1
|
Charles N, Blank U. IgE-Mediated Activation of Mast Cells and Basophils in Health and Disease. Immunol Rev 2025; 331:e70024. [PMID: 40165512 DOI: 10.1111/imr.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Accepted: 03/12/2025] [Indexed: 04/02/2025]
Abstract
Type 2-mediated immune responses protect the body against environmental threats at barrier surfaces, such as large parasites and environmental toxins, and facilitate the repair of inflammatory tissue damage. However, maladaptive responses to typically nonpathogenic substances, commonly known as allergens, can lead to the development of allergic diseases. Type 2 immunity involves a series of prototype TH2 cytokines (IL-4, IL-5, IL-13) and alarmins (IL-33, TSLP) that promote the generation of adaptive CD4+ helper Type 2 cells and humoral products such as allergen-specific IgE. Mast cells and basophils are integral players in this network, serving as primary effectors of IgE-mediated responses. These cells bind IgE via high-affinity IgE receptors (FcεRI) expressed on their surface and, upon activation by allergens, release a variety of mediators that regulate tissue responses, attract and modulate other inflammatory cells, and contribute to tissue repair. Here, we review the biology and effector mechanisms of these cells, focusing primarily on their role in mediating IgE responses in both physiological and pathological contexts.
Collapse
Affiliation(s)
- Nicolas Charles
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS EMR8252, Faculté de Médecine Site Bichat, Paris, France
- Laboratoire d'Excellence Inflamex, Université Paris Cité, Paris, France
| | - Ulrich Blank
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS EMR8252, Faculté de Médecine Site Bichat, Paris, France
- Laboratoire d'Excellence Inflamex, Université Paris Cité, Paris, France
| |
Collapse
|
2
|
Kodama T, Yokoyama A, Nishioka Y, Kawasaki R, Teshima A, Maeda A, Hojo A, Suizu T, Torii H, Fujioka K, Kishida S, Fujimura T, Arakawa K, Ikeda A, Kawamoto S. Fermented plant product (FPP) suppresses immediate hypersensitivity reactions with impaired high-affinity IgE receptor (FcεRI) signaling. Cytotechnology 2025; 77:69. [PMID: 40012927 PMCID: PMC11861467 DOI: 10.1007/s10616-025-00729-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 02/13/2025] [Indexed: 02/28/2025] Open
Abstract
Fermented plant product (FPP) is a dietary supplement made by fermentation and aging of a variety of plants, including fruits, vegetables, and grains. A previous study has shown that oral FPP supplementation prevents the development of allergic rhinitis-like nasal symptoms in a murine model of Japanese cedar pollinosis without affecting systemic immune response. However, the mode of action by which FPP exerts an anti-allergic effect remains to be elucidated. Here, we show that FPP acts on mast cells to suppress immediate hypersensitivity reactions in vitro as well as in vivo. We found that stimulation with FPP potently suppressed IgE antibody-mediated degranulation of RBL-2H3 rat basophilic leukemia cells. We also found that oral feeding with FPP significantly suppressed passive cutaneous anaphylaxis (PCA), an in vivo model of IgE- and mast cell-mediated hypersensitivity reactions. Mechanistic analysis revealed that FPP extensively suppressed the high-affinity IgE receptor (FcεRI) signaling pathway, in which FPP not only inhibited intracellular Ca2+ influx upon FcεRI ligation but also negatively regulated another Ca2+-independent FcεRI signaling pathway leading to granule translocation through microtubule formation. These results suggest that FPP fulfills its anti-allergic activity by acting on the IgE-mast cell axis to suppress immediate hypersensitivity reactions.
Collapse
Affiliation(s)
- Tomoki Kodama
- Program of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8530 Japan
- Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, Higashi-Hiroshima, Japan
| | - Ayana Yokoyama
- Program of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8530 Japan
- Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, Higashi-Hiroshima, Japan
| | - Yuki Nishioka
- Program of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8530 Japan
- Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, Higashi-Hiroshima, Japan
| | - Riku Kawasaki
- Program of Applied Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima, Japan
| | - Aiko Teshima
- Program of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8530 Japan
- Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, Higashi-Hiroshima, Japan
| | - Akira Maeda
- Program of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8530 Japan
- Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, Higashi-Hiroshima, Japan
| | - Ayano Hojo
- Manda Fermentation Co. Ltd, Onomichi, Japan
| | | | | | | | | | - Takashi Fujimura
- Program of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8530 Japan
- Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, Higashi-Hiroshima, Japan
| | - Kenji Arakawa
- Program of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8530 Japan
- Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, Higashi-Hiroshima, Japan
| | - Atsushi Ikeda
- Program of Applied Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima, Japan
| | - Seiji Kawamoto
- Program of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8530 Japan
- Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, Higashi-Hiroshima, Japan
| |
Collapse
|
3
|
Hao G, Han S, Xiao Z, Shen J, Zhao Y, Hao Q. Synovial mast cells and osteoarthritis: Current understandings and future perspectives. Heliyon 2024; 10:e41003. [PMID: 39720069 PMCID: PMC11665477 DOI: 10.1016/j.heliyon.2024.e41003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 10/29/2024] [Accepted: 12/04/2024] [Indexed: 12/26/2024] Open
Abstract
Osteoarthritis (OA) is a prevalent joint disease worldwide that significantly impacts the quality of life of individuals, particularly those in middle-aged and elderly populations. OA was initially considered as non-inflammatory arthritis, but recent studies have identified a substantial number of immune responses in OA, leading to the recognition of inflammation as a key factor in its pathogenesis. An increasing number of studies have found that mast cell (MC) and MC-secreted inflammatory mediators and cytokines are notably increased in the synovial fluid of OA patients, indicating a potential association between MCs and the onset and progression of synovial inflammation. The present review aims to summarize the significance and mechanism of MCs in the pathogenesis of OA. Meanwhile, we also discuss the clinical potential of using MCs as therapeutic target for OA therapy. Modulating the activities of MCs or the mediators of MCs in the synovial fluid inflammatory microenvironment will be promising new options for the treatment of OA.
Collapse
Affiliation(s)
- Guanghui Hao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Southwest Medical University, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Shanqian Han
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Southwest Medical University, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Southwest Medical University, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Southwest Medical University, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Southwest Medical University, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Qi Hao
- Department of Joint Surgery, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
- The Third People's Hospital of Longmatan District, Luzhou, Sichuan, China
| |
Collapse
|
4
|
GEF-H1 Transduces FcεRI Signaling in Mast Cells to Activate RhoA and Focal Adhesion Formation during Exocytosis. Cells 2023; 12:cells12040537. [PMID: 36831204 PMCID: PMC9954420 DOI: 10.3390/cells12040537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
When antigen-stimulated, mast cells release preformed inflammatory mediators stored in cytoplasmic granules. This occurs via a robust exocytosis mechanism termed degranulation. Our previous studies revealed that RhoA and Rac1 are activated during mast cell antigen stimulation and are required for mediator release. Here, we show that the RhoGEF, GEF-H1, acts as a signal transducer of antigen stimulation to activate RhoA and promote mast cell spreading via focal adhesion (FA) formation. Cell spreading, granule movement, and exocytosis were all reduced in antigen-stimulated mast cells when GEF-H1 was depleted by RNA interference. GEF-H1-depleted cells also showed a significant reduction in RhoA activation, resulting in reduced stress fiber formation without altering lamellipodia formation. Ectopic expression of a constitutively active RhoA mutant restored normal morphology in GEF-H1-depleted cells. FA formation during antigen stimulation required GEF-H1, suggesting it is a downstream target of the GEF-H1-RhoA signaling axis. GEF-H1 was activated by phosphorylation in conjunction with antigen stimulation. Syk kinase is linked to the FcεRI signaling pathway and the Syk inhibitor, GS-9973, blocked GEF-H1 activation and also suppressed cell spreading, granule movement, and exocytosis. We concluded that during FcεRI receptor stimulation, GEF-H1 transmits signals to RhoA activation and FA formation to facilitate the exocytosis mechanism.
Collapse
|
5
|
Kotani Y, Sumiyoshi M, Sasada M, Watanabe T, Matsuda S. Arf1 facilitates mast cell proliferation via the mTORC1 pathway. Sci Rep 2022; 12:22297. [PMID: 36566324 PMCID: PMC9789986 DOI: 10.1038/s41598-022-26925-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022] Open
Abstract
Mast cells are one of major players in allergic responses. Mast cell activation via the high affinity IgE receptor (FcεRI) causes degranulation and release of de novo synthesized proinflammatory cytokines in a process that involves vesicle trafficking. Considering that the GTPase ADP-ribosylation factor 1 (Arf1) orchestrates and maintains membrane traffic and organelle structure, it seems likely that Arf1 contributes to mast cell activation. Actually, it has been reported that pharmaceutical blockade of the Arf1 pathway suppresses cytokine secretion and mast cell degranulation. However, physiological roles of Arf1 in mast cells remain elusive. Here, by using a genetic approach, we demonstrate that Arf1 is required for optimal mTORC1 activation upon IL-3 and facilitates mast cell proliferation. On the other hand, contrary to our expectation, Arf1-deficiency had little impact on FcεRI-induced degranulation nor cytokine secretion. Our findings reveal an unexpected role of Arf1 in mast cell expansion and its potential as a therapeutic target in the mast cell proliferative disorders.
Collapse
Affiliation(s)
- Yui Kotani
- grid.410783.90000 0001 2172 5041Department of Cell Signaling, Institute of Biomedical Science, Kansai Medical University, Hirakata, Osaka 573-1010 Japan ,grid.174568.90000 0001 0059 3836Department of Biological Science, Graduate School of Humanities and Sciences, Nara Women’s University, Nara, 630-8506 Japan
| | - Mami Sumiyoshi
- grid.410783.90000 0001 2172 5041Department of Cell Signaling, Institute of Biomedical Science, Kansai Medical University, Hirakata, Osaka 573-1010 Japan
| | - Megumi Sasada
- grid.174568.90000 0001 0059 3836Department of Biological Science, Graduate School of Humanities and Sciences, Nara Women’s University, Nara, 630-8506 Japan
| | - Toshio Watanabe
- grid.174568.90000 0001 0059 3836Department of Biological Science, Graduate School of Humanities and Sciences, Nara Women’s University, Nara, 630-8506 Japan
| | - Satoshi Matsuda
- grid.410783.90000 0001 2172 5041Department of Cell Signaling, Institute of Biomedical Science, Kansai Medical University, Hirakata, Osaka 573-1010 Japan
| |
Collapse
|
6
|
Trimarchi M, Lauritano D, Ronconi G, Caraffa A, Gallenga CE, Frydas I, Kritas SK, Calvisi V, Conti P. Mast Cell Cytokines in Acute and Chronic Gingival Tissue Inflammation: Role of IL-33 and IL-37. Int J Mol Sci 2022; 23:13242. [PMID: 36362030 PMCID: PMC9654575 DOI: 10.3390/ijms232113242] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/27/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022] Open
Abstract
Much evidence suggests autoimmunity in the etiopathogenesis of periodontal disease. In fact, in periodontitis, there is antibody production against collagen, DNA, and IgG, as well as increased IgA expression, T cell dysfunction, high expression of class II MHC molecules on the surface of gingival epithelial cells in inflamed tissues, activation of NK cells, and the generation of antibodies against the azurophil granules of polymorphonuclear leukocytes. In general, direct activation of autoreactive immune cells and production of TNF can activate neutrophils to release pro-inflammatory enzymes with tissue damage in the gingiva. Gingival inflammation and, in the most serious cases, periodontitis, are mainly due to the dysbiosis of the commensal oral microbiota that triggers the immune system. This inflammatory pathological state can affect the periodontal ligament, bone, and the entire gingival tissue. Oral tolerance can be abrogated by some cytokines produced by epithelial cells and activated immune cells, including mast cells (MCs). Periodontal cells and inflammatory-immune cells, including mast cells (MCs), produce cytokines and chemokines, mediating local inflammation of the gingival, along with destruction of the periodontal ligament and alveolar bone. Immune-cell activation and recruitment can be induced by inflammatory cytokines, such as IL-1, TNF, IL-33, and bacterial products, including lipopolysaccharide (LPS). IL-1 and IL-33 are pleiotropic cytokines from members of the IL-1 family, which mediate inflammation of MCs and contribute to many key features of periodontitis and other inflammatory disorders. IL-33 activates several immune cells, including lymphocytes, Th2 cells, and MCs in both innate and acquired immunological diseases. The classic therapies for periodontitis include non-surgical periodontal treatment, surgery, antibiotics, anti-inflammatory drugs, and surgery, which have been only partially effective. Recently, a natural cytokine, IL-37, a member of the IL-1 family and a suppressor of IL-1b, has received considerable attention for the treatment of inflammatory diseases. In this article, we report that IL-37 may be an important and effective therapeutic cytokine that may inhibit periodontal inflammation. The purpose of this paper is to study the relationship between MCs, IL-1, IL-33, and IL-37 inhibition in acute and chronic inflamed gingival tissue.
Collapse
Affiliation(s)
- Matteo Trimarchi
- Centre of Neuroscience of Milan, Department of Medicine and Surgery, University of Milan, 20122 Milano, Italy;
| | - Dorina Lauritano
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy;
| | - Gianpaolo Ronconi
- Clinica dei Pazienti del Territorio, Fondazione Policlinico Gemelli, 00185 Rome, Italy;
| | | | - Carla E. Gallenga
- Section of Ophthalmology, Department of Biomedical Sciences and Specialist Surgery, University of Ferrara, 44121 Ferrara, Italy;
| | - Ilias Frydas
- Department of Parasitology, Aristotle University, 54124 Thessaloniki, Greece;
| | - Spyros K. Kritas
- Department of Microbiology and Infectious Diseases, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Macedonia, Greece;
| | - Vittorio Calvisi
- Orthopaedics Department, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Pio Conti
- Immunology Division, Postgraduate Medical School, University of Chieti, 65100 Pescara, Italy
| |
Collapse
|
7
|
Bratti M, Vibhushan S, Longé C, Koumantou D, Ménasché G, Benhamou M, Varin-Blank N, Blank U, Saveanu L, Ben Mkaddem S. Insulin-regulated aminopeptidase contributes to setting the intensity of FcR-mediated inflammation. Front Immunol 2022; 13:1029759. [PMID: 36389775 PMCID: PMC9647545 DOI: 10.3389/fimmu.2022.1029759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 10/12/2022] [Indexed: 11/25/2022] Open
Abstract
The function of intracellular trafficking in immune-complex triggered inflammation remains poorly understood. Here, we investigated the role of Insulin-Regulated Amino Peptidase (IRAP)-positive endosomal compartments in Fc receptor (FcR)-induced inflammation. Less severe FcγR-triggered arthritis, active systemic anaphylaxis and FcεRI-triggered passive systemic anaphylaxis were observed in IRAP-deficient versus wild-type mice. In mast cells FcεRI stimulation induced rapid plasma membrane recruitment of IRAP-positive endosomes. IRAP-deficient cells exhibited reduced secretory responses, calcium signaling and activating SykY519/520 phosphorylation albeit receptor tyrosine phosphorylation on β and γ subunits was not different. By contrast, in the absence of IRAP, SHP1-inactivating phosphorylation on Ser591 that controls Syk activity was decreased. Ex-vivo cell profiling after FcγR-triggered anaphylaxis confirmed decreased phosphorylation of both SykY519/520 and SHP-1S591 in IRAP-deficient neutrophils and monocytes. Thus, IRAP-positive endosomal compartments, in promoting inhibition of SHP-1 during FcR signaling, control the extent of phosphorylation events at the plasma membrane and contribute to setting the intensity of immune-complex triggered inflammatory diseases.
