nie
- Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Parkville, Victoria, Australia
| | - Michael Leeming
- Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Parkville, Victoria, Australia
- School of Chemistry, The University of Melbourne, Parkville, Victoria, Australia
| | - Nicholas Williamson
- Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Parkville, Victoria, Australia
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Ute Roessner
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
- Research School of Biology, The Australian National University, Acton, Australia
| | - Joachim Kopka
- Molecular Physiology Department, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Berin A. Boughton
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
- La Trobe Institute of Sustainable Agriculture and Food, La Trobe University, Bundoora, Victoria3083, Australia
| |
Collapse
|
3
|
Williams LJ, Kovach KR, Guzmán Q. JA, Stefanski A, Bermudez R, Butler EE, Coq‐‐Etchegaray D, Glenn‐Stone C, Hajek P, Klama J, Medlyn BE, Messier C, Moradi A, Paquette A, Park MH, Scherer‐Lorenzen M, Townsend PA, Reich PB, Cavender‐Bares J, Schuman MC. Tree diversity shapes the spectral signature of light transmittance in developing forests. Ecology 2025; 106:e70032. [PMID: 40104958 PMCID: PMC11920942 DOI: 10.1002/ecy.70032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/28/2024] [Accepted: 11/19/2024] [Indexed: 03/20/2025]
Abstract
Greater tree diversity often increases forest productivity by increasing the fraction of light captured and the effectiveness of light use at the community scale. However, light may shape forest function not only as a source of energy or a cause of stress but also as a context cue: Plant photoreceptors can detect specific wavelengths of light, and plants use this information to assess their neighborhoods and adjust their patterns of growth and allocation. These cues have been well documented in laboratory studies, but little studied in diverse forests. Here, we examined how the spectral profile of light (350-2200 nm) transmitted through canopies differs among tree communities within three diversity experiments on two continents (200 plots each planted with one to 12 tree species, amounting to roughly 10,000 trees in total), laying the groundwork for expectations about how diversity in forests may shape light quality with consequences for forest function. We hypothesized-and found-that the species composition and diversity of tree canopies influenced transmittance in predictable ways. Canopy transmittance-in total and in spectral regions with known biological importance-principally declined with increasing leaf area per ground area (LAI) and, in turn, LAI was influenced by the species composition and diversity of communities. For a given LAI, broadleaved angiosperm canopies tended to transmit less light with lower red-to-far-red ratios than canopies of needle-leaved gymnosperms or angiosperm-gymnosperm mixtures. Variation among communities in the transmittance of individual leaves had a minor effect on canopy transmittance in the visible portion of the spectrum but contributed beyond this range along with differences in foliage arrangement. Transmittance through mixed species canopies often deviated from expectations based on monocultures, and this was only partly explained by diversity effects on LAI, suggesting that diversity effects on transmittance also arose through shifts in the arrangement and optical properties of foliage. We posit that differences in the spectral profile of light transmitted through diverse canopies serve as a pathway by which tree diversity affects some forest ecosystem functions.
Collapse
Affiliation(s)
- Laura J. Williams
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityPenrithNew South WalesAustralia
- Department of Forest ResourcesUniversity of MinnesotaSt PaulMinnesotaUSA
| | - Kyle R. Kovach
- Forest and Wildlife EcologyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - J. Antonio Guzmán Q.
- Department of Ecology, Evolution, and BehaviorUniversity of MinnesotaSt PaulMinnesotaUSA
- Department of Organismic and Evolutionary BiologyHarvard UniversityCambridgeMassachusettsUSA
| | - Artur Stefanski
- Department of Forest ResourcesUniversity of MinnesotaSt PaulMinnesotaUSA
- College of Natural ResourcesUniversity of Wisconsin Stevens PointStevens PointWisconsinUSA
| | - Raimundo Bermudez
- Department of Forest ResourcesUniversity of MinnesotaSt PaulMinnesotaUSA
| | - Ethan E. Butler
- Department of Forest ResourcesUniversity of MinnesotaSt PaulMinnesotaUSA
| | | | | | - Peter Hajek
- Geobotany, Faculty of BiologyUniversity of FreiburgFreiburgGermany
| | - Johanna Klama
- Geobotany, Faculty of BiologyUniversity of FreiburgFreiburgGermany
| | - Belinda E. Medlyn
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityPenrithNew South WalesAustralia
| | - Christian Messier
- Centre for Forest ResearchUniversité du Québec à MontréalMontréalQuebecCanada
- Institut des sciences de la forêt tempéréeUniversité du Québec en OutaouaisRiponQuebecCanada
| | - Aboubakr Moradi
- Department of GeographyUniversity of ZürichZürichSwitzerland
| | - Alain Paquette
- Centre for Forest ResearchUniversité du Québec à MontréalMontréalQuebecCanada
| | - Maria H. Park
- Department of Ecology, Evolution, and BehaviorUniversity of MinnesotaSt PaulMinnesotaUSA
- Department of Organismic and Evolutionary BiologyHarvard UniversityCambridgeMassachusettsUSA
| | | | - Philip A. Townsend
- Forest and Wildlife EcologyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Peter B. Reich
- Department of Forest ResourcesUniversity of MinnesotaSt PaulMinnesotaUSA
- Institute for Global Change Biology and School for Environment and SustainabilityUniversity of MichiganAnn ArborMichiganUSA
| | - Jeannine Cavender‐Bares
- Department of Ecology, Evolution, and BehaviorUniversity of MinnesotaSt PaulMinnesotaUSA
- Department of Organismic and Evolutionary BiologyHarvard UniversityCambridgeMassachusettsUSA
| | - Meredith C. Schuman
- Department of GeographyUniversity of ZürichZürichSwitzerland
- Department of ChemistryUniversity of ZürichZürichSwitzerland
| |
Collapse
|
4
|
Csepregi K, Rácz A, Czégény G, Hideg É. Possible lessons of a model experiment: To what extent can UV activate the production of leaf phenolics in indoor plant cultivation? PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109333. [PMID: 39608338 DOI: 10.1016/j.plaphy.2024.109333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 11/20/2024] [Accepted: 11/24/2024] [Indexed: 11/30/2024]
Abstract
Tobacco (Nicotiana tabacum L.) plants were grown outdoors (N°46.07, E°18.18) under either natural or UV-deprived sunlight for 25 days in the summer. High PAR resulted in high polyphenol content, which was selectively affected by solar UV-A and UV-B irradiation. Solar UV-A irradiation increased anthocyanins, but not flavonoids, in the epidermis, and this additional protection resulted in higher photochemical yields and lower NPQ. The simultaneous presence of UV-B overrode the effects of UV-A, increased epidermal flavonoids, and decreased anthocyanins. Leaves grown in full sunlight had the same photochemical yields of NPQ as those grown under a UV-excluding filter. A combination of these effects can falsely dismiss the effects of UV-B on outdoor photosynthesis. Phenolic acid content, corresponding to approximately 80% of phenolic compounds, did not depend on solar UV, and total flavonoids increased under full solar UV irradiation, but not under UV-A only. The polyphenol content in outdoor leaves also served as a reference point for an indoor experiment, which showed that even a short, 4-day exposure of low PAR grown plants to UV from an artificial source increased the amount of some, although not all, components close to or even above outdoor levels. In indoor leaves, a selective increase in quercetin glycosides (to 62-85% of outdoor levels) supports both enzymatic and non-enzymatic antioxidant functions, and the increase in crypto- and neochlorogenic acids (to 76% and 117% of outdoor levels, respectively) suggests a redistribution among biosynthesis pathways. These results demonstrate the potential and efficiency of cultivation systems without sunlight.
Collapse
Affiliation(s)
| | - Arnold Rácz
- Department of Plant Biology, University of Pécs, Hungary
| | - Gyula Czégény
- Department of Plant Biology, University of Pécs, Hungary
| | - Éva Hideg
- Department of Plant Biology, University of Pécs, Hungary.
| |
Collapse
|
5
|
Ries F, Gorlt J, Kaiser S, Scherer V, Seydel C, Nguyen S, Klingl A, Legen J, Schmitz-Linneweber C, Plaggenborg H, Ng JZY, Wiens D, Hochberg GKA, Räschle M, Möhlmann T, Scheuring D, Willmund F. A truncated variant of the ribosome-associated trigger factor specifically contributes to plant chloroplast ribosome biogenesis. Nat Commun 2025; 16:629. [PMID: 39805826 PMCID: PMC11731035 DOI: 10.1038/s41467-025-55813-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 12/22/2024] [Indexed: 01/16/2025] Open
Abstract
Molecular chaperones are essential throughout a protein's life and act already during protein synthesis. Bacteria and chloroplasts of plant cells share the ribosome-associated chaperone trigger factor (Tig1 in plastids), facilitating maturation of emerging nascent polypeptides. While typical trigger factor chaperones employ three domains for their task, the here described truncated form, Tig2, contains just the ribosome binding domain. Tig2 is widely present in green plants and appears to have acquired an entirely different task than co-translational nascent polypeptide folding. Tig2 deletion results in remarkable leaf developmental defects of cold-exposed Arabidopsis thaliana plants and specific defects in plastidic ribosomes. Our data indicate that Tig2 functions during ribosome biogenesis by promoting the maturation of the large subunit. We hypothesize that Tig2 binding to the ribosomal tunnel-exit surface aids protecting this sensitive surface during assembly. Tig2 illustrates a fascinating concept of how a chaperone domain evolved individually, serving a completely different molecular task.
Collapse
Affiliation(s)
- Fabian Ries
- Molecular Genetics of Eukaryotes, University of Kaiserslautern, Kaiserslautern, Germany
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Jasmin Gorlt
- Molecular Genetics of Eukaryotes, University of Kaiserslautern, Kaiserslautern, Germany
| | - Sabrina Kaiser
- Plant Pathology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Vanessa Scherer
- Plant Physiology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Charlotte Seydel
- Plant Development, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Sandra Nguyen
- Molecular Genetics of Eukaryotes, University of Kaiserslautern, Kaiserslautern, Germany
| | - Andreas Klingl
- Plant Development, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Julia Legen
- Molecular Genetics, Humboldt-University of Berlin, Berlin, Germany
| | | | - Hinrik Plaggenborg
- Molecular Plant Sciences & Synmikro, University of Marburg, Marburg, Germany
| | - Jediael Z Y Ng
- Max-Planck-Institute for Terrestrial Microbiology, Marburg, Germany
| | - Dennis Wiens
- Max-Planck-Institute for Terrestrial Microbiology, Marburg, Germany
| | - Georg K A Hochberg
- Max-Planck-Institute for Terrestrial Microbiology, Marburg, Germany
- Evolution Biology & Synmikro, University of Marburg, Marburg, Germany
| | - Markus Räschle
- Molecular Genetics, University of Kaiserslautern, Kaiserslautern, Germany
| | - Torsten Möhlmann
- Plant Physiology, University of Kaiserslautern, Kaiserslautern, Germany
| | - David Scheuring
- Plant Pathology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Felix Willmund
- Molecular Genetics of Eukaryotes, University of Kaiserslautern, Kaiserslautern, Germany.
- Molecular Plant Sciences & Synmikro, University of Marburg, Marburg, Germany.
| |
Collapse
|
6
|
John A, Keller I, Ebel KW, Neuhaus HE. Two critical membranes: how does the chloroplast envelope affect plant acclimation properties? JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:214-227. [PMID: 39441968 DOI: 10.1093/jxb/erae436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/22/2024] [Indexed: 10/25/2024]
Abstract
Chloroplasts play a pivotal role in the metabolism of leaf mesophyll cells, functioning as a cellular hub that orchestrates molecular reactions in response to environmental stimuli. These organelles contain complex protein machinery for energy conversion and are indispensable for essential metabolic pathways. Proteins located within the chloroplast envelope membranes facilitate bidirectional communication with the cell and connect essential pathways, thereby influencing acclimation processes to challenging environmental conditions such as temperature fluctuations and light intensity changes. Despite their importance, a comprehensive overview of the impact of envelope-located proteins during acclimation to environmental changes is lacking. Understanding the role of these proteins in acclimation processes could provide insights into enhancing stress tolerance under increasingly challenging environments. This review highlights the significance of envelope-located proteins in plant acclimation.
Collapse
Affiliation(s)
- Annalisa John
- University of Kaiserslautern, Plant Physiology, Paul-Ehrlich-Str., D-67663 Kaiserslautern, Germany
| | - Isabel Keller
- University of Kaiserslautern, Plant Physiology, Paul-Ehrlich-Str., D-67663 Kaiserslautern, Germany
| | - Katharina W Ebel
- University of Kaiserslautern, Plant Physiology, Paul-Ehrlich-Str., D-67663 Kaiserslautern, Germany
| | - H Ekkehard Neuhaus
- University of Kaiserslautern, Plant Physiology, Paul-Ehrlich-Str., D-67663 Kaiserslautern, Germany
| |
Collapse
|
7
|
Kitashova A, Lehmann M, Schwenkert S, Münch M, Leister D, Nägele T. Insights into physiological roles of flavonoids in plant cold acclimation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:2269-2285. [PMID: 39453687 PMCID: PMC11629739 DOI: 10.1111/tpj.17097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024]
Abstract
Flavonoids represent a diverse group of plant specialised metabolites which are also discussed in the context of dietary health and inflammatory response. Numerous studies have revealed that flavonoids play a central role in plant acclimation to abiotic factors like low temperature or high light, but their structural and functional diversity frequently prevents a detailed mechanistic understanding. Further complexity in analysing flavonoid metabolism arises from the different subcellular compartments which are involved in biosynthesis and storage. In the present study, non-aqueous fractionation of Arabidopsis leaf tissue was combined with metabolomics and proteomics analysis to reveal the effects of flavonoid deficiencies on subcellular metabolism during cold acclimation. During the first 3 days of a 2-week cold acclimation period, flavonoid deficiency was observed to affect pyruvate, citrate and glutamate metabolism which indicated a role in stabilising C/N metabolism and photosynthesis. Also, tetrahydrofolate metabolism was found to be affected, which had significant effects on the proteome of the photorespiratory pathway. In the late stage of cold acclimation, flavonoid deficiency was found to affect protein stability, folding and proteasomal degradation, which resulted in a significant decrease in total protein amounts in both mutants. In summary, these findings suggest that flavonoid metabolism plays different roles in the early and late stages of plant cold acclimation and significantly contributes to establishing a new protein homeostasis in a changing environment.
