1
|
Tang Y, Pang J, Chen Y, Qi Q, Wang H, Sun Y, Gul S, Zhou X, Tang W. Constructing a Prognostic Model for Non-Small-Cell Lung Cancer Risk Based on Genes Characterising the Differentiation of Myeloid-Derived Suppressor Cells. Int J Mol Sci 2025; 26:4679. [PMID: 40429821 DOI: 10.3390/ijms26104679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2025] [Revised: 05/10/2025] [Accepted: 05/11/2025] [Indexed: 05/29/2025] Open
Abstract
Cancer is the most common malignancy, with over 2 million new cases and nearly 1.8 million deaths worldwide annually. Non-small-cell lung cancer (NSCLC) is the predominant subtype, accounting for the majority of cases. Myeloid-derived suppressor cells (MDSCs), which originate from monocytes and typically differentiate into macrophages and granulocytes, possess potent immunosuppressive capabilities. MDSCs regulate immune responses in various pathological conditions and are strongly associated with poor prognosis in cancer patients. This study aims to elucidate the complex interplay between MDSCs, immune cells, and tumours in the NSCLC tumour microenvironment (TME). By integrating single-cell RNA sequencing (scRNA-seq) data with bulk RNA sequencing (Bulk RNA-seq) data, we identified MDSCs as the target cell population and used Monocle software (v2.22.0) to infer their developmental trajectories. We identified key genes associated with MDSCs differentiation processes and classified MDSCs into seven distinct states based on their functional roles. Furthermore, we constructed a prognostic risk model based on the impact of MDSCs differentiation on NSCLC prognosis, utilizing Elastic Net regression and multivariate Cox regression analysis of Bulk RNA-seq data. The model's performance and accuracy were validated using both internal and external validation sets. Additionally, we compared risk scores with clinical pathological features and the relationship between risk scores and key immune cells in the immune microenvironment, demonstrating the model's clinical predictive value. We also explored how prognostic genes contribute to poor prognosis in NSCLC. Moreover, small molecule compounds targeting these prognostic genes were screened, and their anti-tumour effects were evaluated as potential therapeutic strategies for NSCLC treatment. This study not only reveals the complex regulatory mechanisms of MDSCs in the NSCLC immune microenvironment but also successfully constructs a prognostic risk model based on MDSCs differentiation states. The model demonstrates excellent clinical performance in predicting patient prognosis, effectively identifying high-risk patients and providing robust support for individualized treatment and immunotherapy decisions. Through association analyses with key immune cells in the immune microenvironment and clinical pathological features, our model can assist clinicians in formulating more precise treatment plans based on patients' immune status and tumour characteristics. Furthermore, we identified small molecule compounds targeting these prognostic genes, providing novel and promising therapeutic targets for NSCLC, which could further enhance treatment efficacy and improve patients' survival quality.
Collapse
Affiliation(s)
- Yuheng Tang
- Laboratory of Molecular Genetics of Aging & Tumour, Medicine School, Kunming University of Science and Technology, Kunming 650032, China
| | - Jianyu Pang
- Laboratory of Molecular Genetics of Aging & Tumour, Medicine School, Kunming University of Science and Technology, Kunming 650032, China
| | - Yongzhi Chen
- Laboratory of Molecular Genetics of Aging & Tumour, Medicine School, Kunming University of Science and Technology, Kunming 650032, China
| | - Qi Qi
- Laboratory of Molecular Genetics of Aging & Tumour, Medicine School, Kunming University of Science and Technology, Kunming 650032, China
| | - Hui Wang
- Laboratory of Molecular Genetics of Aging & Tumour, Medicine School, Kunming University of Science and Technology, Kunming 650032, China
| | - Yingjie Sun
- Laboratory of Molecular Genetics of Aging & Tumour, Medicine School, Kunming University of Science and Technology, Kunming 650032, China
| | - Samina Gul
- Laboratory of Molecular Genetics of Aging & Tumour, Medicine School, Kunming University of Science and Technology, Kunming 650032, China
| | - Xuhong Zhou
- Laboratory of Molecular Genetics of Aging & Tumour, Medicine School, Kunming University of Science and Technology, Kunming 650032, China
| | - Wenru Tang
- Laboratory of Molecular Genetics of Aging & Tumour, Medicine School, Kunming University of Science and Technology, Kunming 650032, China
| |
Collapse
|
2
|
Jin SM, Cho JH, Gwak Y, Park SH, Choi K, Choi J, Shin HS, Hong J, Bae Y, Ju J, Shin M, Lim YT. Transformable Gel-to-Nanovaccine Enhances Cancer Immunotherapy via Metronomic-Like Immunomodulation and Collagen-Mediated Paracortex Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409914. [PMID: 39380383 PMCID: PMC11602686 DOI: 10.1002/adma.202409914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/23/2024] [Indexed: 10/10/2024]
Abstract
The generation of non-exhausted effector T-cells depends on vaccine's spatiotemporal profile, and untimely delivery and low targeting to lymph node (LN) paracortex by standard bolus immunization show limited efficacy. By recapitulating the dynamic processes of acute infection, a bioadhesive immune niche domain (BIND) is developed that facilitates the delivery of timely-activating conjugated nanovaccine (t-CNV) in a metronomic-like manner and increased the accumulation and retention of TANNylated t-CNV (tannic acid coated t-CNV) in LN by specifically binding to collagen in subcapsular sinus where they gradually transformed into TANNylated antigen-adjuvant conjugate by proteolysis, inducing their penetration into paracortex through the collagen-binding in LN conduit and evoking durable antigen-specific CD8+ T-cell responses. The BIND combined with t-CNV, mRNA vaccine, IL-2, and anti-PD-1 antibody also significantly enhanced cancer immunotherapy by the dynamic modulation of immunological landscape of tumor microenvironment. The results provide material design strategy for dynamic immunomodulation that can potentiate non-exhausted T-cell-based immunotherapy.
Collapse
Affiliation(s)
- Seung Mo Jin
- SKKU Advanced Institute of Nanotechnology (SAINT)Department of Nano Engineering, Department of Nano Science and Technology, School of Chemical Engineering, and Biomedical Institute for Convergence at SKKUSungkyunkwan University2066 Seobu‐ro, Jangan‐guSuwonGyeonggi‐do16419Republic of Korea
| | - Ju Hee Cho
- SKKU Advanced Institute of Nanotechnology (SAINT)Department of Nano Engineering, Department of Nano Science and Technology, School of Chemical Engineering, and Biomedical Institute for Convergence at SKKUSungkyunkwan University2066 Seobu‐ro, Jangan‐guSuwonGyeonggi‐do16419Republic of Korea
| | - Yejin Gwak
- SKKU Advanced Institute of Nanotechnology (SAINT)Department of Nano Engineering, Department of Nano Science and Technology, School of Chemical Engineering, and Biomedical Institute for Convergence at SKKUSungkyunkwan University2066 Seobu‐ro, Jangan‐guSuwonGyeonggi‐do16419Republic of Korea
| | - Sei Hyun Park
- SKKU Advanced Institute of Nanotechnology (SAINT)Department of Nano Engineering, Department of Nano Science and Technology, School of Chemical Engineering, and Biomedical Institute for Convergence at SKKUSungkyunkwan University2066 Seobu‐ro, Jangan‐guSuwonGyeonggi‐do16419Republic of Korea
| | - Kyungmin Choi
- Progeneer12 Digital‐ro 31‐gil, Guro‐guSeoul08380Republic of Korea
| | - Jin‐Ho Choi
- SKKU Advanced Institute of Nanotechnology (SAINT)Department of Nano Engineering, Department of Nano Science and Technology, School of Chemical Engineering, and Biomedical Institute for Convergence at SKKUSungkyunkwan University2066 Seobu‐ro, Jangan‐guSuwonGyeonggi‐do16419Republic of Korea
| | - Hong Sik Shin
- SKKU Advanced Institute of Nanotechnology (SAINT)Department of Nano Engineering, Department of Nano Science and Technology, School of Chemical Engineering, and Biomedical Institute for Convergence at SKKUSungkyunkwan University2066 Seobu‐ro, Jangan‐guSuwonGyeonggi‐do16419Republic of Korea
| | - JungHyub Hong
- Department of Biological SciencesScience Research Center (SRC) for Immune Research on Non‐lymphoid Organ (CIRNO)Sungkyunkwan University2066 Seobu‐ro, Jangan‐guSuwonGyeonggi‐do16419Republic of Korea
| | - Yong‐Soo Bae
- Department of Biological SciencesScience Research Center (SRC) for Immune Research on Non‐lymphoid Organ (CIRNO)Sungkyunkwan University2066 Seobu‐ro, Jangan‐guSuwonGyeonggi‐do16419Republic of Korea
| | - Jaewon Ju
- Department of Biomedical EngineeringCenter for Neuroscience Imaging ResearchInstitute for Basic Science (IBS)Department of Intelligent Precision Healthcare ConvergenceSungkyunkwan University2066 Seobu‐ro, Jangan‐guSuwonGyeonggi‐do16419Republic of Korea
| | - Mikyung Shin
- Department of Biomedical EngineeringCenter for Neuroscience Imaging ResearchInstitute for Basic Science (IBS)Department of Intelligent Precision Healthcare ConvergenceSungkyunkwan University2066 Seobu‐ro, Jangan‐guSuwonGyeonggi‐do16419Republic of Korea
| | - Yong Taik Lim
- SKKU Advanced Institute of Nanotechnology (SAINT)Department of Nano Engineering, Department of Nano Science and Technology, School of Chemical Engineering, and Biomedical Institute for Convergence at SKKUSungkyunkwan University2066 Seobu‐ro, Jangan‐guSuwonGyeonggi‐do16419Republic of Korea
| |
Collapse
|
3
|
He S, Niu H, Zhang L, Tao Z, Qu Q. Synergy Effects of HPV E6-E7 Encoding mRNA and Nucleic Acid Immunostimulators Improve Therapeutic Potential in TC-1 Graft Tumor. J Med Virol 2024; 96:e70075. [PMID: 39588712 DOI: 10.1002/jmv.70075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/15/2024] [Accepted: 11/04/2024] [Indexed: 11/27/2024]
Abstract
Cervical cancer is the second most common cancer among women globally and the most prevalent cancer in developing countries, which was caused by human papillomavirus (HPV) infection. Messenger RNA (mRNA) vaccines have opened up new avenues for vaccine development and pandemic preparedness with potent scalability, which may possess the potential antitumor effects of an mRNA-HPV therapeutic vaccine containing nononcogenic E6 and E7 proteins. Here, we reported a lipid nanoparticle (LNP) plus nucleic acid immunostimulators (CPG 1018 and Poly I:C) mRNA vaccine platform. The LNP-CPG 1018 capsulated HPV E6-E7 mRNA significantly promoted the maturation of bone marrow-derived dendritic cells (BMDC) in vitro and were capable of efficiently migrating to lymph nodes (LN) in vivo. In TC-1 tumor-bearing mice, the subcutaneous immunization of LNP-CPG 1018 capsulated HPV E6-E7 mRNA elicited robust tumor-specific T-cell immunity, reshaped the tumor microenvironment, and inhibited tumor growth. In conclusion, the LNP-CPG 1018 system is a promising delivery platform for facilitating the development of HPV E6-E7 mRNA cancer vaccines.
Collapse
Affiliation(s)
- Shuang He
- Department of Gynecology, Tianjin First Central Hospital, Tianjin, China
| | - Haiying Niu
- Department of Gynecology, Tianjin First Central Hospital, Tianjin, China
| | - Lizhi Zhang
- Department of Gynecology, Tianjin First Central Hospital, Tianjin, China
| | - Zhonge Tao
- Department of Gynecology, Tianjin First Central Hospital, Tianjin, China
| | - Quanxin Qu
- Department of Gynecology, Tianjin First Central Hospital, Tianjin, China
| |
Collapse
|
4
|
Pan W, Zhang Q, Gong X, Wu W, Zhou Q. Identification and validation of key extracellular proteins as the potential biomarkers in diabetic nephropathy. Eur J Med Res 2024; 29:517. [PMID: 39456069 PMCID: PMC11515200 DOI: 10.1186/s40001-024-02120-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
OBJECTIVE Accumulation of extracellular matrix (ECM) proteins in the glomerular mesangial region is a typical hallmark of diabetic nephropathy (DN). However, the molecular mechanism underlying ECM accumulation in the mesangium of DN patients remains unclear. The present study aims to establish a connection between extracellular proteins and DN with the goal of identifying potential biomarkers for this condition. METHODS Differentially expressed genes (DEGs) between DN kidney tissue and healthy kidney tissue were analyzed using the public data GSE166239. Two gene lists encoding extracellular proteins were then utilized to identify extracellular protein-differentially expressed genes (EP-DEGs). Functional enrichment analyses, including Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, were performed on these EP-DEGs. A protein-protein interaction (PPI) network was established to identify key EP-DEGs. Furthermore, the diagnostic ability, immune cell infiltration, and clinical relevance of these EP-DEGs were investigated. Immunohistochemistry (IHC) staining of paraffin-embedded renal tissues was performed to validate the accuracy of the bioinformatic results. RESULTS A total of 1204 DEGs were identified, from which 162 EP-DEGs were further characterized by overlapping with extracellular protein gene lists. From the PPI network analysis, five EP-DEGs (e.g., TNF, COL1A1, FN1, MMP9, and TGFB1) were identified as candidate biomarkers. TNF, COL1A1, and MMP9 had a high diagnostic accuracy for DN. Assessment of immune cell infiltration revealed that the expression of TNF was positively associated with resting dendritic cells (DCs) (r = 0.85, P < 0.001) and M1 macrophages (r = 0.62, P < 0.05), whereas negatively associated with regulatory T cells (r = - 0.62, P < 0.05). Nephroseq v5 analysis demonstrated a negative correlation between the estimated glomerular filtration rate (eGFR) and TNF expression (r = - 0.730, P = 0.025). Gene set enrichment analysis (GSEA) revealed significant enrichment of glycosaminoglycan (GAG) degradation in the high-TNF subgroup. IHC staining of renal tissues confirmed significantly elevated TNF-a expression and decreased hyaluronic acid (HA) levels in the DN group compared to controls (both P < 0.05), with a negative correlation observed between TNF-a and HA (r = - 0.691, P = 0.026). CONCLUSION Our findings suggest that TNF may play a pivotal role in the progress of DN by driving ECM accumulation, and this process might involve GAG degradation pathway activation.
