1
|
Qin L, Zhu W, Yang L, Zheng M, Liu G. Persistent free radicals in the environment. JOURNAL OF HAZARDOUS MATERIALS 2025; 493:138332. [PMID: 40262311 DOI: 10.1016/j.jhazmat.2025.138332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 03/31/2025] [Accepted: 04/17/2025] [Indexed: 04/24/2025]
Abstract
Environmentally persistent free radicals (EPFRs) are environmental pollutants whose potential DNA damage and apoptosis toxicity may be mediated by reactive oxygen species (ROS). The currently available knowledge of their environmental characteristics and transformation mechanisms is not sufficient to understand the environmental behaviors and health effects of EPFRs and should be further expanded. This review offers a comprehensive review of the current state of EPFRs, including characterization methods, formation mechanisms, and environmental behavior of EPFRs. Electron paramagnetic resonance (EPR) spectroscopy directly probes EPFRs in environmental matrices. EPFRs can be simply categorized by g value, but structure confirmation solely by EPR is challenging because the complexity of environmental matrices results in the absence of a hyperfine splitting spectrum. Combined advanced EPR and multi-spectroscopic methods enable the structural identification of EPFRs in environmental samples. The environmental behavior and ecological impacts of EPFRs have been progressively studied. This review highlights the important role of EPFRs in natural environments and emphasizes the necessity of further research on EPFRs.
Collapse
Affiliation(s)
- Linjun Qin
- School of the Environment, Hangzhou Institute for Advanced Study, University of the Chinese Academy of Sciences, Hangzhou 310024, China; College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Wuyuxin Zhu
- School of the Environment, Hangzhou Institute for Advanced Study, University of the Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Lili Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Minghui Zheng
- School of the Environment, Hangzhou Institute for Advanced Study, University of the Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guorui Liu
- School of the Environment, Hangzhou Institute for Advanced Study, University of the Chinese Academy of Sciences, Hangzhou 310024, China; College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Zhejiang Key Laboratory of Digital Intelligence Monitoring and Restoration of Watershed Environment, Zhejiang Normal University, Jinhua, Zhejiang, 321004, China.
| |
Collapse
|
2
|
Zhu F, Zhang X, Peng X, He M, Kong L, Zhou G, Yan J, Zhang C, Peng H. Reductive Removal of Antimony from Wastewater by a UV/Sulfite Process: Targeted Recovery of Strategic Metalloid Antimony. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:924-934. [PMID: 39807589 DOI: 10.1021/acs.est.4c09085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
The removal of antimony from wastewater using traditional methods such as adsorption and membrane filtration generates large amounts of antimony-containing hazardous wastes, posing significant environmental threats. This study proposed a new treatment strategy to reductively remove and recover antimony from wastewater using an advanced UV/sulfite reduction process in the form of valuable strategic metalloid antimony (Sb(0)), thus preventing hazardous waste generation. The results indicated that more than 99.9% of Sb(V) and Sb(III) were removed from wastewater, reducing residual antimony concentration as low as 5 μg L-1 and obtaining Sb(0) product with a high purity of over 99.9 wt %. Mechanistic investigations revealed the reductive H• radicals and hydrated electrons (eaq-), along with oxidative SO3•- radicals generated by the photolysis of sulfite, in which H• and eaq- are responsible for the reduction of Sb(V) and Sb(III) to Sb(0). Additionally, although Sb(0) can be further reduced to stibine (SbH3) by H• and eaq-, the formed SbH3 rapidly decays and transforms back to Sb(0) through photolysis and oxidation by SO3•-. Thus, the proposed method can achieve the targeted reduction of Sb(III) and Sb(V) to Sb(0) but not to SbH3. This study provides a theoretical foundation for the recovery of antimony from wastewater.
Collapse
Affiliation(s)
- Feng Zhu
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Environmental Protection Research Institute, Sinopec (Beijing) Research Institute of Chemical Industry Co., Ltd., Beijing 100013, China
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinmiao Zhang
- Environmental Protection Research Institute, Sinopec (Beijing) Research Institute of Chemical Industry Co., Ltd., Beijing 100013, China
| | - Xianjia Peng
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengchang He
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Linghao Kong
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guotao Zhou
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jiaguo Yan
- Oilfield Chemicals Division, China Oilfield Services Limited (COSL), Tianjin 300450, China
| | - Chenlin Zhang
- Environmental Protection Research Institute, Sinopec (Beijing) Research Institute of Chemical Industry Co., Ltd., Beijing 100013, China
| | - Haizhu Peng
- Environmental Protection Research Institute, Sinopec (Beijing) Research Institute of Chemical Industry Co., Ltd., Beijing 100013, China
| |
Collapse
|
3
|
Jia T, Wang W, Zhang C, Zhang L, Wang W. Polydopamine-Mediated Contact-Electro-Catalysis for Efficient Partial Oxidation of Methane. Angew Chem Int Ed Engl 2025; 64:e202413343. [PMID: 39415326 DOI: 10.1002/anie.202413343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 10/18/2024]
Abstract
The direct conversion and efficient utilization of methane pose a critical scientific challenge. Indirect activation via reactive oxygen species (ROS) offers a high probability of contact with methane and conversion efficiency under mild conditions. However, reported product yields are suboptimal due to challenges in activating oxygen and facilitating mass transfer in suspension systems. We propose the use of contact-electro-catalysis (CEC), employing polydopamine (PDA) as a catalyst that undergoes electron transfer with oxygen under ultrasound, generating ROS that drives the partial oxidation of methane (POM). Corresponding experimental results indicate that CH3OH and most HCHO are produced directly from CH4. Furthermore, through in situ characterizations, we have shown that light pretreatment of the catalysts in an oxygenated atmosphere facilitates the forming of more C=O functional groups with strong electron-withdrawing properties, thereby significantly enhancing overall product yields, particularly for CH3OH. Within two hours, product yields reach 1.5 mmol gcat -1 for HCHO and 0.9 mmol gcat -1 for CH3OH. This work introduces a novel approach for efficient POM, while highlighting the distinctive catalytic properties of PDA.