Collapse
Affiliation(s)
- Anastasia Kitashova
- Faculty of Biology, Plant Evolutionary Cell BiologyLMU MünchenGroßhaderner Str. 2‐482152PlaneggGermany
| | - Martin Lehmann
- Faculty of Biology, Plant Molecular BiologyLMU MünchenGroßhaderner Str. 2‐482152PlaneggGermany
- Faculty of Biology, MSBioLMULMU MünchenGroßhaderner Str. 2‐482152PlaneggGermany
| | - Serena Schwenkert
- Faculty of Biology, Plant Molecular BiologyLMU MünchenGroßhaderner Str. 2‐482152PlaneggGermany
- Faculty of Biology, MSBioLMULMU MünchenGroßhaderner Str. 2‐482152PlaneggGermany
| | - Maximilian Münch
- Faculty of Biology, Plant Molecular BiologyLMU MünchenGroßhaderner Str. 2‐482152PlaneggGermany
- Faculty of Biology, MSBioLMULMU MünchenGroßhaderner Str. 2‐482152PlaneggGermany
| | - Dario Leister
- Faculty of Biology, Plant Molecular BiologyLMU MünchenGroßhaderner Str. 2‐482152PlaneggGermany
- Faculty of Biology, MSBioLMULMU MünchenGroßhaderner Str. 2‐482152PlaneggGermany
| | - Thomas Nägele
- Faculty of Biology, Plant Evolutionary Cell BiologyLMU MünchenGroßhaderner Str. 2‐482152PlaneggGermany
| |
Collapse
|
8
|
Wang X, Ji D, Ma J, Chi W. Function of plastid translation in plant temperature acclimation: Retrograde signalling or extraribosomal 'moonlighting' functions? PLANT, CELL & ENVIRONMENT 2024; 47:4908-4916. [PMID: 39101459 DOI: 10.1111/pce.15074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/06/2024] [Accepted: 07/25/2024] [Indexed: 08/06/2024]
Abstract
Summary StatementSpecific components of the plastid ribosome could act as pivotal limiting factors in plant temperature acclimation. We endeavour to elucidate the molecular nexus between plastid translation and temperature acclimation by incorporating the concept of extraribosomal ‘moonlighting’ functions of plastid ribosome proteins.
Collapse
Affiliation(s)
- Xiushun Wang
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Daili Ji
- Key Laboratory of Photobiology, Photosynthesis Research Center, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Jinfang Ma
- Key Laboratory of Photobiology, Photosynthesis Research Center, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Wei Chi
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
9
|
Wang Z, Zhang X, Liu C, Duncan S, Hang R, Sun J, Luo L, Ding Y, Cao X. AtPRMT3-RPS2B promotes ribosome biogenesis and coordinates growth and cold adaptation trade-off. Nat Commun 2024; 15:8693. [PMID: 39375381 PMCID: PMC11488217 DOI: 10.1038/s41467-024-52945-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 09/25/2024] [Indexed: 10/09/2024] Open
Abstract
Translation, a fundamental process regulating cellular growth and proliferation, relies on functional ribosomes. As sessile organisms, plants have evolved adaptive strategies to maintain a delicate balance between growth and stress response. But the underlying mechanisms, particularly on the translational level, remain less understood. In this study, we revealed the mechanisms of AtPRMT3-RPS2B in orchestrating ribosome assembly and managing translational regulation. Through a forward genetic screen, we identified PDCD2-D1 as a suppressor gene restoring abnormal development and ribosome biogenesis in atprmt3-2 mutants. Our findings confirmed that PDCD2 interacts with AtPRMT3-RPS2B, and facilitates pre-ribosome transport through nuclear pore complex, finally ensuring normal ribosome translation in the cytoplasm. Additionally, the dysfunction of AtPRMT3-RPS2B was found to enhance freezing tolerance. Moreover, we revealed that AtPRMT3-RPS2B promotes the translation of housekeeping mRNAs while concurrently repressing stress-related mRNAs. In summary, our study sheds light on the regulatory roles of AtPRMT3-RPS2B in ribosome assembly and translational balance, enabling the trade-off between growth and stress.
Collapse
Affiliation(s)
- Zhen Wang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom.
| | - Xiaofan Zhang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chunyan Liu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Susan Duncan
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Runlai Hang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jing Sun
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Lilan Luo
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yiliang Ding
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Xiaofeng Cao
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
10
|
Stolle DS, Osterhoff L, Treimer P, Lambertz J, Karstens M, Keller JM, Gerlach I, Bischoff A, Dünschede B, Rödiger A, Herrmann C, Baginsky S, Hofmann E, Zoschke R, Armbruster U, Nowaczyk MM, Schünemann D. STIC2 selectively binds ribosome-nascent chain complexes in the cotranslational sorting of Arabidopsis thylakoid proteins. EMBO J 2024; 43:4699-4719. [PMID: 39192033 PMCID: PMC11480477 DOI: 10.1038/s44318-024-00211-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024] Open
Abstract
Chloroplast-encoded multi-span thylakoid membrane proteins are crucial for photosynthetic complexes, yet the coordination of their biogenesis remains poorly understood. To identify factors that specifically support the cotranslational biogenesis of the reaction center protein D1 of photosystem (PS) II, we generated and affinity-purified stalled ribosome-nascent chain complexes (RNCs) bearing D1 nascent chains. Stalled RNCs translating the soluble ribosomal subunit uS2c were used for comparison. Quantitative tandem-mass spectrometry of the purified RNCs identified around 140 proteins specifically associated with D1 RNCs, mainly involved in protein and cofactor biogenesis, including chlorophyll biosynthesis, and other metabolic pathways. Functional analysis of STIC2, a newly identified D1 RNC interactor, revealed its cooperation with chloroplast protein SRP54 in the de novo biogenesis and repair of D1, and potentially other cotranslationally-targeted reaction center subunits of PSII and PSI. The primary binding interface between STIC2 and the thylakoid insertase Alb3 and its homolog Alb4 was mapped to STIC2's β-sheet region, and the conserved Motif III in the C-terminal regions of Alb3/4.
Collapse
Affiliation(s)
- Dominique S Stolle
- Molecular Biology of Plant Organelles, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Lena Osterhoff
- Molecular Biology of Plant Organelles, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Paul Treimer
- Molecular Biology of Plant Organelles, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Jan Lambertz
- Plant Biochemistry, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Marie Karstens
- Molecular Biology of Plant Organelles, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | | | - Ines Gerlach
- Max Planck Institute of Molecular Plant Physiology, Potsdam Science Park, Potsdam, Germany
| | - Annika Bischoff
- Molecular Biology of Plant Organelles, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Beatrix Dünschede
- Molecular Biology of Plant Organelles, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Anja Rödiger
- Plant Biochemistry, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Christian Herrmann
- Physical Chemistry I, Faculty for Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Sacha Baginsky
- Plant Biochemistry, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Eckhard Hofmann
- Protein Crystallography, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Reimo Zoschke
- Max Planck Institute of Molecular Plant Physiology, Potsdam Science Park, Potsdam, Germany
| | - Ute Armbruster
- Max Planck Institute of Molecular Plant Physiology, Potsdam Science Park, Potsdam, Germany
- Molecular Photosynthesis, Faculty of Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Marc M Nowaczyk
- Plant Biochemistry, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Danja Schünemann
- Molecular Biology of Plant Organelles, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany.
| |
Collapse
|
11
|
Eirich J, Boyer JB, Armbruster L, Ivanauskaite A, De La Torre C, Meinnel T, Wirtz M, Mulo P, Finkemeier I, Giglione C. Light Changes Promote Distinct Responses of Plastid Protein Acetylation Marks. Mol Cell Proteomics 2024; 23:100845. [PMID: 39321874 PMCID: PMC11546460 DOI: 10.1016/j.mcpro.2024.100845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 08/21/2024] [Accepted: 09/15/2024] [Indexed: 09/27/2024] Open
Abstract
Protein acetylation is a key co- and post-translational modification. However, how different types of acetylation respond to environmental stress is still unknown. To address this, we investigated the role of a member of the newly discovered family of plastid acetyltransferases (GNAT2), which features both lysine- and N-terminal acetyltransferase activities. Our study aimed to provide a holistic multi-omics acetylation-dependent view of plant acclimation to short-term light changes. We found that both the yield and coverage of the N-terminal acetylome remained unchanged in WT and gnat2-KO backgrounds after 2 h of exposure to high light or darkness. Similarly, no differences in transcriptome or adenylate energy charge were observed between the genotypes under the tested light conditions. In contrast, the lysine acetylome proved to be sensitive to the changes in light conditions, especially in the gnat2 background. This suggests unique strategies of plant acclimation for quick responses to environmental changes involving lysine, but not N-terminal, GNAT2-mediated acetylation activity.
Collapse
Affiliation(s)
- Jürgen Eirich
- Plant Physiology, Institute of Plant Biology and Biotechnology, University of Muenster, Muenster, Germany
| | - Jean-Baptiste Boyer
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Laura Armbruster
- Centre for Organismal Studies Heidelberg, University of Heidelberg, Heidelberg, Germany
| | - Aiste Ivanauskaite
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, Finland
| | - Carolina De La Torre
- NGS Core Facility, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Thierry Meinnel
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Markus Wirtz
- Centre for Organismal Studies Heidelberg, University of Heidelberg, Heidelberg, Germany
| | - Paula Mulo
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, Finland
| | - Iris Finkemeier
- Plant Physiology, Institute of Plant Biology and Biotechnology, University of Muenster, Muenster, Germany.
| | - Carmela Giglione
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France.
| |
Collapse
|
12
|
Muino JM, Ruwe H, Qu Y, Maschmann S, Chen W, Zoschke R, Ohler U, Kaufmann K, Schmitz-Linneweber C. MatK impacts differential chloroplast translation by limiting spliced tRNA-K(UUU) abundance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2737-2752. [PMID: 39074058 DOI: 10.1111/tpj.16945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/10/2024] [Accepted: 07/13/2024] [Indexed: 07/31/2024]
Abstract
The protein levels of chloroplast photosynthetic genes and genes related to the chloroplast genetic apparatus vary to adapt to different conditions. However, the underlying mechanisms governing these variations remain unclear. The chloroplast intron Maturase K is encoded within the trnK intron and has been suggested to be required for splicing several group IIA introns, including the trnK intron. In this study, we used RNA immunoprecipitation followed by high-throughput sequencing (RIP-Seq) to identify MatK's preference for binding to group IIA intron domains I and VI within target transcripts. Importantly, these domains are crucial for splice site selection, and we discovered alternative 5'-splice sites in three MatK target introns. The resulting alternative trnK lariat structure showed increased accumulation during heat acclimation. The cognate codon of tRNA-K(UUU) is highly enriched in mRNAs encoding ribosomal proteins and a trnK-matK over-expressor exhibited elevated levels of the spliced tRNA-K(UUU). Ribosome profiling analysis of the overexpressor revealed a significant up-shift in the translation of ribosomal proteins compared to photosynthetic genes. Our findings suggest the existence of a novel regulatory mechanism linked to the abundance of tRNA-K(UUU), enabling the differential expression of functional chloroplast gene groups.
Collapse
Affiliation(s)
- Jose M Muino
- Plant Cell Development, Humboldt Universität zu Berlin, Philippstr.13, 10115, Berlin, Germany
- Computational Regulatory Genomics, Humboldt-University Berlin/Max Delbrück Centre for Molecular Medicine, 10115, Berlin, Germany
| | - Hannes Ruwe
- Molecular Genetics, Humboldt Universität zu Berlin, Philippstr.13, 10115, Berlin, Germany
| | - Yujiao Qu
- Molecular Genetics, Humboldt Universität zu Berlin, Philippstr.13, 10115, Berlin, Germany
| | - Sascha Maschmann
- Molecular Genetics, Humboldt Universität zu Berlin, Philippstr.13, 10115, Berlin, Germany
| | - Wei Chen
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Medi-X Institute, SUSTech Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Reimo Zoschke
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Uwe Ohler
- Computational Regulatory Genomics, Humboldt-University Berlin/Max Delbrück Centre for Molecular Medicine, 10115, Berlin, Germany
| | - Kerstin Kaufmann
- Plant Cell Development, Humboldt Universität zu Berlin, Philippstr.13, 10115, Berlin, Germany
| | | |
Collapse
|
13
|
Araguirang GE, Venn B, Kelber NM, Feil R, Lunn J, Kleine T, Leister D, Mühlhaus T, Richter AS. Spliceosomal complex components are critical for adjusting the C:N balance during high-light acclimation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:153-175. [PMID: 38593295 DOI: 10.1111/tpj.16751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/25/2024] [Accepted: 03/18/2024] [Indexed: 04/11/2024]
Abstract
Plant acclimation to an ever-changing environment is decisive for growth, reproduction, and survival. Light availability limits biomass production on both ends of the intensity spectrum. Therefore, the adjustment of plant metabolism is central to high-light (HL) acclimation, and the accumulation of photoprotective anthocyanins is commonly observed. However, mechanisms and factors regulating the HL acclimation response are less clear. Two Arabidopsis mutants of spliceosome components exhibiting a pronounced anthocyanin overaccumulation in HL were isolated from a forward genetic screen for new factors crucial for plant acclimation. Time-resolved physiological, transcriptome, and metabolome analysis revealed a vital function of the spliceosome components for rapidly adjusting gene expression and metabolism. Deficiency of INCREASED LEVEL OF POLYPLOIDY1 (ILP1), NTC-RELATED PROTEIN1 (NTR1), and PLEIOTROPIC REGULATORY LOCUS1 (PRL1) resulted in a marked overaccumulation of carbohydrates and strongly diminished amino acid biosynthesis in HL. While not generally limited in N-assimilation, ilp1, ntr1, and prl1 showed higher glutamate levels and reduced amino acid biosynthesis in HL. The comprehensive analysis reveals a function of the spliceosome components in the conditional regulation of the carbon:nitrogen balance and the accumulation of anthocyanins during HL acclimation. The importance of gene expression, metabolic regulation, and re-direction of carbon towards anthocyanin biosynthesis for HL acclimation are discussed.