Collapse
Affiliation(s)
- Wei Pan
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, China
| | - Qiankun Zhang
- Department of Nephrology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui Hospital of Zhejiang University, Lishui, 323000, China
| | - Xiaohua Gong
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, China
| | - Wenjun Wu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, China
| | - Qi Zhou
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, China.
| |
Collapse
|
5
|
Peng S, Yan Y, Ogino K, Ma G, Xia Y. Spatiotemporal coordination of antigen presentation and co-stimulatory signal for enhanced anti-tumor vaccination. J Control Release 2024; 374:312-324. [PMID: 39153722 DOI: 10.1016/j.jconrel.2024.08.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Controlled-release systems enhance anti-tumor effects by leveraging local antigen persistence for antigen-presenting cells (APCs) recruitment and T cell engagement. However, constant antigen presentation alone tends to induce dysfunction in tumor-specific CD8+ T cells, neglecting the synergistic effects of co-stimulatory signal. To address this, we developed a soft particle-stabilized emulsion (SPE) to deliver lipopeptides with controlled release profiles by adjusting their hydrophobic chain lengths: C6-SPE (fast release), C10-SPE (medium release), and C16-SPE (slow release). Following administration, C6-SPE release antigen rapidly, inducing early antigen presentation, whereas C16-SPE's slow-release delays antigen presentation. Both scenarios missed the critical window for coordinating with the expression of CD86, leading to either T cell apoptosis or suboptimal activation. In contrast, C10-SPE achieved a spatiotemporally synergetic effect of the MHC-I-peptide complex and co-stimulatory signal (CD86), leading to effective dendritic cell (DC) activation, enhanced T cell activation, and tumor regression in EG7-OVA bearing mice. Additionally, co-delivery of cytosine-phosphate-guanine (CpG) with SPE provided a sustained expression of the CD86 window for DC activation, improving the immune response and producing robust anti-tumor effects with C6-SPE comparable to C10-SPE. These findings highlight that synchronizing the spatiotemporal dynamics of antigen presentation and APC activation may confer an optimal strategy for enhanced vaccinations.
Collapse
Affiliation(s)
- Sha Peng
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan; Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei-shi, Tokyo 184-8588, Japan
| | - Yumeng Yan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Kenji Ogino
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan; Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei-shi, Tokyo 184-8588, Japan.
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Yufei Xia
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
6
|
Gilmour BC, Corthay A, Øynebråten I. High production of IL-12 by human dendritic cells stimulated with combinations of pattern-recognition receptor agonists. NPJ Vaccines 2024; 9:83. [PMID: 38702320 PMCID: PMC11068792 DOI: 10.1038/s41541-024-00869-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 03/29/2024] [Indexed: 05/06/2024] Open
Abstract
The cytokine IL-12p70 is crucial for T helper 1 (Th1) polarization and the generation of type 1 immunity required to fight cancer and pathogens. Therefore, strategies to optimize the production of IL-12p70 by human dendritic cells (DCs) may significantly improve the efficacy of vaccines and immunotherapies. However, the rules governing the production of IL-12p70 remain obscure. Here, we stimulated pattern recognition receptors (PRRs) representing five families of PRRs, to evaluate their ability to elicit high production of IL-12p70 by monocyte-derived DCs. We used ten well-characterized agonists and stimulated DCs in vitro with either single agonists or 27 different combinations. We found that poly(I:C), which engages the RNA-sensing PRRs TLR3 and MDA5, and LPS which stimulates TLR4, were the only agonists that could elicit notable IL-12p70 production when used as single ligands. We identified six different combinations of PRR agonists, all containing either the TLR3/MDA5 agonist poly(I:C) or the TLR7/8 agonist R848, that could synergize to elicit high production of IL-12p70 by human DCs. Five of the six combinations also triggered high production of the antiviral and antitumor cytokine IFNβ. Overall, the tested PRR ligands could be divided into three groups depending on whether they triggered production of both IL-12p70 and IFNβ, only one of the two, or neither. Thus, combinations of PRR agonists were found to increase the production of IL-12p70 by human DCs in a synergistic manner, and we identified six PRR agonist combinations that may represent strong adjuvant candidates, in particular for therapeutic cancer vaccines.
Collapse
Affiliation(s)
- Brian C Gilmour
- Tumor Immunology Lab, Department of Pathology, Rikshospitalet, Oslo University Hospital, Oslo, Norway
| | - Alexandre Corthay
- Tumor Immunology Lab, Department of Pathology, Rikshospitalet, Oslo University Hospital, Oslo, Norway
- Hybrid Technology Hub - Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Inger Øynebråten
- Tumor Immunology Lab, Department of Pathology, Rikshospitalet, Oslo University Hospital, Oslo, Norway.
- Hybrid Technology Hub - Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
7
|
Davis MA, Cho E, Teplensky MH. Harnessing biomaterial architecture to drive anticancer innate immunity. J Mater Chem B 2023; 11:10982-11005. [PMID: 37955201 DOI: 10.1039/d3tb01677c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Immunomodulation is a powerful therapeutic approach that harnesses the body's own immune system and reprograms it to treat diseases, such as cancer. Innate immunity is key in mobilizing the rest of the immune system to respond to disease and is thus an attractive target for immunomodulation. Biomaterials have widely been employed as vehicles to deliver immunomodulatory therapeutic cargo to immune cells and raise robust antitumor immunity. However, it is key to consider the design of biomaterial chemical and physical structure, as it has direct impacts on innate immune activation and antigen presentation to stimulate downstream adaptive immunity. Herein, we highlight the widespread importance of structure-driven biomaterial design for the delivery of immunomodulatory cargo to innate immune cells. The incorporation of precise structural elements can be harnessed to improve delivery kinetics, uptake, and the targeting of biomaterials into innate immune cells, and enhance immune activation against cancer through temporal and spatial processing of cargo to overcome the immunosuppressive tumor microenvironment. Structural design of immunomodulatory biomaterials will profoundly improve the efficacy of current cancer immunotherapies by maximizing the impact of the innate immune system and thus has far-reaching translational potential against other diseases.
Collapse
Affiliation(s)
- Meredith A Davis
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, 02215, USA.
| | - Ezra Cho
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, 02215, USA.
| | - Michelle H Teplensky
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, 02215, USA.
- Department of Materials Science and Engineering, Boston University, Boston, Massachusetts, 02215, USA
| |
Collapse
|
8
|
Peng S, Yan Y, Ngai T, Li J, Ogino K, Xia Y. Development and Optimal Immune Strategy of an Alum-Stabilized Pickering emulsion for Cancer Vaccines. Vaccines (Basel) 2023; 11:1169. [PMID: 37514985 PMCID: PMC10383433 DOI: 10.3390/vaccines11071169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Therapeutic cancer vaccines are considered as one of the most cost-effective ways to eliminate cancer cells. Although many efforts have been invested into improving their therapeutic effect, transient maturation and activations of dendritic cells (DCs) cause weak responses and hamper the subsequent T cell responses. Here, we report on an alum-stabilized Pickering emulsion (APE) that can load a high number of antigens and continue to release them for extensive maturation and activations of antigen-presenting cells (APCs). After two vaccinations, APE/OVA induced both IFN-γ-secreting T cells (Th1) and IL-4-secreting T cells (Th2), generating effector CD8+ T cells against tumor growth. Additionally, although they boosted the cellular immune responses in the spleen, we found that multiple administrations of cancer vaccines (three or four times in 3-day intervals) may increase the immunosuppression with more PD-1+ CD8+ and LAG-3+ CD8+ T cells within the tumor environment, leading to the diminished overall anti-tumor efficacy. Combining this with anti-PD-1 antibodies evidently hindered the suppressive effect of multiple vaccine administrations, leading to the amplified tumor regression in B16-OVA-bearing mice.
Collapse
Affiliation(s)
- Sha Peng
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Tokyo 184-8588, Japan
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Tokyo 184-8588, Japan
| | - Yumeng Yan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - To Ngai
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Jianjun Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
| | - Kenji Ogino
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Tokyo 184-8588, Japan
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Tokyo 184-8588, Japan
| | - Yufei Xia
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
9
|
Jin SM, Yoo YJ, Shin HS, Kim S, Lee SN, Lee CH, Kim H, Kim JE, Bae YS, Hong J, Noh YW, Lim YT. A nanoadjuvant that dynamically coordinates innate immune stimuli activation enhances cancer immunotherapy and reduces immune cell exhaustion. NATURE NANOTECHNOLOGY 2023; 18:390-402. [PMID: 36635335 DOI: 10.1038/s41565-022-01296-w] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/15/2022] [Indexed: 06/17/2023]
Abstract
Although conventional innate immune stimuli contribute to immune activation, they induce exhausted immune cells, resulting in suboptimal cancer immunotherapy. Here we suggest a kinetically activating nanoadjuvant (K-nanoadjuvant) that can dynamically integrate two waves of innate immune stimuli, resulting in effective antitumour immunity without immune cell exhaustion. The combinatorial code of K-nanoadjuvant is optimized in terms of the order, duration and time window between spatiotemporally activating Toll-like receptor 7/8 agonist and other Toll-like receptor agonists. K-nanoadjuvant induces effector/non-exhausted dendritic cells that programme the magnitude and persistence of interleukin-12 secretion, generate effector/non-exhausted CD8+ T cells, and activate natural killer cells. Treatment with K-nanoadjuvant as a monotherapy or in combination therapy with anti-PD-L1 or liposomes (doxorubicin) results in strong antitumour immunity in murine models, with minimal systemic toxicity, providing a strategy for synchronous and dynamic tailoring of innate immunity for enhanced cancer immunotherapy.
Collapse
Affiliation(s)
- Seung Mo Jin
- SKKU Advanced Institute of Nanotechnology (SAINT), Department of Nano Science and Technology, Department of Nano Engineering, School of Chemical Engineering, and Biomedical Institute for Convergence at SKKU, Sungkyunkwan University, Suwon, Republic of Korea
| | - Yeon Jeong Yoo
- SKKU Advanced Institute of Nanotechnology (SAINT), Department of Nano Science and Technology, Department of Nano Engineering, School of Chemical Engineering, and Biomedical Institute for Convergence at SKKU, Sungkyunkwan University, Suwon, Republic of Korea
| | - Hong Sik Shin
- SKKU Advanced Institute of Nanotechnology (SAINT), Department of Nano Science and Technology, Department of Nano Engineering, School of Chemical Engineering, and Biomedical Institute for Convergence at SKKU, Sungkyunkwan University, Suwon, Republic of Korea
| | - Sohyun Kim
- SKKU Advanced Institute of Nanotechnology (SAINT), Department of Nano Science and Technology, Department of Nano Engineering, School of Chemical Engineering, and Biomedical Institute for Convergence at SKKU, Sungkyunkwan University, Suwon, Republic of Korea
| | - Sang Nam Lee
- SKKU Advanced Institute of Nanotechnology (SAINT), Department of Nano Science and Technology, Department of Nano Engineering, School of Chemical Engineering, and Biomedical Institute for Convergence at SKKU, Sungkyunkwan University, Suwon, Republic of Korea
| | - Chang Hoon Lee
- SKKU Advanced Institute of Nanotechnology (SAINT), Department of Nano Science and Technology, Department of Nano Engineering, School of Chemical Engineering, and Biomedical Institute for Convergence at SKKU, Sungkyunkwan University, Suwon, Republic of Korea
| | - Hyunji Kim
- SKKU Advanced Institute of Nanotechnology (SAINT), Department of Nano Science and Technology, Department of Nano Engineering, School of Chemical Engineering, and Biomedical Institute for Convergence at SKKU, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jung-Eun Kim
- SKKU Advanced Institute of Nanotechnology (SAINT), Department of Nano Science and Technology, Department of Nano Engineering, School of Chemical Engineering, and Biomedical Institute for Convergence at SKKU, Sungkyunkwan University, Suwon, Republic of Korea
| | - Yong-Soo Bae
- Department of Biological Sciences, Science Research Center (SRC) for Immune Research on Non-lymphoid Organ (CIRNO), Department of Biological Science, Sungkyunkwan University, Suwon, Republic of Korea
| | - JungHyub Hong
- Department of Biological Sciences, Science Research Center (SRC) for Immune Research on Non-lymphoid Organ (CIRNO), Department of Biological Science, Sungkyunkwan University, Suwon, Republic of Korea
| | - Young-Woock Noh
- New Drug Development Center, Osong Medical Innovation Foundation, Cheongju, Republic of Korea
| | - Yong Taik Lim
- SKKU Advanced Institute of Nanotechnology (SAINT), Department of Nano Science and Technology, Department of Nano Engineering, School of Chemical Engineering, and Biomedical Institute for Convergence at SKKU, Sungkyunkwan University, Suwon, Republic of Korea.
| |
Collapse
|
10
|
van den Bijgaart RJE, Mekers VE, Schuurmans F, Raaijmakers TK, Wassink M, Veltien A, Dumont E, Heerschap A, Fütterer JJ, Adema GJ. Mechanical high-intensity focused ultrasound creates unique tumor debris enhancing dendritic cell-induced T cell activation. Front Immunol 2022; 13:1038347. [PMID: 36569907 PMCID: PMC9768443 DOI: 10.3389/fimmu.2022.1038347] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022] Open
Abstract
Introduction In situ tumor ablation releases a unique repertoire of antigens from a heterogeneous population of tumor cells. High-intensity focused ultrasound (HIFU) is a completely noninvasive ablation therapy that can be used to ablate tumors either by heating (thermal (T)-HIFU) or by mechanical disruption (mechanical (M)-HIFU). How different HIFU ablation techniques compare with respect to their antigen release profile, their activation of responder T cells, and their ability to synergize with immune stimuli remains to be elucidated. Methods and results Here, we compare the immunomodulatory effects of T-HIFU and M-HIFU ablation with or without the TLR9 agonist CpG in the ovalbumin-expressing lymphoma model EG7. M-HIFU ablation alone, but much less so T-HIFU, significantly increased dendritic cell (DC) activation in draining lymph nodes (LNs). Administration of CpG following T- or M-HIFU ablation increased DC activation in draining LNs to a similar extend. Interestingly, ex vivo co-cultures of draining LN suspensions from HIFU plus CpG treated mice with CD8+ OT-I T cells demonstrate that LN cells from M-HIFU treated mice most potently induced OT-I proliferation. To delineate the mechanism for the enhanced anti-tumor immune response induced by M-HIFU, we characterized the RNA, DNA and protein content of tumor debris generated by both HIFU methods. M-HIFU induced a uniquely altered RNA, DNA and protein profile, all showing clear signs of fragmentation, whereas T-HIFU did not. Moreover, western blot analysis showed decreased levels of the immunosuppressive cytokines IL-10 and TGF-β in M-HIFU generated tumor debris compared to untreated tumor tissue or T-HIFU. Conclusion Collectively, these results imply that M-HIFU induces a unique context of the ablated tumor material, enhancing DC-mediated T cell responses when combined with CpG.
