1
|
Ou M, Cao J, Luo R, Zhu B, Miao R, Yu L, Wang X, Li W, Fu Y, Zhang J, Zhang F, Wang Q, Mei L. Drug-loaded microneedle patches containing regulatory T cell-derived exosomes for psoriasis treatment. Acta Biomater 2025; 198:452-466. [PMID: 40210183 DOI: 10.1016/j.actbio.2025.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 03/17/2025] [Accepted: 04/07/2025] [Indexed: 04/12/2025]
Abstract
Psoriasis is a chronic inflammatory skin disease characterized by epidermal hyperplasia, skin inflammation, and immune dysregulation. These factors contribute to the persistent progression of the disease. While addressing excessive keratinocyte proliferation or inhibiting inflammation may provide temporary therapeutic relief, unresolved immune dysregulation often exacerbates the condition. Therefore, comprehensive treatments that alleviate skin symptoms and regulate immune tolerance are urgently required. An ideal treatment would target multiple factors, including keratinocyte proliferation, inflammation, and immune tolerance, while minimizing systemic side effects. In this study, we developed a dissolvable hyaluronic acid microneedle patch containing regulatory T cell (Treg) exosomes loaded with dimethyl fumarate (DMF) (rExo@DMF MNs). DMF acts as an inhibitor of keratinocyte proliferation and an anti-inflammatory agent through NF-κB suppression and Nrf2 activation, inhibiting the production of pro-inflammatory cytokines and the activation of inflammatory cells. Delivering DMF via Treg exosomes enhances its retention at the lesion site. This system inhibits keratinocyte proliferation and migration, reduces pro-inflammatory cytokine release, and alleviates epidermal hyperplasia and inflammation in an imiquimod-induced psoriasis mouse model. Additionally, Treg exosomes modulate immune responses to promote tolerance. rExo@DMF MNs demonstrate immunomodulatory effects by inhibiting T helper 17 (Th17) cells and inducing regulatory immune cells such as Tregs and tolerogenic dendritic cells (tDCs) differentiation. rExo@DMF MNs alleviate skin symptoms and regulate immune cells in the skin, spleen, and lymph nodes, demonstrating both local and systemic immunoregulation with promising therapeutic potential for psoriasis. STATEMENT OF SIGNIFICANCE: Novel therapies are urgently needed to alleviate skin symptoms and regulate immunity, as current psoriasis treatments focus on symptom relief while neglecting the underlying immune dysfunction, resulting in limited efficacy. Moreover, systemic immunosuppression often leads to severe side effects. This study introduces a hybrid microneedle system (rExo@DMF MNs) that alleviates psoriasis symptoms and modulates immune responses locally and systemically. In addition, rExo@DMF MNs penetrate hyperkeratotic skin, ensuring targeted rExo@DMF release while minimizing systemic exposure and side effects. All components of the system, including hyaluronic acid (a key component of the skin matrix), regulatory T cell-derived exosomes, and DMF (a clinically validated drug), exhibit biocompatibility. This comprehensive approach addresses multiple pathogenic factors, promising an effective and safe psoriasis treatment.
Collapse
Affiliation(s)
- Meitong Ou
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, PR China
| | - Jiahui Cao
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, PR China
| | - Ran Luo
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, PR China
| | - Baisong Zhu
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, PR China
| | - Rourou Miao
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, PR China
| | - Liu Yu
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, PR China
| | - Xinyi Wang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, PR China
| | - Wen Li
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, PR China
| | - Yiqiu Fu
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, PR China
| | - Jinxie Zhang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, PR China
| | - Fan Zhang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, PR China.
| | - Qiangsong Wang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, PR China.
| | - Lin Mei
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, PR China.
| |
Collapse
|
2
|
Sun G, Zhao HQ, Huang YY, Guo ZY, Zhang L, Zhu H, Wang XY, Ye HN, Chen CP. Adiponectin receptor agonist adipoRon alleviates imiquimod-induced murine psoriasis. Int Immunopharmacol 2025; 154:114568. [PMID: 40184813 DOI: 10.1016/j.intimp.2025.114568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 03/25/2025] [Accepted: 03/25/2025] [Indexed: 04/07/2025]
Abstract
Psoriasis is a chronic inflammatory skin disease involving inflammation, immune responses and keratinocytes proliferation. It has been suggested that adiponectin/adiponectin receptor 1 (AdipoR1) signaling plays a role in regulating psoriatic skin inflammation. AdipoRon is a small molecule agonist of AdipoR1 and AdipoR2. The effect of adipoRon on psoriasis has not been elucidated. In this study, using a GEO database, we found that the expression of adiponectin was substantially decreased in skin lesions of psoriasis patients. This reduction was also validated in an imiquimod-induced psoriasis mouse model. Interestingly, we found that topical administration of adipoRon significantly ameliorated skin lesions induced by imiquimod. The critical pro-inflammatory cytokines (IL-6, IL-17A and IL-23) and the infiltration of macrophages, especially M1 macrophages were dramatically decreased while the infiltration of M2 macrophages were slightly increased in the skin lesions upon adipoRon treatment. Mechanistically, adipoRon inhibited macrophage inflammation and keratinocytes proliferation via activation of AMPK signaling pathway. Collectively, our study demonstrates that adipoRon displayed anti-inflammatory activity and anti-proliferation of keratinocytes, and attenuated psoriatic response. Activating AdipoR1 signaling pathway by adipoRon or others may represent a novel therapeutic approach to psoriasis.
Collapse
Affiliation(s)
- Geng Sun
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Hai-Qian Zhao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Yuan-Yuan Huang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Zhan-Ying Guo
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Lin Zhang
- Department of Medical Laboratory,The Affiliated Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
| | - Hao Zhu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Xin-Yue Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Hao-Nan Ye
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Cai-Ping Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
3
|
Li L, Liu J, Lu J, Wu J, Zhang X, Ma T, Wu X, Zhu Q, Chen Z, Tai Z. Interventions in cytokine signaling: novel horizons for psoriasis treatment. Front Immunol 2025; 16:1573905. [PMID: 40303401 PMCID: PMC12037536 DOI: 10.3389/fimmu.2025.1573905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 03/27/2025] [Indexed: 05/02/2025] Open
Abstract
Intricate interactions between immune cells and cytokines define psoriasis, a chronic inflammatory skin condition that is immunological-mediated. Cytokines, including interleukins (ILs), interferons (IFNs), tumor necrosis factors (TNFs), chemokines, and transforming growth factor-β (TGF-β), are essential for controlling cellular activity and immunological responses, maintaining homeostasis and contributing to the pathogenesis of psoriasis. These molecules modulate the immune microenvironment by either promoting or suppressing inflammation, which significantly impacts therapeutic outcomes. Recent research indicates that treatment strategies targeting cytokines and chemokines have significant potential, offering new approaches for regulating the immune system, inhibiting the progression of psoriasis, and reducing adverse effects of traditional therapies. This review consolidates current knowledge on cytokine and chemokine signaling pathways in psoriasis and examines their significance in treatment. Specific attention is given to cytokines like IL-17, IL-23, and TNF-α, underscoring the necessity for innovative therapies to modulate these pathways and address inflammatory processes. This review emphasizes the principal part of cytokines in the -pathological process of psoriasis and explores the challenges and opportunities they present for therapeutic intervention. Furthermore, we examine recent advancements in targeted therapies, with a particular focus on monoclonal antibodies, in ongoing research and clinical trials.
Collapse
Affiliation(s)
- Lisha Li
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Topical Chinese Medicine, Shanghai, China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Jun Liu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Topical Chinese Medicine, Shanghai, China
| | - Jiaye Lu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Topical Chinese Medicine, Shanghai, China
| | - Junchao Wu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Topical Chinese Medicine, Shanghai, China
| | - Xinyue Zhang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Topical Chinese Medicine, Shanghai, China
| | - Tianyou Ma
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Topical Chinese Medicine, Shanghai, China
| | - Xiying Wu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Topical Chinese Medicine, Shanghai, China
| | - Quangang Zhu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Topical Chinese Medicine, Shanghai, China
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Topical Chinese Medicine, Shanghai, China
| | - Zongguang Tai
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Topical Chinese Medicine, Shanghai, China
| |
Collapse
|
4
|
Warren WG, Osborn M, Yates A, O'Sullivan SE. ART26.12, an FABP5 Inhibitor, Shows Efficacy in Preclinical Psoriasis Models. J Invest Dermatol 2025:S0022-202X(25)00393-8. [PMID: 40210114 DOI: 10.1016/j.jid.2025.03.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 04/12/2025]
Abstract
FABP5 is upregulated in psoriasis. This study assessed the efficacy of the potent, selective, and orally active FABP5 inhibitor ART26.12 in preclinical psoriasis models. In vitro, reconstructed human epidermis was stimulated with cytokines (IL-17 + IL-22 + TNF at 3 ng/ml each) and treated with ART26.12 (1, 3, or 10 μM) or Jak1 inhibitor (10 μM) for 24 hours; after which, 64 psoriasis-related genes were measured. ART26.12 (3 and 10 μM) treatment reduced cytokines, chemokines, and markers of keratinocyte proliferation/differentiation and increased certain antimicrobial peptides. In vivo, ART26.12 (25 or 100 mg/kg twice a day) or BMS-986165 (TYK2 inhibitor; 10 mg/kg once a day) was given orally for 10 days in the imiquimod mouse model. Imiquimod increased psoriasis-like symptoms. ART26.12 (25 mg/kg twice a day) and BMS-986165 comparably reduced psoriasis-like symptoms by day 6 of imiquimod treatment. Histopathology showed that ART26.12 reduced symptom severity, for example, hyperkeratosis, parakeratosis, epidermal acanthosis, and inflammatory infiltrates. Proteomic analysis indicated that ART26.12 rescued the expression of FLG-2; promoted epidermal differentiation complex-associated proteins; and modulated peroxisome proliferator-activated receptor, NF-kB, and protein kinase C pathways likely downstream of lipid modulation. Lipidomic analysis showed widespread modulation, including ceramides and linoleic acid derivatives. These data suggest that ART26.12 may be a potential psoriasis treatment.