Collapse
Affiliation(s)
| | - Benedikt Venn
- Computational Systems Biology, RPTU Kaiserslautern, Kaiserslautern, Germany
| | | | - Regina Feil
- Metabolic Networks, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - John Lunn
- Metabolic Networks, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Tatjana Kleine
- Plant Molecular Biology (Botany), Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Dario Leister
- Plant Molecular Biology (Botany), Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Timo Mühlhaus
- Computational Systems Biology, RPTU Kaiserslautern, Kaiserslautern, Germany
| | - Andreas S Richter
- Physiology of Plant Metabolism, University of Rostock, Rostock, Germany
- Department Life, Light and Matter, Interdisciplinary Faculty, University of Rostock, Rostock, Germany
| |
Collapse
|
14
|
John A, Krämer M, Lehmann M, Kunz HH, Aarabi F, Alseekh S, Fernie A, Sommer F, Schroda M, Zimmer D, Mühlhaus T, Peisker H, Gutbrod K, Dörmann P, Neunzig J, Philippar K, Neuhaus HE. Degradation of FATTY ACID EXPORT PROTEIN1 by RHOMBOID-LIKE PROTEASE11 contributes to cold tolerance in Arabidopsis. THE PLANT CELL 2024; 36:1937-1962. [PMID: 38242838 PMCID: PMC11062452 DOI: 10.1093/plcell/koae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 01/21/2024]
Abstract
Plants need to acclimate to different stresses to optimize growth under unfavorable conditions. In Arabidopsis (Arabidopsis thaliana), the abundance of the chloroplast envelope protein FATTY ACID EXPORT PROTEIN1 (FAX1) decreases after the onset of low temperatures. However, how FAX1 degradation occurs and whether altered FAX1 abundance contributes to cold tolerance in plants remains unclear. The rapid cold-induced increase in RHOMBOID-LIKE PROTEASE11 (RBL11) transcript levels, the physical interaction of RBL11 with FAX1, the specific FAX1 degradation after RBL11 expression, and the absence of cold-induced FAX1 degradation in rbl11 loss-of-function mutants suggest that this enzyme is responsible for FAX1 degradation. Proteomic analyses showed that rbl11 mutants have higher levels of FAX1 and other proteins involved in membrane lipid homeostasis, suggesting that RBL11 is a key element in the remodeling of membrane properties during cold conditions. Consequently, in the cold, rbl11 mutants show a shift in lipid biosynthesis toward the eukaryotic pathway, which coincides with impaired cold tolerance. To test whether cold sensitivity is due to increased FAX1 levels, we analyzed FAX1 overexpressors. The rbl11 mutants and FAX1 overexpressor lines show superimposable phenotypic defects upon exposure to cold temperatures. Our re-sults show that the cold-induced degradation of FAX1 by RBL11 is critical for Arabidop-sis to survive cold and freezing periods.
Collapse
Affiliation(s)
- Annalisa John
- Plant Physiology, University of Kaiserslautern, Kaiserslautern D-67653, Germany
| | - Moritz Krämer
- Plant Biochemistry, Faculty of Biology, Ludwig-Maximilians-Universität Munich, Planegg-Martinsried 82152, Germany
| | - Martin Lehmann
- Plant Biochemistry, Faculty of Biology, Ludwig-Maximilians-Universität Munich, Planegg-Martinsried 82152, Germany
| | - Hans-Henning Kunz
- Plant Biochemistry, Faculty of Biology, Ludwig-Maximilians-Universität Munich, Planegg-Martinsried 82152, Germany
| | - Fayezeh Aarabi
- Max Planck Institut for Molecular Plant Physiology, Central Metabolism, Potsdam D-14476, Germany
| | - Saleh Alseekh
- Max Planck Institut for Molecular Plant Physiology, Central Metabolism, Potsdam D-14476, Germany
| | - Alisdair Fernie
- Max Planck Institut for Molecular Plant Physiology, Central Metabolism, Potsdam D-14476, Germany
| | - Frederik Sommer
- Molecular Biotechnology and Systems Biology, University of Kaiserslautern, Kaiserslautern D-67653, Germany
| | - Michael Schroda
- Molecular Biotechnology and Systems Biology, University of Kaiserslautern, Kaiserslautern D-67653, Germany
| | - David Zimmer
- Computational Systems Biology, University of Kaiserslautern, Kaiserslautern D-67653, Germany
| | - Timo Mühlhaus
- Computational Systems Biology, University of Kaiserslautern, Kaiserslautern D-67653, Germany
| | - Helga Peisker
- Institute for Molecular Physiology and Biotechnology of Plants, IMBIO, University of Bonn, Bonn D-53115, Germany
| | - Katharina Gutbrod
- Institute for Molecular Physiology and Biotechnology of Plants, IMBIO, University of Bonn, Bonn D-53115, Germany
| | - Peter Dörmann
- Institute for Molecular Physiology and Biotechnology of Plants, IMBIO, University of Bonn, Bonn D-53115, Germany
| | - Jens Neunzig
- Plant Biology, Center for Human and Molecular Biology (ZHMB), Saarland University, Saarbrücken D-66123, Germany
| | - Katrin Philippar
- Plant Biology, Center for Human and Molecular Biology (ZHMB), Saarland University, Saarbrücken D-66123, Germany
| | | |
Collapse
|
15
|
Atanasov V, Schumacher J, Muiño JM, Larasati C, Wang L, Kaufmann K, Leister D, Kleine T. Arabidopsis BBX14 is involved in high light acclimation and seedling development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:141-158. [PMID: 38128030 DOI: 10.1111/tpj.16597] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 11/22/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023]
Abstract
The development of photosynthetically competent seedlings requires both light and retrograde biogenic signaling pathways. The transcription factor GLK1 functions at the interface between these pathways and receives input from the biogenic signal integrator GUN1. BBX14 was previously identified, together with GLK1, in a core module that mediates the response to high light (HL) levels and biogenic signals, which was studied by using inhibitors of chloroplast development. Our chromatin immunoprecipitation-Seq experiments revealed that BBX14 is a direct target of GLK1, and RNA-Seq analysis suggests that BBX14 may function as a regulator of the circadian clock. In addition, BBX14 plays a role in chlorophyll biosynthesis during early onset of light. Knockout of BBX14 results in a long hypocotyl phenotype dependent on a retrograde signal. Furthermore, the expression of BBX14 and BBX15 during biogenic signaling requires GUN1. Investigation of the role of BBX14 and BBX15 in GUN-type biogenic (gun) signaling showed that the overexpression of BBX14 or BBX15 caused de-repression of CA1 mRNA levels, when seedlings were grown on norflurazon. Notably, transcripts of the LHCB1.2 marker are not de-repressed. Furthermore, BBX14 is required to acclimate plants to HL stress. We propose that BBX14 is an integrator of biogenic signals and that BBX14 is a nuclear target of retrograde signals downstream of the GUN1/GLK1 module. However, we do not classify BBX14 or BBX15 overexpressors as gun mutants based on a critical evaluation of our results and those reported in the literature. Finally, we discuss a classification system necessary for the declaration of new gun mutants.
Collapse
Affiliation(s)
- Vasil Atanasov
- Plant Molecular Biology (Botany), Department Biology I, Ludwig-Maximilians-University München, 82152, Martinsried, Germany
| | - Julia Schumacher
- Chair for Plant Cell and Molecular Biology, Institute of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jose M Muiño
- Chair for Plant Cell and Molecular Biology, Institute of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Catharina Larasati
- Plant Molecular Biology (Botany), Department Biology I, Ludwig-Maximilians-University München, 82152, Martinsried, Germany
| | - Liangsheng Wang
- Plant Molecular Biology (Botany), Department Biology I, Ludwig-Maximilians-University München, 82152, Martinsried, Germany
| | - Kerstin Kaufmann
- Chair for Plant Cell and Molecular Biology, Institute of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Dario Leister
- Plant Molecular Biology (Botany), Department Biology I, Ludwig-Maximilians-University München, 82152, Martinsried, Germany
| | - Tatjana Kleine
- Plant Molecular Biology (Botany), Department Biology I, Ludwig-Maximilians-University München, 82152, Martinsried, Germany
| |
Collapse
|
16
|
Dziubek D, Poeker L, Siemitkowska B, Graf A, Marino G, Alseekh S, Arrivault S, Fernie AR, Armbruster U, Geigenberger P. NTRC and thioredoxins m1/m2 underpin the light acclimation of plants on proteome and metabolome levels. PLANT PHYSIOLOGY 2024; 194:982-1005. [PMID: 37804523 PMCID: PMC10828201 DOI: 10.1093/plphys/kiad535] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/09/2023]
Abstract
During photosynthesis, plants must manage strong fluctuations in light availability on different time scales, leading to long-term acclimation and short-term responses. However, little is known about the regulation and coordination of these processes and the modulators involved. In this study, we used proteomics, metabolomics, and reverse genetics to investigate how different light environmental factors, such as intensity or variability, affect long-term and short-term acclimation responses of Arabidopsis (Arabidopsis thaliana) and the importance of the chloroplast redox network in their regulation. In the wild type, high light, but not fluctuating light, led to large quantitative changes in the proteome and metabolome, accompanied by increased photosynthetic dynamics and plant growth. This finding supports light intensity as a stronger driver for acclimation than variability. Deficiencies in NADPH-thioredoxin reductase C (NTRC) or thioredoxins m1/m2, but not thioredoxin f1, almost completely suppressed the re-engineering of the proteome and metabolome, with both the induction of proteins involved in stress and redox responses and the repression of those involved in cytosolic and plastid protein synthesis and translation being strongly attenuated. Moreover, the correlations of protein or metabolite levels with light intensity were severely disturbed, suggesting a general defect in the light-dependent acclimation response, resulting in impaired photosynthetic dynamics. These results indicate a previously unknown role of NTRC and thioredoxins m1/m2 in modulating light acclimation at proteome and metabolome levels to control dynamic light responses. NTRC, but not thioredoxins m1/m2 or f1, also improves short-term photosynthetic responses by balancing the Calvin-Benson cycle in fluctuating light.
Collapse
Affiliation(s)
- Dejan Dziubek
- Fakultät für Biologie, Ludwig-Maximilians-Universität München, Grosshaderner Str. 2-4, 82152 Martinsried, Germany
| | - Louis Poeker
- Fakultät für Biologie, Ludwig-Maximilians-Universität München, Grosshaderner Str. 2-4, 82152 Martinsried, Germany
| | - Beata Siemitkowska
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Alexander Graf
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Giada Marino
- Fakultät für Biologie, Ludwig-Maximilians-Universität München, Grosshaderner Str. 2-4, 82152 Martinsried, Germany
| | - Saleh Alseekh
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
- Departments of Metabolomics and Crop Quantitative Genetics, Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgari
| | - Stéphanie Arrivault
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
- Departments of Metabolomics and Crop Quantitative Genetics, Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgari
| | - Ute Armbruster
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
- Institute of Molecular Photosynthesis, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
- CEPLAS—Cluster of Excellence on Plant Sciences, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Peter Geigenberger
- Fakultät für Biologie, Ludwig-Maximilians-Universität München, Grosshaderner Str. 2-4, 82152 Martinsried, Germany
| |
Collapse
|
17
|
Garcia-Molina A, Pastor V. Systemic analysis of metabolome reconfiguration in Arabidopsis after abiotic stressors uncovers metabolites that modulate defense against pathogens. PLANT COMMUNICATIONS 2024; 5:100645. [PMID: 37403356 PMCID: PMC10811363 DOI: 10.1016/j.xplc.2023.100645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/06/2023]
Abstract
Understanding plant immune responses is complex because of the high interdependence among biological processes in homeostatic networks. Hence, the integration of environmental cues causes network rewiring that interferes with defense responses. Similarly, plants retain molecular signatures configured under abiotic stress periods to rapidly respond to recurrent stress, and these can alter immunity. Metabolome changes imposed by abiotic stressors are persistent, although their impact on defense remains to be clarified. In this study, we profiled metabolomes of Arabidopsis plants under several abiotic stress treatments applied individually or simultaneously to capture temporal trajectories in metabolite composition during adverse conditions and recovery. Further systemic analysis was performed to address the relevance of metabolome changes and extract central features to be tested in planta. Our results demonstrate irreversibility in major fractions of metabolome changes as a general pattern in response to abiotic stress periods. Functional analysis of metabolomes and co-abundance networks points to convergence in the reconfiguration of organic acid and secondary metabolite metabolism. Arabidopsis mutant lines for components related to these metabolic pathways showed altered defense capacities against different pathogens. Collectively, our data suggest that sustained metabolome changes configured in adverse environments can act as modulators of immune responses and provide evidence for a new layer of regulation in plant defense.
Collapse
Affiliation(s)
- Antoni Garcia-Molina
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, C/Vall Moronta, Edifici CRAG, 08193 Bellaterra (Cerdanyola del Vallès), Barcelona, Spain.
| | - Victoria Pastor
- Department of Biology, Biochemistry, and Natural Sciences, School of Technology and Experimental Sciences, Universitat Jaume I, 12006 Castelló de la Plana, Spain
| |
Collapse
|
18
|
Bellin L, Melzer M, Hilo A, Garza Amaya DL, Keller I, Meurer J, Möhlmann T. Nucleotide Limitation Results in Impaired Photosynthesis, Reduced Growth and Seed Yield Together with Massively Altered Gene Expression. PLANT & CELL PHYSIOLOGY 2023; 64:1494-1510. [PMID: 37329302 DOI: 10.1093/pcp/pcad063] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/04/2023] [Accepted: 06/16/2023] [Indexed: 06/19/2023]
Abstract
Nucleotide limitation and imbalance is a well-described phenomenon in animal research but understudied in the plant field. A peculiarity of pyrimidine de novo synthesis in plants is the complex subcellular organization. Here, we studied two organellar localized enzymes in the pathway, with chloroplast aspartate transcarbamoylase (ATC) and mitochondrial dihydroorotate dehydrogenase (DHODH). ATC knock-downs were most severely affected, exhibiting low levels of pyrimidine nucleotides, a low energy state, reduced photosynthetic capacity and accumulation of reactive oxygen species. Furthermore, altered leaf morphology and chloroplast ultrastructure were observed in ATC mutants. Although less affected, DHODH knock-down mutants showed impaired seed germination and altered mitochondrial ultrastructure. Thus, DHODH might not only be regulated by respiration but also exert a regulatory function on this process. Transcriptome analysis of an ATC-amiRNA line revealed massive alterations in gene expression with central metabolic pathways being downregulated and stress response and RNA-related pathways being upregulated. In addition, genes involved in central carbon metabolism, intracellular transport and respiration were markedly downregulated in ATC mutants, being most likely responsible for the observed impaired growth. We conclude that impairment of the first committed step in pyrimidine metabolism, catalyzed by ATC, leads to nucleotide limitation and by this has far-reaching consequences on metabolism and gene expression. DHODH might closely interact with mitochondrial respiration, as seen in delayed germination, which is the reason for its localization in this organelle.
