1
|
Zhang DW, Xu XS, Xie L, Xu L, Fu Z, Li Y, Xu X. Natural product sennoside B disrupts liquid-liquid phase separation of SARS-CoV-2 nucleocapsid protein by inhibiting its RNA-binding activity. J Enzyme Inhib Med Chem 2025; 40:2501743. [PMID: 40371698 PMCID: PMC12082725 DOI: 10.1080/14756366.2025.2501743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 04/02/2025] [Accepted: 04/29/2025] [Indexed: 05/16/2025] Open
Abstract
The nucleocapsid protein (NP) of SARS-CoV-2, an RNA-binding protein, is capable of undergoing liquid-liquid phase separation (LLPS) during viral infection, which plays a crucial role in virus assembly, replication, and immune regulation. In this study, we developed a homogeneous time-resolved fluorescence (HTRF) method for identifying inhibitors of the SARS-CoV-2 NP-RNA interaction. Using this HTRF-based approach, we identified two natural products, sennoside A and sennoside B, as effective blockers of this interaction. Bio-layer interferometry assays confirmed that both sennosides directly bind to the NP, with binding sites located within the C-terminal domain. Additionally, fluorescence recovery after photobleaching (FRAP) experiments revealed that sennoside B significantly inhibited RNA-induced LLPS of the NP, while sennoside A displayed comparatively weaker activity. Thus, the developed HTRF-based assay is a valuable tool for identifying novel compounds that disrupt the RNA-binding activity and LLPS of the SARS-CoV-2 NP. Our findings may facilitate the development of antiviral drugs targeting SARS-CoV-2 NP.
Collapse
Affiliation(s)
- Da-Wei Zhang
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, China
| | - Xiao-Shuang Xu
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, China
| | - Liangxu Xie
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, China
| | - Lei Xu
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, China
| | - Zhiguo Fu
- Department of Orthopedics, Changzhou Hospital of Traditional Chinese Medicine, Changzhou, China
| | - Yimin Li
- College of Pharmacy and Key Laboratory for Research and Development of "Qin Medicine" of Shaanxi Administration of Chinese Medicine, Shaanxi University of Chinese Medicine, Xixian New District, China
| | - Xiaojun Xu
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, China
| |
Collapse
|
2
|
Chen SC, Xu CT, Chang CF, Yang CS, Lin PH, Liu WM, Chen Y, Yu CH. Characterization of the binding features between SARS-CoV-2 5'-proximal transcripts of genomic RNA and nucleocapsid proteins. RNA Biol 2025; 22:1-16. [PMID: 40077853 PMCID: PMC11913385 DOI: 10.1080/15476286.2025.2471643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/01/2025] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
Packaging signals (PSs) of coronaviruses (CoVs) are specific RNA elements recognized by nucleocapsid (N) proteins that direct the selective packaging of genomic RNAs (gRNAs). These signals have been identified in the coding regions of the nonstructural protein 15 (Nsp 15) in CoVs classified under Embecovirus, a subgenus of betacoronaviruses (beta-CoVs). The PSs in other alpha- and beta-CoVs have been proposed to reside in the 5'-proximal regions of gRNAs, supported by comprehensive phylogenetic evidence. However, experimental data remain limited. In this study, we investigated the interactions between Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) 5'-proximal gRNA transcripts and N proteins using electrophoretic mobility shift assays (EMSAs). Our findings revealed that the in vitro synthesized 5'-proximal gRNA transcripts of CoVs can shift from a major conformation to alternative conformations. We also observed that the conformer comprising multiple stem-loops (SLs) is preferentially bound by N proteins. Deletions of the 5'-proximal structural elements of CoV gRNA transcripts, SL1 and SL5a/b/c in particular, were found to promote the formation of alternative conformations. Furthermore, we identified RNA-binding peptides from a pool derived from SARS-CoV N protein. These RNA-interacting peptides were shown to preferentially bind to wild-type SL5a RNA. In addition, our observations of N protein condensate formation in vitro demonstrated that liquid-liquid phase separation (LLPS) of N proteins with CoV-5'-UTR transcripts was influenced by the presence of SL5a/b/c. In conclusion, these results collectively reveal previously uncharacterized binding features between the 5'-proximal transcripts of CoV gRNAs and N proteins.
Collapse
Affiliation(s)
- Shih-Cheng Chen
- National Institute of Cancer Research, National Health Research Institutes, Tainan City, Taiwan
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| | - Cui-Ting Xu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| | - Chuan-Fu Chang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| | - Chia-Shin Yang
- Institute of Translational Medicine and New Drug Development, College of Medicine, China Medical University, Taichung City, Taiwan
| | - Pin-Han Lin
- Department of Chemistry, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Wei-Min Liu
- Department of Chemistry, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Yeh Chen
- Institute of Translational Medicine and New Drug Development, College of Medicine, China Medical University, Taichung City, Taiwan
| | - Chien-Hung Yu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| |
Collapse
|
3
|
Fahoum J, Billan M, Varga JK, Padawer D, Britan-Rosich Y, Elgrably-Weiss M, Basu P, Stolovich-Rain M, Baraz L, Cohen-Kfir E, Kumari S, Oiknine-Djian E, Kumar M, Zelig O, Mayer G, Isupov MN, Wolf DG, Altuvia S, Wiener R, Schueler-Furman O, Rouvinski A. Transfer of SARS-CoV-2 nucleocapsid protein to uninfected epithelial cells induces antibody-mediated complement deposition. Cell Rep 2025; 44:115512. [PMID: 40343796 DOI: 10.1016/j.celrep.2025.115512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 12/28/2024] [Accepted: 03/12/2025] [Indexed: 05/11/2025] Open
Abstract
SARS-CoV-2 infection triggers a strong antibody response toward nucleocapsid protein (NP), suggesting its extracellular presence beyond intravirion RNA binding. Our co-culture experiments show NP decorates infected and proximal uninfected cell surfaces. We propose a mechanism whereby extracellular NP on uninfected cells contributes to COVID-19 pathogenicity. We show that NP binds to cell-surface sulfated glycosaminoglycans using its RNA-binding sites, facilitated by the flexible, positively charged linker. Coating uninfected lung-derived cells with NP attracted anti-NP IgG from lung fluids and sera of COVID-19 patients. Immune recognition was significantly higher in moderate versus mild COVID-19. Binding of anti-NP IgG in sera generated clusters, triggering C3b deposition via the classical complement pathway on SARS-CoV-2 non-susceptible cells co-cultured with infected cells. The heparin analog enoxaparin outcompeted NP binding, rescuing cells from anti-NP IgG-mediated complement deposition. Our findings reveal how extracellular NP may exacerbate COVID-19 damage and suggest preventative therapy avenues.
Collapse
Affiliation(s)
- Jamal Fahoum
- Department of Biochemistry, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel; Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Maria Billan
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel; The Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Julia K Varga
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Dan Padawer
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel; Institute of Pulmonary Medicine, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | - Yelena Britan-Rosich
- Barry Skolnick Biosafety Level 3 (BSL3) Unit, Core Research Facility, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Maya Elgrably-Weiss
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Pallabi Basu
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel; Dove Laboratory, Boston Children's Hospital, Boston, MA 02115, USA
| | - Miri Stolovich-Rain
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel; The Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Leah Baraz
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel; The Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel; Department of Medical Laboratory Sciences, Jerusalem Multidisciplinary College, Jerusalem, Israel
| | - Einav Cohen-Kfir
- Department of Biochemistry, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Sujata Kumari
- Department of Biochemistry, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel; Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel; The Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Esther Oiknine-Djian
- Clinical Virology Unit, Hadassah Hebrew University Medical Center, Israel Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Manoj Kumar
- Department of Biochemistry, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Orly Zelig
- Blood Bank, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | - Guy Mayer
- The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, Israel
| | - Michail N Isupov
- The Henry Wellcome Building for Biocatalysis, Biosciences, University of Exeter, Exeter, UK
| | - Dana G Wolf
- Clinical Virology Unit, Hadassah Hebrew University Medical Center, Israel Hadassah Hebrew University Medical Center, Jerusalem, Israel; Lautenberg Centre for Immunology and Cancer Research, The Institute for Medical Research Israel-Canada (IMRIC), Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shoshy Altuvia
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Reuven Wiener
- Department of Biochemistry, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Ora Schueler-Furman
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Alexander Rouvinski
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel; The Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
4
|
Lugano D, Mwangi K, Mware B, Kibet G, Osiany S, Kiritu E, Dobi P, Muli C, Njeru R, de Oliveira T, Njenga MK, Routh A, Oyola SO. Characterization of SARS-CoV-2 intrahost genetic evolution in vaccinated and non-vaccinated patients from the Kenyan population. J Virol 2025:e0048225. [PMID: 40326760 DOI: 10.1128/jvi.00482-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Accepted: 03/21/2025] [Indexed: 05/07/2025] Open
Abstract
Vaccination is a key control measure of coronavirus disease 2019 by preventing severe effects of disease outcomes, reducing hospitalization rates and death, and increasing immunity. However, vaccination can affect the evolution and adaptation of SARS-CoV-2 largely through vaccine-induced immune pressure. Here, we investigated intrahost recombination and single nucleotide variations (iSNVs) on the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genome in non-vaccinated and vaccinated sequences from the Kenyan population to profile intrahost viral genetic evolution and adaptations driven by vaccine-induced immune pressure. We identified recombination hotspots in the S, N, and ORF1a/b genes and showed the genetic evolution landscape of SARS-CoV-2 by comparing within- and inter-wave recombination events from the beginning of the pandemic (June 2020 to December 2022) in Kenya. We further reveal differential expression of recombinant RNA species between vaccinated and non-vaccinated individuals and perform an in-depth analysis of iSNVs to identify and characterize the functional properties of non-synonymous mutations found in ORF-1 a/b, S, and N genes. Lastly, we detected a minority variant in non-vaccinated patients in Kenya, with an immune escape mutation S255F of the spike gene, and showed differential recombinant RNA species. Overall, this work identified unique in vivo mutations and intrahost recombination patterns in SARS-CoV-2, which could have significant implications for virus evolution, virulence, and immune escape.IMPORTANCEThe impact of vaccination on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genetic diversity in Kenya and much of Africa remains unknown. This can be attributed to lower sequencing rates; however, this information is relevant to improvement in vaccine and antiviral research. In this study, we investigated how vaccination and SARS-CoV-2 transmission waves affect intrahost non-homologous recombination and single nucleotide variations (iSNVs). We identified unique in vivo mutations and intrahost recombination patterns in SARS-CoV-2, which could have significant implications for virus evolution, virulence, and immune escape. We also demonstrate a methodology for studying genetic changes in a pathogen by a simultaneous analysis of both intrahost single nucleotide variations and recombination events. The study reveals the diversity of SARS-CoV-2 in Kenya and highlights the need for sustained genomic surveillance in Kenya and Africa to better understand how the virus evolves. Such surveillance ensures detection of drifts in evolution, allowing information for updates in vaccines, policy making, and containment of future variants of SARS-CoV-2.
Collapse
Affiliation(s)
- Doreen Lugano
- International Livestock Research Institute, Nairobi, Kenya
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas, USA
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Kennedy Mwangi
- International Livestock Research Institute, Nairobi, Kenya
| | - Bernard Mware
- International Livestock Research Institute, Nairobi, Kenya
| | - Gilbert Kibet
- International Livestock Research Institute, Nairobi, Kenya
| | - Shebbar Osiany
- International Livestock Research Institute, Nairobi, Kenya
| | - Edward Kiritu
- International Livestock Research Institute, Nairobi, Kenya
| | - Paul Dobi
- International Livestock Research Institute, Nairobi, Kenya
| | - Collins Muli
- International Livestock Research Institute, Nairobi, Kenya
| | - Regina Njeru
- International Livestock Research Institute, Nairobi, Kenya
| | - Tulio de Oliveira
- Centre for Epidemic Response and Innovation (CERI), School of Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa
| | - M Kariuki Njenga
- Washington State Global Health Program-Kenya, Washington State University, Pullman, Washington, USA
- Paul G. Allen School for Global Health, Washington State University, Pullman, Washington, USA
| | - Andrew Routh
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas, USA
- Department of Immunology and Microbiology, Scripps Research, La Jolla, California, USA
| | - Samuel O Oyola
- International Livestock Research Institute, Nairobi, Kenya
| |
Collapse
|
5
|
Lugano D, Mwangi K, Mware B, Kibet G, Osiany S, Kiritu E, Dobi P, Muli C, Njeru R, de Oliveira T, Njenga MK, Routh A, Oyola SO. Characterization of SARS-CoV-2 intrahost genetic evolution in vaccinated and non-vaccinated patients from the Kenyan population. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.03.03.25323296. [PMID: 40093225 PMCID: PMC11908290 DOI: 10.1101/2025.03.03.25323296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Vaccination is a key control measure of COVID-19 by preventing severe effects of disease outcomes, reducing hospitalization rates and death, and increasing immunity. However, vaccination can affect the evolution and adaptation of SARS-CoV-2, largely through vaccine-induced immune pressure. Here we investigated intrahost recombination and single nucleotide variations (iSNVs) on the SARS-CoV-2 genome in non-vaccinated and vaccinated sequences from the Kenyan population to profile intrahost viral genetic evolution and adaptations driven by vaccine-induced immune pressure. We identified recombination hotspots in the S, N, and ORF1a/b genes and showed the genetic evolution landscape of SARS-CoV-2 by comparing within-wave and inter-wave recombination events from the beginning of the pandemic (June 2020) to (December 2022) in Kenya. We further reveal differential expression of recombinant RNA species between vaccinated and non-vaccinated individuals and perform an in-depth analysis of iSNVs to identify and characterize the functional properties of non-synonymous mutations found in ORF-1 a/b, S, and N genes. Lastly, we detected a minority variant in non-vaccinated patients in Kenya, with an immune escape mutation S255F of the spike gene and showed differential recombinant RNA species. Overall, this work identified unique in vivo mutations and intrahost recombination patterns in SARS-CoV-2 which could have significant implications for virus evolution, virulence, and immune escape.
Collapse
Affiliation(s)
- Doreen Lugano
- International Livestock Research Institute, P.O. Box 30709, 00100 GPO, Uthiru, Naivasha road, Nairobi-Kenya
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas, 77550, USA
- KEMRI-Wellcome Trust Research Programme, P.O. Box 230 Kilifi, Kenya
| | - Kennedy Mwangi
- International Livestock Research Institute, P.O. Box 30709, 00100 GPO, Uthiru, Naivasha road, Nairobi-Kenya
| | - Bernard Mware
- International Livestock Research Institute, P.O. Box 30709, 00100 GPO, Uthiru, Naivasha road, Nairobi-Kenya
| | - Gilbert Kibet
- International Livestock Research Institute, P.O. Box 30709, 00100 GPO, Uthiru, Naivasha road, Nairobi-Kenya
| | - Shebbar Osiany
- International Livestock Research Institute, P.O. Box 30709, 00100 GPO, Uthiru, Naivasha road, Nairobi-Kenya
| | - Edward Kiritu
- International Livestock Research Institute, P.O. Box 30709, 00100 GPO, Uthiru, Naivasha road, Nairobi-Kenya
| | - Paul Dobi
- International Livestock Research Institute, P.O. Box 30709, 00100 GPO, Uthiru, Naivasha road, Nairobi-Kenya
| | - Collins Muli
- International Livestock Research Institute, P.O. Box 30709, 00100 GPO, Uthiru, Naivasha road, Nairobi-Kenya
| | - Regina Njeru
- International Livestock Research Institute, P.O. Box 30709, 00100 GPO, Uthiru, Naivasha road, Nairobi-Kenya
| | - Tulio de Oliveira
- Centre for Epidemic Response and Innovation (CERI), School of Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa
| | - M. Kariuki Njenga
- Washington State Global Health Program-Kenya, Washington State University, Nairobi 00200, Kenya
- Paul G. Allen School for Global Health, Washington State University, Pullman, WA 99164, USA
| | - Andrew Routh
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas, 77550, USA
- Dept Immunology and Microbiology, Scripps Research, La Jolla, CA, 92037
| | - Samuel O. Oyola
- International Livestock Research Institute, P.O. Box 30709, 00100 GPO, Uthiru, Naivasha road, Nairobi-Kenya
| |
Collapse
|
6
|
Liu Y, Kong X, Zhang Y, Zhou X, Yin ZZ. An electrochemical microsensor of the SARS-CoV-2 nucleocapsid protein based on a surface-imprinted acupuncture needle. Analyst 2025; 150:851-859. [PMID: 39865998 DOI: 10.1039/d4an01497a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
A novel electrochemical microsensor was constructed on a traditional acupuncture needle (AN) and used to monitor a biomarker of the SARS-CoV-2-N protein. The reversible interaction of the borate bond between the cis-diol in this glycoprotein and the phenylboronic acid in 4-mercaptophenylboronic acid (4-MPBA) was accomplished. This interaction was applied to anchor the SARS-CoV-2-N protein onto 4-MPBA, which was covalently self-assemblied onto electrodeposited AuNPs by the S-Au bond. Meldola blue was then electropolymerized around the protein template. After the template had eluted, three-dimensional nanocavities complementary to the protein were generated within the polymeldola blue (pMB) layer. Interestingly, nanocavities could play a channel role for the electron-transfer of outer [Fe(CN)6]3-/4-, and the signal of the electrochemical probe could be hindered after recombination of the SARS-CoV-2-N protein, which lays a platform for the detection of this biomarker. After optimizing the influencing factors, the prepared microsensor exhibited a linear range of 0.1-1000 ng mL-1 with a low detection limit of 0.01 ng mL-1 (S/N = 3). In particular, the sensing ability was dramatically affected by the thickness correlative factor for the polymer matrix. A suitable thickness is effective for sensing the signals, which corresponds to the behavior of the surface-imprinted polymer. The microsensor showed comparatively high sensitivity and selectivity and practically detected the SARS-CoV-2-N protein in the serum sample, which is of scientific significance for the development of electrochemical microsensors and acupuncture.