Collapse
|
5
|
Emmanuel T, Ben Abdallah H, Baez E, Rather IM, Steiniche T, Bregnhøj A, Iversen L, Johansen C. Early Neutrophil Activation in Psoriatic Skin at Relapse Following Dead Sea Climatotherapy. Exp Dermatol 2025; 34:e70094. [PMID: 40181552 PMCID: PMC11969059 DOI: 10.1111/exd.70094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/19/2025] [Accepted: 03/20/2025] [Indexed: 04/05/2025]
Abstract
Psoriasis, a chronic inflammatory skin disorder characterised by erythematous and scaly plaques, can be both physically and emotionally distressing for patients. Dead Sea climatotherapy (DSC), a treatment modality combining sun exposure, mineral-rich water and mud therapy during 4 weeks at Ein Gedi, Israel, is used for a small group of patients with psoriasis. This study aimed to investigate the cellular composition of psoriatic skin lesions at relapse after complete clearance from DSC. Skin biopsies from baseline, end of treatment and relapse were collected from eight patients with plaque psoriasis who achieved complete clearance from Dead Sea climatotherapy treatment. These biopsies were subjected to immunohistochemistry, RNA sequencing and quantitative polymerase chain reaction analysis (qPCR). Our findings demonstrate that DSC effectively reduces inflammatory markers to levels comparable to baseline non-lesional skin in the short term. The differential expression analysis identified several upregulated differentially expressed genes, including OSM, CXCL8, TREM1, CXCL1, CSF3R, BCL2A1 and CXCL2, in relapsed psoriasis skin compared with baseline lesional skin. These findings were confirmed by qPCR analysis. Pathway enrichment analysis indicated a marked upregulation of neutrophil-associated pathways in relapse skin compared with baseline lesional skin. Immunohistochemical staining for neutrophil markers, such as CD11b, CD15, CD66b, CD207, MPO and NE, showed a non-significant trend towards enhanced neutrophil infiltration and activation at relapse. In conclusion, while DSC provides short-term effectiveness in managing psoriasis, the initial relapse phase is associated with neutrophil activation and migration. Thus, targeting neutrophils early in the psoriasis disease course may disturb the evolution of psoriasis, potentially preventing disease chronicity.
Collapse
Affiliation(s)
- Thomas Emmanuel
- Department of DermatologyAarhus University HospitalAarhusDenmark
- Department of Clinical MedicineAarhus University HospitalAarhusDenmark
| | - Hakim Ben Abdallah
- Department of DermatologyAarhus University HospitalAarhusDenmark
- Department of Clinical MedicineAarhus University HospitalAarhusDenmark
| | - Elena Baez
- Department of DermatologyAarhus University HospitalAarhusDenmark
- Department of Clinical MedicineAarhus University HospitalAarhusDenmark
| | - Ida Maja Rather
- Department of DermatologyAarhus University HospitalAarhusDenmark
- Department of Clinical MedicineAarhus University HospitalAarhusDenmark
| | | | - Anne Bregnhøj
- Department of DermatologyAarhus University HospitalAarhusDenmark
- Department of Clinical MedicineAarhus University HospitalAarhusDenmark
| | - Lars Iversen
- Department of DermatologyAarhus University HospitalAarhusDenmark
- Department of Clinical MedicineAarhus University HospitalAarhusDenmark
- MC2 Therapeutics A/SHoersholmDenmark
| | - Claus Johansen
- Department of DermatologyAarhus University HospitalAarhusDenmark
- Department of Clinical MedicineAarhus University HospitalAarhusDenmark
| |
Collapse
|
6
|
Wang Y, Li M, Hou C, Wang Y, Guo J, Wang X. IL-36RN gene: key insights into its role in pediatric pustular psoriasis pathogenesis and treatment. Front Pediatr 2025; 13:1520804. [PMID: 40176872 PMCID: PMC11964088 DOI: 10.3389/fped.2025.1520804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 02/25/2025] [Indexed: 04/05/2025] Open
Abstract
Pediatric pustular psoriasis (PPP) is an autoimmune skin disease that seriously affects the physical and mental health of children. The IL-36RN (Interleukin-36 Receptor Antagonist) gene plays a key role in the pathogenesis of PPP. This review comprehensively elaborates on the research progress of IL-36RN in the context of the pathogenesis and treatment of PPP, covering the basic structure, function, mutation sites and types, and inheritance patterns of the gene and its role in the pathogenesis of PPP. In addition, we discussed the frequency of IL-36RN mutations in patients with different types of PPP and the treatment methods for these patients, aiming to provide a valuable reference for further research and treatment of this disease.
Collapse
Affiliation(s)
- Ye Wang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Mingyue Li
- Health Care Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Changcheng Hou
- Department of Chinese Medicine Surgery, Jiangsu Province Hospital of Traditional Chinese Medicine Chongqing Hospital, Chongqing, China
| | - Yueyue Wang
- Department of Chinese Medicine Surgery, Jiangsu Province Hospital of Traditional Chinese Medicine Chongqing Hospital, Chongqing, China
| | - Jing Guo
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xurui Wang
- Department of Chinese Medicine Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
7
|
Fousekis FS, Mpakogiannis K, Karampinis E, Mastorogianni IN, Christodoulou DK, Papoutsaki M, Zampeli E, Katsanos KH. Pyoderma Gangrenosum in a Patient with Crohn's Disease Treated with Adalimumab: A Case-Based Review and Systematic Review of the Current Literature. Clin Pract 2025; 15:57. [PMID: 40136593 PMCID: PMC11941296 DOI: 10.3390/clinpract15030057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/26/2025] [Accepted: 03/10/2025] [Indexed: 03/27/2025] Open
Abstract
Background: Pyoderma gangrenosum (PG) is a rare inflammatory cutaneous disorder that frequently occurs in association with systemic diseases such as inflammatory bowel disease (IBD). This case report describes a 23-year-old female with Crohn's disease (CD) who developed PG and was successfully treated with adalimumab. The objective of this study is to present the clinical course, treatment approach, and outcomes while reviewing the existing literature on the efficacy of adalimumab in PG management. Methods: A case report is presented, detailing clinical presentation, diagnostic evaluation, and treatment strategy. Additionally, a systematic review was conducted using PubMed to assess studies on adalimumab in PG, focusing on treatment response, remission rates, and adverse effects. Results: The patient presented with ulcerative lesions on her lower extremities and sacroiliitis. After corticosteroid therapy, adalimumab was initiated, leading to significant ulcer healing, reduced back pain, and CD remission. The systematic review identified seven studies on adalimumab in PG. Findings suggest that adalimumab is effective in steroid-refractory cases, with remission achieved in a significant proportion of patients. The most common adverse effects were infections, but overall, adalimumab showed a favorable safety profile. Conclusions: This case highlights the importance of early diagnosis and multidisciplinary management of PG in CD patients. Adalimumab appears to be a promising therapeutic option, particularly for steroid-resistant PG, though further research is needed to establish standardized treatment protocols.
Collapse
Affiliation(s)
- Fotios S. Fousekis
- Department of Gastroenterology and Hepatology, University Hospital of Ioannina, University of Ioannina, 45110 Ioannina, Greece; (K.M.); (I.N.M.); (D.K.C.); (K.H.K.)
| | - Konstantinos Mpakogiannis
- Department of Gastroenterology and Hepatology, University Hospital of Ioannina, University of Ioannina, 45110 Ioannina, Greece; (K.M.); (I.N.M.); (D.K.C.); (K.H.K.)
| | - Emmanouil Karampinis
- Second Dermatology Department, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
- Department of Dermatology, Faculty of Medicine, School of Health Sciences, University General Hospital of Larissa, University of Thessaly, 41110 Larissa, Greece
| | - Ioanna Nefeli Mastorogianni
- Department of Gastroenterology and Hepatology, University Hospital of Ioannina, University of Ioannina, 45110 Ioannina, Greece; (K.M.); (I.N.M.); (D.K.C.); (K.H.K.)
| | - Dimitrios K. Christodoulou
- Department of Gastroenterology and Hepatology, University Hospital of Ioannina, University of Ioannina, 45110 Ioannina, Greece; (K.M.); (I.N.M.); (D.K.C.); (K.H.K.)
| | - Marina Papoutsaki
- 1st Departament of Dermatology-Venereology, Faculty of Medicine, National and Kapodistrian University of Athens, “A. Sygros” Hospital for Skin and Venereal Diseases, 16121 Athens, Greece;
| | - Evanthia Zampeli
- Department of Gastroenterology, Alexandra General Hospital, 11528 Athens, Greece;
| | - Konstantinos H. Katsanos
- Department of Gastroenterology and Hepatology, University Hospital of Ioannina, University of Ioannina, 45110 Ioannina, Greece; (K.M.); (I.N.M.); (D.K.C.); (K.H.K.)
| |
Collapse
|
8
|
Annunziata G, Verde L, Zink A, Muscogiuri G, Albanesi C, Paganelli A, Barrea L, Scala E. Plant-Based Foods for Chronic Skin Diseases: A Focus on the Mediterranean Diet. Curr Nutr Rep 2025; 14:42. [PMID: 40048018 PMCID: PMC11885338 DOI: 10.1007/s13668-025-00632-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2025] [Indexed: 03/09/2025]
Abstract
PURPOSE OF REVIEW In this narrative review, we provide an overview of how adherence to a Mediterranean dietary pattern can complement traditional treatment strategies for psoriasis, acne, and hidradenitis suppurativa. We emphasize the importance of an integrated approach, with dietary interventions as a key component of holistic patient care. RECENT FINDINGS Psoriasis, acne, and hidradenitis suppurativa are immune-mediated chronic diseases marked by systemic inflammation, with genetic and environmental factors influencing their onset. The Mediterranean diet, rich in plant-based foods with antioxidant and anti-inflammatory properties-such as whole-grain cereals, extra-virgin olive oil, vegetables, legumes, fruits, and nuts-has been shown to reduce the clinical severity of these conditions. It also supports weight control and positively impacts metabolic and cardiovascular risk factors, which are closely linked to these diseases. Dietary education, particularly about the Mediterranean diet, plays a crucial role in the management of these skin diseases and serves as an important non-pharmacological treatment option that can influence patient prognosis. This review offers specific nutrition recommendations for prescribing the Mediterranean diet to patients with chronic inflammatory skin diseases.