Collapse
Affiliation(s)
- Manuela Bratti
- Université Paris Cité, Centre de Recherche sur l’Inflammation, Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR)1149, Centre National de la Recherche Scientifique (CNRS) Equipe Mixte de Recherche(EMR)-8252, Faculté de Médecine site Bichat, Paris, France
- Université Paris Cité, Laboratoire d’Excellence INFLAMEX, Paris, France
| | - Shamila Vibhushan
- Université Paris Cité, Centre de Recherche sur l’Inflammation, Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR)1149, Centre National de la Recherche Scientifique (CNRS) Equipe Mixte de Recherche(EMR)-8252, Faculté de Médecine site Bichat, Paris, France
- Université Paris Cité, Laboratoire d’Excellence INFLAMEX, Paris, France
| | - Cyril Longé
- Université Paris Cité, Imagine Institute, Laboratory of Molecular basis of altered immune homeostasis, Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR)1163, Paris, France
| | - Despoina Koumantou
- Université Paris Cité, Centre de Recherche sur l’Inflammation, Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR)1149, Centre National de la Recherche Scientifique (CNRS) Equipe Mixte de Recherche(EMR)-8252, Faculté de Médecine site Bichat, Paris, France
- Université Paris Cité, Laboratoire d’Excellence INFLAMEX, Paris, France
| | - Gaël Ménasché
- Université Paris Cité, Imagine Institute, Laboratory of Molecular basis of altered immune homeostasis, Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR)1163, Paris, France
| | - Marc Benhamou
- Université Paris Cité, Centre de Recherche sur l’Inflammation, Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR)1149, Centre National de la Recherche Scientifique (CNRS) Equipe Mixte de Recherche(EMR)-8252, Faculté de Médecine site Bichat, Paris, France
- Université Paris Cité, Laboratoire d’Excellence INFLAMEX, Paris, France
| | - Nadine Varin-Blank
- Institut National de la Santé et de la Recherche Médicale (INSERM) U978, Université Paris 13 Sorbonne Paris Nord, Unité de Formation et de Recherche (UFR) Santé Médecine et Biologie Humaine (SMBH), Bobigny, France
| | - Ulrich Blank
- Université Paris Cité, Centre de Recherche sur l’Inflammation, Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR)1149, Centre National de la Recherche Scientifique (CNRS) Equipe Mixte de Recherche(EMR)-8252, Faculté de Médecine site Bichat, Paris, France
- Université Paris Cité, Laboratoire d’Excellence INFLAMEX, Paris, France
- *Correspondence: Ulrich Blank,
| | - Loredana Saveanu
- Université Paris Cité, Centre de Recherche sur l’Inflammation, Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR)1149, Centre National de la Recherche Scientifique (CNRS) Equipe Mixte de Recherche(EMR)-8252, Faculté de Médecine site Bichat, Paris, France
- Université Paris Cité, Laboratoire d’Excellence INFLAMEX, Paris, France
| | - Sanae Ben Mkaddem
- Institut National de la Santé et de la Recherche Médicale (INSERM) U978, Université Paris 13 Sorbonne Paris Nord, Unité de Formation et de Recherche (UFR) Santé Médecine et Biologie Humaine (SMBH), Bobigny, France
- Institute of biological Sciences, Mohammed VI Polytechnic University (UM6P), Ben-Guerir, Morocco
| |
Collapse
|
8
|
Cyclic Hypoxia Induces Transcriptomic Changes in Mast Cells Leading to a Hyperresponsive Phenotype after FcεRI Cross-Linking. Cells 2022; 11:cells11142239. [PMID: 35883682 PMCID: PMC9319477 DOI: 10.3390/cells11142239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/19/2022] [Accepted: 06/29/2022] [Indexed: 12/04/2022] Open
Abstract
Mast cells (MCs) play important roles in tumor development, executing pro- or antitumoral functions depending on tumor type and tumor microenvironment (TME) conditions. Cyclic hypoxia (cyH) is a common feature of TME since tumor blood vessels fail to provide a continuous supply of oxygen to the tumor mass. Here, we hypothesized that the localization of MCs in cyH regions within solid tumors could modify their transcriptional profile and activation parameters. Using confocal microscopy, we found an important number of MCs in cyH zones of murine melanoma B16-F1 tumors. Applying microarray analysis to examine the transcriptome of murine bone-marrow-derived MCs (BMMCs) exposed to interleaved cycles of hypoxia and re-oxygenation, we identified altered expression of 2512 genes. Functional enrichment analysis revealed that the transcriptional signature of MCs exposed to cyH is associated with oxidative phosphorylation and the FcεRI signaling pathway. Interestingly, FcεRI-dependent degranulation, calcium mobilization, and PLC-γ activity, as well as Tnf-α, Il-4, and Il-2 gene expression after IgE/antigen challenge were increased in BMMCs exposed to cyH compared with those maintained in normoxia. Taken together, our findings indicate that cyH causes an important phenotypic change in MCs that should be considered in the design of inflammation-targeted therapies to control tumor growth.
Collapse
|
9
|
Longé C, Bratti M, Kurowska M, Vibhushan S, David P, Desmeure V, Huang JD, Fischer A, de Saint Basile G, Sepulveda FE, Blank U, Ménasché G. Rab44 regulates murine mast cell-driven anaphylaxis through kinesin-1-dependent secretory granule translocation. J Allergy Clin Immunol 2022; 150:676-689. [PMID: 35469841 DOI: 10.1016/j.jaci.2022.04.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/15/2022] [Accepted: 04/08/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Mast cells (MCs) are key effectors of the allergic response. Following the cross-linking of IgE receptors (FcεRIs), they release crucial inflammatory mediators through degranulation. Although degranulation depends critically on secretory granule (SG) trafficking towards the plasma membrane, the molecular machinery underlying this transport has not been fully characterized. OBJECTIVE Here, we analyzed the function of Rab44, a large atypical Rab GTPase highly expressed in MC, in MC degranulation process. METHODS Murine KO mouse models (KORab44 and DKOKif5b/Rab44) were used to perform passive cutaneous anaphylaxis (PCA) experiments and analyze granule translocation in derived bone-marrow-derived MCs (BMMCs) during degranulation. RESULTS We demonstrate that mice lacking Rab44 (KORab44) in their BMMCs are impaired in their ability to translocate and degranulate SGs at the plasma membrane upon FcεRI stimulation. Accordingly, KORab44 mice were less sensitive to IgE-mediated passive cutaneous anaphylaxis in vivo. A lack of Rab44 did not impair early FcεRI-stimulated signaling pathways, microtubule reorganization, lipid mediator or cytokine secretion. Mechanistically, Rab44 appears to interact with and function as part of the previously described kinesin-1-dependent transport pathway. CONCLUSIONS Our results highlight a novel role of Rab44 as a regulator of SG transport during degranulation and anaphylaxis acting through the kinesin-1-dependent microtubule transport machinery. Rab44 can thus be considered as a potential target for modulating MC degranulation and inhibiting IgE-mediated allergic reactions.
Collapse
Affiliation(s)
- Cyril Longé
- Université Paris Cité, Imagine Institute, Laboratory of Molecular basis of altered immune homeostasis, INSERM UMR1163, F-75015 Paris France
| | - Manuela Bratti
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS EMR8252, Faculté de Médecine site Bichat, Paris, France; Laboratoire d'Excellence Inflamex, F-75018, Paris, France
| | - Mathieu Kurowska
- Université Paris Cité, Imagine Institute, Laboratory of Molecular basis of altered immune homeostasis, INSERM UMR1163, F-75015 Paris France
| | - Shamila Vibhushan
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS EMR8252, Faculté de Médecine site Bichat, Paris, France; Laboratoire d'Excellence Inflamex, F-75018, Paris, France
| | - Pierre David
- Transgenesis Facility, Laboratoire d'Expérimentation Animale et Transgénèse (LEAT), Imagine Institute, Structure Fédérative de Recherche Necker INSERM US24/CNRS UMS3633, F-75015, Paris, France
| | - Valère Desmeure
- Université Paris Cité, Imagine Institute, Laboratory of Molecular basis of altered immune homeostasis, INSERM UMR1163, F-75015 Paris France
| | - Jian-Dong Huang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Alain Fischer
- Université Paris Cité, Imagine Institute, Laboratory of Molecular basis of altered immune homeostasis, INSERM UMR1163, F-75015 Paris France; Immunology and Pediatric Hematology Department, Necker Children's Hospital, AP-HP, F-75015 Paris, France; Collège de France, F-75005 Paris, France
| | - Geneviève de Saint Basile
- Université Paris Cité, Imagine Institute, Laboratory of Molecular basis of altered immune homeostasis, INSERM UMR1163, F-75015 Paris France; Centre d'Etude des Déficits Immunitaires, AP-HP, Hôpital Necker-Enfants Malades, F-75015, Paris, France
| | - Fernando E Sepulveda
- Université Paris Cité, Imagine Institute, Laboratory of Molecular basis of altered immune homeostasis, INSERM UMR1163, F-75015 Paris France; Centre National de la Recherche Scientifique, F-75015, Paris. France
| | - Ulrich Blank
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS EMR8252, Faculté de Médecine site Bichat, Paris, France; Laboratoire d'Excellence Inflamex, F-75018, Paris, France
| | - Gaël Ménasché
- Université Paris Cité, Imagine Institute, Laboratory of Molecular basis of altered immune homeostasis, INSERM UMR1163, F-75015 Paris France
| |
Collapse
|
10
|
Dok-1 regulates mast cell degranulation negatively through inhibiting calcium-dependent F-actin disassembly. Clin Immunol 2022; 238:109008. [PMID: 35421591 DOI: 10.1016/j.clim.2022.109008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 11/24/2022]
Abstract
In food allergies, antigen-induced aggregation of FcεRI on mast cells initiates highly ordered and sequential signaling events. Dok-1(downstream of tyrosine kinase 1), undergoes intense tyrosine phosphorylation upon FcεRI stimulation, which negatively regulates Ras/Erk signaling and the subsequent cytokine release, but it remains unclear whether Dok-1 regulates Fc-mediated degranulation. In this study, we investigated the role of Dok-1 in FcεRI-mediated degranulation. Dok-1 overexpressing RBL-2H3 cells were established. Degranulation, immunoprecipitation, co-immunoprecipitation, immunoblotting and flow cytometry assay were performed to explore the effects of Dok-1 and its underlying mechanisms. We found that, following FcεRI activation, Dok-1 was recruited to the plasma membrane, leading to tyrosine phosphorylation. Phosphorylated Dok-1 inhibits FcεRI-operated calcium influx, and negatively regulated degranulation by inhibiting calcium-dependent disassembly of actin filaments. Our data revealed that Dok-1 is a negative regulator of FcεRI-mediated mast cell degranulation. These findings contribute to the identification of therapeutic targets for food allergies.
Collapse
|
11
|
Mast cell granule motility and exocytosis is driven by dynamic microtubule formation and kinesin-1 motor function. PLoS One 2022; 17:e0265122. [PMID: 35316306 PMCID: PMC8939832 DOI: 10.1371/journal.pone.0265122] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 02/23/2022] [Indexed: 11/19/2022] Open
Abstract
Mast cells are tissue-resident immune cells that have numerous cytoplasmic granules which contain preformed pro-inflammatory mediators. Upon antigen stimulation, sensitized mast cells undergo profound changes to their morphology and rapidly release granule mediators by regulated exocytosis, also known as degranulation. We have previously shown that Rho GTPases regulate exocytosis, which suggests that cytoskeleton remodeling is involved in granule transport. Here, we used live-cell imaging to analyze cytoskeleton remodeling and granule transport in real-time as mast cells were antigen stimulated. We found that granule transport to the cell periphery was coordinated by de novo microtubule formation and not F-actin. Kinesore, a drug that activates the microtubule motor kinesin-1 in the absence of cargo, inhibited microtubule-granule association and significantly reduced exocytosis. Likewise, shRNA knock-down of Kif5b, the kinesin-1 heavy chain, also reduced exocytosis. Imaging showed granules accumulated in the perinuclear region after kinesore treatment or Kif5b knock-down. Complete microtubule depolymerization with nocodazole or colchicine resulted in the same effect. A biochemically enriched granule fraction showed kinesin-1 levels increase in antigen-stimulated cells, but are reduced by pre-treatment with kinesore. Kinesore had no effect on the levels of Slp3, a mast cell granule cargo adaptor, in the granule-enriched fraction which suggests that cargo adaptor recruitment to granules is independent of motor association. Taken together, these results show that granules associate with microtubules and are driven by kinesin-1 to facilitate exocytosis.
Collapse
|
12
|
Huang YK, Busuttil RA, Boussioutas A. The Role of Innate Immune Cells in Tumor Invasion and Metastasis. Cancers (Basel) 2021; 13:5885. [PMID: 34884995 PMCID: PMC8656477 DOI: 10.3390/cancers13235885] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 12/12/2022] Open
Abstract
Metastasis is considered one of the hallmarks of cancer and enhanced tumor invasion and metastasis is significantly associated with cancer mortality. Metastasis occurs via a series of integrated processes involving tumor cells and the tumor microenvironment. The innate immune components of the microenvironment have been shown to engage with tumor cells and not only regulate their proliferation and survival, but also modulate the surrounding environment to enable cancer progression. In the era of immune therapies, it is critical to understand how different innate immune cell populations are involved in this process. This review summarizes recent literature describing the roles of innate immune cells during the tumor metastatic cascade.