Collapse
Affiliation(s)
- Yan Liu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological and Chemical Engineering, Jiaxing University, Jiaxing 314001, China
| | - Xue Kong
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological and Chemical Engineering, Jiaxing University, Jiaxing 314001, China
| | - Yi Zhang
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological and Chemical Engineering, Jiaxing University, Jiaxing 314001, China
| | - Xiumei Zhou
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Zheng-Zhi Yin
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological and Chemical Engineering, Jiaxing University, Jiaxing 314001, China
| |
Collapse
|
7
|
Li Y, Li M, Xiao H, Liao F, Shen M, Ge W, Ou J, Liu Y, Chen L, Zhao Y, Wan P, Liu J, Chen J, Lan X, Wu S, Ding Q, Li G, Zhang Q, Pan P. The R203M and D377Y mutations of the nucleocapsid protein promote SARS-CoV-2 infectivity by impairing RIG-I-mediated antiviral signaling. PLoS Pathog 2025; 21:e1012886. [PMID: 39841800 PMCID: PMC11771877 DOI: 10.1371/journal.ppat.1012886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 01/27/2025] [Accepted: 01/03/2025] [Indexed: 01/24/2025] Open
Abstract
The viral protein mutations can modify virus-host interactions during virus evolution, and thus alter the extent of infection or pathogenicity. Studies indicate that nucleocapsid (N) protein of SARS-CoV-2 participates in viral genome assembly, intracellular signal regulation and immune interference. However, its biological function in viral evolution is not well understood. SARS-CoV-2 N protein mutations were analyzed in Delta, Omicron, and original strains. Two mutations with a methionine (M) residue at site 203 and a tyrosine (Y) residue at site 377 of the N protein were found in Delta strain but not in Omicron and original strains, and promoted SARS-CoV-2 infection therein. Those mutations, R203M and D377Y, enhanced the inhibitory impact of N protein on the impairment of RIG-I-mediated antiviral signaling, such as IRF3 phosphorylation and IFN-β activation. The viral RNA-binding activity of N protein was promoted by these mutations, effectively attenuating the recognition and interaction of RIG-I with viral RNA compared to the original or other variants. The R203M/D377Y mutations thus enhanced the suppressive activity of the N protein on RIG-I-mediated interferon induction both in vitro and in vivo, which in turn promoted viral replication. This study helps to understand the variability of SARS-CoV-2 in regulating host immunity.
Collapse
Affiliation(s)
- Yongkui Li
- State Key Laboratory of Respiratory Disease, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
- Department of Immunology and Microbiology, Institute of Medical Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Moran Li
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
- Department of Immunology and Microbiology, Institute of Medical Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Heng Xiao
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
- Department of Immunology and Microbiology, Institute of Medical Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Feng Liao
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Miaomiao Shen
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Weiwei Ge
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
- Department of Immunology and Microbiology, Institute of Medical Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Junxian Ou
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
- Department of Immunology and Microbiology, Institute of Medical Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yuqing Liu
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
- Department of Immunology and Microbiology, Institute of Medical Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Lumiao Chen
- The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yue Zhao
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
- Department of Immunology and Microbiology, Institute of Medical Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Pin Wan
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
- Department of Immunology and Microbiology, Institute of Medical Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Jinbiao Liu
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
- Department of Immunology and Microbiology, Institute of Medical Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Jun Chen
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
- Department of Immunology and Microbiology, Institute of Medical Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Xianwu Lan
- The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Shaorong Wu
- The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Qiang Ding
- School of Medicine, Tsinghua University, Beijing, China
| | - Geng Li
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qiwei Zhang
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
- Department of Immunology and Microbiology, Institute of Medical Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Pan Pan
- State Key Laboratory of Respiratory Disease, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
- Department of Immunology and Microbiology, Institute of Medical Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, China
- The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
8
|
Minigulov N, Boranbayev K, Bekbossynova A, Gadilgereyeva B, Filchakova O. Structural proteins of human coronaviruses: what makes them different? Front Cell Infect Microbiol 2024; 14:1458383. [PMID: 39711780 PMCID: PMC11659265 DOI: 10.3389/fcimb.2024.1458383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 10/17/2024] [Indexed: 12/24/2024] Open
Abstract
Following COVID-19 outbreak with its unprecedented effect on the entire world, the interest to the coronaviruses increased. The causative agent of the COVID-19, severe acute respiratory syndrome coronavirus - 2 (SARS-CoV-2) is one of seven coronaviruses that is pathogenic to humans. Others include SARS-CoV, MERS-CoV, HCoV-HKU1, HCoV-OC43, HCoV-NL63 and HCoV-229E. The viruses differ in their pathogenicity. SARS-CoV, MERS-CoV, and SARS-CoV-2 are capable to spread rapidly and cause epidemic, while HCoV-HKU1, HCoV-OC43, HCoV-NL63 and HCoV-229E cause mild respiratory disease. The difference in the viral behavior is due to structural and functional differences. All seven human coronaviruses possess four structural proteins: spike, envelope, membrane, and nucleocapsid. Spike protein with its receptor binding domain is crucial for the entry to the host cell, where different receptors on the host cell are recruited by different viruses. Envelope protein plays important role in viral assembly, and following cellular entry, contributes to immune response. Membrane protein is an abundant viral protein, contributing to the assembly and pathogenicity of the virus. Nucleocapsid protein encompasses the viral RNA into ribonucleocapsid, playing important role in viral replication. The present review provides detailed summary of structural and functional characteristics of structural proteins from seven human coronaviruses, and could serve as a practical reference when pathogenic human coronaviruses are compared, and novel treatments are proposed.
Collapse
Affiliation(s)
| | | | | | | | - Olena Filchakova
- Biology Department, School of Sciences and Humanities, Nazarbayev
University, Astana, Kazakhstan
| |
Collapse
|
9
|
El-Maradny YA, Badawy MA, Mohamed KI, Ragab RF, Moharm HM, Abdallah NA, Elgammal EM, Rubio-Casillas A, Uversky VN, Redwan EM. Unraveling the role of the nucleocapsid protein in SARS-CoV-2 pathogenesis: From viral life cycle to vaccine development. Int J Biol Macromol 2024; 279:135201. [PMID: 39216563 DOI: 10.1016/j.ijbiomac.2024.135201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/24/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND The nucleocapsid protein (N protein) is the most abundant protein in SARS-CoV-2. Viral RNA and this protein are bound by electrostatic forces, forming cytoplasmic helical structures known as nucleocapsids. Subsequently, these nucleocapsids interact with the membrane (M) protein, facilitating virus budding into early secretory compartments. SCOPE OF REVIEW Exploring the role of the N protein in the SARS-CoV-2 life cycle, pathogenesis, post-sequelae consequences, and interaction with host immunity has enhanced our understanding of its function and potential strategies for preventing SARS-CoV-2 infection. MAJOR CONCLUSION This review provides an overview of the N protein's involvement in SARS-CoV-2 infectivity, highlighting its crucial role in the virus-host protein interaction and immune system modulation, which in turn influences viral spread. GENERAL SIGNIFICANCE Understanding these aspects identifies the N protein as a promising target for developing effective antiviral treatments and vaccines against SARS-CoV-2.
Collapse
Affiliation(s)
- Yousra A El-Maradny
- Pharmaceutical and Fermentation Industries Development Center, City of Scientific Research and Technological Applications (SRTA-City), New Borg EL-Arab, Alexandria 21934, Egypt; Microbiology and Immunology, Faculty of Pharmacy, Arab Academy for Science, Technology and Maritime Transport (AASTMT), El Alamein 51718, Egypt.
| | - Moustafa A Badawy
- Industrial Microbiology and Applied Chemistry program, Faculty of Science, Alexandria University, Egypt.
| | - Kareem I Mohamed
- Microbiology and Immunology, Faculty of Pharmacy, Arab Academy for Science, Technology and Maritime Transport (AASTMT), El Alamein 51718, Egypt.
| | - Renad F Ragab
- Microbiology and Immunology, Faculty of Pharmacy, Arab Academy for Science, Technology and Maritime Transport (AASTMT), El Alamein 51718, Egypt.
| | - Hamssa M Moharm
- Genetics, Biotechnology Department, Faculty of Agriculture, Alexandria University, Egypt.
| | - Nada A Abdallah
- Medicinal Plants Department, Faculty of Agriculture, Alexandria University, Egypt.
| | - Esraa M Elgammal
- Microbiology and Immunology, Faculty of Pharmacy, Arab Academy for Science, Technology and Maritime Transport (AASTMT), El Alamein 51718, Egypt.
| | - Alberto Rubio-Casillas
- Autlan Regional Hospital, Health Secretariat, Autlan, JAL 48900, Mexico; Biology Laboratory, Autlan Regional Preparatory School, University of Guadalajara, Autlan, JAL 48900, Mexico.
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
| | - Elrashdy M Redwan
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg EL-Arab, 21934 Alexandria, Egypt.
| |
Collapse
|
10
|
Favetta B, Wang H, Cubuk J, Barai M, Ramirez C, Gormley AJ, Murthy S, Soranno A, Shi Z, Schuster BS. Phosphorylation Toggles the SARS-CoV-2 Nucleocapsid Protein Between Two Membrane-Associated Condensate States. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.17.618867. [PMID: 39464032 PMCID: PMC11507936 DOI: 10.1101/2024.10.17.618867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
The SARS-CoV-2 Nucleocapsid protein (N) performs several functions during the viral lifecycle, including transcription regulation and viral genome encapsulation. We hypothesized that N toggles between these functions via phosphorylation-induced conformational change, thereby altering N interactions with membranes and RNA. We found that phosphorylation changes how biomolecular condensates composed of N and RNA interact with membranes: phosphorylated N (pN) condensates form thin films, while condensates with unmodified N are engulfed. This partly results from changes in material properties, with pN forming less viscous and elastic condensates. The weakening of protein-RNA interaction in condensates upon phosphorylation is driven by a decrease in binding between pN and unstructured RNA. We show that phosphorylation induces a conformational change in the serine/arginine-rich region of N that increases interaction between pN monomers and decreases nonspecific interaction with RNA. These findings connect the conformation, material properties, and membrane-associated states of N, with potential implications for COVID-19 treatment.
Collapse
Affiliation(s)
- Bruna Favetta
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
| | - Huan Wang
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
| | - Jasmine Cubuk
- Department of Biochemistry and Molecular Biophysics, Washington University in St Louis, St. Louis, MO 63110
| | - Mayur Barai
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
| | - Cesar Ramirez
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
| | - Adam J Gormley
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
| | - Sanjeeva Murthy
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
| | - Andrea Soranno
- Department of Biochemistry and Molecular Biophysics, Washington University in St Louis, St. Louis, MO 63110
| | - Zheng Shi
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
| | - Benjamin S Schuster
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
| |
Collapse
|
11
|
Laughlin PM, Young K, Gonzalez-Gutierrez G, Wang JCY, Zlotnick A. A narrow ratio of nucleic acid to SARS-CoV-2 N-protein enables phase separation. J Biol Chem 2024; 300:107831. [PMID: 39343003 PMCID: PMC11541828 DOI: 10.1016/j.jbc.2024.107831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024] Open
Abstract
SARS-CoV-2 Nucleocapsid protein (N) is a viral structural protein that packages the 30 kb genomic RNA inside virions and forms condensates within infected cells through liquid-liquid phase separation (LLPS). In both soluble and condensed forms, N has accessory roles in the viral life cycle including genome replication and immunosuppression. The ability to perform these tasks depends on phase separation and its reversibility. The conditions that stabilize and destabilize N condensates and the role of N-N interactions are poorly understood. We have investigated LLPS formation and dissolution in a minimalist system comprised of N protein and an ssDNA oligomer just long enough to support assembly. The short oligo allows us to focus on the role of N-N interaction. We have developed a sensitive FRET assay to interrogate LLPS assembly reactions from the perspective of the oligonucleotide. We find that N alone can form oligomers but that oligonucleotide enables their assembly into a three-dimensional phase. At a ∼1:1 ratio of N to oligonucleotide, LLPS formation is maximal. We find that a modest excess of N or of nucleic acid causes the LLPS to break down catastrophically. Under the conditions examined here, assembly has a critical concentration of about 1 μM. The responsiveness of N condensates to their environment may have biological consequences. A better understanding of how nucleic acid modulates N-N association will shed light on condensate activity and could inform antiviral strategies targeting LLPS.
Collapse
Affiliation(s)
- Patrick M Laughlin
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana, USA
| | - Kimberly Young
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana, USA
| | | | - Joseph C-Y Wang
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Adam Zlotnick
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana, USA.
| |
Collapse
|
12
|
Zhu J, Liu G, Sayyad Z, Goins CM, Stauffer SR, Gack MU. ISGylation of the SARS-CoV-2 N protein by HERC5 impedes N oligomerization and thereby viral RNA synthesis. J Virol 2024; 98:e0086924. [PMID: 39194248 PMCID: PMC11406920 DOI: 10.1128/jvi.00869-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/20/2024] [Indexed: 08/29/2024] Open
Abstract
Interferon (IFN)-stimulated gene 15 (ISG15), a ubiquitin-like protein, is covalently conjugated to host immune proteins such as MDA5 and IRF3 in a process called ISGylation, thereby promoting type I IFN induction to limit the replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, whether SARS-CoV-2 proteins can be directly targeted for ISGylation remains elusive. In this study, we identified the nucleocapsid (N) protein of SARS-CoV-2 as a major substrate of ISGylation catalyzed by the host E3 ligase HERC5; however, N ISGylation is readily removed through deISGylation by the papain-like protease (PLpro) activity of NSP3. Mass spectrometry analysis identified that the N protein undergoes ISGylation at four lysine residues (K266, K355, K387, and K388), and mutational analysis of these sites in the context of a SARS-CoV-2 replicon (N-4KR) abolished N ISGylation and alleviated ISGylation-mediated inhibition of viral RNA synthesis. Furthermore, our results indicated that HERC5 targets preferentially phosphorylated N protein for ISGylation to regulate its oligomeric assembly. These findings reveal a novel mechanism by which the host ISGylation machinery directly targets SARS-CoV-2 proteins to restrict viral replication and illuminate how an intricate interplay of host (HERC5) and viral (PLpro) enzymes coordinates viral protein ISGylation and thereby regulates virus replication.IMPORTANCEThe role of protein ISGylation in regulating host cellular processes has been studied extensively; however, how ISG15 conjugation influences the activity of viral proteins, particularly coronaviral proteins, is largely unknown. Our study uncovered that the nucleocapsid (N) protein of SARS-CoV-2 is ISGylated by the HERC5 ISGylation machinery and that this modification impedes the functional assembly of N into oligomers ultimately inhibiting viral RNA synthesis. This antiviral restriction mechanism is antagonized by the PLpro deISGylation activity of SARS-CoV-2 NSP3. This study deepens our understanding of SARS-CoV-2 protein regulation by posttranslational modifications and may open new avenues for designing antiviral strategies for COVID-19.
Collapse
Affiliation(s)
- Junji Zhu
- Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, Florida, USA
| | - GuanQun Liu
- Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, Florida, USA
- Department of Microbiology & Immunology, McGill University, Montreal, Quebec, Canada
| | - Zuberwasim Sayyad
- Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, Florida, USA
| | - Christopher M. Goins
- Center for Therapeutics Discovery, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Shaun R. Stauffer
- Center for Therapeutics Discovery, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Michaela U. Gack
- Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, Florida, USA
| |
Collapse
|
13
|
Huang Y, Pu Y, Weng Y, Wu Y, He Q, Litchev S, Zhao L, Ding H, Lai Y, Li J, Zheng X, Chen J, Xiong X, Lu S, Gao F, Gao M, Kong Q. Development and Diagnosis Performance of IgM-Based Rapid Antigen Test for Early Detection of SARS-CoV-2 Infection in a Large Cohort of Suspected COVID-19 Cases - USA, Poland, and Sweden, 2021-2022. China CDC Wkly 2024; 6:953-961. [PMID: 39347447 PMCID: PMC11427342 DOI: 10.46234/ccdcw2024.199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 09/08/2024] [Indexed: 10/01/2024] Open
Abstract
Introduction Antigen testing has been crucial in effectively managing the coronavirus disease 2019 (COVID-19) pandemic. This study evaluated the clinical performance of a nasopharyngeal swab (NPS)-based antigen rapid diagnostic test (Ag-RDT) compared to the gold standard real-time reverse transcription-polymerase chain reaction (RT-PCR) for early detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Methods We developed an IgM-based rapid antigen test for early detection of SARS-CoV-2 infection. Between July 2021 and January 2022, we analyzed 1,030 NPS samples from participants at three centers in different countries, using both antigen rapid diagnostic tests (Ag-RDT) and RT-PCR. Results The Ag-RDT demonstrated minimal detection limits as low as 0.1 ng/mL for recombinant N antigen and 100 TCID50/mL for heat-inactivated SARS-CoV-2 virus. Specificity assessments involving four human coronaviruses and 13 other respiratory viruses showed no cross-reactivity. The Ag-RDT assay (ALLtest) exhibited high sensitivity (93.18%-100%) and specificity (99.67%-100%) across all centers. Factors such as cycle threshold (Ct) values and the timing of symptoms since onset were influential, with sensitivity increasing at lower Ct values (<30) and within the first week of symptoms. Conclusion The ALLtest Ag-RDT demonstrated high reliability and significant potential for diagnosing suspected COVID-19 cases.