Collapse
Affiliation(s)
- Giuseppe Annunziata
- Facoltà Di Scienze Umane, Della Formazione E Dello Sport, Università Telematica Pegaso, Via Porzio, Centro Direzionale, Isola F2, 80143, Naples, Italy
| | - Ludovica Verde
- Department of Public Health, University of Naples Federico II, Via Sergio Pansini 5, 80131, Naples, Italy
| | - Alexander Zink
- Department of Dermatology and Allergy, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Giovanna Muscogiuri
- Diabetologia E Andrologia, Dipartimento Di Medicina Clinica E Chirurgia, Unità Di Endocrinologia, Università Degli Studi Di Napoli Federico II, Via Sergio Pansini 5, 80131, Naples, Italy
- Dipartimento Di Medicina Clinica E Chirurgia, Centro Italiano Per La Cura E Il Benessere del Paziente Con Obesità (C.I.B.O), Università Degli Studi Di Napoli Federico II, Via Sergio Pansini 5, 80131, Naples, Italy
- Cattedra Unesco "Educazione Alla Salute E Allo Sviluppo Sostenibile", University Federico II, 80131, Naples, Italy
| | - Cristina Albanesi
- Laboratory of Experimental Immunology, IDI-IRCCS, Via Monti Di Creta, 104, 00167, Rome, Italy
| | | | - Luigi Barrea
- Dipartimento Di Psicologia E Scienze Della Salute, Università Telematica Pegaso, Centro Direzionale, Via Porzio, Isola F2, 80143, Naples, Italy
| | - Emanuele Scala
- Laboratory of Experimental Immunology, IDI-IRCCS, Via Monti Di Creta, 104, 00167, Rome, Italy.
| |
Collapse
|
9
|
Li X, Chen F, Li Y, Zhen Y, Ju J, Li Z, Huang S, Sun Q. Downregulation of RSAD2 ameliorates keratinocyte hyperproliferation and skin inflammation in psoriasis via the TAK1/NF-κB axis. Biochem Pharmacol 2025; 233:116764. [PMID: 39848474 DOI: 10.1016/j.bcp.2025.116764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/18/2024] [Accepted: 01/20/2025] [Indexed: 01/25/2025]
Abstract
Immune cell infiltration and keratinocyte (KC) hyperproliferation are characteristics of psoriasis. Radical S-adenosyl methionine domain-containing 2 (RSAD2) plays an integral role in the innate immune response and is associated with various immune-related diseases. However, RSAD2's expression and role in modulating immune responses in psoriasis remain unexplored. In this study, we demonstrated a significant upregulation of RSAD2 expression in both psoriatic lesions and psoriasis-like mouse epidermis, with its expression positively correlated with psoriasis severity. In psoriatic cell models, RSAD2 was shown to promote the proliferation and secretion of pro-inflammatory cytokines by activating the transforming growth factor-β-activated kinase 1 (TAK1)-mediated nuclear factor kappa-B (NF-κB) signaling pathway. Additionally, it was found that the expression of RSAD2 is increased by the action of interferon regulatory factor-1 (IRF1), which binds to the promoter region of RSAD2. Therefore, the function of RSAD2 in psoriasis is regulated by IRF1. Notably, RSAD2 inhibition decreased epidermal hyperplasia and alleviated imiquimod (IMQ)-induced psoriatic dermatitis. In summary, our study highlights the modulation of the IRF1-RSAD2-TAK1 axis as a potential innovative therapeutic approach for psoriasis, offering new insights into the molecular mechanisms by which KCs drive inflammation in psoriasis.
Collapse
Affiliation(s)
- Xueqing Li
- Department of Dermatology, Qilu Hospital Shandong University Jinan Shandong China; Laboratory of Basic Medical Science, Qilu Hospital of Shandong University Jinan Shandong China
| | - Fuqiang Chen
- Department of Dermatology, The First Hospital of China Medical University Shenyang Liaoning China
| | - Yunqian Li
- Department of Dermatology, Qilu Hospital Shandong University Jinan Shandong China; Laboratory of Basic Medical Science, Qilu Hospital of Shandong University Jinan Shandong China
| | - Yunyue Zhen
- Department of Dermatology, Qilu Hospital Shandong University Jinan Shandong China; Laboratory of Basic Medical Science, Qilu Hospital of Shandong University Jinan Shandong China
| | - Jiaoying Ju
- Department of Dermatology, Qilu Hospital Shandong University Jinan Shandong China; Laboratory of Basic Medical Science, Qilu Hospital of Shandong University Jinan Shandong China
| | - Zhengjun Li
- Department of Dermatology, Qilu Hospital Shandong University Jinan Shandong China
| | - Shan Huang
- Department of Dermatology, Qilu Hospital Shandong University Jinan Shandong China; Laboratory of Basic Medical Science, Qilu Hospital of Shandong University Jinan Shandong China.
| | - Qing Sun
- Department of Dermatology, Qilu Hospital Shandong University Jinan Shandong China.
| |
Collapse
|
10
|
Kotlyar J, Granstein RD. Neuroimmunology of psoriasis: Possible roles for calcitonin gene-related peptide in its pathogenesis. Brain Behav Immun Health 2025; 44:100958. [PMID: 40008232 PMCID: PMC11851231 DOI: 10.1016/j.bbih.2025.100958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 01/21/2025] [Accepted: 01/29/2025] [Indexed: 02/27/2025] Open
Abstract
The nervous system has a complex interplay with the immune system, especially at barrier sites such as the skin. This allows it to play a role in a variety of cutaneous inflammatory disorders such as psoriasis, exerting effects on various immune cells via effector molecules such as neuropeptides. In this review, we discuss the role of calcitonin gene-related peptide in modulating the immune system and inflammation, with a focus on psoriasis.
Collapse
Affiliation(s)
- Joshua Kotlyar
- Israel Englander Department of Dermatology, Weill Cornell Medicine, 1305 York Avenue, WGC9, New York, NY, 10021, USA
- SUNY Downstate Health Sciences University College of Medicine, 450 Clarkson Avenue, Brooklyn, NY, 11203, USA
| | - Richard D. Granstein
- Israel Englander Department of Dermatology, Weill Cornell Medicine, 1305 York Avenue, WGC9, New York, NY, 10021, USA
| |
Collapse
|
11
|
Inclan-Rico JM, Stephenson A, Napuri CM, Rossi HL, Hung LY, Pastore CF, Luo W, Herbert DR. TRPV1+ neurons promote cutaneous immunity against Schistosoma mansoni. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.06.636930. [PMID: 39975236 PMCID: PMC11839022 DOI: 10.1101/2025.02.06.636930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Immunity against skin-invasive pathogens requires mechanisms that rapidly detect, repel or immobilize the infectious agent. While bacteria often cause painful cutaneous reactions, host skin invasion by the human parasitic helminth Schistosoma mansoni often goes unnoticed. This study investigated the role of pain-sensing skin afferents that express the ion channel Transient Receptor Potential Vanilloid 1 (TRPV1) in the detection and initiation of skin immunity against S. mansoni . Data show that mice infected with S. mansoni have reduced behavioral responses to painful stimuli and sensory neurons exposed from infected mice have significantly less calcium influx and neuropeptide release in response to the TRPV1 agonist capsaicin. Using both gain- and loss-of-function approaches, data show that TRPV1+ neurons are critical regulators of S. mansoni survival during migration from the skin into the pulmonary tract. Moreover, TRPV1+ neurons were both necessary and sufficient to promote proliferation and cytokine production from dermal γδ T cells as well as neutrophil and monocyte skin accumulation post-infection. These results suggest a model in which S. mansoni may have evolved to inhibit TRPV1+ neuron activation as a countermeasure that limits IL-17-mediated inflammation, facilitating systemic dissemination and chronic parasitism. One sentence summary The parasitic helminth Schistosoma mansoni averts IL-17-dependent protective immunity by suppressing skin-innervating TRPV1+ neurons.
Collapse
|
12
|
Freisenhausen JC, Luo L, Kelemen E, Elton J, Skoog V, Pivarcsi A, Sonkoly E. RNA Sequencing Reveals the Long Non-Coding RNA Signature in Psoriasis Keratinocytes and Identifies CYDAER as a Long Non-Coding RNA Regulating Epidermal Differentiation. Exp Dermatol 2025; 34:e70054. [PMID: 39953783 PMCID: PMC11829188 DOI: 10.1111/exd.70054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 12/19/2024] [Accepted: 01/26/2025] [Indexed: 02/17/2025]
Abstract
Psoriasis is a common chronic inflammatory skin disease determined by genetic and environmental factors, resulting in the activation of IL-23/IL-17-mediated immune response, epidermal hyperproliferation, and keratinocyte activation. Long non-coding RNAs (lncRNAs) are non-protein-coding transcripts > 500 nucleotides with diverse regulatory functions; their role in epidermal dysfunction in psoriasis is poorly understood. To identify epidermal transcripts with potential roles in psoriasis, including lncRNAs, we performed RNA sequencing on keratinocytes from psoriasis and healthy skin. We identified 889 differentially expressed lncRNAs, many of which with yet unknown functions. RP11-295G20.2 was identified as a lncRNA significantly induced in psoriasis keratinocytes, and this was verified by qRT-PCR and by single-molecule in situ hybridisation. Analysis of subcellular fractions of epidermis revealed a cytoplasmic localisation in line with results of single molecule in situ hybridisation. We report that RP11-295G20.2 has a skin-enriched expression, and within skin it is mainly expressed in suprabasal epidermal layers. Moreover, RP11-295G20.2 is induced by the key psoriasis cytokine IL-17A and shows a dynamic regulation during keratinocyte differentiation with upregulation during early differentiation and downregulation in the late stage. Knockdown of RP11-295G20.2 in keratinocytes promotes terminal differentiation. Based on our findings, we named RP11-295G20.2 Cytoplasmic Differentiation-Associated Epidermal RNA, CYDAER. In summary, our study provides a comprehensive characterisation of the non-coding RNA landscape of psoriasis keratinocytes and identifies CYDAER as a skin-enriched lncRNA regulating keratinocyte differentiation. Our data suggest that overexpression of CYDAER may contribute to altered differentiation in psoriatic epidermis.