Collapse
Affiliation(s)
- Renske J. E. van den Bijgaart
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Vera E. Mekers
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Fabian Schuurmans
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Tonke K. Raaijmakers
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Melissa Wassink
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Andor Veltien
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, Netherlands
| | | | - Arend Heerschap
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, Netherlands
| | - Jurgen J. Fütterer
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, Netherlands,Department of Robotics and Mechatronics, University of Twente, Enschede, Netherlands
| | - Gosse J. Adema
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, Netherlands,*Correspondence: Gosse J. Adema,
| |
Collapse
|
11
|
Huang Z, Callmann CE, Wang S, Vasher MK, Evangelopoulos M, Petrosko SH, Mirkin CA. Rational Vaccinology: Harnessing Nanoscale Chemical Design for Cancer Immunotherapy. ACS CENTRAL SCIENCE 2022; 8:692-704. [PMID: 35756370 PMCID: PMC9228553 DOI: 10.1021/acscentsci.2c00227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Indexed: 05/12/2023]
Abstract
Cancer immunotherapy is a powerful treatment strategy that mobilizes the immune system to fight disease. Cancer vaccination is one form of cancer immunotherapy, where spatiotemporal control of the delivery of tumor-specific antigens, adjuvants, and/or cytokines has been key to successfully activating the immune system. Nanoscale materials that take advantage of chemistry to control the nanoscale structural arrangement, composition, and release of immunostimulatory components have shown significant promise in this regard. In this Outlook, we examine how the nanoscale structure, chemistry, and composition of immunostimulatory compounds can be modulated to maximize immune response and mitigate off-target effects, focusing on spherical nucleic acids as a model system. Furthermore, we emphasize how chemistry and materials science are driving the rational design and development of next-generation cancer vaccines. Finally, we identify gaps in the field that should be addressed moving forward and outline future directions to galvanize researchers from multiple disciplines to help realize the full potential of this form of cancer immunotherapy through chemistry and rational vaccinology.
Collapse
Affiliation(s)
- Ziyin Huang
- Department
of Materials Science and Engineering, International Institute for Nanotechnology, Department of Chemistry, Interdisciplinary
Biological Sciences Graduate Program, andDepartment of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Cassandra E. Callmann
- Department
of Materials Science and Engineering, International Institute for Nanotechnology, Department of Chemistry, Interdisciplinary
Biological Sciences Graduate Program, andDepartment of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Shuya Wang
- Department
of Materials Science and Engineering, International Institute for Nanotechnology, Department of Chemistry, Interdisciplinary
Biological Sciences Graduate Program, andDepartment of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Matthew K. Vasher
- Department
of Materials Science and Engineering, International Institute for Nanotechnology, Department of Chemistry, Interdisciplinary
Biological Sciences Graduate Program, andDepartment of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Michael Evangelopoulos
- Department
of Materials Science and Engineering, International Institute for Nanotechnology, Department of Chemistry, Interdisciplinary
Biological Sciences Graduate Program, andDepartment of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Sarah Hurst Petrosko
- Department
of Materials Science and Engineering, International Institute for Nanotechnology, Department of Chemistry, Interdisciplinary
Biological Sciences Graduate Program, andDepartment of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Chad A. Mirkin
- Department
of Materials Science and Engineering, International Institute for Nanotechnology, Department of Chemistry, Interdisciplinary
Biological Sciences Graduate Program, andDepartment of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
12
|
Pone EJ, Hernandez-Davies JE, Jan S, Silzel E, Felgner PL, Davies DH. Multimericity Amplifies the Synergy of BCR and TLR4 for B Cell Activation and Antibody Class Switching. Front Immunol 2022; 13:882502. [PMID: 35663959 PMCID: PMC9161726 DOI: 10.3389/fimmu.2022.882502] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/20/2022] [Indexed: 12/15/2022] Open
Abstract
Sustained signaling through the B cell antigen receptor (BCR) is thought to occur only when antigen(s) crosslink or disperse multiple BCR units, such as by multimeric antigens found on the surfaces of viruses or bacteria. B cell-intrinsic Toll-like receptor (TLR) signaling synergizes with the BCR to induce and shape antibody production, hallmarked by immunoglobulin (Ig) class switch recombination (CSR) of constant heavy chains from IgM/IgD to IgG, IgA or IgE isotypes, and somatic hypermutation (SHM) of variable heavy and light chains. Full B cell differentiation is essential for protective immunity, where class switched high affinity antibodies neutralize present pathogens, memory B cells are held in reserve for future encounters, and activated B cells also serve as semi-professional APCs for T cells. But the rules that fine-tune B cell differentiation remain partially understood, despite their being essential for naturally acquired immunity and for guiding vaccine development. To address this in part, we have developed a cell culture system using splenic B cells from naive mice stimulated with several biotinylated ligands and antibodies crosslinked by streptavidin reagents. In particular, biotinylated lipopolysaccharide (LPS), a Toll-like receptor 4 (TLR4) agonist, and biotinylated anti-IgM were pre-assembled (multimerized) using streptavidin, or immobilized on nanoparticles coated with streptavidin, and used to active B cells in this precisely controlled, high throughput assay. Using B cell proliferation and Ig class switching as metrics for successful B cell activation, we show that the stimuli are both synergistic and dose-dependent. Crucially, the multimerized immunoconjugates are most active over a narrow concentration range. These data suggest that multimericity is an essential requirement for B cell BCR/TLRs ligands, and clarify basic rules for B cell activation. Such studies highlight the importance in determining the choice of single vs multimeric formats of antigen and PAMP agonists during vaccine design and development.
Collapse
|
13
|
Bhattacharya P, Ismail N, Saxena A, Gannavaram S, Dey R, Oljuskin T, Akue A, Takeda K, Yu J, Karmakar S, Dagur PK, McCoy JP, Nakhasi HL. Neutrophil-dendritic cell interaction plays an important role in live attenuated Leishmania vaccine induced immunity. PLoS Negl Trop Dis 2022; 16:e0010224. [PMID: 35192633 PMCID: PMC8896671 DOI: 10.1371/journal.pntd.0010224] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 03/04/2022] [Accepted: 02/02/2022] [Indexed: 11/19/2022] Open
Abstract
Background Neutrophils are involved in the initial host responses to pathogens. Neutrophils can activate T cell responses either independently or through indirect involvement of Dendritic cells (DCs). Recently we have demonstrated direct neutrophil-T cell interactions that initiate adaptive immune responses following immunization with live attenuated Leishmania donovani centrin deleted parasite vaccine (LdCen-/-). However, neutrophil-DC interactions in T cell priming in vaccine immunity in general are not known. In this study we evaluated the interaction between neutrophils and DCs during LdCen-/- infection and compared with wild type parasite (LdWT) both in vitro and in vivo. Methodology/findings LdCen-/- parasite induced increased expression of CCL3 in neutrophils caused higher recruitment of DCs capable of inducing a strong proinflammatory response and elevated co-stimulatory molecule expression compared to LdWT infection. To further illustrate neutrophil-DCs interactions in vivo, we infected LYS-eGFP mice with red fluorescent LdWT/LdCen-/- parasites and sort selected DCs that engulfed the neutrophil containing parasites or DCs that acquired the parasites directly in the ear draining lymph nodes (dLN) 5d post infection. The DCs predominantly acquired the parasites by phagocytosing infected neutrophils. Specifically, DCs containing LdCen-/- parasitized neutrophils exhibited a proinflammatory phenotype, increased expression of costimulatory molecules and initiated higher CD4+T cell priming ex-vivo. Notably, potent DC activation occurred when LdCen-/- parasites were acquired indirectly via engulfment of parasitized neutrophils compared to direct engulfment of LdCen-/- parasites by DCs. Neutrophil depletion in LdCen-/- infected mice significantly abrogated expression of CCL3 resulting in decreased DC recruitment in ear dLN. This event led to poor CD4+Th1 cell priming ex vivo that correlated with attenuated Tbet expression in ear dLN derived CD4+ T cells in vivo. Conclusions Collectively, LdCen-/- containing neutrophils phagocytized by DC markedly influence the phenotype and antigen presenting capacity of DCs early on and thus play an immune-regulatory role in shaping vaccine induced host protective response. Visceral Leishmaniasis (VL), caused by the protozoan parasites of the genus Leishmania is a neglected tropical disease. Leishmania donovani is the principal causative agent of VL in East Africa and the Indian subcontinent whereas in Europe, North Africa, and Latin America VL is mainly caused by Leishmania infantum. No licensed vaccine exists against VL. We have reported previously that live attenuated centrin gene-deleted L. donovani (LdCen-/-) parasite vaccine induced strong innate immunity which leads to a protective Th1 response in animal models. We recently demonstrated that neutrophils play an indispensable role following immunization with LdCen-/- parasites in inducing protective Th1 immune response. However, neutrophils also secrete chemokines that attract other innate cells such as dendritic cells and regulate their activities. In the current study we analyzed the interplay between neutrophils and DCs, and its effects on T cell activation during LdCen-/- infection and compared with wild type parasite (LdWT) infection. We observed that higher recruitment of DCs occurred in LdCen-/- infected mice ear draining lymph nodes compared to LdWT. This recruitment is facilitated by increased secretion of the chemokine CCL3 by neutrophils. A markedly decreased DC recruitment was observed in LdCen-/- infected mice following CCL3 neutralization indicating the key role of neutrophils in DC recruitment. Further, we demonstrated that DCs that ingest LdCen-/- infected neutrophils are better activated than those that acquire the parasites independent of neutrophils. Notably neutrophil depletion in LdCen-/- infected mice also attenuated activation of DCs in the ear dLN that resulted in poor CD4+T cell priming. Our results reveal that interaction between neutrophils and DCs play an important role in shaping proinflammatory immune response induced by a live attenuated Leishmania vaccine.
Collapse
Affiliation(s)
- Parna Bhattacharya
- Division of Emerging and Transfusion Transmitted Disease, Center for Biologics Evaluation and Research Food and Drug Administration, Silver Spring, Maryland, United States of America
- * E-mail: (PB); (HLN)
| | - Nevien Ismail
- Division of Emerging and Transfusion Transmitted Disease, Center for Biologics Evaluation and Research Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Ankit Saxena
- Flow Cytometry Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sreenivas Gannavaram
- Division of Emerging and Transfusion Transmitted Disease, Center for Biologics Evaluation and Research Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Ranadhir Dey
- Division of Emerging and Transfusion Transmitted Disease, Center for Biologics Evaluation and Research Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Timur Oljuskin
- Division of Emerging and Transfusion Transmitted Disease, Center for Biologics Evaluation and Research Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Adovi Akue
- Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Kazuyo Takeda
- Division of Blood Components and Devices, Center for Biologics Evaluation and Research Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - James Yu
- Division of Blood Components and Devices, Center for Biologics Evaluation and Research Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Subir Karmakar
- Division of Emerging and Transfusion Transmitted Disease, Center for Biologics Evaluation and Research Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Pradeep K. Dagur
- Flow Cytometry Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - John Philip McCoy
- Flow Cytometry Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Hira L. Nakhasi
- Division of Emerging and Transfusion Transmitted Disease, Center for Biologics Evaluation and Research Food and Drug Administration, Silver Spring, Maryland, United States of America
- * E-mail: (PB); (HLN)
| |
Collapse
|
14
|
Choi Y, Sunkara V, Lee Y, Cho YK. Exhausted mature dendritic cells exhibit a slower and less persistent random motility but retain chemotaxis against CCL19. LAB ON A CHIP 2022; 22:377-386. [PMID: 34927189 DOI: 10.1039/d1lc00876e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Dendritic cells (DCs), which are immune sentinels in the peripheral tissues, play a number of roles, including patrolling for pathogens, internalising antigens, transporting antigens to the lymph nodes (LNs), interacting with T cells, and secreting cytokines. The well-coordinated migration of DCs under various immunological or inflammatory conditions is therefore essential to ensure an effective immune response. Upon maturation, DCs migrate faster and more persistently than immature DCs (iDCs), which is believed to facilitate CCR7-dependent chemotaxis. It has been reported that lipopolysaccharide-activated DCs produce IL-12 only transiently, and become resistant to further stimulation through exhaustion. However, little is known about the influence of DC exhaustion on cellular motility. Here, we studied the cellular migration of exhausted DCs in tissue-mimicked confined environments. We found that the speed of exhausted matured DCs (xmDCs) decreased significantly compared to active matured DCs (amDCs) and iDCs. In contrast, the speed fluctuation increased compared to that of amDCs and was similar to that of iDCs. In addition, the diffusivity of the xmDCs was significantly lower than that of the amDCs, which implies that DC exhaustion reduces the space exploration ability. Interestingly, CCR7-dependent chemotaxis against CCL19 in xmDCs was not considerably different from that observed in amDCs. Taken together, we report a unique intrinsic cell migration behaviour of xmDCs, which exhibit a slower, less persistent, and less diffusive random motility, which results in the DCs remaining at the site of infection, although a well-preserved CCR7-dependent chemotactic motility is maintained.
Collapse
Affiliation(s)
- Yongjun Choi
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Vijaya Sunkara
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Yeojin Lee
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Yoon-Kyoung Cho
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| |
Collapse
|
15
|
Kischkel B, Boniche-Alfaro C, Menezes IDG, Rossi SA, Angeli CB, de Almeida SR, Palmisano G, Lopes-Bezerra L, Nosanchuk JD, Taborda CP. Immunoproteomic and Immunopeptidomic Analyses of Histoplasma capsulatum Reveal Promiscuous and Conserved Epitopes Among Fungi With Vaccine Potential. Front Immunol 2021; 12:764501. [PMID: 34880863 PMCID: PMC8645968 DOI: 10.3389/fimmu.2021.764501] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/29/2021] [Indexed: 12/27/2022] Open
Abstract
As there are more than 6 million human deaths due to mycoses each year, there is an urgent need to develop fungal vaccines. Moreover, given the similarities among pathogenic fungi, it may be possible to create a multi-fungi vaccine. In this study, we combined immunoproteomic and immunopeptidomic methods, for which we have adapted a technique based on co-immunoprecipitation (Co-IP) that made it possible to map Histoplasma capsulatum epitopes for the first time in a natural context using murine dendritic cells (DCs) and macrophages (Mφ). Although polysaccharide epitopes exist, this research focused on mapping protein epitopes as these are more immunogenic. We used different algorithms to screen proteins and peptides identified by two-dimensional electrophoresis (2-D) and Co-IP. Seventeen proteins were revealed by 2-D gels, and 45 and 24 peptides from distinct proteins were presented by DCs and Mφ, respectively. We then determined which epitopes were restricted to MHC-I and II from humans and mice and showed high promiscuity, but lacked identity with human proteins. The 4 most promising peptides were synthesized, and the peptides with and without incorporation into glucan particles induced CD4+ and CD8+ T cell proliferation and produced a Th1 and Th17 response marked by the secretion of high levels of IFN-γ, IL-17 and IL-2. These epitopes were from heat shock protein 60, enolase, and the ATP-dependent molecular chaperone HSC82, and they each have a high degree of identity with proteins expressed by other medically important pathogenic fungi. Thus, the epitopes described in this study have the potential for use in the development of vaccines that could result in cross-protection among fungal species.