Collapse
Affiliation(s)
- Yihua Huang
- Department of Laboratory Medicine, Lishui Second People's Hospital Affiliated to Wenzhou Medical University, Lishui City, Zhejiang Province, China
| | - Yiyi Pu
- Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang province, School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou City, Zhejiang Province, China
| | - Youhong Weng
- School of Basic Medicine and Forensics, Key Laboratory of Bio-tech Vaccine of Zhejiang Province, Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou City, Zhejiang Province, China
- The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui City, Zhejiang Province, China
| | - Yahan Wu
- School of Basic Medicine and Forensics, Key Laboratory of Bio-tech Vaccine of Zhejiang Province, Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou City, Zhejiang Province, China
| | - Qing He
- School of Basic Medicine and Forensics, Key Laboratory of Bio-tech Vaccine of Zhejiang Province, Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou City, Zhejiang Province, China
| | | | - Longyou Zhao
- Department of Laboratory Medicine, Lishui Second People's Hospital Affiliated to Wenzhou Medical University, Lishui City, Zhejiang Province, China
| | - Haojie Ding
- School of Basic Medicine and Forensics, Key Laboratory of Bio-tech Vaccine of Zhejiang Province, Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou City, Zhejiang Province, China
| | - Yunru Lai
- Department of Laboratory Medicine, Lishui Second People's Hospital Affiliated to Wenzhou Medical University, Lishui City, Zhejiang Province, China
| | - Jie Li
- Department of Laboratory Medicine, Lishui Second People's Hospital Affiliated to Wenzhou Medical University, Lishui City, Zhejiang Province, China
| | - Xiaojun Zheng
- Department of Research and Development, Hangzhou AllTest Biotech Co., Ltd, Hangzhou City, Zhejiang Province, China
| | - Jinshu Chen
- Department of Research and Development, Hangzhou AllTest Biotech Co., Ltd, Hangzhou City, Zhejiang Province, China
| | - Xianqin Xiong
- Department of Research and Development, Hangzhou AllTest Biotech Co., Ltd, Hangzhou City, Zhejiang Province, China
| | - Shaohong Lu
- School of Basic Medicine and Forensics, Key Laboratory of Bio-tech Vaccine of Zhejiang Province, Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou City, Zhejiang Province, China
| | - Fei Gao
- Department of Research and Development, Hangzhou AllTest Biotech Co., Ltd, Hangzhou City, Zhejiang Province, China
| | - Meng Gao
- School of Basic Medicine and Forensics, Key Laboratory of Bio-tech Vaccine of Zhejiang Province, Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou City, Zhejiang Province, China
| | - Qingming Kong
- Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang province, School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou City, Zhejiang Province, China
| |
Collapse
|
14
|
Abbasian MH, Rahimian K, Mahmanzar M, Bayat S, Kuehu DL, Sisakht MM, Moradi B, Deng Y. Comparative Atlas of SARS-CoV-2 Substitution Mutations: A Focus on Iranian Strains Amidst Global Trends. Viruses 2024; 16:1331. [PMID: 39205305 PMCID: PMC11359407 DOI: 10.3390/v16081331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/12/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a new emerging coronavirus that caused coronavirus disease 2019 (COVID-19). Whole-genome tracking of SARS-CoV-2 enhanced our understanding of the mechanism of the disease, control, and prevention of COVID-19. METHODS we analyzed 3368 SARS-CoV-2 protein sequences from Iran and compared them with 15.6 million global sequences in the GISAID database, using the Wuhan-Hu-1 strain as a reference. RESULTS Our investigation revealed that NSP12-P323L, ORF9c-G50N, NSP14-I42V, membrane-A63T, Q19E, and NSP3-G489S were found to be the most frequent mutations among Iranian SARS-CoV-2 sequences. Furthermore, it was observed that more than 94% of the SARS-CoV-2 genome, including NSP7, NSP8, NSP9, NSP10, NSP11, and ORF8, had no mutations when compared to the Wuhan-Hu-1 strain. Finally, our data indicated that the ORF3a-T24I, NSP3-G489S, NSP5-P132H, NSP14-I42V, envelope-T9I, nucleocapsid-D3L, membrane-Q19E, and membrane-A63T mutations might be responsible factors for the surge in the SARS-CoV-2 Omicron variant wave in Iran. CONCLUSIONS real-time genomic surveillance is crucial for detecting new SARS-CoV-2 variants, updating diagnostic tools, designing vaccines, and understanding adaptation to new environments.
Collapse
Affiliation(s)
- Mohammad Hadi Abbasian
- Department of Medical Genetics, National Institute for Genetic Engineering and Biotechnology, Tehran 1497716316, Iran;
| | - Karim Rahimian
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran 14174, Iran;
| | - Mohammadamin Mahmanzar
- Department of Bioinformatics, Kish International Campus University of Tehran, Kish 7941639982, Iran;
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA;
| | - Saleha Bayat
- Department of Biology & Research Center for Animal Development Applied Biology, Mashhad Branch, Islamic Azad University, Mashhad 9187147578, Iran;
| | - Donna Lee Kuehu
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA;
| | - Mahsa Mollapour Sisakht
- Faculty of Pharmacy, Biotechnology Research Center, Tehran University of Medical Sciences, Tehran 1936893813, Iran;
| | - Bahman Moradi
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman 7616913439, Iran;
| | - Youping Deng
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA;
| |
Collapse
|
15
|
Goldman ER, Sugiharto VA, Shriver-Lake LC, Garcia AM, Wu SJ, Jenkins SA, Chen HW. A single domain antibody-based Luminex assay for the detection of SARS-CoV-2 in clinical samples. Front Immunol 2024; 15:1446095. [PMID: 39192985 PMCID: PMC11347438 DOI: 10.3389/fimmu.2024.1446095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024] Open
Abstract
Within the past decade, single domain antibodies (sdAbs) have been recognized as unique affinity binding reagents that can be tailored for performance in a variety of immunoassay formats. Luminex MagPlex color-coded magnetic microspheres provide a high-throughput platform that enables multiplexed immunoassays. We developed a MagPlex bead-based assay for the detection of SARS-CoV-2, using sdAbs against SARS-CoV-2 nucleocapsid (N) protein in which we engineered the sdAb capture reagents to orient them on the beads. The oriented sdAbs provided an increase in sensitivity over randomly oriented sdAbs for samples of N diluted in buffer, which also translated into better detection of SARS-CoV-2 in clinical samples. We assessed the specificity of the assay by examining seasonal coronavirus clinical samples. In summary, we provide a proof-of-concept that a bead-based assay using sdAbs to detect SARS-CoV-2 is feasible and future research combining it with other sdAb-coated beads that can detect other viruses may provide a useful diagnostic tool.
Collapse
Affiliation(s)
- Ellen R. Goldman
- Center for Biomolecular Science and Engineering, US Naval Research Laboratory, Washington, DC, United States
| | - Victor A. Sugiharto
- Diagnostic and Surveillance Department, Naval Medical Research Command, Silver Spring, MD, United States
- Henry M. Jackson Foundation, Bethesda, MD, United States
| | - Lisa C. Shriver-Lake
- Center for Biomolecular Science and Engineering, US Naval Research Laboratory, Washington, DC, United States
| | - Andrew M. Garcia
- Diagnostic and Surveillance Department, Naval Medical Research Command, Silver Spring, MD, United States
- Leidos Inc., Reston, VA, United States
| | - Shuenn-Jue Wu
- Diagnostic and Surveillance Department, Naval Medical Research Command, Silver Spring, MD, United States
| | - Sarah A. Jenkins
- Diagnostic and Surveillance Department, Naval Medical Research Command, Silver Spring, MD, United States
| | - Hua-Wei Chen
- Diagnostic and Surveillance Department, Naval Medical Research Command, Silver Spring, MD, United States
- Henry M. Jackson Foundation, Bethesda, MD, United States
| |
Collapse
|
16
|
Kocsis A, Bartus D, Hirsch E, Józsi M, Hajdú I, Dobó J, Balczer J, Pál G, Gál P. SARS-CoV-2 Nucleocapsid Protein Is Not Responsible for Over-Activation of Complement Lectin Pathway. Int J Mol Sci 2024; 25:7343. [PMID: 39000451 PMCID: PMC11242754 DOI: 10.3390/ijms25137343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/27/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
The nucleocapsid (N) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a viral structural protein that is abundant in the circulation of infected individuals. Previous published studies reported controversial data about the role of the N protein in the activation of the complement system. It was suggested that the N protein directly interacts with mannose-binding lectin-associated serine protease-2 (MASP-2) and stimulates lectin pathway overactivation/activity. In order to check these data and to reveal the mechanism of activation, we examined the effect of the N protein on lectin pathway activation. We found that the N protein does not bind to MASP-2 and MASP-1 and it does not stimulate lectin pathway activity in normal human serum. Furthermore, the N protein does not facilitate the activation of zymogen MASP-2, which is MASP-1 dependent. Moreover, the N protein does not boost the enzymatic activity of MASP-2 either on synthetic or on protein substrates. In some of our experiments, we observed that MASP-2 digests the N protein. However, it is questionable, whether this activity is biologically relevant. Although surface-bound N protein did not activate the lectin pathway, it did trigger the alternative pathway in 10% human serum. Additionally, we detected some classical pathway activation by the N protein. Nevertheless, we demonstrated that this activation was induced by the bound nucleic acid, rather than by the N protein itself.
Collapse
Affiliation(s)
- Andrea Kocsis
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Hungarian Research Network, H-1117 Budapest, Hungary
| | - Dalma Bartus
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Hungarian Research Network, H-1117 Budapest, Hungary
| | - Edit Hirsch
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, H-1111 Budapest, Hungary
| | - Mihály Józsi
- Department of Immunology, ELTE Eötvös Loránd University, H-1117 Budapest, Hungary
- HUN-REN-ELTE Complement Research Group, Hungarian Research Network, H-1117 Budapest, Hungary
| | - István Hajdú
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Hungarian Research Network, H-1117 Budapest, Hungary
| | - József Dobó
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Hungarian Research Network, H-1117 Budapest, Hungary
| | - Júlia Balczer
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Hungarian Research Network, H-1117 Budapest, Hungary
| | - Gábor Pál
- Department of Biochemistry, ELTE Eötvös Loránd University, H-1117 Budapest, Hungary
| | - Péter Gál
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Hungarian Research Network, H-1117 Budapest, Hungary
| |
Collapse
|
17
|
Zhao H, Syed AM, Khalid MM, Nguyen A, Ciling A, Wu D, Yau WM, Srinivasan S, Esposito D, Doudna J, Piszczek G, Ott M, Schuck P. Assembly of SARS-CoV-2 nucleocapsid protein with nucleic acid. Nucleic Acids Res 2024; 52:6647-6661. [PMID: 38587193 PMCID: PMC11194069 DOI: 10.1093/nar/gkae256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/18/2024] [Accepted: 03/27/2024] [Indexed: 04/09/2024] Open
Abstract
The viral genome of SARS-CoV-2 is packaged by the nucleocapsid (N-)protein into ribonucleoprotein particles (RNPs), 38 ± 10 of which are contained in each virion. Their architecture has remained unclear due to the pleomorphism of RNPs, the high flexibility of N-protein intrinsically disordered regions, and highly multivalent interactions between viral RNA and N-protein binding sites in both N-terminal (NTD) and C-terminal domain (CTD). Here we explore critical interaction motifs of RNPs by applying a combination of biophysical techniques to ancestral and mutant proteins binding different nucleic acids in an in vitro assay for RNP formation, and by examining nucleocapsid protein variants in a viral assembly assay. We find that nucleic acid-bound N-protein dimers oligomerize via a recently described protein-protein interface presented by a transient helix in its long disordered linker region between NTD and CTD. The resulting hexameric complexes are stabilized by multivalent protein-nucleic acid interactions that establish crosslinks between dimeric subunits. Assemblies are stabilized by the dimeric CTD of N-protein offering more than one binding site for stem-loop RNA. Our study suggests a model for RNP assembly where N-protein scaffolding at high density on viral RNA is followed by cooperative multimerization through protein-protein interactions in the disordered linker.
Collapse
Affiliation(s)
- Huaying Zhao
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - Abdullah M Syed
- Gladstone Institutes, San Francisco, CA 94158, USA
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
| | - Mir M Khalid
- Gladstone Institutes, San Francisco, CA 94158, USA
| | - Ai Nguyen
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alison Ciling
- Gladstone Institutes, San Francisco, CA 94158, USA
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
| | - Di Wu
- Biophysics Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wai-Ming Yau
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sanjana Srinivasan
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dominic Esposito
- Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Jennifer A Doudna
- Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
- HHMI, University of California, Berkeley, CA 94720, USA
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720, USA
| | - Grzegorz Piszczek
- Biophysics Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Melanie Ott
- Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Medicine, University of California, San Francisco, CA 94143, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Peter Schuck
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
- Center for Biomedical Engineering Technology Acceleration, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
18
|
Zhu J, Liu G, Goins CM, Stauffer SR, Gack MU. ISGylation of the SARS-CoV-2 N protein by HERC5 impedes N oligomerization and thereby viral RNA synthesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.15.594393. [PMID: 39149229 PMCID: PMC11326284 DOI: 10.1101/2024.05.15.594393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Interferon (IFN)-stimulated gene 15 (ISG15), a ubiquitin-like protein, is covalently conjugated to host (immune) proteins such as MDA5 and IRF3 in a process called ISGylation, thereby limiting the replication of Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, whether SARS-CoV-2 proteins can be directly targeted for ISGylation remains elusive. In this study, we identified the nucleocapsid (N) protein of SARS-CoV-2 as a major substrate of ISGylation catalyzed by the host E3 ligase HERC5; however, N ISGylation is readily removed through de-ISGylation by the papain-like protease (PLpro) activity of NSP3. Mass spectrometry analysis identified that the N protein undergoes ISGylation at four lysine residues (K266, K355, K387 and K388), and mutational analysis of these sites in the context of a SARS-CoV-2 replicon (N-4KR) abolished N ISGylation and alleviated ISGylation-mediated inhibition of viral RNA synthesis. Furthermore, our results indicated that HERC5 targets preferentially phosphorylated N protein for ISGylation to regulate its oligomeric assembly. These findings reveal a novel mechanism by which the host ISGylation machinery directly targets SARS-CoV-2 proteins to restrict viral replication and illuminate how an intricate interplay of host (HERC5) and viral (PLpro) enzymes coordinates viral protein ISGylation and thereby regulates virus replication.
Collapse
Affiliation(s)
- Junji Zhu
- Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, FL 34987, USA
| | - GuanQun Liu
- Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, FL 34987, USA
- Department of Microbiology & Immunology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Christopher M. Goins
- Center for Therapeutics Discovery, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Shaun R. Stauffer
- Center for Therapeutics Discovery, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Michaela U. Gack
- Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, FL 34987, USA
| |
Collapse
|
19
|
Mansueto G, Fusco G, Colonna G. A Tiny Viral Protein, SARS-CoV-2-ORF7b: Functional Molecular Mechanisms. Biomolecules 2024; 14:541. [PMID: 38785948 PMCID: PMC11118181 DOI: 10.3390/biom14050541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/01/2024] [Accepted: 04/17/2024] [Indexed: 05/25/2024] Open
Abstract
This study presents the interaction with the human host metabolism of SARS-CoV-2 ORF7b protein (43 aa), using a protein-protein interaction network analysis. After pruning, we selected from BioGRID the 51 most significant proteins among 2753 proven interactions and 1708 interactors specific to ORF7b. We used these proteins as functional seeds, and we obtained a significant network of 551 nodes via STRING. We performed topological analysis and calculated topological distributions by Cytoscape. By following a hub-and-spoke network architectural model, we were able to identify seven proteins that ranked high as hubs and an additional seven as bottlenecks. Through this interaction model, we identified significant GO-processes (5057 terms in 15 categories) induced in human metabolism by ORF7b. We discovered high statistical significance processes of dysregulated molecular cell mechanisms caused by acting ORF7b. We detected disease-related human proteins and their involvement in metabolic roles, how they relate in a distorted way to signaling and/or functional systems, in particular intra- and inter-cellular signaling systems, and the molecular mechanisms that supervise programmed cell death, with mechanisms similar to that of cancer metastasis diffusion. A cluster analysis showed 10 compact and significant functional clusters, where two of them overlap in a Giant Connected Component core of 206 total nodes. These two clusters contain most of the high-rank nodes. ORF7b acts through these two clusters, inducing most of the metabolic dysregulation. We conducted a co-regulation and transcriptional analysis by hub and bottleneck proteins. This analysis allowed us to define the transcription factors and miRNAs that control the high-ranking proteins and the dysregulated processes within the limits of the poor knowledge that these sectors still impose.