Collapse
Affiliation(s)
- Leo Bellin
- Pflanzenphysiologie, Fachbereich Biologie, Universität Kaiserslautern, Erwin-Schrödinger-Straße, Kaiserslautern D-67663, Germany
| | - Michael Melzer
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Corrensstrasse 3, Seeland, OT Gatersleben 06466, Germany
| | - Alexander Hilo
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Corrensstrasse 3, Seeland, OT Gatersleben 06466, Germany
| | - Diana Laura Garza Amaya
- Pflanzenphysiologie, Fachbereich Biologie, Universität Kaiserslautern, Erwin-Schrödinger-Straße, Kaiserslautern D-67663, Germany
| | - Isabel Keller
- Pflanzenphysiologie, Fachbereich Biologie, Universität Kaiserslautern, Erwin-Schrödinger-Straße, Kaiserslautern D-67663, Germany
| | - Jörg Meurer
- Plant Sciences, Department Biology I, Ludwig-Maximilians-University Munich, Großhaderner Straße 2-4, Planegg-Martinsried 82152, Germany
| | - Torsten Möhlmann
- Pflanzenphysiologie, Fachbereich Biologie, Universität Kaiserslautern, Erwin-Schrödinger-Straße, Kaiserslautern D-67663, Germany
| |
Collapse
|
19
|
Baker CR, Cocuron JC, Alonso AP, Niyogi KK. Time-resolved systems analysis of the induction of high photosynthetic capacity in Arabidopsis during acclimation to high light. THE NEW PHYTOLOGIST 2023; 240:2335-2352. [PMID: 37849025 DOI: 10.1111/nph.19324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/19/2023] [Indexed: 10/19/2023]
Abstract
Induction of high photosynthetic capacity is a key acclimation response to high light (HL) for many herbaceous dicot plants; however, the signaling pathways that control this response remain largely unknown. Here, a systems biology approach was utilized to characterize the induction of high photosynthetic capacity in strongly and weakly acclimating Arabidopsis thaliana accessions. Plants were grown for 5 wk in a low light (LL) regime, and time-resolved photosynthetic physiological, metabolomic, and transcriptomic responses were measured during subsequent exposure to HL. The induction of high nitrogen (N) assimilation rates early in the HL shift was strongly predictive of the induction of photosynthetic capacity later in the HL shift. Accelerated N assimilation rates depended on the mobilization of existing organic acid (OA) reserves and increased de novo OA synthesis during the induction of high photosynthetic capacity. Enhanced sucrose biosynthesis capacity increased in tandem with the induction of high photosynthetic capacity, and increased starch biosynthetic capacity was balanced by increased starch catabolism. This systems analysis supports a model in which the efficient induction of N assimilation early in the HL shift begins the cascade of events necessary for the induction of high photosynthetic capacity acclimation in HL.
Collapse
Affiliation(s)
- Christopher R Baker
- Department of Plant and Microbial Biology, Howard Hughes Medical Institute, University of California, Berkeley, CA, 94720-3102, USA
| | | | - Ana Paula Alonso
- BioAnalytical Facility, University of North Texas, Denton, TX, 76201, USA
- Department of Biological Sciences, BioDiscovery Institute, University of North Texas, Denton, TX, 76201, USA
| | - Krishna K Niyogi
- Department of Plant and Microbial Biology, Howard Hughes Medical Institute, University of California, Berkeley, CA, 94720-3102, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| |
Collapse
|
20
|
Vicente AM, Manavski N, Rohn PT, Schmid LM, Garcia-Molina A, Leister D, Seydel C, Bellin L, Möhlmann T, Ammann G, Kaiser S, Meurer J. The plant cytosolic m 6A RNA methylome stabilizes photosynthesis in the cold. PLANT COMMUNICATIONS 2023; 4:100634. [PMID: 37287225 PMCID: PMC10721483 DOI: 10.1016/j.xplc.2023.100634] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/10/2023] [Accepted: 06/03/2023] [Indexed: 06/09/2023]
Abstract
The sessile lifestyle of plants requires an immediate response to environmental stressors that affect photosynthesis, growth, and crop yield. Here, we showed that three abiotic perturbations-heat, cold, and high light-triggered considerable changes in the expression signatures of 42 epitranscriptomic factors (writers, erasers, and readers) with putative chloroplast-associated functions that formed clusters of commonly expressed genes in Arabidopsis. The expression changes under all conditions were reversible upon deacclimation, identifying epitranscriptomic players as modulators in acclimation processes. Chloroplast dysfunctions, particularly those induced by the oxidative stress-inducing norflurazon in a largely GENOME UNCOUPLED-independent manner, triggered retrograde signals to remodel chloroplast-associated epitranscriptomic expression patterns. N6-methyladenosine (m6A) is known as the most prevalent RNA modification and impacts numerous developmental and physiological functions in living organisms. During cold treatment, expression of components of the primary nuclear m6A methyltransferase complex was upregulated, accompanied by a significant increase in cellular m6A mRNA marks. In the cold, the presence of FIP37, a core component of the writer complex, played an important role in positive regulation of thylakoid structure, photosynthetic functions, and accumulation of photosystem I, the Cytb6f complex, cyclic electron transport proteins, and Curvature Thylakoid1 but not that of photosystem II components and the chloroplast ATP synthase. Downregulation of FIP37 affected abundance, polysomal loading, and translation of cytosolic transcripts related to photosynthesis in the cold, suggesting m6A-dependent translational regulation of chloroplast functions. In summary, we identified multifaceted roles of the cellular m6A RNA methylome in coping with cold; these were predominantly associated with chloroplasts and served to stabilize photosynthesis.
Collapse
Affiliation(s)
- Alexandre Magno Vicente
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Street 2-4, 82152 Planegg-Martinsried, Germany
| | - Nikolay Manavski
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Street 2-4, 82152 Planegg-Martinsried, Germany
| | - Paul Torben Rohn
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Street 2-4, 82152 Planegg-Martinsried, Germany
| | - Lisa-Marie Schmid
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Street 2-4, 82152 Planegg-Martinsried, Germany
| | - Antoni Garcia-Molina
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Street 2-4, 82152 Planegg-Martinsried, Germany
| | - Dario Leister
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Street 2-4, 82152 Planegg-Martinsried, Germany
| | - Charlotte Seydel
- Plant Development, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Street 2-4, 82152 Planegg-Martinsried, Germany
| | - Leo Bellin
- Plant Physiology, Faculty of Biology, University of Kaiserslautern, Erwin-Schrödinger-Street, 7, 67663 Kaiserslautern, Germany
| | - Torsten Möhlmann
- Plant Physiology, Faculty of Biology, University of Kaiserslautern, Erwin-Schrödinger-Street, 7, 67663 Kaiserslautern, Germany
| | - Gregor Ammann
- Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Stefanie Kaiser
- Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Jörg Meurer
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Street 2-4, 82152 Planegg-Martinsried, Germany.
| |
Collapse
|
21
|
Hernandez JS, Dziubek D, Schröder L, Seydel C, Kitashova A, Brodsky V, Nägele T. Natural variation of temperature acclimation of Arabidopsis thaliana. PHYSIOLOGIA PLANTARUM 2023; 175:e14106. [PMID: 38148233 DOI: 10.1111/ppl.14106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/28/2023]
Abstract
Acclimation is a multigenic trait by which plants adjust photosynthesis and metabolism to cope with a changing environment. Here, natural variations of photosynthetic efficiency and acclimation of the central carbohydrate metabolism were analyzed in response to low and elevated temperatures. For this, 18 natural accessions of Arabidopsis thaliana, originating from Cape Verde Islands and Europe, were grown at 22°C before being exposed to 4°C and 34°C for cold and heat acclimation, respectively. Absolute amounts of carbohydrates were quantified together with their subcellular distribution across plastids, cytosol and vacuole. Linear electron transport rates (ETRs) were determined together with the maximum quantum efficiency of photosystem II (Fv/Fm) for all growth conditions and under temperature fluctuation. Under elevated temperature, ETR residuals under increasing photosynthetic photon flux densities significantly correlated with the degree of temperature fluctuation at the original habitat of accessions, indicating a geographical east/west gradient of photosynthetic acclimation capacities. Plastidial sucrose concentrations positively correlated with maximal ETRs under fluctuating temperature, indicating a stabilizing role within the chloroplast. Our findings revealed specific subcellular carbohydrate distributions that contribute differentially to the photosynthetic efficiency of natural Arabidopsis thaliana accessions across a longitudinal gradient. This sheds light on the relevance of subcellular metabolic regulation for photosynthetic performance in a fluctuating environment and supports the physiological interpretation of naturally occurring genetic variation of temperature tolerance and acclimation.
Collapse
Affiliation(s)
- Jakob Sebastian Hernandez
- Faculty of Biology, Plant Evolutionary Cell Biology, Ludwig-Maximilians-Universität München, Planegg
| | - Dejan Dziubek
- Faculty of Biology, Plant Evolutionary Cell Biology, Ludwig-Maximilians-Universität München, Planegg
| | - Laura Schröder
- Faculty of Biology, Plant Evolutionary Cell Biology, Ludwig-Maximilians-Universität München, Planegg
| | - Charlotte Seydel
- Faculty of Biology, Plant Evolutionary Cell Biology, Ludwig-Maximilians-Universität München, Planegg
- Faculty of Biology, Plant Development, Ludwig-Maximilians-Universität München, Planegg
| | - Anastasia Kitashova
- Faculty of Biology, Plant Evolutionary Cell Biology, Ludwig-Maximilians-Universität München, Planegg
| | - Vladimir Brodsky
- Faculty of Biology, Plant Evolutionary Cell Biology, Ludwig-Maximilians-Universität München, Planegg
| | - Thomas Nägele
- Faculty of Biology, Plant Evolutionary Cell Biology, Ludwig-Maximilians-Universität München, Planegg
| |
Collapse
|
22
|
Kitashova A, Brodsky V, Chaturvedi P, Pierides I, Ghatak A, Weckwerth W, Nägele T. Quantifying the impact of dynamic plant-environment interactions on metabolic regulation. JOURNAL OF PLANT PHYSIOLOGY 2023; 290:154116. [PMID: 37839392 DOI: 10.1016/j.jplph.2023.154116] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 10/17/2023]
Abstract
A plant's genome encodes enzymes, transporters and many other proteins which constitute metabolism. Interactions of plants with their environment shape their growth, development and resilience towards adverse conditions. Although genome sequencing technologies and applications have experienced triumphantly rapid development during the last decades, enabling nowadays a fast and cheap sequencing of full genomes, prediction of metabolic phenotypes from genotype × environment interactions remains, at best, very incomplete. The main reasons are a lack of understanding of how different levels of molecular organisation depend on each other, and how they are constituted and expressed within a setup of growth conditions. Phenotypic plasticity, e.g., of the genetic model plant Arabidopsis thaliana, has provided important insights into plant-environment interactions and the resulting genotype x phenotype relationships. Here, we summarize previous and current findings about plant development in a changing environment and how this might be shaped and reflected in metabolism and its regulation. We identify current challenges in the study of plant development and metabolic regulation and provide an outlook of how methodological workflows might support the application of findings made in model systems to crops and their cultivation.
Collapse
Affiliation(s)
- Anastasia Kitashova
- LMU Munich, Faculty of Biology, Plant Evolutionary Cell Biology, 82152, Planegg, Germany.
| | - Vladimir Brodsky
- LMU Munich, Faculty of Biology, Plant Evolutionary Cell Biology, 82152, Planegg, Germany.
| | - Palak Chaturvedi
- University of Vienna, Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, Djerassiplatz 1, 1030, Vienna, Austria.
| | - Iro Pierides
- University of Vienna, Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, Djerassiplatz 1, 1030, Vienna, Austria.
| | - Arindam Ghatak
- University of Vienna, Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, Djerassiplatz 1, 1030, Vienna, Austria; Vienna Metabolomics Center, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria.
| | - Wolfram Weckwerth
- University of Vienna, Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, Djerassiplatz 1, 1030, Vienna, Austria; Vienna Metabolomics Center, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria.
| | - Thomas Nägele
- LMU Munich, Faculty of Biology, Plant Evolutionary Cell Biology, 82152, Planegg, Germany.
| |
Collapse
|
23
|
Aarabi F, Ghigi A, Ahchige MW, Bulut M, Geigenberger P, Neuhaus HE, Sampathkumar A, Alseekh S, Fernie AR. Genome-wide association study unveils ascorbate regulation by PAS/LOV PROTEIN during high light acclimation. PLANT PHYSIOLOGY 2023; 193:2037-2054. [PMID: 37265123 PMCID: PMC10602610 DOI: 10.1093/plphys/kiad323] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/10/2023] [Accepted: 05/10/2023] [Indexed: 06/03/2023]
Abstract
Varying light conditions elicit metabolic responses as part of acclimation with changes in ascorbate levels being an important component. Here, we adopted a genome-wide association-based approach to characterize the response in ascorbate levels on high light (HL) acclimation in a panel of 315 Arabidopsis (Arabidopsis thaliana) accessions. These studies revealed statistically significant SNPs for total and reduced ascorbate under HL conditions at a locus in chromosome 2. Ascorbate levels under HL and the region upstream and within PAS/LOV PROTEIN (PLP) were strongly associated. Intriguingly, subcellular localization analyses revealed that the PLPA and PLPB splice variants co-localized with VITAMIN C DEFECTIVE2 (VTC2) and VTC5 in both the cytosol and nucleus. Yeast 2-hybrid and bimolecular fluorescence complementation analyses revealed that PLPA and PLPB interact with VTC2 and that blue light diminishes this interaction. Furthermore, PLPB knockout mutants were characterized by 1.5- to 1.7-fold elevations in their ascorbate levels, whereas knockout mutants of the cry2 cryptochromes displayed 1.2- to 1.3-fold elevations compared to WT. Our results collectively indicate that PLP plays a critical role in the elevation of ascorbate levels, which is a signature response of HL acclimation. The results strongly suggest that this is achieved via the release of the inhibitory effect of PLP on VTC2 upon blue light illumination, as the VTC2-PLPB interaction is stronger under darkness. The conditional importance of the cryptochrome receptors under different environmental conditions suggests a complex hierarchy underpinning the environmental control of ascorbate levels. However, the data we present here clearly demonstrate that PLP dominates during HL acclimation.