Collapse
Affiliation(s)
- Brenda Kischkel
- Department of Microbiology, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil
| | - Camila Boniche-Alfaro
- Department of Microbiology, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil
| | - Isabela de Godoy Menezes
- Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Suelen Andreia Rossi
- Department of Microbiology, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil.,Department of Dermatology, Tropical Medicine Institute, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Claudia Blanes Angeli
- Department of Parasitology, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil
| | - Sandro Rogério de Almeida
- Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Giuseppe Palmisano
- Department of Parasitology, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil
| | - Leila Lopes-Bezerra
- Department of Microbiology, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil
| | - Joshua D Nosanchuk
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine, New York, NY, United States.,Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, United States
| | - Carlos Pelleschi Taborda
- Department of Microbiology, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil.,Department of Dermatology, Tropical Medicine Institute, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
16
|
Martí I Líndez AA, Reith W. Arginine-dependent immune responses. Cell Mol Life Sci 2021; 78:5303-5324. [PMID: 34037806 PMCID: PMC8257534 DOI: 10.1007/s00018-021-03828-4] [Citation(s) in RCA: 166] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 03/23/2021] [Accepted: 03/29/2021] [Indexed: 02/07/2023]
Abstract
A growing body of evidence indicates that, over the course of evolution of the immune system, arginine has been selected as a node for the regulation of immune responses. An appropriate supply of arginine has long been associated with the improvement of immune responses. In addition to being a building block for protein synthesis, arginine serves as a substrate for distinct metabolic pathways that profoundly affect immune cell biology; especially macrophage, dendritic cell and T cell immunobiology. Arginine availability, synthesis, and catabolism are highly interrelated aspects of immune responses and their fine-tuning can dictate divergent pro-inflammatory or anti-inflammatory immune outcomes. Here, we review the organismal pathways of arginine metabolism in humans and rodents, as essential modulators of the availability of this semi-essential amino acid for immune cells. We subsequently review well-established and novel findings on the functional impact of arginine biosynthetic and catabolic pathways on the main immune cell lineages. Finally, as arginine has emerged as a molecule impacting on a plethora of immune functions, we integrate key notions on how the disruption or perversion of arginine metabolism is implicated in pathologies ranging from infectious diseases to autoimmunity and cancer.
Collapse
Affiliation(s)
| | - Walter Reith
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
17
|
Gulati S, Singh P, Diwan A, Mongia A, Kumar S. Functionalized gold nanoparticles: promising and efficient diagnostic and therapeutic tools for HIV/AIDS. RSC Med Chem 2020; 11:1252-1266. [PMID: 34095839 PMCID: PMC8126886 DOI: 10.1039/d0md00298d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 08/31/2020] [Indexed: 02/05/2023] Open
Abstract
Functionalized gold nanoparticles are recognized as promising vehicles in the diagnosis and treatment of human immunodeficiency virus (HIV) owing to their excellent biocompatibility with biomolecules (like DNA or RNA), their potential for multivalency and their unique optical and structural properties. In this context, this review article focuses on the diverse detection abilities and delivery and uptake methodologies of HIV by targeting genes and proteins using gold nanoparticles on the basis of different shapes and sizes in order to promote its effective expression. In addition, recent trends in gold nanoparticle mediated HIV detection, delivery and uptake and treatment are highlighted considering their cytotoxic effects on healthy human cells.
Collapse
Affiliation(s)
- Shikha Gulati
- Department of Chemistry, Sri Venkateswara College, University of Delhi Delhi-110021 India
| | - Parinita Singh
- Department of Chemistry, Sri Venkateswara College, University of Delhi Delhi-110021 India
| | - Anchita Diwan
- Department of Chemistry, Sri Venkateswara College, University of Delhi Delhi-110021 India
| | - Ayush Mongia
- Department of Chemistry, Sri Venkateswara College, University of Delhi Delhi-110021 India
| | - Sanjay Kumar
- Department of Chemistry, Sri Venkateswara College, University of Delhi Delhi-110021 India
| |
Collapse
|
18
|
Montero L, Cervantes-Torres J, Sciutto E, Fragoso G. Helminth-derived peptide GK-1 induces Myd88-dependent pro-inflammatory signaling events in bone marrow-derived antigen-presenting cells. Mol Immunol 2020; 128:22-32. [PMID: 33049560 DOI: 10.1016/j.molimm.2020.09.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 09/19/2020] [Accepted: 09/21/2020] [Indexed: 12/17/2022]
Abstract
GK-1 is an immunomodulatory, 18-aa-long peptide that has been proved to promote the activation of mouse peritoneal macrophages and LPS-pulsed mouse bone marrow-derived dendritic cells (BM-DCs). This study is aimed to explore the mechanisms underlying the activation of these antigen-presenting cells (APCs) by GK-1. In our study, GK-1 up-regulated in vitro the expression of CD86 and CD40, and it increased the secretion of NO in bone marrow-derived macrophages (BMDMs). In BM-DCs, GK-1 upregulated the expression of MHC class II and CD86. Additionally, GK-1 was found to be involved in the phosphorylation of MAPK p38, JNK and ERK 1/2 and in Myd88-dependent activation of NF-κB in both antigen-presenting cell types. In vivo, GK-1 increased the secretion of IL-15, CCL2, and IL-6 through a Myd88-dependent mechanism. This study demonstrated that GK-1 promotes the activation and effector activity of APCs through a mechanism dependent on Myd88, probably involving a Toll-like receptor as a target.
Collapse
Affiliation(s)
- Laura Montero
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México City, 04510, Mexico.
| | | | - Edda Sciutto
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México City, 04510, Mexico.
| | - Gladis Fragoso
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México City, 04510, Mexico.
| |
Collapse
|
19
|
Grandclaudon M, Perrot-Dockès M, Trichot C, Karpf L, Abouzid O, Chauvin C, Sirven P, Abou-Jaoudé W, Berger F, Hupé P, Thieffry D, Sansonnet L, Chiquet J, Lévy-Leduc C, Soumelis V. A Quantitative Multivariate Model of Human Dendritic Cell-T Helper Cell Communication. Cell 2020; 179:432-447.e21. [PMID: 31585082 DOI: 10.1016/j.cell.2019.09.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/20/2019] [Accepted: 09/09/2019] [Indexed: 12/24/2022]
Abstract
Cell-cell communication involves a large number of molecular signals that function as words of a complex language whose grammar remains mostly unknown. Here, we describe an integrative approach involving (1) protein-level measurement of multiple communication signals coupled to output responses in receiving cells and (2) mathematical modeling to uncover input-output relationships and interactions between signals. Using human dendritic cell (DC)-T helper (Th) cell communication as a model, we measured 36 DC-derived signals and 17 Th cytokines broadly covering Th diversity in 428 observations. We developed a data-driven, computationally validated model capturing 56 already described and 290 potentially novel mechanisms of Th cell specification. By predicting context-dependent behaviors, we demonstrate a new function for IL-12p70 as an inducer of Th17 in an IL-1 signaling context. This work provides a unique resource to decipher the complex combinatorial rules governing DC-Th cell communication and guide their manipulation for vaccine design and immunotherapies.
Collapse
Affiliation(s)
- Maximilien Grandclaudon
- Institut Curie, Centre de Recherche, PSL Research University, 75005 Paris, France; INSERM U932, Immunity and Cancer, 75005 Paris, France
| | - Marie Perrot-Dockès
- UMR MIA-Paris, AgroParisTech, INRA-Université Paris-Saclay, 75005 Paris, France
| | - Coline Trichot
- Institut Curie, Centre de Recherche, PSL Research University, 75005 Paris, France; INSERM U932, Immunity and Cancer, 75005 Paris, France
| | - Léa Karpf
- Institut Curie, Centre de Recherche, PSL Research University, 75005 Paris, France; INSERM U932, Immunity and Cancer, 75005 Paris, France
| | - Omar Abouzid
- Institut Curie, Centre de Recherche, PSL Research University, 75005 Paris, France; INSERM U932, Immunity and Cancer, 75005 Paris, France
| | - Camille Chauvin
- Institut Curie, Centre de Recherche, PSL Research University, 75005 Paris, France; INSERM U932, Immunity and Cancer, 75005 Paris, France
| | - Philémon Sirven
- Institut Curie, Centre de Recherche, PSL Research University, 75005 Paris, France; INSERM U932, Immunity and Cancer, 75005 Paris, France
| | - Wassim Abou-Jaoudé
- Computational Systems Biology Team, Institut de Biologie de l'École Normale Supérieure, Centre National de la Recherche Scientifique UMR8197, INSERM U1024, École Normale Supérieure, PSL Université, 75005 Paris, France
| | - Frédérique Berger
- Institut Curie, Centre de Recherche, PSL Research University, 75005 Paris, France; Institut Curie, PSL Research University, Unit of Biostatistics, 75005 Paris, France; Institut Curie, PSL Research University, INSERM U900, 75005 Paris, France
| | - Philippe Hupé
- Institut Curie, Centre de Recherche, PSL Research University, 75005 Paris, France; Institut Curie, PSL Research University, INSERM U900, 75005 Paris, France; Mines Paris Tech, 77305 Cedex Fontainebleau, France
| | - Denis Thieffry
- Computational Systems Biology Team, Institut de Biologie de l'École Normale Supérieure, Centre National de la Recherche Scientifique UMR8197, INSERM U1024, École Normale Supérieure, PSL Université, 75005 Paris, France
| | - Laure Sansonnet
- UMR MIA-Paris, AgroParisTech, INRA-Université Paris-Saclay, 75005 Paris, France
| | - Julien Chiquet
- UMR MIA-Paris, AgroParisTech, INRA-Université Paris-Saclay, 75005 Paris, France
| | - Céline Lévy-Leduc
- UMR MIA-Paris, AgroParisTech, INRA-Université Paris-Saclay, 75005 Paris, France
| | - Vassili Soumelis
- Institut Curie, Centre de Recherche, PSL Research University, 75005 Paris, France; INSERM U932, Immunity and Cancer, 75005 Paris, France.
| |
Collapse
|
20
|
Cordeiro B, Jeon P, Boukhaled GM, Corrado M, Lapohos O, Roy DG, Williams K, Jones RG, Gruenheid S, Sagan SM, Krawczyk CM. MicroRNA-9 Fine-Tunes Dendritic Cell Function by Suppressing Negative Regulators in a Cell-Type-Specific Manner. Cell Rep 2020; 31:107585. [PMID: 32375032 DOI: 10.1016/j.celrep.2020.107585] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 08/08/2019] [Accepted: 04/07/2020] [Indexed: 12/12/2022] Open
Abstract
Dendritic cells, cells of the innate immune system, are found in a steady state poised to respond to activating stimuli. Once stimulated, they rapidly undergo dynamic changes in gene expression to adopt an activated phenotype capable of stimulating immune responses. We find that the microRNA miR-9 is upregulated in both bone marrow-derived DCs and conventional DC1s but not in conventional DC2s following stimulation. miR-9 expression in BMDCs and conventional DC1s promotes enhanced DC activation and function, including the ability to stimulate T cell activation and control tumor growth. We find that miR-9 regulated the expression of several negative regulators of transcription, including the transcriptional repressor Polycomb group factor 6 (Pcgf6). These findings demonstrate that miR-9 facilitates the transition of DCs from steady state to mature state by regulating the expression of several negative regulators of DC function in a cell-type-specific manner.
Collapse
Affiliation(s)
- Brendan Cordeiro
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Peter Jeon
- Goodman Cancer Research Center, Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Giselle M Boukhaled
- Goodman Cancer Research Center, Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Mario Corrado
- Goodman Cancer Research Center, Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Orsolya Lapohos
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Dominic G Roy
- Goodman Cancer Research Center, Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Kelsey Williams
- Metabolic and Nutritional Programming Group, Van Andel Institute, 333 Bostwick Avenue NE, Grand Rapids, MI 49503, USA
| | - Russell G Jones
- Goodman Cancer Research Center, Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada; Metabolic and Nutritional Programming Group, Van Andel Institute, 333 Bostwick Avenue NE, Grand Rapids, MI 49503, USA
| | - Samantha Gruenheid
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Selena M Sagan
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Connie M Krawczyk
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3G 1Y6, Canada; Goodman Cancer Research Center, Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada; Metabolic and Nutritional Programming Group, Van Andel Institute, 333 Bostwick Avenue NE, Grand Rapids, MI 49503, USA.
| |
Collapse
|
21
|
Yang L, Han X, Yuan J, Xing F, Hu Z, Huang F, Wu H, Shi H, Zhang T, Wu X. Early astragaloside IV administration attenuates experimental autoimmune encephalomyelitis in mice by suppressing the maturation and function of dendritic cells. Life Sci 2020; 249:117448. [PMID: 32087232 DOI: 10.1016/j.lfs.2020.117448] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/15/2020] [Accepted: 02/17/2020] [Indexed: 02/02/2023]
Abstract
AIMS Dendritic cells (DCs) actively participate in the pathogenesis of multiple sclerosis (MS), an autoimmune disease. Astragaloside IV (ASI), an active monomer isolated from the Chinese medicine Astragalus membranaceus, has a wide range of pharmacological effects. We aimed to elucidate the effects of ASI on the development of DCs in the early stage of MS/EAE. MAIN METHODS The mice were administered with ASI (20 mg/kg) daily 3 days in advance of EAE induction and continuously until day 7 post-immunization. The effect of ASI on CD11c+ DC cells from bone marrow (BMDCs) or the spleen of EAE mice at day 7 post-immunization were investigated respectively by flow cytometry, ELISA, western blot, real-time PCR and immunofluorescence. KEY FINDINGS ASI administration in the early stage of EAE was demonstrated to delay the onset and alleviate the severity of the disease. ASI inhibited the maturation and the antigen presentation of DCs in spleen of EAE mice and LPS-stimulated BMDCs, as evidenced by decreased expressions of CD11c, CD86, CD40 and MHC II. Accordingly, DCs treated by ASI secreted less IL-6 and IL-12, and prevented the differentiation of CD4+ T cells into Th1 and Th17 cells, which was probably through inhibiting the activation of NFκB and MAPKs signaling pathways. SIGNIFICANCE Our results implicated the alleviative effect of early ASI administration on EAE might be mediated by suppressing the maturation and function of DCs. The novel findings may add to our knowledge of ASI in the potentially clinical treatment of MS.
Collapse
Affiliation(s)
- Liu Yang
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xinyan Han
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jinfeng Yuan
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Faping Xing
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhixing Hu
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Fei Huang
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hui Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hailian Shi
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ting Zhang
- Classical Prescription Experimental Platform, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Xiaojun Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
22
|
Han P, Hanlon D, Sobolev O, Chaudhury R, Edelson RL. Ex vivo dendritic cell generation-A critical comparison of current approaches. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 349:251-307. [PMID: 31759433 DOI: 10.1016/bs.ircmb.2019.10.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Dendritic cells (DCs) are professional antigen-presenting cells, required for the initiation of naïve and memory T cell responses and regulation of adaptive immunity. The discovery of DCs in 1973, which culminated in the Nobel Prize in Physiology or Medicine in 2011 for Ralph Steinman and colleagues, initially focused on the identification of adherent mononuclear cell fractions with uniquely stellate dendritic morphology, followed by key discoveries of their critical immunologic role in initiating and maintaining antigen-specific immunity and tolerance. The medical promise of marshaling these key capabilities of DCs for therapeutic modulation of antigen-specific immune responses has guided decades of research in hopes to achieve genuine physiologic partnership with the immune system. The potential uses of DCs in immunotherapeutic applications include cancer, infectious diseases, and autoimmune disorders; thus, methods for rapid and reliable large-scale production of DCs have been of great academic and clinical interest. However, difficulties in obtaining DCs from lymphoid and peripheral tissues, low numbers and poor survival in culture, have led to advancements in ex vivo production of DCs, both for probing molecular details of DC function as well as for experimenting with their clinical utility. Here, we review the development of a diverse array of DC production methodologies, ranging from cytokine-based strategies to genetic engineering tools devised for enhancing DC-specific immunologic functions. Further, we explore the current state of DC therapies in clinic, as well as emerging insights into physiologic production of DCs inspired by existing therapies.