Collapse
Affiliation(s)
- Gelsomina Mansueto
- Dipartimento di Scienze Mediche e Chirurgiche Avanzate, Università della Campania, L. Vanvitelli, 80138 Naples, Italy;
| | - Giovanna Fusco
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy;
| | - Giovanni Colonna
- Medical Informatics AOU, Università della Campania, L. Vanvitelli, 80138 Naples, Italy
| |
Collapse
|
20
|
Ray P, Ledgerwood-Lee M, Brickner H, Clark AE, Garretson A, Graham R, Van Zant W, Carlin AF, Aronoff-Spencer ES. Design and Development of an Antigen Test for SARS-CoV-2 Nucleocapsid Protein to Validate the Viral Quality Assurance Panels. Viruses 2024; 16:662. [PMID: 38793544 PMCID: PMC11125937 DOI: 10.3390/v16050662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/19/2024] [Accepted: 04/21/2024] [Indexed: 05/26/2024] Open
Abstract
The continuing mutability of the SARS-CoV-2 virus can result in failures of diagnostic assays. To address this, we describe a generalizable bioinformatics-to-biology pipeline developed for the calibration and quality assurance of inactivated SARS-CoV-2 variant panels provided to Radical Acceleration of Diagnostics programs (RADx)-radical program awardees. A heuristic genetic analysis based on variant-defining mutations demonstrated the lowest genetic variance in the Nucleocapsid protein (Np)-C-terminal domain (CTD) across all SARS-CoV-2 variants. We then employed the Shannon entropy method on (Np) sequences collected from the major variants, verifying the CTD with lower entropy (less prone to mutations) than other Np regions. Polyclonal and monoclonal antibodies were raised against this target CTD antigen and used to develop an Enzyme-linked immunoassay (ELISA) test for SARS-CoV-2. Blinded Viral Quality Assurance (VQA) panels comprised of UV-inactivated SARS-CoV-2 variants (XBB.1.5, BF.7, BA.1, B.1.617.2, and WA1) and distractor respiratory viruses (CoV 229E, CoV OC43, RSV A2, RSV B, IAV H1N1, and IBV) were assembled by the RADx-rad Diagnostics core and tested using the ELISA described here. The assay tested positive for all variants with high sensitivity (limit of detection: 1.72-8.78 ng/mL) and negative for the distractor virus panel. Epitope mapping for the monoclonal antibodies identified a 20 amino acid antigenic peptide on the Np-CTD that an in-silico program also predicted for the highest antigenicity. This work provides a template for a bioinformatics pipeline to select genetic regions with a low propensity for mutation (low Shannon entropy) to develop robust 'pan-variant' antigen-based assays for viruses prone to high mutational rates.
Collapse
Affiliation(s)
- Partha Ray
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, CA 92093, USA; (P.R.); (M.L.-L.); (H.B.); (A.E.C.); (A.G.); (R.G.); (W.V.Z.); (A.F.C.)
| | - Melissa Ledgerwood-Lee
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, CA 92093, USA; (P.R.); (M.L.-L.); (H.B.); (A.E.C.); (A.G.); (R.G.); (W.V.Z.); (A.F.C.)
| | - Howard Brickner
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, CA 92093, USA; (P.R.); (M.L.-L.); (H.B.); (A.E.C.); (A.G.); (R.G.); (W.V.Z.); (A.F.C.)
| | - Alex E. Clark
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, CA 92093, USA; (P.R.); (M.L.-L.); (H.B.); (A.E.C.); (A.G.); (R.G.); (W.V.Z.); (A.F.C.)
| | - Aaron Garretson
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, CA 92093, USA; (P.R.); (M.L.-L.); (H.B.); (A.E.C.); (A.G.); (R.G.); (W.V.Z.); (A.F.C.)
| | - Rishi Graham
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, CA 92093, USA; (P.R.); (M.L.-L.); (H.B.); (A.E.C.); (A.G.); (R.G.); (W.V.Z.); (A.F.C.)
| | - Westley Van Zant
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, CA 92093, USA; (P.R.); (M.L.-L.); (H.B.); (A.E.C.); (A.G.); (R.G.); (W.V.Z.); (A.F.C.)
| | - Aaron F. Carlin
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, CA 92093, USA; (P.R.); (M.L.-L.); (H.B.); (A.E.C.); (A.G.); (R.G.); (W.V.Z.); (A.F.C.)
- Department of Pathology, University of California, San Diego, CA 92093, USA
| | - Eliah S. Aronoff-Spencer
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, CA 92093, USA; (P.R.); (M.L.-L.); (H.B.); (A.E.C.); (A.G.); (R.G.); (W.V.Z.); (A.F.C.)
| |
Collapse
|
21
|
Piubelli C, Treggiari D, Lavezzari D, Deiana M, Dishnica K, Tosato EMS, Mazzi C, Cattaneo P, Mori A, Pomari E, Nicolini L, Leonardi M, Perandin F, Formenti F, Giorgetti A, Conti A, Capobianchi MR, Gobbi FG, Castilletti C. Wide Real-Life Data Support Reduced Sensitivity of Antigen Tests for Omicron SARS-CoV-2 Infections. Viruses 2024; 16:657. [PMID: 38793539 PMCID: PMC11125898 DOI: 10.3390/v16050657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 05/26/2024] Open
Abstract
With the continuous spread of new SARS-CoV-2 variants of concern (VOCs), the monitoring of diagnostic test performances is mandatory. We evaluated the changes in antigen diagnostic tests' (ADTs) accuracy along the Delta to Omicron VOCs transition, exploring the N protein mutations possibly affecting ADT sensitivity and assessing the best sampling site for the diagnosis of Omicron infections. In total, 5175 subjects were enrolled from 1 October 2021 to 15 July 2022. The inclusion criteria were SARS-CoV-2 ADT combined with a same-day RT-PCR swab test. For the sampling site analysis, 61 patients were prospectively recruited during the Omicron period for nasal and oral swab analyses by RT-PCR. Next-Generation Sequencing data were obtained to evaluate the different sublineages. Using RT-PCR as a reference, 387 subjects resulted in becoming infected and the overall sensitivity of the ADT decreased from 63% in the Delta period to 33% in the Omicron period. This decrease was highly statistically significant (p < 0.001), and no decrease in viral load was detected at the RNA level. The nasal site presented a significantly higher viral load than the oral site during the Omicron wave. The reduced detection rate of Omicron infections by ADT should be considered in the global testing strategy to preserve accurate diagnoses across the changing SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Chiara Piubelli
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore—Don Calabria Hospital, Negrar di Valpolicella, 37124 Verona, Italy (L.N.)
| | - Davide Treggiari
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore—Don Calabria Hospital, Negrar di Valpolicella, 37124 Verona, Italy (L.N.)
| | - Denise Lavezzari
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore—Don Calabria Hospital, Negrar di Valpolicella, 37124 Verona, Italy (L.N.)
| | - Michela Deiana
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore—Don Calabria Hospital, Negrar di Valpolicella, 37124 Verona, Italy (L.N.)
| | - Klevia Dishnica
- Department of Biotechnology, University of Verona, 37124 Verona, Italy
| | | | - Cristina Mazzi
- Centre for Clinical Research, IRCCS Sacro Cuore—Don Calabria Hospital, Negrar di Valpolicella, 37124 Verona, Italy;
| | - Paolo Cattaneo
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore—Don Calabria Hospital, Negrar di Valpolicella, 37124 Verona, Italy (L.N.)
| | - Antonio Mori
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore—Don Calabria Hospital, Negrar di Valpolicella, 37124 Verona, Italy (L.N.)
| | - Elena Pomari
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore—Don Calabria Hospital, Negrar di Valpolicella, 37124 Verona, Italy (L.N.)
| | - Lavinia Nicolini
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore—Don Calabria Hospital, Negrar di Valpolicella, 37124 Verona, Italy (L.N.)
| | - Martina Leonardi
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore—Don Calabria Hospital, Negrar di Valpolicella, 37124 Verona, Italy (L.N.)
| | - Francesca Perandin
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore—Don Calabria Hospital, Negrar di Valpolicella, 37124 Verona, Italy (L.N.)
| | - Fabio Formenti
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore—Don Calabria Hospital, Negrar di Valpolicella, 37124 Verona, Italy (L.N.)
| | | | - Antonio Conti
- Clinical Analysis Laboratory and Transfusional Service, IRCCS Sacro Cuore—Don Calabria Hospital, Negrar di Valpolicella, 37124 Verona, Italy
| | - Maria Rosaria Capobianchi
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore—Don Calabria Hospital, Negrar di Valpolicella, 37124 Verona, Italy (L.N.)
| | - Federico Giovanni Gobbi
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore—Don Calabria Hospital, Negrar di Valpolicella, 37124 Verona, Italy (L.N.)
| | - Concetta Castilletti
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore—Don Calabria Hospital, Negrar di Valpolicella, 37124 Verona, Italy (L.N.)
| |
Collapse
|
22
|
Laughlin PM, Young K, Gonzalez-Gutierrez G, Wang JC, Zlotnick A. A narrow ratio of nucleic acid to SARS-CoV-2 N-protein enables phase separation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.10.588883. [PMID: 38645044 PMCID: PMC11030382 DOI: 10.1101/2024.04.10.588883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
SARS-CoV-2 Nucleocapsid protein (N) is a viral structural protein that packages the 30kb genomic RNA inside virions and forms condensates within infected cells through liquid-liquid phase separation (LLPS). N, in both soluble and condensed forms, has accessory roles in the viral life cycle including genome replication and immunosuppression. The ability to perform these tasks depends on phase separation and its reversibility. The conditions that stabilize and destabilize N condensates and the role of N-N interactions are poorly understood. We have investigated LLPS formation and dissolution in a minimalist system comprised of N protein and an ssDNA oligomer just long enough to support assembly. The short oligo allows us to focus on the role of N-N interaction. We have developed a sensitive FRET assay to interrogate LLPS assembly reactions from the perspective of the oligonucleotide. We find that N alone can form oligomers but that oligonucleotide enables their assembly into a three-dimensional phase. At a ~1:1 ratio of N to oligonucleotide LLPS formation is maximal. We find that a modest excess of N or of nucleic acid causes the LLPS to break down catastrophically. Under the conditions examined here assembly has a critical concentration of about 1 μM. The responsiveness of N condensates to their environment may have biological consequences. A better understanding of how nucleic acid modulates N-N association will shed light on condensate activity and could inform antiviral strategies targeting LLPS.
Collapse
Affiliation(s)
| | - Kimberly Young
- Department of Molecular and Cellular Biochemistry, Indiana University
| | | | - Joseph C.Y. Wang
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine
| | - Adam Zlotnick
- Department of Molecular and Cellular Biochemistry, Indiana University
| |
Collapse
|
23
|
Cubuk J, Alston J, Incicco JJ, Holehouse A, Hall K, Stuchell-Brereton M, Soranno A. The disordered N-terminal tail of SARS-CoV-2 Nucleocapsid protein forms a dynamic complex with RNA. Nucleic Acids Res 2024; 52:2609-2624. [PMID: 38153183 PMCID: PMC10954482 DOI: 10.1093/nar/gkad1215] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 11/17/2023] [Accepted: 12/11/2023] [Indexed: 12/29/2023] Open
Abstract
The SARS-CoV-2 Nucleocapsid (N) protein is responsible for condensation of the viral genome. Characterizing the mechanisms controlling nucleic acid binding is a key step in understanding how condensation is realized. Here, we focus on the role of the RNA binding domain (RBD) and its flanking disordered N-terminal domain (NTD) tail, using single-molecule Förster Resonance Energy Transfer and coarse-grained simulations. We quantified contact site size and binding affinity for nucleic acids and concomitant conformational changes occurring in the disordered region. We found that the disordered NTD increases the affinity of the RBD for RNA by about 50-fold. Binding of both nonspecific and specific RNA results in a modulation of the tail configurations, which respond in an RNA length-dependent manner. Not only does the disordered NTD increase affinity for RNA, but mutations that occur in the Omicron variant modulate the interactions, indicating a functional role of the disordered tail. Finally, we found that the NTD-RBD preferentially interacts with single-stranded RNA and that the resulting protein:RNA complexes are flexible and dynamic. We speculate that this mechanism of interaction enables the Nucleocapsid protein to search the viral genome for and bind to high-affinity motifs.
Collapse
Affiliation(s)
- Jasmine Cubuk
- Department of Biochemistry and Molecular Biophysics, Washington University in St Louis, 660 St Euclid Ave, 63110 Saint Louis, MO, USA
- Center for Biomolecular Condensates, Washington University in St Louis, 1 Brookings Drive, 63130 Saint Louis, MO, USA
| | - Jhullian J Alston
- Department of Biochemistry and Molecular Biophysics, Washington University in St Louis, 660 St Euclid Ave, 63110 Saint Louis, MO, USA
- Center for Biomolecular Condensates, Washington University in St Louis, 1 Brookings Drive, 63130 Saint Louis, MO, USA
| | - J Jeremías Incicco
- Department of Biochemistry and Molecular Biophysics, Washington University in St Louis, 660 St Euclid Ave, 63110 Saint Louis, MO, USA
- Center for Biomolecular Condensates, Washington University in St Louis, 1 Brookings Drive, 63130 Saint Louis, MO, USA
| | - Alex S Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University in St Louis, 660 St Euclid Ave, 63110 Saint Louis, MO, USA
- Center for Biomolecular Condensates, Washington University in St Louis, 1 Brookings Drive, 63130 Saint Louis, MO, USA
| | - Kathleen B Hall
- Department of Biochemistry and Molecular Biophysics, Washington University in St Louis, 660 St Euclid Ave, 63110 Saint Louis, MO, USA
| | - Melissa D Stuchell-Brereton
- Department of Biochemistry and Molecular Biophysics, Washington University in St Louis, 660 St Euclid Ave, 63110 Saint Louis, MO, USA
- Center for Biomolecular Condensates, Washington University in St Louis, 1 Brookings Drive, 63130 Saint Louis, MO, USA
| | - Andrea Soranno
- Department of Biochemistry and Molecular Biophysics, Washington University in St Louis, 660 St Euclid Ave, 63110 Saint Louis, MO, USA
- Center for Biomolecular Condensates, Washington University in St Louis, 1 Brookings Drive, 63130 Saint Louis, MO, USA
| |
Collapse
|
24
|
Zhou J, Zhou Y, Wei XF, Fan L, Gao X, Li Y, Wu Y, Feng W, Shen X, Liu L, Xu G, Zhang Z. TRIM6 facilitates SARS-CoV-2 proliferation by catalyzing the K29-typed ubiquitination of NP to enhance the ability to bind viral genomes. J Med Virol 2024; 96:e29531. [PMID: 38515377 DOI: 10.1002/jmv.29531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/28/2024] [Accepted: 03/05/2024] [Indexed: 03/23/2024]
Abstract
The Nucleocapsid Protein (NP) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is not only the core structural protein required for viral packaging, but also participates in the regulation of viral replication, and its post-translational modifications such as phosphorylation have been shown to be an important strategy for regulating virus proliferation. Our previous work identified NP could be ubiquitinated, as confirmed by two independent studies. But the function of NP ubiquitination is currently unknown. In this study, we first pinpointed TRIM6 as the E3 ubiquitin ligase responsible for NP ubiquitination, binding to NP's CTD via its RING and B-box-CCD domains. TRIM6 promotes the K29-typed polyubiquitination of NP at K102, K347, and K361 residues, increasing its binding to viral genomic RNA. Consistently, functional experiments such as the use of the reverse genetic tool trVLP model and gene knockout of TRIM6 further confirmed that blocking the ubiquitination of NP by TRIM6 significantly inhibited the proliferation of SARS-CoV-2. Notably, the NP of coronavirus is relatively conserved, and the NP of SARS-CoV can also be ubiquitinated by TRIM6, indicating that NP could be a broad-spectrum anti-coronavirus target. These findings shed light on the intricate interaction between SARS-CoV-2 and the host, potentially opening new opportunities for COVID-19 therapeutic development.
Collapse
Affiliation(s)
- Jian Zhou
- The Second Affiliated Hospital, School of Medicine, Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Yuzheng Zhou
- The Second Affiliated Hospital, School of Medicine, Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Xia-Fei Wei
- The Second Affiliated Hospital, School of Medicine, Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Lujie Fan
- The Second Affiliated Hospital, School of Medicine, Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
- Guangzhou Laboratory, Guangzhou Medical University, Guangzhou, China
| | - Xiang Gao
- The Second Affiliated Hospital, School of Medicine, Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Yunfei Li
- The Second Affiliated Hospital, School of Medicine, Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Yezi Wu
- The Second Affiliated Hospital, School of Medicine, Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Wei Feng
- The Second Affiliated Hospital, School of Medicine, Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - XiaoTong Shen
- The Second Affiliated Hospital, School of Medicine, Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Lei Liu
- The Second Affiliated Hospital, School of Medicine, Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Gang Xu
- Department of Microbiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Zheng Zhang
- The Second Affiliated Hospital, School of Medicine, Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| |
Collapse
|
25
|
Punacha G, Adiga R. Feature selection for effective prediction of SARS-COV-2 using machine learning. Genes Genomics 2024; 46:341-354. [PMID: 37985549 DOI: 10.1007/s13258-023-01467-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 10/01/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND With rise in variants of SARS-CoV-2, it is necessary to classify the emerging SARS-CoV-2 for early detection and thereby reduce human transmission. Genomic and proteomic information have less frequently been used for classifying in a machine learning (ML) approach for detection of SARS-CoV-2. OBJECTIVE With this aim we used nucleoprotein and viral proteomic evolutionary information of SARS-CoV-2 along with the charge and basicity distribution of amino acids from various strains of SARS-CoV-2 to generate a disease severity model based on ML. METHODS All sequence and clinical data were obtained from GISAID. Proteomic level calculations were added to comprise the dataset. The training set was used for feature selection. Select K- Best feature selection method was employed which was cross validated with testing set and performance evaluated. Delong's test was also done. We also employed BIRCH clustering on SARS-CoV-2 for clustering the strains. RESULTS Out of six ML models four were successful in training and testing. Extra Trees algorithm generated a micro-averaged F1-score of 74.2% and a weighted averaged area under the receiver operating characteristic curve (AUC-ROC) score of 73.7% with multi-class option. The feature selection set to 5, enhanced the ROC AUC from 73.7 to 76.4%. Accuracy of the selected model of 86.9% was achieved. CONCLUSION The unique features identified in the ML approach was able to classify disease severity into classes and had potential for predicting risk in newer variants.
