1
|
Travers RL, Trim WV, Motta AC, Betts JA, Thompson D. Calorie restriction-induced leptin reduction and T-lymphocyte activation in blood and adipose tissue in men with overweight and obesity. Int J Obes (Lond) 2024; 48:993-1002. [PMID: 38538853 PMCID: PMC11216992 DOI: 10.1038/s41366-024-01513-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 07/03/2024]
Abstract
BACKGROUND T-Lymphocyte activation is modulated by the adipokine leptin and serum concentrations of this hormone can be reduced with short-term calorie restriction. The aim of this study was to understand whether leptin per se is important in determining levels of T-lymphocyte activation in humans, by investigating whether the reduction in leptin concentration following calorie restriction is associated with a decrease in T-Lymphocyte activation in blood and adipose tissue. METHODS Twelve men with overweight and obesity (age 35-55 years, waist circumference 95-115 cm) reduced their calorie intake by 50% for 3 consecutive days. Blood and subcutaneous adipose tissue were obtained for isolation of immune cells and cytokine analysis. CD4+ and CD8 + T-Lymphocytes were identified and characterised according to their expression of activation markers CD25 and CD69 by flow cytometry. RESULTS Serum leptin was reduced by (mean ± SEM) 31 ± 16% (p < 0.001) following calorie restriction. The percentage of blood CD4 + CD25 + T-lymphocytes and level of CD25 expression on these lymphocytes were significantly reduced by 8 ± 10% (p = 0.016) and 8 ± 4% (p = 0.058), respectively. After calorie restriction, ex vivo leptin secretion from abdominal subcutaneous adipose tissue explants was not changed, and this corresponded with a lack of change in adipose tissue resident T-Lymphocyte activation. CONCLUSIONS Serum leptin was reduced after calorie restriction and this was temporally associated with a reduction in activation of blood CD4 + CD25 + T-Lymphocytes. In abdominal subcutaneous adipose tissue, however, leptin secretion was unaltered, and there were no observed changes in adipose resident T-Lymphocyte activation.
Collapse
Affiliation(s)
- Rebecca L Travers
- Centre for Nutrition, Exercise and Metabolism (CNEM), Department for Health, University of Bath, Bath, BA2 7AY, UK
| | - William V Trim
- Centre for Nutrition, Exercise and Metabolism (CNEM), Department for Health, University of Bath, Bath, BA2 7AY, UK
- Department of Systems Biology, Harvard Medical School, Boston, MA, MA02115, USA
| | - Alexandre C Motta
- Unilever Food & Health Research Institute R&D, Vlaardingen, The Netherlands
- IMcoMET BV, Vlaardingen, The Netherlands
| | - James A Betts
- Centre for Nutrition, Exercise and Metabolism (CNEM), Department for Health, University of Bath, Bath, BA2 7AY, UK
| | - Dylan Thompson
- Centre for Nutrition, Exercise and Metabolism (CNEM), Department for Health, University of Bath, Bath, BA2 7AY, UK.
| |
Collapse
|
2
|
Tatara Y, Yamazaki H, Katsuoka F, Chiba M, Saigusa D, Kasai S, Nakamura T, Inoue J, Aoki Y, Shoji M, Motoike IN, Tamada Y, Hashizume K, Shoji M, Kinoshita K, Murashita K, Nakaji S, Yamamoto M, Itoh K. Multiomics and artificial intelligence enabled peripheral blood-based prediction of amnestic mild cognitive impairment. Curr Res Transl Med 2023; 71:103367. [PMID: 36446162 DOI: 10.1016/j.retram.2022.103367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 08/03/2022] [Accepted: 10/20/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND Since dementia is preventable with early interventions, biomarkers that assist in diagnosing early stages of dementia, such as mild cognitive impairment (MCI), are urgently needed. METHODS Multiomics analysis of amnestic MCI (aMCI) peripheral blood (n = 25) was performed covering the transcriptome, microRNA, proteome, and metabolome. Validation analysis for microRNAs was conducted in an independent cohort (n = 12). Artificial intelligence was used to identify the most important features for predicting aMCI. FINDINGS We found that hsa-miR-4455 is the best biomarker in all omics analyses. The diagnostic index taking a ratio of hsa-miR-4455 to hsa-let-7b-3p predicted aMCI patients against healthy subjects with 97% overall accuracy. An integrated review of multiomics data suggested that a subset of T cells and the GCN (general control nonderepressible) pathway are associated with aMCI. INTERPRETATION The multiomics approach has enabled aMCI biomarkers with high specificity and illuminated the accompanying changes in peripheral blood. Future large-scale studies are necessary to validate candidate biomarkers for clinical use.
Collapse
Affiliation(s)
- Yota Tatara
- Department of Stress Response Science, Center for Advanced Medical Research, Graduate School of Medicine, Hirosaki University, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| | - Hiromi Yamazaki
- Department of Stress Response Science, Center for Advanced Medical Research, Graduate School of Medicine, Hirosaki University, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| | - Fumiki Katsuoka
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-Machi, Aoba-ku, Sendai, Miyagi 980-8573, Japan
| | - Mitsuru Chiba
- Department of Bioscience and Laboratory Medicine, Hirosaki University Graduate School of Health Sciences, 66-1 Hon-cho, Hirosaki, Aomori 036-8564, Japan
| | - Daisuke Saigusa
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-Machi, Aoba-ku, Sendai, Miyagi 980-8573, Japan
| | - Shuya Kasai
- Department of Stress Response Science, Center for Advanced Medical Research, Graduate School of Medicine, Hirosaki University, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| | - Tomohiro Nakamura
- Department of Preventive Medicine and Epidemiology, Tohoku Medical Megabank Organization, Tohoku University, Division of Personalized Prevention and Epidemiology, 2-1 Seiryo-Machi, Aoba-ku, Sendai, Miyagi 980-8573, Japan
| | - Jin Inoue
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-Machi, Aoba-ku, Sendai, Miyagi 980-8573, Japan
| | - Yuichi Aoki
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-Machi, Aoba-ku, Sendai, Miyagi 980-8573, Japan
| | - Miho Shoji
- Human Metabolome Technologies, Inc., 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata 997-0052, Japan
| | - Ikuko N Motoike
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-Machi, Aoba-ku, Sendai, Miyagi 980-8573, Japan
| | - Yoshinori Tamada
- Innovation Center for Health Promotion, Graduate School of Medicine, Hirosaki University, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| | - Katsuhito Hashizume
- Human Metabolome Technologies, Inc., 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata 997-0052, Japan
| | - Mikio Shoji
- Department of Neurology, Gunma University Hospital, 3-39-15 Showamachi, Maebashi, Gunma 371-8511, Japan; Department of Neurology, Dementia Research Center, Geriatrics Research Institute and Hospital, 3-26-8 Ootomo-machi, Maebashi, Gunma 371-0847 Japan; COI Research Initiatives Organization, Hirosaki University, 5 Zaifu-cho, Hirosaki, Aomori 036-8216, Japan
| | - Kengo Kinoshita
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-Machi, Aoba-ku, Sendai, Miyagi 980-8573, Japan; Department of Applied Information Sciences, Graduate School of Information Sciences, Tohoku University, 6-6-05 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan; Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8573, Japan
| | - Koichi Murashita
- COI Research Initiatives Organization, Hirosaki University, 5 Zaifu-cho, Hirosaki, Aomori 036-8216, Japan
| | - Shigeyuki Nakaji
- Department of Social Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8216, Japan
| | - Masayuki Yamamoto
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-Machi, Aoba-ku, Sendai, Miyagi 980-8573, Japan; Department of Medical Biochemistry, Graduate School of Medicine, Tohoku University, 2-1 Seiryo-Machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Ken Itoh
- Department of Stress Response Science, Center for Advanced Medical Research, Graduate School of Medicine, Hirosaki University, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan.
