1
|
Sanders TJ, Nabel CS, Brouwer M, Hermant AL, Chaible L, Deglasse JP, Rosewick N, Pabois A, Cathou W, Smets A, Deligny M, Marchante J, Dubray Q, Letellier MC, Martinoli C, Marillier R, De Henau O, McGrath Y, Vander Heiden MG, Houthuys E. Inhibition of ENT1 relieves intracellular adenosine-mediated T cell suppression in cancer. Nat Immunol 2025:10.1038/s41590-025-02153-3. [PMID: 40355731 DOI: 10.1038/s41590-025-02153-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 04/08/2025] [Indexed: 05/14/2025]
Abstract
The benefit of immune checkpoint blockade for cancer therapy is limited to subsets of patients because of factors including the accumulation of immunosuppressive metabolites, such as adenosine, within tumors. Pharmacological inhibition of adenosine generation and signaling is an active area of clinical investigation, but only limited clinical benefit has been reported. Here, we show that adenosine suppresses anti-cancer T cell responses following uptake into activated T cells by equilibrative nucleoside transporter 1 (ENT1) and inhibition of de novo pyrimidine nucleotide synthesis. We identify EOS301984 as a potent ENT1 antagonist that restores pyrimidine levels in activated T cells in adenosine-rich environments, resulting in enhanced tumor cell killing by memory T cells and increased ex vivo expansion of functional human tumor-infiltrating lymphocytes. A combination of EOS301984 with anti-PD-1 led to synergistic control of tumor growth in a humanized mouse model of triple-negative breast cancer. ENT1 inhibition, therefore, augments anti-cancer immune responses through the restoration of pyrimidine nucleotide synthesis in T cells suppressed by adenosine.
Collapse
Affiliation(s)
- Theodore J Sanders
- iTeos Therapeutics, Gosselies, Belgium
- iTeos Therapeutics, Watertown, MA, USA
| | - Christopher S Nabel
- Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA, USA
- Massachusetts General Hospital, Boston, MA, USA
| | - Margreet Brouwer
- iTeos Therapeutics, Gosselies, Belgium
- iTeos Therapeutics, Watertown, MA, USA
| | - Annelise L Hermant
- iTeos Therapeutics, Gosselies, Belgium
- iTeos Therapeutics, Watertown, MA, USA
| | - Lucas Chaible
- iTeos Therapeutics, Gosselies, Belgium
- iTeos Therapeutics, Watertown, MA, USA
| | | | - Nicolas Rosewick
- iTeos Therapeutics, Gosselies, Belgium
- iTeos Therapeutics, Watertown, MA, USA
| | - Angélique Pabois
- iTeos Therapeutics, Gosselies, Belgium
- iTeos Therapeutics, Watertown, MA, USA
| | - Wilfried Cathou
- iTeos Therapeutics, Gosselies, Belgium
- iTeos Therapeutics, Watertown, MA, USA
| | - Aurore Smets
- iTeos Therapeutics, Gosselies, Belgium
- iTeos Therapeutics, Watertown, MA, USA
| | - Michael Deligny
- iTeos Therapeutics, Gosselies, Belgium
- iTeos Therapeutics, Watertown, MA, USA
| | - João Marchante
- iTeos Therapeutics, Gosselies, Belgium
- iTeos Therapeutics, Watertown, MA, USA
| | - Quentin Dubray
- iTeos Therapeutics, Gosselies, Belgium
- iTeos Therapeutics, Watertown, MA, USA
| | | | - Chiara Martinoli
- iTeos Therapeutics, Gosselies, Belgium
- iTeos Therapeutics, Watertown, MA, USA
| | - Reece Marillier
- iTeos Therapeutics, Gosselies, Belgium
- iTeos Therapeutics, Watertown, MA, USA
| | - Olivier De Henau
- iTeos Therapeutics, Gosselies, Belgium
- iTeos Therapeutics, Watertown, MA, USA
| | - Yvonne McGrath
- iTeos Therapeutics, Gosselies, Belgium
- iTeos Therapeutics, Watertown, MA, USA
| | - Matthew G Vander Heiden
- Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Erica Houthuys
- iTeos Therapeutics, Gosselies, Belgium.
- iTeos Therapeutics, Watertown, MA, USA.
| |
Collapse
|
2
|
Kang YK, Min B, Eom J, Park JS, Jang J, Jeong S. Emergence of CpG-cluster blanket methylation in aged tissues: a novel signature of epigenomic aging. Nucleic Acids Res 2025; 53:gkaf354. [PMID: 40347138 PMCID: PMC12065108 DOI: 10.1093/nar/gkaf354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 03/20/2025] [Accepted: 05/07/2025] [Indexed: 05/12/2025] Open
Abstract
Aging is accompanied by widespread DNA methylation changes across the genome. While age-related methylation studies typically focus on individual CpGs, cluster analysis provides more robust data and improved interpretation. We characterized age-associated CpG-cluster methylation changes in mouse spleens, peripheral blood mononuclear cells, and livers. We identified a novel signature termed blanket methylations (BMs), fully methylated CpG clusters absent in young tissues but appearing in aged tissues. BM formation was locus- and cell-dependent, with minimal overlap among tissues. Statistical analysis, heterogeneity assessment, and random modeling demonstrated that BMs arise through nonrandom mechanisms and correlate with accelerated aging. Notably, BMs appeared in chronologically young mice with progeroid or disease-driven aging, including in 4-month-old Zmpste24-/- (lifespan ∼5 months) and 3-month-old Huntington's disease model mice (lifespan ∼4 months). The detection of BMs in purified CD4+ T cells demonstrated that their occurrence is intrinsic to aging cells rather than a result of infiltration from other tissues. Further investigation revealed age-related downregulation of zinc-finger-CxxC-domain genes, including Tet1 and Tet3, which protect CpG islands from methylation. Importantly, TET1 or TET3 depletion induced BM formation, linking their loss to age-associated methylation drift. These findings establish BMs as a robust marker of epigenomic aging, providing insight into age-related methylation changes.
Collapse
Affiliation(s)
- Yong-Kook Kang
- Aging Convergence Research Center (ACRC), Development and Differentiation Research Center, Korea Research Institute of Bioscience Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, South Korea
- Department of Functional Genomics, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, South Korea
| | - Byungkuk Min
- Aging Convergence Research Center (ACRC), Development and Differentiation Research Center, Korea Research Institute of Bioscience Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, South Korea
| | - Jaemin Eom
- Aging Convergence Research Center (ACRC), Development and Differentiation Research Center, Korea Research Institute of Bioscience Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, South Korea
- Department of Functional Genomics, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, South Korea
| | - Jung Sun Park
- Aging Convergence Research Center (ACRC), Development and Differentiation Research Center, Korea Research Institute of Bioscience Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, South Korea
| | - Jaewoong Jang
- Aging Convergence Research Center (ACRC), Development and Differentiation Research Center, Korea Research Institute of Bioscience Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, South Korea
| | - Sangkyun Jeong
- Genomics Department, Keyomics Co. Ltd, 17 Techno4-ro, Yuseong-gu, Daejeon 34013, South Korea
| |
Collapse
|
3
|
Lan H, Xu S, Li H, Guo R, Feng Z, Wang Y. T Cell Aging: An Important Target for Perioperative Immunomodulation. Clin Interv Aging 2025; 20:537-557. [PMID: 40330270 PMCID: PMC12052011 DOI: 10.2147/cia.s519438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Accepted: 04/19/2025] [Indexed: 05/08/2025] Open
Abstract
Although T cells are crucially involved in maintaining immune function, their roles change with age. Furthermore, T cell aging has a unique onset and progression mechanism and several clinical indicators have been developed to detect it. Moreover, perioperative pain and stressful stimuli could affect the body's immune status, influencing patients' recovery. This article examines how preoperative and intraoperative complications influence T cell aging. These factors include conditions such as hypertension, diabetes, acute respiratory distress syndrome, hypoxemia, depression, pain, obesity, neurologic diseases, tumors, autoimmune diseases, as well as aspects like anesthetic modalities, types of surgery, and medications. This analysis could help identify groups at a high risk of perioperative T cell aging. For example, elderly cancer patients with multiple chronic diseases may be the most affected by T cell aging. We also discuss the effects of T cell aging on postoperative phenomena such as neurological dysfunction and recovery quality. Based on insights from this discussion, we deduced that prehabilitation, pharmacological treatment, and adoptive neuro-immunotherapy could modulate T cell aging in the perioperative period, thus improving clinical prognosis.
Collapse
Affiliation(s)
- Haoning Lan
- Department of Anaesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People’s Republic of China
| | - Songchao Xu
- Department of Anaesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People’s Republic of China
| | - Huili Li
- Department of Anaesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People’s Republic of China
| | - Ruijuan Guo
- Department of Anaesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People’s Republic of China
| | - Zhong Feng
- Department of Anaesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People’s Republic of China
| | - Yun Wang
- Department of Anaesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People’s Republic of China
| |
Collapse
|
4
|
Babakhani K, Kucinskas AL, Ye X, Giles ED, Sun Y. Aging immunity: unraveling the complex nexus of diet, gut microbiome, and immune function. IMMUNOMETABOLISM (COBHAM, SURREY) 2025; 7:e00061. [PMID: 40352822 PMCID: PMC12063687 DOI: 10.1097/in9.0000000000000061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 03/28/2025] [Indexed: 05/14/2025]
Abstract
Aging is associated with immune senescence and gut dysbiosis, both of which are heavily influenced by the diet. In this review, we summarize current knowledge regarding the impact of diets high in fiber, protein, or fat, as well as different dietary components (tryptophan, omega-3 fatty acids, and galacto-oligosaccharides) on the immune system and the gut microbiome in aging. Additionally, this review discusses how aging alters tryptophan metabolism, contributing to changes in immune function and the gut microbiome. Understanding the relationship between diet, the gut microbiome, and immune function in the context of aging is critical to formulate sound dietary recommendations for older individuals, and these personalized nutritional practices will ultimately improve the health and longevity of the elderly.
Collapse
Affiliation(s)
| | - Amanda L. Kucinskas
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Xiangcang Ye
- Department of Nutrition, Texas A&M University, College Station, TX, USA
| | - Erin D. Giles
- School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - Yuxiang Sun
- Department of Nutrition, Texas A&M University, College Station, TX, USA
| |
Collapse
|
5
|
Ziogas DC, Theocharopoulos C, Aravantinou K, Boukouris AE, Stefanou D, Anastasopoulou A, Lialios PP, Lyrarakis G, Gogas H. Clinical benefit of immune checkpoint inhibitors in elderly cancer patients: Current evidence from immunosenescence pathophysiology to clinical trial results. Crit Rev Oncol Hematol 2025; 208:104635. [PMID: 39889861 DOI: 10.1016/j.critrevonc.2025.104635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 02/03/2025] Open
Abstract
The age-related decline in immunity appears to be associated not only with cancer development but also with differential responses to immune checkpoint inhibitors (ICIs). Despite their increasing utility across various malignancies and therapeutic settings, limited data -derived primarily from subgroup analyses of randomized controlled trials (RCTs), pooled meta-analyses, and retrospective studies- are available on the effects of aging on their efficacy and toxicity. Immunosenescence, characterized by the progressive decline of the function of the immune system, and inflammaging, a state of persistent low-grade sterile inflammation, may influence ICI outcomes. Additionally, the incidence, severity, and subtypes of immune-related adverse events (irAEs) may differ between older and younger individuals due to loss of immunotolerance. In the current review, starting from a a comprehensive discussion of the pathophysiology of immunosenescence, we proceed to critically review age-related retrospective and randomized evidence supporting FDA-approved ICIs. We highlight similarities or differences across age groups and the clinical benefit of ICIs in elderly versus younger cancer patients. The optimal integration of ICIs in geriatric oncology necessitates greater inclusion of this patient demographic in RCTs along with real-world data in order to acquire robust data which will guide evidence-based treatment decisions for this population.
Collapse
Affiliation(s)
- Dimitrios C Ziogas
- First Department of Medicine, National and Kapodistrian University of Athens School of Medicine, Athens, Greece.
| | - Charalampos Theocharopoulos
- First Department of Medicine, National and Kapodistrian University of Athens School of Medicine, Athens, Greece.
| | - Katerina Aravantinou
- First Department of Medicine, National and Kapodistrian University of Athens School of Medicine, Athens, Greece.
| | - Aristeidis E Boukouris
- First Department of Medicine, National and Kapodistrian University of Athens School of Medicine, Athens, Greece.
| | - Dimitra Stefanou
- First Department of Medicine, National and Kapodistrian University of Athens School of Medicine, Athens, Greece.
| | - Amalia Anastasopoulou
- First Department of Medicine, National and Kapodistrian University of Athens School of Medicine, Athens, Greece.
| | - Panagiotis-Petros Lialios
- First Department of Medicine, National and Kapodistrian University of Athens School of Medicine, Athens, Greece.
| | - George Lyrarakis
- First Department of Medicine, National and Kapodistrian University of Athens School of Medicine, Athens, Greece.
| | - Helen Gogas
- First Department of Medicine, National and Kapodistrian University of Athens School of Medicine, Athens, Greece.
| |
Collapse
|
6
|
Bracken OV, De Maeyer RPH, Akbar AN. Enhancing immunity during ageing by targeting interactions within the tissue environment. Nat Rev Drug Discov 2025; 24:300-315. [PMID: 39875569 DOI: 10.1038/s41573-024-01126-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2024] [Indexed: 01/30/2025]
Abstract
Immunity declines with age. This results in a higher risk of age-related diseases, diminished ability to respond to new infections and reduced response to vaccines. The causes of this immune dysfunction are cellular senescence, which occurs in both lymphoid and non-lymphoid tissue, and chronic, low-grade inflammation known as 'inflammageing'. In this Review article, we highlight how the processes of inflammation and senescence drive each other, leading to loss of immune function. To break this cycle, therapies are needed that target the interactions between the altered tissue environment and the immune system instead of targeting each component alone. We discuss the relative merits and drawbacks of therapies that are directed at eliminating senescent cells (senolytics) and those that inhibit inflammation (senomorphics) in the context of tissue niches. Furthermore, we discuss therapeutic strategies designed to directly boost immune cell function and improve immune surveillance in tissues.
Collapse
Affiliation(s)
| | - Roel P H De Maeyer
- Division of Medicine, University College London, London, UK
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Arne N Akbar
- Division of Medicine, University College London, London, UK.
| |
Collapse
|
7
|
White E, Appay V. [Rejuvenation of CD8 + T cell responses in long-term treated people with HIV]. Med Sci (Paris) 2025; 41:229-232. [PMID: 40117545 DOI: 10.1051/medsci/2025031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2025] Open
Affiliation(s)
- Eoghann White
- Université de Bordeaux, CNRS UMR 5164, Inserm ERL 1303, ImmunoConcEpT, Bordeaux, France
| | - Victor Appay
- Université de Bordeaux, CNRS UMR 5164, Inserm ERL 1303, ImmunoConcEpT, Bordeaux, France
| |
Collapse
|
8
|
Hatano R, Nakamura H, Yamamoto A, Otsuka H, Itoh T, Hosokawa N, Yu J, Ranjbar S, Hasegawa Y, Sato T, Dang NH, Ohnuma K, Morimoto S, Sekigawa I, Ishii T, Morimoto C. An abnormal increase in CD26(-)CD28(-) cytotoxic effector CD4 and CD8 T cell populations in patients with systemic lupus erythematosus. Int Immunol 2025; 37:153-172. [PMID: 39383111 DOI: 10.1093/intimm/dxae062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/07/2024] [Indexed: 10/11/2024] Open
Abstract
CD26 is a human T cell costimulatory molecule as well as a T cell subset marker, and the increase of CD26+ T cells in inflamed tissues and peripheral blood has been reported in diverse autoimmune diseases. In contrast, our group has previously shown that levels of circulating CD26+ T cells are decreased in patients with systemic lupus erythematosus (SLE), although the role of reduced CD26 T cell surface expression in SLE pathology remains to be elucidated. In the present study, we conducted CD26-based T cell subset analyses utilizing peripheral blood mononuclear cells from 57 SLE patients and 31 healthy adult volunteers. We show that the increase in the CD26(-) T cell population reflects the abnormal expansion of CD26(-)CD28(-) cytotoxic subsets of both CD8 T cells and CD4 T cells in SLE patients. Single-cell RNA sequencing analysis of the CD26(-)CD28(-) CD4 and CD8 T cell populations reveals unique characteristics with similarities to natural killer T cells. In addition, the level of CD26(-)CD28(-) T cells is increased in some active-stage SLE patients with renal manifestation. Meanwhile, the effect of prednisolone treatment on these populations varies from patient to patient, with levels of these cytotoxic effector populations still being elevated in some inactive-stage SLE patients. Taken together, our data suggest that analysis of these populations in SLE may be a useful tool to classify this markedly heterogeneous condition.