Collapse
Affiliation(s)
- Gagan Punacha
- Nitte (Deemed to be University), Department of Molecular Genetics & Cancer, Nitte University Centre for Science Education & Research (NUCSER), Mangalore, Karnataka, India
| | - Rama Adiga
- Nitte (Deemed to be University), Department of Molecular Genetics & Cancer, Nitte University Centre for Science Education & Research (NUCSER), Mangalore, Karnataka, India.
| |
Collapse
|
26
|
Eltayeb A, Al-Sarraj F, Alharbi M, Albiheyri R, Mattar E, Abu Zeid IM, Bouback TA, Bamagoos A, Aljohny BO, Uversky VN, Redwan EM. Overview of the SARS-CoV-2 nucleocapsid protein. Int J Biol Macromol 2024; 260:129523. [PMID: 38232879 DOI: 10.1016/j.ijbiomac.2024.129523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 01/12/2024] [Accepted: 01/13/2024] [Indexed: 01/19/2024]
Abstract
Since the emergence of SARS-CoV in 2003, researchers worldwide have been toiling away at deciphering this virus's biological intricacies. In line with other known coronaviruses, the nucleocapsid (N) protein is an important structural component of SARS-CoV. As a result, much emphasis has been placed on characterizing this protein. Independent research conducted by a variety of laboratories has clearly demonstrated the primary function of this protein, which is to encapsidate the viral genome. Furthermore, various accounts indicate that this particular protein disrupts diverse intracellular pathways. Such observations imply its vital role in regulating the virus as well. The opening segment of this review will expound upon these distinct characteristics succinctly exhibited by the N protein. Additionally, it has been suggested that the N protein possesses diagnostic and vaccine capabilities when dealing with SARS-CoV. In light of this fact, we will be reviewing some recent headway in the use cases for N protein toward clinical purposes within this article's concluding segments. This forward movement pertains to both developments of COVID-19-oriented therapeutic targets as well as diagnostic measures. The strides made by medical researchers offer encouragement, knowing they are heading toward a brighter future combating global pandemic situations such as these.
Collapse
Affiliation(s)
- Ahmed Eltayeb
- Department of Biological Science, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Faisal Al-Sarraj
- Department of Biological Science, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Mona Alharbi
- Department of Biological Science, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Raed Albiheyri
- Department of Biological Science, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ehab Mattar
- Department of Biological Science, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Isam M Abu Zeid
- Department of Biological Science, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; Princess Dr. Najla Bint Saud Al-Saud Center for Excellence Research in Biotechnology, King Abdulaziz University, P.O. Box 80200, Jeddah, Saudi Arabia
| | - Thamer A Bouback
- Department of Biological Science, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; Princess Dr. Najla Bint Saud Al-Saud Center for Excellence Research in Biotechnology, King Abdulaziz University, P.O. Box 80200, Jeddah, Saudi Arabia
| | - Atif Bamagoos
- Department of Biological Science, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Bassam O Aljohny
- Department of Biological Science, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
| | - Elrashdy M Redwan
- Department of Biological Science, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah, Saudi Arabia; Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications, New Borg EL-Arab, 21934 Alexandria, Egypt.
| |
Collapse
|
27
|
Tanino Y, Nishioka K, Yamamoto C, Watanabe Y, Daidoji T, Kawamoto M, Uda S, Kirito S, Nakagawa Y, Kasamatsu Y, Kawahara Y, Sakai Y, Nobori S, Inaba T, Ota B, Fujita N, Hoshino A, Nukui Y, Nakaya T. Emergence of SARS-CoV-2 with Dual-Drug Resistant Mutations During a Long-Term Infection in a Kidney Transplant Recipient. Infect Drug Resist 2024; 17:531-541. [PMID: 38348230 PMCID: PMC10860503 DOI: 10.2147/idr.s438915] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/22/2024] [Indexed: 02/15/2024] Open
Abstract
Introduction Various therapeutic agents are being developed for the treatment of coronavirus disease 2019 (COVID-19). Therefore, it is crucial to accumulate information regarding the features of drug-resistant viruses to these antiviral drugs. Methods We investigated the emergence of dual-drug resistance in a kidney transplant recipient who received sotrovimab (from day 0) and remdesivir (RDV) (from day 8 to day 17). We sequenced the whole viral genomes from nasopharyngeal swabs taken on day 0 and seven points after starting treatment (on days 12, 19, 23, 37, 43, 48, and 58). The genetic traits of the wild-type (day 0) and descendant viruses (after day 12) were determined by comparing the genomes with those of a Wuhan strain and the day 0 wild-type strain, respectively. Three viral isolates (from samples collected on days 0, 23, and 37) were investigated for their escape ability and growth kinetics in vitro. Results The sotrovimab resistant mutation (S:E340K) and the RDV resistant mutation RdRp:V792I (nt: G15814A) emerged within 12 days (day 12) and 11 days (day 19) after the treatment, respectively. The day 23 isolate harboring S:E340K/RdRp:V791I was resistant to both sotrovimab and RDV, showing 364- and 2.73-fold higher resistance respectively, compared with the wild-type. Moreover, compared with the day 23 isolate, the day 37 isolate accumulated multiple additional mutations and had a higher level of resistance to both drugs. Conclusion Drug-resistant variants with double mutations (S:E340K/RdRp:V791I) became dominant within 23 days after starting treatment, suggesting that even a combination therapy involving sotrovimab and RDV, dual-drug resistant viruses may emerge rapidly in immunocompromised patients. The dual-resistant variants had lower virus yields than those of the wild-type virus in vitro, suggesting that they paid a fitness cost.
Collapse
Affiliation(s)
- Yoko Tanino
- Department of Infectious Diseases, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Department of Infection Control and Laboratory Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Keisuke Nishioka
- Department of Infectious Diseases, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Chie Yamamoto
- Department of Infection Control and Laboratory Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yohei Watanabe
- Department of Infectious Diseases, Kyoto Prefectural University of Medicine, Kyoto, Japan
- JST, MIRAI, Tokyo, Japan
| | - Tomo Daidoji
- Department of Infectious Diseases, Kyoto Prefectural University of Medicine, Kyoto, Japan
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan
| | - Masataka Kawamoto
- Department of Forensics Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Sayaka Uda
- Department of Pulmonary Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Shoko Kirito
- Department of Infectious Diseases, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yuta Nakagawa
- Department of Infection Control and Laboratory Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yu Kasamatsu
- Department of Infection Control and Laboratory Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yoshiyuki Kawahara
- Kyoto Prefectural Institute of Public Health and Environment, Kyoto, Japan
| | - Yuri Sakai
- Kyoto Prefectural Institute of Public Health and Environment, Kyoto, Japan
| | - Shuji Nobori
- Department of Organ Transplantation and General Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tohru Inaba
- Department of Infection Control and Laboratory Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Bon Ota
- Department of Emergency Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Naohisa Fujita
- Kyoto Prefectural Institute of Public Health and Environment, Kyoto, Japan
| | - Atsushi Hoshino
- Department of Cardiovascular Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yoko Nukui
- Department of Infection Control and Laboratory Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takaaki Nakaya
- Department of Infectious Diseases, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
28
|
Zheng G, Qiu G, Qian H, Shu Q, Xu J. Multifaceted role of SARS-CoV-2 structural proteins in lung injury. Front Immunol 2024; 15:1332440. [PMID: 38375473 PMCID: PMC10875085 DOI: 10.3389/fimmu.2024.1332440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/22/2024] [Indexed: 02/21/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the third human coronavirus to cause acute respiratory distress syndrome (ARDS) and contains four structural proteins: spike, envelope, membrane, and nucleocapsid. An increasing number of studies have demonstrated that all four structural proteins of SARS-CoV-2 are capable of causing lung injury, even without the presence of intact virus. Therefore, the topic of SARS-CoV-2 structural protein-evoked lung injury warrants more attention. In the current article, we first synopsize the structural features of SARS-CoV-2 structural proteins. Second, we discuss the mechanisms for structural protein-induced inflammatory responses in vitro. Finally, we list the findings that indicate structural proteins themselves are toxic and sufficient to induce lung injury in vivo. Recognizing mechanisms of lung injury triggered by SARS-CoV-2 structural proteins may facilitate the development of targeted modalities in treating COVID-19.
Collapse
Affiliation(s)
| | - Guanguan Qiu
- Shaoxing Second Hospital, Shaoxing, Zhejiang, China
| | - Huifeng Qian
- Shaoxing Second Hospital, Shaoxing, Zhejiang, China
| | - Qiang Shu
- The Children’s Hospital of Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Jianguo Xu
- Shaoxing Second Hospital, Shaoxing, Zhejiang, China
- The Children’s Hospital of Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| |
Collapse
|
29
|
Cheng SMS, Lau JJ, Tsang LCH, Leung K, Lee CK, Hachim A, Kavian N, Chaothai S, Wong RWK, Yu JKM, Chai ZYH, Mori M, Wu C, Yiu K, Hui DSC, Amarasinghe GK, Poon LLM, Wu JT, Valkenburg SA, Peiris M. Serological assays for differentiating natural COVID-19 infection from vaccine induced immunity. J Clin Virol 2024; 170:105621. [PMID: 38056114 DOI: 10.1016/j.jcv.2023.105621] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/14/2023] [Accepted: 11/22/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND Natural SARS-CoV-2 infection may elicit antibodies to a range of viral proteins including non-structural protein ORF8. RNA, adenovirus vectored and sub-unit vaccines expressing SARS-CoV-2 spike would be only expected to elicit S-antibodies and antibodies to distinct domains of nucleocapsid (N) protein may reliably differentiate infection from vaccine-elicited antibody. However, inactivated whole virus vaccines may potentially elicit antibody to wider range of viral proteins, including N protein. We hypothesized that antibody to ORF8 protein will discriminate natural infection from vaccination irrespective of vaccine type. METHODS We optimized and validated the anti-ORF8 and anti-N C-terminal domain (NCTD) ELISA assays using sera from pre-pandemic, RT-PCR confirmed natural infection sera and BNT162b2 (BNT) or CoronaVac vaccinees. We then applied these optimized assays to a cohort of blood donor sera collected in April-July 2022 with known vaccination and self-reported infection status. RESULTS We optimized cut-off values for the anti-ORF8 and anti-N-CTD IgG ELISA assays using receiver-operating-characteristic (ROC) curves. The sensitivity of the anti-ORF8 and anti-N-CTD ELISA for detecting past infection was 83.2% and 99.3%, respectively. Specificity of anti-ORF8 ELISA was 96.8 % vs. the pre-pandemic cohort or 93% considering the pre-pandemic and vaccine cohorts together. The anti-N-CTD ELISA specificity of 98.9% in the pre-pandemic cohort, 93% in BNT vaccinated and only 4 % in CoronaVac vaccinated cohorts. Anti-N-CTD antibody was longer-lived than anti-ORF8 antibody after natural infection. CONCLUSIONS Anti-N-CTD antibody assays provide good discrimination between natural infection and vaccination in BNT162b2 vaccinated individuals. Anti-ORF8 antibody can help discriminate infection from vaccination in either type of vaccine and help estimate infection attack rates (IAR) in communities.
Collapse
Affiliation(s)
- Samuel M S Cheng
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Jonathan J Lau
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; Laboratory of Data Discovery for Health (D24H), Hong Kong Science Park, Hong Kong SAR, China
| | - Leo C H Tsang
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Kathy Leung
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; Laboratory of Data Discovery for Health (D24H), Hong Kong Science Park, Hong Kong SAR, China
| | - Cheuk Kwong Lee
- Hong Kong Red Cross Blood Transfusion Service, Hospital Authority, Hong Kong SAR, China
| | - Asmaa Hachim
- HKU-Pasteur Research Pole, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Niloufar Kavian
- HKU-Pasteur Research Pole, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, & Assistance Publique-Hôpitaux de Paris, Hôpital Universitaire Paris Centre, Centre Hospitalier Universitaire Cochin, Service d'Immunologie Biologique, Paris, France
| | - Sara Chaothai
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Ricky W K Wong
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Jennifer K M Yu
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Zacary Y H Chai
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Masashi Mori
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Nonoichi, Japan
| | - Chao Wu
- Shenzhen Bay Laboratory, Guangdong, China
| | - Karen Yiu
- Department of Medicine and Therapeutics and SH Ho Research Center for Infectious Diseases, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong SAR, China
| | - David S C Hui
- Department of Medicine and Therapeutics and SH Ho Research Center for Infectious Diseases, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Gaya K Amarasinghe
- Department of Pathology and Immunology, Washington University School of Medicine at St. Louis, St. Louis, Missouri, United States
| | - Leo L M Poon
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; HKU-Pasteur Research Pole, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Joseph T Wu
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; Laboratory of Data Discovery for Health (D24H), Hong Kong Science Park, Hong Kong SAR, China
| | - Sophie A Valkenburg
- HKU-Pasteur Research Pole, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Malik Peiris
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; Centre for Immunology and Infection(C2i), Hong Kong Science Park, Hong Kong SAR, China.
| |
Collapse
|
30
|
Boulton S, Poutou J, Gill R, Alluqmani N, He X, Singaravelu R, Crupi MJ, Petryk J, Austin B, Angka L, Taha Z, Teo I, Singh S, Jamil R, Marius R, Martin N, Jamieson T, Azad T, Diallo JS, Ilkow CS, Bell JC. A T cell-targeted multi-antigen vaccine generates robust cellular and humoral immunity against SARS-CoV-2 infection. Mol Ther Methods Clin Dev 2023; 31:101110. [PMID: 37822719 PMCID: PMC10562195 DOI: 10.1016/j.omtm.2023.101110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 09/13/2023] [Indexed: 10/13/2023]
Abstract
SARS-CoV-2, the etiological agent behind the coronavirus disease 2019 (COVID-19) pandemic, has continued to mutate and create new variants with increased resistance against the WHO-approved spike-based vaccines. With a significant portion of the worldwide population still unvaccinated and with waning immunity against newly emerging variants, there is a pressing need to develop novel vaccines that provide broader and longer-lasting protection. To generate broader protective immunity against COVID-19, we developed our second-generation vaccinia virus-based COVID-19 vaccine, TOH-VAC-2, encoded with modified versions of the spike (S) and nucleocapsid (N) proteins as well as a unique poly-epitope antigen that contains immunodominant T cell epitopes from seven different SARS-CoV-2 proteins. We show that the poly-epitope antigen restimulates T cells from the PBMCs of individuals formerly infected with SARS-CoV-2. In mice, TOH-VAC-2 vaccination produces high titers of S- and N-specific antibodies and generates robust T cell immunity against S, N, and poly-epitope antigens. The immunity generated from TOH-VAC-2 is also capable of protecting mice from heterologous challenge with recombinant VSV viruses that express the same SARS-CoV-2 antigens. Altogether, these findings demonstrate the effectiveness of our versatile vaccine platform as an alternative or complementary approach to current vaccines.
Collapse
Affiliation(s)
- Stephen Boulton
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Joanna Poutou
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Rida Gill
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Nouf Alluqmani
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Xiaohong He
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Ragunath Singaravelu
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Mathieu J.F. Crupi
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Julia Petryk
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Bradley Austin
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Leonard Angka
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Zaid Taha
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Iris Teo
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Siddarth Singh
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Rameen Jamil
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Ricardo Marius
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Nikolas Martin
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Taylor Jamieson
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Taha Azad
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Faculty of Medicine and Health Sciences, Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
- Centre de Recherche du CHUS, Sherbrooke, QC J1H 5N4, Canada
| | - Jean-Simon Diallo
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Carolina S. Ilkow
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - John C. Bell
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
31
|
Yin B, Tang P, Wang L, Xie W, Chen X, Wang Y, Weng T, Tian R, Zhou S, Wang Z, Wang D. An aptamer-assisted nanopore strategy with a salt gradient for direct protein sensing. J Mater Chem B 2023; 11:11064-11072. [PMID: 37966856 DOI: 10.1039/d3tb01875j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Nanopore sensing is at the forefront of the technological revolution of the protein research field and has been widely used in molecular diagnosis and molecular dynamics, as well as for various sequencing applications. However, direct protein sensing with biological nanopores is still challenging owing to the large molecular size. Here, we propose an aptamer-assisted nanopore strategy for direct protein sensing and demonstrate its proof-of-concept utilities by experiments with SARS-Cov-2 nucleocapsid protein (NP), the most abundantly expressed viral protein, that is widely used in clinical diagnosis for COVID-19. NP binds with an oligonucleotide-tailed aptamer to form a protein-DNA complex which induces a discriminative two-level pattern of current blockades. We reveal the potential molecular interaction mechanism for the characteristic blockades and identify the salt gradient condition as the dominant factor of the phenomenon. Furthermore, we achieve a high sensitivity of 10 pM for NP detection within one hour and make a preliminary exploration on clinical diagnosis. This work promises a new platform for rapid and label-free protein detection.