| |
Collapse
|
3
|
The Interplay between the Immune and the Endocannabinoid Systems in Cancer. Cells 2021; 10:cells10061282. [PMID: 34064197 PMCID: PMC8224348 DOI: 10.3390/cells10061282] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/11/2022] Open
Abstract
The therapeutic potential of Cannabis sativa has been recognized since ancient times. Phytocannabinoids, endocannabinoids and synthetic cannabinoids activate two major G protein-coupled receptors, subtype 1 and 2 (CB1 and CB2). Cannabinoids (CBs) modulate several aspects of cancer cells, such as apoptosis, autophagy, proliferation, migration, epithelial-to-mesenchymal transition and stemness. Moreover, agonists of CB1 and CB2 receptors inhibit angiogenesis and lymphangiogenesis in vitro and in vivo. Low-grade inflammation is a hallmark of cancer in the tumor microenvironment (TME), which contains a plethora of innate and adaptive immune cells. These cells play a central role in tumor initiation and growth and the formation of metastasis. CB2 and, to a lesser extent, CB1 receptors are expressed on a variety of immune cells present in TME (e.g., T cells, macrophages, mast cells, neutrophils, NK cells, dendritic cells, monocytes, eosinophils). The activation of CB receptors modulates a variety of biological effects on cells of the adaptive and innate immune system. The expression of CB2 and CB1 on different subsets of immune cells in TME and hence in tumor development is incompletely characterized. The recent characterization of the human cannabinoid receptor CB2-Gi signaling complex will likely aid to design potent and specific CB2/CB1 ligands with therapeutic potential in cancer.
Collapse
|
4
|
The Adjuvants Polyphosphazene (PCEP) and a Combination of Curdlan Plus Leptin Promote a Th17-Type Immune Response to an Intramuscular Vaccine in Mice. Vaccines (Basel) 2021; 9:vaccines9050507. [PMID: 34069081 PMCID: PMC8156850 DOI: 10.3390/vaccines9050507] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 12/25/2022] Open
Abstract
Our aim was to determine whether polyphosphazene (PCEP), Curdlan (β-glucan, a dectin-1 agonist), and Leptin could act as adjuvants to promote a Th17-type adaptive immune response in mice. Mice were vaccinated via the intramuscular route then boosted three weeks later with Ovalbumin plus: PCEP, Leptin, Curdlan, PCEP+Curdlan, Curdlan+Leptin, or saline. Mice vaccinated with OVA+PCEP and OVA+Curdlan+Leptin showed significantly higher frequency of antigen-specific CD4+ T cells secreting IL-17 relative to OVA-vaccinated mice. No formulation increased the frequency of CD4+ T cells secreting IL-4 or IFNγ. Since activation of innate immunity precedes the development of adaptive immunity, we wished to establish whether induction of Th17-type immunity could be predicted from in vitro experiments and/or from the local cytokine environment after immunization with adjuvants alone. Elevated IL-6 and TGFβ with reduced secretion of IL-12 is a cytokine milieu known to promote differentiation of Th17-type immunity. We injected the immunostimulants or saline buffer into murine thigh muscles and measured acute local cytokine production. PCEP induced significant production of IL-6 and reduced IL-12 production in muscle but it did not lead to elevated TGFβ production. Curdlan+Leptin injected into muscle induced significant production of TGFβ and IL-17 but not IL-6 or IL-12. We also stimulated splenocytes with media or PCEP, Leptin, Curdlan, PCEP+Curdlan, Curdlan+Leptin, PCEP+Leptin, and PCEP+Curdlan+Leptin and measured cytokine production. PCEP stimulation of splenocytes failed to induce significant production of IL-6, IL-12, TGFβ, or IL-17 and therefore ex vivo splenocyte stimulation failed to predict the increased frequency of Th17-type T cells in response to the vaccine. Curdlan-stimulated splenocytes produced Th1-type, inducing cytokine, IL-12. Curdlan+/-PCEP stimulated TGF-β production and Curdlan+Leptin+/- PCEP induced secretion of IL-17. We conclude that PCEP as well as Curdlan+Leptin are Th17-type vaccine adjuvants in mice but that cytokines produced in response to these adjuvants in muscle after injection or in ex vivo cultured splenocytes did not predict their role as a Th17-type adjuvant. Together, these data suggest that the cytokine environments induced by these immunostimulants did not predict induction of an antigen-specific Th17-type adaptive immune response. This is the first report of these adjuvants inducing a Th17-type adaptive immune response.
Collapse
|
5
|
Cai YQ, Lv Y, Mo ZC, Lei J, Zhu JL, Zhong QQ. Multiple pathophysiological roles of midkine in human disease. Cytokine 2020; 135:155242. [PMID: 32799009 DOI: 10.1016/j.cyto.2020.155242] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/07/2020] [Accepted: 08/07/2020] [Indexed: 12/27/2022]
Abstract
Midkine (MK) is a low molecular-weight protein that was first identified as the product of a retinoic acid-responsive gene involved in embryonic development. Recent studies have indicated that MK levels are related to various diseases, including cardiovascular disease (CVD), renal disease and autoimmune disease. MK is a growth factor involved in multiple pathophysiological processes, such as inflammation, the repair of damaged tissues and cancer. The pathophysiological roles of MK are diverse. MK enhances the recruitment and migration of inflammatory cells upon inflammation directly and also through induction of chemokines, and contributes to tissue damage. In lung endothelial cells, oxidative stress increased the expression of MK, which induced angiotensin-converting enzyme (ACE) expression and the consequent conversion from Ang I to Ang II, leading to further oxidative stress. MK inhibited cholesterol efflux from macrophages by reducing ATP-binding cassette transporter A1 (ABCA1) expression, which is involved in lipid metabolism, suggesting that MK is an important positive factor involved in inflammation, oxidative stress and lipid metabolism. Furthermore, MK can regulate the expansion, differentiation and activation of T cells as well as B-cell survival; mediate angiogenic and antibacterial activity; and possess anti-apoptotic activity. In this paper, we summarize the pathophysiological roles of MK in human disease.
Collapse
Affiliation(s)
- Ya-Qin Cai
- Hunan Province Innovative Training Base for Medical Postgraduates, Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang 421001, China; Institute of Basic Medical Sciences, Guilin Medical University, Guilin 541199, Guangxi, China
| | - Yuncheng Lv
- Hunan Province Innovative Training Base for Medical Postgraduates, Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang 421001, China; Institute of Basic Medical Sciences, Guilin Medical University, Guilin 541199, Guangxi, China
| | - Zhong-Cheng Mo
- Hunan Province Innovative Training Base for Medical Postgraduates, Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang 421001, China; Institute of Basic Medical Sciences, Guilin Medical University, Guilin 541199, Guangxi, China
| | - Jiashun Lei
- Hunan Province Innovative Training Base for Medical Postgraduates, Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang 421001, China
| | - Jing-Ling Zhu
- Hunan Province Innovative Training Base for Medical Postgraduates, Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang 421001, China
| | - Qiao-Qing Zhong
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha 410008, China.
| |
Collapse
|
6
|
Memory CD4 + T Cells in Immunity and Autoimmune Diseases. Cells 2020; 9:cells9030531. [PMID: 32106536 PMCID: PMC7140455 DOI: 10.3390/cells9030531] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/20/2020] [Accepted: 02/20/2020] [Indexed: 12/26/2022] Open
Abstract
CD4+ T helper (Th) cells play central roles in immunity in health and disease. While much is known about the effector function of Th cells in combating pathogens and promoting autoimmune diseases, the roles and biology of memory CD4+ Th cells are complex and less well understood. In human autoimmune diseases such as multiple sclerosis (MS), there is a critical need to better understand the function and biology of memory T cells. In this review article we summarize current concepts in the field of CD4+ T cell memory, including natural history, developmental pathways, subsets, and functions. Furthermore, we discuss advancements in the field of the newly-described CD4+ tissue-resident memory T cells and of CD4+ memory T cells in autoimmune diseases, two major areas of important unresolved questions in need of answering to advance new vaccine design and development of novel treatments for CD4+ T cell-mediated autoimmune diseases.