Collapse
Affiliation(s)
- Yu-Kuan Huang
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3010, Australia; (Y.-K.H.); (R.A.B.)
| | - Rita A. Busuttil
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3010, Australia; (Y.-K.H.); (R.A.B.)
| | - Alex Boussioutas
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3010, Australia; (Y.-K.H.); (R.A.B.)
- Department of Gastroenterology, The Alfred Hospital, Melbourne, VIC 3004, Australia
- Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| |
Collapse
|
13
|
Bae SJ, Ji JY, Oh JY, Won J, Ryu YH, Lee H, Jung HS, Park HJ. The Role of Skin Mast Cells in Acupuncture Induced Analgesia in Animals: A Preclinical Systematic Review and Meta-analysis. THE JOURNAL OF PAIN 2021; 22:1560-1577. [PMID: 34182104 DOI: 10.1016/j.jpain.2021.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 05/08/2021] [Accepted: 06/05/2021] [Indexed: 01/28/2023]
Abstract
While mast cells (MCs) are previously well-known as a pathological indicator of pain, their role in alleviating pain is recently emerged in acupuncture research. Thus, this study systematically reviews the role of MC in acupuncture analgesia. Animal studies on MC changes associated with the acupuncture analgesia were searched in PubMed and EMBASE. The MC number, degranulation ratio and pain threshold changes were collected as outcome measures for meta-analyses. Twenty studies were included with 13 suitable for meta-analysis, most with a moderate risk of bias. A significant MC degranulation after acupuncture was indicated in the normal and was significantly higher in the pain model. In the subgroup analysis by acupuncture type, manual (MA) and electrical (EA, each P < .00001) but not sham acupuncture had significant MC degranulation. Meta-regression revealed the linear proportionality between MC degranulation and acupuncture-induced analgesia (P < .001), which was found essential in MA (P < .00001), but not in EA (P = .45). MC mediators, such as adenosine and histamine, are involved in its mechanism. Taken together, skin MC is an essential factor for acupuncture-induced analgesia, which reveals a new aspect of MC as a pain alleviator. However, its molecular mechanism requires further study. PERSPECTIVE: This systematic review synthesizes data from studies that examined the contribution of skin MC in acupuncture analgesia. Current reports suggest a new role for skin MC and its mediators in pain alleviation and explain a peripheral mechanism of acupuncture analgesia, with suggesting the need of further studies to confirm these findings.
Collapse
Affiliation(s)
- Sun-Jeong Bae
- Acupuncture and Meridian Science Research Center (AMSRC), Kyung Hee University, Seoul, Republic of Korea; College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Jeong-Yeon Ji
- Acupuncture and Meridian Science Research Center (AMSRC), Kyung Hee University, Seoul, Republic of Korea; College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Ju-Young Oh
- Acupuncture and Meridian Science Research Center (AMSRC), Kyung Hee University, Seoul, Republic of Korea; Department of Korean Medical Science, Graduate School of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Jiyoon Won
- Acupuncture and Meridian Science Research Center (AMSRC), Kyung Hee University, Seoul, Republic of Korea; Department of Korean Medical Science, Graduate School of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Yeon-Hee Ryu
- Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Hyangsook Lee
- Acupuncture and Meridian Science Research Center (AMSRC), Kyung Hee University, Seoul, Republic of Korea; Department of Korean Medical Science, Graduate School of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hyuk-Sang Jung
- Department of Korean Medical Science, Graduate School of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hi-Joon Park
- Acupuncture and Meridian Science Research Center (AMSRC), Kyung Hee University, Seoul, Republic of Korea; Department of Korean Medical Science, Graduate School of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea.
| |
Collapse
|
14
|
Da Broi U, Moreschi C, Marega G, Tse R, Garland J, Ondruschka B, Palmiere C. Medicolegal Implications of Biphasic Anaphylaxis. Am J Forensic Med Pathol 2021; 42:109-117. [PMID: 33031125 DOI: 10.1097/paf.0000000000000621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
ABSTRACT Biphasic anaphylaxis is an uncommon IgE-mediated condition whose pathophysiological mechanisms, risk factors, and predictive signs are not properly understood. Fortunately, the lethality of biphasic anaphylaxis, although probably underestimated, is low. Preventive clinical measures for biphasic anaphylaxis are neither standardized nor commonly applied. Furthermore, there are no laboratory protocols or anaphylactic markers to help identify the onset of biphasic anaphylaxis in clinical settings. The aim of this review is to highlight the medicolegal difficulties facing coroners and forensic pathologists in terms of the diagnosis and assessment of harm for victims and survivors of biphasic anaphylaxis.
Collapse
Affiliation(s)
- Ugo Da Broi
- From the Department of Medicine, Forensic Medicine, University of Udine, Udine, Italy
| | - Carlo Moreschi
- From the Department of Medicine, Forensic Medicine, University of Udine, Udine, Italy
| | - Giulia Marega
- From the Department of Medicine, Forensic Medicine, University of Udine, Udine, Italy
| | | | - Jack Garland
- Forensic and Analytical Science Service, NSW Health Pathology, New South Wales, Australia
| | - Benjamin Ondruschka
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Cristian Palmiere
- CURML, University Center of Legal Medicine, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
15
|
Ménasché G, Longé C, Bratti M, Blank U. Cytoskeletal Transport, Reorganization, and Fusion Regulation in Mast Cell-Stimulus Secretion Coupling. Front Cell Dev Biol 2021; 9:652077. [PMID: 33796537 PMCID: PMC8007931 DOI: 10.3389/fcell.2021.652077] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/03/2021] [Indexed: 01/16/2023] Open
Abstract
Mast cells are well known for their role in allergies and many chronic inflammatory diseases. They release upon stimulation, e.g., via the IgE receptor, numerous bioactive compounds from cytoplasmic secretory granules. The regulation of granule secretion and its interaction with the cytoskeleton and transport mechanisms has only recently begun to be understood. These studies have provided new insight into the interaction between the secretory machinery and cytoskeletal elements in the regulation of the degranulation process. They suggest a tight coupling of these two systems, implying a series of specific signaling effectors and adaptor molecules. Here we review recent knowledge describing the signaling events regulating cytoskeletal reorganization and secretory granule transport machinery in conjunction with the membrane fusion machinery that occur during mast cell degranulation. The new insight into MC biology offers novel strategies to treat human allergic and inflammatory diseases targeting the late steps that affect harmful release from granular stores leaving regulatory cytokine secretion intact.
Collapse
Affiliation(s)
- Gaël Ménasché
- Laboratory of Molecular Basis of Altered Immune Homeostasis, Imagine Institute, INSERM UMR 1163, Université de Paris, Paris, France
| | - Cyril Longé
- Laboratory of Molecular Basis of Altered Immune Homeostasis, Imagine Institute, INSERM UMR 1163, Université de Paris, Paris, France
| | - Manuela Bratti
- Centre de Recherche sur l'Inflammation, INSERM UMR 1149, CNRS ERL8252, Faculté de Médecine site Bichat, Université de Paris, Paris, France.,Laboratoire d'Excellence Inflamex, Université de Paris, Paris, France
| | - Ulrich Blank
- Centre de Recherche sur l'Inflammation, INSERM UMR 1149, CNRS ERL8252, Faculté de Médecine site Bichat, Université de Paris, Paris, France.,Laboratoire d'Excellence Inflamex, Université de Paris, Paris, France
| |
Collapse
|
16
|
Vibhushan S, Bratti M, Montero-Hernández JE, El Ghoneimi A, Benhamou M, Charles N, Daugas E, Blank U. Mast Cell Chymase and Kidney Disease. Int J Mol Sci 2020; 22:E302. [PMID: 33396702 PMCID: PMC7795820 DOI: 10.3390/ijms22010302] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/23/2020] [Accepted: 12/27/2020] [Indexed: 12/21/2022] Open
Abstract
A sizable part (~2%) of the human genome encodes for proteases. They are involved in many physiological processes, such as development, reproduction and inflammation, but also play a role in pathology. Mast cells (MC) contain a variety of MC specific proteases, the expression of which may differ between various MC subtypes. Amongst these proteases, chymase represents up to 25% of the total proteins in the MC and is released from cytoplasmic granules upon activation. Once secreted, it cleaves the targets in the local tissue environment, but may also act in lymph nodes infiltrated by MC, or systemically, when reaching the circulation during an inflammatory response. MC have been recognized as important components in the development of kidney disease. Based on this observation, MC chymase has gained interest following the discovery that it contributes to the angiotensin-converting enzyme's independent generation of angiotensin II, an important inflammatory mediator in the development of kidney disease. Hence, progress regarding its role has been made based on studies using inhibitors but also on mice deficient in MC protease 4 (mMCP-4), the functional murine counterpart of human chymase. In this review, we discuss the role and actions of chymase in kidney disease. While initially believed to contribute to pathogenesis, the accumulated data favor a more subtle view, indicating that chymase may also have beneficial actions.
Collapse
Affiliation(s)
- Shamila Vibhushan
- Centre de Recherche sur l’inflammation, CNRS ERL8252, Faculté de Médecine site Bichat, Université de Paris, Inserm UMR1149, 16 rue Henri Huchard, F-75018 Paris, France; (S.V.); (M.B.); (J.E.M.-H.); (A.E.G.); (M.B.); (N.C.); (E.D.)
- Laboratoire d’Excellence Inflamex, Université de Paris, F-75018 Paris, France
| | - Manuela Bratti
- Centre de Recherche sur l’inflammation, CNRS ERL8252, Faculté de Médecine site Bichat, Université de Paris, Inserm UMR1149, 16 rue Henri Huchard, F-75018 Paris, France; (S.V.); (M.B.); (J.E.M.-H.); (A.E.G.); (M.B.); (N.C.); (E.D.)
- Laboratoire d’Excellence Inflamex, Université de Paris, F-75018 Paris, France
| | - Juan Eduardo Montero-Hernández
- Centre de Recherche sur l’inflammation, CNRS ERL8252, Faculté de Médecine site Bichat, Université de Paris, Inserm UMR1149, 16 rue Henri Huchard, F-75018 Paris, France; (S.V.); (M.B.); (J.E.M.-H.); (A.E.G.); (M.B.); (N.C.); (E.D.)
- Laboratoire d’Excellence Inflamex, Université de Paris, F-75018 Paris, France
| | - Alaa El Ghoneimi
- Centre de Recherche sur l’inflammation, CNRS ERL8252, Faculté de Médecine site Bichat, Université de Paris, Inserm UMR1149, 16 rue Henri Huchard, F-75018 Paris, France; (S.V.); (M.B.); (J.E.M.-H.); (A.E.G.); (M.B.); (N.C.); (E.D.)
- Laboratoire d’Excellence Inflamex, Université de Paris, F-75018 Paris, France
- Department of Pediatric Surgery and Urology, Hôpital Universitaire Robert Debré, Assistance Publique—Hôpitaux de Paris (APHP), F-75019 Paris, France
| | - Marc Benhamou
- Centre de Recherche sur l’inflammation, CNRS ERL8252, Faculté de Médecine site Bichat, Université de Paris, Inserm UMR1149, 16 rue Henri Huchard, F-75018 Paris, France; (S.V.); (M.B.); (J.E.M.-H.); (A.E.G.); (M.B.); (N.C.); (E.D.)
- Laboratoire d’Excellence Inflamex, Université de Paris, F-75018 Paris, France
| | - Nicolas Charles
- Centre de Recherche sur l’inflammation, CNRS ERL8252, Faculté de Médecine site Bichat, Université de Paris, Inserm UMR1149, 16 rue Henri Huchard, F-75018 Paris, France; (S.V.); (M.B.); (J.E.M.-H.); (A.E.G.); (M.B.); (N.C.); (E.D.)
- Laboratoire d’Excellence Inflamex, Université de Paris, F-75018 Paris, France
| | - Eric Daugas
- Centre de Recherche sur l’inflammation, CNRS ERL8252, Faculté de Médecine site Bichat, Université de Paris, Inserm UMR1149, 16 rue Henri Huchard, F-75018 Paris, France; (S.V.); (M.B.); (J.E.M.-H.); (A.E.G.); (M.B.); (N.C.); (E.D.)
- Laboratoire d’Excellence Inflamex, Université de Paris, F-75018 Paris, France
- Service de Néphrologie, Groupe Hospitalier Universitaire Bichat-Claude Bernard, Assistance Publique—Hôpitaux de Paris (APHP), F-75019 Paris, France
| | - Ulrich Blank
- Centre de Recherche sur l’inflammation, CNRS ERL8252, Faculté de Médecine site Bichat, Université de Paris, Inserm UMR1149, 16 rue Henri Huchard, F-75018 Paris, France; (S.V.); (M.B.); (J.E.M.-H.); (A.E.G.); (M.B.); (N.C.); (E.D.)
- Laboratoire d’Excellence Inflamex, Université de Paris, F-75018 Paris, France
| |
Collapse
|
17
|
Gou L, Yue GGL, Puno PT, Lau CBS. A review on the relationship of mast cells and macrophages in breast cancer - Can herbs or natural products facilitate their anti-tumor effects? Pharmacol Res 2020; 164:105321. [PMID: 33285235 DOI: 10.1016/j.phrs.2020.105321] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/05/2020] [Accepted: 11/21/2020] [Indexed: 12/27/2022]
Abstract
Breast cancer is an inflammation-related cancer whose tumor microenvironment is largely infiltrated by inflammatory cells. These inflammatory cells including mast cells and macrophages have been elucidated to be vital participants in breast tumor proliferation, survival, invasion and migration. However, the functions of mast cells and macrophages in breast cancer are quite distinct based on recent data. Mast cells exhibit both anti-tumoral and pro-tumoral functions on breast cancer, while high number of tumor-associated macrophages (TAMs) are strongly correlated with poor prognosis and higher risk of distant metastasis in breast cancer patients. Besides, many natural products/extracts have been reported to regulate mast cells and macrophages. In this review, the roles of mast cells and macrophages play in breast cancer are discussed and a summary of those natural products/herbs regulating the functions of mast cells or macrophages is also presented.