Collapse
Affiliation(s)
- Bohua Yin
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, 130022, Jilin, China.
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Fangzheng Avenue, Beibei District, Chongqing, 400714, Chongqing, China.
| | - Peng Tang
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Fangzheng Avenue, Beibei District, Chongqing, 400714, Chongqing, China.
| | - Liang Wang
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Fangzheng Avenue, Beibei District, Chongqing, 400714, Chongqing, China.
| | - Wanyi Xie
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Fangzheng Avenue, Beibei District, Chongqing, 400714, Chongqing, China.
| | - Xiaohan Chen
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Fangzheng Avenue, Beibei District, Chongqing, 400714, Chongqing, China.
| | - Yunjiao Wang
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Fangzheng Avenue, Beibei District, Chongqing, 400714, Chongqing, China.
| | - Ting Weng
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Fangzheng Avenue, Beibei District, Chongqing, 400714, Chongqing, China.
| | - Rong Tian
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Fangzheng Avenue, Beibei District, Chongqing, 400714, Chongqing, China.
| | - Shuo Zhou
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Fangzheng Avenue, Beibei District, Chongqing, 400714, Chongqing, China.
| | - Zuobin Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, 130022, Jilin, China.
| | - Deqiang Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, 130022, Jilin, China.
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Fangzheng Avenue, Beibei District, Chongqing, 400714, Chongqing, China.
| |
Collapse
|
32
|
Zhao H, Syed AM, Khalid MM, Nguyen A, Ciling A, Wu D, Yau WM, Srinivasan S, Esposito D, Doudna JA, Piszczek G, Ott M, Schuck P. Assembly reactions of SARS-CoV-2 nucleocapsid protein with nucleic acid. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.22.568361. [PMID: 38045338 PMCID: PMC10690241 DOI: 10.1101/2023.11.22.568361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
The viral genome of SARS-CoV-2 is packaged by the nucleocapsid (N-) protein into ribonucleoprotein particles (RNPs), 38±10 of which are contained in each virion. Their architecture has remained unclear due to the pleomorphism of RNPs, the high flexibility of N-protein intrinsically disordered regions, and highly multivalent interactions between viral RNA and N-protein binding sites in both N-terminal (NTD) and C-terminal domain (CTD). Here we explore critical interaction motifs of RNPs by applying a combination of biophysical techniques to mutant proteins binding different nucleic acids in an in vitro assay for RNP formation, and by examining mutant proteins in a viral assembly assay. We find that nucleic acid-bound N-protein dimers oligomerize via a recently described protein-protein interface presented by a transient helix in its long disordered linker region between NTD and CTD. The resulting hexameric complexes are stabilized by multi-valent protein-nucleic acid interactions that establish crosslinks between dimeric subunits. Assemblies are stabilized by the dimeric CTD of N-protein offering more than one binding site for stem-loop RNA. Our study suggests a model for RNP assembly where N-protein scaffolding at high density on viral RNA is followed by cooperative multimerization through protein-protein interactions in the disordered linker.
Collapse
Affiliation(s)
- Huaying Zhao
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892
| | - Abdullah M. Syed
- Gladstone Institutes, San Francisco, CA 94158
- Innovative Genomics Institute, University of California, Berkeley, CA 94720
| | | | - Ai Nguyen
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892
| | - Alison Ciling
- Gladstone Institutes, San Francisco, CA 94158
- Innovative Genomics Institute, University of California, Berkeley, CA 94720
| | - Di Wu
- Biophysics Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Wai-Ming Yau
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Sanjana Srinivasan
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892
| | - Dominic Esposito
- Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| | - Jennifer A. Doudna
- Gladstone Institutes, San Francisco, CA 94158
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- HHMI, University of California, Berkeley, CA 94720
- Department of Chemistry, University of California, Berkeley, CA 94720
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720
| | - Grzegorz Piszczek
- Biophysics Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Melanie Ott
- Gladstone Institutes, San Francisco, CA 94158
- Department of Medicine, University of California, San Francisco, CA 94143
- Chan Zuckerberg Biohub, San Francisco, CA 94158
| | - Peter Schuck
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892
- Center for Biomedical Engineering Technology Acceleration, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
33
|
Hsu CJ, Chen CH, Chen WT, Liu PC, Chang TY, Lin MH, Chen CC, Chen HY, Huang CH, Cheng YH, Sun JR. Development of an EBOV MiniG plus system as an advanced tool for anti-Ebola virus drug screening. Heliyon 2023; 9:e22138. [PMID: 38045158 PMCID: PMC10692823 DOI: 10.1016/j.heliyon.2023.e22138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/21/2023] [Accepted: 11/05/2023] [Indexed: 12/05/2023] Open
Abstract
The incidence of zoonotic diseases, such as coronavirus disease 2019 and Ebola virus disease, is increasing worldwide. However, drug and vaccine development for zoonotic diseases has been hampered because the experiments involving live viruses are limited to high-containment laboratories. The Ebola virus minigenome system enables researchers to study the Ebola virus under BSL-2 conditions. Here, we found that the addition of the nucleocapsid protein of human coronaviruses, such as severe acute respiratory syndrome coronavirus 2, can increase the ratio of green fluorescent protein-positive cells by 1.5-2 folds in the Ebola virus minigenome system. Further analysis showed that the nucleocapsid protein acts as an activator of the Ebola virus minigenome system. Here, we developed an EBOV MiniG Plus system based on the Ebola virus minigenome system by adding the SARS-CoV-2 nucleocapsid protein. By evaluating the antiviral effect of remdesivir and rupintrivir, we demonstrated that compared to that of the traditional Ebola virus minigenome system, significant concentration-dependent activity was observed in the EBOV MiniG Plus system. Taken together, these results demonstrate the utility of adding nucleocapsid protein to the Ebola virus minigenome system to create a powerful platform for screening antiviral drugs against the Ebola virus.
Collapse
Affiliation(s)
- Chi-Ju Hsu
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan
| | - Cheng-Hsiu Chen
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan
| | - Wen-Ting Chen
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Ping-Cheng Liu
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taiwan
| | - Tein-Yao Chang
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
- Department of Pathology and Graduate Institute of Pathology and Parasitology, Tri-Service General Hospital, National Defense Medical Center, Taiwan
| | - Meng-He Lin
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Cheng-Cheung Chen
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan
| | - Hsing-Yu Chen
- Department of Medical Techniques, Taipei City Hospital Ren-Ai Branch, Taiwan
| | - Chih-Heng Huang
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan
| | - Yun-Hsiang Cheng
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
- Department of Physiology and Biophysics, Graduate Institute of Physiology, National Defense Medical Center, Taiwan
| | - Jun-Ren Sun
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan
- Department of Physiology and Biophysics, Graduate Institute of Physiology, National Defense Medical Center, Taiwan
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taiwan
| |
Collapse
|
34
|
Boniardi I, Corona A, Basquin J, Basquin C, Milia J, Nagy I, Tramontano E, Zinzula L. Suramin inhibits SARS-CoV-2 nucleocapsid phosphoprotein genome packaging function. Virus Res 2023; 336:199221. [PMID: 37704176 PMCID: PMC10514558 DOI: 10.1016/j.virusres.2023.199221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/27/2023] [Accepted: 09/10/2023] [Indexed: 09/15/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic is fading, however its etiologic agent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues posing - despite the availability of licensed vaccines - a global health threat, due to the potential emergence of vaccine-resistant SARS-CoV-2 variants. This makes the development of new drugs against COVID-19 a persistent urgency and sets as research priority the validation of novel therapeutic targets within the SARS-CoV-2 proteome. Among these, a promising one is the SARS-CoV-2 nucleocapsid (N) phosphoprotein, a major structural component of the virion with indispensable role in packaging the viral genome into a ribonucleoprotein (RNP) complex, which also contributes to SARS-CoV-2 innate immune evasion by inhibiting the host cell type-I interferon (IFN-I) response. By combining miniaturized differential scanning fluorimetry with microscale thermophoresis, we found that the 100-year-old drug Suramin interacts with SARS-CoV-2 N-terminal domain (NTD) and C-terminal domain (CTD), thereby inhibiting their single-stranded RNA (ssRNA) binding function with low-micromolar Kd and IC50 values. Molecular docking suggests that Suramin interacts with basic NTD cleft and CTD dimer interface groove, highlighting three potentially druggable ssRNA binding sites. Electron microscopy shows that Suramin inhibits the formation in vitro of RNP complex-like condensates by SARS-CoV-2 N with a synthetic ssRNA. In a dose-dependent manner, Suramin also reduced SARS-CoV-2-induced cytopathic effect on Vero E6 and Calu-3 cells, partially reverting the SARS-CoV-2 N-inhibited IFN-I production in 293T cells. Our findings indicate that Suramin inhibits SARS-CoV-2 replication by hampering viral genome packaging, thereby representing a starting model for design of new COVID-19 antivirals.
Collapse
Affiliation(s)
- Irene Boniardi
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Angela Corona
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato 09042, Italy
| | - Jerome Basquin
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Claire Basquin
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Jessica Milia
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato 09042, Italy
| | - István Nagy
- Center of Research and Development, Eszterházy Károly Catholic University, Eger 3300, Hungary
| | - Enzo Tramontano
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato 09042, Italy.
| | - Luca Zinzula
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried 82152, Germany.
| |
Collapse
|
35
|
Shukla E, Choudhury L, Rastogi S, Chawla A, Bhattacharya S, Kaushik U, Mittal M, Rathore AS, Pandey G. Improved Stability and Manufacturability of Nucleocapsid Antigens for SARS-CoV2 Diagnostics through Protein Engineering. Biomolecules 2023; 13:1524. [PMID: 37892206 PMCID: PMC10604654 DOI: 10.3390/biom13101524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
The COVID-19 pandemic has had a significant impact on human health management. A rapid diagnosis of SARS-CoV2 at the point-of-care (POC) is critical to prevent disease spread. As a POC device for remote settings, a LFIA should not require cold-chain maintenance and should be kept at normal temperatures. Antigen stability can be enhanced by addressing instability issues when dealing with fragile components, such as proteinaceous capture antigens. This study used immunologically guided protein engineering to enhance the capture nucleocapsid (NP) antigen stability of SARS-CoV2. A search of the IEDB database revealed that antibodies detecting epitopes are almost uniformly distributed over NP1-419. In contrast, N-terminal stretches of NP1-419 are theoretically more unstable than C-terminal stretches. We identified NP250-365 as a NP stretch with a low instability index and B-cell epitopes. Apart from NP1-419, two other variants (NP121-419 and NP250-365) were cloned, expressed, and purified. The degradation pattern of the proteins was observed on SDS-PAGE after three days of stability studies at -20 °C, 4 °C, and 37 °C. NP1-419 was the most degraded while NP250-365 exhibited the least degradation. Also, NP1-419, NP250-365, and NP121-419 reacted with purified antibodies from COVID-19 patient serum. Our results suggest that NP250-365 may be used as a stable capture antigen in LFIA devices to detect COVID-19.
Collapse
Affiliation(s)
- Esha Shukla
- Bioprocess and Bioproduct Development Laboratory, University School of Biotechnology, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi 110078, India
| | - Lipsa Choudhury
- Bioprocess and Bioproduct Development Laboratory, University School of Biotechnology, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi 110078, India
| | - Saurabh Rastogi
- Bioprocess and Bioproduct Development Laboratory, University School of Biotechnology, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi 110078, India
| | - Arshmeet Chawla
- Bioprocess and Bioproduct Development Laboratory, University School of Biotechnology, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi 110078, India
| | - Sanghati Bhattacharya
- Department of Chemical Engineering, Indian Institute of Technology New Delhi, Hauz Khas, New Delhi 110016, India
| | - Umesh Kaushik
- Medsource Ozone Biomedicals Pvt. Ltd., Parmeshwari Colony, Faridabad 121003, India
| | - Manan Mittal
- Medsource Ozone Biomedicals Pvt. Ltd., Parmeshwari Colony, Faridabad 121003, India
| | - Anurag Singh Rathore
- Department of Chemical Engineering, Indian Institute of Technology New Delhi, Hauz Khas, New Delhi 110016, India
| | - Gaurav Pandey
- Bioprocess and Bioproduct Development Laboratory, University School of Biotechnology, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi 110078, India
| |
Collapse
|
36
|
Estelle AB, Forsythe HM, Yu Z, Hughes K, Lasher B, Allen P, Reardon PN, Hendrix DA, Barbar EJ. RNA structure and multiple weak interactions balance the interplay between RNA binding and phase separation of SARS-CoV-2 nucleocapsid. PNAS NEXUS 2023; 2:pgad333. [PMID: 37901441 PMCID: PMC10605006 DOI: 10.1093/pnasnexus/pgad333] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 10/02/2023] [Indexed: 10/31/2023]
Abstract
The nucleocapsid (N) protein of SARS-CoV-2 binds viral RNA, condensing it inside the virion, and phase separating with RNA to form liquid-liquid condensates. There is little consensus on what differentiates sequence-independent N-RNA interactions in the virion or in liquid droplets from those with specific genomic RNA (gRNA) motifs necessary for viral function inside infected cells. To identify the RNA structures and the N domains responsible for specific interactions and phase separation, we use the first 1,000 nt of viral RNA and short RNA segments designed as models for single-stranded and paired RNA. Binding affinities estimated from fluorescence anisotropy of these RNAs to the two-folded domains of N (the NTD and CTD) and comparison to full-length N demonstrate that the NTD binds preferentially to single-stranded RNA, and while it is the primary RNA-binding site, it is not essential to phase separation. Nuclear magnetic resonance spectroscopy identifies two RNA-binding sites on the NTD: a previously characterized site and an additional although weaker RNA-binding face that becomes prominent when binding to the primary site is weak, such as with dsRNA or a binding-impaired mutant. Phase separation assays of nucleocapsid domains with double-stranded and single-stranded RNA structures support a model where multiple weak interactions, such as with the CTD or the NTD's secondary face promote phase separation, while strong, specific interactions do not. These studies indicate that both strong and multivalent weak N-RNA interactions underlie the multifunctional abilities of N.
Collapse
Affiliation(s)
- Aidan B Estelle
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | - Heather M Forsythe
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | - Zhen Yu
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | - Kaitlyn Hughes
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | - Brittany Lasher
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | - Patrick Allen
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | - Patrick N Reardon
- Oregon State University NMR Facility, Oregon State University, Corvallis, OR 97331, USA
| | - David A Hendrix
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR 97331, USA
| | - Elisar J Barbar
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
37
|
Farnsworth CW, O’Neil CA, Dalton C, McDonald D, Vogt L, Hock K, Arter O, Wallace MA, Muenks C, Amor M, Alvarado K, Peacock K, Jolani K, Fraser VJ, Burnham CAD, Babcock HM, Budge PJ, Kwon JH. Association between SARS-CoV-2 Symptoms, Ct Values, and Serological Response in Vaccinated and Unvaccinated Healthcare Personnel. J Appl Lab Med 2023; 8:871-886. [PMID: 37478837 PMCID: PMC10482509 DOI: 10.1093/jalm/jfad042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/15/2023] [Indexed: 07/23/2023]
Abstract
BACKGROUND SARS-CoV-2 vaccines are effective at reducing symptomatic and asymptomatic COVID-19. Limited studies have compared symptoms, threshold cycle (Ct) values from reverse transcription (RT)-PCR testing, and serological testing results between previously vaccinated vs unvaccinated populations with SARS-CoV-2 infection. METHODS Healthcare personnel (HCP) with a positive SARS-CoV-2 RT-PCR test within the previous 14 to 28 days completed surveys including questions about demographics, medical conditions, social factors, and symptoms of COVID-19. Ct values were observed, and serological testing was performed for anti-nucleocapsid (anti-N) and anti-Spike (anti-S) antibodies at enrollment and 40 to 90 days later. Serological results were compared to HCP with no known SARS-CoV-2 infection and negative anti-N testing. RESULTS There were 104 unvaccinated/not fully vaccinated and 77 vaccinated HCP with 2 doses of an mRNA vaccine at time of infection. No differences in type or duration of symptoms were reported (P = 0.45). The median (interquartile range [IQR]) Ct was 21.4 (17.6-24.6) and 21.5 (18.1-24.6) for the unvaccinated and vaccinated HCP, respectively. Higher anti-N IgG was observed in unvaccinated HCP (5.08 S/CO, 3.08-6.92) than vaccinated (3.61 signal to cutoff ratio [S/CO], 2.16-5.05). Anti-S IgG was highest among vaccinated HCP with infection (34 285 aribitrary units [AU]/mL, 17 672-61 775), followed by vaccinated HCP with no prior infection (1452 AU/mL, 791-2943), then unvaccinated HCP with infection (829 AU/mL, 290-1555). Anti-S IgG decreased 1.56% (0.9%-1.79%) per day in unvaccinated and 0.38% (0.03%-0.94%) in vaccinated HCP. CONCLUSIONS Vaccinated HCP infected with SARS-CoV-2 reported comparable symptoms and had similar Ct values relative to unvaccinated. However, vaccinated HCP had increased and prolonged anti-S and decreased anti-N response relative to unvaccinated.