Collapse
Affiliation(s)
- Ryo Hatano
- Department of Therapy Development and Innovation for Immune Disorders and Cancers, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Hayato Nakamura
- Department of Therapy Development and Innovation for Immune Disorders and Cancers, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Ayako Yamamoto
- Department of Therapy Development and Innovation for Immune Disorders and Cancers, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Haruna Otsuka
- Department of Therapy Development and Innovation for Immune Disorders and Cancers, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Takumi Itoh
- Department of Therapy Development and Innovation for Immune Disorders and Cancers, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Nao Hosokawa
- Department of Therapy Development and Innovation for Immune Disorders and Cancers, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Jinghui Yu
- Department of Therapy Development and Innovation for Immune Disorders and Cancers, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Sedigheh Ranjbar
- Department of Therapy Development and Innovation for Immune Disorders and Cancers, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Yuta Hasegawa
- Department of Therapy Development and Innovation for Immune Disorders and Cancers, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Tsutomu Sato
- Department of Hematology, Toyama University Hospital, Toyama, Toyama 930-0194, Japan
| | - Nam H Dang
- Division of Hematology/Oncology, University of Florida, Gainesville, FL 32610, USA
| | - Kei Ohnuma
- Department of Therapy Development and Innovation for Immune Disorders and Cancers, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Shinji Morimoto
- Department of Internal Medicine and Rheumatology, Juntendo University Urayasu Hospital, Urayasu, Chiba 279-0021, Japan
| | - Iwao Sekigawa
- Department of Internal Medicine and Rheumatology, Juntendo University Urayasu Hospital, Urayasu, Chiba 279-0021, Japan
| | - Tomonori Ishii
- Clinical Research, Innovation and Education Center, Tohoku University Hospital, Sendai, Miyagi 980-8574, Japan
| | - Chikao Morimoto
- Department of Therapy Development and Innovation for Immune Disorders and Cancers, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo 113-8421, Japan
| |
Collapse
|
9
|
Fukushima Y, Ueno R, Minato N, Hattori M. Senescence-associated T cells in immunosenescence and diseases. Int Immunol 2025; 37:143-152. [PMID: 39320393 DOI: 10.1093/intimm/dxae056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 09/24/2024] [Indexed: 09/26/2024] Open
Abstract
Age-related changes in the immune system, referred to as immunosenescence, appear to evolve with rather paradoxical manifestations, a diminished adaptive immune capacity, and an increased propensity for chronic inflammation often with autoimmunity, which may underlie the development of diverse disorders with age. Immunosenescent phenotypes are associated with the emergence of unique lymphocyte subpopulations of both T and B lineages. We report that a CD153+ programmed cell death protein 1 (PD-1)+ CD4+ T-cell subpopulation with severely attenuated T-cell receptor (TCR)-responsiveness, termed senescence-associated T (SAT) cells, co-evolve with potentially autoreactive CD30+ B cells, such as spontaneous germinal center B cells and age-associated B cells, in aging mice. SAT cells and CD30+ B cells are reciprocally activated with the aid of the interaction of CD153 with CD30 in trans and with the TCR complex in cis, resulting in the restoration of TCR-mediated proliferation and secretion of abundant pro-inflammatory cytokines in SAT cells and the activation and production of autoantibodies by CD30+ B cells. Besides normal aging, the development of SAT cells coupled with counterpart B cells may be robustly accelerated and accumulated in the relevant tissues of lymphoid or extra-lymphoid organs under chronic inflammatory conditions, including autoimmunity, and may contribute to the pathogenesis and aggravation of the disorders. This review summarizes and discusses recent advances in the understanding of SAT cells in the contexts of immunosenescent phenotypes, as well as autoimmune and chronic inflammatory diseases, and it provides a novel therapeutic clue.
Collapse
Affiliation(s)
- Yuji Fukushima
- Department of Regulation of Neurocognitive Disorders (Cyn-K Project), Graduate School of Medicine, Kyoto University, 53 Shogoin-Kawahara-cho, Kyoto 606-8507, Japan
| | - Ryuji Ueno
- Department of Regulation of Neurocognitive Disorders (Cyn-K Project), Graduate School of Medicine, Kyoto University, 53 Shogoin-Kawahara-cho, Kyoto 606-8507, Japan
| | - Nagahiro Minato
- Medical Innovation Center, Graduate School of Medicine, Kyoto University, 53 Shogoin-Kawahara-cho, Kyoto 606-8507, Japan
| | - Masakazu Hattori
- Laboratory of Tumor Tissue Response, Graduate School of Medicine, Kyoto University, 53 Shogoin-Kawahara-cho, Kyoto 606-8507, Japan
| |
Collapse
|
10
|
Zhou H, Zheng Z, Fan C, Zhou Z. Mechanisms and strategies of immunosenescence effects on non-small cell lung cancer (NSCLC) treatment: A comprehensive analysis and future directions. Semin Cancer Biol 2025; 109:44-66. [PMID: 39793777 DOI: 10.1016/j.semcancer.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/29/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025]
Abstract
Non-small cell lung cancer (NSCLC), the most prevalent form of lung cancer, remains a leading cause of cancer-related mortality worldwide, particularly among elderly individuals. The phenomenon of immunosenescence, characterized by the progressive decline in immune cell functionality with aging, plays a pivotal role in NSCLC progression and contributes to the diminished efficacy of therapeutic interventions in older patients. Immunosenescence manifests through impaired immune surveillance, reduced cytotoxic responses, and increased chronic inflammation, collectively fostering a pro-tumorigenic microenvironment. This review provides a comprehensive analysis of the molecular, cellular, and genetic mechanisms of immunosenescence and its impact on immune surveillance and the tumor microenvironment (TME) in NSCLC. We explore how aging affects various immune cells, including T cells, B cells, NK cells, and macrophages, and how these changes compromise the immune system's ability to detect and eliminate tumor cells. Furthermore, we address the challenges posed by immunosenescence to current therapeutic strategies, particularly immunotherapy, which faces significant hurdles in elderly patients due to immune dysfunction. The review highlights emerging technologies, such as single-cell sequencing and CRISPR-Cas9, which offer new insights into immunosenescence and its potential as a therapeutic target. Finally, we outline future research directions, including strategies for rejuvenating the aging immune system and optimizing immunotherapy for older NSCLC patients, with the goal of improving treatment efficacy and survival outcomes. These efforts hold promise for the development of more effective, personalized therapies for elderly patients with NSCLC.
Collapse
Affiliation(s)
- Huatao Zhou
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Middle Renmin Road 139, Changsha 410011, China
| | - Zilong Zheng
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Middle Renmin Road 139, Changsha 410011, China
| | - Chengming Fan
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Middle Renmin Road 139, Changsha 410011, China.
| | - Zijing Zhou
- Department of Pulmonary and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Middle Renmin Road 139, Changsha 410011, China.
| |
Collapse
|
11
|
Díez-Ricote L, Cuadrado-Soto E, Pastor-Fernández A, de la Peña G, Martinez-Botas J, Castañer O, Martínez-González MA, Salas-Salvado J, Fernández-Marcos PJ, Gómez-Coronado D, Ordovas J, Daimiel L. Effect of a Multifactorial Weight Loss Intervention on HDL Cholesterol Efflux Capacity and Immunosenescence: A Randomized Controlled Trial. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2025; 44:166-179. [PMID: 39384179 DOI: 10.1080/27697061.2024.2407942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 10/11/2024]
Abstract
OBJECTIVE Life expectancy and obesity prevalence are increasing worldwide, leading to an increase in the prevalence of cardiovascular disease. High-density lipoprotein (HDL) functionality and immunosenescence play key roles in cardiovascular disease, longevity, and quality of aging. Both molecular hallmarks of aging are impacted by obesity and metabolic syndrome and can be modulated by lifestyle. We aimed to evaluate the effect of a lifestyle intervention focused on an energy-reduced Mediterranean diet (erMedDiet), physical activity (PA), and behavioral support on HDL cholesterol efflux capacity (CEC) and immunosenescence. METHOD CEC and immunosenescent T cells were determined in 60 participants from the control group (CG) and 56 from the intervention group (IG) of the PREDIMED-Plus trial at baseline and after 1 and 3 years of follow-up. PREDIMED-Plus is a randomized, controlled, parallel-group trial with an IG of erMedDiet, PA promotion, and behavioral support for weight loss and a CG of usual primary care advice. The sample included 116 volunteers from the PREDIMED-Plus-IMDEA subsample of the PREDIMED-Plus trial. Men aged 55 to 75 years and women aged 60 to 75 years with a body mass index between 27 and 40 kg/m2 and metabolic syndrome were included. RESULTS Participants within the IG had significantly improved CEC (2.42% and 10.69% after 1 and 3 years of follow-up) and a decreased in senescent T cell profile (-3.32% ± 12.54% and -6.74% ± 11.2%, p < 0.001, after 1 and 3 years of follow-up). Baseline obesity status impacted the response to the intervention. CONCLUSIONS A weight loss intervention program with erMedDiet and PA ameliorated senescence markers.
Collapse
Affiliation(s)
- Laura Díez-Ricote
- Nutritional Control of the Epigenome Group, Precision Nutrition and Obesity Program, IMDEA Food, CEI UAM+CSIC, Madrid, Spain
| | - Esther Cuadrado-Soto
- Nutritional Control of the Epigenome Group, Precision Nutrition and Obesity Program, IMDEA Food, CEI UAM+CSIC, Madrid, Spain
| | - Andrés Pastor-Fernández
- Metabolic Syndrome Group-BIOPROMET, Madrid Institute for Advanced Studies-IMDEA Food, CEI UAM+CSIC, Madrid, Spain
| | - Gema de la Peña
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal-IRYCIS, Madrid, Spain
| | - Javier Martinez-Botas
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal-IRYCIS, Madrid, Spain
| | - Olga Castañer
- Center for Biomedical Research in Obesity and Nutrition Physiopathology Network (CIBEROBN), Carlos III Health Institute, Madrid, Spain
- Unit of Cardiovascular Risk and Nutrition, Institut Hospital del Mar de Investigaciones Médicas Municipal d'Investigació Médica (IMIM), Barcelona, Spain
| | - M A Martínez-González
- Center for Biomedical Research in Obesity and Nutrition Physiopathology Network (CIBEROBN), Carlos III Health Institute, Madrid, Spain
- Department of Preventive Medicine and Public Health, University of Navarra, IdiSNA, Pamplona, Spain
| | - Jordi Salas-Salvado
- Center for Biomedical Research in Obesity and Nutrition Physiopathology Network (CIBEROBN), Carlos III Health Institute, Madrid, Spain
- Departament de Bioquímica i Biotecnologia, Unitat de Nutrició Humana, Universitat Rovira i Virgili, Reus, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari San Joan de Reus, Reus, Spain
| | - Pablo J Fernández-Marcos
- Metabolic Syndrome Group-BIOPROMET, Madrid Institute for Advanced Studies-IMDEA Food, CEI UAM+CSIC, Madrid, Spain
| | - Diego Gómez-Coronado
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal-IRYCIS, Madrid, Spain
| | - Jose Ordovas
- Center for Biomedical Research in Obesity and Nutrition Physiopathology Network (CIBEROBN), Carlos III Health Institute, Madrid, Spain
- Nutritional Genomics and Epigenomics Group, Precision Nutrition and Obesity Program, IMDEA Food, CEI UAM+CSIC, Madrid, Spain
- Nutrition and Genomics Laboratory, JM_USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, USA
| | - Lidia Daimiel
- Nutritional Control of the Epigenome Group, Precision Nutrition and Obesity Program, IMDEA Food, CEI UAM+CSIC, Madrid, Spain
| |
Collapse
|
12
|
Tönshoff B, Patry C, Fichtner A, Höcker B, Böhmig GA. New Immunosuppressants in Pediatric Kidney Transplantation: What's in the Pipeline for Kids? Pediatr Transplant 2025; 29:e70008. [PMID: 39711054 DOI: 10.1111/petr.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/05/2024] [Accepted: 12/08/2024] [Indexed: 12/24/2024]
Abstract
The 1- and 5-year patient and graft survival rates of pediatric kidney transplant recipients have improved considerably in recent years. Regardless of early success, kidney transplantation is challenged by suboptimal long-term allograft and patient survival. Many kidney transplants are lost due to immune (rejection) and nonimmune allograft injuries, and patient survival is limited from cardiovascular disease, infection, and malignancy. Many of these co-morbidities are due to side effects of the currently available immunosuppressive drugs, especially calcineurin inhibitors and glucocorticoids, which are associated with long-term toxicity. Hence, there is an urgent need to develop new, more specific and less toxic immunosuppressive drugs. Unfortunately, there have also been no new drug approvals for adult kidney transplant recipients since belatacept in 2012, leaving the immunosuppressive drug armamentarium unchanged for more than 20 years. As a consequence of the lack of innovation in adult kidney transplant recipients, the pipeline of novel immunosuppressive agents for pediatric solid organ transplant recipients is also limited. The most promising agent in the near future, at least for adolescent patients, appears to be belatacept, despite its many limitations. In this review article, we report on three areas that appear to be the most relevant topics at this time: (i) extended-release tacrolimus, (ii) costimulation blockade with belatacept, and (iii) treatment of antibody-mediated rejection. Improved synergies between the pharmaceutical industry and the transplant community are needed to achieve the ultimate goal of improving long-term outcomes in pediatric kidney transplantation.
Collapse
Affiliation(s)
- Burkhard Tönshoff
- Department of Pediatrics I, Medical Faculty, University Children's Hospital Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Christian Patry
- Department of Pediatrics I, Medical Faculty, University Children's Hospital Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Alexander Fichtner
- Department of Pediatrics I, Medical Faculty, University Children's Hospital Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Britta Höcker
- Department of Pediatrics I, Medical Faculty, University Children's Hospital Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Georg A Böhmig
- Department of Medicine III, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
13
|
Kim NH, Sim SJ, Han HG, Yoon JH, Han YH. Immunosenescence and age-related immune cells: causes of age-related diseases. Arch Pharm Res 2025; 48:132-149. [PMID: 39725853 DOI: 10.1007/s12272-024-01529-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024]
Abstract
Immunosenescence is a weakening of the immune system due to aging, characterized by changes in immune cells and dysregulated immune function. Age-related immune cells are increasing with aging. They are associated with chronic prolonged inflammation, causing tissue dysfunction and age-related diseases. Here, we discuss increased pro-inflammatory activity of aged macrophages, accumulation of lymphocytes with an age-associated phenotype, and specific alterations in both functions and characteristics of these immune cells. These cellular changes are associated with development of age-related diseases. Additionally, we reviewed various therapeutic strategies targeting age-related immunosenescence, providing pathways to mitigate effects of age-related diseases.