Collapse
Affiliation(s)
- Leilei Gou
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Grace Gar-Lee Yue
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, HKSAR, China; State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, HKSAR, China
| | - Pema Tenzin Puno
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China.
| | - Clara Bik-San Lau
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, HKSAR, China; State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, HKSAR, China.
| |
Collapse
|
18
|
Elieh Ali Komi D, Wöhrl S, Bielory L. Mast Cell Biology at Molecular Level: a Comprehensive Review. Clin Rev Allergy Immunol 2020; 58:342-365. [PMID: 31828527 DOI: 10.1007/s12016-019-08769-2] [Citation(s) in RCA: 219] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mast cells (MCs) are portions of the innate and adaptive immune system derived from bone marrow (BM) progenitors that are rich in cytoplasmic granules. MC maturation, phenotype, and function are determined by their microenvironment. MCs accumulate at inflammatory sites associated with atopy, wound healing, and malignancies. They interact with the external environment and are predominantly located in close proximity of blood vessels and sensory nerves. MCs are key initiators and modulators of allergic, anaphylactic, and other inflammatory reactions, by induction of vasodilation, promoting of vascular permeability, recruitment of inflammatory cells, facilitation of adaptive immune responses, and modulation of angiogenesis, and fibrosis. They express a wide range of receptors, e.g., for IgE (FcεRI), IgG (FcγR), stem cell factor (SCF) (KIT receptor or CD117), complement (including C5aR), and cytokines, that upon activation trigger various signaling pathways. The final consequence of such ligand receptor-based activation of MCs is the release of a broad array of mediators which are classified in three categories. While some mediators are preformed and remain stored in granules such as heparin, histamine, and enzymes mainly chymase and tryptase, others are de novo synthesized only after activation including LTB4, LTD4, PDG2, and PAF, and the cytokines IL-10, IL-8, IL-5, IL-3, IL-1, GM-CSF, TGF-β, VEGF, and TNF-α. Depending on the stimulus, MCs calibrate their pattern of mediator release, modulate the amplification of allergic inflammation, and are involved in the resolution of the immune responses. Here, we review recent findings and reports that help to understand the MC biology, pathology, and physiology of diseases with MC involvement.
Collapse
Affiliation(s)
- Daniel Elieh Ali Komi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Stefan Wöhrl
- Floridsdorf Allergy Center (FAZ), Vienna, Austria
| | - Leonard Bielory
- Department of Medicine and Ophthalmology, Hackensack Meridian School of Medicine at Seton Hall University, 400 Mountain Avenue, Springfield, NJ, 07081-2515, USA.
- Department of Medicine, Thomas Jefferson Universi ty Sidney Kimmel School of Medicine, Philadelphia, PA, USA.
- Rutgers University Center of Environmental Prediction, New Brunswick, NJ, USA.
| |
Collapse
|
19
|
Komi DEA, Mortaz E, Amani S, Tiotiu A, Folkerts G, Adcock IM. The Role of Mast Cells in IgE-Independent Lung Diseases. Clin Rev Allergy Immunol 2020; 58:377-387. [PMID: 32086776 PMCID: PMC7244458 DOI: 10.1007/s12016-020-08779-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mast cells (MCs) are granular cells of the innate immune system which develop from CD34+/CD117+ progenitors and play a role in orchestrating adaptive immune responses. They have a well-known role in allergic reactions following immunoglobulin (Ig)E-mediated activation of the cell-surface expressed IgE high-affinity receptor (FcεRI). MCs can also respond to various other stimuli due to the expression of a variety of receptors including toll-like receptors (TLRs), immunoglobulin (IgG) receptors (FcγR), complement receptors such as C5a (CD88) expressed by skin MCs, neuropeptides receptors including nerve growth factor receptor, (NGFR), cytokines receptors such as (IL)-1R and IL-3R, and chemokines receptors including CCR-1 and CCR-3. MCs release three groups of mediators upon degranulation differentiated according to their chemical composition, storage, and time to release. These include preformed mediators (mainly histamine, tryptase, and chymase), de novo synthesized mediators such as prostaglandin (PG)D2, leukotriene (LT)B4 and LTD4, and cytokines including IL-1β, IL-3, tumor necrosis factor (TNF)α, and transforming growth factor(TGF)-β. Emerging evidence indicates a role for IgE-independent MC activation in the late-stage asthmatic response as well as in non-allergic airway diseases including chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), and lung cancer. MC infiltration/activation has been reported in some, but not all, studies of lung cancer. MC-derived TNF-α possesses tumor-suppressive activity while IL-1β supports tumor progression and metastasis. In IPF lungs, an increase in density of tryptase- and chymase-positive MCs (MCTC) and overexpression of TGF-β support the fibrosis progression. MC-derived chymase activates latent TGF-β that induces the differentiation of fibroblasts to matrix-producing myofibroblasts. In summary, increasing evidence highlights a critical role of MCs in non-allergic diseases that may indicate new approaches for therapy.
Collapse
Affiliation(s)
- Daniel Elieh Ali Komi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Esmaeil Mortaz
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Saeede Amani
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Angelica Tiotiu
- Respiratory Section, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK
| | - Gert Folkerts
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Ian M Adcock
- Respiratory Section, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK.
| |
Collapse
|
20
|
Watson CJF, Maguire ARR, Rouillard MM, Crozier RWE, Yousef M, Bruton KM, Fajardo VA, MacNeil AJ. TAK1 signaling activity links the mast cell cytokine response and degranulation in allergic inflammation. J Leukoc Biol 2020; 107:649-661. [PMID: 32108376 DOI: 10.1002/jlb.2a0220-401rrr] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 02/13/2020] [Accepted: 02/15/2020] [Indexed: 12/23/2022] Open
Abstract
Mast cells drive the inappropriate immune response characteristic of allergic inflammatory disorders via release of pro-inflammatory mediators in response to environmental cues detected by the IgE-FcεRI complex. The role of TGF-β-activated kinase 1 (TAK1), a participant in related signaling in other contexts, remains unknown in allergy. We detect novel activation of TAK1 at Ser412 in response to IgE-mediated activation under SCF-c-kit potentiation in a mast cell-driven response characteristic of allergic inflammation, which is potently blocked by TAK1 inhibitor 5Z-7-oxozeaenol (OZ). We, therefore, interrogated the role of TAK1 in a series of mast cell-mediated responses using IgE-sensitized murine bone marrow-derived mast cells, stimulated with allergen under several TAK1 inhibition strategies. TAK1 inhibition by OZ resulted in significant impairment in the phosphorylation of MAPKs p38, ERK, and JNK; and mediation of the NF-κB pathway via IκBα. Impaired gene expression and near abrogation in release of pro-inflammatory cytokines TNF, IL-6, IL-13, and chemokines CCL1, and CCL2 was detected. Finally, a significant inhibition of mast cell degranulation, accompanied by an impairment in calcium mobilization, was observed in TAK1-inhibited cells. These results suggest that TAK1 acts as a signaling node, not only linking the MAPK and NF-κB pathways in driving the late-phase response, but also initiation of the degranulation mechanism of the mast cell early-phase response following allergen recognition and may warrant consideration in future therapeutic development.
Collapse
Affiliation(s)
- Colton J F Watson
- Department of Health Sciences, Faculty of Applied Health Sciences, Cairns Family Health and Bioscience Research Complex, Brock University, Niagara Region, Ontario, Canada
| | - Aindriu R R Maguire
- Department of Health Sciences, Faculty of Applied Health Sciences, Cairns Family Health and Bioscience Research Complex, Brock University, Niagara Region, Ontario, Canada
| | - Melissa M Rouillard
- Department of Health Sciences, Faculty of Applied Health Sciences, Cairns Family Health and Bioscience Research Complex, Brock University, Niagara Region, Ontario, Canada
| | - Robert W E Crozier
- Department of Health Sciences, Faculty of Applied Health Sciences, Cairns Family Health and Bioscience Research Complex, Brock University, Niagara Region, Ontario, Canada
| | - Michael Yousef
- Department of Health Sciences, Faculty of Applied Health Sciences, Cairns Family Health and Bioscience Research Complex, Brock University, Niagara Region, Ontario, Canada
| | - Kelly M Bruton
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Val A Fajardo
- Department of Kinesiology, Faculty of Applied Health Sciences, Cairns Family Health and Bioscience Research Complex, Brock University, Niagara Region, Ontario, Canada
| | - Adam J MacNeil
- Department of Health Sciences, Faculty of Applied Health Sciences, Cairns Family Health and Bioscience Research Complex, Brock University, Niagara Region, Ontario, Canada
| |
Collapse
|
21
|
Phellinus linteus Grown on Germinated Brown Rice Inhibits IgE-Mediated Allergic Activity through the Suppression of Fc εRI-Dependent Signaling Pathway In Vitro and In Vivo. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:1485015. [PMID: 31871471 PMCID: PMC6907041 DOI: 10.1155/2019/1485015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 08/07/2019] [Accepted: 10/17/2019] [Indexed: 12/12/2022]
Abstract
Phellinus linteus (PL) has been used as a traditional herbal medicine owing to its immune regulatory activity. Previous studies reported that PL grown on germinated brown rice (PBR) exerted immunomodulatory, anticancer, and anti-inflammatory activities. However, role of PBR on type I hypersensitive reactions has not been studied yet. We found that PBR contained more polyphenolic compounds than PL extract. Among fractions, PBR butanol fraction (PBR-BuOH) significantly contained the most amounts of total polyphenolic contents compared with all extracts or fractions. In this study, anti-allergic activity of PBR-BuOH was examined using in vitro and in vivo models of immunoglobulin E/antigen- (IgE/Ag-) stimulated allergy. The inhibitory activity of degranulation was higher in PBR-BuOH (IC50 41.31 ± 0.14 μg/mL) than in PL-BuOH (IC50 108.07 ± 8.98 μg/mL). We observed that PBR-BuOH suppressed calcium influx and the level of TNF-α and IL-4 mRNA expression in a dose-dependent manner. The phosphorylation of Fyn, Gab2, PI3K, Syk, and IκB protein is reduced by PBR-BuOH. Oral administration of PBR-BuOH inhibited allergic reactions including the extravasation of Evans blue dye, ear swelling, and infiltration of immune cells in mice with passive cutaneous anaphylaxis (PCA). These findings suggest that PBR-BuOH might be used as a functional food, a health supplement, or a drug for preventing type I hypersensitive allergic disease.
Collapse
|
22
|
Harcha PA, López X, Sáez PJ, Fernández P, Barría I, Martínez AD, Sáez JC. Pannexin-1 Channels Are Essential for Mast Cell Degranulation Triggered During Type I Hypersensitivity Reactions. Front Immunol 2019; 10:2703. [PMID: 31849935 PMCID: PMC6896164 DOI: 10.3389/fimmu.2019.02703] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 11/04/2019] [Indexed: 12/25/2022] Open
Abstract
Mast cells (MCs) release pro-inflammatory mediators through a process called degranulation response. The latter may be induced by several conditions, including antigen recognition through immunoglobulin E (IgE) or "cross-linking," classically associated with Type I hypersensitivity reactions. Early in this reaction, Ca2+ influx and subsequent increase of intracellular free Ca2+ concentration are essential for MC degranulation. Several membrane channels that mediate Ca2+ influx have been proposed, but their role remains elusive. Here, we evaluated the possible contribution of pannexin-1 channels (Panx1 Chs), well-known as ATP-releasing channels, in the increase of intracellular Ca2+ triggered during cross-linking reaction of MCs. The contribution of Panx1 Chs in the degranulation response was evaluated in MCs from wild type (WT) and Panx1 knock out (Panx1-/-) mice after anti-ovalbumin (OVA) IgE sensitization. Notably, the degranulation response (toluidine blue and histamine release) was absent in Panx1-/- MCs. Moreover, WT MCs showed a rapid and transient increase in Ca2+ signal followed by a sustained increase after antigen stimulation. However, the sustained increase in Ca2+ signal triggered by OVA was absent in Panx1-/- MCs. Furthermore, OVA stimulation increased the membrane permeability assessed by dye uptake, a prevented response by Panx1 Ch but not by connexin hemichannel blockers and without effect on Panx1-/- MCs. Interestingly, the increase in membrane permeability of WT MCs was also prevented by suramin, a P2 purinergic inhibitor, suggesting that Panx1 Chs act as ATP-releasing channels impermeable to Ca2+. Accordingly, stimulation with exogenous ATP restored the degranulation response and sustained increase in Ca2+ signal of OVA stimulated Panx1-/- MCs. Moreover, opening of Panx1 Chs in Panx1 transfected HeLa cells increased dye uptake and ATP release but did not promote Ca2+ influx, confirming that Panx1 Chs permeable to ATP are not permeable to Ca2+. These data strongly suggest that during antigen recognition, Panx1 Chs contribute to the sustained Ca2+ signal increase via release of ATP that activates P2 receptors, playing a critical role in the sequential events that leads to degranulation response during Type I hypersensitivity reactions.
Collapse
Affiliation(s)
- Paloma A Harcha
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Facultad de Ciencias, Instituto de Neurociencias and Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Ximena López
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Facultad de Ciencias, Instituto de Neurociencias and Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Pablo J Sáez
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Institut Curie, PSL Research University, CNRS, UMR 144, Paris, France.,Institut Pierre-Gilles de Gennes, PSL Research University, Paris, France
| | - Paola Fernández
- Facultad de Ciencias, Instituto de Neurociencias and Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Iván Barría
- Facultad de Ciencias, Instituto de Neurociencias and Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Agustín D Martínez
- Facultad de Ciencias, Instituto de Neurociencias and Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Juan C Sáez
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Facultad de Ciencias, Instituto de Neurociencias and Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
23
|
Effect of Rhus verniciflua Extract on IgE-Antigen-Mediated Allergic Reaction in Rat Basophilic Leukemic RBL-2H3 Mast Cells and Passive Cutaneous Anaphylaxis in Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:6497691. [PMID: 31687037 PMCID: PMC6811800 DOI: 10.1155/2019/6497691] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/03/2019] [Accepted: 08/26/2019] [Indexed: 01/10/2023]
Abstract
Rhus verniciflua is widely known for its antioxidant, antibacterial, anticancer, and antiaging efficacy and α-glucosidase inhibition. This study was designed whether Rhus verniciflua extracts inhibit the IgE-antigen-mediated allergic reaction in RBL-2H3 mast cells, and it further investigated the FcεRI- and arachidonate-signaling by which Rhus verniciflua extracts exert its antiallergic effects. IgE-antigen-sensitized RBL-2H3 mast cells were investigated for the cytotoxicity of Rhus verniciflua extracts and β-hexosaminidase release, and inflammatory mediators (e.g., TNF-α, IL-4, IL-6, histamine, and PGD2) were then assessed. Additionally, we examined expressions of genes involved in arachidonate- and FcεRI-signaling pathway in RBL-2H3. Rhus verniciflua extracts inhibited β-hexosaminidase release and production of the inflammatory mediators in RBL-2H3. Rhus verniciflua extracts reduced amounts of histamine and expressions of FcεRI signaling-related genes such as Lyn and Syk and phosphorylation of extracellular signal-regulated kinase in mast cells. Finally, in late allergic responses, Rhus verniciflua extracts reduced PGD2 release and COX-2 and cPLA2 phosphorylation expressions from IgE-antigen-mediated mast cells. Lastly, 250–500 mg/kg RVE significantly attenuated the Ag/IgE-induced passive cutaneous anaphylaxis (PCA) reaction in mice. These findings provide novel information on the molecular mechanisms underlying the antiallergy properties of Rhus verniciflua extracts in FcɛRI-mediated allergic reaction.