Collapse
|
7
|
Zhao X, Tang X, Yan Q, Song H, Li Z, Wang D, Chen H, Sun L. Triptolide ameliorates lupus via the induction of miR-125a-5p mediating Treg upregulation. Int Immunopharmacol 2019; 71:14-21. [PMID: 30861393 DOI: 10.1016/j.intimp.2019.02.047] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/20/2019] [Accepted: 02/26/2019] [Indexed: 12/26/2022]
Abstract
Triptolide is a biologically active component of the Chinese antirheumatic herbal remedy Tripterygium wilfordii Hook F, which has been shown to be effective in treating murine lupus. However, its immunological mechanisms are poorly understood. Regulatory T cells (Treg) are pivotal for maintaining peripheral self-tolerance and controlling autoimmunity. This study was undertaken to examine the therapeutic effect of triptolide in lupus mice and the related molecular mechanisms. Our results showed that triptolide treatment ameliorated serum anti-dsDNA, proteinuria and renal histopathologic assessment in MRL/lpr mice, induced the miR-125a-5p expression and enhanced the proportion of Treg in vivo. In vitro, triptolide upregulated the proportion of Treg and the miR-125a-5p expression. Down-regulation of the miR-125a-5p expression reversed the effect of triptolide on Treg. In conclusion, triptolide could induce Treg and the miR-125a-5p expression in vivo and in vitro. Inhibiting the effect of miR-125a-5p could counteract the effect of triptolide on inducing Treg. The study has strong implications for the therapeutic applications of triptolide in systemic lupus erythematosus.
Collapse
Affiliation(s)
- Xia Zhao
- Department of Rheumatology and Immunology, Drum Tower Clinical Medical College of Nanjing Medical University, 321 Zhongshan Road, Nanjing, Jiangsu 210008, China; Department of Rheumatology, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, Jiangsu 210029, China
| | - Xiaojun Tang
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, Jiangsu 210008, China
| | - Qing Yan
- Department of Rheumatology and Immunology, Drum Tower Clinical Medical College of Nanjing Medical University, 321 Zhongshan Road, Nanjing, Jiangsu 210008, China
| | - Hua Song
- Department of Rheumatology and Immunology, Drum Tower Clinical Medical College of Nanjing Medical University, 321 Zhongshan Road, Nanjing, Jiangsu 210008, China
| | - Zutong Li
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, Jiangsu 210008, China
| | - Dandan Wang
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, Jiangsu 210008, China
| | - Hongwei Chen
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, Jiangsu 210008, China
| | - Lingyun Sun
- Department of Rheumatology and Immunology, Drum Tower Clinical Medical College of Nanjing Medical University, 321 Zhongshan Road, Nanjing, Jiangsu 210008, China.
| |
Collapse
|
8
|
The posttraumatic activation of CD4+ T regulatory cells is modulated by TNFR2- and TLR4-dependent pathways, but not by IL-10. Cell Immunol 2018; 331:137-145. [PMID: 29954581 DOI: 10.1016/j.cellimm.2018.06.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/10/2018] [Accepted: 06/18/2018] [Indexed: 12/21/2022]
Abstract
Platelets modulate the immune system following injury by interacting with CD4+ T regulatory cells (CD4+ Tregs). The underlying mechanisms remain unsolved. We hypothesize paracrine interactions via Tumor necrosis factor-alpha (TNFα)-, Toll like receptor-4 (TLR4)-, and Interleukin-10 (IL-10). In the murine burn injury model, CD4+ Treg activation pathways were selectively addressed using TNFR2-, TLR4- and IL-10-deficient mice. The CD4+ Treg signalling molecule PKC-θ was analyzed using phospho-flow cytometry to detect rapid cell activation. Thromboelastometry (ROTEM®) was used to assess platelet activation. Injury induced significant early activation of CD4+ Tregs, disruption of TNFR2 and TLR4 activation pathways resulted in lower activity. The disruption of IL-10 crosstalk had no significant impact. Selective disruption of paracrine interactions is associated with changes in posttraumatic hemostasis parameters. TNFR2- and TLR4-dependent pathways modulate the activation of CD4+ Tregs following trauma. In contrast, we did not observe a role of IL-10 in the posttraumatic activation of CD4+ Tregs. ONE SENTENCE SUMMARY TLR4- and TNFR2-dependent mechanisms, but not IL-10-dependent pathways, modulate the anti-inflammatory response of CD4+ Tregs following trauma.
Collapse
|
9
|
Wang X, Qiao Y, Yang L, Song S, Han Y, Tian Y, Ding M, Jin H, Shao F, Liu A. Leptin levels in patients with systemic lupus erythematosus inversely correlate with regulatory T cell frequency. Lupus 2017; 26:1401-1406. [PMID: 28409523 DOI: 10.1177/0961203317703497] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Leptin levels are increased in patients with systemic lupus erythematosus (SLE) but little is known on how this correlates with several disease characteristics including the frequency of regulatory T cells (Tregs). Here we compared serum leptin levels with frequency of circulating Tregs in 47 lupus patients vs. 25 healthy matched controls. Correlations with lupus disease activity were also analyzed, as well as Treg proliferation potential. It was found that leptin was remarkably increased in SLE patients as compared to controls, particularly in SLE patients with moderate and severe active SLE, and the increase correlated with disease activity. Importantly, increased leptin in lupus patients inversely correlated with the frequency of Tregs but not in controls, and leptin neutralization resulted in the expansion of Tregs ex vivo. Thus, hyperleptinemia in lupus patients correlates directly with disease activity and inversely with Treg frequency. The finding that leptin inhibition expands Tregs in SLE suggests possible inhibition of this molecule for an enhanced Treg function in the disease.
Collapse
Affiliation(s)
- X Wang
- 1 Department of Immunology and Rheumatology, Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Y Qiao
- 1 Department of Immunology and Rheumatology, Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - L Yang
- 1 Department of Immunology and Rheumatology, Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - S Song
- 2 Department of Laboratory Medicine, Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Y Han
- 1 Department of Immunology and Rheumatology, Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Y Tian
- 1 Department of Immunology and Rheumatology, Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - M Ding
- 1 Department of Immunology and Rheumatology, Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - H Jin
- 1 Department of Immunology and Rheumatology, Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - F Shao
- 1 Department of Immunology and Rheumatology, Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - A Liu
- 1 Department of Immunology and Rheumatology, Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
10
|
Platelets modulate the immune response following trauma by interaction with CD4+ T regulatory cells in a mouse model. Immunol Res 2016; 64:508-17. [PMID: 26471021 DOI: 10.1007/s12026-015-8726-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
CD4+ T regulatory cells (Tregs) play a pivotal role in the anti-inflammatory immune response following trauma. The mechanisms of CD4+ Treg activation are mostly unknown. Here, we hypothesize that platelets regulate CD4+ Treg activation following trauma. In a murine burn injury model (male C57Bl/6N mice), depletion of platelets or CD4+ Tregs was conducted. Draining lymph nodes, blood and spleen were harvested 2 h and 7 days after trauma. CD4+ Treg activation was measured using phospho- and conventional flow cytometry. Platelet activation was analyzed using thromboelastometry and flow cytometry. Trauma differentially activates CD4+ T cells, early after trauma only CD4+ Tregs are activated. Following burn injury, platelets augment the activation of CD4+ Tregs. This effect could only be seen early after trauma. While CD4+ Tregs influence hemostasis early following trauma, platelet activation markers were unchanged. Beyond their role in hemostasis, platelets are able to modulate the immunologic host response to trauma-induced injury by augmenting the activation of CD4+ Tregs. CD4+ Treg activation following trauma is considered protective. In addition, CD4+ Tregs are capable of modulating the hemostatic function of platelets. For the first time, we could show reciprocal activation of platelets and CD4+ Tregs as part of the protective immune response following trauma.
