1
|
Keijser JBD, Stalman EW, Wieske L, Steenhuis M, van Dam KPJ, Kummer LYL, van Kempen ZLE, Killestein J, Volkers AG, Tas SW, Boekel L, Wolbink GJ, Blanco LF, Verstegen NJM, Keijzer S, van Mierlo G, Cristianawati O, Boogaard AJ, van der Straten K, van Rijswijk J, van Gils MJ, Ten Brinke A, van Ham SM, Kuijpers TW, Eftimov F, Rispens T. Evolution of SARS-CoV-2 antibody repertoire after successive mRNA vaccinations under immunosuppressive treatment. EBioMedicine 2025; 113:105620. [PMID: 40010153 PMCID: PMC11905820 DOI: 10.1016/j.ebiom.2025.105620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/05/2025] [Accepted: 02/11/2025] [Indexed: 02/28/2025] Open
Abstract
BACKGROUND Repeated antigen exposure can result in a shifting antibody repertoire. The mechanisms by which this occurs and consequences for cross-variant protection against evolving pathogens remain incompletely understood, particularly in the context of immunosuppressive treatments used in patients with immune-mediated inflammatory diseases (IMID). METHODS To investigate this, we characterised longitudinal changes in the anti-SARS-CoV-2 antibody repertoire over the course of three SARS-CoV-2 mRNA vaccinations in patients with IMIDs treated with methotrexate (MTX) and/or tumour necrosis factor-inhibitors (TNFi), anti-CD20 monoclonal antibodies, no systemic therapy, and healthy controls (total N = 878). We determined serum antibody titres against the receptor-binding domain (RBD) of Wuhan-Hu-1 (WH1) and Omicron BA.1 spike proteins, and assessed ratios thereof between groups as a proxy for cross-reactivity. FINDINGS We observe emerging anti-BA.1 RBD reactivity over time, notably following a third vaccination. This may be partly explained by affinity maturation, as evaluated by inhibition of ACE2-RBD interactions. Similar trends were seen in patients treated with MTX and/or TNFi, but not in patients on anti-CD20 therapy. SARS-CoV-2 infection prior to vaccination accelerated these effects initially while leading to comparable results after three vaccinations. INTERPRETATION MTX and TNFi do not qualitatively alter the evolution of the antibody repertoire in response to repeated antigen exposure, whereas anti-CD20 does. These insights may help to optimise vaccination strategies for patients with immune-mediated inflammatory diseases. FUNDING This study was supported by ZonMw (The Netherlands Organization for Health Research and Development) and SGF (Collaborating Health Funds).
Collapse
Affiliation(s)
- Jim B D Keijser
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam, the Netherlands; Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| | - Eileen W Stalman
- Department of Neurology and Neurophysiology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Luuk Wieske
- Department of Neurology and Neurophysiology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Department of Clinical Neurophysiology, St Antonius Hospital, Nieuwegein, the Netherlands
| | - Maurice Steenhuis
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam, the Netherlands; Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| | - Koos P J van Dam
- Department of Neurology and Neurophysiology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Laura Y L Kummer
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam, the Netherlands; Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands; Department of Neurology and Neurophysiology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | | | - Joep Killestein
- Department of Neurology, Amsterdam UMC, Amsterdam, the Netherlands
| | - Adriaan G Volkers
- Department of Gastroenterology and Hepatology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Sander W Tas
- Amsterdam Rheumatology and Immunology Center, Department of Rheumatology and Clinical Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Laura Boekel
- Amsterdam Rheumatology and Immunology Center, Department of Rheumatology, Reade, Amsterdam, the Netherlands
| | - Gerrit J Wolbink
- Amsterdam Rheumatology and Immunology Center, Department of Rheumatology, Reade, Amsterdam, the Netherlands
| | - Laura Fernandez Blanco
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam, the Netherlands; Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| | - Niels J M Verstegen
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam, the Netherlands; Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| | - Sofie Keijzer
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam, the Netherlands; Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| | - Gerard van Mierlo
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam, the Netherlands; Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| | - Olvi Cristianawati
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam, the Netherlands; Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| | - Arend J Boogaard
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam, the Netherlands; Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| | - Karlijn van der Straten
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands; Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Jacqueline van Rijswijk
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands; Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Marit J van Gils
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands; Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Anja Ten Brinke
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam, the Netherlands; Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| | - S Marieke van Ham
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam, the Netherlands; Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands; Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Taco W Kuijpers
- Department of Pediatric Immunology, Rheumatology and Infectious Disease, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Filip Eftimov
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| | - Theo Rispens
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam, the Netherlands; Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands; Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
2
|
Wells TJ, Esposito T, Henderson IR, Labzin LI. Mechanisms of antibody-dependent enhancement of infectious disease. Nat Rev Immunol 2025; 25:6-21. [PMID: 39122820 DOI: 10.1038/s41577-024-01067-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2024] [Indexed: 08/12/2024]
Abstract
Antibody-dependent enhancement (ADE) of infectious disease is a phenomenon whereby host antibodies increase the severity of an infection. It is well established in viral infections but ADE also has an underappreciated role during bacterial, fungal and parasitic infections. ADE can occur during both primary infections and re-infections with the same or a related pathogen; therefore, understanding the underlying mechanisms of ADE is critical for understanding the pathogenesis and progression of many infectious diseases. Here, we review the four distinct mechanisms by which antibodies increase disease severity during an infection. We discuss the most established mechanistic explanation for ADE, where cross-reactive, disease-enhancing antibodies bound to pathogens interact with Fc receptors, thereby enhancing pathogen entry or replication, ultimately increasing the total pathogen load. Additionally, we explore how some pathogenic antibodies can shield bacteria from complement-dependent killing, thereby enhancing bacterial survival. We interrogate the molecular mechanisms by which antibodies can amplify inflammation to drive severe disease, even in the absence of increased pathogen replication. We also examine emerging roles for autoantibodies in enhancing the pathogenesis of infectious diseases. Finally, we discuss how we can leverage these insights to improve vaccine design and future treatments for infectious diseases.