Collapse
Affiliation(s)
- Fayezeh Aarabi
- Central Metabolism, Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
| | - Andrea Ghigi
- Central Metabolism, Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
| | - Micha Wijesingha Ahchige
- Central Metabolism, Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
| | - Mustafa Bulut
- Central Metabolism, Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
| | - Peter Geigenberger
- Department Biology I, Ludwig-Maximilians-University Munich, Planegg-Martinsried 82152, Germany
| | - H Ekkehard Neuhaus
- Plant Physiology, University of Kaiserslautern, Kaiserslautern D-67653, Germany
| | - Arun Sampathkumar
- Central Metabolism, Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
| | - Saleh Alseekh
- Central Metabolism, Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
- Crop Quantitative Genetics, Centre of Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria
| | - Alisdair R Fernie
- Central Metabolism, Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
- Crop Quantitative Genetics, Centre of Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria
| |
Collapse
|
24
|
Balfagón D, Zandalinas SI, dos Reis de Oliveira T, Santa-Catarina C, Gómez-Cadenas A. Omics analyses in citrus reveal a possible role of RNA translation pathways and Unfolded Protein Response regulators in the tolerance to combined drought, high irradiance, and heat stress. HORTICULTURE RESEARCH 2023; 10:uhad107. [PMID: 37577403 PMCID: PMC10419850 DOI: 10.1093/hr/uhad107] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/15/2023] [Indexed: 08/15/2023]
Abstract
Environmental changes derived from global warming and human activities increase the intensity and frequency of stressful conditions for plants. Multiple abiotic factors acting simultaneously enhance stress pressure and drastically reduce plant growth, yield, and survival. Stress combination causes a specific stress situation that induces a particular plant response different to the sum of responses to the individual stresses. Here, by comparing transcriptomic and proteomic profiles to different abiotic stress combinations in two citrus genotypes, Carrizo citrange (Citrus sinensis × Poncirus trifoliata) and Cleopatra mandarin (Citrus reshni), with contrasting tolerance to different abiotic stresses, we revealed key responses to the triple combination of heat stress, high irradiance and drought. The specific transcriptomic response to this stress combination in Carrizo was directed to regulate RNA metabolic pathways and translation processes, potentially conferring an advantage with respect to Cleopatra. In addition, we found endoplasmic reticulum stress response as common to all individual and combined stress conditions in both genotypes and identified the accumulation of specific groups of heat shock proteins (HSPs), such as small HSPs and HSP70s, and regulators of the unfolded protein response, BiP2 and PDIL2-2, as possible factors involved in citrus tolerance to triple stress combination. Taken together, our findings provide new insights into the acclimation process of citrus plants to multiple stress combination, necessary for increasing crop tolerance to the changing climatic conditions.
Collapse
Affiliation(s)
- Damián Balfagón
- Departamento de Biología, Bioquímica y Ciencias Naturales, Av. Sos Baynat s/n. Universitat Jaume I, 46520 Castelló de la Plana, Spain
| | - Sara I Zandalinas
- Departamento de Biología, Bioquímica y Ciencias Naturales, Av. Sos Baynat s/n. Universitat Jaume I, 46520 Castelló de la Plana, Spain
| | - Tadeu dos Reis de Oliveira
- Laboratório de Biologia Celular e Tecidual (LBCT), Centro de Biociências E Biotecnologia (CBB), Universidade Estadual Do Norte Fluminense Darcy Ribeiro (UENF), Av. Alberto Lamego 2000, Campos Dos Goytacazes, RJ, 28013-602, Brazil
| | - Claudete Santa-Catarina
- Laboratório de Biologia Celular e Tecidual (LBCT), Centro de Biociências E Biotecnologia (CBB), Universidade Estadual Do Norte Fluminense Darcy Ribeiro (UENF), Av. Alberto Lamego 2000, Campos Dos Goytacazes, RJ, 28013-602, Brazil
| | - Aurelio Gómez-Cadenas
- Departamento de Biología, Bioquímica y Ciencias Naturales, Av. Sos Baynat s/n. Universitat Jaume I, 46520 Castelló de la Plana, Spain
| |
Collapse
|
25
|
Yu X, Wei P, Zhao S, Chen Z, Li X, Zhang W, Liu C, Yang Y, Li X, Liu X. Population transcriptomics uncover the relative roles of positive selection and differential expression in Batrachium bungei adaptation to the Qinghai-Tibetan plateau. PLANT CELL REPORTS 2023; 42:879-893. [PMID: 36973418 DOI: 10.1007/s00299-023-03005-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 03/14/2023] [Indexed: 05/06/2023]
Abstract
KEY MESSAGE Positive selection genes are related to metabolism, while differentially expressed genes are related to photosynthesis, suggesting that genetic adaptation and expression regulation may play independent roles in different gene classes. Genome-wide investigation of the molecular mechanisms for high-altitude adaptation is an intriguing topic in evolutionary biology. The Qinghai-Tibet Plateau (QTP) with its extremely variable environments is an ideal site for studying high-altitude adaptation. Here, we used transcriptome data of 100 individuals from 20 populations collected from various altitudes on the QTP to investigate the adaptive mechanisms of the aquatic plant Batrachium bungei at both the genetic and transcriptional level. To explore genes and biological pathways that may contribute to QTP adaptation, we employed a two-step approach, in which we identified positively selected genes and differentially expressed genes using the landscape genomic and differential expression approaches. The positive selection analysis showed that genes involved in metabolic regulation played a crucial role in B. bungei adaptation to the extreme environments of the QTP, especially intense ultraviolet radiation. Altitude-based differential expression analysis suggested that B. bungei could increase the rate of energy dissipation or reduce the efficiency of light energy absorption by down regulating the expression of photosynthesis-related genes to adapt to the strong ultraviolet radiation. Weighted gene co-expression network analysis identified ribosomal genes as hubs of altitude adaptation in B. bungei. Only a small part of genes (about 10%) overlapped between positively selected genes and differentially expressed genes in B. bungei, suggesting that genetic adaptation and gene expression regulation might play relatively independent roles in different categories of functional genes. Taken together, this study enriches our understanding of the high-altitude adaptation mechanism of B. bungei on the QTP.
Collapse
Affiliation(s)
- Xiaolei Yu
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Pei Wei
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Shuqi Zhao
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Zhuyifu Chen
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Xinzhong Li
- Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Research Center for Ecology, School of Sciences, Tibet University, Lhasa, 850000, Tibet, China
| | - Wencai Zhang
- Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Research Center for Ecology, School of Sciences, Tibet University, Lhasa, 850000, Tibet, China
| | - Chenlai Liu
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Yujiao Yang
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Xiaoyan Li
- Biology Experimental Teaching Center, School of Life Science, Wuhan University, Wuhan, 430072, Hubei, China.
| | - Xing Liu
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China.
- Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Research Center for Ecology, School of Sciences, Tibet University, Lhasa, 850000, Tibet, China.
| |
Collapse
|
26
|
Nucleotide Imbalance, Provoked by Downregulation of Aspartate Transcarbamoylase Impairs Cold Acclimation in Arabidopsis. Molecules 2023; 28:molecules28041585. [PMID: 36838573 PMCID: PMC9959217 DOI: 10.3390/molecules28041585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/01/2023] [Accepted: 02/01/2023] [Indexed: 02/10/2023] Open
Abstract
Aspartate transcarbamoylase (ATC) catalyzes the first committed step in pyrimidine de novo synthesis. As shown before, mutants with 80% reduced transcript and protein levels exhibit reduced levels of pyrimidine metabolites and thus nucleotide limitation and imbalance. Consequently, reduced photosynthetic capacity and growth, accompanied by massive transcriptional changes, were observed. Here, we show that nucleotide de novo synthesis was upregulated during cold acclimation of Arabidopsis thaliana (ecotype Columbia, Col-0) plants, but ATC knockdown mutants failed to acclimate to this condition as they did not accumulate neutral sugars and anthocyanins. A global transcriptome analysis revealed that most of the transcriptional changes observed in Col-0 plants upon cold exposure were also evident in ATC knockdown plants. However, several responses observed in cold-treated Col-0 plants could already be detected in knockdown plants when grown under standard conditions, suggesting that these mutants exhibited typical cold responses without prior cold stimulation. We believe that nucleotide signaling is involved in "cold-like priming" and "cold acclimation" in general. The observed transcript levels of genes involved in central carbon metabolism and respiration were an exception to these findings. These were upregulated in the cold but downregulated in warm-grown ATC mutants.
Collapse
|
27
|
Kitashova A, Adler SO, Richter AS, Eberlein S, Dziubek D, Klipp E, Nägele T. Limitation of sucrose biosynthesis shapes carbon partitioning during plant cold acclimation. PLANT, CELL & ENVIRONMENT 2023; 46:464-478. [PMID: 36329607 DOI: 10.1111/pce.14483] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Cold acclimation is a multigenic process by which many plant species increase their freezing tolerance. Stabilization of photosynthesis and carbohydrate metabolism plays a crucial role in cold acclimation. To study regulation of primary and secondary metabolism during cold acclimation of Arabidopsis thaliana, metabolic mutants with deficiencies in either starch or flavonoid metabolism were exposed to 4°C. Photosynthesis was determined together with amounts of carbohydrates, anthocyanins, organic acids and enzyme activities of the central carbohydrate metabolism. Starch deficiency was found to significantly delay soluble sugar accumulation during cold acclimation, while starch overaccumulation did not affect accumulation dynamics but resulted in lower total amounts of \sucrose and glucose. Anthocyanin amounts were lowered in both starch deficient and overaccumulating mutants. Vice versa, flavonoid deficiency did not result in a changed starch amount, which suggested a unidirectional signalling link between starch and flavonoid metabolism. Mathematical modelling of carbon metabolism indicated kinetics of sucrose biosynthesis to be limiting for carbon partitioning in leaf tissue during cold exposure. Together with cold-induced dynamics of citrate, fumarate and malate amounts, this provided evidence for a central role of sucrose phosphate synthase activity in carbon partitioning between biosynthetic and dissimilatory pathways which stabilizes photosynthesis and metabolism at low temperature.
Collapse
Affiliation(s)
- Anastasia Kitashova
- Plant Evolutionary Cell Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Stephan O Adler
- Theoretical Biophysics, Institute of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andreas S Richter
- Institute for Biosciences, Physiology of Plant Metabolism, University of Rostock, Rostock, Germany
| | - Svenja Eberlein
- Plant Evolutionary Cell Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Dejan Dziubek
- Plant Evolutionary Cell Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Edda Klipp
- Theoretical Biophysics, Institute of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Thomas Nägele
- Plant Evolutionary Cell Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| |
Collapse
|
28
|
Zirngibl ME, Araguirang GE, Kitashova A, Jahnke K, Rolka T, Kühn C, Nägele T, Richter AS. Triose phosphate export from chloroplasts and cellular sugar content regulate anthocyanin biosynthesis during high light acclimation. PLANT COMMUNICATIONS 2023; 4:100423. [PMID: 35962545 PMCID: PMC9860169 DOI: 10.1016/j.xplc.2022.100423] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 07/22/2022] [Accepted: 08/09/2022] [Indexed: 05/07/2023]
Abstract
Plants have evolved multiple strategies to cope with rapid changes in the environment. During high light (HL) acclimation, the biosynthesis of photoprotective flavonoids, such as anthocyanins, is induced. However, the exact nature of the signal and downstream factors for HL induction of flavonoid biosynthesis (FB) is still under debate. Here, we show that carbon fixation in chloroplasts, subsequent export of photosynthates by triose phosphate/phosphate translocator (TPT), and rapid increase in cellular sugar content permit the transcriptional and metabolic activation of anthocyanin biosynthesis during HL acclimation. In combination with genetic and physiological analysis, targeted and whole-transcriptome gene expression studies suggest that reactive oxygen species and phytohormones play only a minor role in rapid HL induction of the anthocyanin branch of FB. In addition to transcripts of FB, sugar-responsive genes showed delayed repression or induction in tpt-2 during HL treatment, and a significant overlap with transcripts regulated by SNF1-related protein kinase 1 (SnRK1) was observed, including a central transcription factor of FB. Analysis of mutants with increased and repressed SnRK1 activity suggests that sugar-induced inactivation of SnRK1 is required for HL-mediated activation of anthocyanin biosynthesis. Our study emphasizes the central role of chloroplasts as sensors for environmental changes as well as the vital function of sugar signaling in plant acclimation.
Collapse
Affiliation(s)
- Max-Emanuel Zirngibl
- Humboldt-Universität zu Berlin, Institute of Biology, Physiology of Plant Cell Organelles, Philippstrasse 13, 10115 Berlin, Germany
| | - Galileo Estopare Araguirang
- University of Rostock, Institute for Biosciences, Physiology of Plant Metabolism, Albert-Einstein-Strasse 3, 18059 Rostock, Germany; Humboldt-Universität zu Berlin, Institute of Biology, Physiology of Plant Cell Organelles, Philippstrasse 13, 10115 Berlin, Germany
| | - Anastasia Kitashova
- Ludwig-Maximilians-Universität München, Faculty of Biology, Plant Evolutionary Cell Biology, 82152 Planegg-Martinsried, Germany
| | - Kathrin Jahnke
- University of Rostock, Institute for Biosciences, Physiology of Plant Metabolism, Albert-Einstein-Strasse 3, 18059 Rostock, Germany
| | - Tobias Rolka
- Humboldt-Universität zu Berlin, Institute of Biology, Physiology of Plant Cell Organelles, Philippstrasse 13, 10115 Berlin, Germany
| | - Christine Kühn
- University of Rostock, Institute for Biosciences, Physiology of Plant Metabolism, Albert-Einstein-Strasse 3, 18059 Rostock, Germany
| | - Thomas Nägele
- Ludwig-Maximilians-Universität München, Faculty of Biology, Plant Evolutionary Cell Biology, 82152 Planegg-Martinsried, Germany
| | - Andreas S Richter
- University of Rostock, Institute for Biosciences, Physiology of Plant Metabolism, Albert-Einstein-Strasse 3, 18059 Rostock, Germany; Humboldt-Universität zu Berlin, Institute of Biology, Physiology of Plant Cell Organelles, Philippstrasse 13, 10115 Berlin, Germany.
| |
Collapse
|
29
|
Araguirang GE, Richter AS. Activation of anthocyanin biosynthesis in high light - what is the initial signal? THE NEW PHYTOLOGIST 2022; 236:2037-2043. [PMID: 36110042 DOI: 10.1111/nph.18488] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Due to their sessile nature, plants cannot escape adverse environmental conditions and evolved mechanisms to cope with sudden environmental changes. The reaction to variations in abiotic factors, also summarized as acclimation response, affects all layers of cellular functions and involves rapid modification of enzymatic activities, the metabolome, proteome and transcriptome on different timescales. One trait of plants acclimating to high light (HL) is the rapid transcriptional activation of the flavonoid biosynthesis (FB) pathway resulting in the accumulation of photoprotective and antioxidative flavonoids, such as flavonols and anthocyanins, in the leaf tissue. Although enormous progress has been made in identifying enzymes and transcriptional regulators of FB by forward and reverse genetic approaches in the past, the signals and signalling pathways permitting the conditional activation of FB in HL are still debated. With this Tansley Insight, we summarize the current knowledge on the proposed signals and downstream factors involved in regulating FB and will discuss their contribution to, particularly, HL-induced accumulation of anthocyanins.
