1
|
Al-Mazroua HA, Nadeem A, Attia SM, Bakheet SA, Ahmad A, Ansari MA, Ibrahim KE, Alomar HA, Almutairi MM, Algarzae NK, Mahmoud MA, Hussein MH, Ahmed OM, Ahmad SF. The PPAR-α selective agonist WY14643 improves lupus nephritis via the downregulation of the RORγT/STAT3 signaling pathway in MRL/lpr mice. Int Immunopharmacol 2025; 145:113787. [PMID: 39653614 DOI: 10.1016/j.intimp.2024.113787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/31/2024] [Accepted: 12/02/2024] [Indexed: 12/23/2024]
Abstract
Systemic lupus erythematosus (SLE) is a classic autoimmune disorder that mostly affects young women and involves various organs, such as the skin, joints, central nervous system, and kidneys. WY14643, a selective agonist of peroxisome proliferator-activated receptor-α, has previously shown anti-inflammatory effects in various disease models. However, its effects on lupus nephritis are yet to be explored. Therefore, the efficacy of WY14643 on renal biomarkers and lupus nephritis was assessed in MRL/lpr mice. Flow cytometry was used to examinethe effects of WY14643 on the expression of IL-17A, STAT3, RORγT, IL-21, IL-21R, IL-22, and TNF-α in splenic CD4+ T cells. We further investigated the impact of WY14643 on the mRNA expression of IL-17A, STAT3, RORγT, IL-21, IL-21R, IL-22, and TNF-α in kidney tissue via RT-PCR analysis. The administration of WY14643 effectively improved the symptoms of lupus nephritis in MRL/lpr mice. The administration of WY14643 decreased serum albumin, urine protein, serum creatinine, and blood urea nitrogen levels in MRL/lpr mice. WY14643 reduced the levels of inflammatory markers, including CD4+IL-17A+, CD4+STAT3+, CD4+RORγT+, CD4+IL-21+, CD4+IL-21R+, CD4+IL-22+, and CD4+TNF-α+, in the spleen cells of MRL/lpr mice. Additionally, we discovered that the administration of WY14643 resulted in the suppression of mRNA levels of IL-17A, STAT3, RORγT, IL-21, IL-22, and TNF-α. The current work shows that the suppression of inflammatory cells by WY14643 may effectively reduce autoimmune characteristics, such as renal inflammation, in lupus-prone MRL/lpr mice. Therefore, WY14643, being a specific PPAR-α agonist, shows significant potential as a novel therapeutic option for treatingnephritis associated with SLE, offering hope for future treatments in this challenging field.
Collapse
Affiliation(s)
- Haneen A Al-Mazroua
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saleh A Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mushtaq A Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Khalid E Ibrahim
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hatun A Alomar
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed M Almutairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Norah K Algarzae
- Department of Physiology, College of Medicine, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed A Mahmoud
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Marwa H Hussein
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Omer M Ahmed
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
2
|
Rosetti F, Madera-Salcedo IK, Crispín JC. Relevance of acquired T cell molecular defects in the immunopathogenesis of SLE. Clin Immunol 2024; 263:110225. [PMID: 38642784 DOI: 10.1016/j.clim.2024.110225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/07/2024] [Accepted: 04/15/2024] [Indexed: 04/22/2024]
Abstract
Systemic lupus erythematosus (SLE) and other autoimmune diseases are thought to develop in genetically predisposed individuals when triggered by environmental factors. This paradigm does not fully explain disease development, as it fails to consider the delay between birth and disease expression. In this review, we discuss observations described in T cells from patients with SLE that are not related to hereditary factors and have therefore been considered secondary to the disease process itself. Here, we contextualize some of those observations and argue that they may represent a pathogenic layer between genetic factors and disease development. Acquired changes in T cell phenotype and function in the setting of SLE may affect the immune system, creating a predisposition towards a more inflammatory and pathogenic system that amplifies autoimmunity and facilitates disease development.
Collapse
Affiliation(s)
- Florencia Rosetti
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Mexico City 14080, Mexico
| | - Iris K Madera-Salcedo
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Mexico City 14080, Mexico
| | - José C Crispín
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Mexico City 14080, Mexico; Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. 64849, Mexico.
| |
Collapse
|
3
|
Goetz A, Cagmat J, Brusko M, Brusko TM, Rushin A, Merritt M, Garrett T, Morel L, Dixit P. A global view of T cell metabolism in systemic lupus erythematosus. Front Immunol 2024; 15:1371708. [PMID: 38756769 PMCID: PMC11096543 DOI: 10.3389/fimmu.2024.1371708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/05/2024] [Indexed: 05/18/2024] Open
Abstract
Impaired metabolism is recognized as an important contributor to pathogenicity of T cells in Systemic Lupus Erythematosus (SLE). Over the last two decades, we have acquired significant knowledge about the signaling and transcriptomic programs related to metabolic rewiring in healthy and SLE T cells. However, our understanding of metabolic network activity derives largely from studying metabolic pathways in isolation. Here, we argue that enzymatic activities are necessarily coupled through mass and energy balance constraints with in-built network-wide dependencies and compensation mechanisms. Therefore, metabolic rewiring of T cells in SLE must be understood in the context of the entire network, including changes in metabolic demands such as shifts in biomass composition and cytokine secretion rates as well as changes in uptake/excretion rates of multiple nutrients and waste products. As a way forward, we suggest cell physiology experiments and integration of orthogonal metabolic measurements through computational modeling towards a comprehensive understanding of T cell metabolism in lupus.
Collapse
Affiliation(s)
- Andrew Goetz
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States
| | - Joy Cagmat
- Department of Pathology, University of Florida, Gainesville, FL, United States
| | - Maigan Brusko
- Department of Pathology, University of Florida, Gainesville, FL, United States
| | - Todd M. Brusko
- Department of Pathology, University of Florida, Gainesville, FL, United States
| | - Anna Rushin
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, United States
| | - Matthew Merritt
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, United States
| | - Timothy Garrett
- Department of Pathology, University of Florida, Gainesville, FL, United States
| | - Laurence Morel
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas (UT) Health San Antonio, TX, United States
| | - Purushottam Dixit
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States
- Systems Biology Institute, Yale University, West Haven, CT, United States
| |
Collapse
|
4
|
Yang Z, Yu W, Lu Y. Circulating lymphocyte subpopulations in patients with systemic lupus erythematosus and their correlation with disease activity. Clin Exp Med 2023; 23:4757-4763. [PMID: 37907622 DOI: 10.1007/s10238-023-01237-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/24/2023] [Indexed: 11/02/2023]
Abstract
The aim of the present study was to evaluate the overall alterations of peripheral blood lymphocyte subsets in patients with systemic lupus erythematosus (SLE). A total of 120 patients diagnosed with SLE and 64 health donors were enrolled. The lymphocyte subsets were detected using flow cytometry. Then the changes of lymphocyte subsets in patients and their correlation with disease activity were investigated. Compared with healthy controls, the counts of lymphocytes, T cells, B cells and NK cells in SLE patients were significantly decreased. Further analysis of T cells subpopulations revealed that the decrease in T cells counts in SLE patients was mainly attributed to a sharp decrease in CD4 + T cells counts. Meanwhile, there was a positive correlation between CD4 + T cells counts and serum complement 3 levels, and patients with lower CD4 + T cells counts had higher SLEDAI score. The counts of CD8 + T cells were comparable between SLE patients and controls, while the proportion of CD8 + T cells and cytotoxic T cells (CD8 + CD28 +) was prominently higher in SLE patients. Besides, the expression of HLA-DR on the surface of T and NK cells was significantly upregulated in SLE patients. Circulating lymphocyte subsets of SLE patients were seriously dysregulated, characterized by a decrease in CD4 + T cells and NK cells, as well as an increase in the proportion of activated T and NK cells. Reduction in CD4 + T cells in SLE patients was highly consistent with disease activity, indicating the crucial role of CD4 + T cells in the onset and progression of SLE.
Collapse
Affiliation(s)
- Zhiluo Yang
- Qingdao Municipal Hospital, 1 Jiaozhou Road, Qingdao, 266000, Shandong, People's Republic of China
- Nantong Rich Hospital, The Fourth Affiliated Hospital of Yangzhou University, Nantong, 226010, Jiangsu, People's Republic of China
| | - Wei Yu
- The Affiliated Hospital of Qingdao University, Qingdao, 266555, Shandong, People's Republic of China
| | - Yi Lu
- Qingdao Municipal Hospital, 1 Jiaozhou Road, Qingdao, 266000, Shandong, People's Republic of China.
| |
Collapse
|
5
|
Yang ML, Lam TT, Kanyo J, Kang I, Zhou ZS, Clarke SG, Mamula MJ. Natural isoaspartyl protein modification of ZAP70 alters T cell responses in lupus. Autoimmunity 2023; 56:2282945. [PMID: 37994408 PMCID: PMC10897934 DOI: 10.1080/08916934.2023.2282945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 11/08/2023] [Indexed: 11/24/2023]
Abstract
Protein posttranslational modifications (PTMs) arise in a number of normal cellular biological pathways and in response to pathology caused by inflammation and/or infection. Indeed, a number of PTMs have been identified and linked to specific autoimmune responses and metabolic pathways. One particular PTM, termed isoaspartyl (isoAsp or isoD) modification, is among the most common spontaneous PTM occurring at physiological pH and temperature. Herein, we demonstrate that isoAsp modifications arise within the ZAP70 protein tyrosine kinase upon T-cell antigen receptor (TCR) engagement. The enzyme protein L-isoaspartate O-methyltransferase (PCMT1, or PIMT, EC 2.1.1.77) evolved to repair isoaspartyl modifications in cells. In this regard, we observe that increased levels of isoAsp modification that arise under oxidative stress are correlated with reduced PIMT activity in patients with systemic lupus erythematosus (SLE). PIMT deficiency leads to T cell hyper-proliferation and hyper-phosphorylation through ZAP70 signaling. We demonstrate that inducing the overexpression of PIMT can correct the hyper-responsive phenotype in lupus T cells. Our studies reveal a phenotypic role of isoAsp modification and phosphorylation of ZAP70 in lupus T cell autoimmunity and provide a potential therapeutic target through the repair of isoAsp modification.
Collapse
Affiliation(s)
- Mei-Ling Yang
- Section of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Yale University, New Haven, CT, USA
| | - TuKiet T. Lam
- Keck MS & Proteomics Resource, WM Keck Foundation Biotechnology Resource Laboratory, New Haven, CT, USA
- Department of Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Jean Kanyo
- Keck MS & Proteomics Resource, WM Keck Foundation Biotechnology Resource Laboratory, New Haven, CT, USA
| | - Insoo Kang
- Section of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Yale University, New Haven, CT, USA
| | - Zhaohui Sunny Zhou
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA
| | - Steven G. Clarke
- Department of Chemistry and Biochemistry, Molecular Biology Institute, UCLA, Los Angeles, CA, USA
| | - Mark J. Mamula
- Section of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Yale University, New Haven, CT, USA
| |
Collapse
|
6
|
Lee K, Park J, Tanno H, Georgiou G, Diamond B, Kim SJ. Peripheral T cell activation, not thymic selection, expands the T follicular helper repertoire in a lupus-prone murine model. Proc Natl Acad Sci U S A 2023; 120:e2309780120. [PMID: 37983487 PMCID: PMC10691248 DOI: 10.1073/pnas.2309780120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/11/2023] [Indexed: 11/22/2023] Open
Abstract
Many autoimmune diseases are characterized by the activation of autoreactive T cells. The T cell repertoire is established in the thymus; it remains uncertain whether the presence of disease-associated autoreactive T cells reflects abnormal T cell selection in the thymus or aberrant T cell activation in the periphery. Here, we describe T cell selection, activation, and T cell repertoire diversity in female mice deficient for B lymphocyte-induced maturation protein (BLIMP)-1 in dendritic cells (DCs) (Prdm1 CKO). These mice exhibit a lupus-like phenotype with an expanded population of T follicular helper (Tfh) cells having a more diverse T cell receptor (TCR) repertoire than wild-type mice and, in turn, develop a lupus-like pathology. To understand the origin of the aberrant Tfh population, we analyzed the TCR repertoire of thymocytes and naive CD4 T cells from Prdm1 CKO mice. We show that early development and selection of T cells in the thymus are not affected. Importantly, however, we observed increased TCR signal strength and increased proliferation of naive T cells cultured in vitro with antigen and BLIMP1-deficient DCs compared to control DCs. Moreover, there was increased diversity in the TCR repertoire in naive CD4+ T cells stimulated in vitro with BLIMP1-deficient DCs. Collectively, our data indicate that lowering the threshold for peripheral T cell activation without altering thymic selection and naive T cell TCR repertoire leads to an expanded repertoire of antigen-activated T cells and impairs peripheral T cell tolerance.