Collapse
Affiliation(s)
- Timothy J Wells
- Frazer Institute, The University of Queensland, Brisbane, Queensland, Australia.
| | - Tyron Esposito
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Ian R Henderson
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Larisa I Labzin
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
3
|
Gijze S, Wasynczuk A, van Leeuwen L, Grobben M, van Gils MJ, Nouta J, Wang W, Dalm VASH, Jolink H, Wuhrer M, Falck D. Simultaneous Protein Quantitation and Glycosylation Profiling of Antigen-Specific Immunoglobulin G1 in Large Clinical Studies. J Proteome Res 2024; 23:5600-5605. [PMID: 39537390 PMCID: PMC11629375 DOI: 10.1021/acs.jproteome.4c00538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/30/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024]
Abstract
Antibodies have a key role in the immune system, making their characterization essential to biomedical, biopharmaceutical, and clinical research questions. Antibody effector functions are mainly controlled by quantity, subclass, and Fc glycosylation. We describe an integrated method to measure these three critical dimensions simultaneously. The subclass-specific immunoglobulin G (IgG) Fc glycosylation analysis combines immunosorbance with glycopeptide-centered LC-MS detection. For integrated IgG1-specific quantitation, a commercial, stable isotope labeled IgG1 protein standard was spiked into the immunosorbent eluates. Robust quantitation was achieved, relying on a combination of a proteotypic peptide and the most abundant glycopeptides, generated through proteolytic cleavage from a mixture of natural IgG1 and the recombinant IgG1 standard. Method performance was demonstrated in a large coronavirus vaccination cohort at a throughput of 100 samples/day. LC-MS-derived, anti-SARS-CoV-2 spike protein IgG1 concentrations ranged from 100 to 10000 ng/mL and correlated well with a clinically relevant immunoassay. Technical variation was 200 times lower than biological variation; intermediate precision was 44%. In conclusion, we present a method capable of robustly and simultaneously assessing quantity, subclass, and Fc glycosylation of antigen-specific IgG in large clinical studies. This method will facilitate a broader understanding of immune responses, especially the important interplay among the three dimensions.