Collapse
Affiliation(s)
- Galileo Estopare Araguirang
- Physiology of Plant Metabolism, Institute for Biosciences, University of Rostock, Albert-Einstein-Strasse 3, 18059, Rostock, Germany
| | - Andreas S Richter
- Physiology of Plant Metabolism, Institute for Biosciences, University of Rostock, Albert-Einstein-Strasse 3, 18059, Rostock, Germany
| |
Collapse
|
30
|
Gámez-Arcas S, Muñoz FJ, Ricarte-Bermejo A, Sánchez-López ÁM, Baslam M, Baroja-Fernández E, Bahaji A, Almagro G, De Diego N, Doležal K, Novák O, Leal-López J, León Morcillo RJ, Castillo AG, Pozueta-Romero J. Glucose-6-P/phosphate translocator2 mediates the phosphoglucose-isomerase1-independent response to microbial volatiles. PLANT PHYSIOLOGY 2022; 190:2137-2154. [PMID: 36111879 PMCID: PMC9706466 DOI: 10.1093/plphys/kiac433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
In Arabidopsis (Arabidopsis thaliana), the plastidial isoform of phosphoglucose isomerase (PGI1) mediates photosynthesis, metabolism, and development, probably due to its involvement in the synthesis of isoprenoid-derived signals in vascular tissues. Microbial volatile compounds (VCs) with molecular masses of <45 Da promote photosynthesis, growth, and starch overaccumulation in leaves through PGI1-independent mechanisms. Exposure to these compounds in leaves enhances the levels of GLUCOSE-6-PHOSPHATE/PHOSPHATE TRANSLOCATOR2 (GPT2) transcripts. We hypothesized that the PGI1-independent response to microbial volatile emissions involves GPT2 action. To test this hypothesis, we characterized the responses of wild-type (WT), GPT2-null gpt2-1, PGI1-null pgi1-2, and pgi1-2gpt2-1 plants to small fungal VCs. In addition, we characterized the responses of pgi1-2gpt2-1 plants expressing GPT2 under the control of a vascular tissue- and root tip-specific promoter to small fungal VCs. Fungal VCs promoted increases in growth, starch content, and photosynthesis in WT and gpt2-1 plants. These changes were substantially weaker in VC-exposed pgi1-2gpt2-1 plants but reverted to WT levels with vascular and root tip-specific GPT2 expression. Proteomic analyses did not detect enhanced levels of GPT2 protein in VC-exposed leaves and showed that knocking out GPT2 reduced the expression of photosynthesis-related proteins in pgi1-2 plants. Histochemical analyses of GUS activity in plants expressing GPT2-GUS under the control of the GPT2 promoter showed that GPT2 is mainly expressed in root tips and vascular tissues around hydathodes. Overall, the data indicated that the PGI1-independent response to microbial VCs involves resetting of the photosynthesis-related proteome in leaves through long-distance GPT2 action.
Collapse
Affiliation(s)
- Samuel Gámez-Arcas
- Instituto de Agrobiotecnología (IdAB), CSIC-Gobierno de Navarra, Iruñako etorbidea 123, 31192 Mutiloabeti, Nafarroa, Spain
| | | | - Adriana Ricarte-Bermejo
- Instituto de Agrobiotecnología (IdAB), CSIC-Gobierno de Navarra, Iruñako etorbidea 123, 31192 Mutiloabeti, Nafarroa, Spain
| | - Ángela María Sánchez-López
- Instituto de Agrobiotecnología (IdAB), CSIC-Gobierno de Navarra, Iruñako etorbidea 123, 31192 Mutiloabeti, Nafarroa, Spain
| | - Marouane Baslam
- Instituto de Agrobiotecnología (IdAB), CSIC-Gobierno de Navarra, Iruñako etorbidea 123, 31192 Mutiloabeti, Nafarroa, Spain
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata 950-2181, Japan
| | - Edurne Baroja-Fernández
- Instituto de Agrobiotecnología (IdAB), CSIC-Gobierno de Navarra, Iruñako etorbidea 123, 31192 Mutiloabeti, Nafarroa, Spain
| | - Abdellatif Bahaji
- Instituto de Agrobiotecnología (IdAB), CSIC-Gobierno de Navarra, Iruñako etorbidea 123, 31192 Mutiloabeti, Nafarroa, Spain
| | - Goizeder Almagro
- Instituto de Agrobiotecnología (IdAB), CSIC-Gobierno de Navarra, Iruñako etorbidea 123, 31192 Mutiloabeti, Nafarroa, Spain
| | - Nuria De Diego
- Centre of Region Haná for Biotechnological and Agricultural Research, Czech Advanced Technology and Research Institute, Olomouc, Czech Republic
| | - Karel Doležal
- Department of Chemical Biology, Faculty of Science, Palacký University, Olomouc CZ-78371, Czech Republic
- Laboratory of Growth Regulators, Faculty of Science of Palacký University and Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc CZ-78371, Czech Republic
| | - Ondřej Novák
- Laboratory of Growth Regulators, Faculty of Science of Palacký University and Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc CZ-78371, Czech Republic
| | - Jesús Leal-López
- Institute for Mediterranean and Subtropical Horticulture “La Mayora” (IHSM), CSIC-UMA, 29010 Málaga, Spain
| | - Rafael Jorge León Morcillo
- Institute for Mediterranean and Subtropical Horticulture “La Mayora” (IHSM), CSIC-UMA, 29010 Málaga, Spain
| | - Araceli G Castillo
- Institute for Mediterranean and Subtropical Horticulture “La Mayora” (IHSM), CSIC-UMA, 29010 Málaga, Spain
| | | |
Collapse
|
31
|
Dias-Fields L, Adamala KP. Engineering Ribosomes to Alleviate Abiotic Stress in Plants: A Perspective. PLANTS (BASEL, SWITZERLAND) 2022; 11:2097. [PMID: 36015400 PMCID: PMC9415564 DOI: 10.3390/plants11162097] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/10/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022]
Abstract
As the centerpiece of the biomass production process, ribosome activity is highly coordinated with environmental cues. Findings revealing ribosome subgroups responsive to adverse conditions suggest this tight coordination may be grounded in the induction of variant ribosome compositions and the differential translation outcomes they might produce. In this perspective, we go through the literature linking ribosome heterogeneity to plants' abiotic stress response. Once unraveled, this crosstalk may serve as the foundation of novel strategies to custom cultivars tolerant to challenging environments without the yield penalty.
Collapse
Affiliation(s)
| | - Katarzyna P. Adamala
- Department of Genetics, Cell Biology, and Development, University of Minnesota, 6-160 Jackson Hall, 321 Church Street SE, Minneapolis, MN 55455, USA
| |
Collapse
|
32
|
Mechanisms Regulating Energy Homeostasis in Plant Cells and Their Potential to Inspire Electrical Microgrids Models. Biomimetics (Basel) 2022; 7:biomimetics7020083. [PMID: 35735599 PMCID: PMC9221007 DOI: 10.3390/biomimetics7020083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/09/2022] [Accepted: 06/17/2022] [Indexed: 11/16/2022] Open
Abstract
In this paper, the main features of systems that are required to flexibly modulate energy states of plant cells in response to environmental fluctuations are surveyed and summarized. Plant cells possess multiple sources (chloroplasts and mitochondria) to produce energy that is consumed to drive many processes, as well as mechanisms that adequately provide energy to the processes with high priority depending on the conditions. Such energy-providing systems are tightly linked to sensors that monitor the status of the environment and inside the cell. In addition, plants possess the ability to efficiently store and transport energy both at the cell level and at a higher level. Furthermore, these systems can finely tune the various mechanisms of energy homeostasis in plant cells in response to the changes in environment, also assuring the plant survival under adverse environmental conditions. Electrical power systems are prone to the effects of environmental changes as well; furthermore, they are required to be increasingly resilient to the threats of extreme natural events caused, for example, by climate changes, outages, and/or external deliberate attacks. Starting from this consideration, similarities between energy-related processes in plant cells and electrical power grids are identified, and the potential of mechanisms regulating energy homeostasis in plant cells to inspire the definition of new models of flexible and resilient electrical power grids, particularly microgrids, is delineated. The main contribution of this review is surveying energy regulatory mechanisms in detail as a reference and helping readers to find useful information for their work in this research field.
Collapse
|
33
|
Schwenkert S, Fernie AR, Geigenberger P, Leister D, Möhlmann T, Naranjo B, Neuhaus HE. Chloroplasts are key players to cope with light and temperature stress. TRENDS IN PLANT SCIENCE 2022; 27:577-587. [PMID: 35012879 DOI: 10.1016/j.tplants.2021.12.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/16/2021] [Accepted: 12/09/2021] [Indexed: 05/04/2023]
Abstract
Under natural environmental conditions, changes in light intensity and temperature are closely interwoven, and of all organelles, only chloroplasts react strongly upon alterations of these two parameters. We review increasing evidence indicating that changes in chloroplast metabolism are critical for the comprehensive cellular answer in a challenging environment. This cellular answer starts with rapid modifications of thylakoid-located processes, followed by modifications in the stroma and transport activities across the chloroplast envelope. We propose that the 'modulators' involved contribute to plant stress tolerance and that deciphering of their characteristics is essential to understand 'acclimation'. Especially in times of climatic changes, we must gain knowledge on physiological reactions that might become instrumental for directed breeding strategies aiming to develop stress-tolerant crop plants.
Collapse
|
34
|
Gao Y, Thiele W, Saleh O, Scossa F, Arabi F, Zhang H, Sampathkumar A, Kühn K, Fernie A, Bock R, Schöttler MA, Zoschke R. Chloroplast translational regulation uncovers nonessential photosynthesis genes as key players in plant cold acclimation. THE PLANT CELL 2022; 34:2056-2079. [PMID: 35171295 PMCID: PMC9048916 DOI: 10.1093/plcell/koac056] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 02/12/2022] [Indexed: 05/04/2023]
Abstract
Plants evolved efficient multifaceted acclimation strategies to cope with low temperatures. Chloroplasts respond to temperature stimuli and participate in temperature sensing and acclimation. However, very little is known about the involvement of chloroplast genes and their expression in plant chilling tolerance. Here we systematically investigated cold acclimation in tobacco seedlings over 2 days of exposure to low temperatures by examining responses in chloroplast genome copy number, transcript accumulation and translation, photosynthesis, cell physiology, and metabolism. Our time-resolved genome-wide investigation of chloroplast gene expression revealed substantial cold-induced translational regulation at both the initiation and elongation levels, in the virtual absence of changes at the transcript level. These cold-triggered dynamics in chloroplast translation are widely distinct from previously described high light-induced effects. Analysis of the gene set responding significantly to the cold stimulus suggested nonessential plastid-encoded subunits of photosynthetic protein complexes as novel players in plant cold acclimation. Functional characterization of one of these cold-responsive chloroplast genes by reverse genetics demonstrated that the encoded protein, the small cytochrome b6f complex subunit PetL, crucially contributes to photosynthetic cold acclimation. Together, our results uncover an important, previously underappreciated role of chloroplast translational regulation in plant cold acclimation.
Collapse
Affiliation(s)
- Yang Gao
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Wolfram Thiele
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Omar Saleh
- Institut für Biologie, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), 06120, Germany
| | - Federico Scossa
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
- Council for Agricultural Research and Economics, Research Center for Genomics and Bioinformatics (CREA-GB), Rome, 00178, Italy
| | - Fayezeh Arabi
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Hongmou Zhang
- Institute of Optical Sensor Systems, German Aerospace Center (DLR), Berlin, 12489, Germany
| | - Arun Sampathkumar
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Kristina Kühn
- Institut für Biologie, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), 06120, Germany
| | - Alisdair Fernie
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Ralph Bock
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Mark A Schöttler
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | | |
Collapse
|
35
|
Gao Y, Thiele W, Saleh O, Scossa F, Arabi F, Zhang H, Sampathkumar A, Kühn K, Fernie A, Bock R, Schöttler MA, Zoschke R. Chloroplast translational regulation uncovers nonessential photosynthesis genes as key players in plant cold acclimation. THE PLANT CELL 2022; 34:2056-2079. [PMID: 35171295 DOI: 10.1093/plcell/koac056%jtheplantcell] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 02/12/2022] [Indexed: 05/28/2023]
Abstract
Plants evolved efficient multifaceted acclimation strategies to cope with low temperatures. Chloroplasts respond to temperature stimuli and participate in temperature sensing and acclimation. However, very little is known about the involvement of chloroplast genes and their expression in plant chilling tolerance. Here we systematically investigated cold acclimation in tobacco seedlings over 2 days of exposure to low temperatures by examining responses in chloroplast genome copy number, transcript accumulation and translation, photosynthesis, cell physiology, and metabolism. Our time-resolved genome-wide investigation of chloroplast gene expression revealed substantial cold-induced translational regulation at both the initiation and elongation levels, in the virtual absence of changes at the transcript level. These cold-triggered dynamics in chloroplast translation are widely distinct from previously described high light-induced effects. Analysis of the gene set responding significantly to the cold stimulus suggested nonessential plastid-encoded subunits of photosynthetic protein complexes as novel players in plant cold acclimation. Functional characterization of one of these cold-responsive chloroplast genes by reverse genetics demonstrated that the encoded protein, the small cytochrome b6f complex subunit PetL, crucially contributes to photosynthetic cold acclimation. Together, our results uncover an important, previously underappreciated role of chloroplast translational regulation in plant cold acclimation.