Collapse
Affiliation(s)
- Kyungwoo Lee
- Center for Autoimmune, Musculoskeletal and Hematopoietic Disease, The Feinstein Institute for Medical Research, Manhasset, NY11030
- Department of Biology, Hofstra University, Hempstead, NY11549
| | - Juyeon Park
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX78712
| | - Hidetaka Tanno
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX78712
- Cancer Immunology Project, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo156-8506, Japan
| | - George Georgiou
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX78712
| | - Betty Diamond
- Center for Autoimmune, Musculoskeletal and Hematopoietic Disease, The Feinstein Institute for Medical Research, Manhasset, NY11030
- Department of Molecular Medicine, Northwell Health-Hofstra School of Medicine, Hofstra University, Hempstead, NY11549
| | - Sun Jung Kim
- Center for Autoimmune, Musculoskeletal and Hematopoietic Disease, The Feinstein Institute for Medical Research, Manhasset, NY11030
- Department of Molecular Medicine, Northwell Health-Hofstra School of Medicine, Hofstra University, Hempstead, NY11549
| |
Collapse
|
7
|
Miñano S, González-Correa C, Moleón J, Duarte J. Metabolic Modulators in Cardiovascular Complications of Systemic Lupus Erythematosus. Biomedicines 2023; 11:3142. [PMID: 38137363 PMCID: PMC10741086 DOI: 10.3390/biomedicines11123142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/16/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a multifactorial disorder with contributions from hormones, genetics, and the environment, predominantly affecting young women. Cardiovascular disease is the primary cause of mortality in SLE, and hypertension is more prevalent among SLE patients. The dysregulation of both innate and adaptive immune cells in SLE, along with their infiltration into kidney and vascular tissues, is a pivotal factor contributing to the cardiovascular complications associated with SLE. The activation, proliferation, and differentiation of CD4+ T cells are intricately governed by cellular metabolism. Numerous metabolic inhibitors have been identified to target critical nodes in T cell metabolism. This review explores the existing evidence and knowledge gaps concerning whether the beneficial effects of metabolic modulators on autoimmunity, hypertension, endothelial dysfunction, and renal injury in lupus result from the restoration of a balanced immune system. The inhibition of glycolysis, mitochondrial metabolism, or mTORC1 has been found to improve endothelial dysfunction and prevent the development of hypertension in mouse models of SLE. Nevertheless, limited information is available regarding the potential vasculo-protective effects of drugs that act on immunometabolism in SLE patients.
Collapse
Affiliation(s)
- Sofía Miñano
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; (S.M.); (C.G.-C.)
| | - Cristina González-Correa
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; (S.M.); (C.G.-C.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
| | - Javier Moleón
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; (S.M.); (C.G.-C.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
| | - Juan Duarte
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; (S.M.); (C.G.-C.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
- Ciber de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| |
Collapse
|
8
|
Bekaryssova D, Yessirkepov M, Mahmudov K. Structure, demography, and medico-social characteristics of articular syndrome in rheumatic diseases: a retrospective monocentric analysis of 2019-2021 data. Rheumatol Int 2023; 43:2057-2064. [PMID: 37624400 DOI: 10.1007/s00296-023-05435-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023]
Abstract
Rheumatic diseases encompass a wide range of conditions characterised by joint inflammation and pain, significantly impacting individuals' quality of life. Articular syndrome, manifested through joint-related symptoms such as pain, swelling, and reduced mobility, is a common feature of rheumatic diseases. This study aimed to analyze articular syndrome's structure, demography, and medico-social characteristics in rheumatic diseases. We retrieved case notes of 370 patients examined in 2019-2021 at the Rheumatology Department of the Regional Clinical Hospital, Shymkent, Kazakhstan. We processed data on gender, age, place of residence, social status, clinical diagnosis, comorbid conditions, complications, and delays. The material was counted by frequency analysis. Statistical and mathematical data processing was performed using the SPSS application software package version 26.0 (IBM). The identified rheumatic diseases among the patients included rheumatoid arthritis (183), systemic lupus erythematosus (47), osteoarthritis (42), ankylosing spondylitis (31), systemic scleroderma (30), reactive arthritis (18), gouty arthritis (14), psoriatic arthritis (3), and dermatomyositis (2). The distribution of patients with articular syndrome varied across the study years, with 102 patients in 2019, 216 patients in 2020, and 52 patients in 2021. The study revealed the age distribution of patients, with an average age of 46 at the time of examination and an average age of disease onset at 39. The study further investigated the distribution of rheumatic diseases categorized by gender, place of residence (urban or rural), and disease duration. Additionally, the study examined the prevalence of comorbid conditions and complications related to the underlying rheumatic disease. By examining the structure, demography, and medico-social characteristics of the articular syndrome in patients with rheumatic diseases, this retrospective analysis provides valuable insights into the epidemiological aspects of these conditions. The findings may contribute to a better understanding of the burden of rheumatic diseases on individuals and society. Such knowledge can aid in developing targeted interventions, improving healthcare delivery, and enhancing patients' overall well-being.
Collapse
Affiliation(s)
- Dana Bekaryssova
- Department of Biology and Biochemistry, South Kazakhstan Medical Academy, Shymkent, Kazakhstan.
| | - Marlen Yessirkepov
- Department of Biology and Biochemistry, South Kazakhstan Medical Academy, Shymkent, Kazakhstan
| | - Khaiyom Mahmudov
- Department of Propaedeutics of Internal Diseases, Avicenna Tajik State Medical University, Dushanbe, Tajikistan
| |
Collapse
|
9
|
Paeoniflorin Inhibits LPS-Induced Activation of Splenic CD4+ T Lymphocytes and Relieves Pathological Symptoms in MRL/lpr Mice by Suppressing IRAK1 Signaling. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5161890. [DOI: 10.1155/2022/5161890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/22/2022] [Indexed: 11/27/2022]
Abstract
Interleukin-1receptor-associated kinase 1 (IRAK1) plays a critical role in systemic lupus erythematosus (SLE). It was reported that SLE was associated with an inflammatory response mediated by defective immune tolerance, including overproduction of autoantibodies, chronic inflammation, and organ damage. Previous reports stated paeoniflorin (PF) had an immunosuppressive effect. The purpose of this study was to determine the anti-inflammatory effect of PF in SLE and its underlying mechanisms. Followed by induced with lipopolysaccharide (LPS), the splenocytes and the isolated CD4+ T lymphocytes of MRL/lpr mice were divided into three groups: control group, LPS group, and LPS + PF group, respectively. MRL/MP mice were used as the control group (treated with distilled water). The MRL/lpr mice were randomly divided into three groups: the model group (treated with distilled water), the prednisone group, and the PF group. The MRL/lpr mice were treated with prednisone acetate (5 mg/kg) and PF (25, 50, and 75 mg/kg) for eight weeks. Subsequently, ELISA, qRT-PCR, western blotting, HE, and Masson staining were performed to detect various indicators. The results of Cell Counting Kit-8 (CCK-8) showed that 10 μg/mL of LPS had the optimum effect on cell viability, and 50 μmol/L of PF had no obvious cytotoxicity to LPS-treated cells. PF reduced the expression level of IRAK1-nuclearfactor-κB (NF-κB) and its downstream inflammatory cytokines in the splenocytes and CD4+ T lymphocytes of MRL/lpr mice stimulated by LPS, especially in the latter. The serum antibody contents in the PF group mice were reduced, and the kidney damage was also alleviated accordingly. Moreover, the IRAK1/inhibitor of the nuclear factor-κB kinase (IKK)/NF-κB inhibitor (IκB)/NF-κB pathways was found to be involved in the anti-inflammation effect of PF in the kidney and spleen. In conclusion, it is thought that PF may have the potential to be used as a therapeutic agent to reduce the inflammatory activity of SLE. Inhibition of the IRAK1-NF-κB pathway may help formulate novel therapeutic tactics for SLE.
Collapse
|
10
|
Ohmes J, Comdühr S, Akbarzadeh R, Riemekasten G, Humrich JY. Dysregulation and chronicity of pathogenic T cell responses in the pre-diseased stage of lupus. Front Immunol 2022; 13:1007078. [PMID: 36389689 PMCID: PMC9650673 DOI: 10.3389/fimmu.2022.1007078] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/18/2022] [Indexed: 08/10/2023] Open
Abstract
In the normal immune system, T cell activation is tightly regulated and controlled at several levels to ensure that activation occurs in the right context to prevent the development of pathologic conditions such as autoimmunity or other harmful immune responses. CD4+FoxP3+ regulatory T cells (Treg) are crucial for the regulation of T cell responses in the peripheral lymphatic organs and thus for the prevention and control of autoimmunity. In systemic lupus erythematosus (SLE), a prototypic systemic autoimmune disease with complex etiology, a disbalance between Treg and pathogenic effector/memory CD4+ T cells develops during disease progression indicating that gradual loss of control over T cell activation is an important event in the immune pathogenesis. This progressive failure to adequately regulate the activation of autoreactive T cells facilitates chronic activation and effector/memory differentiation of pathogenic T cells, which are considered to contribute significantly to the induction and perpetuation of autoimmune processes and tissue inflammation in SLE. However, in particular in humans, little is known about the factors which drive the escape from immune regulation and the chronicity of pathogenic T cell responses in an early stage of autoimmune disease when clinical symptoms are still unapparent. Here we briefly summarize important findings and discuss current views and models on the mechanisms related to the dysregulation of T cell responses which promotes chronicity and pathogenic memory differentiation with a focus on the early stage of disease in lupus-prone individuals.
Collapse
Affiliation(s)
| | | | | | | | - Jens Y. Humrich
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| |
Collapse
|
11
|
Rabatscher PA, Trendelenburg M. Anti-C1q autoantibodies from systemic lupus erythematosus patients enhance CD40-CD154-mediated inflammation in peripheral blood mononuclear cells in vitro. Clin Transl Immunology 2022; 11:e1408. [PMID: 35928801 PMCID: PMC9345742 DOI: 10.1002/cti2.1408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 05/09/2022] [Accepted: 07/14/2022] [Indexed: 01/03/2023] Open
Abstract
Objectives Systemic lupus erythematosus (SLE) is a clinically heterogeneous autoimmune disease with complex pathogenic mechanisms. Complement C1q has been shown to play a major role in SLE, and autoantibodies against C1q (anti‐C1q) are strongly associated with SLE disease activity and severe lupus nephritis suggesting a pathogenic role for anti‐C1q. Whereas C1q alone has anti‐inflammatory effects on human monocytes and macrophages, C1q/anti‐C1q complexes favor a pro‐inflammatory phenotype. This study aimed to elucidate the inflammatory effects of anti‐C1q on peripheral blood mononuclear cells (PBMCs). Methods Isolated monocytes, isolated T cells and bulk PBMCs of healthy donors with or without concomitant T cell activation were exposed to C1q or complexes of C1q and SLE patient‐derived anti‐C1q (C1q/anti‐C1q). Functional consequences of C1q/anti‐C1q on cells were assessed by determining cytokine secretion, monocyte surface marker expression, T cell activation and proliferation. Results Exposure of isolated T cells to C1q or C1q/anti‐C1q did not affect their activation and proliferation. However, unspecific T cell activation in PBMCs in the presence of C1q/anti‐C1q resulted in increased TNF, IFN‐γ and IL‐10 secretion compared with C1q alone. Co‐culture and inhibition experiments showed that the inflammatory effect of C1q/anti‐C1q on PBMCs was due to a direct CD40–CD154 interaction between activated T cells and C1q/anti‐C1q‐primed monocytes. The CD40‐mediated inflammatory reaction of monocytes involves TRAF6 and JAK3‐STAT5 signalling. Conclusion In conclusion, C1q/anti‐C1q have a pro‐inflammatory effect on monocytes that depends on T cell activation and CD40–CD154 signalling. This signalling pathway could serve as a therapeutic target for anti‐C1q‐mediated inflammation.