Collapse
Affiliation(s)
- Jan Cedric Freisenhausen
- Dermatology and Venereology, Department of Medical SciencesUppsala UniversityUppsalaSweden
- Department of Medical Biochemistry and MicrobiologyUppsala UniversityUppsalaSweden
- Division of Dermatology and Venereology, Department of Medicine SolnaKarolinska InstitutetStockholmSweden
| | - Longlong Luo
- Dermatology and Venereology, Department of Medical SciencesUppsala UniversityUppsalaSweden
- Department of Medical Biochemistry and MicrobiologyUppsala UniversityUppsalaSweden
- Division of Dermatology and Venereology, Department of Medicine SolnaKarolinska InstitutetStockholmSweden
| | - Evelyn Kelemen
- Dermatology and Venereology, Department of Medical SciencesUppsala UniversityUppsalaSweden
- Department of Medical Biochemistry and MicrobiologyUppsala UniversityUppsalaSweden
| | - Jonathan Elton
- Dermatology and Venereology, Department of Medical SciencesUppsala UniversityUppsalaSweden
- Department of Medical Biochemistry and MicrobiologyUppsala UniversityUppsalaSweden
- Division of Dermatology and Venereology, Department of Medicine SolnaKarolinska InstitutetStockholmSweden
| | - Viktor Skoog
- Dermatology and Venereology, Department of Medical SciencesUppsala UniversityUppsalaSweden
- Department of Medical Biochemistry and MicrobiologyUppsala UniversityUppsalaSweden
| | - Andor Pivarcsi
- Dermatology and Venereology, Department of Medical SciencesUppsala UniversityUppsalaSweden
- Department of Medical Biochemistry and MicrobiologyUppsala UniversityUppsalaSweden
- Division of Dermatology and Venereology, Department of Medicine SolnaKarolinska InstitutetStockholmSweden
| | - Enikö Sonkoly
- Dermatology and Venereology, Department of Medical SciencesUppsala UniversityUppsalaSweden
- Department of Medical Biochemistry and MicrobiologyUppsala UniversityUppsalaSweden
- Division of Dermatology and Venereology, Department of Medicine SolnaKarolinska InstitutetStockholmSweden
| |
Collapse
|
13
|
Far BF, Saffari PM, Jafari RM, Goudarzi R, Dehpour AR, Partoazar A. Phosphatidylserine Topically Attenuates Imiquimod-induced Psoriasis Through Inflammation Inhibition in Mice. Drug Res (Stuttg) 2025; 75:12-20. [PMID: 39406369 DOI: 10.1055/a-2419-9616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
BACKGROUND Psoriasis is a chronic skin condition that is associated with persistent inflammation and skin lesions. Topical therapy has been a promising approach to the alleviation of psoriasis through the application of anti-inflammatory agents. Phosphatidylserine (PS) administration has shown anti-inflammatory effects in the trials. Consequently, the objective of this study was to evaluate the effects of topical PS on the potential improvement of an imiquimod (IMQ)-induced psoriasis model. Additionally, cyclosporine A was utilized as a comparative anti-psoriatic agent in our study. METHODS The psoriasis model was established by topically applying IMQ to the dorsal skin of mice once daily for five consecutive days. The efficacy of topical PS was assessed using the Psoriasis Area and Severity Index (PASI) score to evaluate skin lesions. Subsequently, the skin samples were analyzed using Baker's scoring system, Masson's trichrome staining, immunohistochemistry, and real-time PCR analysis. RESULTS IMQ-induced plaque-type psoriasis resulted in a significant increase (P<0.05) in dermal thickness, hyperkeratosis, PASI score, and inflammatory cytokines at the lesion site. The topical PS and cyclosporine A significantly (P<0.05) reduced PASI score and dermal thickness, while also alleviating erythema and scaling when compared to untreated mice. Furthermore, biomolecular assessments revealed that PS significantly (P<0.05) inhibited the gene expression of IL-17, IL-23, and TNF-α cytokines in the IMQ-induced lesions. CONCLUSION Topical PS may pointedly alleviate psoriasis through the inhibition of inflammation. The beneficial effects of the PS recommend further investigation in both experimental and clinical studies in the control of skin psoriasis.
Collapse
Affiliation(s)
- Bahareh Farasati Far
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Partow Mirzaee Saffari
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Razieh Mohammad Jafari
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Goudarzi
- Division of Research and Development, Pharmin USA, LLC, San Jose, CA, United States of America
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Partoazar
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Saadh MJ, Allela OQB, Abdul Kareem R, Sanghvi G, PadmaPriya G, Thakur R, Kumari M, Gupta S, Khaitov K, Sameer HN, Yaseen A, Athab ZH, Adil M. Psoriasis: Immunological and genetic blueprints driving pathogenesis and potential for personalized therapies. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2025; 28:680-690. [PMID: 40343299 PMCID: PMC12057758 DOI: 10.22038/ijbms.2025.85335.18442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 02/26/2025] [Indexed: 05/11/2025]
Abstract
Psoriasis is a long-lasting inflammatory skin condition that impacts millions globally. The occurrence of this disorder differs significantly across various areas, resulting from a complex interplay of genetic and environmental influences. In psoriasis, the pathogenesis represents a complex interaction of innate and adaptive immunity that plays a significant role in the disease manifestation process. Many genetic factors predispose to psoriasis, which is considered a polygenic disease. Several genes concerning pathways like NF-κB and PI3K/Akt that modulate the amplification of inflammatory response and keratinocyte dysregulation have been elaborated in the light of their differential expression, susceptibility loci, and polymorphisms. Such genetic insights could open a whole new avenue for precision medicine in which biomarkers and gene-targeting therapies are promising options for personalized treatment. This review emphasizes the need for complex investigations into psoriasis, from molecular mechanisms to clinical manifestations, to bridge the gap between basic research and therapeutic development by furthering the understanding of psoriasis and paving the way for innovative treatments addressing skin lesions and systemic effects.
Collapse
Affiliation(s)
- Mohamed J. Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | | | | | - Gaurav Sanghvi
- Marwadi University Research Center, Department of Microbiology, Faculty of Science, Marwadi University, Rajkot-360003, Gujarat, India
| | - G. PadmaPriya
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Rishabh Thakur
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India
| | - Mukesh Kumari
- Department of Applied Sciences-Chemistry, NIMS Institute of Engineering & Technology, NIMS University Rajasthan, Jaipur, India
| | - Sofia Gupta
- Department of Chemistry, Chandigarh Engineering College, Chandigarh Group of Colleges-Jhanjeri, Mohali140307, Punjab, India
| | - Kakhramon Khaitov
- Department of Dermatovenerology, Pediatric Dermatovenerology and AIDS, Tashkent Pediatric Medical Institute, Bogishamol Street 223, Tashkent, 100140, Uzbekistan
| | - Hayder Naji Sameer
- College of Pharmacy, National University of Science and Technology, Dhi Qar, 64001, Iraq
| | | | - Zainab H. Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | | |
Collapse
|
15
|
Wei L, Zhang B, Tu Y, Liu A. Research Progress on Glycolysis Mechanism of Psoriasis. PSORIASIS (AUCKLAND, N.Z.) 2024; 14:195-206. [PMID: 39759475 PMCID: PMC11699830 DOI: 10.2147/ptt.s493315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 12/03/2024] [Indexed: 01/07/2025]
Abstract
Psoriasis is a chronic inflammatory disease with a complex pathogenesis. Hyperplasia of glycolytic-dependent epidermal keratinocytes (KCs) is a new hallmark of psoriasis pathogenesis. Meanwhile, immune cells undergo metabolic reprogramming similar to KCs. Glycolysis provides energy for the proliferation of KCs, while it also releases lactic acid to facilitate the differentiation of immune cells. In turn, differentiated immune cells further promote KCs glycolysis by releasing inflammatory factors, thus forming an immunometabolism loop. The interaction between immune response and metabolic pathways jointly promotes the sustained proliferation of KCs and the secretion of various inflammatory factors by immune cells. Understanding the role of glycolysis in immunometabolism of psoriasis may provide new ideas for non-immunosuppressive treatment of psoriasis. This article aims to review the role of glycolysis in the pathogenesis of psoriasis and attempts to summarize the key enzymes and regulatory factors involved in psoriasis glycolysis, as well as their interactions. Finally, we discuss the pharmacological modulators of glycolysis in psoriasis.