Collapse
|
11
|
Tian G, Liang JN, Wang ZY, Zhou D. Emerging role of leptin in rheumatoid arthritis. Clin Exp Immunol 2014; 177:557-70. [PMID: 24802245 DOI: 10.1111/cei.12372] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2014] [Indexed: 12/31/2022] Open
Abstract
Numerous studies have suggested the importance of leptin against autoimmune diseases such as systemic lupus erythematosus (SLE), multiple sclerosis (MS) and psoriasis. To summarize our current understanding of the role of leptin in inflammatory responses and rheumatoid arthritis (RA), a systematic review was conducted to assess the discrepancy of leptin in RA and its effect on immunity according to different studies. Recently, emerging data have indicated that leptin is involved in the pathological function of RA, which is common in autoimmune disorders. This review discusses the possible consequences of leptin levels in RA. Blocking the key signal pathways of leptin and inhibiting the leptin activity-like leptin antagonist may be a promising way for potential therapeutic treatment of RA at risk of detrimental effects. However, leptin was increased in patients with RA and may also regulate joint damage. Thus, more understanding of the mechanism of leptin in RA would be advantageous in the future.
Collapse
Affiliation(s)
- G Tian
- School of Health Management, Anhui Medical University, Hefei, Anhui, China
| | | | | | | |
Collapse
|
12
|
Kinoshita M, Takeda K. Microbial and dietary factors modulating intestinal regulatory T cell homeostasis. FEBS Lett 2014; 588:4182-7. [DOI: 10.1016/j.febslet.2014.03.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 03/08/2014] [Accepted: 03/10/2014] [Indexed: 12/19/2022]
|
13
|
Matarese G, Colamatteo A, De Rosa V. Metabolic fuelling of proper T cell functions. Immunol Lett 2013; 161:174-8. [PMID: 24365064 DOI: 10.1016/j.imlet.2013.12.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Accepted: 12/13/2013] [Indexed: 11/29/2022]
Abstract
The interplay of the immune system with other aspects of physiology is one of the hottest topics of the recent literature. A crucial example is the influence of metabolic cues on immune responses. It is now well accepted that upon activation, T lymphocytes take on a metabolic profile profoundly distinct from that of their quiescent and anergic counterparts; in these sense, T cell metabolism is highly dynamic and has a serious impact on the ability of T cell to grow, activate and differentiate. Specific metabolic pathways provide energy and biosynthetic precursors able to support specific T cell functions, such as effector, regulatory and memory. Here, we review the main signaling pathways that control metabolism and how the metabolic phenotypes of T cell subtypes integrate with their specific function.
Collapse
Affiliation(s)
- Giuseppe Matarese
- Dipartimento di Medicina e Chirurgia, Università di Salerno, Baronissi Campus, Baronissi 84081, Salerno, Italy; IRCCS-MultiMedica, Milano 20138, Italy.
| | | | - Veronica De Rosa
- Unità di NeuroImmunologia, IRCCS-Fondazione Santa Lucia, Roma 00143, Italy; Laboratorio di Immunologia, Istituto di Endocrinologia e Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), Napoli 80131, Italy
| |
Collapse
|
14
|
Hester J, Schiopu A, Nadig SN, Wood KJ. Low-dose rapamycin treatment increases the ability of human regulatory T cells to inhibit transplant arteriosclerosis in vivo. Am J Transplant 2012; 12:2008-16. [PMID: 22500984 PMCID: PMC3440570 DOI: 10.1111/j.1600-6143.2012.04065.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Regulatory T cells (T(reg)) are currently being tested in clinical trials as a potential therapy in cell and solid organ transplantation. The immunosuppressive drug rapamycin has been shown to preferentially promote T(reg) expansion. Here, we hypothesized that adjunctive rapamycin therapy might potentiate the ability of ex vivo expanded human T(reg) to inhibit vascular allograft rejection in a humanized mouse model of arterial transplantation. We studied the influence of combined treatment with low-dose rapamycin and subtherapeutic T(reg) numbers on the development of transplant arteriosclerosis (TA) in human arterial grafts transplanted into immunodeficient BALB/cRag2(-/-) Il2rg(-/-) mice reconstituted with allogeneic human peripheral blood mononuclear cell. In addition, we assessed the effects of the treatment on the proliferation and apoptosis of naïve/effector T cells. The combined therapy efficiently suppressed T-cell proliferation in vivo and in vitro. Neointima formation in the human arterial allografts was potently inhibited compared with each treatment alone. Interestingly, CD4(+) but not CD8(+) T lymphocytes were sensitive to T(reg) and rapamycin-induced apoptosis in vitro. Our data support the concept that rapamycin can be used as an adjunctive therapy to improve efficacy of T(reg)-based immunosuppressive protocols in clinical practice. By inhibiting TA, T(reg) and rapamycin may prevent chronic transplant dysfunction and improve long-term allograft survival.
Collapse
Affiliation(s)
| | | | | | - K J Wood
- *Corresponding author: Kathryn J. Wood,
| |
Collapse
|
15
|
Alzheimer's disease promotion by obesity: induced mechanisms-molecular links and perspectives. Curr Gerontol Geriatr Res 2012; 2012:986823. [PMID: 22701480 PMCID: PMC3373073 DOI: 10.1155/2012/986823] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Accepted: 04/10/2012] [Indexed: 01/08/2023] Open
Abstract
The incidence of AD is increasing in parallel with the increase in life expectancy. At the same time the prevalence of metabolic syndrome and obesity is reaching epidemic proportions in western populations. Stress is one of the major inducers of visceral fat and obesity development, underlying accelerated aging processes. Adipose tissue is at present considered as an active endocrine organ, producing important mediators involved in metabolism regulation as well as in inflammatory mechanisms. Insulin and leptin resistance has been related to the dysregulation of energy balance and to the induction of a chronic inflammatory status which have been recognized as important cofactors in cognitive impairment and AD initiation and progression. The aim of this paper is to disclose the correlation between the onset and progression of AD and the stress-induced changes in lifestyle, leading to overnutrition and reduced physical activity, ending with metabolic syndrome and obesity. The involved molecular mechanisms will be briefly discussed, and advisable guide lines for the prevention of AD through lifestyle modifications will be proposed.
Collapse
|
16
|
Hester J, Schiopu A, Nadig SN, Wood KJ. Low-dose rapamycin treatment increases the ability of human regulatory T cells to inhibit transplant arteriosclerosis in vivo. Am J Transplant 2012. [PMID: 22500984 DOI: 10.1111/j.1600-6143.2012.04 065.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Regulatory T cells (T(reg)) are currently being tested in clinical trials as a potential therapy in cell and solid organ transplantation. The immunosuppressive drug rapamycin has been shown to preferentially promote T(reg) expansion. Here, we hypothesized that adjunctive rapamycin therapy might potentiate the ability of ex vivo expanded human T(reg) to inhibit vascular allograft rejection in a humanized mouse model of arterial transplantation. We studied the influence of combined treatment with low-dose rapamycin and subtherapeutic T(reg) numbers on the development of transplant arteriosclerosis (TA) in human arterial grafts transplanted into immunodeficient BALB/cRag2(-/-) Il2rg(-/-) mice reconstituted with allogeneic human peripheral blood mononuclear cell. In addition, we assessed the effects of the treatment on the proliferation and apoptosis of naïve/effector T cells. The combined therapy efficiently suppressed T-cell proliferation in vivo and in vitro. Neointima formation in the human arterial allografts was potently inhibited compared with each treatment alone. Interestingly, CD4(+) but not CD8(+) T lymphocytes were sensitive to T(reg) and rapamycin-induced apoptosis in vitro. Our data support the concept that rapamycin can be used as an adjunctive therapy to improve efficacy of T(reg)-based immunosuppressive protocols in clinical practice. By inhibiting TA, T(reg) and rapamycin may prevent chronic transplant dysfunction and improve long-term allograft survival.