Collapse
Affiliation(s)
| | - Marten Trendelenburg
- Laboratory of Clinical Immunology, Department of Biomedicine University of Basel Basel Switzerland.,Division of Internal Medicine University Hospital Basel Basel Switzerland
| |
Collapse
|
12
|
Yamada J, Peracchi OA, Terreri MT, de Moraes-Pinto MI. Cell activation, PD-1 expression and in vitro cytokine production in patients with juvenile systemic lupus erythematosus. Lupus 2022; 31:1237-1244. [PMID: 35849633 DOI: 10.1177/09612033221112809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Juvenile systemic lupus erythematosus (jSLE) is known to be more severe and with a higher frequency of renal and central nervous system impairment when compared to systemic lupus erythematosus in adults. The study of immunological characteristics of jSLE patients might help to envisage better treatment strategies to reduce the burden of the disease. OBJECTIVE To characterize peripheral lymphocytes, assessing activation markers, and PD-1 expression on T cells; to evaluate in vitro cytokine expression upon stimulation in jSLE patients and age-matched controls. METHODOLOGY Eighteen jSLE patients on low disease activity and 25 matched healthy adolescents were evaluated for immune activation and PD-1 expression on peripheral blood lymphocytes by flow cytometry. Twenty-one cytokines were assessed by X-MAP technology after in vitro stimulation of peripheral blood with phytohemagglutinin. RESULTS jSLE patients had lower numbers of CD4 T, CD8 T, B, and NK cells; higher central memory CD8 T cell percentages were noted in jSLE adolescents in comparison with controls (p = 0.014). B cells subsets showed a higher percentage of exhausted memory subset than controls (p = 0.014). The expression of PD-1 on CD4 T and CD8 T cells did not show relevant changes in jSLE adolescents. After stimulation of peripheral blood, cell supernatant of jSLE patients showed a trend to lower concentrations of IL-10 (p=0.080) and higher concentrations of IL-23 (p = 0.063) than controls. CONCLUSIONS jSLE patients on low disease activity maintain lymphopenia of all subsets, with a B cell profile of exhaustion. Upon in vitro stimulation, peripheral blood cell supernatant showed a shift to IL-23, suggesting a role of inhibitors of this cytokine as another potential therapeutic target for those patients.
Collapse
Affiliation(s)
- Juliana Yamada
- Research Laboratory, Division of Pediatric Infectious Diseases, Department of Pediatrics, 28105Universidade Federal de São Paulo, São Paulo, Brazil
| | - Octávio Ab Peracchi
- Unit of Pediatric Rheumatology, Department of Pediatrics, 28105Universidade Federal de São Paulo, São Paulo, Brazil
| | - Maria T Terreri
- Unit of Pediatric Rheumatology, Department of Pediatrics, 28105Universidade Federal de São Paulo, São Paulo, Brazil
| | - Maria Isabel de Moraes-Pinto
- Research Laboratory, Division of Pediatric Infectious Diseases, Department of Pediatrics, 28105Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
13
|
Yuan S, Zeng Y, Li J, Wang C, Li W, He Z, Ye J, Li F, Chen Y, Lin X, Yu N, Cai X. Phenotypical changes and clinical significance of CD4 +/CD8 + T cells in SLE. Lupus Sci Med 2022; 9:9/1/e000660. [PMID: 35732344 PMCID: PMC9226979 DOI: 10.1136/lupus-2022-000660] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 05/28/2022] [Indexed: 12/23/2022]
Abstract
OBJECTIVE T cells display significant phenotypical changes and play multiple roles in promoting the immune response in SLE. The frequencies of T cell subpopulations in SLE are still not well understood. To better understanding the phenotypic abnormalities of T cells in SLE will help us to clarify disease immunopathology and to find promising biomarkers for disease monitoring and control. METHODS Peripheral blood CD4+ and CD8+ T cells and their subsets were determined by flow cytometry. Forty-one active SLE patients were selected, including 28 new-onset patients and 13 relapsing patients. One hundred healthy controls (HCs) were enrolled as the control group. The percentages of these cell subsets between patients with SLE and HCs and their relationships with disease activity and autoantibody titers were analysed. Thirteen of 28 new-onset SLE patients were assessed before and after treatment. The changes in the frequencies of these cell subsets and their relationships with renal response were analysed. RESULTS There was a broad range of anomalies in the proportion of T cell subsets in patients with SLE compared with that of the HCs. Compared with the HCs, a higher frequency of memory T cells and a lower frequency of naïve T cells were noted in patients with SLE. In addition, an imbalance of CD28+ and CD28- cells in CD4+ T cells was observed in patients with SLE. We found that the expanded CD4+CD28- T cells did not decrease after treatment in patients who had impaired renal responses. It was very interesting to exhibit a negative correlation in the frequency between the CD4+CD28- T cells and T regulatory (Treg) cells and a positive correlation between the frequency of CD4+CD28+ T cells and Treg cells in this study. Increased CD8+HLADR+ T cell and CD8+CD38+HLADR+ T cell counts were observed in patients with SLE, suggesting an impaired cytotoxic capacity of CD8+ T cells in SLE. Additionally, we found that CD8+CD38+HLADR+ T cells were closely associated with disease activity, autoantibody titres and renal prognosis. CD4+ CXCR5-PD1+ T cells were expanded in patients with SLE in this study and were associated with disease activity in SLE. Th1 (T helper type 1) cells and Treg cells were decreased, but frequencies of T follicular helper (Tfh) cells, Th2 cells, Th17 cells and Tfh17 cells were increased. A strong correlation between Th17 cells and Tregs with renal involvement was observed in this study. CONCLUSION The proportions of CD4+CD28- T cells, CD4+CXCR5-PD1+ T cells, CD8+HLADR+ T cells and CD8+CD38+HLADR+ T cells increased in patients with SLE and could be associated with disease activity and renal prognosis.
Collapse
Affiliation(s)
- Shiwen Yuan
- Department of Rheumatology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China
| | - Yanting Zeng
- Department of Rheumatology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China
| | - Jiawei Li
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, China
| | - Cuicui Wang
- Department of Rheumatology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China
| | - Weinian Li
- Department of Rheumatology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China
| | - Zhixiang He
- Department of Rheumatology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China
| | - Jinghua Ye
- Department of Rheumatology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China
| | - Fangfei Li
- Department of Rheumatology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China
| | - Yi Chen
- Department of Rheumatology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China
| | - Xiaojun Lin
- Department of Rheumatology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China
| | - Na Yu
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiaoyan Cai
- Department of Rheumatology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China
| |
Collapse
|
14
|
Sun W, Li P, Cai J, Ma J, Zhang X, Song Y, Liu Y. Lipid Metabolism: Immune Regulation and Therapeutic Prospectives in Systemic Lupus Erythematosus. Front Immunol 2022; 13:860586. [PMID: 35371016 PMCID: PMC8971568 DOI: 10.3389/fimmu.2022.860586] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 02/28/2022] [Indexed: 12/31/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a heterogeneous disease characterized by the production of abnormal autoantibodies and immune complexes that can affect the organ and organ systems, particularly the kidneys and the cardiovascular system. Emerging evidence suggests that dysregulated lipid metabolism, especially in key effector cells, such as T cells, B cells, and innate immune cells, exerts complex effects on the pathogenesis and progression of SLE. Beyond their important roles as membrane components and energy storage, different lipids can also modulate different cellular processes, such as proliferation, differentiation, and survival. In this review, we summarize altered lipid metabolism and the associated mechanisms involved in the pathogenesis and progression of SLE. Furthermore, we discuss the recent progress in the role of lipid metabolism as a potential therapeutic target in SLE.
Collapse
Affiliation(s)
- Wei Sun
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Medical School of Southeast University, Nanjing, China
| | - Pengchong Li
- Department of Rheumatology and Clinical Immunology, The Ministry of Education Key Laboratory, Peking Union Medical College Hospital, Beijing, China
- Department of Gastroenterology, Beijing Friendship Hospital, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease center, Beijing Key Laboratory for Precancerous Lesion of Digestive Diseases, Capital Medical University, Beijing, China
| | - Jianping Cai
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Jie Ma
- Center of Biotherapy, Beijing Hospital, National Center of Gerontolog, Beijing, China
- Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Xuan Zhang
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Yong Song
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Medical School of Southeast University, Nanjing, China
- Department of Respiratory and Critical Care Medicine, Affiliated Jinling Hospital, Medical School of Nanjing Medical University, Nanjing, China
- *Correspondence: Yudong Liu, ; Yong Song,
| | - Yudong Liu
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Center of Biotherapy, Beijing Hospital, National Center of Gerontolog, Beijing, China
- *Correspondence: Yudong Liu, ; Yong Song,
| |
Collapse
|
15
|
Dysregulated protein kinase/phosphatase networks in SLE T cells. Clin Immunol 2022; 236:108952. [PMID: 35149196 DOI: 10.1016/j.clim.2022.108952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 12/12/2022]
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease associated with multiple phenotypic and functional aberrations in T lymphocytes. Among these, altered expression and/or activity of several protein kinases and phosphatases has been consistently documented in T cells obtained from patients with SLE. In this review, we describe and contextualize some of the kinase and phosphatase defects reported in T cells from patients with SLE, highlighting their relevance and possible consequences. Additionally, we discuss the origin of the defects and its significance for disease development and expression.
Collapse
|
16
|
Hart AP, Laufer TM. A review of signaling and transcriptional control in T follicular helper cell differentiation. J Leukoc Biol 2022; 111:173-195. [PMID: 33866600 DOI: 10.1002/jlb.1ri0121-066r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
T follicular helper (Tfh) cells are a critical component of adaptive immunity and assist in optimal Ab-mediated defense. Multiple effector functions of Tfh support germinal center B cell survival, Ab class switching, and plasma cell maturation. In the past 2 decades, the phenotype and functional characteristics of GC Tfh have been clarified allowing for robust studies of the Th subset including activation signals and environmental cues controlling Tfh differentiation and migration during an immune response. A unique, 2-step differentiation process of Tfh has been proposed but the mechanisms underlying transition between unstable Tfh precursors and functional mature Tfh remain elusive. Likewise, newly identified transcriptional regulators of Tfh development have not yet been incorporated into our understanding of how these cells might function in disease. Here, we review the signals and downstream transcription factors that shape Tfh differentiation including what is known about the epigenetic processes that maintain Tfh identity. It is proposed that further evaluation of the stepwise differentiation pattern of Tfh will yield greater insights into how these cells become dysregulated in autoimmunity.