Collapse
Affiliation(s)
- Yang Gao
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Wolfram Thiele
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Omar Saleh
- Institut für Biologie, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), 06120, Germany
| | - Federico Scossa
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
- Council for Agricultural Research and Economics, Research Center for Genomics and Bioinformatics (CREA-GB), Rome, 00178, Italy
| | - Fayezeh Arabi
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Hongmou Zhang
- Institute of Optical Sensor Systems, German Aerospace Center (DLR), Berlin, 12489, Germany
| | - Arun Sampathkumar
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Kristina Kühn
- Institut für Biologie, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), 06120, Germany
| | - Alisdair Fernie
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Ralph Bock
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Mark A Schöttler
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Reimo Zoschke
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| |
Collapse
|
36
|
Meng A, Wen D, Zhang C. Maize Seed Germination Under Low-Temperature Stress Impacts Seedling Growth Under Normal Temperature by Modulating Photosynthesis and Antioxidant Metabolism. FRONTIERS IN PLANT SCIENCE 2022; 13:843033. [PMID: 35310673 PMCID: PMC8928446 DOI: 10.3389/fpls.2022.843033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/10/2022] [Indexed: 05/24/2023]
Abstract
Spring maize is usually subjected to low-temperature stress during seed germination, which retards seedling growth later even under a suitable temperature. However, the mechanism underlying maize seed germination under low-temperature stress impacting seedling growth is still ambiguous. In this study, we used one low-temperature sensitive maize (SM) and one low-temperature resistance maize (RM) to investigate the mechanism. The results showed that the SM line had higher malondialdehyde content and lower total antioxidant capacity (TAC) and germination percentage than the RM line under low-temperature stress, indicating the vulnerability of SM line to low-temperature stress. Further transcriptome analysis revealed that seed germination under low-temperature stress caused the down-regulation of photosynthesis-related gene ontology terms in two lines. Moreover, the SM line displayed down-regulation of ribosome and superoxide dismutase (SOD) related genes, whereas genes involved in SOD and vitamin B6 were up-regulated in the RM line. Kyoto Encyclopedia of Genes and Genomes enrichment analysis revealed that photosynthesis and antioxidant metabolism-related pathways played essential roles in response to low-temperature stress during seed germination. The photosynthetic system displayed a higher degree of damage in the SM line. Both qRT-PCR and physiological characteristics experiments showed similar results with transcriptome data. Taken together, we propose a model for maize seed germination in response to low-temperature stress.
Collapse
|
37
|
Seydel C, Biener J, Brodsky V, Eberlein S, Nägele T. Predicting plant growth response under fluctuating temperature by carbon balance modelling. Commun Biol 2022; 5:164. [PMID: 35210545 PMCID: PMC8873469 DOI: 10.1038/s42003-022-03100-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 02/02/2022] [Indexed: 11/09/2022] Open
Abstract
Quantification of system dynamics is a central aim of mathematical modelling in biology. Defining experimentally supported functional relationships between molecular entities by mathematical terms enables the application of computational routines to simulate and analyse the underlying molecular system. In many fields of natural sciences and engineering, trigonometric functions are applied to describe oscillatory processes. As biochemical oscillations occur in many aspects of biochemistry and biophysics, Fourier analysis of metabolic functions promises to quantify, describe and analyse metabolism and its reaction towards environmental fluctuations. Here, Fourier polynomials were developed from experimental time-series data and combined with block diagram simulation of plant metabolism to study heat shock response of photosynthetic CO2 assimilation and carbohydrate metabolism in Arabidopsis thaliana. Simulations predicted a stabilising effect of reduced sucrose biosynthesis capacity and increased capacity of starch biosynthesis on carbon assimilation under transient heat stress. Model predictions were experimentally validated by quantifying plant growth under such stress conditions. In conclusion, this suggests that Fourier polynomials represent a predictive mathematical approach to study dynamic plant-environment interactions.
Collapse
Affiliation(s)
- Charlotte Seydel
- Ludwig-Maximilians-Universität München, Faculty of Biology, Plant Development, 82152, Planegg-Martinsried, Germany.,Ludwig-Maximilians-Universität München, Faculty of Biology, Plant Evolutionary Cell Biology, 82152, Planegg-Martinsried, Germany
| | - Julia Biener
- Ludwig-Maximilians-Universität München, Faculty of Biology, Plant Evolutionary Cell Biology, 82152, Planegg-Martinsried, Germany
| | - Vladimir Brodsky
- Ludwig-Maximilians-Universität München, Faculty of Biology, Plant Evolutionary Cell Biology, 82152, Planegg-Martinsried, Germany
| | - Svenja Eberlein
- Ludwig-Maximilians-Universität München, Faculty of Biology, Plant Evolutionary Cell Biology, 82152, Planegg-Martinsried, Germany
| | - Thomas Nägele
- Ludwig-Maximilians-Universität München, Faculty of Biology, Plant Evolutionary Cell Biology, 82152, Planegg-Martinsried, Germany.
| |
Collapse
|
38
|
Seydel C, Kitashova A, Fürtauer L, Nägele T. Temperature-induced dynamics of plant carbohydrate metabolism. PHYSIOLOGIA PLANTARUM 2022; 174:e13602. [PMID: 34802152 DOI: 10.1111/ppl.13602] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 11/16/2021] [Indexed: 06/13/2023]
Abstract
Carbohydrates are direct products of photosynthetic CO2 assimilation. Within a changing temperature regime, both photosynthesis and carbohydrate metabolism need tight regulation to prevent irreversible damage of plant tissue and to sustain energy metabolism, growth and development. Due to climate change, plants are and will be exposed to both long-term and short-term temperature changes with increasing amplitude. Particularly sudden fluctuations, which might comprise a large temperature amplitude from low to high temperature, pose a challenge for plants from the cellular to the ecosystem level. A detailed understanding of fundamental regulatory processes, which link photosynthesis and carbohydrate metabolism under such fluctuating environmental conditions, is essential for an estimate of climate change consequences. Further, understanding these processes is important for biotechnological application, breeding and engineering. Environmental light and temperature regimes are sensed by a molecular network that comprises photoreceptors and molecular components of the circadian clock. Photosynthetic efficiency and plant productivity then critically depend on enzymatic regulation and regulatory circuits connecting plant cells with their environment and re-stabilising photosynthetic efficiency and carbohydrate metabolism after temperature-induced deflection. This review summarises and integrates current knowledge about re-stabilisation of photosynthesis and carbohydrate metabolism after perturbation by changing temperature (heat and cold).
Collapse
Affiliation(s)
- Charlotte Seydel
- Faculty of Biology, Plant Development, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
- Faculty of Biology, Plant Evolutionary Cell Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Anastasia Kitashova
- Faculty of Biology, Plant Evolutionary Cell Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Lisa Fürtauer
- Institute for Biology III, Unit of Plant Molecular Systems Biology, RWTH Aachen University, Aachen, Germany
| | - Thomas Nägele
- Faculty of Biology, Plant Evolutionary Cell Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| |
Collapse
|
39
|
Salazar-Díaz K, Aquino-Luna M, Hernández-Lucero E, Nieto-Rivera B, Pulido-Torres MA, Jorge-Pérez JH, Gavilanes-Ruiz M, Dinkova TD. Arabidopsis thaliana eIF4E1 and eIF(iso)4E Participate in Cold Response and Promote Translation of Some Stress-Related mRNAs. FRONTIERS IN PLANT SCIENCE 2021; 12:698585. [PMID: 34659280 PMCID: PMC8514651 DOI: 10.3389/fpls.2021.698585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
Plant defense and adaptation to adverse environmental conditions rely on gene expression control, such as mRNA transcription, processing, stability, and translation. Sudden temperature changes are common in the era of global warming; thus, understanding plant acclimation responses at the molecular level becomes imperative. mRNA translation initiation regulation has a pivotal role in achieving the synthesis of the appropriate battery of proteins needed to cope with temperature stress. In this study, we analyzed the role of translation initiation factors belonging to the eIF4E family in Arabidopsis acclimation to cold temperatures and freezing tolerance. Using knockout (KO) and overexpressing mutants of AteIF4E1 or AteIF(iso)4E, we found that AteIF4E1 but not AteIF(iso)4E overexpressing lines displayed enhanced tolerance to freezing without previous acclimation at 4°C. However, KO mutant lines, eif(iso)4e-1 and eif4e1-KO, were more sensitive to the stress. Cold acclimation in wild-type plants was accompanied by increased levels of eIF4E1 and eIF(iso)4E transcript levels, polysomes (P) enrichment, and shifts of these factors from translationally non-active to active fractions. Transcripts, previously found as candidates for eIF(iso)4E or eIF4E1 selective translation, changed their distribution in both P and total RNA in the presence of cold. Some of these transcripts changed their polysomal distribution in the mutant and one eIF4E1 overexpressing line. According to this, we propose a role of eIF4E1 and eIF(iso)4E in cold acclimation and freezing tolerance by regulating the expression of stress-related genes.
Collapse
|
40
|
Liu H, Zhang Y, Lu S, Chen H, Wu J, Zhu X, Zou B, Hua J. HsfA1d promotes hypocotyl elongation under chilling via enhancing expression of ribosomal protein genes in Arabidopsis. THE NEW PHYTOLOGIST 2021; 231:646-660. [PMID: 33893646 DOI: 10.1111/nph.17413] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/13/2021] [Indexed: 06/12/2023]
Abstract
How plants maintain growth under nonfreezing low temperatures (chilling) is not well understood. Here we use hypocotyl elongation under dark to investigate the molecular mechanisms for chilling growth in Arabidopsis thaliana. The function of HsfA1d (Heat shock transcription factor A1d) in chilling growth is investigated by physiological and molecular characterization of its mutants. Subcellular localization of HsfA1d under chilling is analyzed. Potential target genes of HsfA1d were identified by transcriptome analysis, chromatin immunoprecipitation, transcriptional activation assay and mutant characterization. HsfA1d is a positive regulator of hypocotyl elongation under chilling. It promotes expression of a large number of ribosome biogenesis genes to a moderate but significant extent under chilling. HsfA1d could bind to the promoter regions of two ribosome protein genes tested and promote their expression. The loss-of-function of one ribosome gene also reduced hypocotyl elongation under chilling. In addition, HsfA1d did not have increased nuclear accumulation under chilling and its basal nuclear accumulation is promoted by a salicylic acid receptor under chilling. This study thus unveils a new HsfA1d-mediated pathway that promotes the expression of cytosolic and plastid cytosolic and plastid ribosomal protein genes which may maintain overall protein translation for plant growth in chilling.
Collapse
Affiliation(s)
- Huimin Liu
- The State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yan Zhang
- The State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shan Lu
- The State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hao Chen
- The State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiawen Wu
- The State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiang Zhu
- The State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Baohong Zou
- The State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jian Hua
- The State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
- Plant Biology Section, School of Integrated Plant Science, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
41
|
Martinez-Seidel F, Beine-Golovchuk O, Hsieh YC, Eshraky KE, Gorka M, Cheong BE, Jimenez-Posada EV, Walther D, Skirycz A, Roessner U, Kopka J, Pereira Firmino AA. Spatially Enriched Paralog Rearrangements Argue Functionally Diverse Ribosomes Arise during Cold Acclimation in Arabidopsis. Int J Mol Sci 2021; 22:6160. [PMID: 34200446 PMCID: PMC8201131 DOI: 10.3390/ijms22116160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/23/2021] [Accepted: 06/01/2021] [Indexed: 12/15/2022] Open
Abstract
Ribosome biogenesis is essential for plants to successfully acclimate to low temperature. Without dedicated steps supervising the 60S large subunits (LSUs) maturation in the cytosol, e.g., Rei-like (REIL) factors, plants fail to accumulate dry weight and fail to grow at suboptimal low temperatures. Around REIL, the final 60S cytosolic maturation steps include proofreading and assembly of functional ribosomal centers such as the polypeptide exit tunnel and the P-Stalk, respectively. In consequence, these ribosomal substructures and their assembly, especially during low temperatures, might be changed and provoke the need for dedicated quality controls. To test this, we blocked ribosome maturation during cold acclimation using two independent reil double mutant genotypes and tested changes in their ribosomal proteomes. Additionally, we normalized our mutant datasets using as a blank the cold responsiveness of a wild-type Arabidopsis genotype. This allowed us to neglect any reil-specific effects that may happen due to the presence or absence of the factor during LSU cytosolic maturation, thus allowing us to test for cold-induced changes that happen in the early nucleolar biogenesis. As a result, we report that cold acclimation triggers a reprogramming in the structural ribosomal proteome. The reprogramming alters the abundance of specific RP families and/or paralogs in non-translational LSU and translational polysome fractions, a phenomenon known as substoichiometry. Next, we tested whether the cold-substoichiometry was spatially confined to specific regions of the complex. In terms of RP proteoforms, we report that remodeling of ribosomes after a cold stimulus is significantly constrained to the polypeptide exit tunnel (PET), i.e., REIL factor binding and functional site. In terms of RP transcripts, cold acclimation induces changes in RP families or paralogs that are significantly constrained to the P-Stalk and the ribosomal head. The three modulated substructures represent possible targets of mechanisms that may constrain translation by controlled ribosome heterogeneity. We propose that non-random ribosome heterogeneity controlled by specialized biogenesis mechanisms may contribute to a preferential or ultimately even rigorous selection of transcripts needed for rapid proteome shifts and successful acclimation.
Collapse
Affiliation(s)
- Federico Martinez-Seidel
- Willmitzer Department, Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany; (O.B.-G.); (Y.-C.H.); (K.E.E.); (M.G.); (B.-E.C.); (D.W.); (A.S.); (J.K.); (A.A.P.F.)
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia;
| | - Olga Beine-Golovchuk
- Willmitzer Department, Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany; (O.B.-G.); (Y.-C.H.); (K.E.E.); (M.G.); (B.-E.C.); (D.W.); (A.S.); (J.K.); (A.A.P.F.)
- Heidelberg University, Biochemie-Zentrum, Nuclear Pore Complex and Ribosome Assembly, 69120 Heidelberg, Germany
| | - Yin-Chen Hsieh
- Willmitzer Department, Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany; (O.B.-G.); (Y.-C.H.); (K.E.E.); (M.G.); (B.-E.C.); (D.W.); (A.S.); (J.K.); (A.A.P.F.)