Collapse
Affiliation(s)
- Taikang Jia
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Wenjing Wang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Chuanqi Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Ling Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Wenzhong Wang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
| |
Collapse
|
4
|
Qin L, Yang L, Liu L, Tong S, Liu Q, Li G, Zhang H, Zhu W, Liu G, Zheng M, Jiang G. Oxidative potential and persistent free radicals in dust storm particles and their associations with hospitalization. Nat Commun 2024; 15:10827. [PMID: 39738021 DOI: 10.1038/s41467-024-55151-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 11/25/2024] [Indexed: 01/01/2025] Open
Abstract
Sand and dust storms (SDS) can cause adverse health effects, with the oxidative potential (OP) and environmentally persistent free radicals (EPFRs) inducing oxidative stress. We mapped the OP and EPFRs concentrations at 1735 sites in China during SDS periods using experimental data for 2021-2023 and a random forest model. We examined 855,869 hospitalizations during SDS events for 2015-2022 in Beijing, China. An integrated exposure-response model was used to estimate the association between OP and EPFRs and hospitalization during SDS. EPFRs were strongly associated with circulatory (3.05%; 95% confidence interval [CI]: 1.01%, 4.08%) and respiratory (2.02%; 95% CI: 1.01%, 4.08%) diseases with each increase of 1012 spins/m3. The OP effects on circulatory (3.52%; 95% CI: 2.13%, 4.92%) and respiratory diseases (2.08%; 95% CI: 1.13%, 3.04%) with each increase of 0.2 nmol/min/m3 were also statistically significant. Additionally, 20.47% and 27.26% of all-cause hospitalizations were attributable to OP and EPFRs exposure, respectively. This knowledge could be used to develop effective sand and dust risk prevention in dust-prone countries.
Collapse
Affiliation(s)
- Linjun Qin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100190, China
- Institute of Environment and Health, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Lili Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100190, China.
| | - Ling Liu
- Peking University Third Hospital, Beijing, 100191, China
| | - Shilu Tong
- Queensland University of Technology, Brisbane, QLD, Australia
| | - Qian Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Gang Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Haiyan Zhang
- Institute of Environment and Health, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - WuYuxin Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100190, China
- Institute of Environment and Health, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Guorui Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100190, China.
- Institute of Environment and Health, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
| | - Minghui Zheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100190, China
- Institute of Environment and Health, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100190, China
- Institute of Environment and Health, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| |
Collapse
|
5
|
Qin L, Yang L, Shiraiwa M, Faiola F, Yang Y, Liu S, Liu G, Zheng M, Jiang G. Formation of persistent free radicals from epigallocatechin Gallate in tea processing and their implications on DNA damage and cell cytotoxicity. Food Chem 2024; 458:140241. [PMID: 38944926 DOI: 10.1016/j.foodchem.2024.140241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/07/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
Tea is widely consumed in both beverages and food. Epigallocatechin gallate (EGCG) is the most crucial active ingredient in tea. Currently, knowledges on transformation processes of EGCG during tea processing are lacking. Understanding the chemical reactions of EGCG and its products during tea processing is important for assessing the safety of tea-containing food. Here, we revealed the formation of persistent free radicals (PFRs) from EGCG under the influence of heating and light irradiation, which was substantiated with evidence. These PFRs exhibited stability for >30 min in simulated gastric fluid. Furthermore, we observed potential effects of these PFRs on DNA damage and cell cytotoxicity in vitro. By combining electron paramagnetic resonance spectrometer with Fourier transform ion cyclotron resonance mass spectrometry, we elucidated the pathways involved in free radical formation. These findings are expected to contribute to a comprehensive understanding of free radical chemistry in tea-containing food.
Collapse
Affiliation(s)
- Linjun Qin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of the Chinese Academy of Sciences, Beijing 100190, China
| | - Lili Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of the Chinese Academy of Sciences, Beijing 100190, China.
| | - Manabu Shiraiwa
- Department of Chemistry, University of California - Irvine, Irvine, 92697, USA
| | - Francesco Faiola
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of the Chinese Academy of Sciences, Beijing 100190, China
| | - Yujue Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of the Chinese Academy of Sciences, Beijing 100190, China
| | - Shuting Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of the Chinese Academy of Sciences, Beijing 100190, China
| | - Guorui Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of the Chinese Academy of Sciences, Beijing 100190, China; Institute of Environment and Health, Hangzhou Institute for Advanced Study, University of the Chinese Academy of Sciences, Hangzhou, 310024, China.
| | - Minghui Zheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of the Chinese Academy of Sciences, Beijing 100190, China; Institute of Environment and Health, Hangzhou Institute for Advanced Study, University of the Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of the Chinese Academy of Sciences, Beijing 100190, China; Institute of Environment and Health, Hangzhou Institute for Advanced Study, University of the Chinese Academy of Sciences, Hangzhou, 310024, China
| |
Collapse
|
6
|
Li X, Qu B, Wang J, Zhao H. Photoformation of Environmentally Persistent Free Radicals During Phototransformation of Poly-Cyclic Aromatic Hydrocarbons (PAHs) on Particles in an Aqueous Solution: The Hydrogenation of PAHs and Effect of Co-Existing Water Matrix Factors. TOXICS 2024; 12:796. [PMID: 39590976 PMCID: PMC11597975 DOI: 10.3390/toxics12110796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/20/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024]
Abstract
Environmentally persistent free radicals (EPFRs) generated on particles under irradiation in water have attracted particular attention, and their formation mechanisms are not well understood. This study investigated the photoformation of EPFRs on both actual samples collected from an oil production plant in Panjin, Liaoning, China, and simulated Fe(III)-montmorillonite samples in water. The EPFRs detected on actual samples were not easily generated compared with those in the soil or in the air, based on the concentrations of identified PAHs. EPR signals in the range of 1017 to 1018 spin/g were detected on the simulated Fe(III)-montmorillonite samples. Their g factors were smaller than 2.0030, which indicated the generation of carbon-centered EPFRs. The primary byproducts were identified by chromatography-mass spectrometry (GC-MS), and a possible EPFR formation pathway during PAH degradation was proposed. Hydrogenation of PAHs during the photoformation of EPFRs was observed and might be due to the catalysis of the simulated particles and the interaction of the intermediates. Meanwhile, the effects of the typical anions (NO2- and Cl-) and the surfactant (TWEEN® 80 and sodium dodecyl sulfate) were investigated and indicated that the phototransformation process and adsorption process would affect the formation of EPFRs. Overall, our study provided useful information to understand the photoformation of EPFRs in aqueous environments.