Collapse
|
24
|
IL-33-mediated mast cell activation promotes gastric cancer through macrophage mobilization. Nat Commun 2019; 10:2735. [PMID: 31227713 PMCID: PMC6588585 DOI: 10.1038/s41467-019-10676-1] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 05/22/2019] [Indexed: 12/31/2022] Open
Abstract
The contribution of mast cells in the microenvironment of solid malignancies remains controversial. Here we functionally assess the impact of tumor-adjacent, submucosal mast cell accumulation in murine and human intestinal-type gastric cancer. We find that genetic ablation or therapeutic inactivation of mast cells suppresses accumulation of tumor-associated macrophages, reduces tumor cell proliferation and angiogenesis, and diminishes tumor burden. Mast cells are activated by interleukin (IL)-33, an alarmin produced by the tumor epithelium in response to the inflammatory cytokine IL-11, which is required for the growth of gastric cancers in mice. Accordingly, ablation of the cognate IL-33 receptor St2 limits tumor growth, and reduces mast cell-dependent production and release of the macrophage-attracting factors Csf2, Ccl3, and Il6. Conversely, genetic or therapeutic macrophage depletion reduces tumor burden without affecting mast cell abundance. Therefore, tumor-derived IL-33 sustains a mast cell and macrophage-dependent signaling cascade that is amenable for the treatment of gastric cancer. Mast cells within the tumor microenvironment have controversial roles. Here, the authors show, using genetic mouse models, that in gastric cancer, mast cells at the periphery of the tumors are activated via cancer cell produced-IL33 and promote tumorigenesis by recruiting macrophages within the tumors.
Collapse
|
25
|
Regulation of Microtubule Nucleation in Mouse Bone Marrow-Derived Mast Cells by Protein Tyrosine Phosphatase SHP-1. Cells 2019; 8:cells8040345. [PMID: 30979083 PMCID: PMC6523986 DOI: 10.3390/cells8040345] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 03/30/2019] [Accepted: 04/10/2019] [Indexed: 12/20/2022] Open
Abstract
The antigen-mediated activation of mast cells initiates signaling events leading to their degranulation, to the release of inflammatory mediators, and to the synthesis of cytokines and chemokines. Although rapid and transient microtubule reorganization during activation has been described, the molecular mechanisms that control their rearrangement are largely unknown. Microtubule nucleation is mediated by γ-tubulin complexes. In this study, we report on the regulation of microtubule nucleation in bone marrow-derived mast cells (BMMCs) by Src homology 2 (SH2) domain-containing protein tyrosine phosphatase 1 (SHP-1; Ptpn6). Reciprocal immunoprecipitation experiments and pull-down assays revealed that SHP-1 is present in complexes containing γ-tubulin complex proteins and protein tyrosine kinase Syk. Microtubule regrowth experiments in cells with deleted SHP-1 showed a stimulation of microtubule nucleation, and phenotypic rescue experiments confirmed that SHP-1 represents a negative regulator of microtubule nucleation in BMMCs. Moreover, the inhibition of the SHP-1 activity by inhibitors TPI-1 and NSC87877 also augmented microtubule nucleation. The regulation was due to changes in γ-tubulin accumulation. Further experiments with antigen-activated cells showed that the deletion of SHP-1 stimulated the generation of microtubule protrusions, the activity of Syk kinase, and degranulation. Our data suggest a novel mechanism for the suppression of microtubule formation in the later stages of mast cell activation.
Collapse
|
26
|
Sanchez E, Gonzalez EA, Moreno DS, Cardenas RA, Ramos MA, Davalos AJ, Manllo J, Rodarte AI, Petrova Y, Moreira DC, Chavez MA, Tortoriello A, Lara A, Gutierrez BA, Burns AR, Heidelberger R, Adachi R. Syntaxin 3, but not syntaxin 4, is required for mast cell-regulated exocytosis, where it plays a primary role mediating compound exocytosis. J Biol Chem 2019; 294:3012-3023. [PMID: 30563839 PMCID: PMC6398129 DOI: 10.1074/jbc.ra118.005532] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 11/30/2018] [Indexed: 11/06/2022] Open
Abstract
Mast cells (MCs) participate in allergy, inflammation, and defense against pathogens. They release multiple immune mediators via exocytosis, a process that requires SNARE proteins, including syntaxins (Stxs). The identity of the Stxs involved in MC exocytosis remains controversial. Here, we studied the roles of Stx3 and -4 in fully developed MCs from conditional knockout mice by electrophysiology and EM, and found that Stx3, and not Stx4, is crucial for MC exocytosis. The main defect seen in Stx3-deficient MCs was their inability to engage multigranular compound exocytosis, while leaving most single-vesicle fusion events intact. We used this defect to show that this form of exocytosis is not only required to accelerate MC degranulation but also essential to achieve full degranulation. The exocytic defect was severe but not absolute, indicating that an Stx other than Stx3 and -4 is also required for exocytosis in MCs. The removal of Stx3 affected only regulated exocytosis, leaving other MC effector responses intact, including the secretion of cytokines via constitutive exocytosis. Our in vivo model of passive systemic anaphylaxis showed that the residual exocytic function of Stx3-deficient MCs was sufficient to drive a full anaphylactic response in mice.
Collapse
Affiliation(s)
- Elizabeth Sanchez
- From the Department of Pulmonary Medicine, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo León 64710, México
| | - Erika A Gonzalez
- From the Department of Pulmonary Medicine, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo León 64710, México
| | - David S Moreno
- From the Department of Pulmonary Medicine, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo León 64710, México
| | - Rodolfo A Cardenas
- From the Department of Pulmonary Medicine, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo León 64710, México
| | - Marco A Ramos
- From the Department of Pulmonary Medicine, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo León 64710, México
| | - Alfredo J Davalos
- From the Department of Pulmonary Medicine, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo León 64710, México
| | - John Manllo
- From the Department of Pulmonary Medicine, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo León 64710, México
| | - Alejandro I Rodarte
- From the Department of Pulmonary Medicine, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo León 64710, México
| | - Youlia Petrova
- From the Department of Pulmonary Medicine, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| | - Daniel C Moreira
- From the Department of Pulmonary Medicine, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo León 64710, México
| | - Miguel A Chavez
- From the Department of Pulmonary Medicine, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo León 64710, México
| | - Alejandro Tortoriello
- From the Department of Pulmonary Medicine, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo León 64710, México
| | - Adolfo Lara
- the Department of Neurobiology and Anatomy, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas 77030, and
| | - Berenice A Gutierrez
- From the Department of Pulmonary Medicine, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo León 64710, México
| | - Alan R Burns
- the College of Optometry, University of Houston, Houston, Texas 77204
| | - Ruth Heidelberger
- the Department of Neurobiology and Anatomy, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas 77030, and
| | - Roberto Adachi
- From the Department of Pulmonary Medicine, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030,
| |
Collapse
|
27
|
Cruz SL, Sánchez-Miranda E, Castillo-Arellano JI, Cervantes-Villagrana RD, Ibarra-Sánchez A, González-Espinosa C. Anandamide inhibits FcεRI-dependent degranulation and cytokine synthesis in mast cells through CB 2 and GPR55 receptor activation. Possible involvement of CB 2-GPR55 heteromers. Int Immunopharmacol 2018; 64:298-307. [PMID: 30243065 DOI: 10.1016/j.intimp.2018.09.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 09/04/2018] [Accepted: 09/06/2018] [Indexed: 11/25/2022]
Abstract
Activation of high affinity receptor for IgE (FcεRI) by IgE/antigen complexes in mast cells (MCs) leads to the release of preformed pro-inflammatory mediators stored in granules by a Ca2+-dependent process known as anaphylactic degranulation. Degranulation inhibition has been proposed as a strategy to control allergies and chronic inflammation conditions. Cannabinoids are important inhibitors of inflammatory reactions but their effects on IgE/Ag-mediated MCs responses are not well described. In this study, we analyzed the effect of the endocannabinoid anandamide (AEA), the selective CB2 receptor agonist HU308, and the GPR55 receptor agonist lysophosphatidylinositol (LPI) on FcεRI-induced activation in murine bone marrow-derived mast cells (BMMCs). Our results show that AEA, HU380 and LPI inhibited FcεRI-induced degranulation in a concentration-dependent manner. This effect was mediated by CB2 and GPR55 receptor activation through a mechanism insensitive to pertussis toxin. Degranulation inhibition was prevented by CB2 and GPR55 antagonism, but not by CB1 receptor blockage. AEA also inhibited calcium-dependent cytokine mRNA synthesis induced by FcεRI crosslinking, without affecting early phosphorylation events. In addition, AEA, HU308 and LPI inhibited intracellular Ca2+ rise in response to IgE/Ag. CB2 and GPR55 receptor antagonism could not prevent the inhibition produced by AEA and HU308, but partially blocked the one caused by LPI. These results indicate that AEA inhibits IgE/Ag-induced degranulation through a mechanism that includes the participation of CB2 and GPR55 receptors acting in close crosstalk, and show that CB2-GPR55 heteromers are important negative regulators of FcεRI-induced responses in MCs.
Collapse
Affiliation(s)
- Silvia L Cruz
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Sede Sur, Mexico.
| | - Elizabeth Sánchez-Miranda
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Sede Sur, Mexico; Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana Xochimilco, Mexico City, Mexico
| | - Jorge Ivan Castillo-Arellano
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Sede Sur, Mexico
| | - Rodolfo Daniel Cervantes-Villagrana
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Sede Sur, Mexico
| | - Alfredo Ibarra-Sánchez
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Sede Sur, Mexico
| | - Claudia González-Espinosa
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Sede Sur, Mexico.
| |
Collapse
|
28
|
Bagher M, Larsson-Callerfelt AK, Rosmark O, Hallgren O, Bjermer L, Westergren-Thorsson G. Mast cells and mast cell tryptase enhance migration of human lung fibroblasts through protease-activated receptor 2. Cell Commun Signal 2018; 16:59. [PMID: 30219079 PMCID: PMC6139170 DOI: 10.1186/s12964-018-0269-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 08/27/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Mast cells may activate fibroblasts and contribute to remodeling processes in the lung. However, the mechanism behind these actions needs to be further investigated. Fibroblasts are major regulators of on-going remodeling processes. Protease activated receptor 2 (PAR2) expressed by fibroblasts may be activated by serine proteases, such as the mast cell mediator tryptase. The objective in this study was to investigate the effects of mast cells and specifically mast cell tryptase on fibroblast migration and the role of PAR2 activation. METHODS Human lung fibroblasts (HFL-1) were cultured together with human peripheral blood-derived mast cells or LAD2 mast cells and stimulated with either conditioned medium from LAD2 cells or tryptase. Analyses of immunological stimulation of mast cells by IgE/anti IgE in the co-culture system were also performed. The importance of PAR2 activation by mast cells and mast cell tryptase for the migratory effects of fibroblasts was investigated by pre-treatment with the PAR2 antagonist P2pal-18S. The expression of PAR2 was analyzed on fibroblasts and mast cells. RESULTS The migratory capacity of HFL-1 cells was enhanced by blood-derived mast cells (p < 0.02), LAD2 cells (p < 0.001), conditioned medium (p < 0.05) and tryptase (p < 0.006). P2pal-18S decreased the induced migration caused by mast cells (p < 0.001) and tryptase (p < 0.001) and the expression of PAR2 was verified in HFL-1 cells. Mast cells immunologically stimulated with IgE/Anti IgE had no further effects on fibroblast migration. CONCLUSIONS Mast cells and the mast cell mediator tryptase may have crucial roles in inducing lung fibroblast migration via PAR-2 activation, which may contribute to remodeling processes in chronic lung diseases.
Collapse
Affiliation(s)
- Mariam Bagher
- Unit of Lung Biology, Department of Experimental Medical Sciences, Lund University, BMC C12, 221 84, Lund, Sweden. .,Department of Respiratory Medicine and Allergology, Skåne University Hospital, Lund University, Lund, Sweden.
| | | | - Oskar Rosmark
- Unit of Lung Biology, Department of Experimental Medical Sciences, Lund University, BMC C12, 221 84, Lund, Sweden
| | - Oskar Hallgren
- Department of Respiratory Medicine and Allergology, Skåne University Hospital, Lund University, Lund, Sweden
| | - Leif Bjermer
- Department of Respiratory Medicine and Allergology, Skåne University Hospital, Lund University, Lund, Sweden
| | - Gunilla Westergren-Thorsson
- Unit of Lung Biology, Department of Experimental Medical Sciences, Lund University, BMC C12, 221 84, Lund, Sweden
| |
Collapse
|
29
|
Hu Frisk JM, Kjellén L, Melo FR, Öhrvik H, Pejler G. Mitogen-Activated Protein Kinase Signaling Regulates Proteoglycan Composition of Mast Cell Secretory Granules. Front Immunol 2018; 9:1670. [PMID: 30073001 PMCID: PMC6060404 DOI: 10.3389/fimmu.2018.01670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/04/2018] [Indexed: 11/25/2022] Open
Abstract
Mast cells (MCs) are characterized by an abundance of lysosome-like secretory granules filled with immunomodulatory compounds including histamine, cytokines, lysosomal hydrolases, MC-restricted proteases, and serglycin proteoglycans. The latter are essential for promoting the storage of other granule compounds and are built up of the serglycin core protein to which highly sulfated and thereby negatively charged glycosaminoglycan (GAG) side chains of heparin or chondroitin sulfate type are attached. In the search for mechanisms operating in regulating MC granule homeostasis, we here investigated the role of mitogen-activated protein kinase (MAPK) signaling. We show that inhibition of MEK1/2 (a MAPK kinase) leads to increased metachromatic staining of MC granules, indicative of increased proteoglycan content. Indeed, MEK1/2 inhibition caused a profound increase in the expression of the gene coding for the serglycin core protein and of genes coding for various enzymes involved in the biosynthesis/sulfation of the GAGs attached to the serglycin core protein. This was accompanied by corresponding increases in the levels of the respective GAGs. Deletion of the serglycin core protein abrogated the induction of enzymes operative in proteoglycan synthesis, indicating that availability of the serglycin proteoglycan core protein has a regulatory function impacting on the expression of the various serglycin-modifying enzymes. MEK1/2 inhibition also caused a substantial increase in the expression of granule-localized, proteoglycan-binding proteases. Altogether, this study identifies a novel role for MAPK signaling in regulating the content of secretory granules in MCs.