Collapse
Affiliation(s)
- Lu Wei
- The Second Clinical Medical College, Henan University of Chinese Medicine, Zhengzhou, Henan, People’s Republic of China
| | - Buxin Zhang
- Department of Dermatology, Henan Province Hospital of Traditional Chinese Medicine (the Second Affiliated Hospital of Henan University of Chinese Medicine), Zhengzhou, Henan, People’s Republic of China
| | - Yuanhui Tu
- Department of Dermatology, Henan Province Hospital of Traditional Chinese Medicine (the Second Affiliated Hospital of Henan University of Chinese Medicine), Zhengzhou, Henan, People’s Republic of China
| | - Aimin Liu
- The Second Clinical Medical College, Henan University of Chinese Medicine, Zhengzhou, Henan, People’s Republic of China
- Department of Dermatology, Henan Province Hospital of Traditional Chinese Medicine (the Second Affiliated Hospital of Henan University of Chinese Medicine), Zhengzhou, Henan, People’s Republic of China
| |
Collapse
|
16
|
Kume M, Koguchi-Yoshioka H, Nakai S, Matsumura Y, Tanemura A, Yokoi K, Matsuda S, Nakamura Y, Otani N, Taminato M, Tomita K, Kubo T, Wataya-Kaneda M, Kumanogoh A, Fujimoto M, Watanabe R. Downregulation of semaphorin 4A in keratinocytes reflects the features of non-lesional psoriasis. eLife 2024; 13:RP97654. [PMID: 39737847 DOI: 10.7554/elife.97654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2025] Open
Abstract
Psoriasis is a multifactorial disorder mediated by IL-17-producing T cells, involving immune cells and skin-constituting cells. Semaphorin 4A (Sema4A), an immune semaphorin, is known to take part in T helper type 1/17 differentiation and activation. However, Sema4A is also crucial for maintaining peripheral tissue homeostasis and its involvement in skin remains unknown. Here, we revealed that while Sema4A expression was pronounced in psoriatic blood lymphocytes and monocytes, it was downregulated in the keratinocytes of both psoriatic lesions and non-lesions compared to controls. Imiquimod application induced more severe dermatitis in Sema4A knockout (KO) mice compared to wild-type (WT) mice. The naïve skin of Sema4A KO mice showed increased T cell infiltration and IL-17A expression along with thicker epidermis and distinct cytokeratin expression compared to WT mice, which are hallmarks of psoriatic non-lesions. Analysis of bone marrow chimeric mice suggested that Sema4A expression in keratinocytes plays a regulatory role in imiquimod-induced dermatitis. The epidermis of psoriatic non-lesion and Sema4A KO mice demonstrated mTOR complex 1 upregulation, and the application of mTOR inhibitors reversed the skewed expression of cytokeratins in Sema4A KO mice. Conclusively, Sema4A-mediated signaling cascades can be triggers for psoriasis and targets in the treatment and prevention of psoriasis.
Collapse
Affiliation(s)
- Miki Kume
- Department of Dermatology, Course of Integrated Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hanako Koguchi-Yoshioka
- Department of Dermatology, Course of Integrated Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
- Department of Neurocutaneous Medicine, Division of Health Sciences, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Shuichi Nakai
- Department of Dermatology, Course of Integrated Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
- Research Department, Maruho Co, Ltd., Kyoto, Japan
| | - Yutaka Matsumura
- Department of Dermatology, Course of Integrated Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Atsushi Tanemura
- Department of Dermatology, Course of Integrated Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Kazunori Yokoi
- Department of Dermatology, Course of Integrated Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Shoichi Matsuda
- Department of Dermatology, Course of Integrated Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
- Research Department, Maruho Co, Ltd., Kyoto, Japan
| | - Yuumi Nakamura
- Department of Dermatology, Course of Integrated Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
- Cutaneous Allergy and Host Defense, Immunology Frontier Research Center (iFReC), Osaka University, Osaka, Japan
| | - Naoya Otani
- Department of Plastic Surgery, Course of Organ Regulation Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Mifue Taminato
- Department of Plastic Surgery, Course of Organ Regulation Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Koichi Tomita
- Department of Plastic Surgery, Course of Organ Regulation Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
- Department of Plastic and Reconstructive Surgery, Kindai University, Osaka, Japan
| | - Tateki Kubo
- Department of Plastic Surgery, Course of Organ Regulation Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Mari Wataya-Kaneda
- Department of Dermatology, Course of Integrated Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
- Department of Neurocutaneous Medicine, Division of Health Sciences, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Course of Internal Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Manabu Fujimoto
- Department of Dermatology, Course of Integrated Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Rei Watanabe
- Department of Dermatology, Course of Integrated Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
- Department of Medicine for Cutaneous Immunological Diseases, Course of Integrated Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| |
Collapse
|
17
|
Mou R, Ma J, Ju X, Wu Y, Chen Q, Li J, Shang T, Chen S, Yang Y, Li Y, Lv K, Chen X, Zhang Q, Liang T, Feng Y, Lu X. Vasopressin drives aberrant myeloid differentiation of hematopoietic stem cells, contributing to depression in mice. Cell Stem Cell 2024; 31:1794-1812.e10. [PMID: 39442524 DOI: 10.1016/j.stem.2024.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 07/18/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024]
Abstract
Psychological stress is often linked to depression and can also impact the immune system, illustrating the interconnectedness of mental health and immune function. Hematopoietic stem cells (HSCs) can directly sense neuroendocrine signals in bone marrow and play a fundamental role in the maintenance of immune homeostasis. However, it is unclear how psychological stress impacts HSCs in depression. Here, we report that neuroendocrine factor arginine vasopressin (AVP) promotes myeloid-biased HSC differentiation by activating neutrophils. AVP administration increases neutrophil and Ly6Chi monocyte production by triggering HSCs that rely on intrinsic S100A9 in mice. When stimulated with AVP, neutrophils return to the bone marrow and release interleukin 36G (IL-36G), which interacts with interleukin 1 receptor-like 2 (IL-1RL2) on HSCs to produce neutrophils with high Elane expression that infiltrate the brain and induce neuroinflammation. Together, these findings define HSCs as a relay between psychological stress and myelopoiesis and identify the IL-36G-IL-1RL2 axis as a potential target for depression therapy.
Collapse
Affiliation(s)
- Rong Mou
- Department of Physiology and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Junkai Ma
- Department of Physiology and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Xuan Ju
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou 310013, Zhejiang, China
| | - Yixin Wu
- Department of Physiology and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China; School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Qiuli Chen
- Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China; Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Jinglin Li
- Department of Physiology and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Tongyao Shang
- Department of Physiology and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China; Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China; Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Siying Chen
- Department of Physiology and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China; State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Yue Yang
- Department of Physiology and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Yue Li
- Zhejiang Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Kaosheng Lv
- Hunan Key Laboratory of Animal Models and Molecular Medicine, School of BioMedical Sciences, Hunan University, Changsha 410028, Hunan, China
| | - Xuequn Chen
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Qi Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Ye Feng
- Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China; Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China.
| | - Xinjiang Lu
- Department of Physiology and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
18
|
Matar AM, Shehata WA, Kora MA, Shendi SS. Tissue and circulating levels of IL-17A and FoxP3 + in patients with scabies: Correlation with clinical features. Mol Biochem Parasitol 2024; 260:111652. [PMID: 39209219 DOI: 10.1016/j.molbiopara.2024.111652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/31/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
The scabies mite is known to induce a complicated immune response that involves both innate and long-term adaptive immunity. Many immune effectors and pathways are involved. Th17/Treg balance can influence the complex immune response to scabies. The immunological effectors including IL-17A, as a pro-inflammatory cytokine, and Treg cells, anti-inflammatory regulatory T cells, are essential for preserving cutaneous immunological homeostasis. So, evaluating these immune effectors may help in comprehending the pathophysiology of scabies and facilitate the development of new treatment approaches. This study examined the expression of IL-17A and FoxP3+ in the skin and serum of 50 scabies patients and 25 healthy controls. An assessment of their correlation with clinical features was performed. Regarding tissue response, scabietic patients exhibited a significant increase in IL-17A and FoxP3+ expression in their epidermis and dermis compared to controls (P<0.001), but the correlation between these factors was not significant in either area (P>0.05). Also, patients showed a significant increase in serum IL-17A levels compared to controls (P<0.001), with a significant association between serum IL-17A levels and lesion severity, but no significant correlation was observed between skin and serum responses (P>0.05). In conclusion, there was increased expression of both IL-17A and FoxP3+, with FoxP3+ being significantly more abundant than IL-17A in the skin of scabies patients. Skin FoxP3+ up-regulation has been linked to the severity of the condition.
Collapse
Affiliation(s)
- Amira M Matar
- Department of Medical Parasitology, Faculty of Medicine, Menoufia University, Shebin al-Kom, Menoufia 6132720, Egypt.
| | - Wafaa A Shehata
- Department of Dermatology and Andrology, Faculty of Medicine, Menoufia University, Shebin al-Kom, Menoufia 6132720, Egypt.
| | - Mona A Kora
- Department of Pathology, Faculty of Medicine, Menoufia University, Shebin al-Kom, Menoufia 6132720, Egypt.
| | - Sawsan S Shendi
- Department of Clinical and Molecular Parasitology, National Liver Institute, Menoufia University, Shebin al-Kom, Menoufia 6132720, Egypt.
| |
Collapse
|
19
|
Morgner B, Werz O, Wiegand C, Tittelbach J. Bilayered skin equivalent mimicking psoriasis as predictive tool for preclinical treatment studies. Commun Biol 2024; 7:1529. [PMID: 39558145 PMCID: PMC11574237 DOI: 10.1038/s42003-024-07226-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 11/07/2024] [Indexed: 11/20/2024] Open
Abstract
Psoriasis is a prevalent, inflammatory skin disease without cure. Further research is required to unravel dysregulated processes and develop new therapeutic interventions. The lack of suitable in vivo and in vitro preclinical models is an impediment in the psoriasis research. Recently, the development of 3D skin models has progressed including replicas with disease-like features. To investigate the use of in vitro models as preclinical test tools, the study focused on treatment responses of 3D skin replicas. Cytokine-priming of skin organoids induced psoriatic features like inflammation, antimicrobial peptides (AMP), hyperproliferation and impaired differentiation. Topical application of dexamethasone (DEX) or celastrol (CEL), a natural anti-inflammatory compound reduced the secretion of pro-inflammatory cytokines. DEX and CEL decreased the gene expression of inflammatory mediators. DEX barely affected the psoriatic AMP transcription but CEL downregulated psoriasis-driven AMP genes. Subcutaneous application of adalimumab (ADM) or bimekizumab (BMM) showed anti-psoriatic effects via protein induction of the differentiation marker keratin-10. Dual blockage of TNF-α and IL-17A repressed the inflammatory psoriasis phenotype. BMM inhibited the psoriatic expression of AMP genes and induced KRT10 and cell-cell contact genes. The present in vitro model provides a 3D environment with in vivo-like cutaneous responses and represents a promising tool for preclinical investigations.