Collapse
Affiliation(s)
- Andrew P Hart
- Division of Rheumatology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Terri M Laufer
- Division of Rheumatology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Division of Rheumatology, Department of Medicine, Corporal Michael C. Crescenz VA Medical Center, Philadelphia, PA, 19104, USA
| |
Collapse
|
17
|
Latini A, Novelli L, Ceccarelli F, Barbati C, Perricone C, De Benedittis G, Conti F, Novelli G, Ciccacci C, Borgiani P. mRNA expression analysis confirms CD44 splicing impairment in systemic lupus erythematosus patients. Lupus 2021; 30:1086-1093. [PMID: 33794704 DOI: 10.1177/09612033211004725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Systemic Lupus Erythematosus (SLE) is a complex chronic autoimmune disease characterized by several immunological alterations. T cells have a peculiar role in SLE pathogenesis, moving from the bloodstream to the peripheral tissues, causing organ damage. This process is possible for their increased adherence and migration capacity mediated by adhesion molecules, such as CD44. Ten different variant isoforms of this molecule have been described, and two of them, CD44v3 and CD44v6 have been found to be increased on SLE T cells compared to healthy controls, being proposed as biomarkers of disease and disease activity. The process of alternative splicing of CD44 transcripts is not fully understood. We investigated the mRNA expression of CD44v3 and CD44v6 and also analyzed possible CD44 splicing regulators (ESRP1 molecule and rs9666607 CD44 polymorphism) in a cohort of SLE patients compared to healthy controls. METHODS This study involved 18 SLE patients and 18 healthy controls. Total RNA and DNA were extracted by peripheral blood mononuclear cells. The expression study was conducted by quantitative RT-polymerase chain reaction, using SYBR Green protocol. Genotyping of rs9666607 SNP was performed by direct sequencing. RESULTS CD44v6 mRNA expression was higher in SLE patients compared to healthy controls (p = 0.028). CD44v3/v6 mRNA ratio in healthy controls was strongly unbalanced towards isoform v3 compared to SLE patients (p = 0.002) and decreased progressively from healthy controls to the SLE patients in remission and those with active disease (p = 0.015). The expression levels of CD44v3 and CD44v6 mRNA correlated with the disease duration (p = 0.038, Pearson r = 0.493 and p = 0.038, Pearson r = 0.495, respectively). Splicing regulator ESRP1 expression positively correlated with CD44v6 expression in healthy controls (p = 0.02, Pearson r = 0.532) but not in SLE patients. The variant A allele of rs9666607 of CD44 was associated with higher level of global CD44 mRNA (p = 0.04) but not with the variant isoforms. CONCLUSIONS In SLE patients, the increase in CD44v6 protein correlates with a higher transcript level of this isoform, confirming an impairment of CD44 splicing in the disease, whose regulatory mechanisms require further investigation.
Collapse
Affiliation(s)
- Andrea Latini
- Department of Biomedicine & Prevention, Genetics Section, University of Rome "Tor Vergata", Rome, Italy
| | - Lucia Novelli
- Lupus Clinic, Dipartimento di Scienze cliniche internistiche, anestesiologiche e cardiovascolari, Sapienza University of Rome, Rome, Italy
| | - Fulvia Ceccarelli
- Lupus Clinic, Dipartimento di Scienze cliniche internistiche, anestesiologiche e cardiovascolari, Sapienza University of Rome, Rome, Italy
| | - Cristiana Barbati
- Lupus Clinic, Dipartimento di Scienze cliniche internistiche, anestesiologiche e cardiovascolari, Sapienza University of Rome, Rome, Italy
| | - Carlo Perricone
- Rheumatology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Giada De Benedittis
- Department of Biomedicine & Prevention, Genetics Section, University of Rome "Tor Vergata", Rome, Italy
| | - Fabrizio Conti
- Lupus Clinic, Dipartimento di Scienze cliniche internistiche, anestesiologiche e cardiovascolari, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Novelli
- Department of Biomedicine & Prevention, Genetics Section, University of Rome "Tor Vergata", Rome, Italy.,IRCCS Neuromed, Pozzilli (IS), Italy.,Department of Pharmacology, School of Medicine, University of Nevada, Reno, USA
| | - Cinzia Ciccacci
- Department of Biomedicine & Prevention, Genetics Section, University of Rome "Tor Vergata", Rome, Italy.,UniCamillus - Saint Camillus International University of Health Sciences, Rome, Italy
| | - Paola Borgiani
- Department of Biomedicine & Prevention, Genetics Section, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
18
|
Ganu SA, Mathew AJ, Nadaraj A, Jeyaseelan L, Danda D. Cotrimoxazole prophylaxis prevents major infective episodes in patients with systemic lupus erythematosus on immunosuppressants: A non-concurrent cohort study. Lupus 2021; 30:893-900. [PMID: 33626971 DOI: 10.1177/0961203321995238] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Prophylactic trimethoprim-sulfamethoxazole (TMP-SMX) prevents pneumocystis jirovecii infection in SLE on immunosuppression. Its role in preventing other major infections in immuno suppressed SLE patients is unknown. METHODS A non-concurrent cohort study was conducted on patients of SLE fulfilling SLICC and/or ACR 1997 criteria, who received tapering dose of steroid starting with ≥0.5 mg/kg/day of prednisolone or equivalent dose of deflazacort and mycophenolate mofetil ≥1 g/day (or equivalent dose of mycophenolate sodium) at least for the preceding 1 year. Interviewing patients & documenting relevant data from hospital electronic Medical records (EMR), followed by comparison of Incidence densities of major infections between those on prophylactic Trimethoprim 160 mg + Sulfamethoxazole 800 mg and those not on it, was done by student 't' test. Multivariate logistic regression was performed for independent risk of any major infection between the two groups. RESULTS Of 228 patients, 162 did not receive TMP-SMX prophylaxis, and 66 had received. The incidence density of major infection was found to be significantly lower in TMP-SMX group (1.25 per 100 person year) as compared to those not on TMP-SMX group (11.201 per 100 person year); P < 0.001 (95% CI 0.027 - 0.449) and odds ratio of 0.03 (CI 0 - 0.24). CONCLUSION Cotrimoxazole prophylaxis in SLE patients on immunosuppression prevents major infections.
Collapse
Affiliation(s)
- Salil A Ganu
- Department of Clinical Immunology and Rheumatology, Christian Medical College, Vellore, India.,Department of Clinical Immunology and Rheumatology, Amrita Institute of Medical sciences, Kochi, India
| | - Ashish J Mathew
- Department of Clinical Immunology and Rheumatology, Christian Medical College, Vellore, India
| | - Ambily Nadaraj
- Department of Biostatistics, Christian Medical College, Vellore, India
| | - L Jeyaseelan
- Department of Biostatistics, Christian Medical College, Vellore, India
| | - Debashish Danda
- Department of Clinical Immunology and Rheumatology, Christian Medical College, Vellore, India
| |
Collapse
|
19
|
Khokher W, Kesireddy N, Adunse J, Mudiyanselage PH, Iftikhar S, Assaly R. Legionella pneumophila as a cause of cavitary lung disease in systemic lupus erythematous. Lupus 2021; 30:1010-1012. [PMID: 33497300 DOI: 10.1177/0961203321990102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Legionnaire's disease (LD) is most commonly caused by Legionella pneumophila (L. pneumophila). In immunocompromised patients LD can cause necrosis of the lung parenchyma with abscess formation and cavitation. Systemic lupus erythematosus (SLE) is an autoimmune disorder with features of both primary and secondary immunodeficiency. SLE patients often develop pulmonary abnormalities, but rarely develop lung cavitations. We report a case of cavitary pneumonia caused by L. pneumophila in a 64-year-old female patient with SLE. We also highlight reasons why SLE patients are more prone to L. pneumophila infections. The importance of using correct diagnostic methods for recognizing and treating such infections is also discussed, as mistreatment of cavitary lesions in SLE patients with steroid therapy can have fatal outcomes as the infectious process can significantly worsen.
Collapse
Affiliation(s)
| | | | - Josephine Adunse
- Pulmonology and Critical Care Medicine, University of Toledo, Toledo, USA
| | | | | | - Ragheb Assaly
- Pulmonology and Critical Care Medicine, University of Toledo, Toledo, USA
| |
Collapse
|
20
|
Maral S, Bakanay SM, Kucuksahin O, Dilek I. Lupus-like symptoms with anti-RNP/Sm and anti-nuclear antibodies positivity: An extremely rare adverse event of dasatinib. J Oncol Pharm Pract 2019; 26:738-741. [PMID: 31359838 DOI: 10.1177/1078155219863469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Dasatinib is a potent tyrosine-kinase inhibitor which is used for chronic myeloid leukemia treatment. Pleural effusion is a frequent side effect in patients during dasatinib treatment. Pulmonary arterial hypertension is a rare and life-threatening adverse event of dasatinib. The relationship between dasatinib and autoimmune disorders is unclear, but there are reports of possible mechanisms that have triggered autoimmunity by dasatinib. CASE REPORT A 53-year-old male was diagnosed with chronic myeloid leukemia and initiated imatinib mesylate as a treatment. Imatinib was changed to dasatinib as the patient was unresponsive in the first year of treatment. In the fourth year of dasatinib when chronic myeloid leukemia was in both hematological and cytogenetical remission, the patient presented with bilateral massive exudative pleural effusion. Echocardiography was consistent with pericardial effusion with right ventricle enlargement and normal left-side cardiac function. Pulmonary arterial hypertension was diagnosed with high systolic pulmonary arterial pressure. When he had fever and arthralgia, further investigation showed positivity of anti-nuclear antibodies (1/160 titer) and anti-RNP/Sm, which have high specificity for the diagnosis of Systemic Lupus Erythematosus (SLE). MANAGEMENT AND OUTCOME Dasatinib was discontinued and nilotinib was initiated. As the pleural effusion persisted despite diuretics and methylprednisolone, mycophenolate mofetil was initiated as a steroid-sparing immune-suppressive agent. The lupus-like symptoms disappeared, and antibodies became undetectable after dasatinib discontinuation. Pericardial effusion improved and pleural effusion did not relapse. DISCUSSION Screening for auto-antibodies may be recommended for patients with a history or symptoms of autoimmune disease before starting dasatinib. All patients who develop pleural effusion while on dasatinib treatment should be investigated for antibodies for lupus.
Collapse
Affiliation(s)
- Senem Maral
- Department of Hematology, Dıskapı Yıldırım Beyazıt Research and Training Hospital, Ankara, Turkey
| | - Sule Mine Bakanay
- Department of Hematology, Ataturk Research and Training Hospital, Ankara, Turkey
| | - Orhan Kucuksahin
- Department of Rheumatology, Ataturk Research and Training Hospital, Ankara, Turkey
| | - Imdat Dilek
- Department of Hematology, Ataturk Research and Training Hospital, Ankara, Turkey
| |
Collapse
|
21
|
Madera-Salcedo IK, Sánchez-Hernández BE, Svyryd Y, Esquivel-Velázquez M, Rodríguez-Rodríguez N, Trejo-Zambrano MI, García-González HB, Hernández-Molina G, Mutchinick OM, Alcocer-Varela J, Rosetti F, Crispín JC. PPP2R2B hypermethylation causes acquired apoptosis deficiency in systemic autoimmune diseases. JCI Insight 2019; 5:126457. [PMID: 31335320 DOI: 10.1172/jci.insight.126457] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Chronic inflammation causes target organ damage in patients with systemic autoimmune diseases. The factors that allow this protracted response are poorly understood. We analyzed the transcriptional regulation of PPP2R2B (B55ß), a molecule necessary for the termination of the immune response, in patients with autoimmune diseases. Altered expression of B55ß conditioned resistance to cytokine withdrawal-induced death (CWID) in patients with autoimmune diseases. The impaired upregulation of B55ß was caused by inflammation-driven hypermethylation of specific cytosines located within a regulatory element of PPP2R2B preventing CTCF binding. This phenotype could be induced in healthy T cells by exposure to TNF-α. Our results reveal a gene whose expression is affected by an acquired defect, through an epigenetic mechanism, in the setting of systemic autoimmunity. Because failure to remove activated T cells through CWID could contribute to autoimmune pathology, this mechanism illustrates a vicious cycle through which autoimmune inflammation contributes to its own perpetuation.