Collapse
Affiliation(s)
- Jun Mei Hu Frisk
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Lena Kjellén
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Fabio R Melo
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Helena Öhrvik
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Gunnar Pejler
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.,Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
30
|
Rubíková Z, Sulimenko V, Paulenda T, Dráber P. Mast Cell Activation and Microtubule Organization Are Modulated by Miltefosine Through Protein Kinase C Inhibition. Front Immunol 2018; 9:1563. [PMID: 30038620 PMCID: PMC6046399 DOI: 10.3389/fimmu.2018.01563] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 06/25/2018] [Indexed: 12/01/2022] Open
Abstract
Mast cells play an effector role in innate immunity, allergy, and inflammation. Antigen-mediated activation of mast cells initiates signaling events leading to Ca2+ response and the release of inflammatory and allergic mediators from granules. Diseases associated with deregulated mast cell functions are hard to treat and there is an increasing demand for new therapeutic strategies. Miltefosine (hexadecylphosphocholine) is a new candidate for treatment of mast cell-driven diseases as it inhibits activation of mast cells. It has been proposed that miltefosine acts as a lipid raft modulator through its interference with the structural organization of surface receptors in the cell membrane. However, molecular mechanisms of its action are not fully understood. Here, we report that in antigen-activated bone marrow-derived mast cells (BMMCs), miltefosine inhibits degranulation, reorganization of microtubules, as well as antigen-induced chemotaxis. While aggregation and tyrosine phosphorylation of IgE receptors were suppressed in activated cells pre-treated with miltefosine, overall tyrosine phosphorylation levels of Lyn and Syk kinases, and Ca2+ influx were not inhibited. In contrast, lipid raft disruptor methyl-β-cyclodextrin attenuated the Ca2+ influx. Tagged-miltefosine rapidly localized into the cell interior, and live-cell imaging of BMMCs with labeled intracellular granules disclosed that miltefosine inhibited movement of some granules. Immunoprecipitation and in vitro kinase assays revealed that miltefosine inhibited Ca2+- and diacylglycerol-regulated conventional protein kinase C (cPKC) isoforms that are important for mast cell degranulation. Inhibition of cPKCs by specific inhibitor Ly333531 affected activation of BMMCs in the same way as miltefosine. Collectively, our data suggest that miltefosine modulates mast cells both at the plasma membrane and in the cytosol by inhibition of cPKCs. This alters intracellular signaling pathway(s) directed to microtubules, degranulation, and migration.
Collapse
Affiliation(s)
- Zuzana Rubíková
- Department of Biology of Cytoskeleton, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czechia
| | - Vadym Sulimenko
- Department of Biology of Cytoskeleton, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czechia
| | - Tomáš Paulenda
- Department of Signal Transduction, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czechia
| | - Pavel Dráber
- Department of Biology of Cytoskeleton, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
31
|
Madera-Salcedo IK, Danelli L, Tiwari N, Dema B, Pacreau E, Vibhushan S, Birnbaum J, Agabriel C, Liabeuf V, Klingebiel C, Menasche G, Macias-Silva M, Benhamou M, Charles N, González-Espinosa C, Vitte J, Blank U. Tomosyn functions as a PKCδ-regulated fusion clamp in mast cell degranulation. Sci Signal 2018; 11:11/537/eaan4350. [DOI: 10.1126/scisignal.aan4350] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
32
|
Kim OK, Lee M, Kwon HO, Lee D, Park J, Kim E, You Y, Lim YT, Jun W, Lee J. Costaria costata Extract Suppresses Development of Atopic Dermatitis in chloro-2,4-dinitrobenzene-treated NC/Nga Mice. Skin Pharmacol Physiol 2018; 31:212-219. [PMID: 29791915 DOI: 10.1159/000487643] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 02/13/2018] [Indexed: 12/26/2022]
Abstract
We investigated the potential effects of Costaria costata (CC) on atopic dermatitis (AD) development in chloro-2,4-dinitrobenzene (DNCB)-treated NC/Nga mice. CC is a brown alga distributed across the seas of Korea, China, and Japan. A total of 40 mice were randomly assigned to 5 groups with 8 mice per group: untreated Balb/c mice, AD control (0.1% w/v DNCB-treated NC/Nga mice), positive control (i.e., DNCB-treated NC/Nga mice fed a dietary supplement of 66.6 mg/kg of body weight [b.w.] of CJLP133), DNCB-treated NC/Nga mice fed a dietary supplement of 100 mg/kg b.w. of CCE10 (CCE10 100), and DNCB-treated mice fed a dietary supplement of 300 mg/kg b.w. of CCE10 (CCE10 300) groups. The CCE10 100 and CCE10 300 treatment groups suppressed AD development including clinical and histopathological changes and a reduction in skin hydration induced by DNCB. In addition, Th2 cytokine production in primary splenocytes, serum IgE and histamine production, and mast cell infiltration into the skin were suppressed in the CCE10 300 mice compared to the CCE10 100 mice. Our finding demonstrated an inhibitory effect of CCE10 in AD development by means of improving the Th1/Th2 cytokine balance and anti-inflammatory effect in an in vivo model.
Collapse
Affiliation(s)
- Ok-Kyung Kim
- Department of Medical Nutrition, Kyung Hee University, Yongin, Republic of Korea
- Division of Food and Nutrition, Chonnam National University, Gwangju, Republic of Korea
- Research Institute for Human Ecology, Chonnam National University, Gwangju, Republic of Korea
| | - Minhee Lee
- Department of Medical Nutrition, Kyung Hee University, Yongin, Republic of Korea
| | - Han Ol Kwon
- Department of Medical Nutrition, Kyung Hee University, Yongin, Republic of Korea
| | - Dasom Lee
- Department of Medical Nutrition, Kyung Hee University, Yongin, Republic of Korea
| | - Jeongjin Park
- Division of Food and Nutrition, Chonnam National University, Gwangju, Republic of Korea
- Research Institute for Human Ecology, Chonnam National University, Gwangju, Republic of Korea
| | - Eungpil Kim
- Marine Biotechnology Research Center, Wando, Republic of Korea
| | - Yanghee You
- Division of Food and Nutrition, Chonnam National University, Gwangju, Republic of Korea
| | - Young Tae Lim
- Marine Biotechnology Research Center, Wando, Republic of Korea
| | - Woojin Jun
- Division of Food and Nutrition, Chonnam National University, Gwangju, Republic of Korea
- Research Institute for Human Ecology, Chonnam National University, Gwangju, Republic of Korea
| | - Jeongmin Lee
- Department of Medical Nutrition, Kyung Hee University, Yongin, Republic of Korea
| |
Collapse
|
33
|
S1P₄ Regulates Passive Systemic Anaphylaxis in Mice but Is Dispensable for Canonical IgE-Mediated Responses in Mast Cells. Int J Mol Sci 2018; 19:ijms19051279. [PMID: 29693558 PMCID: PMC5983835 DOI: 10.3390/ijms19051279] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/18/2018] [Accepted: 04/18/2018] [Indexed: 02/07/2023] Open
Abstract
Mast cells are key players in the development of inflammatory allergic reactions. Cross-linking of the high-affinity receptor for IgE (FcεRI) on mast cells leads to the generation and secretion of the sphingolipid mediator, sphingosine-1-phosphate (S1P) which is able, in turn, to transactivate its receptors on mast cells. Previous reports have identified the expression of two of the five receptors for S1P on mast cells, S1P1 and S1P2, with functions in FcεRI-mediated chemotaxis and degranulation, respectively. Here, we show that cultured mouse mast cells also express abundant message for S1P4. Genetic deletion of S1pr4 did not affect the differentiation of bone marrow progenitors into mast cells or the proliferation of mast cells in culture. A comprehensive characterization of IgE-mediated responses in S1P4-deficient bone marrow-derived and peritoneal mouse mast cells indicated that this receptor is dispensable for mast cell degranulation, cytokine/chemokine production and FcεRI-mediated chemotaxis in vitro. However, interleukin-33 (IL-33)-mediated enhancement of IgE-induced degranulation was reduced in S1P4-deficient peritoneal mast cells, revealing a potential negative regulatory role for S1P4 in an IL-33-rich environment. Surprisingly, genetic deletion of S1pr4 resulted in exacerbation of passive systemic anaphylaxis to IgE/anti-IgE in mice, a phenotype likely related to mast cell-extrinsic influences, such as the high circulating levels of IgE in these mice which increases FcεRI expression and consequently the extent of the response to FcεRI engagement. Thus, we provide evidence that S1P4 modulates anaphylaxis in an unexpected manner that does not involve regulation of mast cell responsiveness to IgE stimulation.
Collapse
|
34
|
The combined action of mast cell chymase, tryptase and carboxypeptidase A3 protects against melanoma colonization of the lung. Oncotarget 2018; 8:25066-25079. [PMID: 28212574 PMCID: PMC5421910 DOI: 10.18632/oncotarget.15339] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 01/19/2017] [Indexed: 11/25/2022] Open
Abstract
Mast cell secretory granules are densely packed with various bioactive mediators including proteases of chymase, tryptase and CPA3 type. Previous studies have indicated that mast cells can affect the outcome of melanoma but the contribution of the mast cell granule proteases to such effects has not been clear. Here we addressed this issue by assessing mice lacking either the chymase Mcpt4, the tryptase Mcpt6 or carboxypeptidase A3 (Cpa3), as well as mice simultaneously lacking all three proteases, in a model of melanoma dissemination from blood to the lung. Although mice with individual deficiency in the respective proteases did not differ significantly from wildtype mice in the extent of melanoma colonization, mice with multiple protease deficiency (Mcpt4/Mcpt6/Cpa3-deficient) exhibited a higher extent of melanoma colonization in lungs as compared to wildtype animals. This was supported by higher expression of melanoma-specific genes in lungs of Mcpt4/Mcpt6/CPA3-deficient vs. wildtype mice. Cytokine profiling showed that the levels of CXCL16, a chemokine with effects on T cell populations and NKT cells, were significantly lower in lungs of Mcpt4/Mcpt6/Cpa3-deficient animals vs. controls, suggesting that multiple mast cell protease deficiency might affect T cell or NKT cell populations. In line with this, we found that the Mcpt4/Mcpt6/Cpa3-deficiency was associated with a reduction in cells expressing CD1d, a MHC class 1-like molecule that is crucial for presenting antigen to invariant NKT (iNKT) cells. Together, these findings indicate a protective role of mast cell-specific proteases in melanoma dissemination, and suggest that this effect involves a CXCL16/CD1d/NKT cell axis.
Collapse
|
35
|
Mitra ED, Whitehead SC, Holowka D, Baird B, Sethna JP. Computation of a Theoretical Membrane Phase Diagram and the Role of Phase in Lipid-Raft-Mediated Protein Organization. J Phys Chem B 2018; 122:3500-3513. [PMID: 29432021 DOI: 10.1021/acs.jpcb.7b10695] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Lipid phase heterogeneity in the plasma membrane is thought to be crucial for many aspects of cell signaling, but the physical basis of participating membrane domains such as "lipid rafts" remains controversial. Here we consider a lattice model yielding a phase diagram that includes several states proposed to be relevant for the cell membrane, including microemulsion-which can be related to membrane curvature-and Ising critical behavior. Using a neural-network-based machine learning approach, we compute the full phase diagram of this lattice model. We analyze selected regions of this phase diagram in the context of a signaling initiation event in mast cells: recruitment of the membrane-anchored tyrosine kinase Lyn to a cluster of transmembrane IgE-FcεRI receptors. We find that model membrane systems in microemulsion and Ising critical states can mediate roughly equal levels of kinase recruitment (binding energy ∼ -0.6 kB T), whereas a membrane near a tricritical point can mediate a much stronger kinase recruitment (-1.7 kB T). By comparing several models for lipid heterogeneity within a single theoretical framework, this work points to testable differences between existing models. We also suggest the tricritical point as a new possibility for the basis of membrane domains that facilitate preferential partitioning of signaling components.
Collapse
Affiliation(s)
- Eshan D Mitra
- Department of Chemistry and Chemical Biology , Cornell University , 122 Baker Laboratory , Ithaca , New York 14853 , United States
| | - Samuel C Whitehead
- Department of Physics , Cornell University , 109 Clark Hall , Ithaca , New York 14853 , United States
| | - David Holowka
- Department of Chemistry and Chemical Biology , Cornell University , 122 Baker Laboratory , Ithaca , New York 14853 , United States
| | - Barbara Baird
- Department of Chemistry and Chemical Biology , Cornell University , 122 Baker Laboratory , Ithaca , New York 14853 , United States
| | - James P Sethna
- Department of Physics , Cornell University , 109 Clark Hall , Ithaca , New York 14853 , United States
| |
Collapse
|
36
|
Neuropeptides, Inflammation, and Diabetic Wound Healing: Lessons from Experimental Models and Human Subjects. CONTEMPORARY DIABETES 2018. [DOI: 10.1007/978-3-319-89869-8_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
37
|
Hu Frisk JM, Kjellén L, Kaler SG, Pejler G, Öhrvik H. Copper Regulates Maturation and Expression of an MITF:Tryptase Axis in Mast Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 199:4132-4141. [PMID: 29127151 PMCID: PMC5728160 DOI: 10.4049/jimmunol.1700786] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 10/16/2017] [Indexed: 12/28/2022]
Abstract
Copper has previously been implicated in the regulation of immune responses, but the impact of this metal on mast cells is poorly understood. In this article, we address this issue and show that copper starvation of mast cells causes increased granule maturation, as indicated by higher proteoglycan content, stronger metachromatic staining, and altered ultrastructure in comparison with nontreated cells, whereas copper overload has the opposite effects. In contrast, copper status did not impact storage of histamine in mast cells, nor did alterations in copper levels affect the ability of mast cells to degranulate in response to IgER cross-linking. A striking finding was decreased tryptase content in mast cells with copper overload, whereas copper starvation increased tryptase content. These effects were associated with corresponding shifts in tryptase mRNA levels, suggesting that copper affects tryptase gene regulation. Mechanistically, we found that alterations in copper status affected the expression of microphthalmia-associated transcription factor, a transcription factor critical for driving tryptase expression. We also found evidence supporting the concept that the effects on microphthalmia-associated transcription factor are dependent on copper-mediated modulation of MAPK signaling. Finally, we show that, in MEDNIK syndrome, a condition associated with low copper levels and a hyperallergenic skin phenotype, including pruritis and dermatitis, the number of tryptase-positive mast cells is increased. Taken together, our findings reveal a hitherto unrecognized role for copper in the regulation of mast cell gene expression and maturation.