- Institute for Arctic and Marine Biology, UiT Arctic University of Norway, 9037 Tromsø, Norway
| | - Kheloud El Eshraky
- Willmitzer Department, Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany; (O.B.-G.); (Y.-C.H.); (K.E.E.); (M.G.); (B.-E.C.); (D.W.); (A.S.); (J.K.); (A.A.P.F.)
| | - Michal Gorka
- Willmitzer Department, Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany; (O.B.-G.); (Y.-C.H.); (K.E.E.); (M.G.); (B.-E.C.); (D.W.); (A.S.); (J.K.); (A.A.P.F.)
| | - Bo-Eng Cheong
- Willmitzer Department, Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany; (O.B.-G.); (Y.-C.H.); (K.E.E.); (M.G.); (B.-E.C.); (D.W.); (A.S.); (J.K.); (A.A.P.F.)
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia;
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Malaysia
| | - Erika V. Jimenez-Posada
- Grupo de Biotecnología-Productos Naturales, Universidad Tecnológica de Pereira, Pereira 660003, Colombia;
- Emerging Infectious Diseases and Tropical Medicine Research Group—Sci-Help, Pereira 660009, Colombia
| | - Dirk Walther
- Willmitzer Department, Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany; (O.B.-G.); (Y.-C.H.); (K.E.E.); (M.G.); (B.-E.C.); (D.W.); (A.S.); (J.K.); (A.A.P.F.)
| | - Aleksandra Skirycz
- Willmitzer Department, Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany; (O.B.-G.); (Y.-C.H.); (K.E.E.); (M.G.); (B.-E.C.); (D.W.); (A.S.); (J.K.); (A.A.P.F.)
| | - Ute Roessner
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia;
| | - Joachim Kopka
- Willmitzer Department, Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany; (O.B.-G.); (Y.-C.H.); (K.E.E.); (M.G.); (B.-E.C.); (D.W.); (A.S.); (J.K.); (A.A.P.F.)
| | - Alexandre Augusto Pereira Firmino
- Willmitzer Department, Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany; (O.B.-G.); (Y.-C.H.); (K.E.E.); (M.G.); (B.-E.C.); (D.W.); (A.S.); (J.K.); (A.A.P.F.)
| |
Collapse
|
42
|
Martinez-Seidel F, Suwanchaikasem P, Nie S, Leeming MG, Pereira Firmino AA, Williamson NA, Kopka J, Roessner U, Boughton BA. Membrane-Enriched Proteomics Link Ribosome Accumulation and Proteome Reprogramming With Cold Acclimation in Barley Root Meristems. FRONTIERS IN PLANT SCIENCE 2021; 12:656683. [PMID: 33995454 PMCID: PMC8121087 DOI: 10.3389/fpls.2021.656683] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/22/2021] [Indexed: 05/17/2023]
Abstract
Due to their sessile nature, plants rely on root systems to mediate many biotic and abiotic cues. To overcome these challenges, the root proteome is shaped to specific responses. Proteome-wide reprogramming events are magnified in meristems due to their active protein production. Using meristems as a test system, here, we study the major rewiring that plants undergo during cold acclimation. We performed tandem mass tag-based bottom-up quantitative proteomics of two consecutive segments of barley seminal root apexes subjected to suboptimal temperatures. After comparing changes in total and ribosomal protein (RP) fraction-enriched contents with shifts in individual protein abundances, we report ribosome accumulation accompanied by an intricate translational reprogramming in the distal apex zone. Reprogramming ranges from increases in ribosome biogenesis to protein folding factors and suggests roles for cold-specific RP paralogs. Ribosome biogenesis is the largest cellular investment; thus, the vast accumulation of ribosomes and specific translation-related proteins during cold acclimation could imply a divergent ribosomal population that would lead to a proteome shift across the root. Consequently, beyond the translational reprogramming, we report a proteome rewiring. First, triggered protein accumulation includes spliceosome activity in the root tip and a ubiquitous upregulation of glutathione production and S-glutathionylation (S-GSH) assemblage machineries in both root zones. Second, triggered protein depletion includes intrinsically enriched proteins in the tip-adjacent zone, which comprise the plant immune system. In summary, ribosome and translation-related protein accumulation happens concomitantly to a proteome reprogramming in barley root meristems during cold acclimation. The cold-accumulated proteome is functionally implicated in feedbacking transcript to protein translation at both ends and could guide cold acclimation.
Collapse
Affiliation(s)
- Federico Martinez-Seidel
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
- Willmitzer Department, Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | | | - Shuai Nie
- Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Parkville, VIC, Australia
| | - Michael G. Leeming
- Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Parkville, VIC, Australia
- School of Chemistry, The University of Melbourne, Parkville, VIC, Australia
| | | | - Nicholas A. Williamson
- Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Parkville, VIC, Australia
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Joachim Kopka
- Willmitzer Department, Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Ute Roessner
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| | - Berin A. Boughton
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
- Australian National Phenome Centre, Murdoch University, Murdoch, WA, Australia
| |
Collapse
|
43
|
Kleine T, Nägele T, Neuhaus HE, Schmitz-Linneweber C, Fernie AR, Geigenberger P, Grimm B, Kaufmann K, Klipp E, Meurer J, Möhlmann T, Mühlhaus T, Naranjo B, Nickelsen J, Richter A, Ruwe H, Schroda M, Schwenkert S, Trentmann O, Willmund F, Zoschke R, Leister D. Acclimation in plants - the Green Hub consortium. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:23-40. [PMID: 33368770 DOI: 10.1111/tpj.15144] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/08/2020] [Accepted: 12/14/2020] [Indexed: 05/04/2023]
Abstract
Acclimation is the capacity to adapt to environmental changes within the lifetime of an individual. This ability allows plants to cope with the continuous variation in ambient conditions to which they are exposed as sessile organisms. Because environmental changes and extremes are becoming even more pronounced due to the current period of climate change, enhancing the efficacy of plant acclimation is a promising strategy for mitigating the consequences of global warming on crop yields. At the cellular level, the chloroplast plays a central role in many acclimation responses, acting both as a sensor of environmental change and as a target of cellular acclimation responses. In this Perspective article, we outline the activities of the Green Hub consortium funded by the German Science Foundation. The main aim of this research collaboration is to understand and strategically modify the cellular networks that mediate plant acclimation to adverse environments, employing Arabidopsis, tobacco (Nicotiana tabacum) and Chlamydomonas as model organisms. These efforts will contribute to 'smart breeding' methods designed to create crop plants with improved acclimation properties. To this end, the model oilseed crop Camelina sativa is being used to test modulators of acclimation for their potential to enhance crop yield under adverse environmental conditions. Here we highlight the current state of research on the role of gene expression, metabolism and signalling in acclimation, with a focus on chloroplast-related processes. In addition, further approaches to uncovering acclimation mechanisms derived from systems and computational biology, as well as adaptive laboratory evolution with photosynthetic microbes, are highlighted.
Collapse
Affiliation(s)
- Tatjana Kleine
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, 82152, Germany
| | - Thomas Nägele
- Plant Evolutionary Cell Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Munich, 82152, Germany
| | - H Ekkehard Neuhaus
- Plant Physiology, Department of Biology, Technische Universität Kaiserslautern, Kaiserslautern, 67663, Germany
| | | | - Alisdair R Fernie
- Central Metabolism, Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, 14476, Germany
| | - Peter Geigenberger
- Plant Metabolism, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Munich, 82152, Germany
| | - Bernhard Grimm
- Plant Physiology, Institute of Biology, Humboldt-Universität zu Berlin, Berlin, 10115, Germany
| | - Kerstin Kaufmann
- Plant Cell and Molecular Biology, Institute of Biology, Humboldt-Universität zu Berlin, Berlin, 10115, Germany
| | - Edda Klipp
- Theoretical Biophysics, Institute of Biology, Humboldt-Universität zu Berlin, Berlin, 10115, Germany
| | - Jörg Meurer
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, 82152, Germany
| | - Torsten Möhlmann
- Plant Physiology, Department of Biology, Technische Universität Kaiserslautern, Kaiserslautern, 67663, Germany
| | - Timo Mühlhaus
- Computational Systems Biology, Department of Biology, Technische Universität Kaiserslautern, Kaiserslautern, 67663, Germany
| | - Belen Naranjo
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, 82152, Germany
| | - Jörg Nickelsen
- Molecular Plant Science, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Munich, 82152, Germany
| | - Andreas Richter
- Physiology of Plant Organelles, Institute of Biology, Humboldt-Universität zu Berlin, Berlin, 10115, Germany
| | - Hannes Ruwe
- Molecular Genetics, Institute of Biology, Humboldt-Universität zu Berlin, Berlin, 10115, Germany
| | - Michael Schroda
- Molecular Biotechnology & Systems Biology, Department of Biology, Technische Universität Kaiserslautern, Kaiserslautern, 67663, Germany
| | - Serena Schwenkert
- Plant Biochemistry and Physiology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Munich, 82152, Germany
| | - Oliver Trentmann
- Plant Physiology, Department of Biology, Technische Universität Kaiserslautern, Kaiserslautern, 67663, Germany
| | - Felix Willmund
- Molecular Genetics of Eukaryotes, Department of Biology, Technische Universität Kaiserslautern, Kaiserslautern, 67663, Germany
| | - Reimo Zoschke
- Translational Regulation in Plants, Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, 14476, Germany
| | - Dario Leister
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, 82152, Germany
| |
Collapse
|
44
|
Jiang W, Pan R, Buitrago S, Wu C, Abdelaziz ME, Oelmüller R, Zhang W. Transcriptome analysis of Arabidopsis reveals freezing-tolerance related genes induced by root endophytic fungus Piriformospora indica. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:189-201. [PMID: 33707862 PMCID: PMC7907345 DOI: 10.1007/s12298-020-00922-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/09/2020] [Accepted: 12/28/2020] [Indexed: 05/05/2023]
Abstract
UNLABELLED Freezing stress is a serious environmental factor that obstructs plant development. The root endophytic fungus Piriformospora indica has proved to be effective to confer abiotic stress tolerance to host plants. To investigate how P. indica improves freezing tolerance, we compared the expression profiles of P. indica-colonized and uncolonized Arabidopsis seedlings either exposed to freezing stress or not. Nearly 24 million (93.5%) reads were aligned on the Arabidopsis genome. 634 genes were differentially expressed between colonized and uncolonized Arabidopsis exposed to freezing stress. Interestingly, 193 Arabidopsis genes did not respond to freezing stress but were up-regulated by P. indica under freezing stress. Freezing stress-responsive genes encoded various members of the WRKY, ERF, bHLH, HSF, MYB and NAC transcription factor families. The qRT-PCR analyses confirmed the high-throughput sequencing results for 28 genes. Functional enrichment analysis indicated that the fungus mainly controls genes for freezing-stress related proteins involved in lipid and ion transport, metabolism pathways and phytohormone signaling. Our findings identified novel target genes of P. indica in freezing-stress exposed plants and highlight the benefits of the endophyte for plants exposed to a less investigated environmental threat. SUPPLEMENTARY INFORMATION The online version of this article (10.1007/s12298-020-00922-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wei Jiang
- Hubei Collaborative Innovation Center for Grain Industry/Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, 434025 China
| | - Rui Pan
- Hubei Collaborative Innovation Center for Grain Industry/Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, 434025 China
| | - Sebastian Buitrago
- Hubei Collaborative Innovation Center for Grain Industry/Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, 434025 China
| | - Chu Wu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025 China
| | | | - Ralf Oelmüller
- Matthias-Schleiden-Institute, Plant Physiology, Friedrich-Schiller-University Jena, 07737 Jena, Germany
| | - Wenying Zhang
- Hubei Collaborative Innovation Center for Grain Industry/Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, 434025 China
| |
Collapse
|
45
|
Tiwari B, Habermann K, Arif MA, Top O, Frank W. Identification of Small RNAs During High Light Acclimation in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2021; 12:656657. [PMID: 34211484 PMCID: PMC8239388 DOI: 10.3389/fpls.2021.656657] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/21/2021] [Indexed: 05/19/2023]
Abstract
The biological significance of non-coding RNAs (ncRNAs) has been firmly established to be important for the regulation of genes involved in stress acclimation. Light plays an important role for the growth of plants providing the energy for photosynthesis; however, excessive light conditions can also cause substantial defects. Small RNAs (sRNAs) are a class of non-coding RNAs that regulate transcript levels of protein-coding genes and mediate epigenetic silencing. Next generation sequencing facilitates the identification of small non-coding RNA classes such as miRNAs (microRNAs) and small-interfering RNAs (siRNAs), and long non-coding RNAs (lncRNAs), but changes in the ncRNA transcriptome in response to high light are poorly understood. We subjected Arabidopsis plants to high light conditions and performed a temporal in-depth study of the transcriptome data after 3 h, 6 h, and 2 days of high light treatment. We identified a large number of high light responsive miRNAs and sRNAs derived from NAT gene pairs, lncRNAs and TAS transcripts. We performed target predictions for differentially expressed miRNAs and correlated their expression levels through mRNA sequencing data. GO analysis of the targets revealed an overrepresentation of genes involved in transcriptional regulation. In A. thaliana, sRNA-mediated regulation of gene expression in response to high light treatment is mainly carried out by miRNAs and sRNAs derived from NAT gene pairs, and from lncRNAs. This study provides a deeper understanding of sRNA-dependent regulatory networks in high light acclimation.
Collapse
|
46
|
Schneider K, Venn B, Mühlhaus T. TMEA: A Thermodynamically Motivated Framework for Functional Characterization of Biological Responses to System Acclimation. ENTROPY 2020; 22:e22091030. [PMID: 33286800 PMCID: PMC7597090 DOI: 10.3390/e22091030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/07/2020] [Accepted: 09/11/2020] [Indexed: 12/16/2022]
Abstract
The objective of gene set enrichment analysis (GSEA) in modern biological studies is to identify functional profiles in huge sets of biomolecules generated by high-throughput measurements of genes, transcripts, metabolites, and proteins. GSEA is based on a two-stage process using classical statistical analysis to score the input data and subsequent testing for overrepresentation of the enrichment score within a given functional coherent set. However, enrichment scores computed by different methods are merely statistically motivated and often elusive to direct biological interpretation. Here, we propose a novel approach, called Thermodynamically Motivated Enrichment Analysis (TMEA), to account for the energy investment in biological relevant processes. Therefore, TMEA is based on surprisal analysis, which offers a thermodynamic-free energy-based representation of the biological steady state and of the biological change. The contribution of each biomolecule underlying the changes in free energy is used in a Monte Carlo resampling procedure resulting in a functional characterization directly coupled to the thermodynamic characterization of biological responses to system perturbations. To illustrate the utility of our method on real experimental data, we benchmark our approach on plant acclimation to high light and compare the performance of TMEA with the most frequently used method for GSEA.
Collapse
|