Collapse
Affiliation(s)
- Xintong Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China; (X.L.); (J.W.)
| | - Baocheng Qu
- College of Marine Technology and Environment, Dalian Ocean University, Dalian 116023, China;
- Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian 116023, China
| | - Jingyao Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China; (X.L.); (J.W.)
| | - Hongxia Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China; (X.L.); (J.W.)
| |
Collapse
|
7
|
Hu Y, Yang G, Zhou N, Jiao L, Wang L, Yan J. Generation and persistency of combustion-derived environmentally persistent free radicals from phenolic compounds over a Fe 2O 3/SiO 2 surface. CHEMOSPHERE 2024; 362:142468. [PMID: 38821125 DOI: 10.1016/j.chemosphere.2024.142468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 04/27/2024] [Accepted: 05/26/2024] [Indexed: 06/02/2024]
Abstract
Combustion of organic solid wastes releases phenolic compounds which can act as precursors in the formation of environmentally persistent free radicals (EPFRs) in the post-flame, cooling zone of waste combustion. The study investigated the generation mechanism of EPFRs from phenolic compounds catalyzed by transition metals in air atmosphere under simulated combustion conditions. Representative combustion-derived phenolic compounds were used, and SiO2 particulates containing different mass ratio of Fe2O3 were synthesized as carriers. EPFRs formed had g-factors between 1.9998 and 2.0066, indicating phenoxyl-, cyclopentadienyl-, and semiquinone-type radicals, along with paramagnetic F-centers. The promotion effect of phenolic compounds on EPFR formation during heating decreased as catechol > hydroquinone > phenol > p-cresol. This trend is related to hydroxyl groups and activation energy. In particular, catechol chemically adsorbed on Fe2O3 at 600 K led to the formation of EPFRs with relatively high spin concentrations (up to 1.28 × 1017 spin/g). Higher Fe2O3 concentrations promoted the transformation of phenoxyl-type radicals into cyclopentadienyl-type and paramagnetic F-centers. However, as the Fe2O3 loading increased from 1.25% to 5%, the density of EPFRs decreased. The findings related to the influence of various precursors and Fe2O3 concentration on EPFR formation provide valuable insights for estimating EPFR generation and associated risk during combustion processes.
Collapse
Affiliation(s)
- Yanjun Hu
- Institute of Thermal and Power Engineering, Zhejiang University of Technology, Liuhe Road 288#, 310023, HangZhou, China.
| | - Guohao Yang
- Institute of Thermal and Power Engineering, Zhejiang University of Technology, Liuhe Road 288#, 310023, HangZhou, China
| | - Nan Zhou
- Institute of Thermal and Power Engineering, Zhejiang University of Technology, Liuhe Road 288#, 310023, HangZhou, China
| | - Long Jiao
- Institute of Thermal and Power Engineering, Zhejiang University of Technology, Liuhe Road 288#, 310023, HangZhou, China
| | - Lei Wang
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, 310013, Hangzhou, China
| | - Jianhua Yan
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, 310013, Hangzhou, China.
| |
Collapse
|
8
|
Zhao J, Hu X, Kong L, Peng X. UV irradiation induced simultaneous reduction of Cu(II) and degradation of EDTA in Cu(II)-EDTA in wastewater containing Cu(II)-EDTA. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133131. [PMID: 38086297 DOI: 10.1016/j.jhazmat.2023.133131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 02/08/2024]
Abstract
Decomplexation of Cu(II)-EDTA followed by chemical precipitation of free Cu(II) ions can effectively degrade EDTA in Cu(II)-EDTA and remove Cu(II), but requires large precipitant dosage and inevitably produces a large amount of copper-containing sludge that is difficult to deal with. Herein, we demonstrated that simultaneous reduction of Cu(II) and degradation of EDTA in Cu(II)-EDTA can be achieved by UV irradiation of wastewater containing Cu(II)-EDTA without adding reagent. 93.65% of Cu(II) was reduced to Cu(0) with a high purity of 99.93 wt%, which can be recycled, thus avoiding the generation of copper-containing sludge. 96.67% of EDTA in Cu(II)-EDTA was degraded, and the final products were HCHO, NH4+, NO3- and low-molecular acids. In depth, the dominant degradation mechanism of EDTA in Cu(II)-EDTA was photo-induced successive decarboxylation through homolysis of C-O and C-C bond of -CH2-COOH group, followed by ligand to metal charge transfer (LMCT) and hydrolysis reactions. The minor degradation mechanism of EDTA in Cu(II)-EDTA was successive decarboxylation by •OH radicals. Simultaneously, Cu(II) was reduced to Cu(0) by H• and eaq- produced by UV irradiation of Cu(II)-EDTA. This study provided an approach of simultaneous removal of heavy metals and degradation of EDTA in Cu(II)-EDTA in wastewater containing heavy metal-EDTA complex.