Collapse
Affiliation(s)
- Steinar Gijze
- Center
for Proteomics and Metabolomics, Leiden
University Medical Center, 2300 RC Leiden, The Netherlands
| | - Anna Wasynczuk
- Center
for Proteomics and Metabolomics, Leiden
University Medical Center, 2300 RC Leiden, The Netherlands
| | - Leanne van Leeuwen
- Department
of Viroscience, Erasmus University Medical
Center, 3015GD Rotterdam, The Netherlands
| | - Marloes Grobben
- Department
of Medical Microbiology and Infection Prevention, Amsterdam UMC Location AMC University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Marit J. van Gils
- Department
of Medical Microbiology and Infection Prevention, Amsterdam UMC Location AMC University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Jan Nouta
- Center
for Proteomics and Metabolomics, Leiden
University Medical Center, 2300 RC Leiden, The Netherlands
| | - Wenjun Wang
- Center
for Proteomics and Metabolomics, Leiden
University Medical Center, 2300 RC Leiden, The Netherlands
| | - Virgil ASH Dalm
- Department
of Internal Medicine, Division of Allergy & Clinical Immunology;
Department of Immunology, Erasmus University
Medical Center, 3015GD Rotterdam, The Netherlands
| | - Hetty Jolink
- Department
of Infectious Diseases, Leiden University
Medical Center, 2300 RC Leiden, The Netherlands
| | - Manfred Wuhrer
- Center
for Proteomics and Metabolomics, Leiden
University Medical Center, 2300 RC Leiden, The Netherlands
| | - David Falck
- Center
for Proteomics and Metabolomics, Leiden
University Medical Center, 2300 RC Leiden, The Netherlands
| |
Collapse
|
4
|
Radovani B, Nimmerjahn F. IgG Glycosylation: Biomarker, Functional Modulator, and Structural Component. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1573-1584. [PMID: 39556784 DOI: 10.4049/jimmunol.2400447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/27/2024] [Indexed: 11/20/2024]
Abstract
The family of IgG Abs is a crucial component of adaptive immunity. Glycosylation of IgG maintains its structural integrity and modulates its effector functions. In this review, we discuss IgG glycosylation covering cell biological as well as therapeutic and disease-related aspects, focusing on the glycan structures in distinct IgG regions (Fab versus Fc). We also cover the impact of IgG glycosylation on disease modulation and therapeutic outcomes, alongside the potential for development of vaccines designed to induce Ag-specific IgG with glycoforms for optimal immune responses. Overall, we emphasize the significance of studying glycosylation to enhance our understanding of the dynamics and functional impacts of IgG glycosylation. These insights could be beneficial for advancing future research and clinical applications.
Collapse
Affiliation(s)
- Barbara Radovani
- Faculty of Biotechnology and Drug Development, University of Rijeka, Rijeka, Croatia
- Division of Genetics, Department of Biology, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Falk Nimmerjahn
- Division of Genetics, Department of Biology, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
- Profile Center Immunomedicine, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
5
|
Abraham AA, Tan ZC, Shrestha P, Bozich ER, Meyer AS. A multivalent binding model infers antibody Fc species from systems serology. PLoS Comput Biol 2024; 20:e1012663. [PMID: 39715286 PMCID: PMC11706497 DOI: 10.1371/journal.pcbi.1012663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 01/07/2025] [Accepted: 11/20/2024] [Indexed: 12/25/2024] Open
Abstract
Systems serology aims to broadly profile the antigen binding, Fc biophysical features, immune receptor engagement, and effector functions of antibodies. This experimental approach excels at identifying antibody functional features that are relevant to a particular disease. However, a crucial limitation of this approach is its incomplete description of what structural features of the antibodies are responsible for the observed immune receptor engagement and effector functions. Knowing these antibody features is important for both understanding how effector responses are naturally controlled through antibody Fc structure and designing antibody therapies with specific effector profiles. Here, we address this limitation by modeling the molecular interactions occurring in these assays and using this model to infer quantities of specific antibody Fc species among the antibodies being profiled. We used several validation strategies to show that the model accurately infers antibody properties and then applied the model to infer previously unavailable antibody fucosylation information from existing systems serology data. Using this capability, we find that COVID-19 vaccine efficacy is associated with the induction of afucosylated spike protein-targeting IgG. Our results also question an existing assumption that controllers of HIV exhibit gp120-targeting IgG that are less fucosylated than those of progressors. Additionally, we confirm that afucosylated IgG is associated with membrane-associated antigens for COVID-19 and HIV, and present new evidence indicating that this relationship is specific to the host cell membrane. Finally, we use the model to identify redundant assay measurements and subsets of information-rich measurements from which Fc properties can be inferred. In total, our modeling approach provides a quantitative framework for the reasoning typically applied in these studies, improving the ability to draw mechanistic conclusions from these data.