Collapse
Affiliation(s)
- Christopher W Farnsworth
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| | - Caroline A O’Neil
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, United States
| | - Claire Dalton
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| | - David McDonald
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, United States
| | - Lucy Vogt
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, United States
| | - Karl Hock
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| | - Olivia Arter
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, United States
| | - Meghan A Wallace
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| | - Carol Muenks
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| | - Mostafa Amor
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, United States
| | - Kelly Alvarado
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| | - Kate Peacock
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, United States
| | - Kevin Jolani
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, United States
| | - Victoria J Fraser
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, United States
| | - Carey-Ann D Burnham
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| | - Hilary M Babcock
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, United States
| | - Phillip J Budge
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, United States
| | - Jennie H Kwon
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
38
|
Shuaib M, Adroub S, Mourier T, Mfarrej S, Zhang H, Esau L, Alsomali A, Alofi FS, Ahmad AN, Shamsan A, Khogeer A, Hashem AM, Almontashiri NAM, Hala S, Pain A. Impact of the SARS-CoV-2 nucleocapsid 203K/204R mutations on the inflammatory immune response in COVID-19 severity. Genome Med 2023; 15:54. [PMID: 37475040 PMCID: PMC10360309 DOI: 10.1186/s13073-023-01208-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 07/04/2023] [Indexed: 07/22/2023] Open
Abstract
BACKGROUND The excessive inflammatory responses provoked by SARS-CoV-2 infection are critical factors affecting the severity and mortality of COVID-19. Previous work found that two adjacent co-occurring mutations R203K and G204R (KR) on the nucleocapsid (N) protein correlate with increased disease severity in COVID-19 patients. However, links with the host immune response remain unclear. METHODS Here, we grouped nasopharyngeal swab samples of COVID-19 patients into two cohorts based on the presence and absence of SARS-CoV-2 nucleocapsid KR mutations. We performed nasopharyngeal transcriptome analysis of age, gender, and ethnicity-matched COVID-19 patients infected with either SARS-CoV-2 with KR mutations in the N protein (KR patients n = 39) or with the wild-type N protein (RG patients n = 39) and compared to healthy controls (n = 34). The impact of KR mutation on immune response was further characterized experimentally by transcriptomic and proteomic profiling of virus-like-particle (VLP) incubated cells. RESULTS We observed markedly elevated expression of proinflammatory cytokines, chemokines, and interferon-stimulated (ISGs) genes in the KR patients compared to RG patients. Using nasopharyngeal transcriptome data, we found significantly higher levels of neutrophils and neutrophil-to-lymphocyte (NLR) ratio in KR patients than in the RG patients. Furthermore, transcriptomic and proteomic profiling of VLP incubated cells confirmed a similar hyper-inflammatory response mediated by the KR variant. CONCLUSIONS Our data demonstrate an unforeseen connection between nucleocapsid KR mutations and augmented inflammatory immune response in severe COVID-19 patients. These findings provide insights into how mutations in SARS-CoV-2 modulate host immune output and pathogenesis and may contribute to more efficient therapeutics and vaccine development.
Collapse
Affiliation(s)
- Muhammad Shuaib
- Pathogen Genomics Laboratory, Bioscience Program, Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
| | - Sabir Adroub
- Pathogen Genomics Laboratory, Bioscience Program, Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Tobias Mourier
- Pathogen Genomics Laboratory, Bioscience Program, Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Sara Mfarrej
- Pathogen Genomics Laboratory, Bioscience Program, Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Huoming Zhang
- Bioscience Core Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Luke Esau
- Bioscience Core Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Afrah Alsomali
- Infectious Diseases Department, King Abdullah Medical Complex, Jeddah, MOH, Saudi Arabia
| | - Fadwa S Alofi
- Infectious Diseases Department, King Fahad Hospital, Madinah, MOH, Saudi Arabia
| | - Adeel Nazir Ahmad
- KAUST Health - Fakeeh Care, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Abbas Shamsan
- Dr. Suliman Al-Habib Medical Group, Riyadh, Saudi Arabia
| | - Asim Khogeer
- Plan and Research Department, General Directorate of Health Affairs Makkah Region, Makkah, MOH, Saudi Arabia
| | - Anwar M Hashem
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Naif A M Almontashiri
- College of Applied Medical Sciences, Taibah University, Madinah, Saudi Arabia
- Center for Genetics and Inherited Diseases, Taibah University, Almadinah Almunwarah, Saudi Arabia
| | - Sharif Hala
- Pathogen Genomics Laboratory, Bioscience Program, Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Infectious Disease Research Department, King Abdullah International Medical Research Centre, Ministry of National Guard Health Affairs, Jeddah, Saudi Arabia
- King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Jeddah, Saudi Arabia
| | - Arnab Pain
- Pathogen Genomics Laboratory, Bioscience Program, Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
- International Institute for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, 001-0020, Japan.
| |
Collapse
|
39
|
Korn SM, Dhamotharan K, Jeffries CM, Schlundt A. The preference signature of the SARS-CoV-2 Nucleocapsid NTD for its 5'-genomic RNA elements. Nat Commun 2023; 14:3331. [PMID: 37286558 DOI: 10.1038/s41467-023-38882-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 05/17/2023] [Indexed: 06/09/2023] Open
Abstract
The nucleocapsid protein (N) of SARS-CoV-2 plays a pivotal role during the viral life cycle. It is involved in RNA transcription and accounts for packaging of the large genome into virus particles. N manages the enigmatic balance of bulk RNA-coating versus precise RNA-binding to designated cis-regulatory elements. Numerous studies report the involvement of its disordered segments in non-selective RNA-recognition, but how N organizes the inevitable recognition of specific motifs remains unanswered. We here use NMR spectroscopy to systematically analyze the interactions of N's N-terminal RNA-binding domain (NTD) with individual cis RNA elements clustering in the SARS-CoV-2 regulatory 5'-genomic end. Supported by broad solution-based biophysical data, we unravel the NTD RNA-binding preferences in the natural genome context. We show that the domain's flexible regions read the intrinsic signature of preferred RNA elements for selective and stable complex formation within the large pool of available motifs.
Collapse
Affiliation(s)
- Sophie Marianne Korn
- Institute for Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt/M., Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt/M., Germany
| | - Karthikeyan Dhamotharan
- Institute for Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt/M., Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt/M., Germany
| | - Cy M Jeffries
- European Molecular Biology Laboratory (EMBL) Hamburg Site, c/o Deutsches Elektronen-Synchrotron, Notkestr. 85, 22607, Hamburg, Germany
| | - Andreas Schlundt
- Institute for Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt/M., Germany.
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt/M., Germany.
| |
Collapse
|
40
|
Si F, Song S, Yu R, Li Z, Wei W, Wu C. Coronavirus accessory protein ORF3 biology and its contribution to viral behavior and pathogenesis. iScience 2023; 26:106280. [PMID: 36945252 PMCID: PMC9972675 DOI: 10.1016/j.isci.2023.106280] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
Coronavirus porcine epidemic diarrhea virus (PEDV) is classified in the genus Alphacoronavirus, family Coronaviridae that encodes the only accessory protein, ORF3 protein. However, how ORF3 contributes to viral pathogenicity, adaptability, and replication is obscure. In this review, we summarize current knowledge and identify gaps in many aspects of ORF3 protein in PEDV, with emphasis on its unique biological features, including membrane topology, Golgi retention mechanism, potential intrinsic disordered property, functional motifs, protein glycosylation, and codon usage phenotypes related to genetic evolution and gene expression. In addition, we propose intriguing questions related to ORF3 protein that we hope to stimulate further studies and encourage collaboration among virologists worldwide to provide constructive knowledge about the unique characteristics and biological functions of ORF3 protein, by which their potential role in clarifying viral behavior and pathogenesis can be possible.
Collapse
Affiliation(s)
- Fusheng Si
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Engineering Research Center of Breeding Pig, Shanghai 201106, P.R. China
| | - Shuai Song
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture of Rural Affairs, and Key Laboratory of Animal Disease Prevention of Guangdong Province, Guangzhou 510640, P.R. China
| | - Ruisong Yu
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Engineering Research Center of Breeding Pig, Shanghai 201106, P.R. China
| | - Zhen Li
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Engineering Research Center of Breeding Pig, Shanghai 201106, P.R. China
| | - Wenqiang Wei
- Department of Microbiology, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Chao Wu
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO 63110, USA
| |
Collapse
|
41
|
Mao S, Cai X, Niu S, Wei J, Jiang N, Deng H, Wang W, Zhang J, Shen S, Ma Y, Wu X, Peng Q, Huang A, Wang D. TRIM21 promotes ubiquitination of SARS-CoV-2 nucleocapsid protein to regulate innate immunity. J Med Virol 2023; 95:e28719. [PMID: 37185839 DOI: 10.1002/jmv.28719] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 05/17/2023]
Abstract
The innate immune response is the first line of host defense against viral infections, but its role in immunity against SARS-CoV-2 remains unclear. By using immunoprecipitation coupled with mass spectroscopy, we observed that the E3 ubiquitin ligase TRIM21 interacted with the SARS-CoV-2 nucleocapsid (N) protein and ubiquitinated it at Lys375 . Upon determining the topology of the TRIM21-mediated polyubiquitination chain on N protein, we then found that polyubiquitination led to tagging of the N protein for degradation by the host cell proteasome. Furthermore, TRIM21 also ubiquitinated the N proteins of SARS-CoV-2 variants of concern, including Alpha, Beta, Gamma, Delta, and Omicron together with SARS-CoV and MERS-CoV variants. Herein, we propose that ubiquitylation and degradation of the SARS-CoV-2 N protein inhibited SARS-CoV-2 viral particle assembly, by which it probably involved in preventing cytokine storm. Eventually, our study has fully revealed the association between the host innate immune system and SARS-CoV-2 N protein, which may aid in developing novel SARS-CoV-2 treatment strategies.
Collapse
Affiliation(s)
- Shenglan Mao
- Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Xuefei Cai
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Siqiang Niu
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jie Wei
- Department of Clinical Laboratory, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, Guangdong, China
| | - Ning Jiang
- School of Basic Medical Science, Chongqing Medical University, Chongqing, China
| | - Haijun Deng
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Wen Wang
- Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Jing Zhang
- Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Shimei Shen
- Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Yuanyan Ma
- Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Xiaoli Wu
- Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Qiling Peng
- School of Basic Medical Science, Chongqing Medical University, Chongqing, China
| | - Ailong Huang
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Deqiang Wang
- Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| |
Collapse
|
42
|
Lodola C, Secchi M, Sinigiani V, De Palma A, Rossi R, Perico D, Mauri PL, Maga G. Interaction of SARS-CoV-2 Nucleocapsid Protein and Human RNA Helicases DDX1 and DDX3X Modulates Their Activities on Double-Stranded RNA. Int J Mol Sci 2023; 24:ijms24065784. [PMID: 36982856 PMCID: PMC10058294 DOI: 10.3390/ijms24065784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/07/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
The nucleocapsid protein Np of SARS-CoV-2 is involved in the replication, transcription, and packaging of the viral genome, but it also plays a role in the modulation of the host cell innate immunity and inflammation response. Ectopic expression of Np alone was able to induce significant changes in the proteome of human cells. The cellular RNA helicase DDX1 was among the proteins whose levels were increased by Np expression. DDX1 and its related helicase DDX3X were found to physically interact with Np and to increase 2- to 4-fold its affinity for double-stranded RNA in a helicase-independent manner. Conversely, Np inhibited the RNA helicase activity of both proteins. These functional interactions among Np and DDX1 and DDX3X highlight novel possible roles played by these host RNA helicases in the viral life cycle.
Collapse
Affiliation(s)
- Camilla Lodola
- Institute of Molecular Genetics IGM CNR "Luigi Luca Cavalli-Sforza", Via Abbiategrasso 207, 27100 Pavia, PV, Italy
| | - Massimiliano Secchi
- Institute of Molecular Genetics IGM CNR "Luigi Luca Cavalli-Sforza", Via Abbiategrasso 207, 27100 Pavia, PV, Italy
| | - Virginia Sinigiani
- Institute of Molecular Genetics IGM CNR "Luigi Luca Cavalli-Sforza", Via Abbiategrasso 207, 27100 Pavia, PV, Italy
| | - Antonella De Palma
- Institute of Biomedical Technologies ITB-CNR, Via Fratelli Cervi 93, 20054 Segrate, MI, Italy
| | - Rossana Rossi
- Institute of Biomedical Technologies ITB-CNR, Via Fratelli Cervi 93, 20054 Segrate, MI, Italy
| | - Davide Perico
- Institute of Biomedical Technologies ITB-CNR, Via Fratelli Cervi 93, 20054 Segrate, MI, Italy
| | - Pier Luigi Mauri
- Institute of Biomedical Technologies ITB-CNR, Via Fratelli Cervi 93, 20054 Segrate, MI, Italy
| | - Giovanni Maga
- Institute of Molecular Genetics IGM CNR "Luigi Luca Cavalli-Sforza", Via Abbiategrasso 207, 27100 Pavia, PV, Italy
| |
Collapse
|
43
|
Vidal LEL, Figueira-Mansur J, Jurgilas PB, Argondizzo APC, Pestana CP, Martins FO, da Silva Junior HC, Miguez M, Loureiro BO, Marques CDFS, Trinta KS, da Silva LBR, de Mello MB, da Silva ED, Bastos RC, Esteves G. Process development and characterization of recombinant nucleocapsid protein for its application on COVID-19 diagnosis. Protein Expr Purif 2023; 207:106263. [PMID: 36921810 PMCID: PMC10012136 DOI: 10.1016/j.pep.2023.106263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/10/2023] [Indexed: 03/15/2023]
Abstract
COVID-19 pandemic was caused by the severe acute respiratory syndrome coronavirus 2 (Sars-CoV-2). The nucleocapsid (N) protein from Sars-CoV-2 is a highly immunogenic antigen and responsible for genome packing. Serological assays are important tools to detect previous exposure to SARS-CoV-2, complement epidemiological studies, vaccine evaluation and also in COVID-19 surveillance. SARS-CoV-2 N (r2N) protein was produced in Escherichia coli, characterized, and the immunological performance was evaluated by enzyme-linked immunosorbent assay (ELISA) and beads-based array immunoassay. r2N protein oligomers were evidenced when it is associated to nucleic acid. Benzonase treatment reduced host nucleic acid associated to r2N protein, but crosslinking assay still demonstrates the presence of higher-order oligomers. Nevertheless, after RNase treatment the higher-order oligomers reduced, and dimer form increased, suggesting RNA contributes to the oligomer formation. Structural analysis revealed nucleic acid did not interfere with the thermal stability of the recombinant protein. Interestingly, nucleic acid was able to prevent r2N protein aggregation even with increasing temperature while the protein benzonase treated begin aggregation process above 55 °C. In immunological characterization, ELISA performed with 233 serum samples presented a sensitivity of 97.44% (95% Confidence Interval, CI, 91.04%, 99.69%) and a specificity of 98.71% (95% CI, 95.42%, 99.84%) while beads-based array immunoassay carried out with 217 samples showed 100% sensitivity and 98.6% specificity. The results exhibited an excellent immunological performance of r2N protein in serologic assays showing that, even in presence of nucleic acid, it can be used as a component of an immunoassay for the sensitive and specific detection of SARS-CoV-2 antibodies.
Collapse
Affiliation(s)
- Luãnna Elisa Liebscher Vidal
- Macromolecules Laboratory, Institute of Technology in Immunobiologicals (Bio-Manguinhos), Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, 21040-900, Brazil.
| | - Janaina Figueira-Mansur
- Recombinant Technology Laboratory, Institute of Technology in Immunobiologicals (Bio-Manguinhos), Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, 21040-900, Brazil
| | - Patrícia Barbosa Jurgilas
- Macromolecules Laboratory, Institute of Technology in Immunobiologicals (Bio-Manguinhos), Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, 21040-900, Brazil
| | - Ana Paula Correa Argondizzo
- Recombinant Technology Laboratory, Institute of Technology in Immunobiologicals (Bio-Manguinhos), Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, 21040-900, Brazil
| | - Cristiane Pinheiro Pestana
- Recombinant Technology Laboratory, Institute of Technology in Immunobiologicals (Bio-Manguinhos), Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, 21040-900, Brazil
| | - Fernanda Otaviano Martins
- Recombinant Technology Laboratory, Institute of Technology in Immunobiologicals (Bio-Manguinhos), Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, 21040-900, Brazil
| | - Haroldo Cid da Silva Junior
- Immunological Technology Laboratory, Institute of Technology in Immunobiologicals (Bio-Manguinhos), Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, 21040-900, Brazil
| | - Mariana Miguez
- Recombinant Technology Laboratory, Institute of Technology in Immunobiologicals (Bio-Manguinhos), Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, 21040-900, Brazil
| | - Bernardo Oliveira Loureiro
- Diagnostic Technology Laboratory, Institute of Technology in Immunobiologicals (Bio-Manguinhos), Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, 21040-900, Brazil
| | - Christiane de Fátima Silva Marques
- Diagnostic Technology Laboratory, Institute of Technology in Immunobiologicals (Bio-Manguinhos), Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, 21040-900, Brazil
| | - Karen Soares Trinta
- Diagnostic Technology Laboratory, Institute of Technology in Immunobiologicals (Bio-Manguinhos), Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, 21040-900, Brazil
| | - Leila Botelho Rodrigues da Silva
- Diagnostic Technology Laboratory, Institute of Technology in Immunobiologicals (Bio-Manguinhos), Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, 21040-900, Brazil
| | - Marcelle Bral de Mello
- Diagnostic Technology Laboratory, Institute of Technology in Immunobiologicals (Bio-Manguinhos), Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, 21040-900, Brazil
| | - Edimilson Domingos da Silva
- Diagnostic Technology Laboratory, Institute of Technology in Immunobiologicals (Bio-Manguinhos), Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, 21040-900, Brazil
| | - Renata Chagas Bastos
- Macromolecules Laboratory, Institute of Technology in Immunobiologicals (Bio-Manguinhos), Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, 21040-900, Brazil
| | - Gabriela Esteves
- Recombinant Technology Laboratory, Institute of Technology in Immunobiologicals (Bio-Manguinhos), Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, 21040-900, Brazil
| |
Collapse
|
44
|
Poolsup S, Zaripov E, Hüttmann N, Minic Z, Artyushenko PV, Shchugoreva IA, Tomilin FN, Kichkailo AS, Berezovski MV. Discovery of DNA aptamers targeting SARS-CoV-2 nucleocapsid protein and protein-binding epitopes for label-free COVID-19 diagnostics. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 31:731-743. [PMID: 36816615 PMCID: PMC9927813 DOI: 10.1016/j.omtn.2023.02.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 02/10/2023] [Indexed: 02/16/2023]
Abstract
The spread of COVID-19 has affected billions of people across the globe, and the diagnosis of viral infection still needs improvement. Because of high immunogenicity and abundant expression during viral infection, SARS-CoV-2 nucleocapsid (N) protein could be an important diagnostic marker. This study aimed to develop a label-free optical aptasensor fabricated with a novel single-stranded DNA aptamer to detect the N protein. The N-binding aptamers selected using asymmetric-emulsion PCR-SELEX and their binding affinity and cross-reactivity were characterized by biolayer interferometry. The tNSP3 aptamer (44 nt) was identified to bind the N protein of wild type and Delta and Omicron variants with high affinity (KD in the range of 0.6-3.5 nM). Utilizing tNSP3 to detect the N protein spiked in human saliva evinced the potential of this aptamer with a limit of detection of 4.5 nM. Mass spectrometry analysis was performed along with molecular dynamics simulation to obtain an insight into how tNSP3 binds to the N protein. The identified epitope peptides are localized within the RNA-binding domain and C terminus of the N protein. Hence, we confirmed the performance of this aptamer as an analytical tool for COVID-19 diagnosis.