Collapse
Affiliation(s)
- Nam-Hee Kim
- Laboratory of Pathology and Physiology, College of Pharmacy, Kangwon National University, 1, Kangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341, South Korea
| | - So-Jin Sim
- Laboratory of Pathology and Physiology, College of Pharmacy, Kangwon National University, 1, Kangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341, South Korea
| | - Hong-Gyu Han
- Laboratory of Pathology and Physiology, College of Pharmacy, Kangwon National University, 1, Kangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341, South Korea
| | - Jeong-Hyuk Yoon
- Laboratory of Pathology and Physiology, College of Pharmacy, Kangwon National University, 1, Kangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341, South Korea
| | - Yong-Hyun Han
- Laboratory of Pathology and Physiology, College of Pharmacy, Kangwon National University, 1, Kangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341, South Korea.
- Multidimentional Genomics Research Center, Kangwon National University, Chuncheon, 24341, South Korea.
| |
Collapse
|
14
|
Kadyrzhanova G, Tamai M, Sarkar S, Kalra RS, Ishikawa H. Aging impairs CD8 T cell responses in adoptive T-cell therapy against solid tumors. Front Immunol 2025; 16:1484303. [PMID: 39925817 PMCID: PMC11803149 DOI: 10.3389/fimmu.2025.1484303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 01/02/2025] [Indexed: 02/11/2025] Open
Abstract
Age-associated defects in T cell-mediated immunity can increase the risk of cancers, but how aging influences adoptive T-cell therapy (ACT) for cancers remains unclear. Here, using a mouse model of melanoma, we demonstrate that aging diminishes anti-tumor activity of engineered CD8 T cells expressing a tumor-specific T cell receptor (CD8 TCR-T cells) in ACT for solid tumors. Aged CD8 TCR-T cells cannot control tumor growth in either young or aged mice. Aged CD8 TCR-T cells are unable to accumulate efficiently in tumors and have higher tendency to become terminally exhausted T cells with lower expression of endothelial PAS domain-containing protein 1 (Epas1) compared to young cells. Crispr-mediated ablation of Epas1 promotes terminal exhaustion of young CD8 T cells in tumors, diminishing their anti-tumor activity in young mice. Conversely, retroviral expression of Epas1 enhances anti-tumor activity of aged CD8 TCR-T cells. These findings suggest that aging-induced reduction of Epas1 expression impairs anti-tumor activity of CD8 T cells in ACT against solid tumors, which can be therapeutically improved by expression of exogenous Epas1.
Collapse
MESH Headings
- Animals
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/transplantation
- Immunotherapy, Adoptive/methods
- Mice
- Aging/immunology
- Basic Helix-Loop-Helix Transcription Factors/genetics
- Basic Helix-Loop-Helix Transcription Factors/metabolism
- Basic Helix-Loop-Helix Transcription Factors/immunology
- Melanoma, Experimental/immunology
- Melanoma, Experimental/therapy
- Mice, Inbred C57BL
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Cell Line, Tumor
- Neoplasms/therapy
- Neoplasms/immunology
Collapse
Affiliation(s)
| | | | | | | | - Hiroki Ishikawa
- Immune Signal Unit, Okinawa Institute of Science and Technology, Graduate University
(OIST), Okinawa, Japan
| |
Collapse
|
15
|
Lee JS, Lacerda E, Kingdon C, Susannini G, Dockrell HM, Nacul L, Cliff JM. Abnormal T-Cell Activation And Cytotoxic T-Cell Frequency Discriminates Symptom Severity In Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.01.02.24319359. [PMID: 39830245 PMCID: PMC11741448 DOI: 10.1101/2025.01.02.24319359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating but poorly-understood disease. ME/CFS symptoms can range from mild to severe, and include immune system effects alongside incapacitating fatigue and post-exertional disease exacerbation. In this study, we examined immunological profiles of people living with ME/CFS by flow cytometry, focusing on cytotoxic cells, to determine whether people with mild/moderate (n= 43) or severe ME/CFS (n=53) expressed different immunological markers. We found that people with mild/moderate ME/CFS had increased expression of cytotoxic effector molecules alongside enhanced proportions of early-immunosenescence cells, determined by the CD28 - CD57 - phenotype, indicative of persistent viral infection. In contrast, people with severe ME/CFS had higher proportions of activated circulating lymphocytes, determined by CD69 + and CD38 + expression, and expressed more pro-inflammatory cytokines, including IFNγ, TNF and IL-17, following stimulation in vitro , indicative of prolonged non-specific inflammation. These changes were consistent across different cell types including CD8 + T cells, mucosal associated invariant T cells and Natural Killer cells, indicating generalised altered cytotoxic responses across the innate and adaptive immune system. These immunological differences likely reflect different disease pathogenesis mechanisms occurring in the two clinical groups, opening up opportunities for the development of prognostic markers and stratified treatments.
Collapse
|
16
|
Gautam S, Kumar S, Dada R. Transcription Factor Analysis to Investigate Immunosenescence in Rheumatoid Arthritis Patients. Methods Mol Biol 2025; 2857:79-87. [PMID: 39348056 DOI: 10.1007/978-1-0716-4128-6_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Rheumatoid arthritis (RA) is linked to various signs of advanced aging, such as premature immunosenescence which occurs due to decline in regenerative ability of T cells. RA T cells develop a unique aggressive inflammatory senescent phenotype with an imbalance of Th17/T regulatory (Treg) cell homeostasis and presence of CD28- T cells. The phenotypic analysis and characterization of T cell subsets become necessary to ascertain if any functional deficiencies exist within with the help of transcription factor (TF) analysis. These subset-specific TFs dictate the functional characteristics of T-cell populations, leading to the production of distinct effector cytokines and functions. Examining the expression, activity, regulation, and genetic sequence of TFs not only aids researchers in determining their importance in disease processes but also aids in immunological monitoring of patients enrolled in clinical trials, particularly in evaluating various T-cell subsets [Th17 (CD3+CD4+IL17+RORγt+) cells and T regulatory (Treg) (CD3+CD4+CD25+CD127-FOXP3+) cells], markers of T-cell aging [aged Th17 cells (CD3+CD4+IL17+RORγt+CD28-), and aged Treg cells (CD3+CD4+CD25+CD127-FOXP3+CD28-)]. In this context, we propose and outline the protocols for assessing the expression of TFs in aged Th17 and Treg cells, highlighting the crucial aspects of this cytometric approach.
Collapse
Affiliation(s)
- Surabhi Gautam
- Department of Anatomy, Molecular Reproduction and Genetics Facility, All India Institute of Medical Sciences (AIIMS), New Delhi, India
- Department of Orthopaedics, Emory Musculoskeletal Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Sanjeev Kumar
- Department of Pediatrics, Division of Infectious Disease, Emory University School of Medicine, Atlanta, GA, USA
| | - Rima Dada
- Department of Anatomy, Molecular Reproduction and Genetics Facility, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| |
Collapse
|
17
|
Jung M, Kim H, Choi E, Shin MK, Shin SJ. Enhancing vaccine effectiveness in the elderly to counter antibiotic resistance: The potential of adjuvants via pattern recognition receptors. Hum Vaccin Immunother 2024; 20:2317439. [PMID: 39693178 DOI: 10.1080/21645515.2024.2317439] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/24/2024] [Accepted: 02/07/2024] [Indexed: 12/20/2024] Open
Abstract
Vaccines are an effective way to prevent the emergence and spread of antibiotic resistance by preventing diseases and establishing herd immunity. However, the reduced effectiveness of vaccines in the elderly due to immunosenescence is one of the significant contributors to the increasing antibiotic resistance. To counteract this decline and enhance vaccine effectiveness in the elderly, adjuvants play a pivotal role. Adjuvants are designed to augment the effectiveness of vaccines by activating the innate immune system, particularly through pattern recognition receptors on antigen-presenting cells. To improve vaccine effectiveness in the elderly using adjuvants, it is imperative to select the appropriate adjuvants based on an understanding of immunosenescence and the mechanisms of adjuvant functions. This review demonstrates the phenomenon of immunosenescence and explores various types of adjuvants, including their mechanisms and their potential in improving vaccine effectiveness for the elderly, thereby contributing to developing more effective vaccines for this vulnerable demographic.
Collapse
Affiliation(s)
- Myunghwan Jung
- Department of Microbiology, Institute of Medical Science, Department of Convergence Medical Science, BK21 Center for Human Resource Development in the Bio-Health Industry, Gyeongsang National University College of Medicine, Jinju, South Korea
| | - Hongmin Kim
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Eunsol Choi
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Min-Kyoung Shin
- Department of Microbiology, Institute of Medical Science, Department of Convergence Medical Science, BK21 Center for Human Resource Development in the Bio-Health Industry, Gyeongsang National University College of Medicine, Jinju, South Korea
| | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
18
|
Lai R, Deng X, Lv X, Zhong Y. Causal relationship between inflammatory proteins, immune cells, and gout: a Mendelian randomization study. Sci Rep 2024; 14:30070. [PMID: 39627303 PMCID: PMC11615377 DOI: 10.1038/s41598-024-80138-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 11/15/2024] [Indexed: 12/06/2024] Open
Abstract
Prior research has documented the association between certain circulating inflammatory proteins/immune cells and gout. However, the reliability of these associations remains contentious due to the constraints of conventional observational methodologies. This investigation seeks to reassess the causative link between circulating inflammatory proteins/immune cells and gout through the application of Mendelian randomization (MR). The study included 3576 individuals of European ancestry with gout, immune cell data from the GWAS summary of 3757 Sardinians, and circulating inflammatory protein data from 14,824 European ancestry participants for MR analysis. The principal approach employed was inverse variance weighted analysis to investigate the causal relationship between exposure and outcomes. The results indicate that CD28 on CD39+ CD4+ T cells may be associated with a reduced risk of gout. Additionally, CD45RA+ CD28- CD8bright T cells may also be associated with a reduced risk of gout. In contrast, DN (CD4-CD8-) T cells and IL-12β may increase the risk of gout. Some inflammatory proteins and immune cells show potential causal associations with gout. Nevertheless, additional experimental verification is warranted to assess the underlying mechanisms and confirm the causative role of these immune factors in gout pathogenesis.
Collapse
Affiliation(s)
- Rui Lai
- Chengdu Integrated TCM & Western Medicine Hospital/Chengdu First People's Hospital, Chengdu, China
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinmin Deng
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofeng Lv
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yumei Zhong
- Chengdu Integrated TCM & Western Medicine Hospital/Chengdu First People's Hospital, Chengdu, China.
| |
Collapse
|
19
|
Zu H, Chen X. Epigenetics behind CD8 + T cell activation and exhaustion. Genes Immun 2024; 25:525-540. [PMID: 39543311 DOI: 10.1038/s41435-024-00307-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/17/2024]
Abstract
CD8+ T cells play a critical role in specific immunity. In recent years, cell therapy has been emerging rapidly. The specific cytotoxic capabilities of these cells enable them to precisely identify and kill cells presenting specific antigens. This has demonstrated promise in the treatment of autoimmune diseases and cancers, with wide-ranging applications and value. However, in some diseases, such as tumors and chronic infections, T cells may adopt an exhausted phenotype, resulting in a loss of cytotoxicity and limiting their further application. Epigenetics plays a significant role in the differentiation and regulation of gene expression in cells. There is extensive evidence indicating that epigenetic remodeling plays an important role in T cell exhaustion. Therefore, further understanding its role in CD8+ T cell function can provide insights into the programmatic regulation of CD8+ T cells from a genetic perspective and overcome these diseases. We attempted to describe the relationship between the activation, function, and exhaustion mechanisms of CD8+ T cells, as well as epigenetics. This understanding makes it possible for us to address the aforementioned issues.
Collapse
Affiliation(s)
- Hao Zu
- Yanjing Medical College, Capital Medical University, 101300, Beijing, China
| | - Xiaoqin Chen
- Yanjing Medical College, Capital Medical University, 101300, Beijing, China.
| |
Collapse
|
20
|
Zhang RD, Jiang SQ, Yan FJ, Ruan L, Zhang CT, Quan XQ. The association of prealbumin, transferrin, and albumin with immunosenescence among elderly males. Aging Male 2024; 27:2310308. [PMID: 38317318 DOI: 10.1080/13685538.2024.2310308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 01/20/2024] [Indexed: 02/07/2024] Open
Abstract
OBJECTIVE As people get older, the innate and acquired immunity of the elderly are affected, resulting in immunosenescence. Prealbumin (PAB), transferrin (TRF), and albumin (ALB) are commonly used markers to monitor protein energy malnutrition (PEM). However, their relationship with the immune system has not been fully explored. METHODS In our study, a total of 93 subjects (≥65 years) were recruited from Tongji Hospital between January 2015 and February 2017. According to the serum levels of these proteins (PAB, TRF, and ALB), we divided the patients into the high serum protein group and the low serum protein group. Then, we compared the percent expression of lymphocyte subsets between two groups. RESULTS All the low serum protein groups (PAB, TRF, and ALB) had significant decreases in the percentage of CD4+ cells, CD3+CD28+ cells, CD4+CD28+ cells and significant increases in the percentage of CD8+ cells, CD8+CD28- cells. PAB, TRF, and ALB levels revealed positive correlations with CD4/CD8 ratio, proportions of CD4+ cells, CD3+CD28+ cells, CD4+CD28+ cells, and negative correlation with proportions of CD8+ cells, CD8+CD28- cells. CONCLUSIONS This study suggested PAB, TRF, and ALB could be used as immunosenescence indicators. PEM might accelerate the process of immunosenescence in elderly males.
Collapse
Affiliation(s)
- Ren-Dan Zhang
- Department of Geriatrics, Shenzhen Longhua District Central Hospital, Shenzhen, PR China
| | - Shi-Qin Jiang
- Department of Clinical Pharmacy, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, PR China
| | - Feng-Juan Yan
- Department of Geriatrics, Shenzhen Longhua District Central Hospital, Shenzhen, PR China
| | - Lei Ruan
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Cun-Tai Zhang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Xiao-Qing Quan
- Department of Geriatrics, Shenzhen Longhua District Central Hospital, Shenzhen, PR China
| |
Collapse
|
21
|
Venkataraman A, Kordic I, Li J, Zhang N, Bharadwaj NS, Fang Z, Das S, Coskun AF. Decoding senescence of aging single cells at the nexus of biomaterials, microfluidics, and spatial omics. NPJ AGING 2024; 10:57. [PMID: 39592596 PMCID: PMC11599402 DOI: 10.1038/s41514-024-00178-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024]
Abstract
Aging has profound effects on the body, most notably an increase in the prevalence of several diseases. An important aging hallmark is the presence of senescent cells that no longer multiply nor die off properly. Another characteristic is an altered immune system that fails to properly self-surveil. In this multi-player aging process, cellular senescence induces a change in the secretory phenotype, known as senescence-associated secretory phenotype (SASP), of many cells with the intention of recruiting immune cells to accelerate the clearance of these damaged senescent cells. However, the SASP phenotype results in inducing secondary senescence of nearby cells, resulting in those cells becoming senescent, and improper immune activation resulting in a state of chronic inflammation, called inflammaging, in many diseases. Senescence in immune cells, termed immunosenescence, results in further dysregulation of the immune system. An interdisciplinary approach is needed to physiologically assess aging changes of the immune system at the cellular and tissue level. Thus, the intersection of biomaterials, microfluidics, and spatial omics has great potential to collectively model aging and immunosenescence. Each of these approaches mimics unique aspects of the body undergoes as a part of aging. This perspective highlights the key aspects of how biomaterials provide non-cellular cues to cell aging, microfluidics recapitulate flow-induced and multi-cellular dynamics, and spatial omics analyses dissect the coordination of several biomarkers of senescence as a function of cell interactions in distinct tissue environments. An overview of how senescence and immune dysregulation play a role in organ aging, cancer, wound healing, Alzheimer's, and osteoporosis is included. To illuminate the societal impact of aging, an increasing trend in anti-senescence and anti-aging interventions, including pharmacological interventions, medical procedures, and lifestyle changes is discussed, including further context of senescence.