Collapse
Affiliation(s)
- Jinmin Zhao
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingyun Hu
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Linghao Kong
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xianjia Peng
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
9
|
Khachatryan L, Rezk MY, Nde D, Hasan F, Lomnicki S, Boldor D, Cook R, Sprunger P, Hall R, Cormier S. New Features of Laboratory-Generated EPFRs from 1,2-Dichlorobenzene (DCB) and 2-Monochlorophenol (MCP). ACS OMEGA 2024; 9:9226-9235. [PMID: 38434874 PMCID: PMC10905596 DOI: 10.1021/acsomega.3c08271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/18/2023] [Accepted: 01/22/2024] [Indexed: 03/05/2024]
Abstract
The present research is primarily focused on investigating the characteristics of environmentally persistent free radicals (EPFRs) generated from commonly recognized aromatic precursors, namely, 1,2-dichlorobenzene (DCB) and 2-monochlorophenol (MCP), within controlled laboratory conditions at a temperature of 230 °C, termed as DCB230 and MCP230 EPFRs, respectively. An intriguing observation has emerged during the creation of EPFRs from MCP and DCB utilizing a catalyst 5% CuO/SiO2, which was prepared through various methods. A previously proposed mechanism, advanced by Dellinger and colleagues (a conventional model), postulated a positive correlation between the degree of hydroxylation on the catalyst's surface (higher hydroxylated, HH and less hydroxylated, LH) and the anticipated EPFR yields. In the present study, this correlation was specifically confirmed for the DCB precursor. Particularly, it was observed that increasing the degree of hydroxylation at the catalyst's surface resulted in a greater yield of EPFRs for DCB230. The unexpected finding was the indifferent behavior of MCP230 EPFRs to the surface morphology of the catalyst, i.e., no matter whether copper oxide nanoparticles are distributed densely, sparsely, or completely agglomerated. The yields of MCP230 EPFRs remained consistent regardless of the catalyst type or preparation protocol. Although current experimental results confirm the early model for the generation of DCB EPFRs (i.e., the higher the hydroxylation is, the higher the yield of EPFRs), it is of utmost importance to closely explore the heterogeneous alternative mechanism(s) responsible for generating MCP230 EPFRs, which may run parallel to the conventional model. In this study, detailed spectral analysis was conducted using the EPR technique to examine the nature of DCB230 EPFRs and the aging phenomenon of DCB230 EPFRs while they exist as surface-bound o-semiquinone radicals (o-SQ) on copper sites. Various aspects concerning bound radicals were explored, including the hydrogen-bonding tendencies of o-semiquinone (o-SQ) radicals, the potential reversibility of hydroxylation processes occurring on the catalyst's surface, and the analysis of selected EPR spectra using EasySpin MATLAB. Furthermore, alternative routes for EPFR generation were thoroughly discussed and compared with the conventional model.
Collapse
Affiliation(s)
- Lavrent Khachatryan
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Marwan Y. Rezk
- Department
of Engineering Science, Biological Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Divine Nde
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Farhana Hasan
- Department
of Environmental Sciences, Louisiana State
University, Baton
Rouge, Louisiana 70803, United States
| | - Slawomir Lomnicki
- Department
of Environmental Sciences, Louisiana State
University, Baton
Rouge, Louisiana 70803, United States
| | - Dorin Boldor
- Department
of Engineering Science, Biological Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Robert Cook
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Phillip Sprunger
- Department
of Physics and Astronomy, Louisiana State
University, Baton
Rouge, Louisiana 70803, United States
| | - Randall Hall
- Natural
Sciences and Mathematics, School of Health and Natural Sciences, Dominican University of California, San Rafael, California 94901, United States
| | - Stephania Cormier
- Department
of Biological Sciences, LSU Superfund Research
Program and Pennington Biomedical Research Center, Baton Rouge, Louisiana 70808, United States
| |
Collapse
|
10
|
Liang D, Liu J, Feng Y, Tu K, Wang L, Qiu L, Zhang X. Formation Mechanism of Environmentally Persistent Free Radicals on Alkaline Earth Oxide Surfaces. J Phys Chem A 2024; 128:1297-1305. [PMID: 38349766 DOI: 10.1021/acs.jpca.3c07250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
The formation of environmentally persistent free radicals (EPFRs) is usually related to transition-metal oxides in particulate matter (PM). However, recent studies suggest that alkaline-earth-metal oxides (AEMOs) in PM also influence EPFRs formation, but the exact mechanism remains unclear. Here, density functional theory calculations were performed to investigate the formation mechanism of EPFRs by C6H5OH on AEMO (MgO, CaO, and BaO) surfaces and compare it with that on transition-metal oxide (ZnO and CuO) surfaces. Results indicate that EPFRs can be rapidly formed on AEMOs by dissociative adsorption of C6H5OH, accompanied by electrons transfer. As the alkalinity of AEMOs increases, both adsorption energy and the number of electron transfers gradually increase. Also, the stability of the formed EPFRs is mainly attributed to the electrostatic and van der Waals interactions between the phenoxy radical and surfaces. Notably, the formation mechanism of EPFRs on AEMOs is similar to that on ZnO but differs from that on CuO, as suggested through geometric structure and charge distribution analyses. This study not only elucidates the formation mechanisms of EPFRs on AEMOs but also provides theoretical insights into addressing EPFRs pollution.
Collapse
Affiliation(s)
- Danli Liang
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jiarong Liu
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
- Key Laboratory of National Land Space Planning and Disaster Emergency Management of Inner Mongolia, School of Resources, Environment and Architectural Engineering, Chifeng University, Chifeng 024000, China
| | - Yuwen Feng
- School of Chemical Engineering, Dalian University of Technology, Linggong Road, Dalian 116024, China
| | - Kaipeng Tu
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Li Wang
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
- Norinco Group Shanxi North Xingan Chemical Industry Company Limited, Taiyuan 030008, China
| | - Lili Qiu
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xiuhui Zhang
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
11
|
Xu Y, Lu X, Su G, Chen X, Meng J, Li Q, Wang C, Shi B. Scientific and regulatory challenges of environmentally persistent free radicals: From formation theory to risk prevention strategies. JOURNAL OF HAZARDOUS MATERIALS 2023; 456:131674. [PMID: 37236112 DOI: 10.1016/j.jhazmat.2023.131674] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/18/2023] [Accepted: 05/20/2023] [Indexed: 05/28/2023]
Abstract
EPFRs (Environmentally Persistent Free Radicals) are a class of pollutants that have been identified as potential environmental contaminants due to their persistence and ability to generate reactive oxygen species (ROS) that can cause oxidative stress in living organisms. However, no study has comprehensively summarized the production conditions, influencing factors and toxic mechanisms of EPFRs, impeding exposure toxicity assessments and risk prevention strategies. To bridge the gap between theoretical research and practical application, a thorough literature review to summarize the formation, environmental effects, and biotoxicity of EPFRs are conducted. A total of 470 relevant papers were screened in Web of Science Core collection databases. The transfer of electrons between interfaces and the cleavage of covalent bonds of persistent organic pollutants is crucial to the generation of EPFRs, which is induced by external sources of energy, including thermal energy, light energy, transition metal ions, and others. In the thermal system, the stable covalent bond of organic matter can be destroyed by heat energy at low temperature to form EPFRs, while the formed EPFRs can be destroyed at high temperature. Light can also accelerate the production of free radicals and promote the degradation of organic matter. The persistence and stability of EPFRs are synergistically influenced by individual environmental factors such as environmental humidity, oxygen content, organic matter content, and environmental pH. Studying the formation mechanism of EPFRs and their biotoxicity is essential for fully understanding the hazards posed by these emerging environmental contaminants.