Collapse
Affiliation(s)
- Patrick Han
- Department of Chemical and Environmental Engineering, School of Engineering and Applied Science, Yale University, New Haven, CT, United States
| | - Douglas Hanlon
- Department of Dermatology, School of Medicine, Yale University, New Haven, CT, United States
| | - Olga Sobolev
- Department of Dermatology, School of Medicine, Yale University, New Haven, CT, United States
| | - Rabib Chaudhury
- Department of Chemical and Environmental Engineering, School of Engineering and Applied Science, Yale University, New Haven, CT, United States
| | - Richard L Edelson
- Department of Dermatology, School of Medicine, Yale University, New Haven, CT, United States.
| |
Collapse
|
23
|
Meyers JL, Winans B, Kelsaw E, Murthy A, Gerber S, Lawrence BP. Environmental cues received during development shape dendritic cell responses later in life. PLoS One 2018; 13:e0207007. [PMID: 30412605 PMCID: PMC6226176 DOI: 10.1371/journal.pone.0207007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 10/23/2018] [Indexed: 12/16/2022] Open
Abstract
Environmental signals mediated via the aryl hydrocarbon receptor (AHR) shape the developing immune system and influence immune function. Developmental exposure to AHR binding chemicals causes persistent changes in CD4+ and CD8+ T cell responses later in life, including dampened clonal expansion and differentiation during influenza A virus (IAV) infection. Naïve T cells require activation by dendritic cells (DCs), and AHR ligands modulate the function of DCs from adult organisms. Yet, the consequences of developmental AHR activation by exogenous ligands on DCs later in life has not been examined. We report here that early life activation of AHR durably reduces the ability of DC to activate naïve IAV-specific CD8+ T cells; however, activation of naïve CD4+ T cells was not impaired. Also, DCs from developmentally exposed offspring migrated more poorly than DCs from control dams in both in vivo and ex vivo assessments of DC migration. Conditional knockout mice, which lack Ahr in CD11c lineage cells, suggest that dampened DC emigration is intrinsic to DCs. Yet, levels of chemokine receptor 7 (CCR7), a key regulator of DC trafficking, were generally unaffected. Gene expression analyses reveal changes in Lrp1, Itgam, and Fcgr1 expression, and point to alterations in genes that regulate DC migration and antigen processing and presentation as being among pathways disrupted by inappropriate AHR signaling during development. These studies establish that AHR activation during development causes long-lasting changes to DCs, and provide new information regarding how early life environmental cues shape immune function later in life.
Collapse
Affiliation(s)
- Jessica L. Meyers
- Department of Environmental Medicine, University of Rochester School of Medicine & Dentistry, Rochester, New York, United States of America
| | - Bethany Winans
- Department of Environmental Medicine, University of Rochester School of Medicine & Dentistry, Rochester, New York, United States of America
| | - Erin Kelsaw
- Department of Microbiology and Immunology, University of Rochester School of Medicine & Dentistry, Rochester, New York, United States of America
| | - Aditi Murthy
- Department of Microbiology and Immunology, University of Rochester School of Medicine & Dentistry, Rochester, New York, United States of America
| | - Scott Gerber
- Department of Microbiology and Immunology, University of Rochester School of Medicine & Dentistry, Rochester, New York, United States of America
- Department of Surgery, University of Rochester School of Medicine & Dentistry, Rochester, New York, United States of America
| | - B. Paige Lawrence
- Department of Environmental Medicine, University of Rochester School of Medicine & Dentistry, Rochester, New York, United States of America
- Department of Microbiology and Immunology, University of Rochester School of Medicine & Dentistry, Rochester, New York, United States of America
| |
Collapse
|
24
|
Sepulveda-Toepfer JA, Pichler J, Fink K, Sevo M, Wildburger S, Mudde-Boer LC, Taus C, Mudde GC. TLR9-mediated activation of dendritic cells by CD32 targeting for the generation of highly immunostimulatory vaccines. Hum Vaccin Immunother 2018; 15:179-188. [PMID: 30156957 DOI: 10.1080/21645515.2018.1514223] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The rational for designing dendritic cell (DC)-targeted immunotherapies is their central role in orchestrating immunity. Most studies addressing antigen-targeting to DCs for eliciting T cell responses have employed ex-vivo matured DCs derived from monocytes or myeloid DCs isolated from peripheral blood. More recently, also plasmacytoid DCs (pDCs) emerged as attractive targets that can be readily isolated and activated ex vivo. pDCs are known as key effectors of innate and adaptive immunity due to their exquisite ability to produce large amounts of type-1 interferons upon signaling via TLR7 or TLR9 intracellular receptor for viral RNA or bacterial DNA, respectively. In this study, we describe and characterize the immune modulating and targeting module of a composite human specific vaccine platform for active immunotherapy. This module, called warhead (WH), is composed of a single-chain variable fragment (scFv) and CpG-C type oligonucleotides (ODNs) that are covalently coupled. The scFv mediates specific binding to FcγRII/CD32 on APCs and internalization of the ODNs which stimulate TLR9-expressing B cells and pDCs. Furthermore, the scFv in the WH is extended with a five-time heptad repeat (EVSALEK) alpha helix which allows for a coiled-coil complex formation with any immunogen also extended with another five-time heptad (KVSALKE) repeat. WH elicits fast and robust pDC activation as evidenced by the release of interferon-α, TNF-α and IL-6. The WH thus takes advantage of the key features of human pDCs for immunostimulation and can be a versatile tool for antigen-specific vaccination with a variety of proteins or peptides.
Collapse
Affiliation(s)
- J A Sepulveda-Toepfer
- a Department of Research and Development , S-TARget Therapeutics GmbH , Vienna , Austria.,b Department of Research and Development , OncoQR ML GmbH , Vienna , Austria
| | - Johannes Pichler
- b Department of Research and Development , OncoQR ML GmbH , Vienna , Austria
| | - Kathrin Fink
- b Department of Research and Development , OncoQR ML GmbH , Vienna , Austria
| | - Milica Sevo
- a Department of Research and Development , S-TARget Therapeutics GmbH , Vienna , Austria
| | - Sonja Wildburger
- a Department of Research and Development , S-TARget Therapeutics GmbH , Vienna , Austria
| | | | - Christopher Taus
- b Department of Research and Development , OncoQR ML GmbH , Vienna , Austria
| | - Geert Cornelius Mudde
- a Department of Research and Development , S-TARget Therapeutics GmbH , Vienna , Austria.,b Department of Research and Development , OncoQR ML GmbH , Vienna , Austria
| |
Collapse
|
25
|
Siddiqui A, Akhtar J, Uddin M.S. S, Khan MI, Khalid M, Ahmad M. A Naturally Occurring Flavone (Chrysin): Chemistry, Occurrence, Pharmacokinetic, Toxicity, Molecular Targets and Medicinal Properties. JOURNAL OF BIOLOGICALLY ACTIVE PRODUCTS FROM NATURE 2018; 8:208-227. [DOI: 10.1080/22311866.2018.1498750] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Amir Siddiqui
- Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh, India
| | - Juber Akhtar
- Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh, India
| | | | | | - Mohammad Khalid
- Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh, India
| | - Mohammad Ahmad
- Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
26
|
Zhang J, Tian XJ, Chen YJ, Wang W, Watkins S, Xing J. Pathway crosstalk enables cells to interpret TGF-β duration. NPJ Syst Biol Appl 2018; 4:18. [PMID: 29872541 PMCID: PMC5972147 DOI: 10.1038/s41540-018-0060-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 04/28/2018] [Accepted: 05/07/2018] [Indexed: 02/07/2023] Open
Abstract
The detection and transmission of the temporal quality of intracellular and extracellular signals is an essential cellular mechanism. It remains largely unexplored how cells interpret the duration information of a stimulus. In this paper, we performed an integrated quantitative and computational analysis on TGF-β induced activation of SNAIL1, a key transcription factor that regulates several subsequent cell fate decisions such as apoptosis and epithelial-to-mesenchymal transition. We demonstrate that crosstalk among multiple TGF-β activated pathways forms a relay from SMAD to GLI1 that initializes and maintains SNAILl expression, respectively. SNAIL1 functions as a key integrator of information from TGF-β signaling distributed through upstream divergent pathways. The intertwined network serves as a temporal checkpoint, so that cells can generate a transient or sustained expression of SNAIL1 depending on TGF-β duration. Furthermore, we observed that TGF-β treatment leads to an unexpected accumulation of GSK3 molecules in an enzymatically active tyrosine phosphorylation form in Golgi apparatus and ER, followed by accumulation of GSK3 molecules in an enzymatically inhibitive serine phosphorylation in the nucleus. Subsequent model analysis and inhibition experiments revealed that the initial localized increase of GSK3 enzymatic activity couples to the positive feedback loop of the substrate Gli1 to form a network motif with multi-objective functions. That is, the motif is robust against stochastic fluctuations, and has a narrow distribution of response time that is insensitive to initial conditions. Specifically for TGF-β signaling, the motif ensures a smooth relay from SMAD to GLI1 on regulating SNAIL1 expression.
Collapse
Affiliation(s)
- Jingyu Zhang
- 1Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260 USA
| | - Xiao-Jun Tian
- 1Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260 USA.,4Present Address: School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287 USA
| | - Yi-Jiun Chen
- 1Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260 USA
| | - Weikang Wang
- 1Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260 USA
| | - Simon Watkins
- 2Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260 USA
| | - Jianhua Xing
- 1Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260 USA.,3UPMC-Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232 USA
| |
Collapse
|
27
|
Serrano I, Luque A, Aran JM. Exploring the Immunomodulatory Moonlighting Activities of Acute Phase Proteins for Tolerogenic Dendritic Cell Generation. Front Immunol 2018; 9:892. [PMID: 29760704 PMCID: PMC5936965 DOI: 10.3389/fimmu.2018.00892] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/10/2018] [Indexed: 12/20/2022] Open
Abstract
The acute phase response is generated by an overwhelming immune-inflammatory process against infection or tissue damage, and represents the initial response of the organism in an attempt to return to homeostasis. It is mediated by acute phase proteins (APPs), an assortment of highly conserved plasma reactants of seemingly different functions that, however, share a common protective role from injury. Recent studies have suggested a crosstalk between several APPs and the mononuclear phagocyte system (MPS) in the resolution of inflammation, to restore tissue integrity and function. In fact, monocyte-derived dendritic cells (Mo-DCs), an integral component of the MPS, play a fundamental role both in the regulation of antigen-specific adaptive responses and in the development of immunologic memory and tolerance, particularly in inflammatory settings. Due to their high plasticity, Mo-DCs can be modeled in vitro toward a tolerogenic phenotype for the treatment of aberrant immune-inflammatory conditions such as autoimmune diseases and allotransplantation, with the phenotypic outcome of these cells depending on the immunomodulatory agent employed. Yet, recent immunotherapy trials have emphasized the drawbacks and challenges facing tolerogenic Mo-DC generation for clinical use, such as reduced therapeutic efficacy and limited in vivo stability of the tolerogenic activity. In this review, we will underline the potential relevance and advantages of APPs for tolerogenic DC production with respect to currently employed immunomodulatory/immunosuppressant compounds. A further understanding of the mechanisms of action underlying the moonlighting immunomodulatory activities exhibited by several APPs over DCs could lead to more efficacious, safe, and stable protocols for precision tolerogenic immunotherapy.
Collapse
Affiliation(s)
- Inmaculada Serrano
- Immune-Inflammatory Processes and Gene Therapeutics Group, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Ana Luque
- Immune-Inflammatory Processes and Gene Therapeutics Group, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Josep M Aran
- Immune-Inflammatory Processes and Gene Therapeutics Group, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
28
|
Rot A, Massberg S, Khandoga AG, von Andrian UH. Chemokines and Hematopoietic Cell Trafficking. Hematology 2018. [DOI: 10.1016/b978-0-323-35762-3.00013-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
29
|
Moura Rodrigues R, Plana M, Garcia F, Zupin L, Kuhn L, Crovella S. Genome-wide scan in two groups of HIV-infected patients treated with dendritic cell-based immunotherapy. Immunol Res 2017; 64:1207-1215. [PMID: 27704462 DOI: 10.1007/s12026-016-8875-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We performed a retrospective genome-wide association study in HIV-infected individuals who were treated with dendritic cell-based immunotherapy in clinical trials performed by two research groups (Spain and Brazil). We aimed to identify host genetic variants influencing treatment response. The Illumina Human Core Exome 12 v 1.0 Bead Chip with over 250,000 markers was used to analyze genetic factors affecting treatment response. Additionally, we performed a meta-analysis of the results obtained from Spanish and Brazilian patients. We identified a genetic variation (rs7935564 G allele) in TRIM22 gene, which encodes TRIM22 protein acting like a HIV restriction factor, as being associated with good response to dendritic cell-based immunotherapy. We then verified the impact of TRIM22 rs7935564 SNP in susceptibility to HIV infection and disease progression by assessing the influence of biogeographic ancestry in the distribution of allelic and genotype frequencies in three populations from Italy, Brazil and Zambia. TRIM22 rs7935564 genotyping indicated association of G rs7935564 allele with long-term non-progression of HIV disease in Italian patients, thus corroborating our hypothesis that it is involved as a restriction factor in dendritic cell-based immunotherapy response. TRIM22 rs7935564 polymorphism was associated with good response to dendritic cell-based immunotherapy. We hypothesize that in selecting patients for treatment, there is a possible bias related to the natural presence of restriction factors that are genetically determined and could influence final outcome of therapy.