Collapse
Affiliation(s)
- Jun Mei Hu Frisk
- Department of Medical Biochemistry and Microbiology, Uppsala University, 75123 Uppsala, Sweden
| | - Lena Kjellén
- Department of Medical Biochemistry and Microbiology, Uppsala University, 75123 Uppsala, Sweden
| | - Stephen G Kaler
- Section on Translational Neuroscience, Molecular Medicine Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892; and
| | - Gunnar Pejler
- Department of Medical Biochemistry and Microbiology, Uppsala University, 75123 Uppsala, Sweden
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
| | - Helena Öhrvik
- Department of Medical Biochemistry and Microbiology, Uppsala University, 75123 Uppsala, Sweden;
| |
Collapse
|
38
|
Chen YC, Chang YC, Chang HA, Lin YS, Tsao CW, Shen MR, Chiu WT. Differential Ca 2+ mobilization and mast cell degranulation by FcεRI- and GPCR-mediated signaling. Cell Calcium 2017; 67:31-39. [PMID: 29029788 DOI: 10.1016/j.ceca.2017.08.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 08/03/2017] [Accepted: 08/03/2017] [Indexed: 12/11/2022]
Abstract
Mast cells play a primary role in allergic diseases. During an allergic reaction, mast cell activation is initiated by cross-linking IgE-FcεRI complex by multivalent antigen resulting in degranulation. Additionally, G protein-coupled receptors also induce degranulation upon activation. However, the spatio-temporal relationship between Ca2+ mobilization and mast cell degranulation is not well understood. We investigated the relationship between oscillations in Ca2+ level and mast cell degranulation upon stimulation in rat RBL-2H3 cells. Nile red and Fluo-4 were used as probes for monitoring histamine and intracellular Ca2+ levels, respectively. Histamine release and Ca2+ oscillations in real-time were monitored using total internal reflection fluorescence microscopy (TIRFM). Mast cell degranulation followed immediately after FcεRI and GPCR-mediated Ca2+ increase. FcεRI-induced Ca2+ increase was higher and more sustained than that induced by GPCRs. However, no significant difference in mast cell degranulation rates was observed. Although intracellular Ca2+ release was both necessary and sufficient for mast cell degranulation, extracellular Ca2+ influx enhanced the process. Furthermore, cytosolic Ca2+ levels and mast cell degranulation were significantly decreased by downregulation of store-operated Ca2+ entry (SOCE) via Orai1 knockdown, 2-aminoethyl diphenylborinate (2-APB) or tubastatin A (TSA) treatment. Collectively, this study has demonstrated the role of Ca2+ signaling in regulating histamine degranulation.
Collapse
Affiliation(s)
- Ying-Chi Chen
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | - Yu-Chung Chang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | - Heng-Ai Chang
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | - Yu-Shan Lin
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | - Chiung-Wen Tsao
- Department of Nursing, Chung Hwa University of Medical Technology, Tainan 717, Taiwan
| | - Meng-Ru Shen
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan 701, Taiwan; Department of Pharmacology, National Cheng Kung University, Tainan 701, Taiwan
| | - Wen-Tai Chiu
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan; Institute of Basic Medical Sciences, National Cheng Kung University, Tainan 701, Taiwan; Medical Device Innovation Center, National Cheng Kung University, Tainan 701, Taiwan.
| |
Collapse
|
39
|
Munoz I, Danelli L, Claver J, Goudin N, Kurowska M, Madera-Salcedo IK, Huang JD, Fischer A, González-Espinosa C, de Saint Basile G, Blank U, Ménasché G. Kinesin-1 controls mast cell degranulation and anaphylaxis through PI3K-dependent recruitment to the granular Slp3/Rab27b complex. J Cell Biol 2017; 215:203-216. [PMID: 27810912 PMCID: PMC5084650 DOI: 10.1083/jcb.201605073] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 09/12/2016] [Indexed: 12/22/2022] Open
Abstract
Activation of mast cells through IgE and antigen triggers the release of secretory granules that contain factors responsible for anaphylactic responses. Munoz et al. show that kinesin-1 regulates mast cell degranulation through PI3K-dependent formation of a kinesin-1/Slp3/Rab27b complex. Cross-linking of mast cell (MC) IgE receptors (FcεRI) triggers degranulation of secretory granules (SGs) and the release of many allergic and inflammatory mediators. Although degranulation depends crucially on microtubule dynamics, the molecular machinery that couples SGs to microtubule-dependent transport is poorly understood. In this study, we demonstrate that mice lacking Kif5b (the heavy chain of kinesin-1) in hematopoietic cells are less sensitive to IgE-mediated, passive, systemic anaphylaxis. After IgE-induced stimulation, bone marrow–derived MCs from Kif5b knockout mice exhibited a marked reduction in SG translocation toward the secretion site. In contrast, a lack of Kif5b did not affect cytokine secretion, early FcεRI-initiated signaling pathways, or microtubule reorganization upon FcεRI stimulation. We identified Slp3 as the critical effector linking kinesin-1 to Rab27b-associated SGs. Kinesin-1 recruitment to the Slp3/Rab27b effector complex was independent of microtubule reorganization but occurred only upon stimulation requiring phosphatidylinositol 3-kinase (PI3K) activity. Our findings demonstrate that PI3K-dependent formation of a kinesin-1/Slp3/Rab27b complex is critical for the microtubule-dependent movement of SGs required for MC degranulation.
Collapse
Affiliation(s)
- Isabelle Munoz
- Laboratory of Normal and Pathological Homeostasis of the Immune System, Institut National de la Santé et de la Recherche Médicale, UMR1163, F-75015 Paris, France.,Imagine Institute, Paris Descartes University-Sorbonne Paris Cité, F-75015 Paris, France
| | - Luca Danelli
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1149; Centre de Recherche sur l'Inflammation, Centre National de la Recherche Scientifique, Equipe de Recherche Labelisé 8252; Inflamex Laboratory of Excellence, Université Paris Diderot, Sorbonne Paris Cité, Faculté de Médecine, Site Xavier Bichat, F-75018 Paris, France
| | - Julien Claver
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1149; Centre de Recherche sur l'Inflammation, Centre National de la Recherche Scientifique, Equipe de Recherche Labelisé 8252; Inflamex Laboratory of Excellence, Université Paris Diderot, Sorbonne Paris Cité, Faculté de Médecine, Site Xavier Bichat, F-75018 Paris, France
| | - Nicolas Goudin
- Cell Imaging Facility, Imagine Institute, Paris Descartes University-Sorbonne Paris Cité, F-75015 Paris, France
| | - Mathieu Kurowska
- Laboratory of Normal and Pathological Homeostasis of the Immune System, Institut National de la Santé et de la Recherche Médicale, UMR1163, F-75015 Paris, France.,Imagine Institute, Paris Descartes University-Sorbonne Paris Cité, F-75015 Paris, France
| | - Iris Karina Madera-Salcedo
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1149; Centre de Recherche sur l'Inflammation, Centre National de la Recherche Scientifique, Equipe de Recherche Labelisé 8252; Inflamex Laboratory of Excellence, Université Paris Diderot, Sorbonne Paris Cité, Faculté de Médecine, Site Xavier Bichat, F-75018 Paris, France
| | - Jian-Dong Huang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Alain Fischer
- Laboratory of Normal and Pathological Homeostasis of the Immune System, Institut National de la Santé et de la Recherche Médicale, UMR1163, F-75015 Paris, France.,Imagine Institute, Paris Descartes University-Sorbonne Paris Cité, F-75015 Paris, France.,Immunology and Pediatric Hematology Department, Necker Children's Hospital, Assistance Publique Hôpitaux de Paris, F-75015 Paris, France.,Collège de France, F-75005 Paris, France
| | | | - Geneviéve de Saint Basile
- Laboratory of Normal and Pathological Homeostasis of the Immune System, Institut National de la Santé et de la Recherche Médicale, UMR1163, F-75015 Paris, France.,Imagine Institute, Paris Descartes University-Sorbonne Paris Cité, F-75015 Paris, France
| | - Ulrich Blank
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1149; Centre de Recherche sur l'Inflammation, Centre National de la Recherche Scientifique, Equipe de Recherche Labelisé 8252; Inflamex Laboratory of Excellence, Université Paris Diderot, Sorbonne Paris Cité, Faculté de Médecine, Site Xavier Bichat, F-75018 Paris, France
| | - Gaël Ménasché
- Laboratory of Normal and Pathological Homeostasis of the Immune System, Institut National de la Santé et de la Recherche Médicale, UMR1163, F-75015 Paris, France .,Imagine Institute, Paris Descartes University-Sorbonne Paris Cité, F-75015 Paris, France
| |
Collapse
|
40
|
Acidic pH is essential for maintaining mast cell secretory granule homeostasis. Cell Death Dis 2017; 8:e2785. [PMID: 28492555 PMCID: PMC5584528 DOI: 10.1038/cddis.2017.206] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/06/2017] [Accepted: 04/07/2017] [Indexed: 12/30/2022]
Abstract
It has been recognized for a long time that the secretory granules of mast cells are acidic, but the functional importance of maintaining an acidic pH in the mast cell granules is not fully understood. Here we addressed this issue by examining the effects of raising the pH of the mast cell secretory granules. Mast cells were incubated with bafilomycin A1, an inhibitor of the vacuolar-type ATPase proton pump. Supporting a role of vacuolar-type ATPase in mast cell granule acidification, bafilomycin A1 treatment caused a robust increase in granule pH. This was accompanied by marked effects on mast cell granules, including swelling and acquisition of vacuole-like morphology. Moreover, bafilomycin A1 caused extensive, yet selective effects on the granule content. These included aberrant processing of pro-carboxypeptidase A3 and a reduction in the level of intracellular histamine, the latter being accompanied by an increase in extracellular histamine. In contrast, the storage of β-hexosaminidase, a prototype lysosomal hydrolase known to be stored in mast cell granules, was not affected by abrogation of granule acidification. Moreover, bafilomycin A1 caused a reduction of tryptase enzymatic activity and appearance of tryptase degradation products. Tryptase inhibition prevented the formation of such degradation products, suggesting that the pH elevation causes tryptase to undergo autoproteolysis. Taken together, our findings reveal that mast cell secretory granule homeostasis is critically dependent on an acidic milieu.
Collapse
|
41
|
Faustino-Rocha AI, Ferreira R, Gama A, Oliveira PA, Ginja M. Antihistamines as promising drugs in cancer therapy. Life Sci 2017; 172:27-41. [DOI: 10.1016/j.lfs.2016.12.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 12/11/2016] [Accepted: 12/13/2016] [Indexed: 12/28/2022]
|
42
|
Theoharides TC, Tsilioni I. Autism Spectrum Disorders. NEUROIMMUNE PHARMACOLOGY 2017:643-659. [DOI: 10.1007/978-3-319-44022-4_40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
43
|
Yessotoxin, a Marine Toxin, Exhibits Anti-Allergic and Anti-Tumoural Activities Inhibiting Melanoma Tumour Growth in a Preclinical Model. PLoS One 2016; 11:e0167572. [PMID: 27973568 PMCID: PMC5156389 DOI: 10.1371/journal.pone.0167572] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 11/15/2016] [Indexed: 01/29/2023] Open
Abstract
Yessotoxins (YTXs) are a group of marine toxins produced by the dinoflagellates Protoceratium reticulatum, Lingulodinium polyedrum and Gonyaulax spinifera. They may have medical interest due to their potential role as anti-allergic but also anti-cancer compounds. However, their biological activities remain poorly characterized. Here, we show that the small molecular compound YTX causes a slight but significant reduction of the ability of mast cells to degranulate. Strikingly, further examination revealed that YTX had a marked and selective cytotoxicity for the RBL-2H3 mast cell line inducing apoptosis, while primary bone marrow derived mast cells were highly resistant. In addition, YTX exhibited strong cytotoxicity against the human B-chronic lymphocytic leukaemia cell line MEC1 and the murine melanoma cell line B16F10. To analyse the potential role of YTX as an anti-cancer drug in vivo we used the well-established B16F10 melanoma preclinical mouse model. Our results demonstrate that a few local application of YTX around established tumours dramatically diminished tumour growth in the absence of any significant toxicity as determined by the absence of weight loss and haematological alterations. Our data support that YTX may have a minor role as an anti-allergic drug, but reveals an important potential for its use as an anti-cancer drug.
Collapse
|
44
|
NOGUEIRA EFDC, FARIAS EGF, SILVA LB, SANTOS NETO APD, ANDRADE ESDS, SAMPAIO GC. Analysis of the presence and location of mast cells in periapical cysts and periapical granulomas. ACTA ACUST UNITED AC 2016. [DOI: 10.1590/1981-863720160003000023113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
ABSTRACT Objective: The aim of the present study was to locate mast cells in chronic periapical lesions (granulomas and cysts) by using histochemical techniques and toluidine blue staining. Methods: A quantitative, descriptive, cross-sectional and retrospective research was performed. The sample was obtained from histopathological reports in the archives of the laboratory of surgical pathology of the University of Pernambuco between November 2014 and May 2015. Results: Sixteen cases of granuloma and 21 cases of periapical cysts were selected. The stained slides were analyzed by two examiners at different times, in a double-blind study. Mast cells were found in 13 (61.9%) of the periapical cyst cases, located in the capsule of the lesion. In the periapical granuloma cases, mast cells were found in eight cases (50%), located in the granulation tissue. Conclusion: Mast cells were detected in both cysts and periapical granuloma, located in the capsule and granulation tissue, respectively. Mast cells were more prevalent in periapical cysts than in periapical granuloma.