Collapse
Affiliation(s)
- Armaan A. Abraham
- Department of Bioengineering, University of California, Los Angeles, California, United States of America
| | - Zhixin Cyrillus Tan
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, California, United States of America
| | | | - Emily R. Bozich
- Department of Bioengineering, University of California, Los Angeles, California, United States of America
| | - Aaron S. Meyer
- Department of Bioengineering, University of California, Los Angeles, California, United States of America
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, California, United States of America
| |
Collapse
|
6
|
Hsiung KC, Chiang HJ, Reinig S, Shih SR. Vaccine Strategies Against RNA Viruses: Current Advances and Future Directions. Vaccines (Basel) 2024; 12:1345. [PMID: 39772007 PMCID: PMC11679499 DOI: 10.3390/vaccines12121345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/24/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025] Open
Abstract
The development of vaccines against RNA viruses has undergone a rapid evolution in recent years, particularly driven by the COVID-19 pandemic. This review examines the key roles that RNA viruses, with their high mutation rates and zoonotic potential, play in fostering vaccine innovation. We also discuss both traditional and modern vaccine platforms and the impact of new technologies, such as artificial intelligence, on optimizing immunization strategies. This review evaluates various vaccine platforms, ranging from traditional approaches (inactivated and live-attenuated vaccines) to modern technologies (subunit vaccines, viral and bacterial vectors, nucleic acid vaccines such as mRNA and DNA, and phage-like particle vaccines). To illustrate these platforms' practical applications, we present case studies of vaccines developed for RNA viruses such as SARS-CoV-2, influenza, Zika, and dengue. Additionally, we assess the role of artificial intelligence in predicting viral mutations and enhancing vaccine design. The case studies underscore the successful application of RNA-based vaccines, particularly in the fight against COVID-19, which has saved millions of lives. Current clinical trials for influenza, Zika, and dengue vaccines continue to show promise, highlighting the growing efficacy and adaptability of these platforms. Furthermore, artificial intelligence is driving improvements in vaccine candidate optimization and providing predictive models for viral evolution, enhancing our ability to respond to future outbreaks. Advances in vaccine technology, such as the success of mRNA vaccines against SARS-CoV-2, highlight the potential of nucleic acid platforms in combating RNA viruses. Ongoing trials for influenza, Zika, and dengue demonstrate platform adaptability, while artificial intelligence enhances vaccine design by predicting viral mutations. Integrating these innovations with the One Health approach, which unites human, animal, and environmental health, is essential for strengthening global preparedness against future RNA virus threats.
Collapse
Affiliation(s)
- Kuei-Ching Hsiung
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (K.-C.H.); (H.-J.C.); (S.R.)
| | - Huan-Jung Chiang
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (K.-C.H.); (H.-J.C.); (S.R.)
- Graduate Institute of Biomedical Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Sebastian Reinig
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (K.-C.H.); (H.-J.C.); (S.R.)
| | - Shin-Ru Shih
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (K.-C.H.); (H.-J.C.); (S.R.)
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- Department of Medical Biotechnology & Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Research Center for Chinese Herbal Medicine, Research Center for Food & Cosmetic Safety, Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science & Technology, Taoyuan 33303, Taiwan
| |
Collapse
|
7
|
Sherman JD, Karmali V, Kumar B, Simon TW, Bechnak S, Panjwani A, Ciric CR, Wang D, Huerta C, Johnson B, Anderson EJ, Rouphael N, Collins MH, Rostad CA, Azadi P, Scherer EM. Altered Spike Immunoglobulin G Fc N-Linked Glycans Are Associated With Hyperinflammatory State in Adult Coronavirus Disease 2019 and Multisystem Inflammatory Syndrome in Children. Open Forum Infect Dis 2024; 11:ofae626. [PMID: 39494457 PMCID: PMC11528514 DOI: 10.1093/ofid/ofae626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/15/2024] [Indexed: 11/05/2024] Open
Abstract
Background Severe coronavirus disease 2019 (COVID-19) and multisystem inflammatory syndrome (MIS-C) are characterized by excessive inflammatory cytokines/chemokines. In adults, disease severity is associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific immunoglobulin G (IgG) Fc afucosylation, which induces proinflammatory cytokine secretion from innate immune cells. This study aimed to define spike IgG Fc glycosylation following SARS-CoV-2 infection in adults and children and following SARS-CoV-2 vaccination in adults and the relationships between glycan modifications and cytokines/chemokines. Methods We analyzed longitudinal (n = 146) and cross-sectional (n = 49) serum/plasma samples from adult and pediatric COVID-19 patients, MIS-C patients, adult vaccinees, and adult and pediatric controls. We developed methods for characterizing bulk and spike IgG Fc glycosylation by capillary electrophoresis and measured levels of 10 inflammatory cytokines/chemokines by multiplexed enzyme-linked immunosorbent assay. Results Spike IgG was more afucosylated than bulk IgG during acute adult COVID-19 and MIS-C. We observed an opposite trend following vaccination, but it was not significant. Spike IgG was more galactosylated and sialylated and less bisected than bulk IgG during adult COVID-19, with similar trends observed during pediatric COVID-19/MIS-C and following SARS-CoV-2 vaccination. Spike IgG glycosylation changed with time following adult COVID-19 or vaccination. Afucosylated spike IgG exhibited inverse and positive correlations with inflammatory markers in MIS-C and following vaccination, respectively; galactosylated and sialylated spike IgG inversely correlated with proinflammatory cytokines in adult COVID-19 and MIS-C; and bisected spike IgG positively correlated with inflammatory cytokines/chemokines in multiple groups. Conclusions We identified previously undescribed relationships between spike IgG glycan modifications and inflammatory cytokines/chemokines that expand our understanding of IgG glycosylation changes that may impact COVID-19 and MIS-C immunopathology.