Collapse
Affiliation(s)
- Ronald Moura Rodrigues
- Department of Genetics, Federal University of Pernambuco, Recife, Brazil.,Laboratory of Immunopathology Keizo Azami (LIKA), Federal University of Pernambuco, Recife, Brazil
| | - Monserrat Plana
- Retrovirology and Cellular Immunopathology Laboratory, AIDS Research Group, Catalan Project for the Development of an HIV Vaccine (HIVACAT), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Barcelona, Spain
| | - Felipe Garcia
- Infectious Diseases Unit, AIDS Research Group, Catalan Project for the Development of an HIV Vaccine (HIVACAT), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Barcelona, Spain
| | - Luisa Zupin
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Via dell'Istria 65/1, Zip code: 34137, Trieste, Italy.,Department of Medicine, Surgery and Health Sciences,, University of Trieste, Trieste, Italy
| | - Louise Kuhn
- Department of Epidemiology, Columbia University, New York, NY, USA
| | - Sergio Crovella
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Via dell'Istria 65/1, Zip code: 34137, Trieste, Italy. .,Department of Medicine, Surgery and Health Sciences,, University of Trieste, Trieste, Italy.
| |
Collapse
|
30
|
Latency-Associated Expression of Human Cytomegalovirus US28 Attenuates Cell Signaling Pathways To Maintain Latent Infection. mBio 2017; 8:mBio.01754-17. [PMID: 29208743 PMCID: PMC5717388 DOI: 10.1128/mbio.01754-17] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Reactivation of human cytomegalovirus (HCMV) latent infection from early myeloid lineage cells constitutes a threat to immunocompromised or immune-suppressed individuals. Consequently, understanding the control of latency and reactivation to allow targeting and killing of latently infected cells could have far-reaching clinical benefits. US28 is one of the few viral genes that is expressed during latency and encodes a cell surface G protein-coupled receptor (GPCR), which, during lytic infection, is a constitutive cell-signaling activator. Here we now show that in monocytes, which are recognized sites of HCMV latency in vivo, US28 attenuates multiple cell signaling pathways, including mitogen-activated protein (MAP) kinase and NF-κB, and that this is required to establish a latent infection; viruses deleted for US28 initiate a lytic infection in infected monocytes. We also show that these monocytes then become potent targets for the HCMV-specific host immune response and that latently infected cells treated with an inverse agonist of US28 also reactivate lytic infection and similarly become immune targets. Consequently, we suggest that the use of inhibitors of US28 could be a novel immunotherapeutic strategy to reactivate the latent viral reservoir, allowing it to be targeted by preexisting HCMV-specific T cells. Human cytomegalovirus (HCMV) is a betaherpesvirus and a leading cause of morbidity and mortality among immunosuppressed individuals. HCMV can establish latent infection, where the viral genome is maintained in an infected cell, without production of infectious virus. A number of genes, including US28, are expressed by HCMV during latent infection. US28 has been shown to activate many cellular signaling pathways during lytic infection, promoting lytic gene expression and virus production. As such, the role of US28 remains unclear and seems at odds with latency. Here, we show that US28 has the opposite phenotype in cells that support latent infection—it attenuates cellular signaling, thereby maintaining latency. Inhibition of US28 with a small-molecule inhibitor causes HCMV latent infection to reactivate, allowing latently infected cells to be detected and killed by the immune system. This approach could be used to treat latent HCMV to clear it from human transplants.
Collapse
|
31
|
Late-Arriving Signals Contribute Less to Cell-Fate Decisions. Biophys J 2017; 113:2110-2120. [PMID: 29117533 DOI: 10.1016/j.bpj.2017.09.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 08/14/2017] [Accepted: 09/05/2017] [Indexed: 11/24/2022] Open
Abstract
Gene regulatory networks are largely responsible for cellular decision-making. These networks sense diverse external signals and respond by adjusting gene expression, enabling cells to reach environment-dependent decisions crucial for their survival or reproduction. However, information-carrying signals may arrive at variable times. Besides the intrinsic strength of these signals, their arrival time (timing) may also carry information about the environment and can influence cellular decision-making in ways that are poorly understood. For example, it is unclear how the timing of individual phage infections affects the lysis-lysogeny decision of bacteriophage λ despite variable infection times being likely in the wild and even in laboratory conditions. In this work, we combine mathematical modeling with experimentation to address this question. We develop an experimentally testable theory, which reveals that late-infecting phages contribute less to cellular decision-making. This implies that infection delays lower the probability of lysogeny compared to simultaneous infections. Furthermore, we show that infection delays reduce lysogenization by providing insufficient CII for threshold crossing during the critical decision-making period. We find evidence for a cutoff time after which subsequent infections cannot influence the cellular decision. We derive an intuitive formula that approximates the probability of lysogeny for variable infection times by a time-weighted average of probabilities for simultaneous infections. We validate these theoretical predictions experimentally. Similar concepts and simplifying modeling approaches may help elucidate the mechanisms underlying other cellular decisions.
Collapse
|
32
|
Climent N, García I, Marradi M, Chiodo F, Miralles L, Maleno MJ, Gatell JM, García F, Penadés S, Plana M. Loading dendritic cells with gold nanoparticles (GNPs) bearing HIV-peptides and mannosides enhance HIV-specific T cell responses. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 14:339-351. [PMID: 29157976 DOI: 10.1016/j.nano.2017.11.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/05/2017] [Accepted: 11/03/2017] [Indexed: 01/10/2023]
Abstract
Gold nanoparticles (GNPs) decorated with glycans ameliorate dendritic cells (DC) uptake, antigen-presentation and T-cells cross-talk, which are important aspects in vaccine design. GNPs allow for high antigen loading, DC targeting, lack of toxicity and are straightforward prepared and easy to handle. The present study aimed to assess the capacity of DC to process and present HIV-1-peptides loaded onto GNPs bearing high-mannoside-type oligosaccharides (P1@HM) to autologous T-cells from HIV-1 patients. The results showed that P1@HM increased HIV-specific CD4+ and CD8+ T-cell proliferation and induced highly functional cytokine secretion compared with HIV-peptides alone. P1@HM elicits a highly efficient secretion of pro-TH1 cytokines and chemokines, a moderate production of pro-TH2 and significant higher secretion of pro-inflammatory cytokines such as TNF-α and IL-1β. Thus, co-delivery of HIV-1 antigens and HM by GNPs is an excellent vaccine delivery system inducing HIV-specific cellular immune responses in HIV+ patients, being a promising approach to improve anti-HIV-1 vaccines.
Collapse
Affiliation(s)
- Núria Climent
- AIDS Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), HIV Vaccine Development in Catalonia (HIVACAT), Hospital Clínic de Barcelona, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Isabel García
- Biomedical Research Networking Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Paseo Miramón 182, Donostia-San Sebastián, Spain; CIC biomaGUNE, Paseo de Miramón 182, Donostia-San Sebastián, Spain
| | - Marco Marradi
- Biomedical Research Networking Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Paseo Miramón 182, Donostia-San Sebastián, Spain; CIC biomaGUNE, Paseo de Miramón 182, Donostia-San Sebastián, Spain
| | - Fabrizio Chiodo
- CIC biomaGUNE, Paseo de Miramón 182, Donostia-San Sebastián, Spain; Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, The Netherland
| | - Laia Miralles
- AIDS Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), HIV Vaccine Development in Catalonia (HIVACAT), Hospital Clínic de Barcelona, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - María José Maleno
- AIDS Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), HIV Vaccine Development in Catalonia (HIVACAT), Hospital Clínic de Barcelona, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - José María Gatell
- AIDS Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), HIV Vaccine Development in Catalonia (HIVACAT), Hospital Clínic de Barcelona, Faculty of Medicine, University of Barcelona, Barcelona, Spain; Service of Infectious Diseases & AIDS Unit, Hospital Clínic de Barcelona, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Felipe García
- AIDS Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), HIV Vaccine Development in Catalonia (HIVACAT), Hospital Clínic de Barcelona, Faculty of Medicine, University of Barcelona, Barcelona, Spain; Service of Infectious Diseases & AIDS Unit, Hospital Clínic de Barcelona, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Soledad Penadés
- Biomedical Research Networking Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Paseo Miramón 182, Donostia-San Sebastián, Spain; CIC biomaGUNE, Paseo de Miramón 182, Donostia-San Sebastián, Spain
| | - Montserrat Plana
- AIDS Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), HIV Vaccine Development in Catalonia (HIVACAT), Hospital Clínic de Barcelona, Faculty of Medicine, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
33
|
Liso A, Castellani S, Massenzio F, Trotta R, Pucciarini A, Bigerna B, De Luca P, Zoppoli P, Castiglione F, Palumbo MC, Stracci F, Landriscina M, Specchia G, Bach LA, Conese M, Falini B. Human monocyte-derived dendritic cells exposed to hyperthermia show a distinct gene expression profile and selective upregulation of IGFBP6. Oncotarget 2017; 8:60826-60840. [PMID: 28977828 PMCID: PMC5617388 DOI: 10.18632/oncotarget.18338] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Accepted: 05/12/2017] [Indexed: 12/31/2022] Open
Abstract
Fever plays a role in activating innate immunity while its relevance in activating adaptive immunity is less clear. Even brief exposure to elevated temperatures significantly impacts on the immunostimulatory capacity of dendritic cells (DCs), but the consequences on immune response remain unclear. To address this issue, we analyzed the gene expression profiles of normal human monocyte-derived DCs from nine healthy adults subjected either to fever-like thermal conditions (39°C) or to normal temperature (37°C) for 180 minutes. Exposure of DCs to 39°C caused upregulation of 43 genes and downregulation of 24 genes. Functionally, the up/downregulated genes are involved in post-translational modification, protein folding, cell death and survival, and cellular movement. Notably, when compared to monocytes, DCs differentially upregulated transcription of the secreted protein IGFBP-6, not previously known to be specifically linked to hyperthermia. Exposure of DCs to 39°C induced apoptosis/necrosis and resulted in accumulation of IGFBP-6 in the conditioned medium at 48 h. IGFBP-6 may have a functional role in the hyperthermic response as it induced chemotaxis of monocytes and T lymphocytes, but not of B lymphocytes. Thus, temperature regulates complex biological DC functions that most likely contribute to their ability to induce an efficient adaptive immune response.
Collapse
Affiliation(s)
- Arcangelo Liso
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Stefano Castellani
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Francesca Massenzio
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Rosa Trotta
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | | | - Barbara Bigerna
- Institute of Haematology, University of Perugia, Perugia, Italy
| | | | - Pietro Zoppoli
- Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi Magna Graecia, Catanzaro, Italy
| | - Filippo Castiglione
- Institute for Applied Computing, National Research Council of Italy, Rome, Italy
| | | | - Fabrizio Stracci
- Department of Experimental Medicine, Section of Public Health, University of Perugia, Perugia, Italy
| | - Matteo Landriscina
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy.,Laboratory of Preclinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture, Italy
| | | | - Leon A Bach
- Department of Medicine, Alfred Hospital, Monash University, Melbourne, Australia.,Department of Endocrinology and Diabetes, Alfred Hospital, Melbourne, Australia
| | - Massimo Conese
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | | |
Collapse
|
34
|
Mondanelli G, Bianchi R, Pallotta MT, Orabona C, Albini E, Iacono A, Belladonna ML, Vacca C, Fallarino F, Macchiarulo A, Ugel S, Bronte V, Gevi F, Zolla L, Verhaar A, Peppelenbosch M, Mazza EMC, Bicciato S, Laouar Y, Santambrogio L, Puccetti P, Volpi C, Grohmann U. A Relay Pathway between Arginine and Tryptophan Metabolism Confers Immunosuppressive Properties on Dendritic Cells. Immunity 2017; 46:233-244. [PMID: 28214225 PMCID: PMC5337620 DOI: 10.1016/j.immuni.2017.01.005] [Citation(s) in RCA: 241] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 11/18/2016] [Accepted: 12/21/2016] [Indexed: 02/07/2023]
Abstract
Arginase 1 (Arg1) and indoleamine 2,3-dioxygenase 1 (IDO1) are immunoregulatory enzymes catalyzing the degradation of l-arginine and l-tryptophan, respectively, resulting in local amino acid deprivation. In addition, unlike Arg1, IDO1 is also endowed with non-enzymatic signaling activity in dendritic cells (DCs). Despite considerable knowledge of their individual biology, no integrated functions of Arg1 and IDO1 have been reported yet. We found that IDO1 phosphorylation and consequent activation of IDO1 signaling in DCs was strictly dependent on prior expression of Arg1 and Arg1-dependent production of polyamines. Polyamines, either produced by DCs or released by bystander Arg1+ myeloid-derived suppressor cells, conditioned DCs toward an IDO1-dependent, immunosuppressive phenotype via activation of the Src kinase, which has IDO1-phosphorylating activity. Thus our data indicate that Arg1 and IDO1 are linked by an entwined pathway in immunometabolism and that their joint modulation could represent an important target for effective immunotherapy in several disease settings. Dendritic cells (DCs) can co-express Arg1 and IDO1 immunosuppressive enzymes Arg1 activity is required for IDO1 induction by TGF-β in DCs Spermidine, a downstream Arg1 product, but not arginine starvation, induces IDO1 in DCs Arg1+ myeloid derived suppressor cells (MDSCs) can render DCs immunosuppressive via IDO1
Collapse
Affiliation(s)
- Giada Mondanelli
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy
| | - Roberta Bianchi
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy
| | | | - Ciriana Orabona
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy
| | - Elisa Albini
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy
| | - Alberta Iacono
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy
| | | | - Carmine Vacca
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy
| | - Francesca Fallarino
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy
| | - Antonio Macchiarulo
- Department of Pharmaceutical Sciences, University of Perugia, 06132 Perugia, Italy
| | - Stefano Ugel
- Department of Medicine, Verona University Hospital, 37134 Verona, Italy
| | - Vincenzo Bronte
- Department of Medicine, Verona University Hospital, 37134 Verona, Italy
| | - Federica Gevi
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy
| | - Lello Zolla
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy
| | - Auke Verhaar
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Centre Rotterdam, 3015 CE Rotterdam, the Netherlands
| | - Maikel Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Centre Rotterdam, 3015 CE Rotterdam, the Netherlands
| | | | - Silvio Bicciato
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Yasmina Laouar
- Department of Microbiology & Immunology, University of Michigan School of Medicine, Ann Arbor, MI 48109-5620, US
| | - Laura Santambrogio
- Department of Pathology, Albert Einstein College of Medicine, New York, NY 10461, US
| | - Paolo Puccetti
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy
| | - Claudia Volpi
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy.
| | - Ursula Grohmann
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy.
| |
Collapse
|
35
|
Hradilova N, Sadilkova L, Palata O, Mysikova D, Mrazkova H, Lischke R, Spisek R, Adkins I. Generation of dendritic cell-based vaccine using high hydrostatic pressure for non-small cell lung cancer immunotherapy. PLoS One 2017; 12:e0171539. [PMID: 28187172 PMCID: PMC5302789 DOI: 10.1371/journal.pone.0171539] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 01/22/2017] [Indexed: 11/19/2022] Open
Abstract
High hydrostatic pressure (HHP) induces immunogenic death of tumor cells which confer protective anti-tumor immunity in vivo. Moreover, DC pulsed with HHP-treated tumor cells induced therapeutic effect in mouse cancer model. In this study, we tested the immunogenicity, stability and T cell stimulatory activity of human monocyte-derived dendritic cell (DC)-based HHP lung cancer vaccine generated in GMP compliant serum free medium using HHP 250 MPa. DC pulsed with HHP-killed lung cancer cells and poly(I:C) enhanced DC maturation, chemotactic migration and production of pro-inflammatory cytokines after 24h. Moreover, DC-based HHP lung cancer vaccine showed functional plasticity after transfer into serum-containing media and stimulation with LPS or CD40L after additional 24h. LPS and CD40L stimulation further differentially enhanced the expression of costimulatory molecules and production of IL-12p70. DC-based HHP lung cancer vaccine decreased the number of CD4+CD25+Foxp3+ T regulatory cells and stimulated IFN-γ-producing tumor antigen-specific CD4+ and CD8+ T cells from non-small cell lung cancer (NSCLC) patients. Tumor antigen specific CD8+ and CD4+ T cell responses were detected in NSCLC patient's against a selected tumor antigens expressed by lung cancer cell lines used for the vaccine generation. We also showed for the first time that protein antigen from HHP-killed lung cancer cells is processed and presented by DC to CD8+ T cells. Our results represent important preclinical data for ongoing NSCLC Phase I/II clinical trial using DC-based active cellular immunotherapy (DCVAC/LuCa) in combination with chemotherapy and immune enhancers.