Collapse
Affiliation(s)
| | - Beatriz E Sánchez-Hernández
- Department of Genetics, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Yevgeniya Svyryd
- Department of Genetics, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | | | | | | | | | | | - Osvaldo M Mutchinick
- Department of Genetics, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | | | | | | |
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW Autoimmune diseases are of unknown origin, and they represent significant causes of morbidity and mortality. Here, we review new developments in the understanding of their pathogenesis that have led to development of well tolerated and effective treatments. RECENT FINDINGS In addition to the long-recognized genetic impact of the HLA locus, interferon regulatory factors, PTPN22, STAT4, and NOX have been implicated in pathogenesis of systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA). Smoking, ultraviolet light, diet, and microbiota exert strong environmental influence on development of RA and SLE. Metabolism has been recognized as a critical integrator of genetic and environmental factors, and it controls immune cell differentiation both under physiological and pathological conditions. SUMMARY With the advent of high-throughput genetic, proteomic, and metabolomic technologies, the field of medicine has been shifting towards systems-based and personalized approaches to diagnose and treat common conditions, including rheumatic diseases. Regulatory checkpoints of metabolism and signal transduction, such as glucose utilization, mitochondrial electron transport, JAK, mTOR, and AMPK pathway activation, and production of pro-inflammatory cytokines IL-1, IL-6, and IL-17 have presented new targets for therapeutic intervention. This review amalgamates recent discoveries in genetics and metabolomics with immunological pathways of pathogenesis in rheumatic diseases.
Collapse
Affiliation(s)
- Eric Liu
- Division of Rheumatology, Departments of Medicine, Microbiology and Immunology, Biochemistry and Molecular Biology, State University of New York, Upstate Medical University, College of Medicine, Syracuse, New York, USA
| | | |
Collapse
|
23
|
Yasuda S. Emerging targets for the treatment of lupus erythematosus: There is no royal road to treating lupus. Mod Rheumatol 2019; 29:60-69. [PMID: 29947283 DOI: 10.1080/14397595.2018.1493909] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Systemic lupus erythematosus (SLE) is a highly heterogeneous autoimmune disease that preferentially affects women of child-bearing age. Most current treatments for SLE with the exception of belimumab are not target-specific. Nontargeted therapy such as corticosteroids, cyclophosphamide, and other immunosuppressive drugs results in unwanted adverse effects. Although progress in treatment, including supportive therapy, has dramatically improved the prognosis of patients with SLE, better treatment drugs and protocols with fewer adverse effects and higher efficacy for the most severe form of SLE are needed. Advancements in genomics, immunology, and pathophysiology in the field of systemic autoimmunity have provided physicians with increasing knowledge, but the most appropriate treatment for each patient with SLE remains to be established. Therefore, the search for novel treatment targets in patients with SLE is ongoing. This review focuses on recent findings in the genetics of lupus and the abnormalities in cellular interactions, cytokine profiles, and intracellular signaling in patients with SLE. Novel molecular targets for lupus, mostly introduced through clinical trials, are then discussed based on these findings.
Collapse
Affiliation(s)
- Shinsuke Yasuda
- a Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine , Hokkaido University , Sapporo , Japan
| |
Collapse
|
24
|
Crispin JC, Hedrich CM, Suárez-Fueyo A, Comte D, Tsokos GC. SLE-Associated Defects Promote Altered T Cell Function. Crit Rev Immunol 2019; 37:39-58. [PMID: 29431078 DOI: 10.1615/critrevimmunol.2018025213] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease linked to profound defects in the function and phenotype of T lymphocytes. Here, we describe abnormal signaling pathways that have been documented in T cells from patients with SLE and discuss how they impact gene expression and immune function, in order to understand how they contribute to disease development and progression.
Collapse
Affiliation(s)
- Jose C Crispin
- Departamento de Inmunologia y Reumatologia, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Christian M Hedrich
- Department of Women's & Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool, UK; Department of Paediatric Rheumatology, Alder Hey Children's NHS Foundation Trust Hospital, Liverpool, UK
| | - Abel Suárez-Fueyo
- Department of Rheumatology, Beth Israel Deaconess Medical Center, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Denis Comte
- Divisions of Immunology and Allergy, Lausanne University Hospital, Lausanne, Switzerland
| | - George C Tsokos
- Department of Rheumatology, Beth Israel Deaconess Medical Center, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| |
Collapse
|
25
|
Ferretti AP, Bhargava R, Dahan S, Tsokos MG, Tsokos GC. Calcium/Calmodulin Kinase IV Controls the Function of Both T Cells and Kidney Resident Cells. Front Immunol 2018; 9:2113. [PMID: 30333818 PMCID: PMC6176098 DOI: 10.3389/fimmu.2018.02113] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 08/28/2018] [Indexed: 12/12/2022] Open
Abstract
Calcium calmodulin kinase IV (CaMK4) regulates multiple processes that significantly contribute to the lupus-related pathology by controlling the production of IL-2 and IL-17 by T cells, the proliferation of mesangial cells, and the function and structure of podocytes. CaMK4 is also upregulated in podocytes from patients with focal segmental glomerulosclerosis (FSGS). In both immune and non-immune podocytopathies, CaMK4 disrupts the structure and function of podocytes. In lupus-prone mice, targeted delivery of a CaMK4 inhibitor to CD4+ T cells suppresses both autoimmunity and the development of nephritis. Targeted delivery though to podocytes averts the deposition of immune complexes without affecting autoimmunity in lupus-prone mice and averts pathology induced by adriamycin in normal mice. Therefore, targeted delivery of a CaMK4 inhibitor to podocytes holds high therapeutic promise for both immune (lupus nephritis) and non-immune (FSGS) podocytopathies.
Collapse
Affiliation(s)
- Andrew P Ferretti
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Rhea Bhargava
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Shani Dahan
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Maria G Tsokos
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - George C Tsokos
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
26
|
Kono M, Kurita T, Yasuda S, Kono M, Fujieda Y, Bohgaki T, Katsuyama T, Tsokos GC, Moulton VR, Atsumi T. Decreased Expression of Serine/Arginine-Rich Splicing Factor 1 in T Cells From Patients With Active Systemic Lupus Erythematosus Accounts for Reduced Expression of RasGRP1 and DNA Methyltransferase 1. Arthritis Rheumatol 2018; 70:2046-2056. [PMID: 29905030 DOI: 10.1002/art.40585] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 06/07/2018] [Indexed: 02/03/2023]
Abstract
OBJECTIVE T cells from systemic lupus erythematosus (SLE) patients have reduced protein levels of RasGRP1, a guanine nucleotide exchange factor for Ras, and increased transcript of alternatively spliced (AS) forms lacking exon 11. Serine/arginine-rich splicing factor 1 (SRSF1) binds pre-messenger RNA (pre-mRNA) to regulate AS forms of several genes, including CD3ζ in SLE T cells. This study was undertaken to assess whether SRSF1 controls the expression of RasGRP1 in T cells from patients with SLE. METHODS We studied T cells from 45 SLE patients and 18 healthy subjects. Expression levels of SRSF1, wild-type (WT) RasGRP1, and DNA methyltransferase 1 (DNMT1) were assessed by quantitative polymerase chain reaction. Direct binding of SRSF1 to exon 11 of RasGRP1 mRNA was evaluated with an oligonucleotide-protein pulldown assay. Healthy T cells and SLE T cells were treated with SRSF1-specific small interfering RNA or SRSF1 expression vector, respectively, and then evaluated for mRNA/protein expression. RESULTS SRSF1 expression levels were significantly lower in T cells from SLE patients compared to those from healthy subjects, and correlated inversely with disease activity and positively with levels of RasGRP1-WT and DNMT1. SRSF1 bound directly to exon 11 of RasGRP1 mRNA. Silencing of SRSF1 in human T cells led to increased ratios of RasGRP1-AS to RasGRP1-WT and decreased levels of RasGRP1 protein, whereas overexpression of SRSF1 in SLE T cells caused recovery of RasGRP1, which in turn induced DNMT1/interleukin-2 expression. CONCLUSION SRSF1 controls the alternative splicing of RasGRP1 and subsequent protein expression. Our findings extend evidence that alternative splicing plays a central role in the aberrant T cell function in patients with SLE by controlling the expression of multiple genes.
Collapse
Affiliation(s)
| | | | | | - Michihito Kono
- Hokkaido University, Sapporo, Japan, and Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | | | | | - Takayuki Katsuyama
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - George C Tsokos
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Vaishali R Moulton
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | | |
Collapse
|
27
|
The Involvement of MicroRNAs in Modulation of Innate and Adaptive Immunity in Systemic Lupus Erythematosus and Lupus Nephritis. J Immunol Res 2018; 2018:4126106. [PMID: 29854836 PMCID: PMC5964414 DOI: 10.1155/2018/4126106] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 04/03/2018] [Indexed: 12/20/2022] Open
Abstract
Noncoding RNAs (ncRNAs), including microRNAs (miRNAs), represent a family of RNA molecules that do not translate into protein. Nevertheless, they have the ability to regulate gene expression and play an essential role in immune cell differentiation and function. MicroRNAs were found to be differentially expressed in various tissues, and changes in their expression have been associated with several pathological processes. Yet, their roles in systemic lupus erythematosus (SLE) and lupus nephritis (LN) remain to be elucidated. Both SLE and LN are characterized by a complex dysfunction of the innate and adaptive immunity. Recently, significant findings have been made in understanding SLE through the use of genetic variant identification and expression pattern analysis and mouse models, as well as epigenetic analyses. Abnormalities in immune cell responses, cytokine and chemokine production, cell activation, and apoptosis have been linked to a unique expression pattern of a number of miRNAs that have been implicated in the immune pathogenesis of this autoimmune disease. The recent evidence that significantly increased the understanding of the pathogenesis of SLE drives a renewed interest in efficient therapy targets. This review aims at providing an overview of the current state of research on the expression and role of miRNAs in the immune pathogenesis of SLE and LN.