Collapse
Affiliation(s)
- Abhijeet Venkataraman
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA, 30332, USA
| | - Ivan Kordic
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - JiaXun Li
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Nicholas Zhang
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Interdisciplinary Bioengineering Graduate Program, Georgia Institute of Technology, Atlanta, GA, USA
| | - Nivik Sanjay Bharadwaj
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Zhou Fang
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Machine Learning Graduate Program, Georgia Institute of Technology, Atlanta, GA, USA
| | - Sandip Das
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Ahmet F Coskun
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA, 30332, USA.
- Interdisciplinary Bioengineering Graduate Program, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
22
|
Georgiev P, Han S, Huang AY, Nguyen TH, Drijvers JM, Creasey H, Pereira JA, Yao CH, Park JS, Conway TS, Fung ME, Liang D, Peluso M, Joshi S, Rowe JH, Miller BC, Freeman GJ, Sharpe AH, Haigis MC, Ringel AE. Age-Associated Contraction of Tumor-Specific T Cells Impairs Antitumor Immunity. Cancer Immunol Res 2024; 12:1525-1541. [PMID: 39186561 PMCID: PMC11532741 DOI: 10.1158/2326-6066.cir-24-0463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/14/2024] [Accepted: 08/21/2024] [Indexed: 08/28/2024]
Abstract
Progressive decline of the adaptive immune system with increasing age coincides with a sharp increase in cancer incidence. In this study, we set out to understand whether deficits in antitumor immunity with advanced age promote tumor progression and/or drive resistance to immunotherapy. We found that multiple syngeneic cancers grew more rapidly in aged versus young adult mice, driven by dysfunctional CD8+ T-cell responses. By systematically mapping immune cell profiles within tumors, we identified loss of tumor antigen-specific CD8+ T cells as a primary feature accelerating the growth of tumors in aged mice and driving resistance to immunotherapy. When antigen-specific T cells from young adult mice were administered to aged mice, tumor outgrowth was delayed and the aged animals became sensitive to PD-1 blockade. These studies reveal how age-associated CD8+ T-cell dysfunction may license tumorigenesis in elderly patients and have important implications for the use of aged mice as preclinical models of aging and cancer.
Collapse
Affiliation(s)
- Peter Georgiev
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts
- Gene Lay Institute of Immunology and Inflammation of Brigham and Women’s Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - SeongJun Han
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts
- Gene Lay Institute of Immunology and Inflammation of Brigham and Women’s Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Amy Y. Huang
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts
- Gene Lay Institute of Immunology and Inflammation of Brigham and Women’s Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Division of Population Sciences, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Thao H. Nguyen
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts
- Gene Lay Institute of Immunology and Inflammation of Brigham and Women’s Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jefte M. Drijvers
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts
- Gene Lay Institute of Immunology and Inflammation of Brigham and Women’s Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Hannah Creasey
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts
- Gene Lay Institute of Immunology and Inflammation of Brigham and Women’s Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Joseph A. Pereira
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts
- Gene Lay Institute of Immunology and Inflammation of Brigham and Women’s Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Cong-Hui Yao
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts
- Gene Lay Institute of Immunology and Inflammation of Brigham and Women’s Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Joon Seok Park
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts
- Gene Lay Institute of Immunology and Inflammation of Brigham and Women’s Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Thomas S. Conway
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts
- Gene Lay Institute of Immunology and Inflammation of Brigham and Women’s Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Megan E. Fung
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts
- Gene Lay Institute of Immunology and Inflammation of Brigham and Women’s Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Dan Liang
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts
- Gene Lay Institute of Immunology and Inflammation of Brigham and Women’s Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Michael Peluso
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts
- Gene Lay Institute of Immunology and Inflammation of Brigham and Women’s Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Shakchhi Joshi
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts
- Gene Lay Institute of Immunology and Inflammation of Brigham and Women’s Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jared H. Rowe
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts
- Gene Lay Institute of Immunology and Inflammation of Brigham and Women’s Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Brian C. Miller
- Division of Oncology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Gordon J. Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Arlene H. Sharpe
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts
- Gene Lay Institute of Immunology and Inflammation of Brigham and Women’s Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Marcia C. Haigis
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts
- Gene Lay Institute of Immunology and Inflammation of Brigham and Women’s Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Alison E. Ringel
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, Massachusetts
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| |
Collapse
|
23
|
Porsch F, Binder CJ. Autoimmune diseases and atherosclerotic cardiovascular disease. Nat Rev Cardiol 2024; 21:780-807. [PMID: 38937626 DOI: 10.1038/s41569-024-01045-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/28/2024] [Indexed: 06/29/2024]
Abstract
Autoimmune diseases are associated with a dramatically increased risk of atherosclerotic cardiovascular disease and its clinical manifestations. The increased risk is consistent with the notion that atherogenesis is modulated by both protective and disease-promoting immune mechanisms. Notably, traditional cardiovascular risk factors such as dyslipidaemia and hypertension alone do not explain the increased risk of cardiovascular disease associated with autoimmune diseases. Several mechanisms have been implicated in mediating the autoimmunity-associated cardiovascular risk, either directly or by modulating the effect of other risk factors in a complex interplay. Aberrant leukocyte function and pro-inflammatory cytokines are central to both disease entities, resulting in vascular dysfunction, impaired resolution of inflammation and promotion of chronic inflammation. Similarly, loss of tolerance to self-antigens and the generation of autoantibodies are key features of autoimmunity but are also implicated in the maladaptive inflammatory response during atherosclerotic cardiovascular disease. Therefore, immunomodulatory therapies are potential efficacious interventions to directly reduce the risk of cardiovascular disease, and biomarkers of autoimmune disease activity could be relevant tools to stratify patients with autoimmunity according to their cardiovascular risk. In this Review, we discuss the pathophysiological aspects of the increased cardiovascular risk associated with autoimmunity and highlight the many open questions that need to be answered to develop novel therapies that specifically address this unmet clinical need.
Collapse
Affiliation(s)
- Florentina Porsch
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
24
|
Hirasawa Y, Kubota Y, Mura E, Suzuki R, Tsurui T, Iriguchi N, Ishiguro T, Ohkuma R, Shimokawa M, Ariizumi H, Horiike A, Wada S, Yamashita T, Ariyoshi T, Goto S, Otsuka K, Murakami M, Kiuchi Y, Yoshimura K, Tsunoda T. Chemotherapy combined with immune checkpoint inhibitors may overcome the detrimental effect of high neutrophil-to-lymphocyte ratio prior to treatment in esophageal cancer patients. Front Oncol 2024; 14:1449941. [PMID: 39464714 PMCID: PMC11502307 DOI: 10.3389/fonc.2024.1449941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 09/16/2024] [Indexed: 10/29/2024] Open
Abstract
Introduction Immune checkpoint inhibitors (ICIs) have emerged as a promising treatment option for esophageal cancer (EC). Although ICIs enable long-term survival in some patients, the efficacy of ICIs varies widely among patients. Therefore, predictive biomarkers are necessary for identifying patients who are most likely to benefit from ICIs to improve the efficacy of the treatment. We retrospectively analyzed the outcomes of combination therapy, including nivolumab plus ipilimumab or chemotherapy plus anti-programmed cell death 1 (PD-1) antibodies in our institute to identify biomarkers. Methods Twenty-seven patients received nivolumab plus ipilimumab, and thirty-six patients received chemotherapy plus anti-PD-1 antibodies were included in this study. We analyzed patient characteristics, efficacy, and safety. Multivariable analysis of biomarkers evaluated the correlation among overall survival (OS), progression-free survival (PFS), and the following variables: body mass index, performance status, neutrophil-to-lymphocyte ratio (NLR), C-reactive protein level, and albumin level before treatment. Results In multivariable analysis, albumin level was significantly correlated with PFS in the cisplatin plus 5-fluorouracil (CF) plus pembrolizumab group. NLR and albumin level were significantly correlated with OS in the nivolumab plus ipilimumab group. Other variables, including PS, BMI, and CRP did not correlate with any of the outcomes. Conclusions High NLR in EC patients prior to treatment was significantly less effective for ICIs. In chemotherapy combined with ICIs, NLR before the treatment was not associated with treatment efficacy, suggesting combination chemotherapy may be beneficial for EC patients with high NLR. NLR may be an indicator of immunocompetence in anti-tumor immunity and a convenient predictive biomarker for selecting appropriate treatments including ICIs.
Collapse
Affiliation(s)
- Yuya Hirasawa
- Division of Medical Oncology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
- Division of Medical Pharmacology, Department of Pharmacology, Showa University School of Medicine, Tokyo, Japan
| | - Yutaro Kubota
- Division of Medical Oncology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Emiko Mura
- Division of Medical Oncology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Risako Suzuki
- Division of Medical Oncology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
- Division of Medical Pharmacology, Department of Pharmacology, Showa University School of Medicine, Tokyo, Japan
| | - Toshiaki Tsurui
- Division of Medical Oncology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
- Division of Medical Pharmacology, Department of Pharmacology, Showa University School of Medicine, Tokyo, Japan
- Department of Clinical Immuno-Oncology, Clinical Research Institute of Clinical Pharmacology and Therapeutics, Showa University, Tokyo, Japan
| | - Nana Iriguchi
- Division of Medical Oncology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Tomoyuki Ishiguro
- Division of Medical Oncology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Ryotaro Ohkuma
- Division of Medical Oncology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Masahiro Shimokawa
- Division of Medical Oncology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Hirotsugu Ariizumi
- Division of Medical Oncology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Atsushi Horiike
- Division of Medical Oncology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Satoshi Wada
- Division of Medical Oncology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
- Department of Clinical Diagnostic Oncology, Clinical Research Institute of Clinical Pharmacology and Therapeutics, Showa University, Tokyo, Japan
| | - Takeshi Yamashita
- Showa University Hospital Esophageal Cancer Center, Esophageal Surgery, Tokyo, Japan
| | - Tomotake Ariyoshi
- Showa University Hospital Esophageal Cancer Center, Esophageal Surgery, Tokyo, Japan
| | - Satoru Goto
- Showa University Hospital Esophageal Cancer Center, Esophageal Surgery, Tokyo, Japan
| | - Koji Otsuka
- Showa University Hospital Esophageal Cancer Center, Esophageal Surgery, Tokyo, Japan
| | - Masahiko Murakami
- Showa University Hospital Esophageal Cancer Center, Esophageal Surgery, Tokyo, Japan
| | - Yuji Kiuchi
- Division of Medical Pharmacology, Department of Pharmacology, Showa University School of Medicine, Tokyo, Japan
- Pharmacological Research Center, Showa University, Tokyo, Japan
| | - Kiyoshi Yoshimura
- Division of Medical Oncology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
- Department of Clinical Immuno-Oncology, Clinical Research Institute of Clinical Pharmacology and Therapeutics, Showa University, Tokyo, Japan
| | - Takuya Tsunoda
- Division of Medical Oncology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| |
Collapse
|
25
|
Alfaro E, Díaz-García E, García-Tovar S, Galera R, Casitas R, Martínez-Cerón E, Torres-Vargas M, Padilla JM, López-Fernández C, Pérez-Moreno P, García-Río F, Cubillos-Zapata C. Effect of physical activity in lymphocytes senescence burden in patients with COPD. Am J Physiol Lung Cell Mol Physiol 2024; 327:L464-L472. [PMID: 39104316 PMCID: PMC11482461 DOI: 10.1152/ajplung.00151.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 08/07/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is regarded as an accelerated-age disease in which chronic inflammation, maladaptive immune responses, and senescence cell burden coexist. Accordingly, cellular senescence has emerged as a potential mechanism involved in COPD pathophysiology. In this study, 25 stable patients with COPD underwent a daily physical activity promotion program for 6 mo. We reported that increase of physical activity was related to a reduction of the senescent cell burden in circulating lymphocytes of patients with COPD. Senescent T-lymphocyte population, characterized by absence of surface expression of CD28, was reduced after physical activity intervention, and the reduction was associated to the increase of physical activity level. In addition, the mRNA expression of cyclin-dependent kinase inhibitors, a hallmark of cell senescence, was reduced and, in accordance, the proliferative capacity of lymphocytes was improved postintervention. Moreover, we observed an increase in functionality in T cells from patients after intervention, including improved markers of activation, enhanced cytotoxicity, and altered cytokine secretions in response to viral challenge. Lastly, physical activity intervention reduced the potential of lymphocytes' secretome to induce senescence in human primary fibroblasts. In conclusion, our study provides, for the first time, evidence of the potential of physical activity intervention in patients with COPD to reduce the senescent burden in circulating immune cells.NEW & NOTEWORTHY For the first time, we identified in patients with COPD a relation between physical activity intervention with respiratory function improvement and cellular senescence burden in lymphocytes that improved the T cell functionality and proliferative capacity of patients. In addition, our experiments highlight the possible impact of T-cell senescence in other cell types which could be related to some of the clinical lung complications observed in COPD.
Collapse
Affiliation(s)
- Enrique Alfaro
- Respiratory Diseases Group, Respiratory Service, La Paz University Hospital, IdiPAZ, Madrid, Spain
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Madrid, Spain
- Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain
| | - Elena Díaz-García
- Respiratory Diseases Group, Respiratory Service, La Paz University Hospital, IdiPAZ, Madrid, Spain
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Madrid, Spain
| | - Sara García-Tovar
- Respiratory Diseases Group, Respiratory Service, La Paz University Hospital, IdiPAZ, Madrid, Spain
| | - Raúl Galera
- Respiratory Diseases Group, Respiratory Service, La Paz University Hospital, IdiPAZ, Madrid, Spain
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Madrid, Spain
| | - Raquel Casitas
- Respiratory Diseases Group, Respiratory Service, La Paz University Hospital, IdiPAZ, Madrid, Spain
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Madrid, Spain
| | - Elisabet Martínez-Cerón
- Respiratory Diseases Group, Respiratory Service, La Paz University Hospital, IdiPAZ, Madrid, Spain
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Madrid, Spain
| | - María Torres-Vargas
- Respiratory Diseases Group, Respiratory Service, La Paz University Hospital, IdiPAZ, Madrid, Spain
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Madrid, Spain
| | - José M Padilla
- Pneumology Service, Hospital Universitario Clínico San Carlos, Madrid, Spain
| | - Cristina López-Fernández
- Respiratory Diseases Group, Respiratory Service, La Paz University Hospital, IdiPAZ, Madrid, Spain
| | - Paula Pérez-Moreno
- Respiratory Diseases Group, Respiratory Service, La Paz University Hospital, IdiPAZ, Madrid, Spain
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Madrid, Spain
| | - Francisco García-Río
- Respiratory Diseases Group, Respiratory Service, La Paz University Hospital, IdiPAZ, Madrid, Spain
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Madrid, Spain
- Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain
| | - Carolina Cubillos-Zapata
- Respiratory Diseases Group, Respiratory Service, La Paz University Hospital, IdiPAZ, Madrid, Spain
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Madrid, Spain
| |
Collapse
|
26
|
Zhao J, Wang Z, Tian Y, Ning J, Ye H. T cell exhaustion and senescence for ovarian cancer immunotherapy. Semin Cancer Biol 2024; 104-105:1-15. [PMID: 39032717 DOI: 10.1016/j.semcancer.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/30/2024] [Accepted: 07/09/2024] [Indexed: 07/23/2024]
Abstract
Ovarian cancer is a common gynecological malignancy, and its treatment remains challenging. Although ovarian cancer may respond to immunotherapy because of endogenous immunity at the molecular or T cell level, immunotherapy has so far not had the desired effect. The functional status of preexisting T cells is an indispensable determinant of powerful antitumor immunity and immunotherapy. T cell exhaustion and senescence are two crucial states of T cell dysfunction, which share some overlapping phenotypic and functional features, but each status possesses unique molecular and developmental signatures. It has been widely accepted that exhaustion and senescence of T cells are important strategies for cancer cells to evade immunosurveillance and maintain the immunosuppressive microenvironment. Herein, this review summarizes the phenotypic and functional features of exhaust and senescent T cells, and describes the key drivers of the two T cell dysfunctional states in the tumor microenvironment and their functional roles in ovarian cancer. Furthermore, we present a summary of the molecular machinery and signaling pathways governing T cell exhaustion and senescence. Possible strategies that can prevent and/or reverse T cell dysfunction are also explored. An in-depth understanding of exhausted and senescent T cells will provide novel strategies to enhance immunotherapy of ovarian cancer through redirecting tumor-specific T cells away from a dysfunctional developmental trajectory.