Collapse
Affiliation(s)
- Jacob D Sherman
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Vinit Karmali
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Bhoj Kumar
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Trevor W Simon
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Sarah Bechnak
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Anusha Panjwani
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Caroline R Ciric
- Division of Infectious Diseases, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Dongli Wang
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Christopher Huerta
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Brandi Johnson
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Evan J Anderson
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
- Division of Infectious Diseases, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Nadine Rouphael
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Matthew H Collins
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Christina A Rostad
- Division of Infectious Diseases, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Erin M Scherer
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
8
|
Zhang X, Li M, Zhang N, Li Y, Teng F, Li Y, Zhang X, Xu X, Li H, Zhu Y, Wang Y, Jia Y, Qin C, Wang B, Guo S, Wang Y, Yu X. SARS-CoV-2 Evolution: Immune Dynamics, Omicron Specificity, and Predictive Modeling in Vaccinated Populations. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402639. [PMID: 39206813 PMCID: PMC11516136 DOI: 10.1002/advs.202402639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/25/2024] [Indexed: 09/04/2024]
Abstract
Host immunity is central to the virus's spread dynamics, which is significantly influenced by vaccination and prior infection experiences. In this work, we analyzed the co-evolution of SARS-CoV-2 mutation, angiotensin-converting enzyme 2 (ACE2) receptor binding, and neutralizing antibody (NAb) responses across various variants in 822 human and mice vaccinated with different non-Omicron and Omicron vaccines is analyzed. The link between vaccine efficacy and vaccine type, dosing, and post-vaccination duration is revealed. The classification of immune protection against non-Omicron and Omicron variants is co-evolved with genetic mutations and vaccination. Additionally, a model, the Prevalence Score (P-Score) is introduced, which surpasses previous algorithm-based models in predicting the potential prevalence of new variants in vaccinated populations. The hybrid vaccination combining the wild-type (WT) inactivated vaccine with the Omicron BA.4/5 mRNA vaccine may provide broad protection against both non-Omicron variants and Omicron variants, albeit with EG.5.1 still posing a risk. In conclusion, these findings enhance understanding of population immunity variations and provide valuable insights for future vaccine development and public health strategies.
Collapse
Affiliation(s)
- Xiaohan Zhang
- State Key Laboratory of Medical ProteomicsBeijing Proteome Research CenterNational Center for Protein Sciences‐Beijing (PHOENIX Center)Beijing Institute of LifeomicsBeijing102206China
- School of MedicineNanjing University of Chinese MedicineNanjing210023China
| | - Mansheng Li
- State Key Laboratory of Medical ProteomicsBeijing Proteome Research CenterNational Center for Protein Sciences‐Beijing (PHOENIX Center)Beijing Institute of LifeomicsBeijing102206China
| | - Nana Zhang
- Department of VirologyState Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyAcademy of Military Medical SciencesBeijing100071China
| | - Yunhui Li
- Department of Clinical LaboratoryBeijing Ditan HospitalCapital Medical UniversityBeijing100015China
| | - Fei Teng
- Emergency Medicine Clinical Research CenterBeijing Chao‐Yang HospitalCapital Medical UniversityBeijing Key Laboratory of Cardiopulmonary Cerebral ResuscitationBeijing100020China
| | - Yongzhe Li
- Department of Clinical LaboratoryPeking Union Medical College HospitalChinese Academy of Medical Science & Peking Union Medical CollegeBeijing100730China
| | - Xiaomei Zhang
- State Key Laboratory of Medical ProteomicsBeijing Proteome Research CenterNational Center for Protein Sciences‐Beijing (PHOENIX Center)Beijing Institute of LifeomicsBeijing102206China
| | - Xingming Xu
- State Key Laboratory of Medical ProteomicsBeijing Proteome Research CenterNational Center for Protein Sciences‐Beijing (PHOENIX Center)Beijing Institute of LifeomicsBeijing102206China
| | - Haolong Li
- Department of Clinical LaboratoryPeking Union Medical College HospitalChinese Academy of Medical Science & Peking Union Medical CollegeBeijing100730China
| | - Yunping Zhu
- State Key Laboratory of Medical ProteomicsBeijing Proteome Research CenterNational Center for Protein Sciences‐Beijing (PHOENIX Center)Beijing Institute of LifeomicsBeijing102206China
| | - Yumin Wang
- The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou325000China