Collapse
Affiliation(s)
- J Hester
- Nuffield Department of Surgical Sciences, Transplantation Research Immunology Group, University of Oxford, UK
| | | | | | | |
Collapse
|
17
|
Sonobe Y, Li H, Jin S, Kishida S, Kadomatsu K, Takeuchi H, Mizuno T, Suzumura A. Midkine inhibits inducible regulatory T cell differentiation by suppressing the development of tolerogenic dendritic cells. THE JOURNAL OF IMMUNOLOGY 2012; 188:2602-11. [PMID: 22323540 DOI: 10.4049/jimmunol.1102346] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Midkine (MK), a heparin-binding growth factor, reportedly contributes to inflammatory diseases, including Crohn's disease and rheumatoid arthritis. We previously showed that MK aggravates experimental autoimmune encephalomyelitis (EAE) by decreasing regulatory CD4(+)CD25(+)Foxp3(+) T cells (Tregs), a population that regulates the development of autoimmune responses, although the precise mechanism remains uncertain. In this article, we show that MK produced in inflammatory conditions suppresses the development of tolerogenic dendritic cells (DCregs), which drive the development of inducible Treg. MK suppressed DCreg-mediated expansion of the CD4(+)CD25(+)Foxp3(+) Treg population. DCregs expressed significantly higher levels of CD45RB and produced significantly less IL-12 compared with conventional dendritic cells. However, MK downregulated CD45RB expression and induced IL-12 production by reducing phosphorylated STAT3 levels via src homology region 2 domain-containing phosphatase-2 in DCreg. Inhibiting MK activity with anti-MK RNA aptamers, which bind to the targeted protein to suppress the function of the protein, increased the numbers of CD11c(low)CD45RB(+) dendritic cells and Tregs in the draining lymph nodes and suppressed the severity of EAE, an animal model of multiple sclerosis. Our results also demonstrated that MK was produced by inflammatory cells, in particular, CD4(+) T cells under inflammatory conditions. Taken together, these results suggest that MK aggravates EAE by suppressing DCreg development, thereby impairing the Treg population. Thus, MK is a promising therapeutic target for various autoimmune diseases.
Collapse
Affiliation(s)
- Yoshifumi Sonobe
- Department of Neuroimmunology, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Procaccini C, Galgani M, De Rosa V, Matarese G. Intracellular metabolic pathways control immune tolerance. Trends Immunol 2011; 33:1-7. [PMID: 22075206 DOI: 10.1016/j.it.2011.09.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 08/11/2011] [Accepted: 09/06/2011] [Indexed: 11/16/2022]
Abstract
Disorders such as obesity and type 2 diabetes have been linked to immune dysfunction, raising the possibility that metabolic alterations can be induced by or be a consequence of alterations in immunological tolerance. Here, we describe how intracellular metabolic signalling pathways can 'sense' host energy/nutritional status, and in response, modulate regulatory T (Treg) cell function. In particular, we focus on mammalian target of rapamycin (mTOR) signalling, and how stimuli such as nutrients and leptin activate mTOR in an oscillatory manner to determine Treg cell proliferation status. We propose that metabolic changes such as nutritional deprivation or overload could dictate the characteristics of the Treg cell compartment and subsequent downstream immune reactions.
Collapse
Affiliation(s)
- Claudio Procaccini
- Laboratorio di Immunologia, Istituto di Endocrinologia e Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), Napoli 80131, Italy
| | | | | | | |
Collapse
|
19
|
Hanschen M, Tajima G, O'Leary F, Hoang K, Ikeda K, Lederer JA. Phospho-flow cytometry based analysis of differences in T cell receptor signaling between regulatory T cells and CD4+ T cells. J Immunol Methods 2011; 376:1-12. [PMID: 21945004 DOI: 10.1016/j.jim.2011.08.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Revised: 08/09/2011] [Accepted: 08/30/2011] [Indexed: 01/21/2023]
Abstract
CD4+ T regulatory cells (Tregs) are activated during auto-immune, injury, and inflammatory responses, however, the molecular events that trigger Treg activation are poorly understood. The purpose of this study was to investigate whether Tregs (FoxP3+ CD4+ T cells) and non-Treg CD4+ T cells might display differences in T cell receptor (TCR) dependent signaling responses following in vitro or in vivo stimulation. This study used phospho-flow cytometry as a tool to profile the kinetics and extent of TCR signaling (ZAP-70 and PKC-θ phosphorylation and expression) in Tregs and non-Tregs. We found that in vitro stimulation with anti-CD3ε induces early and transient activation of ZAP-70 and PKC-θ in both Tregs and non-Tregs. However, the response in Tregs was more rapid and higher in magnitude than responses seen in non-Tregs. In contrast, bacterial superantigen or antigen-specific TCR stimulation did not significantly activate these signaling pathways in Tregs or non-Tregs. Additional experiments tested the kinetics of in vivo TCR signaling in Tregs and non-Tregs in mice challenged with bacterial superantigen. The results of these experiments showed that superantigen rapidly activated ZAP-70 and PKC-θ in lymph node Tregs, but not in non-Tregs. In summary, we demonstrate the versatility of using phospho-flow cytometry to measure cell signaling in CD4+ T cells. The results of these in vitro and in vivo studies demonstrate that Tregs and non-Treg CD4+ T cells show marked differences in their reactivity to TCR-dependent stimulation and contribute new insights into basic mechanisms that lead to Treg activation.
Collapse
Affiliation(s)
- Marc Hanschen
- Department of Surgery (Immunology), Brigham and Women's Hospital and Harvard Medical School, 75 Francis Street, Boston, MA 02115, United States
| | | | | | | | | | | |
Collapse
|
20
|
Mohamadzadeh M, Pfeiler EA, Brown JB, Zadeh M, Gramarossa M, Managlia E, Bere P, Sarraj B, Khan MW, Pakanati KC, Ansari MJ, O'Flaherty S, Barrett T, Klaenhammer TR. Regulation of induced colonic inflammation by Lactobacillus acidophilus deficient in lipoteichoic acid. Proc Natl Acad Sci U S A 2011; 108 Suppl 1:4623-30. [PMID: 21282652 PMCID: PMC3063598 DOI: 10.1073/pnas.1005066107] [Citation(s) in RCA: 216] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Imbalance in the regulatory immune mechanisms that control intestinal cellular and bacterial homeostasis may lead to induction of the detrimental inflammatory signals characterized in humans as inflammatory bowel disease. Induction of proinflammatory cytokines (i.e., IL-12) induced by dendritic cells (DCs) expressing pattern recognition receptors may skew naive T cells to T helper 1 polarization, which is strongly implicated in mucosal autoimmunity. Recent studies show the ability of probiotic microbes to treat and prevent numerous intestinal disorders, including Clostridium difficile-induced colitis. To study the molecular mechanisms involved in the induction and repression of intestinal inflammation, the phosphoglycerol transferase gene that plays a key role in lipoteichoic acid (LTA) biosynthesis in Lactobacillus acidophilus NCFM (NCK56) was deleted. The data show that the L. acidophilus LTA-negative in LTA (NCK2025) not only down-regulated IL-12 and TNFα but also significantly enhanced IL-10 in DCs and controlled the regulation of costimulatory DC functions, resulting in their inability to induce CD4(+) T-cell activation. Moreover, treatment of mice with NCK2025 compared with NCK56 significantly mitigated dextran sulfate sodium and CD4(+)CD45RB(high)T cell-induced colitis and effectively ameliorated dextran sulfate sodium-established colitis through a mechanism that involves IL-10 and CD4(+)FoxP3(+) T regulatory cells to dampen exaggerated mucosal inflammation. Directed alteration of cell surface components of L. acidophilus NCFM establishes a potential strategy for the treatment of inflammatory intestinal disorders.