Collapse
Affiliation(s)
- Bianka Morgner
- University Hospital Jena, Department of Dermatology, Friedrich Schiller University Jena, Jena, Germany.
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Cornelia Wiegand
- University Hospital Jena, Department of Dermatology, Friedrich Schiller University Jena, Jena, Germany
| | - Jörg Tittelbach
- University Hospital Jena, Department of Dermatology, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
20
|
Inclan-Rico JM, Napuri CM, Lin C, Hung LY, Ferguson AA, Liu X, Wu Q, Pastore CF, Stephenson A, Femoe UM, Musaigwa F, Rossi HL, Freedman BD, Reed DR, Macháček T, Horák P, Abdus-Saboor I, Luo W, Herbert DR. MrgprA3 neurons drive cutaneous immunity against helminths through selective control of myeloid-derived IL-33. Nat Immunol 2024; 25:2068-2084. [PMID: 39354200 PMCID: PMC12032830 DOI: 10.1038/s41590-024-01982-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 09/11/2024] [Indexed: 10/03/2024]
Abstract
Skin uses interdependent cellular networks for barrier integrity and host immunity, but most underlying mechanisms remain obscure. Herein, we demonstrate that the human parasitic helminth Schistosoma mansoni inhibited pruritus evoked by itch-sensing afferents bearing the Mas-related G-protein-coupled receptor A3 (MrgprA3) in mice. MrgprA3 neurons controlled interleukin (IL)-17+ γδ T cell expansion, epidermal hyperplasia and host resistance against S. mansoni through shaping cytokine expression in cutaneous antigen-presenting cells. MrgprA3 neuron activation downregulated IL-33 but induced IL-1β and tumor necrosis factor in macrophages and type 2 conventional dendritic cells partially through the neuropeptide calcitonin gene-related peptide. Macrophages exposed to MrgprA3-derived secretions or bearing cell-intrinsic IL-33 deletion showed increased chromatin accessibility at multiple inflammatory cytokine loci, promoting IL-17/IL-23-dependent changes to the epidermis and anti-helminth resistance. This study reveals a previously unrecognized intercellular communication mechanism wherein itch-inducing MrgprA3 neurons initiate host immunity against skin-invasive parasites by directing cytokine expression patterns in myeloid antigen-presenting cell subsets.
Collapse
Affiliation(s)
- Juan M Inclan-Rico
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Camila M Napuri
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Cailu Lin
- Monell Chemical Senses Center, Philadelphia, PA, USA
| | - Li-Yin Hung
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Annabel A Ferguson
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Xiaohong Liu
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Qinxue Wu
- Department of Neuroscience, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christopher F Pastore
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Adriana Stephenson
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ulrich M Femoe
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Fungai Musaigwa
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Heather L Rossi
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Bruce D Freedman
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Tomáš Macháček
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Petr Horák
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Ishmail Abdus-Saboor
- Department of Biological Sciences, Zuckerman Mind, Brain, Behavior Institute, Columbia University, New York, NY, USA
| | - Wenqin Luo
- Department of Neuroscience, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Regenerative Medicine, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - De'Broski R Herbert
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
21
|
Elkordy AA, Hill D, Attia M, Chaw CS. Liposomes and Their Therapeutic Applications in Enhancing Psoriasis and Breast Cancer Treatments. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1760. [PMID: 39513840 PMCID: PMC11547384 DOI: 10.3390/nano14211760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 10/25/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Psoriasis and breast cancer are two examples of diseases where associated inflammatory pathways within the body's immune system are implicated. Psoriasis is a complex, chronic and incurable inflammatory skin disorder that is primarily recognized by thick, scaly plaques on the skin. The most noticeable pathophysiological effect of psoriasis is the abnormal proliferation of keratinocytes. Breast cancer is currently the most diagnosed cancer and the leading cause of cancer-related death among women globally. While treatments targeting the primary tumor have significantly improved, preventing metastasis with systemic treatments is less effective. Nanocarriers such as liposomes and lipid nanoparticles have emerged as promising drug delivery systems for drug targeting and specificity. Advances in technologies and drug combinations have emerged to develop more efficient lipid nanocarriers to include more than one drug in combinational therapy to enhance treatment outcomes and/or relief symptoms for better patients' quality of life. Although there are FDA-approved liposomes with anti-cancer drugs for breast cancer, there are still unmet clinical needs to reduce the side effects associated with those nanomedicines. Hence, combinational nano-therapy may eliminate some of the issues and challenges. Furthermore, there are no nanomedicines yet clinically available for psoriasis. Hence, this review will focus on liposomes encapsulated single and/or combinational therapy to augment treatment outcomes with an emphasis on the effectiveness of combinational therapy within liposomal-based nanoparticulate drug delivery systems to tackle psoriasis and breast cancer. This review will also include an overview of both diseases, challenges in delivering drug therapy and the roles of nanomedicines as well as psoriasis and breast cancer models used for testing therapeutic interventions to pave the way for effective in vivo testing prior to the clinical trials.
Collapse
Affiliation(s)
- Amal Ali Elkordy
- School of Pharmacy and Pharmaceutical Sciences, University of Sunderland, Sunderland SR1 3SD, UK; (A.A.E.); (M.A.)
| | - David Hill
- School of Nursing and Health Sciences, Faculty of Health Sciences and Wellbeing, University of Sunderland, Sunderland SR1 3SD, UK;
| | - Mohamed Attia
- School of Pharmacy and Pharmaceutical Sciences, University of Sunderland, Sunderland SR1 3SD, UK; (A.A.E.); (M.A.)
| | - Cheng Shu Chaw
- School of Pharmacy and Pharmaceutical Sciences, University of Sunderland, Sunderland SR1 3SD, UK; (A.A.E.); (M.A.)
| |
Collapse
|
22
|
Li Y, Wang GQ, Li YB. Therapeutic potential of natural coumarins in autoimmune diseases with underlying mechanisms. Front Immunol 2024; 15:1432846. [PMID: 39544933 PMCID: PMC11560467 DOI: 10.3389/fimmu.2024.1432846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 10/14/2024] [Indexed: 11/17/2024] Open
Abstract
Autoimmune diseases encompass a wide range of disorders characterized by disturbed immunoregulation leading to the development of specific autoantibodies, which cause inflammation and multiple organ involvement. However, its pathogenesis remains unelucidated. Furthermore, the cumulative medical and economic burden of autoimmune diseases is on the rise, making these diseases a ubiquitous global phenomenon that is predicted to further increase in the coming decades. Coumarins, a class of aromatic natural products with benzene and alpha-pyrone as their basic structures, has good therapeutic effects on autoimmune diseases. In this review, we systematically highlighted the latest evidence on coumarins and autoimmune diseases data from clinical and animal studies. Coumarin acts on immune cells and cytokines and plays a role in the treatment of autoimmune diseases by regulating NF-κB, Keap1/Nrf2, MAPKs, JAK/STAT, Wnt/β-catenin, PI3K/AKT, Notch and TGF-β/Smad signaling pathways. This systematic review will provide insight into the interaction of coumarin and autoimmune diseases, and will lay a groundwork for the development of new drugs for autoimmune diseases.
Collapse
Affiliation(s)
- Yan Li
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Neuroimmunology, Shandong Provincial Key Medical and Health Laboratory of Neuroimmunology, Jinan, China
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Guan-qing Wang
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Neuroimmunology, Shandong Provincial Key Medical and Health Laboratory of Neuroimmunology, Jinan, China
| | - Yan-bin Li
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Neuroimmunology, Shandong Provincial Key Medical and Health Laboratory of Neuroimmunology, Jinan, China
| |
Collapse
|
23
|
Xu T, Zhong X, Luo N, Ma W, Hao P. Review of Excessive Cytosolic DNA and Its Role in AIM2 and cGAS-STING Mediated Psoriasis Development. Clin Cosmet Investig Dermatol 2024; 17:2345-2357. [PMID: 39464745 PMCID: PMC11512523 DOI: 10.2147/ccid.s476785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 10/07/2024] [Indexed: 10/29/2024]
Abstract
In psoriasis, keratinocytes are triggered by factors, such as infection or tissue damage, to release DNA, which thereby activates plasmacytoid dendritic cells and macrophages to induce inflammation, thickened epidermis, and parakeratosis. The recognition of double-stranded (ds)DNA facilitates the activation of cytoplasmic DNA sensors absent in melanoma 2 (AIM2) inflammasome assembly and cyclic guanosine monophosphate adenosine monophosphate (cGAMP) synthase (cGAS) - stimulator of interferon gene (STING) pathway, both of which play a pivotal role in mediating the inflammatory response and driving the progression of psoriasis. Additionally, secreted proinflammatory cytokines can stimulate further DNA release from keratinocytes. Notably, the activation of AIM2 and cGAS-STING signaling pathways also mediates programmed cell death, potentially enhancing DNA overproduction. As a result, excessive DNA can activate these pathways, amplifying persistent inflammatory responses that contribute to the maintenance of psoriasis. Several studies have validated that targeting DNA and its mediated activation of AIM2 and cGAS-STING offers promising therapeutic strategies for psoriasis. Here, we postulate a hypothesis that excessive cytosolic DNA can activate AIM2 and cGAS-STING, mediating inflammation and programmed cell death, ultimately fostering DNA accumulation and contributing to the development of psoriasis.