| | - Yan Jia
- ProteomicsEra Medical Co. Ltd.Beijing102206China
| | - Chengfeng Qin
- Department of VirologyState Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyAcademy of Military Medical SciencesBeijing100071China
| | - Bingwei Wang
- School of MedicineNanjing University of Chinese MedicineNanjing210023China
| | - Shubin Guo
- Emergency Medicine Clinical Research CenterBeijing Chao‐Yang HospitalCapital Medical UniversityBeijing Key Laboratory of Cardiopulmonary Cerebral ResuscitationBeijing100020China
| | - Yajie Wang
- Department of Clinical LaboratoryBeijing Ditan HospitalCapital Medical UniversityBeijing100015China
| | - Xiaobo Yu
- State Key Laboratory of Medical ProteomicsBeijing Proteome Research CenterNational Center for Protein Sciences‐Beijing (PHOENIX Center)Beijing Institute of LifeomicsBeijing102206China
- The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou325000China
| |
Collapse
|
9
|
Streng BMM, Van Coillie J, Wildenbeest JG, Binnendijk RS, Smits G, den Hartog G, Wang W, Nouta J, Linty F, Visser R, Wuhrer M, Vidarsson G, Bont LJ, the PRIDE study group. IgG1 glycosylation highlights premature aging in Down syndrome. Aging Cell 2024; 23:e14167. [PMID: 38616780 PMCID: PMC11258452 DOI: 10.1111/acel.14167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/12/2024] [Accepted: 03/24/2024] [Indexed: 04/16/2024] Open
Abstract
Down syndrome (DS) is characterized by lowered immune competence and premature aging. We previously showed decreased antibody response following SARS-CoV-2 vaccination in adults with DS. IgG1 Fc glycosylation patterns are known to affect the effector function of IgG and are associated with aging. Here, we compare total and anti-spike (S) IgG1 glycosylation patterns following SARS-CoV-2 vaccination in DS and healthy controls (HC). Total and anti-Spike IgG1 Fc N-glycan glycoprofiles were measured in non-exposed adults with DS and controls before and after SARS-CoV-2 vaccination by liquid chromatography-mass spectrometry (LC-MS) of Fc glycopeptides. We recruited N = 44 patients and N = 40 controls. We confirmed IgG glycosylation patterns associated with aging in HC and showed premature aging in DS. In DS, we found decreased galactosylation (50.2% vs. 59.0%) and sialylation (6.7% vs. 8.5%) as well as increased fucosylation (97.0% vs. 94.6%) of total IgG. Both cohorts showed similar bisecting GlcNAc of total and anti-S IgG1 with age. In contrast, anti-S IgG1 of DS and HC showed highly comparable glycosylation profiles 28 days post vaccination. The IgG1 glycoprofile in DS exhibits strong premature aging. The combination of an early decrease in IgG1 Fc galactosylation and sialylation and increase in fucosylation is predicted to reduce complement activity and decrease FcγRIII binding and subsequent activation, respectively. The altered glycosylation patterns, combined with decreased antibody concentrations, help us understand the susceptibility to severe infections in DS. The effect of premature aging highlights the need for individuals with DS to receive tailored vaccines and/or vaccination schedules.
Collapse
Affiliation(s)
- Bianca M. M. Streng
- Department of Paediatric Infectious Diseases and Immunology, Wilhelmina Children's HospitalUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Julie Van Coillie
- Sanquin Research and Landsteiner LaboratoryAmsterdam University Medical Center, University of AmsterdamAmsterdamThe Netherlands
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular ResearchUtrecht UniversityUtrechtThe Netherlands
| | - Joanne G. Wildenbeest
- Department of Paediatric Infectious Diseases and Immunology, Wilhelmina Children's HospitalUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Rob S. Binnendijk
- Centre for Immunology of Infectious Diseases and VaccinesNational Institute of Public Health and the EnvironmentBilthovenThe Netherlands
| | - Gaby Smits
- Centre for Immunology of Infectious Diseases and VaccinesNational Institute of Public Health and the EnvironmentBilthovenThe Netherlands
| | - Gerco den Hartog
- Centre for Immunology of Infectious Diseases and VaccinesNational Institute of Public Health and the EnvironmentBilthovenThe Netherlands
| | - Wenjun Wang
- Center for Proteomics and Metabolomics, Leiden University Medical CenterLeidenThe Netherlands
| | - Jan Nouta
- Center for Proteomics and Metabolomics, Leiden University Medical CenterLeidenThe Netherlands
| | - Federica Linty
- Sanquin Research and Landsteiner LaboratoryAmsterdam University Medical Center, University of AmsterdamAmsterdamThe Netherlands
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular ResearchUtrecht UniversityUtrechtThe Netherlands
| | - Remco Visser
- Sanquin Research and Landsteiner LaboratoryAmsterdam University Medical Center, University of AmsterdamAmsterdamThe Netherlands
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular ResearchUtrecht UniversityUtrechtThe Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical CenterLeidenThe Netherlands