Collapse
Affiliation(s)
- Yulin Xu
- School of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang 110168, China; Key Laboratory of Environmental Nanotechnology and Health Effects Research, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiaofei Lu
- School of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang 110168, China
| | - Guijin Su
- Key Laboratory of Environmental Nanotechnology and Health Effects Research, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xing Chen
- School of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang 110168, China; Key Laboratory of Environmental Nanotechnology and Health Effects Research, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jing Meng
- Key Laboratory of Environmental Nanotechnology and Health Effects Research, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qianqian Li
- Key Laboratory of Environmental Nanotechnology and Health Effects Research, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenxi Wang
- School of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang 110168, China; Key Laboratory of Environmental Nanotechnology and Health Effects Research, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Bin Shi
- Key Laboratory of Environmental Nanotechnology and Health Effects Research, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
12
|
Sha M, Rao L, Xu W, Qin Y, Su R, Wu Y, Fang Q, Wang H, Cui X, Zheng L, Gu W, Zhu C. Amino-Ligand-Coordinated Dicopper Active Sites Enable Catechol Oxidase-Like Activity for Chiral Recognition and Catalysis. NANO LETTERS 2023; 23:701-709. [PMID: 36598260 DOI: 10.1021/acs.nanolett.2c04697] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Developing highly active and selective advanced nanozymes for enzyme-mimicking catalysis remains a long-standing challenge for basic research and practical applications. Herein, we grafted a chiral histidine- (His-) coordinated copper core onto Zr-based metal-organic framework (MOF) basic backbones to structurally mirror the bimetal active site of natural catechol oxidase. Such a biomimetic fabricated process affords MOF-His-Cu with catechol oxidase-like activity, which can catalyze dehydrogenation and oxidation of o-diphenols and then transfer electrons to O2 to generate H2O2 by the cyclic conversion of Cu(II) and Cu(I). Specifically, the elaborate incorporation of chiral His arms results in higher catalytic selectivity over the chiral catechol substrates than natural enzyme. Density functional theory calculations reveal that the binding energy and potential steric effect in active site-substrate interactions account for the high stereoselectivity. This work demonstrates efficient and selective enzyme-mimicking catalytic processes and deepens the understanding of the catalytic mechanism of nanozymes.
Collapse
Affiliation(s)
- Meng Sha
- Key Laboratory of Pesticides and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Li Rao
- Key Laboratory of Pesticides and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Weiqing Xu
- Key Laboratory of Pesticides and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Ying Qin
- Key Laboratory of Pesticides and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Rina Su
- Key Laboratory of Pesticides and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Yu Wu
- Key Laboratory of Pesticides and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Qie Fang
- Key Laboratory of Pesticides and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Hengjia Wang
- Key Laboratory of Pesticides and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Xiaowen Cui
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wenling Gu
- Key Laboratory of Pesticides and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Chengzhou Zhu
- Key Laboratory of Pesticides and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
13
|
Wang S, Gallimore PJ, Liu-Kang C, Yeung K, Campbell SJ, Utinger B, Liu T, Peng H, Kalberer M, Chan AWH, Abbatt JPD. Dynamic Wood Smoke Aerosol Toxicity during Oxidative Atmospheric Aging. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:1246-1256. [PMID: 36630690 DOI: 10.1021/acs.est.2c05929] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Wildfires are a major source of biomass burning aerosol to the atmosphere, with their incidence and intensity expected to increase in a warmer future climate. However, the toxicity evolution of biomass burning organic aerosol (BBOA) during atmospheric aging remains poorly understood. In this study, we report a unique set of chemical and toxicological metrics of BBOA from pine wood smoldering during multiphase aging by gas-phase hydroxyl radicals (OH). Both the fresh and OH-aged BBOA show activity relevant to adverse health outcomes. The results from two acellular assays (DTT and DCFH) show significant oxidative potential (OP) and reactive oxygen species (ROS) formation in OH-aged BBOA. Also, radical concentrations in the aerosol assessed by electron paramagnetic resonance (EPR) spectroscopy increased by 50% following heterogeneous aging. This enhancement was accompanied by a transition from predominantly carbon-centered radicals (85%) in the fresh aerosol to predominantly oxygen-centered radicals (76%) following aging. Both the fresh and aged biomass burning aerosols trigger prominent antioxidant defense during the in vitro exposure, indicating the induction of oxidative stress by BBOA in the atmosphere. By connecting chemical composition and toxicity using an integrated approach, we show that short-term aging initiated by OH radicals can produce biomass burning particles with a higher particle-bound ROS generation capacity, which are therefore a more relevant exposure hazard for residents in large population centers close to wildfire regions than previously studied fresh biomass burning emissions.