Collapse
|
45
|
Kim OK, Nam DE, Lee M, Kwon HO, Park J, You Y, Kim SI, Lee J, Jun W. The Effects ofCostaria costataExtracts on Atopic Dermatitis in anIn VitroModel. J Med Food 2016; 19:945-951. [DOI: 10.1089/jmf.2016.3691] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Ok-Kyung Kim
- Department of Medical Nutrition, Kyung Hee University, Yongin, Korea
- Division of Food and Nutrition, Chonnam National University, Gwangju, Korea
- Research Institute for Human Ecology, Chonnam National University, Gwangju, Korea
| | - Da-Eun Nam
- Department of Medical Nutrition, Kyung Hee University, Yongin, Korea
| | - Minhee Lee
- Department of Medical Nutrition, Kyung Hee University, Yongin, Korea
| | - Han Ol Kwon
- Department of Medical Nutrition, Kyung Hee University, Yongin, Korea
| | - Jeongjin Park
- Division of Food and Nutrition, Chonnam National University, Gwangju, Korea
- Research Institute for Human Ecology, Chonnam National University, Gwangju, Korea
| | - Yanghee You
- Division of Food and Nutrition, Chonnam National University, Gwangju, Korea
- Research Institute for Human Ecology, Chonnam National University, Gwangju, Korea
| | - Su-il Kim
- Marine Biotechnology Research Center, Wando, Korea
| | - Jeongmin Lee
- Department of Medical Nutrition, Kyung Hee University, Yongin, Korea
| | - Woojin Jun
- Division of Food and Nutrition, Chonnam National University, Gwangju, Korea
- Research Institute for Human Ecology, Chonnam National University, Gwangju, Korea
| |
Collapse
|
46
|
Kumar R, Bonicelli A, Sekula-Neuner S, Cato ACB, Hirtz M, Fuchs H. Click-Chemistry Based Allergen Arrays Generated by Polymer Pen Lithography for Mast Cell Activation Studies. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:5330-5338. [PMID: 27511293 DOI: 10.1002/smll.201601623] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 06/13/2016] [Indexed: 06/06/2023]
Abstract
The profiling of allergic responses is a powerful tool in biomedical research and in judging therapeutic outcome in patients suffering from allergy. Novel insights into the signaling cascades and easier readouts can be achieved by shifting activation studies of bulk immune cells to the single cell level on patterned surfaces. The functionality of dinitrophenol (DNP) as a hapten in the induction of allergic reactions has allowed the activation process of single mast cells seeded on patterned surfaces to be studied following treatment with allergen specific Immunoglobulin E antibodies. Here, a click-chemistry approach is applied in combination with polymer pen lithography (PPL) to pattern DNP-azide on alkyne-terminated surfaces to generate arrays of allergen. The large area functionalization offered by PPL allows an easy incorporation of such arrays into microfluidic chips. In such a setup, easy handling of cell suspension, incubation process, and read-out by fluorescence microscopy will allow immune cell activation screening to be easily adapted for diagnostics and biomedical research.
Collapse
Affiliation(s)
- Ravi Kumar
- Institute of Nanotechnology (INT) & Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), 76201, Karlsruhe, Germany
- Physical Institute & Center for Nanotechnology (CeNTech), University of Münster, Münster, 48149, Germany
| | - Alice Bonicelli
- Institute of Toxicology and Genetics (ITG), Karlsruhe Institute of Technology (KIT), 76021, Karlsruhe, Germany
| | - Sylwia Sekula-Neuner
- Institute of Nanotechnology (INT) & Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), 76201, Karlsruhe, Germany
| | - Andrew C B Cato
- Institute of Toxicology and Genetics (ITG), Karlsruhe Institute of Technology (KIT), 76021, Karlsruhe, Germany
| | - Michael Hirtz
- Institute of Nanotechnology (INT) & Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), 76201, Karlsruhe, Germany.
| | - Harald Fuchs
- Institute of Nanotechnology (INT) & Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), 76201, Karlsruhe, Germany
- Physical Institute & Center for Nanotechnology (CeNTech), University of Münster, Münster, 48149, Germany
| |
Collapse
|
47
|
Mukai K, Gaudenzio N, Gupta S, Vivanco N, Bendall SC, Maecker HT, Chinthrajah RS, Tsai M, Nadeau KC, Galli SJ. Assessing basophil activation by using flow cytometry and mass cytometry in blood stored 24 hours before analysis. J Allergy Clin Immunol 2016; 139:889-899.e11. [PMID: 27527263 DOI: 10.1016/j.jaci.2016.04.060] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 03/24/2016] [Accepted: 04/19/2016] [Indexed: 12/23/2022]
Abstract
BACKGROUND Basophil activation tests (BATs) have promise for research and for clinical monitoring of patients with allergies. However, BAT protocols vary in blood anticoagulant used and temperature and time of storage before testing, complicating comparisons of results from various studies. OBJECTIVE We attempted to establish a BAT protocol that would permit analysis of blood within 24 hours of obtaining the sample. METHODS Blood from 46 healthy donors and 120 patients with peanut allergy was collected into EDTA or heparin tubes, and samples were stored at 4°C or room temperature for 4 or 24 hours before performing BATs. RESULTS Stimulation with anti-IgE or IL-3 resulted in strong upregulation of basophil CD203c in samples collected in EDTA or heparin, stored at 4°C, and analyzed 24 hours after sample collection. However, a CD63hi population of basophils was not observed in any conditions in EDTA-treated samples unless exogenous calcium/magnesium was added at the time of anti-IgE stimulation. By contrast, blood samples collected in heparin tubes were adequate for quantification of upregulation of basophil CD203c and identification of a population of CD63hi basophils, irrespective of whether the specimens were analyzed by means of conventional flow cytometry or cytometry by time-of-flight mass spectrometry, and such tests could be performed after blood was stored for 24 hours at 4°C. CONCLUSION BATs to measure upregulation of basophil CD203c and induction of a CD63hi basophil population can be conducted with blood obtained in heparin tubes and stored at 4°C for 24 hours.
Collapse
Affiliation(s)
- Kaori Mukai
- Department of Pathology, Stanford University School of Medicine, Stanford, Calif; Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, Calif
| | - Nicolas Gaudenzio
- Department of Pathology, Stanford University School of Medicine, Stanford, Calif; Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, Calif
| | - Sheena Gupta
- Human Immune Monitoring Center, Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, Calif
| | - Nora Vivanco
- Department of Pathology, Stanford University School of Medicine, Stanford, Calif; Stanford Blood Center, Palo Alto, Calif
| | - Sean C Bendall
- Department of Pathology, Stanford University School of Medicine, Stanford, Calif; Stanford Blood Center, Palo Alto, Calif
| | - Holden T Maecker
- Human Immune Monitoring Center, Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, Calif; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, Calif
| | - Rebecca S Chinthrajah
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, Calif; Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, Calif
| | - Mindy Tsai
- Department of Pathology, Stanford University School of Medicine, Stanford, Calif; Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, Calif
| | - Kari C Nadeau
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, Calif; Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, Calif
| | - Stephen J Galli
- Department of Pathology, Stanford University School of Medicine, Stanford, Calif; Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, Calif; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, Calif.
| |
Collapse
|
48
|
Role of interleukin-18 in the pathophysiology of allergic diseases. Cytokine Growth Factor Rev 2016; 32:31-39. [PMID: 27496752 DOI: 10.1016/j.cytogfr.2016.07.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 07/08/2016] [Accepted: 07/13/2016] [Indexed: 01/24/2023]
Abstract
Interleukin (IL)-18 is an IL-1 family cytokine expressed by macrophages, dendritic cells, epithelial cells, and keratinocytes and is implicated in various aspects of both the innate and adaptive immune systems. IL-18 signals similar to IL-1β intracellularly to activate gene transcription. Since its discovery, IL-18 has been demonstrated to play a key role in pathogen defense from helminths and some bacteria. Recently however, evidence has accumulated that IL-18 expression is increased in many presentations of allergic disease. A pathologic role for IL-18 includes stimulating mast cell and basophil degranulation, recruiting granulocytes to sites of inflammation, increasing cytotoxic activity of natural killer (NK) and NK-T cells, inducing Immunoglobulin (Ig)E production and isotype switching, and affecting a broad range of T cells to promote a type II helper T cell (Th2) response. Evidence and importance of these effects are presented, including novel results from our lab implicating IL-18 in the direct expansion of mast cells, basophils, and other myeloid-lineage cells from bone-marrow precursors. The development of urticaria, asthma, dermatitis, rhinitis, and eosinophilic disorders all have demonstrated correlations to increased IL-18 levels either in the tissue or systemically. IL-18 represents a novel site of immune regulation in not only allergic conditions, but also autoimmune diseases and other instances of aberrant immune functioning. Diagrammatic summarized abstract for readers convinance is presented in Fig. 1.
Collapse
|
49
|
Wilson JD, Shelby SA, Holowka D, Baird B. Rab11 Regulates the Mast Cell Exocytic Response. Traffic 2016; 17:1027-41. [PMID: 27288050 DOI: 10.1111/tra.12418] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 06/07/2016] [Accepted: 06/07/2016] [Indexed: 01/30/2023]
Abstract
Stimulated exocytic events provide a means for physiological communication and are a hallmark of the mast cell-mediated allergic response. In mast cells these processes are triggered by antigen crosslinking of IgE bound to its high-affinity receptor, FcϵRI, on the cell surface. Here we use the endosomal v-SNARE VAMP8, and the lysosomal hydrolase β-hexosaminidase (β-Hex), each C-terminally fused to super-ecliptic pHluorin, to monitor stimulated exocytosis. Using these pHluorin-tagged constructs, we monitor stimulated exocytosis by fluorimetry and visualize individual exocytic events with total internal reflection (TIRF) microscopy. Similar to constitutive recycling endosome (RE) trafficking, we find that stimulated RE exocytosis, monitored by VAMP8, is attenuated by expression of dominant negative (S25N) Rab11. Stimulated β-Hex exocytosis is also reduced in the presence of S25N Rab11, suggesting that expression of this mutant broadly impacts exocytosis. Interestingly, pretreatment with inhibitors of actin polymerization, cytochalasin D or latrunculin A, substantially restores both RE and lysosome exocytosis in cells expressing S25N Rab11. Conversely, stabilizing F-actin with jasplakinolide inhibits antigen-stimulated exocytosis but is not additive with S25N Rab11-mediated inhibition, suggesting that these reagents inhibit related processes. Together, our results suggest that Rab11 participates in the regulation necessary for depolymerization of the actin cytoskeleton during stimulated exocytosis in mast cells.
Collapse
Affiliation(s)
- Joshua D Wilson
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853-1301, USA
| | - Sarah A Shelby
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853-1301, USA
| | - David Holowka
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853-1301, USA
| | - Barbara Baird
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853-1301, USA
| |
Collapse
|
50
|
Martín-Ávila A, Medina-Tamayo J, Ibarra-Sánchez A, Vázquez-Victorio G, Castillo-Arellano JI, Hernández-Mondragón AC, Rivera J, Madera-Salcedo IK, Blank U, Macías-Silva M, González-Espinosa C. Protein Tyrosine Kinase Fyn Regulates TLR4-Elicited Responses on Mast Cells Controlling the Function of a PP2A-PKCα/β Signaling Node Leading to TNF Secretion. THE JOURNAL OF IMMUNOLOGY 2016; 196:5075-88. [PMID: 27183589 DOI: 10.4049/jimmunol.1501823] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 04/16/2016] [Indexed: 12/21/2022]
Abstract
Mast cells produce proinflammatory cytokines in response to TLR4 ligands, but the signaling pathways involved are not fully described. In this study, the participation of the Src family kinase Fyn in the production of TNF after stimulation with LPS was evaluated using bone marrow-derived mast cells from wild-type and Fyn-deficient mice. Fyn(-/-) cells showed higher LPS-induced secretion of preformed and de novo-synthesized TNF. In both cell types, TNF colocalized with vesicle-associated membrane protein (VAMP)3-positive compartments. Addition of LPS provoked coalescence of VAMP3 and its interaction with synaptosomal-associated protein 23; those events were increased in the absence of Fyn. Higher TNF mRNA levels were also observed in Fyn-deficient cells as a result of increased transcription and greater mRNA stability after LPS treatment. Fyn(-/-) cells also showed higher LPS-induced activation of TAK-1 and ERK1/2, whereas IκB kinase and IκB were phosphorylated, even in basal conditions. Increased responsiveness in Fyn(-/-) cells was associated with a lower activity of protein phosphatase 2A (PP2A) and augmented activity of protein kinase C (PKC)α/β, which was dissociated from PP2A and increased its association with the adapter protein neuroblast differentiation-associated protein (AHNAK, desmoyokin). LPS-induced PKCα/β activity was associated with VAMP3 coalescence in WT and Fyn-deficient cells. Reconstitution of MC-deficient Wsh mice with Fyn(-/-) MCs produced greater LPS-dependent production of TNF in the peritoneal cavity. Our data show that Fyn kinase is activated after TLR4 triggering and exerts an important negative control on LPS-dependent TNF production in MCs controlling the inactivation of PP2Ac and activation of PKCα/β necessary for the secretion of TNF by VAMP3(+) carriers.
Collapse
Affiliation(s)
- Alejandro Martín-Ávila
- Departamento de Farmacobiología, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Sede Sur, Tlalpan, CP 14330 Mexico City, Mexico
| | - Jaciel Medina-Tamayo
- Departamento de Farmacobiología, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Sede Sur, Tlalpan, CP 14330 Mexico City, Mexico
| | - Alfredo Ibarra-Sánchez
- Departamento de Farmacobiología, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Sede Sur, Tlalpan, CP 14330 Mexico City, Mexico
| | - Genaro Vázquez-Victorio
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, CP 04510 Mexico City, Mexico
| | - Jorge Iván Castillo-Arellano
- Departamento de Farmacobiología, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Sede Sur, Tlalpan, CP 14330 Mexico City, Mexico
| | - Alma Cristal Hernández-Mondragón
- Departamento de Farmacobiología, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Sede Sur, Tlalpan, CP 14330 Mexico City, Mexico
| | - Juan Rivera
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892-1820; and
| | - Iris K Madera-Salcedo
- INSERM UMRS1149, Faculté de Médecine, Université Paris-Diderot, Site X, Bichat, Paris 75018, France
| | - Ulrich Blank
- INSERM UMRS1149, Faculté de Médecine, Université Paris-Diderot, Site X, Bichat, Paris 75018, France
| | - Marina Macías-Silva
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, CP 04510 Mexico City, Mexico
| | - Claudia González-Espinosa
- Departamento de Farmacobiología, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Sede Sur, Tlalpan, CP 14330 Mexico City, Mexico;
| |
Collapse
|