Collapse
Affiliation(s)
- Jiao Zhao
- Department of Gynecology Surgery 3, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China
| | - Zhongmiao Wang
- Department of Digestive Diseases 1, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China
| | - Yingying Tian
- Department of Oncology Radiotherapy 2, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, Shandong 266042, China
| | - Jing Ning
- Department of General Internal Medicine (VIP Ward), Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China.
| | - Huinan Ye
- Department of Digestive Diseases 1, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China.
| |
Collapse
|
27
|
Ding Y, Lei S, Wang L, Tang L, Zhang Y, Liao Y, Deng X, Li Y, Gong Y, Li Y. Age-related efficacy of immunotherapies in advanced non-small cell lung cancer: a comprehensive meta-analysis. Lung Cancer 2024; 195:107925. [PMID: 39146625 DOI: 10.1016/j.lungcan.2024.107925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/25/2024] [Accepted: 08/07/2024] [Indexed: 08/17/2024]
Abstract
OBJECTIVE The reported impact of age on the effectiveness of emerging immunotherapies in patients with advanced non-small cell lung cancer (NSCLC) has been inconsistent in clinical trials, largely due to an underrepresentation of older individuals. This meta-analysis aimed to evaluate the efficacy of immune checkpoint inhibitor (ICI) in older patients with NSCLC. MATERIALS AND METHODS The literature up to April 2024 was reviewed to identify articles meeting the criteria for inclusion. Hazard ratios (HRs) for overall survival (OS) across various age groups were examined. The ratio of HR (RHR) was computed and combined for each study. RESULTS A preliminary search identified 118 articles, with 13 being phase II or III randomized clinical trials comparing the efficacy of nivolumab, avelumab, ipilimumab, pembrolizumab, atezolizumab, and chemotherapy with or without antiangiogenic therapy. The analysis revealed that the HR for OS was 0.75 (95 % CI: 0.70-0.80, P=0.080) in patients aged under 75 years and 0.87 (95 % CI: 0.74-1.01, P=0.913) in patients aged 75 years and older. The combined RHR for patients aged 75 years and above versus those aged under 75 years was 1.14 (95 % CI: 0.97-1.34, P=0.697). There was no significant difference in OS benefit between patients over 75 years and younger patients (P=0.105). Subgroup analyses indicated that the benefit of OS was consistent across all subgroups and age groups. CONCLUSIONS Our investigation found no significant differences in the efficacy of immunotherapy for patients with NSCLC aged 75 years and older compared to those under 75 years old. This suggests that the efficacy of immunotherapy against NSCLC is consistent across age groups.
Collapse
Affiliation(s)
- Yao Ding
- Phase I Clinical Trial Ward, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Shun Lei
- Institute of Immunology, Third Military Medical University, Chongqing 400038, China
| | - Ling Wang
- Phase I Clinical Trial Ward, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Long Tang
- Phase I Clinical Trial Ward, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Yue Zhang
- Phase I Clinical Trial Ward, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Yiran Liao
- Phase I Clinical Trial Ward, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Xia Deng
- Phase I Clinical Trial Ward, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Yan Li
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Yi Gong
- Phase I Clinical Trial Ward, Chongqing University Cancer Hospital, Chongqing 400030, China.
| | - Yongsheng Li
- Phase I Clinical Trial Ward, Chongqing University Cancer Hospital, Chongqing 400030, China; Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing 400030, China.
| |
Collapse
|
28
|
Nguyen BA, Alexander MR, Harrison DG. Immune mechanisms in the pathophysiology of hypertension. Nat Rev Nephrol 2024; 20:530-540. [PMID: 38658669 PMCID: PMC12060254 DOI: 10.1038/s41581-024-00838-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2024] [Indexed: 04/26/2024]
Abstract
Hypertension is a leading risk factor for morbidity and mortality worldwide. Despite current anti-hypertensive therapies, most individuals with hypertension fail to achieve adequate blood pressure control. Moreover, even with adequate control, a residual risk of cardiovascular events and associated organ damage remains. These findings suggest that current treatment modalities are not addressing a key element of the underlying pathology. Emerging evidence implicates immune cells as key mediators in the development and progression of hypertension. In this Review, we discuss our current understanding of the diverse roles of innate and adaptive immune cells in hypertension, highlighting key findings from human and rodent studies. We explore mechanisms by which these immune cells promote hypertensive pathophysiology, shedding light on their multifaceted involvement. In addition, we highlight advances in our understanding of autoimmunity, HIV and immune checkpoints that provide valuable insight into mechanisms of chronic and dysregulated inflammation in hypertension.
Collapse
Affiliation(s)
- Bianca A Nguyen
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Matthew R Alexander
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Nashville, TN, USA
| | - David G Harrison
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA.
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
- Vanderbilt Institute for Infection, Immunology and Inflammation, Nashville, TN, USA.
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
29
|
Hernandez-Gonzalez F, Pietrocola F, Cameli P, Bargagli E, Prieto-González S, Cruz T, Mendoza N, Rojas M, Serrano M, Agustí A, Faner R, Gómez-Puerta JA, Sellares J. Exploring the Interplay between Cellular Senescence, Immunity, and Fibrosing Interstitial Lung Diseases: Challenges and Opportunities. Int J Mol Sci 2024; 25:7554. [PMID: 39062798 PMCID: PMC11276754 DOI: 10.3390/ijms25147554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/06/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Fibrosing interstitial lung diseases (ILDs) are characterized by the gradual and irreversible accumulation of scar tissue in the lung parenchyma. The role of the immune response in the pathogenesis of pulmonary fibrosis remains unclear. In recent years, substantial advancements have been made in our comprehension of the pathobiology driving fibrosing ILDs, particularly concerning various age-related cellular disturbances and immune mechanisms believed to contribute to an inadequate response to stress and increased susceptibility to lung fibrosis. Emerging studies emphasize cellular senescence as a key mechanism implicated in the pathobiology of age-related diseases, including pulmonary fibrosis. Cellular senescence, marked by antagonistic pleiotropy, and the complex interplay with immunity, are pivotal in comprehending many aspects of lung fibrosis. Here, we review progress in novel concepts in cellular senescence, its association with the dysregulation of the immune response, and the evidence underlining its detrimental role in fibrosing ILDs.
Collapse
Affiliation(s)
- Fernanda Hernandez-Gonzalez
- Department of Respiratory Medicine, Respiratory Institute, Hospital Clinic Barcelona, 08036 Barcelona, Spain; (A.A.); (J.S.)
- Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (S.P.-G.); (T.C.); (N.M.); (R.F.)
- Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
| | - Federico Pietrocola
- Department of Cell and Molecular Biology, Karolinska Institutet, 17165 Solna, Sweden;
| | - Paolo Cameli
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences & Neuro-Sciences, University of Siena, 53100 Siena, Italy; (P.C.); (E.B.)
| | - Elena Bargagli
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences & Neuro-Sciences, University of Siena, 53100 Siena, Italy; (P.C.); (E.B.)
| | - Sergio Prieto-González
- Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (S.P.-G.); (T.C.); (N.M.); (R.F.)
- Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
- Vasculitis Research Unit, Department of Autoimmune Diseases, Hospital Clinic Barcelona, 08036 Barcelona, Spain
| | - Tamara Cruz
- Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (S.P.-G.); (T.C.); (N.M.); (R.F.)
- Centro Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), 08036 Barcelona, Spain
| | - Nuria Mendoza
- Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (S.P.-G.); (T.C.); (N.M.); (R.F.)
- Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
- Centro Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), 08036 Barcelona, Spain
| | - Mauricio Rojas
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA;
| | - Manuel Serrano
- Cambridge Institute of Science, Altos Labs, Cambridge CB21 6GP, UK;
| | - Alvar Agustí
- Department of Respiratory Medicine, Respiratory Institute, Hospital Clinic Barcelona, 08036 Barcelona, Spain; (A.A.); (J.S.)
- Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (S.P.-G.); (T.C.); (N.M.); (R.F.)
- Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
- Centro Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), 08036 Barcelona, Spain
| | - Rosa Faner
- Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (S.P.-G.); (T.C.); (N.M.); (R.F.)
- Centro Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), 08036 Barcelona, Spain
- Biomedicine Department, University of Barcelona, 08036 Barcelona, Spain
| | - Jose A. Gómez-Puerta
- Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (S.P.-G.); (T.C.); (N.M.); (R.F.)
- Rheumatology Department, Hospital Clinic Barcelona, 08036 Barcelona, Spain
| | - Jacobo Sellares
- Department of Respiratory Medicine, Respiratory Institute, Hospital Clinic Barcelona, 08036 Barcelona, Spain; (A.A.); (J.S.)
- Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (S.P.-G.); (T.C.); (N.M.); (R.F.)
- Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
- Centro Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), 08036 Barcelona, Spain
| |
Collapse
|
30
|
Kinney BL, Brammer B, Kansal V, Parrish CJ, Kissick HT, Liu Y, Saba NF, Buchwald ZS, El-Deiry MW, Patel MR, Boyce BJ, Kaka AS, Gross JH, Baddour HM, Chen AY, Schmitt NC. CD28-CD57+ T cells from head and neck cancer patients produce high levels of cytotoxic granules and type II interferon but are not senescent. Oncoimmunology 2024; 13:2367777. [PMID: 38887372 PMCID: PMC11181932 DOI: 10.1080/2162402x.2024.2367777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024] Open
Abstract
T lymphocytes expressing CD57 and lacking costimulatory receptors CD27/CD28 have been reported to accumulate with aging, chronic infection, and cancer. These cells are described as senescent, with inability to proliferate but enhanced cytolytic and cytokine-producing capacity. However, robust functional studies on these cells taken directly from cancer patients are lacking. We isolated these T cells and their CD27/28+ counterparts from blood and tumor samples of 50 patients with previously untreated head and neck cancer. Functional studies confirmed that these cells have enhanced ability to degranulate and produce IFN-γ. They also retain the ability to proliferate, thus are not senescent. These data suggest that CD27/28-CD57+ CD8+ T cells are a subset of highly differentiated, CD45RA+ effector memory (TEMRA) cells with retained proliferative capacity. Patients with > 34% of these cells among CD8+ T cells in the blood had a higher rate of locoregional disease relapse, suggesting these cells may have prognostic significance.
Collapse
Affiliation(s)
- Brendan L.C. Kinney
- Department of Otolaryngology – Head and Neck Surgery, Emory University, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Brianna Brammer
- Department of Otolaryngology – Head and Neck Surgery, Emory University, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Vikash Kansal
- Department of Otolaryngology – Head and Neck Surgery, Emory University, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Connor J. Parrish
- School of Medicine, St. Louis University School of Medicine, St. Louis, MO, USA
| | - Haydn T. Kissick
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
- Department of Urology, Emory University, Atlanta, GA, USA
- Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA
| | - Yuan Liu
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA, USA
| | - Nabil F. Saba
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA
| | | | - Mark W. El-Deiry
- Department of Otolaryngology – Head and Neck Surgery, Emory University, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Mihir R. Patel
- Department of Otolaryngology – Head and Neck Surgery, Emory University, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Brian J. Boyce
- Department of Otolaryngology – Head and Neck Surgery, Emory University, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Azeem S. Kaka
- Department of Otolaryngology – Head and Neck Surgery, Emory University, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Jennifer H. Gross
- Department of Otolaryngology – Head and Neck Surgery, Emory University, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - H. Michael Baddour
- Department of Otolaryngology – Head and Neck Surgery, Emory University, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Amy Y. Chen
- Department of Otolaryngology – Head and Neck Surgery, Emory University, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Nicole C. Schmitt
- Department of Otolaryngology – Head and Neck Surgery, Emory University, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| |
Collapse
|
31
|
Winford E, Lutshumba J, Martin BJ, Wilcock DM, Jicha GA, Nikolajczyk BS, Stowe AM, Bachstetter AD. Terminally differentiated effector memory T cells associate with cognitive and AD-related biomarkers in an aging-based community cohort. Immun Ageing 2024; 21:36. [PMID: 38867294 PMCID: PMC11167815 DOI: 10.1186/s12979-024-00443-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 05/31/2024] [Indexed: 06/14/2024]
Abstract
BACKGROUND AND PURPOSE The immune response changes during aging and the progression of Alzheimer's disease (AD) and related dementia (ADRD). Terminally differentiated effector memory T cells (called TEMRA) are important during aging and AD due to their cytotoxic phenotype and association with cognitive decline. However, it is not clear if the changes seen in TEMRAs are specific to AD-related cognitive decline specifically or are more generally correlated with cognitive decline. This study aimed to examine whether TEMRAs are associated with cognition and plasma biomarkers of AD, neurodegeneration, and neuroinflammation in a community-based cohort of older adults. METHODS Study participants from a University of Kentucky Alzheimer's Disease Research Center (UK-ADRC) community-based cohort of aging and dementia were used to test our hypothesis. There were 84 participants, 44 women and 40 men. Participants underwent physical examination, neurological examination, medical history, cognitive testing, and blood collection to determine plasma biomarker levels (Aβ42/Aβ40 ratio, total tau, Neurofilament Light chain (Nf-L), Glial Fibrillary Acidic Protein (GFAP)) and to isolate peripheral blood mononuclear cells (PBMCs). Flow cytometry was used to analyze PBMCs from study participants for effector and memory T cell populations, including CD4+ and CD8+ central memory T cells (TCM), Naïve T cells, effector memory T cells (TEM), and effector memory CD45RA+ T cells (TEMRA) immune cell markers. RESULTS CD8+ TEMRAs were positively correlated with Nf-L and GFAP. We found no significant difference in CD8+ TEMRAs based on cognitive scores and no associations between CD8+ TEMRAs and AD-related biomarkers. CD4+ TEMRAs were associated with cognitive impairment on the MMSE. Gender was not associated with TEMRAs, but it did show an association with other T cell populations. CONCLUSION These findings suggest that the accumulation of CD8+ TEMRAs may be a response to neuronal injury (Nf-L) and neuroinflammation (GFAP) during aging or the progression of AD and ADRD. As our findings in a community-based cohort were not clinically-defined AD participants but included all ADRDs, this suggests that TEMRAs may be associated with changes in systemic immune T cell subsets associated with the onset of pathology.