Collapse
Affiliation(s)
- Shunyao Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Peter J Gallimore
- Department of Earth and Environmental Sciences, University of Manchester, Manchester M13 9PL, United Kingdom
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Carolyn Liu-Kang
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Kirsten Yeung
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Steven J Campbell
- Centre for Atmospheric Science, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
- Department of Environmental Sciences, University of Basel, 4056 Basel, Switzerland
| | - Battist Utinger
- Department of Environmental Sciences, University of Basel, 4056 Basel, Switzerland
| | - Tengyu Liu
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Joint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
| | - Hui Peng
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- School of the Environment, University of Toronto, Toronto, Ontario M5S 3E8, Canada
| | - Markus Kalberer
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Centre for Atmospheric Science, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Arthur W H Chan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
- School of the Environment, University of Toronto, Toronto, Ontario M5S 3E8, Canada
| | - Jonathan P D Abbatt
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- School of the Environment, University of Toronto, Toronto, Ontario M5S 3E8, Canada
| |
Collapse
|
14
|
Zhang Q, Li J, Chen D, Xiao W, Zhao S, Ye X, Li H. In situ formation of Ca(OH) 2 coating shell to extend the longevity of zero-valent iron biochar composite derived from Fe-rich sludge for aqueous phosphorus removal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158794. [PMID: 36116640 DOI: 10.1016/j.scitotenv.2022.158794] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/30/2022] [Accepted: 09/11/2022] [Indexed: 06/15/2023]
Abstract
Despite being an effective and attractive functional strategy for aqueous phosphorus (P) removal, the use of zero valent iron (ZVI) biochar composites has been severely impeded by rapid self-erosion. We describe a new approach for extending the lifespan of Fe-rich sludge-derived ZVI biochar composites via CaCl2 modification. Preliminary results showed that composites obtained at 900 °C without modification (MBC900) and at 900 °C with 100 g Cl/kg addition (MBC900100) had the highest P removal efficiency. In subsequent batch experiments, MBC900100 exhibited more stable P adsorption capacities than MBC900 over a wide pH range (4-10) and at various dosages, which was enhanced by the presence of HCO3-. The theoretical maximum P adsorption capacities of MBC900 and MBC900100 were 227.14 and 224.15 mg g-1, respectively. Kinetic analysis indicated that chemisorption dominated the removal process. Continuous experimental data using the Yoon-Nelson model indicated that MBC900100 had a considerably longer half-penetration time. The primary mechanism of P removal by MBC900 was Fe/C micro-electrolysis. As the embedded CaO formed a dissolvable Ca(OH)2 shell in situ on the surface of MBC900100, the phosphate formed a precipitate with free Ca2+ before being removed via micro-electrolysis. Overall, CaCl2 modification successfully enhanced the longevity of the ZVI biochar composites.
Collapse
Affiliation(s)
- Qi Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products; Key Laboratory of Information Traceability for Agricultural Products; Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, 298 Desheng Middle Road, Hangzhou 310021, PR China
| | - Jun Li
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China.
| | - De Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products; Key Laboratory of Information Traceability for Agricultural Products; Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, 298 Desheng Middle Road, Hangzhou 310021, PR China
| | - Wendan Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products; Key Laboratory of Information Traceability for Agricultural Products; Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, 298 Desheng Middle Road, Hangzhou 310021, PR China
| | - Shouping Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products; Key Laboratory of Information Traceability for Agricultural Products; Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, 298 Desheng Middle Road, Hangzhou 310021, PR China
| | - Xuezhu Ye
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products; Key Laboratory of Information Traceability for Agricultural Products; Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, 298 Desheng Middle Road, Hangzhou 310021, PR China
| | - Hui Li
- Hunan Academy of Forestry and State Key Laboratory of Utilization of Woody Oil Resource, Changsha 410004, PR China
| |
Collapse
|
15
|
Experimental study on mechanisms of reactions of radicals with graphene oxide particles in wastewater. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
16
|
Rapid and effective nitrate reduction over wide pH range using CuxO-CNT with the presence of KBH4: The role of in situ produced hydrogen and zero-valent copper. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
17
|
Wang J, Liu J, Peng X, He M, Hu X, Zhao J, Zhu F, Yang X, Kong L. Reductive removal of As(V) and As(III) from aqueous solution by the UV/sulfite process: Recovery of elemental arsenic. WATER RESEARCH 2022; 223:118981. [PMID: 35994788 DOI: 10.1016/j.watres.2022.118981] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/10/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
The removal of arsenic (As(V) and As(III)) from contaminated water has attracted great attention. However, the generation of arsenic-containing hazardous waste by traditional methods has become an inevitable environmental problem. Herein, a UV/sulfite advanced reduction method was proposed to remove As(V) and As(III) from aqueous solution in the form of valuable elemental arsenic (As(0)), thus avoiding the generation of arsenic-containing hazardous waste. The results showed that greater than 99.9% of As(V) and As(III) were reduced to the high purity As(0) (> 99.5 wt%) with the residual arsenic concentration below 10 μg L-1. The hydrated electrons (eaq-), H• and SO3•- radicals are generated by the UV/sulfite process, of which eaq- and H• serve as reductants of As(V) and As(III) while the SO3•- radicals inhibit arsenic reduction by oxidizing arsenic. The effective quantum efficiency (Φ) for the formation of As(0) in the As(V) and As(III) removal process is approximately 0.0078 and 0.0055 mol/Einstein, respectively. The reduction of arsenic is favorable under alkaline conditions (pH > 9.0) due to the higher photolysis efficiency of SO32- than HSO3- (pKa = 7.2) and higher stability of eaq-/H• under alkaline conditions. The presence of dissolved oxygen (O2), NO2-, NO3-, CO32-, PO43- and humic acid (HA) inhibited arsenic reduction through light blocking or eaq-/H• scavenging effects while Cl-, SO42-, Ca2+ and Mg2+ had negligible effects on arsenic reduction. The proposed method can effectively remove and recover arsenic from contaminated water at a low cost, demonstrating feasibility for practical application. This study provides a novel technology for the reductive removal and recovery of arsenic from contaminated water.