Collapse
Affiliation(s)
| | - Erika A. Pfeiler
- Genomic Sciences Graduate Program, North Carolina State University, Raleigh, NC; and
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC 27695
| | - Jeffrey B. Brown
- Northwestern University, The Feinberg School of Medicine, Chicago, IL 60611
| | - Mojgan Zadeh
- Northwestern University, The Feinberg School of Medicine, Chicago, IL 60611
| | - Matthew Gramarossa
- Northwestern University, The Feinberg School of Medicine, Chicago, IL 60611
| | - Elizabeth Managlia
- Northwestern University, The Feinberg School of Medicine, Chicago, IL 60611
| | - Praveen Bere
- Northwestern University, The Feinberg School of Medicine, Chicago, IL 60611
| | - Bara Sarraj
- Northwestern University, The Feinberg School of Medicine, Chicago, IL 60611
| | - Mohammad W. Khan
- Northwestern University, The Feinberg School of Medicine, Chicago, IL 60611
| | | | - M. Javeed Ansari
- Northwestern University, The Feinberg School of Medicine, Chicago, IL 60611
| | - Sarah O'Flaherty
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC 27695
| | - Terrence Barrett
- Northwestern University, The Feinberg School of Medicine, Chicago, IL 60611
| | - Todd R. Klaenhammer
- Genomic Sciences Graduate Program, North Carolina State University, Raleigh, NC; and
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC 27695
| |
Collapse
|
21
|
Hanschen M, Tajima G, O’Leary F, Ikeda K, Lederer JA. Injury induces early activation of T-cell receptor signaling pathways in CD4+ regulatory T cells. Shock 2011; 35:252-7. [PMID: 20720513 PMCID: PMC3045756 DOI: 10.1097/shk.0b013e3181f489c5] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Although it is known that injury enhances the regulatory activity of CD4 regulatory T cells (Tregs), the cellular and molecular mechanisms responsible for injury-induced Treg activation remain unclear. This study was designed to investigate and compare injury-induced T-cell receptor (TCR) signaling in Tregs, non-Tregs, and CD8 T cells. Specifically, we used phospho-flow cytometry to measure the expression and phosphorylation of ZAP-70, protein kinase C θ, nuclear factor of activated T cells, and glycogen synthase kinase 3β in FoxP3 Tregs versus FoxP3 non-Tregs versus CD8 T cells. Groups of male C57BL/6J mice underwent burn or sham injury, and lymph nodes and spleens were harvested at early time points-15, 30, 60, 120, and 240 min-to measure TCR signaling. As early as 15 min after burn injury, we observed a significant upregulation and phosphorylation of ZAP-70, protein kinase C θ, nuclear factor of activated T cells, and glycogen synthase kinase 3β in Tregs prepared from injury-site-draining lymph nodes. Burn injury did not activate TCR signaling in Tregs from the spleen or in CD4 non-Tregs and CD8 T cells. In conclusion, the results of this study demonstrate that burn injury activates TCR signaling in Tregs, but not non-Tregs or CD8 T cells. These findings suggest that injury provides an early TCR-activating signal to Tregs and supply new insights into how injury influences the adaptive immune system.
Collapse
Affiliation(s)
- Marc Hanschen
- Department of Surgery (Immunology), Brigham and Women’s Hospital/Harvard Medical School, Boston, MA
- Department of Trauma and Orthopaedic Surgery, Ludwig-Maximilians-University, Munich, Germany
| | - Goro Tajima
- Department of Surgery (Immunology), Brigham and Women’s Hospital/Harvard Medical School, Boston, MA
| | - Fionnuala O’Leary
- Department of Surgery (Immunology), Brigham and Women’s Hospital/Harvard Medical School, Boston, MA
| | - Kimiko Ikeda
- Department of Surgery (Immunology), Brigham and Women’s Hospital/Harvard Medical School, Boston, MA
| | - James A. Lederer
- Department of Surgery (Immunology), Brigham and Women’s Hospital/Harvard Medical School, Boston, MA
| |
Collapse
|
22
|
Procaccini C, De Rosa V, Galgani M, Abanni L, Calì G, Porcellini A, Carbone F, Fontana S, Horvath TL, La Cava A, Matarese G. An oscillatory switch in mTOR kinase activity sets regulatory T cell responsiveness. Immunity 2010; 33:929-41. [PMID: 21145759 PMCID: PMC3133602 DOI: 10.1016/j.immuni.2010.11.024] [Citation(s) in RCA: 301] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 07/13/2010] [Accepted: 10/22/2010] [Indexed: 02/07/2023]
Abstract
There is a discrepancy between the in vitro anergic state of CD4(+)CD25(hi)FoxP3(+) regulatory T (Treg) cells and their in vivo proliferative capability. The underlying mechanism of this paradox is unknown. Here we show that the anergic state of Treg cells depends on the elevated activity of the mammalian target of rapamycin (mTOR) pathway induced by leptin: a transient inhibition of mTOR with rapamycin, before T cell receptor (TCR) stimulation, made Treg cells highly proliferative in the absence of exogenous interleukin-2 (IL-2). This was a dynamic and oscillatory phenomenon characterized by an early downregulation of the leptin-mTOR pathway followed by an increase in mTOR activation necessary for Treg cell expansion to occur. These data suggest that energy metabolism, through the leptin-mTOR-axis, sets responsiveness of Treg cells that use this information to control immune tolerance and autoimmunity.
Collapse
MESH Headings
- Animals
- CD4 Antigens/biosynthesis
- Cell Proliferation/drug effects
- Cells, Cultured
- Clonal Anergy/drug effects
- Clonal Anergy/genetics
- Disease Progression
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/physiopathology
- Forkhead Transcription Factors/biosynthesis
- Humans
- Interleukin-2/immunology
- Interleukin-2/metabolism
- Interleukin-2 Receptor alpha Subunit/biosynthesis
- Leptin/immunology
- Leptin/metabolism
- Mice
- Mice, Inbred C57BL
- Signal Transduction
- Sirolimus/pharmacology
- Sirolimus/therapeutic use
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- T-Lymphocytes, Regulatory/pathology
- TOR Serine-Threonine Kinases/antagonists & inhibitors
- TOR Serine-Threonine Kinases/immunology
- TOR Serine-Threonine Kinases/metabolism
Collapse
Affiliation(s)
- Claudio Procaccini
- Laboratorio di Immunologia, Istituto di Endocrinologia e Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), Napoli 80131, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Carbone F, Procaccini C, De Rosa V, Alviggi C, De Placido G, Kramer D, Longobardi S, Matarese G. Divergent immunomodulatory effects of recombinant and urinary-derived FSH, LH, and hCG on human CD4+ T cells. J Reprod Immunol 2010; 85:172-9. [PMID: 20452035 DOI: 10.1016/j.jri.2010.02.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Revised: 02/11/2010] [Accepted: 02/16/2010] [Indexed: 11/15/2022]
Abstract
This study investigated the in vitro immune-modulating activities of recombinant versus highly purified urinary follicle-stimulating hormone (FSH), luteinizing hormone (LH), and human chorionic gonadotropin (hCG) at the cellular level. CD4(+) T cells were isolated from peripheral blood mononuclear cells obtained from ten healthy women (aged 19-30 years) with regular menstrual cycles during the follicular phase of their cycle. CD4(+) T cells were stimulated with anti-CD3/CD28 monoclonal antibodies as a T cell-specific mitogen. Proliferative and cytokine responses were analyzed at standard time points (72h). Recombinant FSH (r-FSH) and LH (r-LH) alone showed a modest capacity to influence proliferation and cytokine release by CD4(+) T cells. Conversely, their addition to T cells in combination with recombinant hCG (r-hCG) induced a powerful down-modulation of T cell proliferation, decreased interferon-gamma (IFN-gamma) secretion and increased interleukin-10 (IL-10) production. These immune-modulating activities were not present when CD4(+) T cells were stimulated either in the presence of urinary-purified FSH (u-FSH) or human menopausal gonadotropin (HMG), alone or in combination with recombinant hCG. We are the first to suggest that urinary-purified gonadotropins do not display profound immune-modulating activities as compared with the recombinant preparations, despite their endocrine effects. Therefore, the use of the recombinant preparations in assisted reproductive techniques might be relevant not only for their well-documented endocrine actions but also for their impact on the transient immune tolerance known to favour embryo implantation and progression of pregnancy.