Collapse
Affiliation(s)
- Nada Hradilova
- SOTIO, Prague, Czech Republic
- Department of Immunology, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | | | - Ondrej Palata
- SOTIO, Prague, Czech Republic
- Department of Immunology, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Dagmar Mysikova
- Thoracic and Lung Transplantation Division, 3rd Department of Surgery, 1st Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Hana Mrazkova
- Thoracic and Lung Transplantation Division, 3rd Department of Surgery, 1st Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Robert Lischke
- Thoracic and Lung Transplantation Division, 3rd Department of Surgery, 1st Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Radek Spisek
- SOTIO, Prague, Czech Republic
- Department of Immunology, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Irena Adkins
- SOTIO, Prague, Czech Republic
- Department of Immunology, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
- * E-mail:
| |
Collapse
|
36
|
Yang M, Zhang F, Qin K, Wu M, Li H, Zhu H, Ning Q, Lei P, Shen G. Glucose-Regulated Protein 78-Induced Myeloid Antigen-Presenting Cells Maintained Tolerogenic Signature upon LPS Stimulation. Front Immunol 2016; 7:552. [PMID: 27990144 PMCID: PMC5131008 DOI: 10.3389/fimmu.2016.00552] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 11/17/2016] [Indexed: 01/07/2023] Open
Abstract
The 78-kDa glucose-regulated protein (Grp78) is stress-inducible chaperone that mostly reside in the endoplasmic reticulum. Grp78 has been described to be released at times of cellular stress and as having extracellular properties that are anti-inflammatory or favor the resolution of inflammation. As antigen-presenting cells (APCs) play a critical role in both the priming of adaptive immune responses and the induction of self-tolerance, herein, we investigated the effect of Grp78 on the maturation of murine myeloid APCs (CD11c+ cells). Results showed that CD11c+ cells could be bound by AF488-labeled Grp78 and that Grp78 treatment induced a tolerogenic phenotype comparable to immature cells. Furthermore, when exposed to lipopolysaccharide, Grp78-treated CD11c+ cells (DCGrp78) did not adopt a mature dendritic cell phenotype. DCGrp78-primed T cells exhibited reduced proliferation along with a concomitant expansion of CD4+CD25+FoxP3+ cells in pancreaticoduodenal lymph nodes and induction of T cell apoptosis in vitro and ex vivo. The above work suggests that Grp78 is an immunomodulatory molecule that could aid resolution of inflammation. It may thus contribute to induce durable tolerance to be of potential therapeutic benefit in transplanted allogeneic grafts and autoimmune diseases such as type I diabetes.
Collapse
Affiliation(s)
- Muyang Yang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Infectious Disease, Institute of Infectious Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fan Zhang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Kai Qin
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Min Wu
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Heli Li
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Huifen Zhu
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Qin Ning
- Department of Infectious Disease, Institute of Infectious Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Ping Lei
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Guanxin Shen
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| |
Collapse
|
37
|
Wilbers RHP, Westerhof LB, van de Velde J, Smant G, van Raaij DR, Sonnenberg ASM, Bakker J, Schots A. Physical Interaction of T Cells with Dendritic Cells Is Not Required for the Immunomodulatory Effects of the Edible Mushroom Agaricus subrufescens. Front Immunol 2016; 7:519. [PMID: 27920777 PMCID: PMC5118454 DOI: 10.3389/fimmu.2016.00519] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 11/08/2016] [Indexed: 11/13/2022] Open
Abstract
Mushrooms are well known for their immunomodulating capacities. However, little is known about how mushroom-stimulated dendritic cells (DCs) affect T cells. Therefore, we investigated the effect of mushroom compounds derived from seven edible mushroom species on DCs, their fate in DCs, and the effect of the mushroom-stimulated DCs on T cells. Each mushroom species stimulated DCs in a different manner as was revealed from the DC’s cytokine response. Assessing DC maturation revealed that only one mushroom species, Agaricus subrufescens, induced complete DC maturation. The other six mushroom species upregulated MHC-II and CD86 expression, but did not significantly affect the expression of CD40 and CD11c. Nevertheless, mushroom compounds of all investigated mushroom species are endocytosed by DCs. Endocytosis is most likely mediated by C-type lectin receptors (CLRs) because CLR binding is Ca2+ dependent, and EGTA reduces TNF-α secretion with more than 90%. Laminarin partly inhibited TNF-α secretion indicating that the CLR dectin-1, among other CLRs, is involved in binding mushroom compounds. Stimulated DCs were shown to stimulate T cells; however, physical contact of DCs and T cells is not required. Because CLRs seem to play a prominent role in DC stimulation, mushrooms may function as a carbohydrate containing adjuvant to be used in conjunction with anti-fungal vaccines.
Collapse
Affiliation(s)
- Ruud H P Wilbers
- Plant Sciences Group, Wageningen University and Research Centre , Wageningen , Netherlands
| | - Lotte B Westerhof
- Plant Sciences Group, Wageningen University and Research Centre , Wageningen , Netherlands
| | - Jan van de Velde
- Plant Sciences Group, Wageningen University and Research Centre , Wageningen , Netherlands
| | - Geert Smant
- Plant Sciences Group, Wageningen University and Research Centre , Wageningen , Netherlands
| | - Debbie R van Raaij
- Plant Sciences Group, Wageningen University and Research Centre , Wageningen , Netherlands
| | - Anton S M Sonnenberg
- Plant Sciences Group, Wageningen University and Research Centre , Wageningen , Netherlands
| | - Jaap Bakker
- Plant Sciences Group, Wageningen University and Research Centre , Wageningen , Netherlands
| | - Arjen Schots
- Plant Sciences Group, Wageningen University and Research Centre , Wageningen , Netherlands
| |
Collapse
|
38
|
Pereira RC, Martinelli D, Cancedda R, Gentili C, Poggi A. Human Articular Chondrocytes Regulate Immune Response by Affecting Directly T Cell Proliferation and Indirectly Inhibiting Monocyte Differentiation to Professional Antigen-Presenting Cells. Front Immunol 2016; 7:415. [PMID: 27822208 PMCID: PMC5075572 DOI: 10.3389/fimmu.2016.00415] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 09/26/2016] [Indexed: 12/27/2022] Open
Abstract
Autologous chondrocyte implantation is the current gold standard cell therapy for cartilage lesions. However, in some instances, the heavily compromised health of the patient can either impair or limit the recovery of the autologous chondrocytes and a satisfactory outcome of the implant. Allogeneic human articular chondrocytes (hAC) could be a good alternative, but the possible immunological incompatibility between recipient and hAC donor should be considered. Herein, we report that allogeneic hAC inhibited T lymphocyte response to antigen-dependent and -independent proliferative stimuli. This effect was maximal when T cells and hAC were in contact and it was not relieved by the addition of exogenous lymphocyte growth factor interleukin (IL)-2. More important, hAC impaired the differentiation of peripheral blood monocytes induced with granulocyte monocyte colony-stimulating factor and IL-4 (Mo) to professional antigen-presenting cells, such as dendritic cells (DC). Indeed, a marked inhibition of the onset of the CD1a expression and an ineffective downregulation of CD14 antigens was observed in Mo-hAC co-cultures. Furthermore, compared to immature or mature DC, Mo from Mo-hAC co-cultures did not trigger an efficacious allo-response. The prostaglandin (PG) E2 present in the Mo-hAC co-culture conditioned media is a putative candidate of the hAC-mediated inhibition of Mo maturation. Altogether, these findings indicate that allogeneic hAC inhibit, rather than trigger, immune response and strongly suggest that an efficient chondrocyte implantation could be possible also in an allogeneic setting.
Collapse
Affiliation(s)
- Rui C. Pereira
- Regenerative Medicine Unit, Department of Experimental Medicine, University of Genova, Genova, Italy
| | - Daniela Martinelli
- Regenerative Medicine Unit, Department of Experimental Medicine, University of Genova, Genova, Italy
| | - Ranieri Cancedda
- Regenerative Medicine Unit, Department of Experimental Medicine, University of Genova, Genova, Italy
| | - Chiara Gentili
- Regenerative Medicine Unit, Department of Experimental Medicine, University of Genova, Genova, Italy
| | - Alessandro Poggi
- Molecular Oncology and Angiogenesis Unit, Department of Integrated Oncological Therapies, IRCCS AOU San Martino IST, Genova, Italy
| |
Collapse
|
39
|
The Transcriptional Repressor Polycomb Group Factor 6, PCGF6, Negatively Regulates Dendritic Cell Activation and Promotes Quiescence. Cell Rep 2016; 16:1829-37. [PMID: 27498878 DOI: 10.1016/j.celrep.2016.07.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 05/25/2016] [Accepted: 07/13/2016] [Indexed: 11/20/2022] Open
Abstract
Pro-inflammatory signals provided by the microenvironment are critical to activate dendritic cells (DCs), components of the innate immune system that shape both innate and adaptive immunity. However, to prevent inappropriate immune activation, mechanisms must be in place to restrain DC activation to ensure DCs are activated only once sufficient stimuli have been received. Here, we report that DC activation and immunogenicity are regulated by the transcriptional repressor Polycomb group factor 6 (PCGF6). Pcgf6 is rapidly downregulated upon stimulation, and this downregulation is necessary to permit full DC activation. Silencing PCGF6 expression enhanced both spontaneous and stimulated DC activation. We show that PCGF6 associates with the H3K4me3 demethylase JARID1c, and together, they negatively regulate H3K4me3 levels in DCs. Our results identify two key regulators, PCGF6 and JARID1c that temper DC activation and implicate active transcriptional silencing via histone demethylation as a previously unappreciated mechanism for regulating DC activation and quiescence.
Collapse
|
40
|
Kim MT, Kurup SP, Starbeck-Miller GR, Harty JT. Manipulating Memory CD8 T Cell Numbers by Timed Enhancement of IL-2 Signals. THE JOURNAL OF IMMUNOLOGY 2016; 197:1754-61. [PMID: 27439516 DOI: 10.4049/jimmunol.1600641] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 06/27/2016] [Indexed: 01/06/2023]
Abstract
As a result of the growing burden of tumors and chronic infections, manipulating CD8 T cell responses for clinical use has become an important goal for immunologists. In this article, we show that dendritic cell (DC) immunization coupled with relatively early (days 1-3) or late (days 4-6) administration of enhanced IL-2 signals increase peak effector CD8 T cell numbers, but only early IL-2 signals enhance memory numbers. IL-2 signals delivered at relatively late time points drive terminal differentiation and marked Bim-mediated contraction and do not increase memory T cell numbers. In contrast, early IL-2 signals induce effector cell metabolic profiles that are more conducive to memory formation. Of note, downregulation of CD80 and CD86 was observed on DCs in vivo following early IL-2 treatment. Mechanistically, early IL-2 treatment enhanced CTLA-4 expression on regulatory T cells, and CTLA-4 blockade alongside IL-2 treatment in vivo prevented the decrease in CD80 and CD86, supporting a cell-extrinsic role for CTLA-4 in downregulating B7 ligand expression on DCs. Finally, DC immunization followed by early IL-2 treatment and anti-CTLA-4 blockade resulted in lower memory CD8 T cell numbers compared with the DC+early IL-2 treatment group. These data suggest that curtailed signaling through the B7-CD28 costimulatory axis during CD8 T cell activation limits terminal differentiation and preserves memory CD8 T cell formation; thus, it should be considered in future T cell-vaccination strategies.
Collapse
Affiliation(s)
- Marie T Kim
- Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA 52242; Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Samarchith P Kurup
- Department of Microbiology, University of Iowa, Iowa City, IA 52242; and
| | | | - John T Harty
- Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA 52242; Department of Microbiology, University of Iowa, Iowa City, IA 52242; and Department of Pathology, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
41
|
Consentius C, Akyüz L, Schmidt-Lucke JA, Tschöpe C, Pinzur L, Ofir R, Reinke P, Volk HD, Juelke K. Mesenchymal Stromal Cells Prevent Allostimulation In Vivo and Control Checkpoints of Th1 Priming: Migration of Human DC to Lymph Nodes and NK Cell Activation. Stem Cells 2016; 33:3087-99. [PMID: 26184374 DOI: 10.1002/stem.2104] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 05/04/2015] [Accepted: 05/27/2015] [Indexed: 12/29/2022]
Abstract
Although the immunomodulatory potency of mesenchymal stromal cells (MSC) is well established, the mechanisms behind are still not clear. The crosstalk between myeloid dendritic cells (mDC) and natural killer (NK) cells and especially NK cell-derived interferon-gamma (IFN-γ) play a pivotal role in the development of type 1 helper (Th1) cell immune responses. While many studies explored the isolated impact of MSC on either in vitro generated DC, NK, or T cells, there are only few data available on the complex interplay between these cells. Here, we investigated the impact of MSC on the functionality of human mDC and the consequences for NK cell and Th1 priming in vitro and in vivo. In critical limb ischemia patients, who have been treated with allogeneic placenta-derived mesenchymal-like stromal cells (PLX-PAD), no in vivo priming of Th1 responses toward the major histocompatibility complex (MHC) mismatches could be detected. Further in vitro studies revealed that mDC reprogramming could play a central role for these effects. Following crosstalk with MSC, activated mDC acquired a tolerogenic phenotype characterized by reduced migration toward CCR7 ligand and impaired ability to stimulate NK cell-derived IFN-γ production. These effects, which were strongly related to an altered interleukin (IL)-12/IL-10 production by mDC, were accompanied by an effective prevention of Th1 priming in vivo. Our findings provide novel evidence for the regulation of Th1 priming by MSC via modulation of mDC and NK cell crosstalk and show that off-the-shelf produced MHC-mismatched PLX-PAD can be used in patients without any sign of immunogenicity.