Collapse
Affiliation(s)
- Edric Winford
- Department of Neuroscience, University of Kentucky, 741 S. Limestone St. Rm B459, Lexington, KY, 40536, USA
| | - Jenny Lutshumba
- Department of Neuroscience, University of Kentucky, 741 S. Limestone St. Rm B459, Lexington, KY, 40536, USA
| | - Barbara J Martin
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Donna M Wilcock
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
- Department of Physiology, University of Kentucky, Lexington, Lexington, KY, USA
| | - Gregory A Jicha
- Department of Neurology, University of Kentucky, Lexington, KY, USA
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Barbara S Nikolajczyk
- Department of Pharmacology and Nutritional Science, and Barnstable Brown Diabetes and Obesity Center, University of Kentucky, Lexington, KY, USA
| | - Ann M Stowe
- Department of Neuroscience, University of Kentucky, 741 S. Limestone St. Rm B459, Lexington, KY, 40536, USA
- Department of Neurology, University of Kentucky, Lexington, KY, USA
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Adam D Bachstetter
- Department of Neuroscience, University of Kentucky, 741 S. Limestone St. Rm B459, Lexington, KY, 40536, USA.
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA.
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
32
|
Singh A, Schurman SH, Bektas A, Kaileh M, Roy R, Wilson DM, Sen R, Ferrucci L. Aging and Inflammation. Cold Spring Harb Perspect Med 2024; 14:a041197. [PMID: 38052484 PMCID: PMC11146314 DOI: 10.1101/cshperspect.a041197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Aging can be conceptualized as the progressive disequilibrium between stochastic damage accumulation and resilience mechanisms that continuously repair that damage, which eventually cause the development of chronic disease, frailty, and death. The immune system is at the forefront of these resilience mechanisms. Indeed, aging is associated with persistent activation of the immune system, witnessed by a high circulating level of inflammatory markers and activation of immune cells in the circulation and in tissue, a condition called "inflammaging." Like aging, inflammaging is associated with increased risk of many age-related pathologies and disabilities, as well as frailty and death. Herein we discuss recent advances in the understanding of the mechanisms leading to inflammaging and the intrinsic dysregulation of the immune function that occurs with aging. We focus on the underlying mechanisms of chronic inflammation, in particular the role of NF-κB and recent studies targeting proinflammatory mediators. We further explore the dysregulation of the immune response with age and immunosenescence as an important mechanistic immune response to acute stressors. We examine the role of the gastrointestinal microbiome, age-related dysbiosis, and the integrated stress response in modulating the inflammatory "response" to damage accumulation and stress. We conclude by focusing on the seminal question of whether reducing inflammation is useful and the results of related clinical trials. In summary, we propose that inflammation may be viewed both as a clinical biomarker of the failure of resilience mechanisms and as a causal factor in the rising burden of disease and disabilities with aging. The fact that inflammation can be reduced through nonpharmacological interventions such as diet and exercise suggests that a life course approach based on education may be a successful strategy to increase the health span with few adverse consequences.
Collapse
Affiliation(s)
- Amit Singh
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, Maryland 21224, USA
| | - Shepherd H Schurman
- Clinical Research Unit, National Institute on Aging, Baltimore, Maryland 21224, USA
| | - Arsun Bektas
- Translational Gerontology Branch, National Institute on Aging, Baltimore, Maryland 21224, USA
| | - Mary Kaileh
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, Maryland 21224, USA
| | - Roshni Roy
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, Maryland 21224, USA
| | - David M Wilson
- Biomedical Research Institute, Hasselt University, Diepenbeek 3500, Belgium
| | - Ranjan Sen
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, Maryland 21224, USA
| | - Luigi Ferrucci
- Translational Gerontology Branch, National Institute on Aging, Baltimore, Maryland 21224, USA
| |
Collapse
|
33
|
Abreu CA, Nascimento MT, Bacellar O, Carvalho LP, Carvalho EM, Cardoso TM. The Role of Senescent CD8 +T Cells in the Pathogenesis of Disseminated Leishmaniasis. Pathogens 2024; 13:460. [PMID: 38921758 PMCID: PMC11207099 DOI: 10.3390/pathogens13060460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/19/2024] [Accepted: 05/22/2024] [Indexed: 06/27/2024] Open
Abstract
Disseminated leishmaniasis (DL) caused by L. braziliensis is characterized by the presence of 10 to more than 1000 lesions spread on the body. While protection against Leishmania is mediated by macrophages upon activation by IFN-γ produced by CD4+T cells, the pathology of disseminated leishmaniasis (DL) could be mediated by macrophages, NK, and CD8+T cells. Herein, we evaluate the participation of senescent CD8+T cells in the pathogenesis of DL. Methods: Peripheral blood mononuclear cells (PBMCs), biopsies, co-cultures of CD8+T cells with uninfected and infected macrophages (MØ), and PBMC cultures stimulated with soluble L. braziliensis antigen (SLA) for 72 h from patients with cutaneous leishmaniasis (CL) and DL were used to characterize senescent CD8+T cells. Statistical analysis was performed using the Mann-Whitney and Kruskal-Wallis tests, followed by Dunn's. Results: Patients with DL have an increase in the frequency of circulating CD8+T cells that present a memory/senescent phenotype, while lesions from DL patients have an increase in the frequency of infiltrating CD8+T cells with a senescent/degranulation phenotype. In addition, after specific stimuli, DL patients' circulating CD8+T with memory/senescent profile, showing degranulation characteristics, increased upon SLA stimuli, and those specific CD8+T cells from DL patients had an increased degranulation phenotype, causing more apoptosis of infected target cells. Conclusions: DL patients show a higher frequency of cytotoxic senescent CD8+T cells compared to CL patients, and that could promote the lysis of infected cells, although without parasite killing, releasing Leishmania to the extracellular compartment, contributing to the spread of parasites.
Collapse
Affiliation(s)
- Cayo A. Abreu
- LAPEC-Fiocruz, Salvador 40296-710, Brazil; (C.A.A.); (M.T.N.); (L.P.C.); (E.M.C.)
| | | | - Olívia Bacellar
- Immunology Service, Federal University of Bahia, Salvador 40110-060, Brazil;
| | - Lucas Pedreira Carvalho
- LAPEC-Fiocruz, Salvador 40296-710, Brazil; (C.A.A.); (M.T.N.); (L.P.C.); (E.M.C.)
- Immunology Service, Federal University of Bahia, Salvador 40110-060, Brazil;
| | - Edgar Marcelino Carvalho
- LAPEC-Fiocruz, Salvador 40296-710, Brazil; (C.A.A.); (M.T.N.); (L.P.C.); (E.M.C.)
- Immunology Service, Federal University of Bahia, Salvador 40110-060, Brazil;
| | - Thiago Marconi Cardoso
- LAPEC-Fiocruz, Salvador 40296-710, Brazil; (C.A.A.); (M.T.N.); (L.P.C.); (E.M.C.)
- Immunology Service, Federal University of Bahia, Salvador 40110-060, Brazil;
| |
Collapse
|
34
|
Xu LL, Chen X, Cheng JP. The effect of T cell aging on the change of human tissue structure. Immun Ageing 2024; 21:26. [PMID: 38689298 PMCID: PMC11059612 DOI: 10.1186/s12979-024-00433-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 04/23/2024] [Indexed: 05/02/2024]
Abstract
The trend of aging of the global population is becoming more and more significant, and the incidence of age-related diseases continues to rise.This phenomenon makes the problem of aging gradually attracted wide attention of the society, and gradually developed into an independent research field.As a vital defense mechanism of the human body, the immune system changes significantly during the aging process.Age-induced changes in the body's immune system are considered harmful and are commonly referred to as immune aging, which may represent the beginning of systemic aging.Immune cells, especially T cells, are the biggest influencers and participants in age-related deterioration of immune function, making older people more susceptible to different age-related diseases.More and more evidence shows that T cells play an important role in the change of human tissue structure after aging, which fundamentally affects the health and survival of the elderly.In this review, we discuss the general characteristics of age-related T cell immune alterations and the possible effects of aging T cells in various tissue structures in the human body.
Collapse
Affiliation(s)
- Ling-Ling Xu
- Medical College, School of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, Hubei, China
| | - Xiang Chen
- Medical College, School of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, Hubei, China
| | - Jing-Ping Cheng
- Department of Gerontology, CR & WISCO General Hospital, Wuhan University of Science and Technology, Wuhan, Hubei, 430080, China.
| |
Collapse
|
35
|
Chen Z, Guo Y, Sun H, Zhang W, Hou S, Guo Y, Ma X, Meng H. Exploration of the causal associations between circulating inflammatory proteins, immune cells, and neuromyelitis optica spectrum disorder: a bidirectional Mendelian randomization study and mediation analysis. Front Aging Neurosci 2024; 16:1394738. [PMID: 38737586 PMCID: PMC11088236 DOI: 10.3389/fnagi.2024.1394738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 04/16/2024] [Indexed: 05/14/2024] Open
Abstract
Background An increasing body of research has demonstrated a robust correlation between circulating inflammatory proteins and neuromyelitis optica spectrum disorders (NMOSD). However, whether this association is causal or whether immune cells act as mediators currently remains unclear. Methods We employed bidirectional two-sample Mendelian randomization (TSMR) analysis to examine the potential causal association between circulating inflammatory proteins, immune cells, and NMOSD using data from genome-wide association studies (GWAS). Five different methods for Mendelian randomization analyses were applied, with the inverse variance-weighted (IVW) method being the primary approach. Sensitivity analyses were further performed to assess the presence of horizontal pleiotropy and heterogeneity in the results. Finally, a two-step Mendelian randomization (MR) design was employed to examine the potential mediating effects of immune cells. Results A notable causal relationship was observed between three circulating inflammatory proteins (CSF-1, IL-24, and TNFRSF9) and genetically predicted NMOSD. Furthermore, two immune cell phenotypes, genetically predicted CD8 on naive CD8+ T cells, and Hematopoietic Stem Cell Absolute Count were negatively and positively associated with genetically predicted NMOSD, respectively, although they did not appear to function as mediators. Conclusion Circulating inflammatory proteins and immune cells are causally associated with NMOSD. Immune cells do not appear to mediate the pathway linking circulating inflammatory proteins to NMOSD.
Collapse
Affiliation(s)
- Zhiqing Chen
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Yujin Guo
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, China
| | - Huaiyu Sun
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Wuqiong Zhang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Shuai Hou
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Yu Guo
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Xiaohui Ma
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Hongmei Meng
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
36
|
Gao Y, Lu Y, Liang X, Zhao M, Yu X, Fu H, Yang W. CD4 + T-Cell Senescence in Neurodegenerative Disease: Pathogenesis and Potential Therapeutic Targets. Cells 2024; 13:749. [PMID: 38727285 PMCID: PMC11083511 DOI: 10.3390/cells13090749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/07/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
With the increasing proportion of the aging population, neurodegenerative diseases have become one of the major health issues in society. Neurodegenerative diseases (NDs), including multiple sclerosis (MS), Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS), are characterized by progressive neurodegeneration associated with aging, leading to a gradual decline in cognitive, emotional, and motor functions in patients. The process of aging is a normal physiological process in human life and is accompanied by the aging of the immune system, which is known as immunosenescence. T-cells are an important part of the immune system, and their senescence is the main feature of immunosenescence. The appearance of senescent T-cells has been shown to potentially lead to chronic inflammation and tissue damage, with some studies indicating a direct link between T-cell senescence, inflammation, and neuronal damage. The role of these subsets with different functions in NDs is still under debate. A growing body of evidence suggests that in people with a ND, there is a prevalence of CD4+ T-cell subsets exhibiting characteristics that are linked to senescence. This underscores the significance of CD4+ T-cells in NDs. In this review, we summarize the classification and function of CD4+ T-cell subpopulations, the characteristics of CD4+ T-cell senescence, the potential roles of these cells in animal models and human studies of NDs, and therapeutic strategies targeting CD4+ T-cell senescence.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wei Yang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (Y.G.); (Y.L.); (X.L.); (M.Z.); (X.Y.); (H.F.)
| |
Collapse
|
37
|
Guan Y, Cao M, Wu X, Yan J, Hao Y, Zhang C. CD28 null T cells in aging and diseases: From biology to assessment and intervention. Int Immunopharmacol 2024; 131:111807. [PMID: 38471362 DOI: 10.1016/j.intimp.2024.111807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/25/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024]
Abstract
CD28null T cells, an atypical subset characterized by the loss of CD28 costimulatory molecule expression, exhibit functional variants and progressively expand with age. Moreover, T cells with these phenotypes are found in both typical and atypical humoral immune responses. Consequently, they accumulate during infectious diseases, autoimmune disorders, cardiovascular conditions, and neurodegenerative ailments. To provide an in-depth review of the current knowledge regarding CD28null T cells, we specifically focus on their phenotypic and functional characteristics as well as their physiological roles in aging and diseases. While uncertainties regarding the clinical utility remains, we will review the following two crucial research perspectives to explore clinical translational applications of the research on this specific T cell subset: 1) addressing the potential utility of CD28null T cells as immunological markers for prognosis and adverse outcomes in both aging and disease, and 2) speculating on the potential of targeting CD28null T cells as an interventional strategy for preventing or delaying immune aging processes and disease progression.
Collapse
Affiliation(s)
- Yuqi Guan
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Ming Cao
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Xiaofen Wu
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Jinhua Yan
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Yi Hao
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China; Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Cuntai Zhang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China.
| |
Collapse
|
38
|
Deng C, Wang A, Li W, Zhao L, Zhou J, Zhang W, Li M, Fei Y. Involvement of expanded cytotoxic and proinflammatory CD28 null T cells in primary Sjögren's syndrome. Clin Immunol 2024; 261:109927. [PMID: 38331302 DOI: 10.1016/j.clim.2024.109927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/13/2024] [Accepted: 02/03/2024] [Indexed: 02/10/2024]
Abstract
OBJECTIVE The absence of CD28 is a feature of antigen-experienced, highly differentiated and aged T cells. The pathogenicity of CD28null T cells remains elusive in primary Sjögren's syndrome (pSS). Therefore, this study was performed to explore the characteristics of CD28null T cells in both peripheral blood and minor salivary glands (MSGs) of pSS patients. METHODS pSS patients and paired healthy controls (HCs) were enrolled. The phenotype of peripheral CD28null T cells was analyzed using flow cytometry. In vitro functional assays were performed to evaluate the cytotoxic and proinflammatory effects of peripheral CD28null T cells. In addition, polychromatic immunofluorescence staining was performed to investigate infiltrating CD28null T cells in MSGs. RESULTS A significant expansion of peripheral CD28null T cells was observed in pSS patients compared with HCs (p < 0.001), which were primarily CD8+CD28null T cells. The proportion of peripheral CD8+CD28null T cells moderately correlated with the erythrocyte sedimentation rate (r = 0.57, p < 0.01) and IgG levels (r = 0.44, p < 0.01). Peripheral CD28null T cells had stronger capacities to secrete granzyme B and perforin, but comparable capacities to secrete IFN-γ and TNF-α than their CD28+ counterparts. An abundant amount of cytotoxic and pro-inflammatory CD28null T cells was also found in MSGs. Moreover, a high expression of the chemokine receptor CXCR3 was found on peripheral and tissue-resident CD28null T cells, with its ligands CXCL9/10 abundantly present in MSGs. CONCLUSION Increasing CD28null T cells with strong cytotoxicity and proinflammatory effects were observed in both peripheral blood and MSGs from pSS patients. The precise mechanism of action and migration still needs further investigation.