| | - Gestur Vidarsson
- Sanquin Research and Landsteiner LaboratoryAmsterdam University Medical Center, University of AmsterdamAmsterdamThe Netherlands
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular ResearchUtrecht UniversityUtrechtThe Netherlands
| | - Louis J. Bont
- Department of Paediatric Infectious Diseases and Immunology, Wilhelmina Children's HospitalUniversity Medical Center UtrechtUtrechtThe Netherlands
| | | |
Collapse
|
10
|
Reinig S, Kuo C, Wu CC, Huang SY, Yu JS, Shih SR. Specific long-term changes in anti-SARS-CoV-2 IgG modifications and antibody functions in mRNA, adenovector, and protein subunit vaccines. J Med Virol 2024; 96:e29793. [PMID: 39023111 DOI: 10.1002/jmv.29793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/17/2024] [Accepted: 07/02/2024] [Indexed: 07/20/2024]
Abstract
Various vaccine platforms were developed and deployed against the COVID-19 disease. The Fc-mediated functions of IgG antibodies are essential in the adaptive immune response elicited by vaccines. However, the long-term changes of protein subunit vaccines and their combinations with messenger RNA (mRNA) vaccines are unknown. A total of 272 serum and plasma samples were collected from individuals who received first to third doses of the protein subunit Medigen, the mRNA (BNT, Moderna), or the adenovector AstraZeneca vaccines. The IgG subclass level was measured using enzyme-linked immunosorbent assay, and Fc-N glycosylation was measured using liquid chromatography coupled to tandem mass spectrometry. Antibody-dependent-cellular-phagocytosis (ADCP) and complement deposition (ADCD) of anti-spike (S) IgG antibodies were measured by flow cytometry. IgG1 and 3 reached the highest anti-S IgG subclass level. IgG1, 2, and 4 subclass levels significantly increased in mRNA- and Medigen-vaccinated individuals. Fc-glycosylation was stable, except in female BNT vaccinees, who showed increased bisection and decreased galactosylation. Female BNT vaccinees had a higher anti-S IgG titer than that of males. ADCP declined in all groups. ADCD was significantly lower in AstraZeneca-vaccinated individuals. Each vaccine produced specific long-term changes in Fc structure and function. This finding is critical when selecting a vaccine platform or combination to achieve the desired immune response.
Collapse
Affiliation(s)
- Sebastian Reinig
- Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan, Taiwan
| | - Chin Kuo
- Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan, Taiwan
| | - Chia-Chun Wu
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Sheng-Yu Huang
- Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan, Taiwan
| | - Jau-Song Yu
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Liver Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Shin-Ru Shih
- Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan, Taiwan
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
- Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan, Taiwan
- Clinical Virology Laboratory, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| |
Collapse
|
11
|
Reinig S, Kuo C, Wu CC, Huang SY, Yu JS, Shih SR. Specific long-term changes in anti-SARS-CoV-2 IgG modifications and antibody functions in mRNA, adenovector, and protein subunit vaccines. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.06.16.23291455. [PMID: 38559243 PMCID: PMC10980124 DOI: 10.1101/2023.06.16.23291455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Various vaccine platforms were developed and deployed against the COVID-19 disease. The Fc-mediated functions of IgG antibodies are essential in the adaptive immune response elicited by vaccines. However, the long-term changes of protein subunit vaccines and their combinations with mRNA vaccines are unknown. A total of 272 serum and plasma samples were collected from individuals who received first to third doses of the protein subunit Medigen, the mRNA (BNT), or the adenovector AstraZeneca vaccines. The IgG subclass level was measured using enzyme-linked immunosorbent assay, and Fc-N glycosylation was measured using LC-MS/MS. Antibody-dependent phagocytosis (ADCP) and complement deposition (ADCD) of anti-spike (S) IgG antibodies were measured. IgG1 and 3 reached the highest anti-S IgG subclass level. IgG1, 2, and 4 subclass levels significantly increased in mRNA- and Medigen-vaccinated individuals. Fc-glycosylation was stable, except in female BNT vaccinees, who showed increased bisection and decreased galactosylation. Female BNT vaccinees had a higher anti-S IgG titer than that of males. ADCP declined in all groups. ADCD increased in Medigen-vaccinated individuals after the third dose. Each vaccine produced specific long-term changes in Fc structure and function. This finding is critical when selecting a vaccine platform or combination to achieve the desired immune response.