Collapse
Affiliation(s)
- Jianbing Wang
- School of Chemical and Environmental Engineering, Beijing Campus, China University of Mining and Technology, Beijing, 100083, China
| | - Jiyong Liu
- School of Chemical and Environmental Engineering, Beijing Campus, China University of Mining and Technology, Beijing, 100083, China; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Xianjia Peng
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mengchang He
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Xingyun Hu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Jinmin Zhao
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Feng Zhu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin Yang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Linghao Kong
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| |
Collapse
|
18
|
Henrion M, Mohr Y, Janssens K, Smolders S, Bugaev AL, Usoltsev OA, Quadrelli EA, Wisser FM, De Vos DE, Canivet J. Reusable copper catechol‐based porous polymers for the highly efficient heterogeneous catalytic oxidation of secondary alcohols. ChemCatChem 2022. [DOI: 10.1002/cctc.202200649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mickaël Henrion
- KU Leuven: Katholieke Universiteit Leuven Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions BELGIUM
| | - Yorck Mohr
- IRCELYON: Institut de Recherches sur la Catalyse et l'Environnement de Lyon Catalyst and Process Engineering FRANCE
| | - Kwinten Janssens
- KU Leuven: Katholieke Universiteit Leuven Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions BELGIUM
| | - Simon Smolders
- KU Leuven: Katholieke Universiteit Leuven Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions BELGIUM
| | - Aram L. Bugaev
- Southern Federal University: Uznyj federal'nyj universitet The Smart Materials Research Institute RUSSIAN FEDERATION
| | - Oleg A. Usoltsev
- Southern Federal University: Uznyj federal'nyj universitet The Smart Materials Research Institute RUSSIAN FEDERATION
| | - Elsje Alessandra Quadrelli
- IRCELYON: Institut de Recherches sur la Catalyse et l'Environnement de Lyon Catalyst and Process Engineering FRANCE
| | - Florian Michael Wisser
- University of Regensburg: Universitat Regensburg Inorganic Chemistry Universitätsstraße 31 93053 Regensburg GERMANY
| | - Dirk E. De Vos
- KU Leuven: Katholieke Universiteit Leuven Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions BELGIUM
| | - Jérôme Canivet
- IRCELYON: Institut de Recherches sur la Catalyse et l'Environnement de Lyon Catalyst and Process Engineering FRANCE
| |
Collapse
|
19
|
Kong L, Zhao J, Hu X, Zhu F, Peng X. Reductive Removal and Recovery of As(V) and As(III) from Strongly Acidic Wastewater by a UV/Formic Acid Process. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:9732-9743. [PMID: 35724662 DOI: 10.1021/acs.est.2c02129] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The removal of arsenic (As(V) and As(III)) from strongly acidic wastewater using traditional neutralization or sulfuration precipitation methods produces a large amount of arsenic-containing hazardous wastes, which poses a potential threat to the environment. In this study, an ultraviolet/formic acid (UV/HCOOH) process was proposed to reductively remove and recover arsenic from strongly acidic wastewater in the form of valuable elemental arsenic (As(0)) products to avoid the generation of hazardous wastes. We found that more than 99% of As(V) and As(III) in wastewater was reduced to highly pure solid As(0) (>99.5 wt %) by HCOOH under UV irradiation. As(V) can be efficiently reduced to As(IV) (H2AsO3 or H4AsO4) by hydrogen radicals (H•) generated from the photolysis of HCOOH through dehydroxylation or hydrogenation. Then, As(IV) is reduced to As(III) by H• or through its disproportionation. The reduction of As(V) to H4AsO4 by H• and the disproportionation of H4AsO4 are the main reaction processes. Subsequently, As(III) is reduced to As(0) not only by H• through stepwise dehydroxylation but also through the disproportionation of intermediate arsenic species As(II) and As(I). With additional density functional theory calculations, this study provides a theoretical foundation for the reductive removal of arsenic from acidic wastewater.
Collapse
Affiliation(s)
- Linghao Kong
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Beijing Key Laboratory of Industrial Wastewater Treatment and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jinmin Zhao
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Beijing Key Laboratory of Industrial Wastewater Treatment and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingyun Hu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Beijing Key Laboratory of Industrial Wastewater Treatment and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Feng Zhu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Beijing Key Laboratory of Industrial Wastewater Treatment and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xianjia Peng
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Beijing Key Laboratory of Industrial Wastewater Treatment and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
20
|
Wang Y, Gu X, Huang Y, Ding Z, Chen Y, Hu X. Insight into biomass feedstock on formation of biochar-bound environmentally persistent free radicals under different pyrolysis temperatures. RSC Adv 2022; 12:19318-19326. [PMID: 35865560 PMCID: PMC9251640 DOI: 10.1039/d2ra03052g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/27/2022] [Indexed: 01/05/2023] Open
Abstract
Environmentally persistent free radicals (EPFRs) in biochars have the ability of catalytic formation of reactive oxygen species, which may pose potential oxidative stresses to eco-environment and human health. Therefore, comprehending the formation and characteristics of EPFRs in biochars is important for their further applications. In this study, the woody lignocellulosic biomass (wood chips, pine needle and barks), non-woody lignocellulosic biomass (rice husk, corn stover, and duckweed), and non-lignocellulosic biomass (anaerobically digested sludge) were selected as biomass feedstock to prepare biochars under different pyrolysis temperatures (200–700 °C). The impact of biomass feedstock on formation of biochar-bound EPFRs was systematically compared. Elemental compositions and atomic ratios of H/C and O/C varied greatly among different biomass feedstocks and the subsequently resulting biochars. EPFRs in biochars derived from the studied lignocellulosic biomass have similar levels of spin concentrations (1018–1019 spins per g) except for lower EPFRs in biochars under 200 and 700 °C; however, sludge-based biochars, a typical non-lignocellulosic-biomass-based biochar, have much lower EPFRs (1016 spins per g) than lignocellulosic-biomass-based biochars under all the studied pyrolysis temperatures. Values of g factors ranged from 2.0025 to 2.0042 and line width was in the range of 2.15–11.3 for EPFRs in the resulting biochars. Spin concentrations of biochar-bound EPFRs increased with the increasing pyrolysis temperatures from 200 to 500 °C, and then decreased rapidly from 500 to 700 °C and oxygen-centered radicals shifted to carbon-centered radicals with the increasing pyrolysis temperatures from 200 to 700 °C for all the studied biomass feedstock. 300–500 °C was the appropriate pyrolysis temperature range for higher levels of spin concentrations of biochar-bound EPFRs. Moreover, EPFRs' concentrations had significantly positive correlation with C contents and weak or none correlation with contents of transition metals. Overall, different types of biomass feedstock have significant impact on the formation of EPFRs in the resulting biochars. Environmentally persistent free radicals (EPFRs) in biochars have the ability of catalytic formation of reactive oxygen species, which may pose potential oxidative stresses to eco-environment and human health.![]()