Collapse
Affiliation(s)
- Tongtong Xu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Xiaojing Zhong
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Nana Luo
- Department of Dermatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Wenyi Ma
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Pingsheng Hao
- Department of Dermatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| |
Collapse
|
24
|
Xia S, Li J, Yuan H, Yan W. PIN1‑silencing mitigates keratinocyte proliferation and the inflammatory response in psoriasis by activating mitochondrial autophagy. Exp Ther Med 2024; 28:402. [PMID: 39234585 PMCID: PMC11372252 DOI: 10.3892/etm.2024.12691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/24/2024] [Indexed: 09/06/2024] Open
Abstract
Peptidyl-prolyl cis/trans isomerase, NIMA-interacting 1 (PIN1) has been suggested to be a critical regulator in skin-related diseases. However, the role and molecular mechanism of PIN1 in psoriasis remain unclear. HaCaT cells were stimulated with five cytokines (M5) to induce psoriatic inflammation-like conditions. Reverse transcription-quantitative PCR and western blotting were performed to examine PIN1 expression in M5-induced HaCaT cells. A Cell Counting Kit-8 assay and 5-ethynyl-2'-deoxyuridine staining were employed to examine cell proliferation. Inflammatory factors were evaluated using ELISA kits and western blot analysis. Mitochondrial autophagy was examined by immunofluorescence staining, western blotting and a JC-1 assay. Western blot analysis was adopted to assess the levels of psoriasis marker proteins. PIN1 expression was markedly elevated in M5-induced HaCaT cells. Silencing of PIN1 inhibited M5-induced hyperproliferation and the inflammatory response, while it promoted mitochondrial autophagy in HaCaT cells. The addition of the mitochondrial autophagy inhibitor mitochondrial division inhibitor-1 reversed the effects of PIN1 interference on proliferation, the inflammatory response and mitochondrial autophagy in M5-induced HaCaT cells. The present study revealed that PIN1 inhibition protected HaCaT cells against M5-induced hyperproliferation and inflammatory injury through the activation of mitochondrial autophagy.
Collapse
Affiliation(s)
- Shuang Xia
- Department of Dermatology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210001, P.R. China
| | - Jin Li
- Department of Dermatology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210001, P.R. China
| | - Hongshan Yuan
- Department of Dermatology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210001, P.R. China
| | - Wenliang Yan
- Department of Dermatology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210001, P.R. China
| |
Collapse
|
25
|
Lv Y, Yang L, Mao Z, Zhou M, Zhu B, Chen Y, Ding Z, Zhou F, Ye Y. Tetrastigma hemsleyanum polysaccharides alleviate imiquimod-induced psoriasis-like skin lesions in mice by modulating the JAK/STAT3 signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 133:155917. [PMID: 39153275 DOI: 10.1016/j.phymed.2024.155917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 05/03/2024] [Accepted: 06/12/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND The pathogenesis of psoriasis involves the interaction between keratinocytes and immune cells, leading to immune imbalance. While most current clinical treatment regimens offer rapid symptom relief, they often come with significant side effects. Tetrastigma hemsleyanum polysaccharides (THP), which are naturally nontoxic, possess remarkable immunomodulatory and anti-inflammatory properties. METHODS In this study, we utilized an imiquimod (IMQ)-induced psoriasis mouse model and a LPS/IL-6-stimulated HaCaT model. The potential and mechanism of action of THP in psoriasis treatment were assessed through methods including Psoriasis Area Severity Index (PASI) scoring, histopathology, flow cytometry, immunoblotting, and reverse transcription-polymerase chain reaction (RT-PCR). RESULTS Percutaneous administration of THP significantly alleviated symptoms and manifestations in IMQ-induced psoriatic mice, including improvements in psoriatic skin appearance (erythema, folds, scales), histopathological changes, decreased PASI scores, and spleen index. Additionally, THP suppressed abnormal proliferation of Th17 cells and excessive proliferation and inflammation of keratinocytes. Furthermore, THP exhibited the ability to regulate the JAK/STAT3 signaling pathway. CONCLUSION Findings from in vivo and in vitro studies suggest that THP can inhibit abnormal cell proliferation and excessive inflammation in lesional skin, balance Th17 immune cells, and disrupt the interaction between keratinocytes and Th17 cells. This mechanism of action may involve the modulation of the JAK/STAT3 signaling pathway, offering potential implications for psoriasis treatment.
Collapse
Affiliation(s)
- Yishan Lv
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Liu Yang
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Zian Mao
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Mingyuan Zhou
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Bingqi Zhu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Yuchi Chen
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Zhishan Ding
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Fangmei Zhou
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.
| | - Yujian Ye
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China; Department of Dermatology, The Third People's Hospital of Hangzhou, Hangzhou, Zhejiang, 310009, China.
| |
Collapse
|
26
|
Gao Y, Zhan W, Guo D, Lin H, Farooq MA, Jin C, Zhang L, Zhou Y, Yao J, Duan Y, He C, Jiang S, Jiang W. GPR97 depletion aggravates imiquimod-induced psoriasis pathogenesis via amplifying IL-23/IL-17 axis signal pathway. Biomed Pharmacother 2024; 179:117431. [PMID: 39260323 DOI: 10.1016/j.biopha.2024.117431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/05/2024] [Accepted: 09/05/2024] [Indexed: 09/13/2024] Open
Abstract
Skin psoriasis is defined as receiving external stimulation to activate skin dendritic cells (DCs) which can release interleukin 23 (IL-23) to interlink the innate and adaptive immunity as well as induce T helper 17 (Th17) cell differentiation leading to elevated production of interleukin 17 (IL-17) for keratinocytes over production. This autoimmune loop in psoriasis pathogenesis is influenced by G protein-coupled receptor (GPCR) signalling transduction, and in particular, function of adhesion molecule GPR97 in psoriasis endures to be utterly addressed. In this research, our team allocated GPR97 depletion (GPR97-/-), GPR97 conditional depletion on dendritic cell (DC-cKO), and keratin 14-conditional knockout (K14-cKO) mice models to explore the function of GPR97 which influences keratinocytes and skin immunity. It was found that significantly aggravated psoriasis-like lesion in GPR97-/- mice. In addition, hyperproliferative keratinocytes as well as accumulation of DCs and Th17 cells were detected in imiquimod (IMQ)-induced GPR97-/- mice, which was consistent with the results in DC-cKO and K14-cKO psoriasis model. Additional investigations indicated that beclomethasone dipropionate (BDP), an agonist of GPR97, attenuated the psoriasis-like skin disease and restricted HaCaT cells abnormal proliferation as well as Th17 cells differentiation. Particularly, we found that level of NF-κB p65 was increased in GPR97-/- DCs and BDP could inhibit p65 activation in DCs. Role of GPR97 is indispensable and this adhesion receptor may affect immune cell enrichment and function in skin and alter keratinocytes proliferation as well as differentiation in psoriasis.
Collapse
Affiliation(s)
- Yaoxin Gao
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China; Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Weirong Zhan
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Dandan Guo
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Haizhen Lin
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Muhammad Asad Farooq
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Chenxu Jin
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Li Zhang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Ying Zhou
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jie Yao
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yixin Duan
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Cong He
- Laboratory of Cancer Genomics and Biology, Department of Urology and Institute of Translational Medicine. Shanghai General Hospital Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Shuai Jiang
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute Fudan University, Shanghai 200438, China
| | - Wenzheng Jiang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
27
|
Park S, Jang J, Kim HJ, Jung Y. Unveiling multifaceted roles of myeloid innate immune cells in the pathogenesis of psoriasis. Mol Aspects Med 2024; 99:101306. [PMID: 39191143 DOI: 10.1016/j.mam.2024.101306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/11/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024]
Abstract
Psoriasis is a chronic inflammatory skin disease occurring worldwide. Initially viewed as a keratinocyte disorder, psoriasis is now recognized to involve a complex interplay between genetic predisposition, environmental triggers, and a dysregulated immune system, with a significant role of CD4+ T cells producing IL-17. Recent genetic studies have identified susceptibility loci that underscore the importance of innate immune responses, particularly the roles of myeloid cells, such as dendritic cells, macrophages, and neutrophils. These cells initiate and sustain inflammation through cytokine production triggered by external stimuli. They influence keratinocyte behavior and interact with adaptive immune cells. Recent techniques have further revealed the heterogeneity of myeloid cells in psoriatic lesions, highlighting the contributions of less-studied subsets, such as eosinophils and mast cells. This review examines the multifaceted roles of myeloid innate immune cells in psoriasis, emphasizing their functional diversity in promoting psoriatic inflammation. It also describes current treatment targeting myeloid innate immune cells and explores potential new therapeutic strategies based on the functional characteristics of these subsets. Future research should focus on the detailed characterization of myeloid subsets and their interactions to develop targeted treatments that address the complex immune landscape of psoriasis.
Collapse
Affiliation(s)
- Sohyeon Park
- Department of Health Science and Technology, Gachon Advanced Institute for Health Science & Technology, Gachon University, Incheon, 21999, South Korea
| | - Jinsun Jang
- Department of Health Science and Technology, Gachon Advanced Institute for Health Science & Technology, Gachon University, Incheon, 21999, South Korea
| | - Hee Joo Kim
- Department of Dermatology, Gachon Gil Medical Center, College of Medicine, Gachon University, Incheon, 21565, South Korea; Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 21999, South Korea.
| | - YunJae Jung
- Department of Health Science and Technology, Gachon Advanced Institute for Health Science & Technology, Gachon University, Incheon, 21999, South Korea; Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 21999, South Korea; Department of Microbiology, College of Medicine, Gachon University, Incheon, 21999, South Korea.
| |
Collapse
|
28
|
Zhao Z, Cheng J, Hou Q, Zhu J, Chen T, Lu S, Wu G, Lv H, Wu X. Role of FOXM1 and AURKB in regulating keratinocyte function in psoriasis. Open Med (Wars) 2024; 19:20241049. [PMID: 39381423 PMCID: PMC11459273 DOI: 10.1515/med-2024-1049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 10/10/2024] Open
Abstract
Objective This study investigated the effect of forkhead box M1 (FOXM1) and Aurora kinase B (AURKB) on the epidermal function of keratinocytes. Methods Bioinformatics analysis was used to analyze the co-expression network of FOXM1 and its correlation with AURKB. The expression of FOXM1 and AURKB in tissues and cells was detected by immunofluorescence and real-time quantitative polymerase chain reaction, respectively. HaCaT cells were transfected with si-FOXM1 to knock down FOXM1. Cell proliferation was detected by cell counting kit-8 assay. Cell migration was detected by scratch assay. Cell invasion was detected by the Transwell invasion assay. Cell apoptosis and cell cycle were detected by flow cytometry. Results FOXM1 and AURKB were positively correlated and highly expressed in psoriatic lesions. After transfection of si-FOXM1, the expression levels of FOXM1 and AURKB genes significantly decreased. The proliferation of HaCaT cells decreased, the apoptosis rate increased significantly, and the proportion of cells in the G1 phase increased significantly, while the proportion of cells in the S phase decreased significantly. The scratch closure of HaCaT cells was reduced, and the number of cell invasions decreased significantly. Conclusion FOXM1 and AURKB may affect the progression of psoriasis by regulating the proliferation, cell cycle, migration, and invasion of keratinocytes.