Collapse
|
28
|
T Lymphocytes and Autoimmunity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 341:125-168. [DOI: 10.1016/bs.ircmb.2018.05.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
29
|
El-Sayed ZA, El-Owaidy RH, Mohamed NL, Shehata BA. Alpha beta double negative T cells in children with systemic lupus erythematosus: The relation to disease activity and characteristics. Mod Rheumatol 2017; 28:654-660. [DOI: 10.1080/14397595.2017.1377146] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Zeinab A. El-Sayed
- Pediatric Allergy and Immunology Unit, Faculty of Medicine, Ain-Shams University, Cairo, Egypt
| | - Rasha H. El-Owaidy
- Pediatric Allergy and Immunology Unit, Faculty of Medicine, Ain-Shams University, Cairo, Egypt
| | - Neama L. Mohamed
- Clinical Pathology Department, Faculty of Medicine, Ain-Shams University, Cairo, Egypt
| | - Beshoy A. Shehata
- Pediatric Allergy and Immunology Unit, Faculty of Medicine, Ain-Shams University, Cairo, Egypt
| |
Collapse
|
30
|
Wang Y, Lu Y, Chai J, Sun M, Hu X, He W, Ge M, Xie C. Y-27632, a Rho-associated protein kinase inhibitor, inhibits systemic lupus erythematosus. Biomed Pharmacother 2017; 88:359-366. [PMID: 28122300 DOI: 10.1016/j.biopha.2017.01.069] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 01/10/2017] [Accepted: 01/10/2017] [Indexed: 12/21/2022] Open
Abstract
The purpose of the present study was to evaluate whether Rho-kinase inhibition (Y-27632) modulated the expressions of nuclear factor kappaB (NF-κB) in systemic lupus erythematosus. 20 wild type mice and 20 MRL/lpr mice were applied for the research. The animals were randomly assigned to wild type, wild type+Y-27632 group, MRL/lpr group and MRL/lpr+Y-27632 group. 5mg/kg Y-27632 was intravenously injected to inhibit the ROCK expressions.Y-27632 significantly decreased the serum levels of interleukin-6 (IL-6), IL-1β, tumor necrosis factor-α (TNF-α) and increased IL-10 level in serum of MRL/lpr mice. Flow cytometry (FCM) studies also showed that Y-27632 remarkably increased Regulatory cells(Treg) cell percentage in spleen cells. Western blot analysis demonstrated Y-27632 downregulated the expressions of ROCK1, ROCK2, upregulated the expression of forkhead/winged helix transcription factor(Foxp3), and inhibited the phosphorylations of NF-κBp65 and IκBα. The findings showed that the inhibition of ROCK was beneficial for the prevention of systemic lupus erythematosus, which possibly by suppressing NF-κB activation.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Department of Histology and Embryology, Bengbu Medical college, Bengbu, 233030, China
| | - Yang Lu
- Department of Rheumatology and immunology, the First Affiliated Hospital to Bengbu Medical college, Bengbu 233004, China
| | - Jixia Chai
- Department of Histology and Embryology, Bengbu Medical college, Bengbu, 233030, China
| | - Meiqun Sun
- Department of Histology and Embryology, Bengbu Medical college, Bengbu, 233030, China
| | - Xiaodong Hu
- Department of Histology and Embryology, Bengbu Medical college, Bengbu, 233030, China
| | - Wenxin He
- Department of Histology and Embryology, Bengbu Medical college, Bengbu, 233030, China
| | - Min Ge
- Department of Pharmacology, Bengbu Medical college, Bengbu, 233030, China.
| | - Changhao Xie
- Department of Rheumatology and immunology, the First Affiliated Hospital to Bengbu Medical college, Bengbu 233004, China.
| |
Collapse
|
31
|
Hornung Á, Monostori É, Kovács L. Systemic lupus erythematosus in the light of the regulatory effects of galectin-1 on T-cell function. Lupus 2017; 26:339-347. [PMID: 28100106 DOI: 10.1177/0961203316686846] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Galectin-1 is an endogenous immunoregulatory lectin-type protein. Its most important effects are the inhibition of the differentiation and cytokine production of Th1 and Th17 cells, and the induction of apoptosis of activated T-cells. Galectin-1 has been identified as a key molecule in antitumor immune surveillance, and data are accumulating about the pathogenic role of its deficiency, and the beneficial effects of its administration in various autoimmune disease models. Initial animal and human studies strongly suggest deficiencies in both galectin-1 production and responsiveness in systemic lupus erythematosus (SLE) T-cells. Since lupus features widespread abnormalities in T-cell activation, differentiation and viability, in this review the authors wished to highlight potential points in T-cell signalling processes that may be influenced by galectin-1. These points include GM-1 ganglioside-mediated lipid raft aggregation, early activation signalling steps involving p56Lck, the exchange of the CD3 ζ-ZAP-70 to the FcRγ-Syk pathway, defective mitogen-activated protein kinase pathway activation, impaired regulatory T-cell function, the failure to suppress the activity of interleukin 17 (IL-17) producing T-cells, and decreased suppression of the PI3K-mTOR pathway by phosphatase and tensin homolog (PTEN). These findings place galectin-1 into the group of potential pathogenic molecules in SLE.
Collapse
Affiliation(s)
- Á Hornung
- 1 Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary.,2 Department of Rheumatology and Immunology, University of Szeged, Faculty of Medicine, Albert Szent-Györgyi Health Centre, Szeged, Hungary
| | - É Monostori
- 1 Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - L Kovács
- 2 Department of Rheumatology and Immunology, University of Szeged, Faculty of Medicine, Albert Szent-Györgyi Health Centre, Szeged, Hungary
| |
Collapse
|
32
|
Fujikura D, Ikesue M, Endo T, Chiba S, Higashi H, Uede T. Death receptor 6 contributes to autoimmunity in lupus-prone mice. Nat Commun 2017; 8:13957. [PMID: 28045014 PMCID: PMC5216082 DOI: 10.1038/ncomms13957] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 11/15/2016] [Indexed: 01/20/2023] Open
Abstract
Expansion of autoreactive follicular helper T (Tfh) cells is tightly restricted to prevent induction of autoantibody-dependent immunological diseases, such as systemic lupus erythematosus (SLE). Here we show expression of an orphan immune regulator, death receptor 6 (DR6/TNFRSF21), on a population of Tfh cells that are highly expanded in lupus-like disease progression in mice. Genome-wide screening reveals an interaction between syndecan-1 and DR6 resulting in immunosuppressive functions. Importantly, syndecan-1 is expressed specifically on autoreactive germinal centre (GC) B cells that are critical for maintenance of Tfh cells. Syndecan-1 expression level on GC B cells is associated with Tfh cell expansion and disease progression in lupus-prone mouse strains. In addition, Tfh cell suppression by DR6-specific monoclonal antibody delays disease progression in lupus-prone mice. These findings suggest that the DR6/syndecan-1 axis regulates aberrant GC reactions and could be a therapeutic target for autoimmune diseases such as SLE. Germinal centre (GC) reactions are driven by T follicular helper (Tfh) cells and their dysregulation can cause autoimmune disease. Here the authors show that the orphan receptor DR6 is a Tfh cell marker that binds syndecan-1 on GC B cells driving autoimmunity in lupus-prone mice.
Collapse
Affiliation(s)
- Daisuke Fujikura
- Division of Infection and Immunity, Hokkaido University Research Center for Zoonosis Control, North-20, West-10, Kita-ku, Sapporo 001-0020, Japan.,Division of Molecular Immunology, Hokkaido University Institute for Genetic Medicine, North-15, West-7, Kita-ku, Sapporo 060-0815, Japan.,Division of Bioresources, Hokkaido University Research Center for Zoonosis Control, North-20, West-10, Kita-ku, Sapporo 001-0020, Japan
| | - Masahiro Ikesue
- Division of Molecular Immunology, Hokkaido University Institute for Genetic Medicine, North-15, West-7, Kita-ku, Sapporo 060-0815, Japan
| | - Tsutomu Endo
- Division of Molecular Immunology, Hokkaido University Institute for Genetic Medicine, North-15, West-7, Kita-ku, Sapporo 060-0815, Japan
| | - Satoko Chiba
- Division of Infection and Immunity, Hokkaido University Research Center for Zoonosis Control, North-20, West-10, Kita-ku, Sapporo 001-0020, Japan.,Division of Bioresources, Hokkaido University Research Center for Zoonosis Control, North-20, West-10, Kita-ku, Sapporo 001-0020, Japan
| | - Hideaki Higashi
- Division of Infection and Immunity, Hokkaido University Research Center for Zoonosis Control, North-20, West-10, Kita-ku, Sapporo 001-0020, Japan
| | - Toshimitsu Uede
- Division of Molecular Immunology, Hokkaido University Institute for Genetic Medicine, North-15, West-7, Kita-ku, Sapporo 060-0815, Japan
| |
Collapse
|
33
|
Inhibition of Sphingosine-1-phosphate receptors in ischemia reperfusion injured autoimmunity-prone mice. Cell Immunol 2017; 311:63-70. [DOI: 10.1016/j.cellimm.2016.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 10/07/2016] [Accepted: 10/26/2016] [Indexed: 01/18/2023]
|
34
|
Motawi TK, Mohsen DA, El-Maraghy SA, Kortam MA. MicroRNA-21, microRNA-181a and microRNA-196a as potential biomarkers in adult Egyptian patients with systemic lupus erythematosus. Chem Biol Interact 2016; 260:110-116. [DOI: 10.1016/j.cbi.2016.11.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 10/17/2016] [Accepted: 11/01/2016] [Indexed: 12/26/2022]
|
35
|
Milk fat globule E-8 and interleukin 17 in systemic lupus erythematosus: partners in crime? Reumatologia 2016; 53:309-14. [PMID: 27407263 PMCID: PMC4847286 DOI: 10.5114/reum.2015.57636] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 01/09/2016] [Indexed: 12/19/2022] Open
Abstract
Objectives Systemic lupus erythematosus (SLE) is a multi-factorial, autoimmune disease with a wide array of manifestations. The pro-inflammatory cytokine interleukin (IL)-17 has been implicated in the inflammatory response and tissue damage in SLE; however, its correlation with disease activity is still questionable. Meanwhile, efficient clearance of apoptotic cells is required for immune tolerance. An abnormally low or high level of milk fat globule (MFG-E8) can result in impaired apoptotic cell clearance and the subsequent autoimmune response. In this study, we endeavoured to compare the levels of MFG-E8 and IL-17 in SLE patients and healthy controls and to reveal the alleged association of these levels with SLE disease activity. Material and methods Serum samples from 57 SLE patients and 30 healthy control subjects were examined for quantitation of MFG-E8 and IL-17 levels using ELISA. Systemic lupus erythematosus disease activity was calculated using the SLE Disease Activity Index (SLEDAI). Clinical manifestations and laboratory findings of the patients were also recorded. Results We report that serum MFG-E8 levels were significantly elevated in the sera of SLE patients compared to healthy controls (p-value = 0.019). Likewise, IL-17 levels were higher in SLE patients (p-value < 0.001). A positive correlation was revealed between MFG-E8 level and proteinuria. Surprisingly, there was a poor correlation between disease activity and the levels of either IL-17 or MFG-E8. Conclusions Although serum MFG-E8 and IL-17 levels were higher in SLE patients than in normal controls, our results indicate that they cannot accurately reflect the disease activity. Meanwhile, further studies are needed to assess MFG-E8 and IL-17 as potential therapeutic targets in SLE patients.
Collapse
|
36
|
Yin Y, Choi SC, Xu Z, Perry DJ, Seay H, Croker BP, Sobel ES, Brusko TM, Morel L. Normalization of CD4+ T cell metabolism reverses lupus. Sci Transl Med 2015; 7:274ra18. [PMID: 25673763 PMCID: PMC5292723 DOI: 10.1126/scitranslmed.aaa0835] [Citation(s) in RCA: 496] [Impact Index Per Article: 49.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease in which autoreactive CD4(+) T cells play an essential role. CD4(+) T cells rely on glycolysis for inflammatory effector functions, but recent studies have shown that mitochondrial metabolism supports their chronic activation. How these processes contribute to lupus is unclear. We show that both glycolysis and mitochondrial oxidative metabolism are elevated in CD4(+) T cells from lupus-prone B6.Sle1.Sle2.Sle3 (TC) mice as compared to non-autoimmune controls. In vitro, both the mitochondrial metabolism inhibitor metformin and the glucose metabolism inhibitor 2-deoxy-d-glucose (2DG) reduced interferon-γ (IFN-γ) production, although at different stages of activation. Metformin also restored the defective interleukin-2 (IL-2) production by TC CD4(+) T cells. In vivo, treatment of TC mice and other lupus models with a combination of metformin and 2DG normalized T cell metabolism and reversed disease biomarkers. Further, CD4(+) T cells from SLE patients also exhibited enhanced glycolysis and mitochondrial metabolism that correlated with their activation status, and their excessive IFN-γ production was significantly reduced by metformin in vitro. These results suggest that normalization of T cell metabolism through the dual inhibition of glycolysis and mitochondrial metabolism is a promising therapeutic venue for SLE.