Collapse
Affiliation(s)
- C Consentius
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité University Medicine, Berlin, Germany
- Berlin-Brandenburg School for Regenerative Therapies (BSRT), Charité University Medicine, Berlin, Germany
| | - L Akyüz
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité University Medicine, Berlin, Germany
- Institute for Medical Immunology, Charité University Medicine, Berlin, Germany
| | | | - C Tschöpe
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité University Medicine, Berlin, Germany
- Department for Cardiology, CVK, Charité University Medicine, Berlin, Germany
| | - L Pinzur
- Pluristem Therapeutics, Inc, Haifa, Israel
| | - R Ofir
- Pluristem Therapeutics, Inc, Haifa, Israel
| | - P Reinke
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité University Medicine, Berlin, Germany
- Department for Nephrology and Intensive Care, CVK, Charité University Medicine, Berlin, Germany
| | - H-D Volk
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité University Medicine, Berlin, Germany
- Institute for Medical Immunology, Charité University Medicine, Berlin, Germany
| | - K Juelke
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité University Medicine, Berlin, Germany
| |
Collapse
|
42
|
Bedoui S, Heath WR, Mueller SN. CD
4
+
T‐cell help amplifies innate signals for primary
CD
8
+
T‐cell immunity. Immunol Rev 2016; 272:52-64. [DOI: 10.1111/imr.12426] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Sammy Bedoui
- Department of Microbiology and Immunology The University of Melbourne Peter Doherty Institute for Infection and Immunity Parkville Vic. Australia
| | - William R. Heath
- Department of Microbiology and Immunology The University of Melbourne Peter Doherty Institute for Infection and Immunity Parkville Vic. Australia
- The Australian Research Council Centre of Excellence in Advanced Molecular Imaging The University of Melbourne Parkville Vic. Australia
| | - Scott N. Mueller
- Department of Microbiology and Immunology The University of Melbourne Peter Doherty Institute for Infection and Immunity Parkville Vic. Australia
- The Australian Research Council Centre of Excellence in Advanced Molecular Imaging The University of Melbourne Parkville Vic. Australia
| |
Collapse
|
43
|
Greyer M, Whitney P, Stock A, Davey G, Tebartz C, Bachem A, Mintern J, Strugnell R, Turner S, Gebhardt T, O’Keeffe M, Heath W, Bedoui S. T Cell Help Amplifies Innate Signals in CD8 + DCs for Optimal CD8 + T Cell Priming. Cell Rep 2016; 14:586-597. [DOI: 10.1016/j.celrep.2015.12.058] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 11/02/2015] [Accepted: 12/10/2015] [Indexed: 12/29/2022] Open
|
44
|
Dysfunctions in the Mature Dendritic Cells Are Associated with the Presence of Metastases of Colorectal Cancer in the Surrounding Lymph Nodes. Gastroenterol Res Pract 2015; 2016:2405437. [PMID: 26839537 PMCID: PMC4709662 DOI: 10.1155/2016/2405437] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 10/08/2015] [Indexed: 12/24/2022] Open
Abstract
Dendritic cells play a key role in the antigen presentation and T cell activation. The aim of this study was a detailed analysis of the presence of mature dendritic cells (CD 83 positive) in colorectal cancer in correlation with selected clinicopathological parameters. The presence of mature dendritic cells (mDCs) was determined immunohistochemically using the anti-CD83 antibody. The morphometric analysis of the mDCs was performed in the normal colon wall adjacent to the cancerous tumor as well as in the front of the tumor and in the main mass of the cancerous tumor. Decrease in mDCs in the front and in the main tumor mass was observed. The increase in the number of mDCs in both of these locations was associated with the presence of metastases in the nearby lymph nodes (p < 0.05 and p < 0.01). Furthermore, the increase in the proportion of mDCs in the main tumor mass was associated with the presence of the invasion of tumor cells into the blood and lymph vessels (p < 0.01). The increase in the amount of mDCs in the cancerous tumor is associated with the invasiveness of the tumor and especially with the metastasis to the surrounding lymph nodes.
Collapse
|
45
|
Simeoni L, Thurm C, Kritikos A, Linkermann A. Redox homeostasis, T cells and kidney diseases: three faces in the dark. Clin Kidney J 2015; 9:1-10. [PMID: 26798455 PMCID: PMC4720211 DOI: 10.1093/ckj/sfv135] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 11/09/2015] [Indexed: 12/13/2022] Open
Abstract
The redox equilibrium is crucial for the maintenance of immune homeostasis. Here, we summarize recent data showing that oxidation regulates T-cell functions and that alterations of the redox equilibrium may play an important role in the pathogenesis of inflammatory conditions affecting the kidneys. We further discuss potential links between oxidation, T cells and renal diseases such as systemic lupus erythematosus, renal ischaemia/reperfusion injury, end-stage renal disease and hypertension. The basic understanding of oxidation as a means by which diseases are directly affected results in unexpected pathophysiological similarities. Finally, we describe potential therapeutic options targeting redox systems for the treatment of nephropathies affecting humans.
Collapse
Affiliation(s)
- Luca Simeoni
- Otto-von-Guericke University, Institute of Molecular and Clinical Immunology , Magdeburg , Germany
| | - Christoph Thurm
- Otto-von-Guericke University, Institute of Molecular and Clinical Immunology , Magdeburg , Germany
| | - Andreas Kritikos
- Otto-von-Guericke University, Institute of Molecular and Clinical Immunology , Magdeburg , Germany
| | - Andreas Linkermann
- Clinic for Nephrology and Hypertension , Christian-Albrechts-University Kiel , Germany
| |
Collapse
|
46
|
Transcription factor Batf3 is important for development of CD8+ T-cell response against a phagosomal bacterium regardless of the location of antigen. Immunol Cell Biol 2015; 94:378-87. [PMID: 26567886 DOI: 10.1038/icb.2015.98] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 11/05/2015] [Accepted: 11/05/2015] [Indexed: 12/13/2022]
Abstract
Salmonella enterica serovar Typhimurium (ST) is a virulent intracellular bacterium that conceals itself in the phagosomes of infected cells. Although CD8(+) T cells promote protection against various intracellular pathogens, the role of CD8(+) T cells against virulent ST has been unclear due to early fatality of susceptible (B6) mice. Herein, we generated MHC I-deficient mice on the resistant (129SvJ) and susceptible (Nramp1 transgenic B6) background to evaluate the role of CD8(+) T cells against virulent ST. Our results indicate that CD8(+) T cells have a critical protective role in host survival during infection with virulent ST. As antigen presentation and CD8(+) T-cell activation against phagosomal antigens are considered to operate through the cross-presentation pathway, we have evaluated CD8(+) T-cell response against ST in Batf3-deficient mice that lack CD8α dendritic cells (DCs). Using a recombinant of ST that expresses antigen (ST-OVA) mainly in the phagosomes of infected cells, we show that CD8(+) T-cell response is compromised throughout the duration of infection in Batf3-deficient mice. In contrast, when ST delivers antigen to the cytosol of infected cells (ST-OVA-C), CD8(+) T-cell response against the cytosolic antigen was compromised only in the short term in the absence of CD8α DCs, with wild-type and Batf3-deficient mice generating similar CD8(+) T-cell response in the long term. Thus, Batf3 has an important role in CD8(+) T-cell priming regardless of antigenic location; however, its role is redundant at later time intervals against cytosolic antigen.
Collapse
|
47
|
Murira A, Lapierre P, Lamarre A. Evolution of the Humoral Response during HCV Infection: Theories on the Origin of Broadly Neutralizing Antibodies and Implications for Vaccine Design. Adv Immunol 2015; 129:55-107. [PMID: 26791858 DOI: 10.1016/bs.ai.2015.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Similar to human immunodeficiency virus (HIV)-1, vaccine-induced elicitation of broadly neutralizing (bNt) antibodies (Abs) is gaining traction as a key goal toward the eradication of the hepatitis C virus (HCV) pandemic. Previously, the significance of the Ab response against HCV was underappreciated given the prevailing evidence advancing the role of the cellular immune response in clearance and overall control of the infection. However, recent findings have driven growing interest in the humoral arm of the immune response and in particular the role of bNt responses due to their ability to confer protective immunity upon passive transfer in animal models. Nevertheless, the origin and development of bNt Abs is poorly understood and their occurrence is rare as well as delayed with emergence only observed in the chronic phase of infection. In this review, we characterize the interplay between the host immune response and HCV as it progresses from the acute to chronic phase of infection. In addition, we place these events in the context of current hypotheses on the origin of bNt Abs against the HIV-1, whose humoral immune response is better characterized. Based on the increasing significance of the humoral immune response against HCV, characterization of these events may be critical in understanding the development of the bNt responses and, thus, provide strategies toward effective vaccine design.
Collapse
Affiliation(s)
- Armstrong Murira
- Immunovirology Laboratory, Institut national de la recherche scientifique (INRS), INRS-Institut Armand-Frappier, Laval, Quebec, Canada.
| | - Pascal Lapierre
- Immunovirology Laboratory, Institut national de la recherche scientifique (INRS), INRS-Institut Armand-Frappier, Laval, Quebec, Canada
| | - Alain Lamarre
- Immunovirology Laboratory, Institut national de la recherche scientifique (INRS), INRS-Institut Armand-Frappier, Laval, Quebec, Canada.
| |
Collapse
|
48
|
Geginat J, Nizzoli G, Paroni M, Maglie S, Larghi P, Pascolo S, Abrignani S. Immunity to Pathogens Taught by Specialized Human Dendritic Cell Subsets. Front Immunol 2015; 6:527. [PMID: 26528289 PMCID: PMC4603245 DOI: 10.3389/fimmu.2015.00527] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 09/28/2015] [Indexed: 12/24/2022] Open
Abstract
Dendritic cells (DCs) are specialized antigen-presenting cells (APCs) that have a key role in immune responses because they bridge the innate and adaptive arms of the immune system. They mature upon recognition of pathogens and upregulate MHC molecules and costimulatory receptors to activate antigen-specific CD4+ and CD8+ T cells. It is now well established that DCs are not a homogeneous population but are composed of different subsets with specialized functions in immune responses to specific pathogens. Upon viral infections, plasmacytoid DCs (pDCs) rapidly produce large amounts of IFN-α, which has potent antiviral functions and activates several other immune cells. However, pDCs are not particularly potent APCs and induce the tolerogenic cytokine IL-10 in CD4+ T cells. In contrast, myeloid DCs (mDCs) are very potent APCs and possess the unique capacity to prime naive T cells and consequently to initiate a primary adaptive immune response. Different subsets of mDCs with specialized functions have been identified. In mice, CD8α+ mDCs capture antigenic material from necrotic cells, secrete high levels of IL-12, and prime Th1 and cytotoxic T-cell responses to control intracellular pathogens. Conversely, CD8α− mDCs preferentially prime CD4+ T cells and promote Th2 or Th17 differentiation. BDCA-3+ mDC2 are the human homologue of CD8α+ mDCs, since they share the expression of several key molecules, the capacity to cross-present antigens to CD8+ T-cells and to produce IFN-λ. However, although several features of the DC network are conserved between humans and mice, the expression of several toll-like receptors as well as the production of cytokines that regulate T-cell differentiation are different. Intriguingly, recent data suggest specific roles for human DC subsets in immune responses against individual pathogens. The biology of human DC subsets holds the promise to be exploitable in translational medicine, in particular for the development of vaccines against persistent infections or cancer.
Collapse
Affiliation(s)
- Jens Geginat
- Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi" (INGM) , Milan , Italy
| | - Giulia Nizzoli
- Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi" (INGM) , Milan , Italy
| | - Moira Paroni
- Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi" (INGM) , Milan , Italy
| | - Stefano Maglie
- Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi" (INGM) , Milan , Italy
| | - Paola Larghi
- Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi" (INGM) , Milan , Italy
| | - Steve Pascolo
- Department of Dermatology, University Hospital of Zurich , Zurich , Switzerland
| | - Sergio Abrignani
- Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi" (INGM) , Milan , Italy ; DISCCO, Department of Clinical Sciences and Community Health, University of Milano , Milan , Italy
| |
Collapse
|
49
|
Wenzel UA, Fernandez-Santoscoy M, Tam MA, Tegtmeyer P, Wick MJ. Synergy between CD40 and MyD88 Does Not Influence Host Survival to Salmonella Infection. Front Immunol 2015; 6:460. [PMID: 26441965 PMCID: PMC4568434 DOI: 10.3389/fimmu.2015.00460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 08/24/2015] [Indexed: 01/24/2023] Open
Abstract
Previous studies using purified toll-like receptor (TLR) ligands plus agonistic anti-CD40 antibodies showed that TLRs and CD40 can act synergistically on dendritic cells (DCs) to optimize T cell activation and Th1 differentiation. However, a synergistic effect of TLRs and CD40 during bacterial infection is not known. Here, we show that mice lacking the TLR adaptor MyD88 alone, or lacking both MyD88 and CD40 [double knockout (DKO) mice], are compromised in survival to Salmonella infection but have intact recruitment of neutrophils and inflammatory monocytes as well as unaltered abundance of DC subsets and DC activation in infected tissues. In contrast to infected wildtype and CD40(-/-) mice, both MyD88(-/-) mice and DKO mice lack detectable serum IFN-γ and have elevated IL-10. A synergistic effect of TLRs and CD40 was revealed in co-culture experiments where OT-II T cell proliferation was compromised when DKO DCs were pulsed with OVA protein and OVA323-339 peptide, but not with heat-killed Salmonella expressing OVA (HKSOVA), relative to MyD88(-/-) DCs. By contrast, MyD88(-/-) or DKO DCs pulsed with any of the antigens had a similar ability to induce IFN-γ that was lower than WT or CD40(-/-) DCs. DKO DCs pulsed with HKSOVA, but not with OVA or OVA323-339, had increased IL-10 relative to MyD88(-/-) DCs. Finally, HKSOVA-pulsed MyD88(-/-) and DKO DCs had similar and low induction of NFκB-dependent and -independent genes upon co-culture with OT-II cells. Overall, our data revealed that synergistic effects of CD40 and MyD88 do not influence host survival to Salmonella infection or serum levels of IFN-γ or IL-10. However, synergistic effects of MyD88 and CD40 may be apparent on some (IL-10 production) but not all (OT-II proliferation and IFN-γ production) DC functions and depend on the complexity of the antigen. Indeed, synergistic effects observed using purified ligands and well-defined antigens may not necessarily apply when complex antigens, such as live bacteria, challenge the immune system.
Collapse
Affiliation(s)
- Ulf Alexander Wenzel
- Department of Microbiology and Immunology, Mucosal Immunobiology and Vaccine Center (MIVAC), Institute of Biomedicine at Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| | - Maria Fernandez-Santoscoy
- Department of Microbiology and Immunology, Mucosal Immunobiology and Vaccine Center (MIVAC), Institute of Biomedicine at Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| | | | - Pia Tegtmeyer
- Department of Microbiology and Immunology, Mucosal Immunobiology and Vaccine Center (MIVAC), Institute of Biomedicine at Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden ; TWINCORE Centre for Experimental and Clinical Infection Research, Institute for Experimental Infection Research , Hannover , Germany
| | - Mary Jo Wick
- Department of Microbiology and Immunology, Mucosal Immunobiology and Vaccine Center (MIVAC), Institute of Biomedicine at Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| |
Collapse
|
50
|
Chrysin suppresses human CD14(+) monocyte-derived dendritic cells and ameliorates experimental autoimmune encephalomyelitis. J Neuroimmunol 2015; 288:13-20. [PMID: 26531689 DOI: 10.1016/j.jneuroim.2015.08.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 08/06/2015] [Accepted: 08/24/2015] [Indexed: 12/19/2022]
Abstract
Chrysin, a naturally flavonoid of plant, has various biological activities. However, the effects of chrysin on dendritic cells (DCs) and multiple sclerosis (MS) remain unknown. In this study, we demonstrate that chrysin inhibited human DC differentiation, maturation, function and the expression of the Th1 cells polarizing cytokines IFN-γ and IL-12p35 form DCs. In addition, chrysin ameliorated experimental autoimmune encephalomyelitis (EAE), an animal model of MS, by reducing CNS inflammation and demyelination. Furthermore, chrysin suppressed DCs and Th1 cells in the EAE mice. Taken together, chrysin exerts anti-inflammatory and immune suppressive effects, and suggests a possible therapeutic application of chrysin in MS.
Collapse
|