Collapse
Affiliation(s)
- Suttinee Poolsup
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Emil Zaripov
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Nico Hüttmann
- John L. Holmes Mass Spectrometry Facility, Faculty of Science, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Zoran Minic
- John L. Holmes Mass Spectrometry Facility, Faculty of Science, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Polina V Artyushenko
- Laboratory for Digital Controlled Drugs and Theranostics, Federal Research Center "Krasnoyarsk Science Center SB RAS", Krasnoyarsk 660036, Russia.,Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia.,Department of Chemistry, Siberian Federal University, Krasnoyarsk 660041, Russia
| | - Irina A Shchugoreva
- Laboratory for Digital Controlled Drugs and Theranostics, Federal Research Center "Krasnoyarsk Science Center SB RAS", Krasnoyarsk 660036, Russia.,Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia.,Department of Chemistry, Siberian Federal University, Krasnoyarsk 660041, Russia
| | - Felix N Tomilin
- Department of Chemistry, Siberian Federal University, Krasnoyarsk 660041, Russia.,Laboratory of Physics of Magnetic Phenomena, Kirensky Institute of Physics, Krasnoyarsk 660036, Russia
| | - Anna S Kichkailo
- Laboratory for Digital Controlled Drugs and Theranostics, Federal Research Center "Krasnoyarsk Science Center SB RAS", Krasnoyarsk 660036, Russia.,Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia
| | - Maxim V Berezovski
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada.,John L. Holmes Mass Spectrometry Facility, Faculty of Science, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
45
|
Suramin Disturbs the Association of the N-Terminal Domain of SARS-CoV-2 Nucleocapsid Protein with RNA. Molecules 2023; 28:molecules28062534. [PMID: 36985506 PMCID: PMC10051649 DOI: 10.3390/molecules28062534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
Suramin was originally used as an antiparasitic drug in clinics. Here, we demonstrate that suramin can bind to the N-terminal domain of SARS-CoV-2 nucleocapsid protein (N-NTD) and disturb its interaction with RNA. The BLI experiments showed that N-NTD interacts suramin with a dissociate constant (Kd = 2.74 μM) stronger than that of N-NTD with ssRNA-16 (Kd = 8.37 μM). Furthermore, both NMR titration experiments and molecular docking analysis suggested that suramin mainly binds to the positively charged cavity between the finger and the palm subdomains of N-NTD, and residues R88, R92, R93, I94, R95, K102 and A156 are crucial for N-NTD capturing suramin. Besides, NMR dynamics experiments showed that suramin-bound N-NTD adopts a more rigid structure, and the loop between β2-β3 exhibits fast motion on the ps-ns timescale, potentially facilitating suramin binding. Our findings not only reveal the molecular basis of suramin disturbing the association of SARS-CoV-2 N-NTD with RNA but also provide valuable structural information for the development of drugs against SARS-CoV-2.
Collapse
|
46
|
Leung D, Cohen CA, Mu X, Rosa Duque J, Cheng SMS, Wang X, Wang M, Zhang W, Zhang Y, Tam I, Lam JHY, Chan SM, Chaothai S, Kwan KKH, Chan KCK, Li J, Luk LLH, Tsang LCH, Chu N, Wong WHS, Mori M, Leung W, Valkenburg S, Peiris M, Tu W, Lau YL. Immunogenicity against wild-type and Omicron SARS-CoV-2 after a third dose of inactivated COVID-19 vaccine in healthy adolescents. Front Immunol 2023; 14:1106837. [PMID: 36949953 PMCID: PMC10026957 DOI: 10.3389/fimmu.2023.1106837] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/16/2023] [Indexed: 03/08/2023] Open
Abstract
Introduction Two doses of inactivated SARS-CoV-2 vaccine CoronaVac cannot elicit high efficacy against symptomatic COVID-19, especially against the Omicron variant, but that can be improved by a third dose in adults. The use of a third dose of CoronaVac in adolescents may be supported by immunobridging studies in the absence of efficacy data. Methods With an immunobridging design, our study (NCT04800133) tested the non-inferiority of the binding and neutralizing antibodies and T cell responses induced by a third dose of CoronaVac in healthy adolescents (N=94, median age 14.2 years, 56% male) compared to adults (N=153, median age 48.1 years, 44% male). Responses against wild-type (WT) and BA.1 SARS-CoV-2 were compared in adolescents. Safety and reactogenicity were also monitored. Results A homologous third dose of CoronaVac further enhanced antibody response in adolescents compared to just 2 doses. Adolescents mounted non-inferior antibody and T cell responses compared to adults. Although S IgG and neutralizing antibody responses to BA.1 were lower than to WT, they remained detectable in 96% and 86% of adolescents. T cell responses to peptide pools spanning only the mutations of BA.1 S, N and M in adolescents were preserved, increased, and halved compared to WT respectively. No safety concerns were identified. Discussion The primary vaccination series of inactivated SARS-CoV-2 vaccines for adolescents should include 3 doses for improved humoral immunogenicity.
Collapse
Affiliation(s)
- Daniel Leung
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Carolyn A. Cohen
- School of Public Health, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Xiaofeng Mu
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Jaime S. Rosa Duque
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Samuel M. S. Cheng
- School of Public Health, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Xiwei Wang
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Manni Wang
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Wenyue Zhang
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Yanmei Zhang
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Issan Y. S. Tam
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Jennifer H. Y. Lam
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Sau Man Chan
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Sara Chaothai
- School of Public Health, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Kelvin K. H. Kwan
- School of Public Health, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Karl C. K. Chan
- School of Public Health, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - John K. C. Li
- School of Public Health, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Leo L. H. Luk
- School of Public Health, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Leo C. H. Tsang
- School of Public Health, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Nym Coco Chu
- School of Public Health, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Wilfred H. S. Wong
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Masashi Mori
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Nonoichi, Japan
| | - Wing Hang Leung
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Sophie Valkenburg
- School of Public Health, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Malik Peiris
- School of Public Health, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Centre for Immunology & Infection C2i, Hong Kong, Hong Kong SAR, China
| | - Wenwei Tu
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Yu Lung Lau
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
47
|
Abbasian MH, Mahmanzar M, Rahimian K, Mahdavi B, Tokhanbigli S, Moradi B, Sisakht MM, Deng Y. Global landscape of SARS-CoV-2 mutations and conserved regions. J Transl Med 2023; 21:152. [PMID: 36841805 PMCID: PMC9958328 DOI: 10.1186/s12967-023-03996-w] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/15/2023] [Indexed: 02/27/2023] Open
Abstract
BACKGROUND At the end of December 2019, a novel strain of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) disease (COVID-19) has been identified in Wuhan, a central city in China, and then spread to every corner of the globe. As of October 8, 2022, the total number of COVID-19 cases had reached over 621 million worldwide, with more than 6.56 million confirmed deaths. Since SARS-CoV-2 genome sequences change due to mutation and recombination, it is pivotal to surveil emerging variants and monitor changes for improving pandemic management. METHODS 10,287,271 SARS-CoV-2 genome sequence samples were downloaded in FASTA format from the GISAID databases from February 24, 2020, to April 2022. Python programming language (version 3.8.0) software was utilized to process FASTA files to identify variants and sequence conservation. The NCBI RefSeq SARS-CoV-2 genome (accession no. NC_045512.2) was considered as the reference sequence. RESULTS Six mutations had more than 50% frequency in global SARS-CoV-2. These mutations include the P323L (99.3%) in NSP12, D614G (97.6) in S, the T492I (70.4) in NSP4, R203M (62.8%) in N, T60A (61.4%) in Orf9b, and P1228L (50.0%) in NSP3. In the SARS-CoV-2 genome, no mutation was observed in more than 90% of nsp11, nsp7, nsp10, nsp9, nsp8, and nsp16 regions. On the other hand, N, nsp3, S, nsp4, nsp12, and M had the maximum rate of mutations. In the S protein, the highest mutation frequency was observed in aa 508-635(0.77%) and aa 381-508 (0.43%). The highest frequency of mutation was observed in aa 66-88 (2.19%), aa 7-14, and aa 164-246 (2.92%) in M, E, and N proteins, respectively. CONCLUSION Therefore, monitoring SARS-CoV-2 proteomic changes and detecting hot spots mutations and conserved regions could be applied to improve the SARS-CoV-2 diagnostic efficiency and design safe and effective vaccines against emerging variants.
Collapse
Affiliation(s)
- Mohammad Hadi Abbasian
- Department of Medical Genetics, National Institute for Genetic Engineering and Biotechnology, Tehran, Iran
| | - Mohammadamin Mahmanzar
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, 96813, USA
| | - Karim Rahimian
- Department of Bioinformatics, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Bahar Mahdavi
- Department of Computer Science, Tarbiat Modares University, Tehran, Iran
| | - Samaneh Tokhanbigli
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, Australia
| | - Bahman Moradi
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Mahsa Mollapour Sisakht
- Department of Biochemistry, Erasmus University Medical Center, 2040, 3000 CA, Rotterdam, The Netherlands
| | - Youping Deng
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, 96813, USA.
| |
Collapse
|
48
|
Maghsood F, Ghorbani A, Yadegari H, Golsaz-Shirazi F, Amiri MM, Shokri F. SARS-CoV-2 nucleocapsid: Biological functions and implication for disease diagnosis and vaccine design. Rev Med Virol 2023; 33:e2431. [PMID: 36790816 DOI: 10.1002/rmv.2431] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/24/2023] [Accepted: 02/01/2023] [Indexed: 02/16/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic is transmitted by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and has affected millions of people all around the world, leading to more than 6.5 million deaths. The nucleocapsid (N) phosphoprotein plays important roles in modulating viral replication and transcription, virus-infected cell cycle progression, apoptosis, and regulation of host innate immunity. As an immunodominant protein, N protein induces strong humoral and cellular immune responses in COVID-19 patients, making it a key marker for studying N-specific B cell and T cell responses and the development of diagnostic serological assays and efficient vaccines. In this review, we focus on the structural and functional features and the kinetic and epitope mapping of B cell and T cell responses against SARS-CoV-2 N protein to extend our understanding on the development of sensitive and specific diagnostic immunological tests and effective vaccines.
Collapse
Affiliation(s)
- Faezeh Maghsood
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Ghorbani
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamidreza Yadegari
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Forough Golsaz-Shirazi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mehdi Amiri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Fazel Shokri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
49
|
Mohammad MG, Ashmawy NS, Al-Rawi AM, Abu-Qiyas A, Hamoda AM, Hamdy R, Dakalbab S, Arikat S, Salahat D, Madkour M, Soliman SSM. SARS-CoV-2-free residual proteins mediated phenotypic and metabolic changes in peripheral blood monocytic-derived macrophages in support of viral pathogenesis. PLoS One 2023; 18:e0280592. [PMID: 36656874 PMCID: PMC9851515 DOI: 10.1371/journal.pone.0280592] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/03/2023] [Indexed: 01/20/2023] Open
Abstract
The large-scale dissemination of coronavirus disease-2019 (COVID-19) and its serious complications have pledged the scientific research communities to uncover the pathogenesis mechanisms of its etiologic agent, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Methods of unveiling such mechanisms are rooted in understanding the viral agent's interactions with the immune system, including its ability to activate macrophages, due to their suggested role in prolonged inflammatory phases and adverse immune responses. The objective of this study is to test the effect of SARS-CoV-2-free proteins on the metabolic and immune responses of macrophages. We hypothesized that SARS-CoV-2 proteins shed during the infection cycle may dynamically induce metabolic and immunologic alterations with an inflammatory impact on the infected host cells. It is imperative to delineate such alterations in the context of macrophages to gain insight into the pathogenesis of these highly infectious viruses and their associated complications and thus, expedite the vaccine and drug therapy advent in combat of viral infections. Human monocyte-derived macrophages were treated with SARS-CoV-2-free proteins at different concentrations. The phenotypic and metabolic alterations in macrophages were investigated and the subsequent metabolic pathways were analyzed. The obtained results indicated that SARS-CoV-2-free proteins induced concentration-dependent alterations in the metabolic and phenotypic profiles of macrophages. Several metabolic pathways were enriched following treatment, including vitamin K, propanoate, and the Warburg effect. These results indicate significant adverse effects driven by residual viral proteins that may hence be considered determinants of viral pathogenesis. These findings provide important insight as to the impact of SARS-CoV-2-free residual proteins on the host cells and suggest a potential new method of management during the infection and prior to vaccination.
Collapse
Affiliation(s)
- Mohammad G. Mohammad
- Department of Medical Laboratory Sciences, Collage of Health Sciences, University of Sharjah, Sharjah, UAE
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, UAE
| | - Naglaa S. Ashmawy
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, UAE
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, Egypt
| | - Ahmed M. Al-Rawi
- Department of Medical Laboratory Sciences, Collage of Health Sciences, University of Sharjah, Sharjah, UAE
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, UAE
| | - Ameera Abu-Qiyas
- Department of Medical Laboratory Sciences, Collage of Health Sciences, University of Sharjah, Sharjah, UAE
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, UAE
| | - Alshaimaa M. Hamoda
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, UAE
- College of Medicine, University of Sharjah, Sharjah, UAE
- Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Rania Hamdy
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, UAE
- Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Salam Dakalbab
- Department of Medical Laboratory Sciences, Collage of Health Sciences, University of Sharjah, Sharjah, UAE
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, UAE
| | - Shahad Arikat
- Department of Medical Laboratory Sciences, Collage of Health Sciences, University of Sharjah, Sharjah, UAE
| | - Dana Salahat
- Department of Medical Laboratory Sciences, Collage of Health Sciences, University of Sharjah, Sharjah, UAE
| | - Mohamed Madkour
- Department of Medical Laboratory Sciences, Collage of Health Sciences, University of Sharjah, Sharjah, UAE
| | - Sameh S. M. Soliman
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, UAE
- College of Pharmacy, University of Sharjah, Sharjah, UAE
| |
Collapse
|
50
|
Wu W, Cheng Y, Zhou H, Sun C, Zhang S. The SARS-CoV-2 nucleocapsid protein: its role in the viral life cycle, structure and functions, and use as a potential target in the development of vaccines and diagnostics. Virol J 2023; 20:6. [PMID: 36627683 PMCID: PMC9831023 DOI: 10.1186/s12985-023-01968-6] [Citation(s) in RCA: 98] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) continues to take a heavy toll on personal health, healthcare systems, and economies around the globe. Scientists are expending tremendous effort to develop diagnostic technologies for detecting positive infections within the shortest possible time, and vaccines and drugs specifically for the prevention and treatment of COVID-19 disease. At the same time, emerging novel variants have raised serious concerns about vaccine efficacy. The SARS-CoV-2 nucleocapsid (N) protein plays an important role in the coronavirus life cycle, and participates in various vital activities after virus invasion. It has attracted a large amount of attention for vaccine and drug development. Here, we summarize the latest research of the N protein, including its role in the SARS-CoV-2 life cycle, structure and function, and post-translational modifications in addition to its involvement in liquid-liquid phase separation (LLPS) and use as a basis for the development of vaccines and diagnostic techniques.
Collapse
Affiliation(s)
- Wenbing Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
| | - Ying Cheng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
| | - Hong Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
| | - Changzhen Sun
- Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Shujun Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|