Collapse
Affiliation(s)
- Yiming Yin
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Seung-Chul Choi
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Zhiwei Xu
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Daniel J Perry
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Howard Seay
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Byron P Croker
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Eric S Sobel
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Todd M Brusko
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Laurence Morel
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
37
|
Daszkiewicz L, Vázquez-Mateo C, Rackov G, Ballesteros-Tato A, Weber K, Madrigal-Avilés A, Di Pilato M, Fotedar A, Fotedar R, Flores JM, Esteban M, Martínez-A C, Balomenos D. Distinct p21 requirements for regulating normal and self-reactive T cells through IFN-γ production. Sci Rep 2015; 5:7691. [PMID: 25573673 PMCID: PMC4287747 DOI: 10.1038/srep07691] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 12/01/2014] [Indexed: 12/30/2022] Open
Abstract
Self/non-self discrimination characterizes immunity and allows responses against pathogens but not self-antigens. Understanding the principles that govern this process is essential for designing autoimmunity treatments. p21 is thought to attenuate autoreactivity by limiting T cell expansion. Here, we provide direct evidence for a p21 role in controlling autoimmune T cell autoreactivity without affecting normal T cell responses. We studied C57BL/6, C57BL/6/lpr and MRL/lpr mice overexpressing p21 in T cells, and showed reduced autoreactivity and lymphadenopathy in C57BL/6/lpr, and reduced mortality in MRL/lpr mice. p21 inhibited effector/memory CD4(+) CD8(+) and CD4(-)CD8(-) lpr T cell accumulation without altering defective lpr apoptosis. This was mediated by a previously non-described p21 function in limiting T cell overactivation and overproduction of IFN-γ, a key lupus cytokine. p21 did not affect normal T cell responses, revealing differential p21 requirements for autoreactive and normal T cell activity regulation. The underlying concept of these findings suggests potential treatments for lupus and autoimmune lymphoproliferative syndrome, without compromising normal immunity.
Collapse
Affiliation(s)
- Lidia Daszkiewicz
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, UAM Campus de Cantoblanco, E-28049 Madrid, Spain
| | - Cristina Vázquez-Mateo
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, UAM Campus de Cantoblanco, E-28049 Madrid, Spain
| | - Gorjana Rackov
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, UAM Campus de Cantoblanco, E-28049 Madrid, Spain
| | - André Ballesteros-Tato
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, UAM Campus de Cantoblanco, E-28049 Madrid, Spain
| | - Kathrin Weber
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, UAM Campus de Cantoblanco, E-28049 Madrid, Spain
| | - Adrián Madrigal-Avilés
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, UAM Campus de Cantoblanco, E-28049 Madrid, Spain
| | - Mauro Di Pilato
- Department of Cellular and Molecular Biology, Centro Nacional de Biotecnología/CSIC, UAM Campus de Cantoblanco, E-28049 Madrid, Spain
| | - Arun Fotedar
- Cancer Cell Biology Program, Sidney Kimmel Cancer Center, San Diego, CA, USA
| | - Rati Fotedar
- Sanford-Burnham Medical Research Institute, San Diego, CA, USA
| | - Juana M Flores
- Animal Biology Department, School of Veterinary Medicine, Universidad Complutense, Madrid, Spain
| | - Mariano Esteban
- Department of Cellular and Molecular Biology, Centro Nacional de Biotecnología/CSIC, UAM Campus de Cantoblanco, E-28049 Madrid, Spain
| | - Carlos Martínez-A
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, UAM Campus de Cantoblanco, E-28049 Madrid, Spain
| | - Dimitrios Balomenos
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, UAM Campus de Cantoblanco, E-28049 Madrid, Spain
| |
Collapse
|
38
|
Pathogenesis of lupus. Rheumatology (Oxford) 2015. [DOI: 10.1016/b978-0-323-09138-1.00131-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
39
|
Devaraju P, Gulati R, Singh BK, Mithun CB, Negi VS. The CTLA4 +49 A/G (rs231775) polymorphism influences susceptibility to SLE in South Indian Tamils. ACTA ACUST UNITED AC 2014; 83:418-21. [PMID: 24758310 DOI: 10.1111/tan.12363] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Revised: 03/22/2014] [Accepted: 04/01/2014] [Indexed: 11/28/2022]
Abstract
Systemic lupus erythematosus (SLE) is a prototype autoimmune disease with complex etiology. Loss of immune tolerance and synthesis of autoantibodies against nuclear antigens contributes to the disease. Genetic aberrations disrupting the functions of immune regulatory receptors may facilitate the development of autoimmune diseases. Cytotoxic T-lymphocyte antigen 4 (CTLA4) is an inhibitory receptor for T cells and this study was carried out to analyze the influence of CTLA4 +49A/G (rs231775) polymorphism on susceptibility to SLE in ethnic Tamils. Three hundred SLE patients and 460 age and sex similar, ethnicity-matched controls were screened for the +49 A/G polymorphism by real time polymerase chain reaction (PCR). The wild allele (A) frequency in controls and cases was 63% and 47%, respectively. The presence of heterozygous (AG) and homozygous mutant (GG) genotype was associated with a significant risk to develop SLE (P = 0.0001, OR-2.29, 95% confidence interval (CI), 1.6-3.3) and (P = 0.0001, OR-4.3, 95% CI, 2.8-6.99). The frequency of mutant allele (G) in patients was also significantly associated with SLE (P = 0.0001, OR-1.9, 95% CI, 1.5-2.4). However, this polymorphism did not influence the clinical or serological phenotypes in our study. Therefore the CTLA4 +49 A/G polymorphism is a potential genetic risk factor for lupus susceptibility in South Indian Tamils, but does not appear to influence either the clinical or serological phenotype.
Collapse
Affiliation(s)
- P Devaraju
- Department of Clinical Immunology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Pondicherry, 605 006, India
| | | | | | | | | |
Collapse
|
40
|
Mak A, Kow NY. The pathology of T cells in systemic lupus erythematosus. J Immunol Res 2014; 2014:419029. [PMID: 24864268 PMCID: PMC4017881 DOI: 10.1155/2014/419029] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 03/12/2014] [Accepted: 03/12/2014] [Indexed: 12/02/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is characterized by the production of a wide array of autoantibodies. Thus, the condition was traditionally classified as a "B-cell disease". Compelling evidence has however shown that without the assistance of the helper T lymphocytes, it is indeed difficult for the "helpless" B cells to become functional enough to trigger SLE-related inflammation. T cells have been recognized to be crucial in the pathogenicity of SLE through their capabilities to communicate with and offer enormous help to B cells for driving autoantibody production. Recently, a number of phenotypic and functional alterations which increase the propensity to trigger lupus-related inflammation have been identified in lupus T cells. Here, potential mechanisms involving alterations in T-cell receptor expressions, postreceptor downstream signalling, epigenetics, and oxidative stress which favour activation of lupus T cells will be discussed. Additionally, how regulatory CD4+, CD8+, and γδ T cells tune down lupus-related inflammation will be highlighted. Lastly, while currently available outcomes of clinical trials evaluating therapeutic agents which manipulate the T cells such as calcineurin inhibitors indicate that they are at least as efficacious and safe as conventional immunosuppressants in treating lupus glomerulonephritis, larger clinical trials are undoubtedly required to validate these as-yet favourable findings.
Collapse
MESH Headings
- Animals
- Autoantibodies/biosynthesis
- B-Lymphocytes/immunology
- B-Lymphocytes/pathology
- Calcineurin Inhibitors/therapeutic use
- Cell Communication
- Clinical Trials as Topic
- Gene Expression Regulation
- Humans
- Immunologic Factors/therapeutic use
- Lupus Erythematosus, Systemic/drug therapy
- Lupus Erythematosus, Systemic/genetics
- Lupus Erythematosus, Systemic/immunology
- Lupus Erythematosus, Systemic/pathology
- Mice
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Signal Transduction
- T-Lymphocytes, Helper-Inducer/immunology
- T-Lymphocytes, Helper-Inducer/pathology
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/pathology
Collapse
Affiliation(s)
- Anselm Mak
- Division of Rheumatology, Department of Medicine, University Medicine Cluster, 1E Kent Ridge Road, Level 10, NUHS Tower Block, Singapore 119228
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228
| | - Nien Yee Kow
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228
| |
Collapse
|
41
|
A T cell gene expression panel for the diagnosis and monitoring of disease activity in patients with systemic lupus erythematosus. Clin Immunol 2013; 150:192-200. [PMID: 24434273 DOI: 10.1016/j.clim.2013.12.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 11/27/2013] [Accepted: 12/04/2013] [Indexed: 01/22/2023]
Abstract
Systemic Lupus Erythematosus (SLE) remains a challenging disease to diagnose and follow, as no reliable biomarkers are known to date. We designed a gene expression panel with 40 genes known to play a role in SLE pathogenesis. We found that the combined expression of these genes in SLE T cells can accurately differentiate SLE from healthy individuals and patients with other autoimmune diseases. The accuracy of the test increased further (83%) when only three out of the initial genes (OAS2, CD70 and IL10) were used. A T cell score, calculated from the combined expression levels of these genes, correlated positively with various SLE activity markers in a cross-sectional cohort and in a few patients that were followed prospectively. These data showcase the usefulness of measuring mRNA levels of key molecules in diagnosing and following patients with SLE.
Collapse
|
42
|
Grammatikos AP, Ghosh D, Devlin A, Kyttaris VC, Tsokos GC. Spleen tyrosine kinase (Syk) regulates systemic lupus erythematosus (SLE) T cell signaling. PLoS One 2013; 8:e74550. [PMID: 24013589 PMCID: PMC3754955 DOI: 10.1371/journal.pone.0074550] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 08/02/2013] [Indexed: 01/09/2023] Open
Abstract
Engagement of the CD3/T cell receptor complex in systemic lupus erythematosus (SLE) T cells involves Syk rather than the zeta-associated protein. Because Syk is being considered as a therapeutic target we asked whether Syk is central to the multiple aberrantly modulated molecules in SLE T cells. Using a gene expression array, we demonstrate that forced expression of Syk in normal T cells reproduces most of the aberrantly expressed molecules whereas silencing of Syk in SLE T cells normalizes the expression of most abnormally expressed molecules. Protein along with gene expression modulation for select molecules was confirmed. Specifically, levels of cytokine IL-21, cell surface receptor CD44, and intracellular molecules PP2A and OAS2 increased following Syk overexpression in normal T cells and decreased after Syk silencing in SLE T cells. Our results demonstrate that levels of Syk affect the expression of a number of enzymes, cytokines and receptors that play a key role in the development of disease pathogenesis in SLE and provide support for therapeutic targeting in SLE patients.
Collapse
Affiliation(s)
- Alexandros P Grammatikos
- Division of Rheumatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | | | | | | | | |
Collapse
|
43
|
Up-regulation of transcription factor Blimp1 in systemic lupus erythematosus. Mol Immunol 2013; 56:574-82. [PMID: 23911415 DOI: 10.1016/j.molimm.2013.05.241] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 05/29/2013] [Accepted: 05/31/2013] [Indexed: 11/21/2022]
Abstract
PURPOSE B lymphocyte induced maturation protein 1 (Blimp1) is a transcription factor that is critical for differentiation and antibody production in plasma cells. In order to understand the mechanism of systemic lupus erythematosus (SLE), the role of Blimp1 expression was studied in patients with SLE and in healthy control subjects. And Blimp1 tissue distribution in MRL/lpr lupus mice was also investigated. METHODS The mRNA expression level of Blimp1 was analyzed by fluorescent real time PCR and compared between the 40 SLE patients and 30 control subjects. Expression of CD138, CD27 and CD19 in peripheral blood cells was analyzed by flow cytometry. Blimp1 mRNA and protein expression levels and tissue distribution in the kidneys, spleen and lymph nodes of MRL/lpr lupus and normal mice were analyzed. RESULTS Blimp1 mRNA expression level was 2.1 times greater in the SLE group as compared to the control group. The increased mRNA expression of Blimp1 seemed to be related to SLE disease activity and anti-nuclear antibody (ANA) titer. In SLE patients, the CD138+ plasma cells increased as the CD27+ cells decreased. Compared with normal mice, Blimp1 was strongly expressed in the kidneys, lymph nodes and spleen of MRL/lpr lupus mice. The expression level of Blimp1 mRNA in the kidneys, lymph nodes and spleen of MRL/lpr lupus mice was much higher than normal mice (1.76, 2.02, and 2.05 times greater, respectively, P<0.05). Similarly, protein levels in the above mentioned organs were also much higher (1.54, 1.99, and 2.21 times greater, respectively, P<0.05). CONCLUSIONS The elevated expression of Blimp1 in SLE patients and in the lupus mouse model is correlated with increases in plasma cells, autoantibodies and disease activity. It is closely related to differentiation of B-lymphocytes, antibody production and renal lesions. Blimp1 may play a role in SLE disease development.