Collapse
Affiliation(s)
- Chuiwen Deng
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College and Chinese Academy of Medical Sciences, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, State Key Laboratory of Complex Severe and Rare Diseases,Peking Union Medical College Hospital, Key Laboratory of Rheumatology and Clinical Immunology,Ministry of Education, Beijing, China
| | - Anqi Wang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College and Chinese Academy of Medical Sciences, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, State Key Laboratory of Complex Severe and Rare Diseases,Peking Union Medical College Hospital, Key Laboratory of Rheumatology and Clinical Immunology,Ministry of Education, Beijing, China
| | - Wenli Li
- Department of Rheumatology, Key Myositis Laboratories, China-Japan Friendship Hospital, Beijing, China
| | - Lidan Zhao
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College and Chinese Academy of Medical Sciences, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, State Key Laboratory of Complex Severe and Rare Diseases,Peking Union Medical College Hospital, Key Laboratory of Rheumatology and Clinical Immunology,Ministry of Education, Beijing, China
| | - Jiaxin Zhou
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College and Chinese Academy of Medical Sciences, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, State Key Laboratory of Complex Severe and Rare Diseases,Peking Union Medical College Hospital, Key Laboratory of Rheumatology and Clinical Immunology,Ministry of Education, Beijing, China
| | - Wen Zhang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College and Chinese Academy of Medical Sciences, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, State Key Laboratory of Complex Severe and Rare Diseases,Peking Union Medical College Hospital, Key Laboratory of Rheumatology and Clinical Immunology,Ministry of Education, Beijing, China
| | - Mengtao Li
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College and Chinese Academy of Medical Sciences, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, State Key Laboratory of Complex Severe and Rare Diseases,Peking Union Medical College Hospital, Key Laboratory of Rheumatology and Clinical Immunology,Ministry of Education, Beijing, China
| | - Yunyun Fei
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College and Chinese Academy of Medical Sciences, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, State Key Laboratory of Complex Severe and Rare Diseases,Peking Union Medical College Hospital, Key Laboratory of Rheumatology and Clinical Immunology,Ministry of Education, Beijing, China; Department of Health Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
39
|
Chebly A, Khalil C, Kuzyk A, Beylot-Barry M, Chevret E. T-cell lymphocytes' aging clock: telomeres, telomerase and aging. Biogerontology 2024; 25:279-288. [PMID: 37917220 DOI: 10.1007/s10522-023-10075-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/13/2023] [Indexed: 11/04/2023]
Abstract
Aging is the decline of physiological capabilities required for life maintenance and reproduction over time. The human immune cells, including T-cells lymphocytes, undergo dramatic aging-related changes, including those related to telomeres and telomerase. It was demonstrated that telomeres and telomerase play crucial roles in T-cell differentiation, aging, and diseases, including a well-documented link between short telomeres and telomerase activation demonstrated in several T-cells malignancies. Herein, we provide a comprehensive review of the literature regarding T-cells' telomeres and telomerase in health and age related-diseases.
Collapse
Affiliation(s)
- Alain Chebly
- Jacques Loiselet Center for Medical Genetics and Genomics (CGGM), Faculty of Medicine, Saint Joseph University, Beirut, Lebanon.
- Higher Institute of Public Health, Saint Joseph University, Beirut, Lebanon.
| | - Charbel Khalil
- Reviva Stem Cell Platform for Research and Applications Center, Bsalim, Lebanon
- Bone Marrow Transplant Unit, Burjeel Medical City, Abu Dhabi, United Arab Emirates
- Lebanese American University School of Medicine, Beirut, Lebanon
| | - Alexandra Kuzyk
- Division of Dermatology, Department of Internal Medicine, University of Calgary, Calgary, AB, Canada
| | - Marie Beylot-Barry
- Dermatology Department, Bordeaux University Hospital, Bordeaux, France
- Univ. Bordeaux, INSERM, BRIC, U1312, 33000, Bordeaux, France
| | - Edith Chevret
- Univ. Bordeaux, INSERM, BRIC, U1312, 33000, Bordeaux, France
| |
Collapse
|
40
|
Schreurs RRCE, Koulis A, Booiman T, Boeser-Nunnink B, Cloherty APM, Rader AG, Patel KS, Kootstra NA, Ribeiro CMS. Autophagy-enhancing ATG16L1 polymorphism is associated with improved clinical outcome and T-cell immunity in chronic HIV-1 infection. Nat Commun 2024; 15:2465. [PMID: 38548722 PMCID: PMC10979031 DOI: 10.1038/s41467-024-46606-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 03/04/2024] [Indexed: 04/01/2024] Open
Abstract
Chronic HIV-1 infection is characterized by T-cell dysregulation that is partly restored by antiretroviral therapy. Autophagy is a critical regulator of T-cell function. Here, we demonstrate a protective role for autophagy in HIV-1 disease pathogenesis. Targeted analysis of genetic variation in core autophagy gene ATG16L1 reveals the previously unidentified rs6861 polymorphism, which correlates functionally with enhanced autophagy and clinically with improved survival of untreated HIV-1-infected individuals. T-cells carrying ATG16L1 rs6861(TT) genotype display improved antiviral immunity, evidenced by increased proliferation, revamped immune responsiveness, and suppressed exhaustion/immunosenescence features. In-depth flow-cytometric and transcriptional profiling reveal T-helper-cell-signatures unique to rs6861(TT) individuals with enriched regulation of pro-inflammatory networks and skewing towards immunoregulatory phenotype. Therapeutic enhancement of autophagy recapitulates the rs6861(TT)-associated T-cell traits in non-carriers. These data underscore the in vivo relevance of autophagy for longer-lasting T-cell-mediated HIV-1 control, with implications towards development of host-directed antivirals targeting autophagy to restore immune function in chronic HIV-1 infection.
Collapse
Affiliation(s)
- Renée R C E Schreurs
- Amsterdam UMC location University of Amsterdam, Experimental Immunology, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam institute for Immunology & Infectious Diseases, Amsterdam, The Netherlands
| | - Athanasios Koulis
- Amsterdam UMC location University of Amsterdam, Experimental Immunology, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam institute for Immunology & Infectious Diseases, Amsterdam, The Netherlands
| | - Thijs Booiman
- Amsterdam UMC location University of Amsterdam, Experimental Immunology, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam institute for Immunology & Infectious Diseases, Amsterdam, The Netherlands
| | - Brigitte Boeser-Nunnink
- Amsterdam UMC location University of Amsterdam, Experimental Immunology, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam institute for Immunology & Infectious Diseases, Amsterdam, The Netherlands
| | - Alexandra P M Cloherty
- Amsterdam UMC location University of Amsterdam, Experimental Immunology, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam institute for Immunology & Infectious Diseases, Amsterdam, The Netherlands
| | - Anusca G Rader
- Amsterdam UMC location University of Amsterdam, Experimental Immunology, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam institute for Immunology & Infectious Diseases, Amsterdam, The Netherlands
| | - Kharishma S Patel
- Amsterdam UMC location University of Amsterdam, Experimental Immunology, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam institute for Immunology & Infectious Diseases, Amsterdam, The Netherlands
| | - Neeltje A Kootstra
- Amsterdam UMC location University of Amsterdam, Experimental Immunology, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam institute for Immunology & Infectious Diseases, Amsterdam, The Netherlands
| | - Carla M S Ribeiro
- Amsterdam UMC location University of Amsterdam, Experimental Immunology, Meibergdreef 9, Amsterdam, The Netherlands.
- Amsterdam institute for Immunology & Infectious Diseases, Amsterdam, The Netherlands.
| |
Collapse
|
41
|
Fantini MC, Onali S, Gasbarrini A, Lopetuso LR. Immune system and gut microbiota senescence in elderly IBD patients. Minerva Gastroenterol (Torino) 2024; 70:59-67. [PMID: 34278753 DOI: 10.23736/s2724-5985.21.02934-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In inflammatory bowel disease (IBD), the loss of immune tolerance against gut microbiota causes chronic inflammation and the progressive accumulation of organ damage in genetically susceptible individuals. In the elderly, IBD is often characterized by a different disease behavior when compared with pediatric and young adult disease. Besides disease behavior, another aspect of the multifaceted impact of age on elderly IBD course is increased susceptibility to infections. In this context, age-of-onset-dependent IBD behavior and clinical course are two major contributors to immune system senescence and change of gut microbiota in older subjects. Here, we review the available literature linking immunosenescence and age-dependent changes in the gut microbiota composition to IBD pathogenesis speculating on their possible implications in disease expression in this age class.
Collapse
Affiliation(s)
- Massimo C Fantini
- Department of Medical Science and Public Health, University of Cagliari, Cagliari, Italy -
| | - Sara Onali
- Department of Medical Science and Public Health, University of Cagliari, Cagliari, Italy
| | - Antonio Gasbarrini
- Department of Medical and Surgical Sciences, CEMAD Digestive Disease Center, IRCCS A. Gemelli University Polyclinic Foundation, Sacred Heart Catholic University, Rome, Italy
| | - Loris R Lopetuso
- Department of Medical and Surgical Sciences, CEMAD Digestive Disease Center, IRCCS A. Gemelli University Polyclinic Foundation, Sacred Heart Catholic University, Rome, Italy
- Department of Medicine and Ageing Sciences, G. D'Annunzio University of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), G. D'Annunzio University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
42
|
Perri V, Zingaropoli MA, Pasculli P, Ciccone F, Tartaglia M, Baione V, Malimpensa L, Ferrazzano G, Mastroianni CM, Conte A, Ciardi MR. The Impact of Cytomegalovirus Infection on Natural Killer and CD8+ T Cell Phenotype in Multiple Sclerosis. BIOLOGY 2024; 13:154. [PMID: 38534424 DOI: 10.3390/biology13030154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/06/2024] [Accepted: 02/23/2024] [Indexed: 03/28/2024]
Abstract
Multiple sclerosis (MS) is a debilitating neurological disease that has been classified as an immune-mediated attack on myelin, the protective sheath of nerves. Some aspects of its pathogenesis are still unclear; nevertheless, it is generally established that viral infections influence the course of the disease. Cytomegalovirus (CMV) is a major pathogen involved in alterations of the immune system, including the expansion of highly differentiated cytotoxic CD8+ T cells and the accumulation of adaptive natural killer (NK) cells expressing high levels of the NKG2C receptor. In this study, we evaluated the impact of latent CMV infection on MS patients through the characterization of peripheral NK cells, CD8+ T cells, and NKT-like cells using flow cytometry. We evaluated the associations between immune cell profiles and clinical features such as MS duration and MS progression, evaluated using the Expanded Disability Status Scale (EDSS). We showed that NK cells, CD8+ T cells, and NKT-like cells had an altered phenotype in CMV-infected MS patients and displayed high levels of the NKG2C receptor. Moreover, in MS patients, increased NKG2C expression levels were found to be associated with higher EDSS scores. Overall, these results support the hypothesis that CMV infection imprints the immune system by modifying the phenotype and receptor repertoire of NK and CD8+ T cells, suggesting a detrimental role of CMV on MS progression.
Collapse
Affiliation(s)
- Valentina Perri
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy
| | | | - Patrizia Pasculli
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy
| | - Federica Ciccone
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy
| | - Matteo Tartaglia
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Viola Baione
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
| | | | - Gina Ferrazzano
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
| | | | - Antonella Conte
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
- IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Maria Rosa Ciardi
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
43
|
Zayoud K, Chikhaoui A, Kraoua I, Tebourbi A, Najjar D, Ayari S, Safra I, Kraiem I, Turki I, Menif S, Yacoub-Youssef H. Immunity in the Progeroid Model of Cockayne Syndrome: Biomarkers of Pathological Aging. Cells 2024; 13:402. [PMID: 38474366 PMCID: PMC10930946 DOI: 10.3390/cells13050402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 03/14/2024] Open
Abstract
Cockayne syndrome (CS) is a rare autosomal recessive disorder that affects the DNA repair process. It is a progeroid syndrome predisposing patients to accelerated aging and to increased susceptibility to respiratory infections. Here, we studied the immune status of CS patients to determine potential biomarkers associated with pathological aging. CS patients, as well as elderly and young, healthy donors, were enrolled in this study. Complete blood counts for patients and donors were assessed, immune cell subsets were analyzed using flow cytometry, and candidate cytokines were analyzed via multi-analyte ELISArray kits. In CS patients, we noticed a high percentage of lymphocytes, an increased rate of intermediate and non-classical monocytes, and a high level of pro-inflammatory cytokine IL-8. In addition, we identified an increased rate of particular subtypes of T Lymphocyte CD8+ CD28- CD27-, which are senescent T cells. Thus, an inflammatory state was found in CS patients that is similar to that observed in the elderly donors and is associated with an immunosenescence status in both groups. This could explain the CS patients' increased susceptibility to infections, which is partly due to an aging-associated inflammation process.
Collapse
Affiliation(s)
- Khouloud Zayoud
- Laboratory of Biomedical Genomics and Oncogenetics (LR16IPT05), Institut Pasteur de Tunis, Université Tunis El Manar, El Manar I, Tunis 1002, Tunisia
- Faculty of Sciences of Bizerte, Bizerte 7021, Tunisia
| | - Asma Chikhaoui
- Laboratory of Biomedical Genomics and Oncogenetics (LR16IPT05), Institut Pasteur de Tunis, Université Tunis El Manar, El Manar I, Tunis 1002, Tunisia
| | - Ichraf Kraoua
- Department of Neuropediatrics, National Institute of Neurology Mongi Ben Hamida, Tunis 1007, Tunisia; (I.K.)
| | - Anis Tebourbi
- Orthopedic and Trauma Surgery Department, Mongi Slim Hospital, La Marsa 2070, Tunisia; (A.T.); (S.A.)
| | - Dorra Najjar
- Laboratory of Biomedical Genomics and Oncogenetics (LR16IPT05), Institut Pasteur de Tunis, Université Tunis El Manar, El Manar I, Tunis 1002, Tunisia
| | - Saker Ayari
- Orthopedic and Trauma Surgery Department, Mongi Slim Hospital, La Marsa 2070, Tunisia; (A.T.); (S.A.)
| | - Ines Safra
- Laboratory of Molecular and Cellular Hematology (LR16IPT07), Institut Pasteur de Tunis, Université Tunis El Manar, El Manar I, Tunis 1002, Tunisia; (I.S.)
| | - Imen Kraiem
- Laboratory of Molecular and Cellular Hematology (LR16IPT07), Institut Pasteur de Tunis, Université Tunis El Manar, El Manar I, Tunis 1002, Tunisia; (I.S.)
| | - Ilhem Turki
- Department of Neuropediatrics, National Institute of Neurology Mongi Ben Hamida, Tunis 1007, Tunisia; (I.K.)
| | - Samia Menif
- Laboratory of Molecular and Cellular Hematology (LR16IPT07), Institut Pasteur de Tunis, Université Tunis El Manar, El Manar I, Tunis 1002, Tunisia; (I.S.)
| | - Houda Yacoub-Youssef
- Laboratory of Biomedical Genomics and Oncogenetics (LR16IPT05), Institut Pasteur de Tunis, Université Tunis El Manar, El Manar I, Tunis 1002, Tunisia
| |
Collapse
|
44
|
Ferrante L, Opdal SH, Byard RW. Understanding the immune profile of sudden infant death syndrome - proteomic perspectives. Acta Paediatr 2024; 113:249-255. [PMID: 37792385 DOI: 10.1111/apa.16988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 10/05/2023]
Abstract
AIM The aim of this study was to investigate a panel of immune proteins in cases of sudden infant death syndrome (SIDS). It was hypothesised that, in at least a subset of SIDS, a dysregulated immune response may be a contributing factor leading to death. METHODS The subjects included 46 SIDS cases and 41 controls autopsied at the Department of Forensic Sciences, Norway. The causes of death in the controls were accidents/trauma. Samples of cerebrospinal fluid (CSF) were analysed quantitatively by Proximity Extension Assay (PEA). RESULTS Initial results revealed that normalised protein expression differed in 35 proteins. For the purposes of this report five proteins that are involved in immune system were selected for analysis: IFNLR1 (p = 0.003), IL10 (p = 0.007), IRAK4 (p < 0.001) and IL6 (p = 0.035); all had lower protein concentrations in SIDS cases compared to controls except for CD28 (p = 0.024) which had higher protein concentrations in SIDS cases. CONCLUSION The results confirm previous studies indicating that a dysregulation of the immune system may be a predisposing factor for SIDS. The results may indicate that these aberrant protein concentrations could lead to an inadequate response to immune triggers and uncontrolled defence mechanisms towards the common cold or other non-fatal infections.