Collapse
Affiliation(s)
- Fortunata Carbone
- Laboratorio di Immunologia, Istituto di Endocrinologia e Oncologia Sperimentale, Consiglio Nazionale delle Ricerche, Napoli, Italy
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Via CS. Advances in lupus stemming from the parent-into-F1 model. Trends Immunol 2010; 31:236-45. [PMID: 20362509 PMCID: PMC2883015 DOI: 10.1016/j.it.2010.02.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 02/22/2010] [Accepted: 02/26/2010] [Indexed: 12/25/2022]
Abstract
The parent-into-F1 model has led to important advances in our understanding of lupus. Here, we review the work in murine lupus that elucidated the role of T cells and supported the conclusion that the parent-into-F1 model of induced lupus compares favorably with de facto gold standard spontaneous models of lupus. Then we focus on recent work in parent-into-F1 mice, which has yielded novel insights into unresolved controversies, such as the role of apoptosis in the pathogenesis of lupus and lupus in patients receiving TNF blockade. Finally, the review considers the evidence that supports a potential role for CD8 T cells, both cytotoxic and memory cells, in mediating disease remission.
Collapse
Affiliation(s)
- Charles S Via
- Pathology Department, Uniformed Services University of Health Sciences, Bethesda, MD 21042, USA.
| |
Collapse
|
25
|
Disturbed regulatory T cell homeostasis in multiple sclerosis. Trends Mol Med 2010; 16:58-68. [PMID: 20159585 DOI: 10.1016/j.molmed.2009.12.003] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Revised: 12/17/2009] [Accepted: 12/21/2009] [Indexed: 12/12/2022]
Abstract
The pathological features of multiple sclerosis (MS), a chronic inflammatory disorder of the central nervous system, support an autoimmune etiology. Strong evidence has been provided for a potential functional defect of CD4(+)CD25(+)FOXP3(+) regulatory T cells (Tregs) in patients with relapsing-remitting MS. More recently, alterations in homeostatic parameters related to the development and function of naive and memory-like Tregs were discovered in MS patients. In this review, we evaluate the evidence for disturbed Treg homeostasis in MS and discuss the role of potential compensatory mechanisms in the chronic disease phase. Better insights into the processes underlying the compromised immune regulation in MS patients will be important to understand the potential of Treg-based therapies.
Collapse
|
26
|
Role of leptin in the activation of immune cells. Mediators Inflamm 2010; 2010:568343. [PMID: 20368778 PMCID: PMC2846344 DOI: 10.1155/2010/568343] [Citation(s) in RCA: 278] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 01/15/2010] [Accepted: 01/23/2010] [Indexed: 01/29/2023] Open
Abstract
Adipose tissue is an active endocrine organ that secretes various humoral factors (adipokines), and its shift to production of proinflammatory cytokines in obesity likely contributes to the low-level systemic inflammation that may be present in metabolic syndrome-associated chronic pathologies such as atherosclerosis. Leptin is one of the most important hormones secreted by adipocytes, with a variety of physiological roles related to the control of metabolism and energy homeostasis. One of these functions is the connection between nutritional status and immune competence. The adipocyte-derived hormone leptin has been shown to regulate the immune response, innate and adaptive response, both in normal and pathological conditions. The role of leptin in regulating immune response has been assessed in vitro as well as in clinical studies. It has been shown that conditions of reduced leptin production are associated with increased infection susceptibility. Conversely, immune-mediated disorders such as autoimmune diseases are associated with increased secretion of leptin and production of proinflammatory pathogenic cytokines. Thus, leptin is a mediator of the inflammatory response.
Collapse
|
27
|
Lourenço EV, Procaccini C, Ferrera F, Iikuni N, Singh RP, Filaci G, Matarese G, Shi FD, Brahn E, Hahn BH, La Cava A. Modulation of p38 MAPK activity in regulatory T cells after tolerance with anti-DNA Ig peptide in (NZB x NZW)F1 lupus mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 182:7415-21. [PMID: 19494264 PMCID: PMC2758643 DOI: 10.4049/jimmunol.0804214] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Treatment of (NZB x NZW)F(1) (NZB/W) lupus-prone mice with the anti-DNA Ig-based peptide pConsensus prolongs the survival of treated animals and effectively delays the appearance of autoantibodies and glomerulonephritis. We have previously shown that part of these protective effects associated with the induction of CD4(+)CD25(+)Foxp3(+) regulatory T cells (Tregs) that suppressed autoantibody responses. Because the effects of pConsensus appeared secondary to qualitative rather than quantitative changes in Tregs, we investigated the molecular events induced by tolerance in Tregs and found that signaling pathways including ZAP70, p27, STAT1, STAT3, STAT6, SAPK, ERK, and JNK were not significantly affected. However, peptide tolerization affected in Tregs the activity of the MAPK p38, whose phosphorylation was reduced by tolerance. The pharmacologic inhibition of p38 with the pyridinyl imidazole inhibitor SB203580 in naive NZB/W mice reproduced in vivo the effects of peptide-induced tolerance and protected mice from lupus-like disease. Transfer experiments confirmed the role of p38 in Tregs on disease activity in the NZB/W mice. These data indicate that the modulation of p38 activity in lupus Tregs can significantly influence the disease activity.
Collapse
Affiliation(s)
- Elaine V Lourenço
- Division of Rheumatology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
McGee HS, Agrawal DK. Naturally occurring and inducible T-regulatory cells modulating immune response in allergic asthma. Am J Respir Crit Care Med 2009; 180:211-25. [PMID: 19447898 DOI: 10.1164/rccm.200809-1505oc] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
RATIONALE T-regulatory cells (Tregs) are potent immunomodulators in allergic asthma. OBJECTIVES We evaluated the functional effects of Tregs by adoptively transferring naturally occurring CD4(+)CD25(+) Tregs (NTregs) and CD4(+)CD25(-) inducible Tregs (iTregs) from lung and spleens of green fluorescent protein (GFP)-transgenic Balb/c mice into cockroach-sensitized and -challenged mice. METHODS GFP-labeled NTregs and iTregs were adoptively transferred into cockroach-sensitized and -challenged mice. Airway hyperresponsiveness (AHR) to methacholine was examined using a single-chamber, whole-body plethysmograph and invasive tracheostomy. MEASUREMENTS AND MAIN RESULTS Adoptive transfer of either NTregs or iTregs from lung or spleen reversed airway inflammation and AHR to methacholine, and the effect lasted for at least 4 weeks. GFP-labeled iTregs up-regulated CD25 and forkhead-winged transcriptional factor box protein 3 and migrated to lymph node and lung. Lung CD4(+)CD25(+) T cells isolated from each group of recipient mice were inducible costimulatory molecule-high and programmed death (PD)-1-positive; however, higher expression of PD-1 was found in the spleen iTregs (S25(-)) and lung iTregs (L25(-)) groups. Higher levels of transforming growth factor-beta and IL-10 mRNA transcripts and bronchoalveolar lavage fluid IL-10 and INF-gamma levels were observed in lung CD4(+)CD25(+) cells from the L25(-) and S25(-) cell-recipient mice than from lung NTregs (L25(+)) and spleen NTregs (S25(+)) cell-recipient mice. Adoptive transfer of either cell type significantly reduced bronchoalveolar lavage fluid IL-4, IL-5, and IL-13 levels. CONCLUSIONS Tregs reverse AHR and airway inflammation; however iTregs that differentiated into IL-10-producing CD4(+) type 1 cells in the lung exert their suppressive activity likely by higher levels of transforming growth factor-beta, IL-10, IFN-gamma, and elevated levels of PD-1 compared with NTregs. Hence, PD-1 may be a conduit for reversing AHR by Tregs and a plausible target for treating asthma.
Collapse
Affiliation(s)
- Halvor S McGee
- Center for Clinical and Translational Science, Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, Nebraska 68178, USA
| | | |
Collapse
|
29
|
Weichhart T, Säemann MD. The multiple facets of mTOR in immunity. Trends Immunol 2009; 30:218-26. [PMID: 19362054 DOI: 10.1016/j.it.2009.02.002] [Citation(s) in RCA: 214] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Revised: 02/10/2009] [Accepted: 02/13/2009] [Indexed: 12/27/2022]
Abstract
The mammalian target of rapamycin (mTOR) is an evolutionarily conserved serine-threonine kinase that is known to sense the environmental and cellular nutrition status to control cell growth. In immunity, mTOR is essential for both the proper activation and subsequent proliferation of effector T cells, yet also restrains the development of regulatory T cells. However, in monocytes/macrophages and peripheral myeloid dendritic cells, mTOR restricts proinflammatory and promotes anti-inflammatory responses, whereas, in plasmacytoid dendritic cells, mTOR fosters type I interferon production. These results place mTOR in a novel immunoregulatory context that highlights the potential of mTOR inhibitors as both immunosuppressant and anti-cancer agents.