Collapse
|
44
|
Gómez-Martín D, Ibarra-Sánchez M, Romo-Tena J, Cruz-Ruíz J, Esparza-López J, Galindo-Campos M, Díaz-Zamudio M, Alcocer-Varela J. Casitas B lineage lymphoma b is a key regulator of peripheral tolerance in systemic lupus erythematosus. ACTA ACUST UNITED AC 2013; 65:1032-42. [PMID: 23280105 DOI: 10.1002/art.37833] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 12/11/2012] [Indexed: 11/10/2022]
Abstract
OBJECTIVE To analyze whether the expression and modulation of T cell receptor (TCR) signaling is dependent on Casitas B lineage lymphoma b (Cbl-b) in T cells from patients with systemic lupus erythematosus (SLE) upon stimulation with a tolerogenic substance. METHODS Peripheral blood mononuclear cells were obtained from 20 patients with SLE (active disease or in remission) and 20 healthy controls. Levels of Cbl-b expression were measured using reverse transcription-polymerase chain reaction and Western blotting in peripheral CD4+ T cells from SLE patients and healthy controls upon anergy induction. Cell proliferation was measured using the carboxyfluorescein diacetate succinimidyl ester dilution method. Cytokine production was analyzed by luminometry, and surface expression of activation markers was assessed by flow cytometry. Transfection assays were performed to induce overexpression of Cbl-b, and phosphorylation of TCR-associated kinases was evaluated. RESULTS CD4+ T cells from SLE patients displayed resistance to anergy (as evidenced by increased cell proliferation, interleukin-2 production, and expression of activation and costimulatory markers), and this was associated with altered Cbl-b expression. Upon ionomycin treatment, primary T cells showed enhanced MAPK activity and decreased Akt phosphorylation, which was representative of the anergic state. In T cells from lupus patients, Cbl-b overexpression led to increased expression of phosphorylated MAPK, thus indicating the reversibility of anergy resistance. CONCLUSION These findings suggest that abnormal peripheral tolerance in SLE is caused by a deficiency in Cbl-b, and that this ubiquitin ligase plays a key role in regulating TCR signaling during the induction of peripheral tolerance.
Collapse
Affiliation(s)
- Diana Gómez-Martín
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Yang ML, Gee AJP, Gee RJ, Zurita-Lopez CI, Khare S, Clarke SG, Mamula MJ. Lupus autoimmunity altered by cellular methylation metabolism. Autoimmunity 2012; 46:21-31. [PMID: 23039363 DOI: 10.3109/08916934.2012.732133] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Modifications of both DNA and protein by methylation are key factors in normal T and B cell immune responses as well as in the development of autoimmune disease. For example, the failure to maintain the methylation status of CpG dinucleotides in DNA triggers T cell autoreactivity. Methylated proteins are known targets of autoimmunity, including the symmetrical dimethylarginine residues of SmD1 and SmD3 in SLE. Herein, we demonstrate that altering the metabolism of S-adenosylmethionine (SAM), the major methyl donor for transmethylation reactions, can suppress T cell immunity. A by-product of SAM metabolism, 5'-deoxy-5'-methylthioadenosine (MTA), and an indirect inhibitor of methyltransferases, inhibits T cell responses including T cell activation markers, Th1/Th2 cytokines and TCR-related signaling events. Moreover, treatment of the lupus-prone MRL/lpr mouse with MTA markedly ameliorates splenomegaly, lymphadenopathy, autoantibody titers as well as IgG deposition and cellular infiltration in the kidney. Incubation of cells with SAM, which increases intracellular MTA levels, inhibits both TCR-mediated T cell proliferation and BCR (anti-IgM)-triggered B cell proliferation in a dose-dependent manner. These studies define the central role of MTA and SAM in immune responses and provide a simple approach to altering lymphocyte transmethylation and T cell mediated autoimmune syndromes.
Collapse
Affiliation(s)
- Mei-Ling Yang
- Section of Rheumatology, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520-8031, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Gatto M, Zen M, Ghirardello A, Bettio S, Bassi N, Iaccarino L, Punzi L, Doria A. Emerging and critical issues in the pathogenesis of lupus. Autoimmun Rev 2012; 12:523-36. [PMID: 23000207 DOI: 10.1016/j.autrev.2012.09.003] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Accepted: 09/10/2012] [Indexed: 01/10/2023]
Abstract
Systemic lupus erythematosus (SLE) is a multisystemic, autoimmune disease, encompassing either mild or severe manifestations. SLE was originally labeled as being an immune complex-mediated disease, but further knowledge suggested its pathogenesis is motlier than that, involving complex interactions between predisposed individuals and their environment. People affected with SLE have their immune system skewed toward aberrant self-recognition usually after encountering a triggering agent. Defeats in early and late immune checkpoints contribute to tolerance breakdown and further generation and expansion of autoreactive cell-clones. B and T cells play a master role in SLE, however clues are emerging about other cell types and new light is being shed on SLE autoantibodies, since some of them display really harmful potential (pathogenic antibodies), while others are just connected with disease development (pathological antibodies) and may even be protective. Autoantibody generation is elicited by abnormal apoptosis and inefficient clearance of cellular debris causing intracellular autoantigens (e.g. nucleosomes) to persist in the extracellular environment, being further recognized by autoreactive cells. Here we explore the complexity of SLE pathogenesis through five core issues, i.e. genetic predisposition, B and T cell abnormalities, abnormal autoantigen availability, autoantibody generation and organ damage, relying on current knowledge and recent insights into SLE development.
Collapse
Affiliation(s)
- Mariele Gatto
- Division of Rheumatology, Department of Medicine, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Caza TN, Talaber G, Perl A. Metabolic regulation of organelle homeostasis in lupus T cells. Clin Immunol 2012; 144:200-13. [PMID: 22836085 PMCID: PMC3423541 DOI: 10.1016/j.clim.2012.07.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 07/03/2012] [Indexed: 12/23/2022]
Abstract
Abnormal T-cell signaling and activation are characteristic features in systemic lupus erythematosus (SLE). Lupus T cells are shifted toward an over-activated state, important signaling pathways are rewired, and signaling molecules are replaced. Disturbances in metabolic and organelle homeostasis, importantly within the mitochondrial, endosomal, and autophagosomal compartments, underlie the changes in signal transduction. Mitochondrial hyperpolarization, enhanced endosomal recycling, and dysregulated autophagy are hallmarks of pathologic organelle homeostasis in SLE. This review is focused on the metabolic checkpoints of endosomal traffic that control immunological synapse formation and mitophagy and may thus serve as targets for treatment in SLE.
Collapse
Affiliation(s)
- Tiffany N Caza
- Department of Medicine, State University of New York Upstate Medical University, Syracuse, 13210, USA
| | | | | |
Collapse
|
48
|
K-RAS GTPase- and B-RAF kinase-mediated T-cell tolerance defects in rheumatoid arthritis. Proc Natl Acad Sci U S A 2012; 109:E1629-37. [PMID: 22615393 DOI: 10.1073/pnas.1117640109] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Autoantibodies to common autoantigens and neoantigens, such as IgG Fc and citrullinated peptides, are immunological hallmarks of rheumatoid arthritis (RA). We examined whether a failure in maintaining tolerance is mediated by defects in T-cell receptor activation threshold settings. RA T cells responded to stimulation with significantly higher ERK phosphorylation (P < 0.001). Gene expression arrays of ERK pathway members suggested a higher expression of KRAS and BRAF, which was confirmed by quantitative PCR (P = 0.003), Western blot, and flow cytometry (P < 0.01). Partial silencing of KRAS and BRAF lowered activation-induced phosphorylated ERK levels (P < 0.01). In individual cells, levels of these signaling molecules correlated with ERK phosphorylation, attesting that their concentrations are functionally important. In confocal studies, B-RAF/K-RAS clustering was increased in RA T cells 2 min after T-cell receptor stimulation (P < 0.001). Overexpression of B-RAF and K-RAS in normal CD4 T cells amplified polyclonal T-cell proliferation and facilitated responses to citrullinated peptides. We propose that increased expression of B-RAF and K-RAS lowers T-cell activation thresholds in RA T cells, enabling responses to autoantigens.
Collapse
|
49
|
Cuda CM, Li S, Liang S, Yin Y, Potula HHS, Xu Z, Sengupta M, Chen Y, Butfiloski E, Baker H, Chang LJ, Dozmorov I, Sobel ES, Morel L. Pre-B cell leukemia homeobox 1 is associated with lupus susceptibility in mice and humans. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2012; 188:604-14. [PMID: 22180614 PMCID: PMC3253202 DOI: 10.4049/jimmunol.1002362] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Sle1a.1 is part of the Sle1 susceptibility locus, which has the strongest association with lupus nephritis in the NZM2410 mouse model. In this study, we show that Sle1a.1 results in the production of activated and autoreactive CD4(+) T cells. Additionally, Sle1a.1 expression reduces the peripheral regulatory T cell pool, as well as induces a defective response of CD4(+) T cells to the retinoic acid expansion of TGF-β-induced regulatory T cells. At the molecular level, Sle1a.1 corresponds to an increased expression of a novel splice isoform of Pbx1, Pbx1-d. Pbx1-d overexpression is sufficient to induce an activated/inflammatory phenotype in Jurkat T cells and to decrease their apoptotic response to retinoic acid. PBX1-d is expressed more frequently in the CD4(+) T cells from lupus patients than from healthy controls, and its presence correlates with an increased central memory T cell population. These findings indicate that Pbx1 is a novel lupus susceptibility gene that regulates T cell activation and tolerance.
Collapse
Affiliation(s)
- Carla M. Cuda
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610
| | - Shiwu Li
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610
| | - Shujuan Liang
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610
| | - Yiming Yin
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610
| | - Hari Hara S.K. Potula
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610
| | - Zhiwei Xu
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610
| | - Mayami Sengupta
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610
| | - Yifang Chen
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610
| | - Edward Butfiloski
- Department of Medicine, Division of Rheumatology and Clinical Medicine, University of Florida, Gainesville, FL 32610
| | - Henry Baker
- Department of Microbiology and Molecular Genetics, University of Florida, Gainesville, FL 32610
| | - Lung-Ji Chang
- Department of Microbiology and Molecular Genetics, University of Florida, Gainesville, FL 32610
| | - Igor Dozmorov
- Pathology Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104
| | - Eric S. Sobel
- Department of Medicine, Division of Rheumatology and Clinical Medicine, University of Florida, Gainesville, FL 32610
| | - Laurence Morel
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610
| |
Collapse
|
50
|
Activity of Childhood Lupus Nephritis is Linked to Altered T Cell and Cytokine Homeostasis. J Clin Immunol 2012; 32:477-87. [DOI: 10.1007/s10875-011-9637-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2011] [Accepted: 12/13/2011] [Indexed: 10/14/2022]
|