Collapse
Affiliation(s)
- Linda Ferrante
- Department of Forensic Sciences, Section of Forensic Pathology and Clinical Forensic Medicine, Oslo University Hospital, Oslo, Norway
| | - Siri H Opdal
- Department of Forensic Sciences, Section of Forensic Pathology and Clinical Forensic Medicine, Oslo University Hospital, Oslo, Norway
| | - Roger W Byard
- The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
45
|
|
46
|
Hong KT, Kang YJ, Choi JY, Yun YJ, Chang IM, Shin HY, Kang HJ, Lee WW. Effects of Korean red ginseng on T-cell repopulation after autologous hematopoietic stem cell transplantation in childhood cancer patients. J Ginseng Res 2024; 48:68-76. [PMID: 38223820 PMCID: PMC10785244 DOI: 10.1016/j.jgr.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/07/2023] [Accepted: 09/07/2023] [Indexed: 01/16/2024] Open
Abstract
Background Although the survival outcomes of childhood cancer patients have improved, childhood cancer survivors suffer from various degrees of immune dysfunction or delayed immune reconstitution. This study aimed to investigate the effect of Korean Red Ginseng (KRG) on T cell recovery in childhood cancer patients who underwent autologous hematopoietic stem cell transplantation (ASCT) from the perspective of inflammatory and senescent phenotypes. Methods This was a single-arm exploratory trial. The KRG group (n = 15) received KRG powder from month 1 to month 12 post-ASCT. We compared the results of the KRG group with those of the control group (n = 23). The proportions of T cell populations, senescent phenotypes, and cytokine production profiles were analyzed at 1, 3, 6, and 12 months post-ASCT using peripheral blood samples. Results All patients in the KRG group completed the treatment without any safety issues and showed a comparable T cell repopulation pattern to that in the control group. In particular, KRG administration influenced the repopulation of CD4+ T cells via T cell expansion and differentiation into effector memory cell re-expressing CD45RA (EMRA) cells. Although the KRG group showed an increase in the number of CD4+ EMRA cells, the expression of senescent and exhausted markers in these cells decreased, and the capacity for senescence-related cytokine production in the senescent CD28- subset was ameliorated. Conclusions These findings suggest that KRG promotes the repopulation of CD4+ EMRA T cells and regulates phenotypical and functional senescent changes after ASCT in pediatric patients with cancer.
Collapse
Affiliation(s)
- Kyung Taek Hong
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
- Seoul National University Cancer Research Institute, Seoul, Republic of Korea
| | - Yeon Jun Kang
- Laboratory of Autoimmunity and Inflammation (LAI), Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jung Yoon Choi
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
- Seoul National University Cancer Research Institute, Seoul, Republic of Korea
| | - Young Ju Yun
- Department of Integrative Medicine, School of Korean Medicine, Pusan National University, Yangsan, Republic of Korea
| | | | - Hee Young Shin
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
- Seoul National University Cancer Research Institute, Seoul, Republic of Korea
- Korea Red Cross, Wonju, Republic of Korea
| | - Hyoung Jin Kang
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
- Seoul National University Cancer Research Institute, Seoul, Republic of Korea
- Wide River Institute of Immunology, Hongcheon, Republic of Korea
| | - Won-Woo Lee
- Seoul National University Cancer Research Institute, Seoul, Republic of Korea
- Laboratory of Autoimmunity and Inflammation (LAI), Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Institute of Infectious Diseases, Seoul National University College of Medicine, Seoul, Republic of Korea
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea
| |
Collapse
|
47
|
Maecker HT. Multiparameter Flow Cytometry Monitoring of T Cell Responses. Methods Mol Biol 2024; 2807:325-342. [PMID: 38743238 DOI: 10.1007/978-1-0716-3862-0_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Multiparameter flow cytometry is a common tool for assessing responses of T, B, and other cells to pathogens or vaccines. Such responses are likely to be important for predicting the efficacy of an HIV vaccine, despite the elusive findings in HIV vaccine trials to date. Fortunately, flow cytometry has evolved to be capable of readily measuring 30-40 parameters, providing the ability to dissect detailed phenotypes and functions that may be correlated with disease protection. Nevertheless, technical hurdles remain, and standardization of assays is still largely lacking. Here an optimized protocol for antigen-specific T cell monitoring is presented, with specific variations for particular markers. It covers the analysis of multiple cytokines, cell surface proteins, and other functional markers such as CD107, CD154, CD137, etc. References are given to published panels of 8-28 colors.
Collapse
Affiliation(s)
- Holden T Maecker
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
48
|
Huang C, Ding J, Huang C, Yu L, Chitapanarux I, Mejia MBA, Fei Z, Chen C. Abnormal variation and prognostic significance of circulating immune cells in patients with nasopharyngeal carcinoma treated with chemoradiotherapy: a prospective cohort study. Transl Cancer Res 2023; 12:3718-3727. [PMID: 38192995 PMCID: PMC10774047 DOI: 10.21037/tcr-23-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/08/2023] [Indexed: 01/10/2024]
Abstract
Background Circulating immune cells are associated with tumor development and poor prognosis in multiple solid tumors. However, the circulating immune-cell profile of nasopharyngeal carcinoma (NPC) remains largely unknown. Therefore, we aimed to determine the changes in immune status and the prognostic significance of circulating immune cells before and after chemoradiotherapy (CRT) in patients, which can provide clinicians with valuable insights to optimize treatment strategies, monitor immune function, and personalize interventions, ultimately improving patient outcomes. Methods Circulating immune cells before and after CRT in 77 patients with NPC and in 30 healthy controls were measured with flow cytometry. A thorough follow-up was conducted to assess prognosis outcomes, including local failure-free rate (LFFR), distant failure-free rate (DFFR), disease-free survival (DFS), and overall survival (OS). The differences of the subpopulation distribution in the two groups were determined by t-tests or Mann-Whitney tests. The paired t-test or Wilcoxon matched-pairs signed rank test was used to compare differences in lymphocyte subsets before and after CRT. The prognostic significance of lymphocyte subsets was evaluated by Kaplan-Meier analysis and Cox proportional hazards model. Results Compared with the control group, the NPC group showed significant decreases in the proportions of CD3+ cells, CD4+ T cells, CD8+CD28+ T cells, and CD19+ B cells as well as the CD4+:CD8+ ratio (P<0.05) but a significant increase in the proportion of natural killer (NK) cells (P<0.05). After CRT, the proportions of CD4+ cells, CD8+CD28+ T cells, and CD19+ B cells as well as the CD4+:CD8+ ratio were markedly decreased (P<0.05), while the proportions of CD8+ T cells and NK cells were significantly increased (P<0.05). Multivariate analysis showed that a lower percentage of CD19+ B cells [hazard ratio (HR) 6.550, 95% CI: 1.661-25.831; P=0.007] and a positive test for Epstein-Barr virus (EBV) DNA (HR 0.261, 95% CI: 0.074-0.926; P=0.038) before treatment independently predicted worse 5-year OS (P<0.05). Conclusions The disproportion of circulating immune cells was observed in patients with NPC before treatment. CRT further aggravated immune dysfunction. Notably, a lower percentage of CD19+ B cells and EBV DNA-positive status before treatment were independent predictors of a worse prognosis. Thus, the measurement of circulating immune cells may help elucidate immune function status and predict the outcomes of patients with NPC.
Collapse
Affiliation(s)
- Chaoxiong Huang
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Jianming Ding
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Chuanzhong Huang
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Ligen Yu
- Office of Data and Analytics, Nanyang Technological University, Singapore, Singapore
| | - Imjai Chitapanarux
- Division of Radiation Oncology, Department of Radiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | | | - Zhaodong Fei
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Chuanben Chen
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| |
Collapse
|
49
|
Ligotti ME, Accardi G, Aiello A, Aprile S, Calabrò A, Caldarella R, Caruso C, Ciaccio M, Corsale AM, Dieli F, Di Simone M, Giammanco GM, Mascarella C, Akbar AN, Meraviglia S, Candore G. Sicilian semi- and supercentenarians: identification of age-related T-cell immunophenotype to define longevity trait. Clin Exp Immunol 2023; 214:61-78. [PMID: 37395602 PMCID: PMC10711357 DOI: 10.1093/cei/uxad074] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/12/2023] [Accepted: 06/30/2023] [Indexed: 07/04/2023] Open
Abstract
The immunophenotype of oldest centenarians, i.e. semi- and supercentenarians, could provide important information about their ability to adapt to factors associated with immune changes, including ageing per se and chronic Cytomegalovirus infection. We investigated, by flow cytometry, variations in percentages and absolute numbers of immune cell subsets, focusing on T cells, and pro-inflammatory parameters in a cohort of 28 women and 26 men (age range 19-110 years). We observed variability in hallmarks of immunosenescence related to age and Cytomegalovirus serological status. The eight oldest centenarians showed the lowest percentages of naïve T cells, due to their age, and the highest percentages of T-effector memory cells re-expressing CD45RA (TEMRA), according to their cytomegalovirus status, and high levels of serum pro-inflammatory parameters, although their means were lower than that of remaining 90+ donors. Some of them showed CD8 naïve and TEMRA percentages, and exhaustion/pro-inflammatory markers comparable to the younger ones. Our study supports the suggestion that immune ageing, especially of oldest centenarians, exhibits great variability that is not only attributable to a single contributor but should also be the full result of a combination of several factors. Everyone ages differently because he/she is unique in genetics and experience of life and this applies even more to the immune system; everybody has had a different immunological history. Furthermore, our findings on inflammatory markers, TEMRA and CMV seropositivity in centenarians, discussed in the light of the most recent literature, suggest that these changes might be not unfavourable for centenarians, and in particular for the oldest ones.
Collapse
Affiliation(s)
- Mattia Emanuela Ligotti
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Giulia Accardi
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Anna Aiello
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Stefano Aprile
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
- Unit of Transfusion Medicine, San Giovanni di Dio Hospital, Agrigento, Italy
| | - Anna Calabrò
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Rosalia Caldarella
- Department of Laboratory Medicine, University Hospital “P. Giaccone”, Palermo, Italy
| | - Calogero Caruso
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Marcello Ciaccio
- Department of Laboratory Medicine, University Hospital “P. Giaccone”, Palermo, Italy
- Section of Clinical Biochemistry, Clinical Molecular Medicine and Clinical Laboratory Medicine Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Anna Maria Corsale
- Central Laboratory of Advanced Diagnosis and Biomedical Research, University Hospital “P. Giaccone”, Palermo, Italy
- Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties “G. D’Alessandro”, University of Palermo, Palermo, Italy
| | - Francesco Dieli
- Central Laboratory of Advanced Diagnosis and Biomedical Research, University Hospital “P. Giaccone”, Palermo, Italy
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Marta Di Simone
- Central Laboratory of Advanced Diagnosis and Biomedical Research, University Hospital “P. Giaccone”, Palermo, Italy
- Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties “G. D’Alessandro”, University of Palermo, Palermo, Italy
| | - Giovanni Maurizio Giammanco
- Section of Microbiology, Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties “G. D’Alessandro”, University of Palermo, Palermo, Italy
| | - Chiara Mascarella
- Section of Microbiology, Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties “G. D’Alessandro”, University of Palermo, Palermo, Italy
| | - Arne N Akbar
- Division of Medicine, Experimental and Therapeutic Medicine, University College London, London, UK
| | - Serena Meraviglia
- Central Laboratory of Advanced Diagnosis and Biomedical Research, University Hospital “P. Giaccone”, Palermo, Italy
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Giuseppina Candore
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| |
Collapse
|
50
|
Winford E, Lutshumba J, Martin BJ, Wilcock DM, Jicha GA, Nikolajczyk BS, Stowe AM, Bachstetter AD. Terminally differentiated effector memory T cells associate with cognitive and AD-related biomarkers in an aging-based community cohort. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.27.568812. [PMID: 38077088 PMCID: PMC10705256 DOI: 10.1101/2023.11.27.568812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
Background and Purpose The immune response changes during aging and the progression of Alzheimer's disease (AD) and related dementia (ADRD). Terminally differentiated effector memory T cells (called TEMRA) are important during aging and AD due to their cytotoxic phenotype and association with cognitive decline. However, it is not clear if the changes seen in TEMRAs are specific to AD-related cognitive decline specifically or are more generally correlated with cognitive decline. This study aimed to examine whether TEMRAs are associated with cognition and plasma biomarkers of AD, neurodegeneration, and neuroinflammation in a community-based cohort of older adults. Methods Study participants from a University of Kentucky Alzheimer's Disease Research Center (UK-ADRC) community-based cohort of aging and dementia were used to test our hypothesis. There were 84 participants, 44 women and 40 men. Participants underwent physical examination, neurological examination, medical history, cognitive testing, and blood collection to determine plasma biomarker levels (Aβ42/Aβ40 ratio, total tau, Neurofilament Light chain (Nf-L), Glial Fibrillary Acidic Protein (GFAP)) and to isolate peripheral blood mononuclear cells (PBMCs). Flow cytometry was used to analyze PBMCs from study participants for effector and memory T cell populations, including CD4+ and CD8+ central memory T cells (TCM), Naïve T cells, effector memory T cells (TEM), and effector memory CD45RA+ T cells (TEMRA) immune cell markers. Results CD8+ TEMRAs were positively correlated with Nf-L and GFAP. We found no significant difference in CD8+ TEMRAs based on cognitive scores and no associations between CD8+ TEMRAs and AD-related biomarkers. CD4+ TEMRAs were associated with cognitive impairment on the MMSE. Gender was not associated with TEMRAs, but it did show an association with other T cell populations. Conclusion These findings suggest that the accumulation of CD8+ TEMRAs may be a response to neuronal injury (Nf-L) and neuroinflammation (GFAP) during aging or the progression of AD and ADRD. As our findings in a community-based cohort were not clinically-defined AD participants but included all ADRDs, this suggests that TEMRAs may be associated with changes in systemic immune T cell subsets associated with the onset of pathology.
Collapse
Affiliation(s)
- Edric Winford
- Department of Neuroscience, University of Kentucky; Lexington, Kentucky, USA
| | - Jenny Lutshumba
- Department of Neuroscience, University of Kentucky; Lexington, Kentucky, USA
| | - Barbara J. Martin
- Sanders-Brown Center on Aging, University of Kentucky; Lexington, Kentucky, USA
| | - Donna M. Wilcock
- Sanders-Brown Center on Aging, University of Kentucky; Lexington, Kentucky, USA
- Department of Physiology, University of Kentucky, Lexington; Lexington, Kentucky, USA
| | - Gregory A. Jicha
- Department of Neurology, University of Kentucky; Lexington, Kentucky, USA
- Sanders-Brown Center on Aging, University of Kentucky; Lexington, Kentucky, USA
| | - Barbara S. Nikolajczyk
- Department of Pharmacology and Nutritional Science, and Barnstable Brown Diabetes and Obesity Center, University of Kentucky; Lexington, Kentucky, USA
| | - Ann M Stowe
- Department of Neuroscience, University of Kentucky; Lexington, Kentucky, USA
- Department of Neurology, University of Kentucky; Lexington, Kentucky, USA
- Sanders-Brown Center on Aging, University of Kentucky; Lexington, Kentucky, USA
| | - Adam D. Bachstetter
- Department of Neuroscience, University of Kentucky; Lexington, Kentucky, USA
- Sanders-Brown Center on Aging, University of Kentucky; Lexington, Kentucky, USA
- Spinal Cord and Brain Injury Research Center, University of Kentucky; Lexington, Kentucky, USA
| |
Collapse
|