Collapse
Affiliation(s)
- Thomas Weichhart
- Department of Internal Medicine III, Clinical Division of Nephrology and Dialysis, Medical University Vienna, Währinger Gürtel 18 - 20, A-1090 Vienna, Austria.
| | | |
Collapse
|
30
|
Abstract
Thymus-derived CD4(+)CD25(high)Foxp3(+) T-regulatory cells (Tregs) have an important role in the mechanisms of peripheral immune tolerance and in the prevention of pathogenic autoimmunity through the suppression of proliferation and production of pro-inflammatory cytokines in effector immune cells. Some studies have shown that in systemic lupus erythematosus (SLE) the number of circulating Tregs may be decreased during active disease, and that the extent of such decrease may correlate with severity of the disease. Recent data in murine models of lupus have suggested the possibility to target Tregs for the modulation of SLE, and Treg-based intervention has been proposed as a novel therapeutic mean for a better management of the disease. This review provides an update on the role of Tregs in SLE, discussing new findings in relation to possible targeting of Tregs for immune modulation in lupus.
Collapse
Affiliation(s)
- A La Cava
- Division of Rheumatology, Department of Medicine, University of California Los Angeles, Los Angeles, California 90095-1670, USA.
| |
Collapse
|
31
|
Fabry Z, Schreiber HA, Harris MG, Sandor M. Sensing the microenvironment of the central nervous system: immune cells in the central nervous system and their pharmacological manipulation. Curr Opin Pharmacol 2008; 8:496-507. [PMID: 18691672 PMCID: PMC2614337 DOI: 10.1016/j.coph.2008.07.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Revised: 07/09/2008] [Accepted: 07/11/2008] [Indexed: 12/16/2022]
Abstract
Immune responses are highly regulated in all organs and severely restricted in certain tissues within the central nervous system (CNS). This phenomenon, called 'immune privilege', has been linked to the existence of multiple anatomical and physiological protective mechanisms. The finely balanced anti-inflammatory microenvironment within the CNS contributes to the immune privilege status of this tissue. The regulation of this compartment changes under pathological conditions when pro-inflammatory mediators might dominate. The past few years brought a wealth of novel information fostering our understanding of how CNS resident cells regulate the functions of immune cells, particularly helper T lymphocytes (Ths) and dendritic cells (DCs). These two cell types play a crucial role in the initiation and maintenance of neuroinflammatory diseases. The change from anti-inflammatory to pro-inflammatory microenvironment in the inflamed CNS affects Th and DC accumulation and function in the nervous tissue. A new era of DC-targeted therapies has begun, with the possibility of designing novel immunomodulatory therapies to intervene with neuroinflammation in a wide range of neurological diseases.
Collapse
Affiliation(s)
- Zsuzsanna Fabry
- School of Medicine and Public Health, Department of Pathology and Laboratory Medicine, 6130 MSC University of Wisconsin, 1300 University Avenue, Madison, WI 53706, USA.
| | | | | | | |
Collapse
|
32
|
Kan H, Kim CH, Kwon HM, Park JW, Roh KB, Lee H, Park BJ, Zhang R, Zhang J, Söderhäll K, Ha NC, Lee BL. Molecular control of phenoloxidase-induced melanin synthesis in an insect. J Biol Chem 2008; 283:25316-25323. [PMID: 18628205 DOI: 10.1074/jbc.m804364200] [Citation(s) in RCA: 174] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The melanization reaction induced by activated phenoloxidase in arthropods must be tightly controlled because of excessive formation of quinones and excessive systemic melanization damage to the hosts. However, the molecular mechanism by which phenoloxidase-induced melanin synthesis is regulated in vivo is largely unknown. It is known that the Spätzle-processing enzyme is a key enzyme in the production of cleaved Spätzle from pro-Spätzle in the Drosophila Toll pathway. Here, we provide biochemical evidence that the Tenebrio molitor Spätzle-processing enzyme converts both the 79-kDa Tenebrio prophenoloxidase and Tenebrio clip-domain SPH1 zymogen to an active melanization complex. This complex, consisting of the 76-kDa Tenebrio phenoloxidase and an active form of Tenebrio clip-domain SPH1, efficiently produces melanin on the surface of bacteria, and this activity has a strong bactericidal effect. Interestingly, we found the phenoloxidase-induced melanization reaction to be tightly regulated by Tenebrio prophenoloxidase, which functions as a competitive inhibitor of melanization complex formation. These results demonstrate that the Tenebrio Toll pathway and the melanization reaction share a common serine protease for the regulation of these two major innate immune responses.
Collapse
Affiliation(s)
- Hongnan Kan
- National Research Laboratory of Defense Proteins, College of Pharmacy, Busan 609-735, Korea; School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Chan-Hee Kim
- National Research Laboratory of Defense Proteins, College of Pharmacy, Busan 609-735, Korea
| | - Hyun-Mi Kwon
- National Research Laboratory of Defense Proteins, College of Pharmacy, Busan 609-735, Korea
| | - Ji-Won Park
- National Research Laboratory of Defense Proteins, College of Pharmacy, Busan 609-735, Korea
| | - Kyung-Baeg Roh
- National Research Laboratory of Defense Proteins, College of Pharmacy, Busan 609-735, Korea
| | - Hanna Lee
- National Research Laboratory of Defense Proteins, College of Pharmacy, Busan 609-735, Korea
| | - Bum-Joon Park
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan 609-735, Korea
| | - Rong Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jinghai Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Kenneth Söderhäll
- Department of Comparative Physiology, Evolutionary Biology Center, Uppsala University, Norbyvägen 18A, SE-752 36 Uppsala, Sweden
| | - Nam-Chul Ha
- National Research Laboratory of Defense Proteins, College of Pharmacy, Busan 609-735, Korea
| | - Bok Luel Lee
- National Research Laboratory of Defense Proteins, College of Pharmacy, Busan 609-735, Korea.
| |
Collapse
|
33
|
Pabst R, Durak D, Roos A, Lührmann A, Tschernig T. TLR2/6 stimulation of the rat lung: effects on lymphocyte subsets, natural killer cells and dendritic cells in different parts of the air-conducting compartments and at different ages. Immunology 2008; 126:132-9. [PMID: 18565128 DOI: 10.1111/j.1365-2567.2008.02886.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The composition of lymphocyte subsets in the lung has been found to be compartment-specific. To characterize the effect of age, weanling, young adult and adult rats were studied in control conditions and after a single intratracheal dose of the Toll-like receptor 2/6 (TLR2/6) agonist macrophage activating lipopeptide-2 (MALP-2). In all age groups, T, B and natural killer (NK) cells increased dramatically in the epithelium and lamina propria of the bronchi. Male adult rats were found to have responded to MALP-2 to a much greater extent than females when lymphocyte subsets were counted in the epithelium and the lamina propria. In a second series of experiments the time kinetics of regulatory T-cell (Treg) subsets and dendritic cells (DCs) in the lung was studied after local stimulation with MALP-2. Different time-dependent patterns were found in the Treg subsets CD4(+) CD25(+), CD4(+) CD25(+) neuropilin 1(+) and CD4(+) CD25(+) Foxp3(+) cells. Neutrophils and DCs also showed different patterns. Thus, the local application of a TLR agonist increased the number of lymphocyte subsets in a compartment-specific pattern. However, data should not be generalized or extrapolated from one age group, sex or lymphocyte subpopulation to another.
Collapse
Affiliation(s)
- Reinhard Pabst
- Institute of Functional and Applied Anatomy, Medical School Hannover, Hannover, Germany.
| | | | | | | | | |
Collapse
|