Collapse
Affiliation(s)
- Sebastian Reinig
- Research center for Emerging viral infections, Chang Gung University, Taoyuan, Taiwan
| | - Chin Kuo
- Research center for Emerging viral infections, Chang Gung University, Taoyuan, Taiwan
| | - Chia-Chun Wu
- Molecular research center, Chang Gung University, Taoyuan
| | - Sheng-Yu Huang
- Research center for Emerging viral infections, Chang Gung University, Taoyuan, Taiwan
| | - Jau-Song Yu
- Molecular research center, Chang Gung University, Taoyuan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Liver Research Center, Chang Gung Memorial Hospital, Linkou 33305, Taiwan
- Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33302, Taiwan
| | - Shin-Ru Shih
- Research center for Emerging viral infections, Chang Gung University, Taoyuan, Taiwan
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
- Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan, Taiwan
- Clinical Virology Laboratory, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| |
Collapse
|
12
|
Tong M, Liu P, Li C, Zhang Z, Sun W, Dong P, Fan N, Wang X, Liu J, Lv C, Cao Z, Wang Y. Interaction of Asn297-Linked Glycan Ligands with the Fc Fragment of the Immunoglobulin Class G1: A Molecular Dynamics Simulation Study. J Chem Inf Model 2024; 64:785-798. [PMID: 38262973 DOI: 10.1021/acs.jcim.3c01584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
The allosteric modulation of the homodimeric H10-03-6 protein to glycan ligands L1 and L2, and the STAB19 protein to glycan ligands L3 and L4, respectively, has been studied by molecular dynamics simulations and free energy calculations. The results revealed that the STAB19 protein has a significantly higher affinity for L3 (-11.38 ± 2.32 kcal/mol) than that for L4 (-5.51 ± 1.92 kcal/mol). However, the combination of the H10-03-6 protein with glycan L2 (1.23 ± 6.19 kcal/mol) is energetically unfavorable compared with that of L1 (-13.96 ± 0.35 kcal/mol). Further, the binding of glycan ligands L3 and L4 to STAB19 would result in the significant closure of the two CH2 domains of the STAB19 conformation with the decrease of the centroid distances between the two CH2 domains compared with the H10-03-6/L1/L2 complex. The CH2 domain closure of STAB19 relates directly to the formation of new hydrogen bonds and hydrophobic interactions between the residues Ser239, Val240, Asp265, Glu293, Asn297, Thr299, Ser337, Asp376, Thr393, Pro395, and Pro396 in STAB19 and glycan ligands L3 and L4, which suggests that these key residues would contribute to the specific regulation of STAB19 to L3 and L4. In addition, the distance analysis revealed that the EF loop in the H10-03-6/L1/L2 model presents a high flexibility and partial disorder compared with the stabilized STAB19/L3/L4 complex. These results will be helpful in understanding the specific regulation through the asymmetric structural characteristics in the CH2 and CH3 domains of the H10-03-6 and STAB19 proteins.
Collapse
Affiliation(s)
- Mingqiong Tong
- Shandong Engineering Research Center of Novel Pharmaceutical Excipients, Sustained and Controlled Release Preparations, College of Medicine and Nursing, Dezhou University, Dezhou 253023, China
| | - Peng Liu
- Faculty of Electrical Engineering, Universiti Teknologi Malaysia, UTM, Johor Bahru, Johor Darul Takzim 81310, Malaysia
- The Office of Academic Affairs, Dezhou University, Dezhou 253023, China
| | - Chaoqun Li
- Hebei Key Laboratory of Heterocyclic Compounds, College of Chemistry, Chemical Engineering and Materials, Handan University, Handan, Hebei 056005, China
| | - Zhongyu Zhang
- Shandong Engineering Research Center of Novel Pharmaceutical Excipients, Sustained and Controlled Release Preparations, College of Medicine and Nursing, Dezhou University, Dezhou 253023, China
| | - Wan Sun
- Shandong Engineering Research Center of Novel Pharmaceutical Excipients, Sustained and Controlled Release Preparations, College of Medicine and Nursing, Dezhou University, Dezhou 253023, China
| | - Pingxuan Dong
- Shandong Engineering Research Center of Novel Pharmaceutical Excipients, Sustained and Controlled Release Preparations, College of Medicine and Nursing, Dezhou University, Dezhou 253023, China
| | - Na Fan
- Shandong Engineering Research Center of Novel Pharmaceutical Excipients, Sustained and Controlled Release Preparations, College of Medicine and Nursing, Dezhou University, Dezhou 253023, China
| | - Xiaoyue Wang
- Shandong Engineering Research Center of Novel Pharmaceutical Excipients, Sustained and Controlled Release Preparations, College of Medicine and Nursing, Dezhou University, Dezhou 253023, China
| | - Jing Liu
- Shandong Engineering Research Center of Novel Pharmaceutical Excipients, Sustained and Controlled Release Preparations, College of Medicine and Nursing, Dezhou University, Dezhou 253023, China
| | - Chao Lv
- College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Zanxia Cao
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| | - Yan Wang
- College of Chemistry, Beijing Normal University, 19# Xinjiekouwai Street, Beijing 100875, China
| |
Collapse
|