Collapse
Affiliation(s)
- Yu Wang
- School of Environmental Science & Engineering, Nanjing Tech University 30 Puzhu Southern Road Nanjing 211816 PR China
| | - Xinfeng Gu
- School of Environmental Science & Engineering, Nanjing Tech University 30 Puzhu Southern Road Nanjing 211816 PR China
| | - Yue Huang
- School of Environmental Science & Engineering, Nanjing Tech University 30 Puzhu Southern Road Nanjing 211816 PR China
| | - Zhuhong Ding
- School of Environmental Science & Engineering, Nanjing Tech University 30 Puzhu Southern Road Nanjing 211816 PR China
| | - Yijun Chen
- State Key Laboratory of Analytical Chemistry for Life Science, Centre of Materials Analysis and School of Chemistry & Chemical Engineering, Nanjing University 22 Hankou Road Nanjing 210023 PR China
| | - Xin Hu
- State Key Laboratory of Analytical Chemistry for Life Science, Centre of Materials Analysis and School of Chemistry & Chemical Engineering, Nanjing University 22 Hankou Road Nanjing 210023 PR China
| |
Collapse
|
21
|
Ye Y, Li Y, Wang J, Yuan S, Xu X, Zhang X, Zhou J, Wang B, Ma X. Generation of Environmentally Persistent Free Radicals on Metal-Organic Frameworks. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:3265-3275. [PMID: 35245423 DOI: 10.1021/acs.langmuir.1c03491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Environmentally persistent free radicals (EPFRs) have been recognized as one of the important emerging contaminants with biological toxicity, environmental persistence, and global mobility. Previous studies have identified the catalytic role of surface metal oxides in EPFRs formation and illustrated the metal-dependence of EPFRs by studying on various metal oxide nanoparticles and single crystals. However, there is still lack of an understanding on the formation of EPFRs from the point of view of metal sites. Various factors (e.g., crystalline phases and surface species) of metal oxides are regarded to contribute to the generation of EPFRs, which present profound difficulties for scientists to tease apart the impact of metal type. Herein, a laboratory investigation, in terms of the acidity and oxidation strength of metal cations, was conducted by selecting metal-variable isostructural metal-organic frameworks as material platforms. Specifically, we evaluated EPFRs generation on MIL-100(M) (M = Al, Cr, Fe) from chlorine-substituted phenol vapor and catechol under thermal conditions. It is found that high Lewis acidity of metal sites is crucial for capturing the above two phenolic precursors, activating the O-H bond and promoting EPFRs formation. Radical species with half-life as long as 70 days were generated on MIL-100 rich in 5-fold coordinated Al3+ sites. The unpaired electron spin density donation was further confirmed by using 27Al solid-state nuclear magnetic resonance spectroscopy. Despite their higher oxidation power than Al3+, the exposed Cr3+ and Fe3+ sites show undetectable catalytic activity for the formation of EPFRs, because of their insufficient Lewis acidity. Our results suggest that the surface species rather than Lewis acid sites may be a major contributor to the formation of EPFRs on metal oxides like Fe2O3.
Collapse
Affiliation(s)
- Yuqing Ye
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Yuan Li
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Jie Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Shuai Yuan
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Xiaojun Xu
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Xinning Zhang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Junwen Zhou
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Bo Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Xiaojie Ma
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| |
Collapse
|
22
|
Li X, Zhao H, Qu B, Tian Y. Photoformation of environmentally persistent free radicals on particulate organic matter in aqueous solution: Role of anthracene and formation mechanism. CHEMOSPHERE 2022; 291:132815. [PMID: 34752830 DOI: 10.1016/j.chemosphere.2021.132815] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/29/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
Environmentally persistent free radicals (EPFRs) generated under irradiation have been widely detected in soil particles, atmospheric particles and microplastic particles, but the formation of EPFRs in water is not well understood. This study investigated the formation of EPFRs on particulate organic matter (POM) in water contaminated by anthracene (Ant) under irradiation. The photoformation and decay progress of EPFRs was represented with the help of electron paramagnetic resonance (EPR) technique on both actual POM and Fe(III)-montmorillonite simulated samples. EPR signals at the range of 1016 to 1017 spin/g were detected and the half-life time of EPFRs stored in water was at around 16.62 h and 60.80 h, much shorter than those in the air. The g factors were all larger than 2.0040, which indicated the generation of oxygen centered EPFRs. The primary intermediates were identified by gas chromatography-mass spectrometer (GC-MS) and a possible EPFR formation pathway during Ant degradation was proposed. The interaction between Ant and POM, and the hydroxylation and carbonylation of the intermediates made contributions to the generation of EPFRs. Meanwhile, the indirect photodegradation of bisphenol A (BPA) has been demonstrated by analyzing the reactive oxygen species (ROS) and photogenerated electrons in the solution with POM containing EPFRs. It is found that hydroxyl radicals (•OH) and singlet oxygen (1O2) were induced and might promote the photodegration. Overall, our present study provided useful information to understand the photoformation of EPFRs on POM and their fate in aqueous environments.
Collapse
Affiliation(s)
- Xintong Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116024, China
| | - Hongxia Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116024, China.
| | - Baocheng Qu
- Dalian Ocean University, Dalian, 116023, China; Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian, 116023, China
| | - Yu Tian
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT, Harbin, 150090, China.
| |
Collapse
|