Collapse
Affiliation(s)
- Zhaofeng Zhao
- Central Laboratory, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, 200031, P.R. China
| | - Jie Cheng
- Department of Urology, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, 200031, P.R. China
| | - Qiang Hou
- Department of Dermatology, Xuhui District Dahua Hospital,
Shanghai, 200237, P.R. China
| | - Jian Zhu
- Department of Dermatology, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, 200031, P.R. China
| | - Tu Chen
- Department of Dermatology, Changqiao Street Community Health Service Center,
Shanghai, 200231, P.R. China
| | - Sheng Lu
- Department of Dermatology, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, 200031, P.R. China
| | - Guiju Wu
- Department of Dermatology, Xuhui District Dahua Hospital,
Shanghai, 200237, P.R. China
| | - Hongli Lv
- Department of Dermatology, Jia Ding Central Hospital,
No. 01, Dingcheng Road, Jiading District, Shanghai, 201899, P.R. China
| | - Xiujuan Wu
- Department of Dermatology, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, No. 366, Longchuan North Road, Xuhui District, Shanghai, 200031, P.R. China
| |
Collapse
|
29
|
Lee JE, Kim M, Ochiai S, Kim SH, Yeo H, Bok J, Kim J, Park M, Kim D, Lamiable O, Lee M, Kim MJ, Kim HY, Ronchese F, Kwon SW, Lee H, Kim TG, Chung Y. Tonic type 2 immunity is a critical tissue checkpoint controlling autoimmunity in the skin. Cell Rep 2024; 43:114364. [PMID: 38900635 DOI: 10.1016/j.celrep.2024.114364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 04/26/2024] [Accepted: 05/31/2024] [Indexed: 06/22/2024] Open
Abstract
Immunoregulatory mechanisms established in the lymphoid organs are vital for preventing autoimmunity. However, the presence of similar mechanisms in non-lymphoid tissues remains unclear. Through transcriptomic and lipidomic analyses, we find a negative association between psoriasis and fatty acid metabolism, as well as Th2 signature. Homeostatic expression of liver X receptor (LXR) and peroxisome proliferator-activated receptor gamma (PPARγ) is essential for maintaining fatty acid metabolism and for conferring resistance to psoriasis in mice. Perturbation of signal transducer and activator of transcription 6 (STAT6) diminishes the homeostatic levels of LXR and PPARγ. Furthermore, mice lacking STAT6, interleukin 4 receptor alpha (IL-4Rα), or IL-13, but not IL-4, exhibit increased susceptibility to psoriasis. Under steady state, innate lymphoid cells (ILCs) are the primary producers of IL-13. In human skin, inhibiting tonic type 2 immunity exacerbates psoriasis-like inflammation and IL-17A, while activating LXR or PPARγ inhibits them. Hence, we propose that tonic type 2 immunity, driven by IL-13-producing ILCs, represents a crucial tissue checkpoint that represses autoimmunity and maintains lipid homeostasis in the skin.
Collapse
Affiliation(s)
- Jeong-Eun Lee
- Institute of Pharmaceutical Sciences and College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Mina Kim
- Institute of Pharmaceutical Sciences and College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Sotaro Ochiai
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Sung-Hee Kim
- Department of Dermatology, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyeonuk Yeo
- Institute of Pharmaceutical Sciences and College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Jahyun Bok
- Institute of Pharmaceutical Sciences and College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Jiyeon Kim
- Institute of Pharmaceutical Sciences and College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Miso Park
- Institute of Pharmaceutical Sciences and College of Pharmacy, Seoul National University, Seoul, Republic of Korea; College of Pharmacy, Kangwon National University, Chuncheon, Republic of Korea
| | - Daehong Kim
- Institute of Pharmaceutical Sciences and College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | | | - Myunggyo Lee
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, Republic of Korea
| | - Min-Ju Kim
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, Republic of Korea
| | - Hye Young Kim
- College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Franca Ronchese
- Malaghan Institute of Medical Research, Wellington, New Zealand.
| | - Sung Won Kwon
- Institute of Pharmaceutical Sciences and College of Pharmacy, Seoul National University, Seoul, Republic of Korea.
| | - Haeseung Lee
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, Republic of Korea.
| | - Tae-Gyun Kim
- Department of Dermatology, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Yeonseok Chung
- Institute of Pharmaceutical Sciences and College of Pharmacy, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
30
|
Xiao X, Qiu T, Cheng Q, Wang W, Fan C, Zuo F. Uridine phosphorylase-1 promotes cell viability and cell-cycle progression in human epidermal keratinocytes via the glycolytic pathway. Clin Exp Pharmacol Physiol 2024; 51:e13874. [PMID: 38797519 DOI: 10.1111/1440-1681.13874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/08/2024] [Accepted: 04/22/2024] [Indexed: 05/29/2024]
Abstract
Glycolysis is vital for the excessive proliferation of keratinocytes in psoriasis, and uridine phosphorylase-1 (UPP1) functions as an enhancer of cancer cell proliferation. However, little is known about whether UPP1 promotes keratinocyte proliferation and accelerates psoriasis development. This study revealed that UPP1 facilitates cell viability and cell-cycle progression in human epidermal keratinocytes (HEKs) by modulating the glycolytic pathway. Bioinformatics analysis of UPP1 gene expression and its correlation with the Reactome revealed that UPP1 mRNA expression, cell-cycle progression, the interleukin-6 (IL-6)/Janus kinase (JAK)/signal transducer and activator of transcription 3 (STAT3) pathway and glycolysis were positively associated with psoriasis. Cell proliferation, the cell cycle and glycolysis were evaluated after UPP1 was silenced or overexpressed. The results showed that UPP1 overexpression increased cell proliferation, cell-cycle progression and glycolysis, which was contrary to the effects of UPP1 silencing. However, the STAT3 inhibitor diminished UPP1 expression because STAT3 can bind to the UPP1 promoter. In conclusion, UPP1 was significantly activated by the IL-6/STAT3 pathway and could modulate glycolysis to regulate cell proliferation and cell-cycle progression in keratinocytes during the development of psoriasis.
Collapse
Affiliation(s)
- Xiaoqing Xiao
- Department of Dermatology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Tianwen Qiu
- Department of Dermatology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qiong Cheng
- Department of Dermatology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wenyu Wang
- Department of Dermatology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chunyan Fan
- Department of Dermatology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Fuguo Zuo
- Department of Dermatology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
31
|
Yang JS, Liu TY, Lu HF, Tsai SC, Liao WL, Chiu YJ, Wang YW, Tsai FJ. Genome‑wide association study and polygenic risk scores predict psoriasis and its shared phenotypes in Taiwan. Mol Med Rep 2024; 30:115. [PMID: 38757301 PMCID: PMC11106694 DOI: 10.3892/mmr.2024.13239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 04/17/2024] [Indexed: 05/18/2024] Open
Abstract
Psoriasis is a chronic inflammatory dermatological disease, and there is a lack of understanding of the genetic factors involved in psoriasis in Taiwan. To establish associations between genetic variations and psoriasis, a genome‑wide association study was performed in a cohort of 2,248 individuals with psoriasis and 67,440 individuals without psoriasis. Using the ingenuity pathway analysis software, biological networks were constructed. Human leukocyte antigen (HLA) diplotypes and haplotypes were analyzed using Attribute Bagging (HIBAG)‑R software and chi‑square analysis. The present study aimed to assess the potential risks associated with psoriasis using a polygenic risk score (PRS) analysis. The genetic association between single nucleotide polymorphisms (SNPs) in psoriasis and various human diseases was assessed by phenome‑wide association study. METAL software was used to analyze datasets from China Medical University Hospital (CMUH) and BioBank Japan (BBJ). The results of the present study revealed 8,585 SNPs with a significance threshold of P<5x10‑8, located within 153 genes strongly associated with the psoriasis phenotype, particularly on chromosomes 5 and 6. This specific genomic region has been identified by analyzing the biological networks associated with numerous pathways, including immune responses and inflammatory signaling. HLA genotype analysis indicated a strong association between HLA‑A*02:07 and HLA‑C*06:02 in a Taiwanese population. Based on our PRS analysis, the risk of psoriasis associated with the SNPs identified in the present study was quantified. These SNPs are associated with various dermatological, circulatory, endocrine, metabolic, musculoskeletal, hematopoietic and infectious diseases. The meta‑analysis results indicated successful replication of a study conducted on psoriasis in the BBJ. Several genetic loci are significantly associated with susceptibility to psoriasis in Taiwanese individuals. The present study contributes to our understanding of the genetic determinants that play a role in susceptibility to psoriasis. Furthermore, it provides valuable insights into the underlying etiology of psoriasis in the Taiwanese community.
Collapse
Affiliation(s)
- Jai-Sing Yang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404327, Taiwan, R.O.C
| | - Ting-Yuan Liu
- Million-Person Precision Medicine Initiative, Department of Medical Research, China Medical University Hospital, Taichung 404327, Taiwan, R.O.C
| | - Hsing-Fang Lu
- Million-Person Precision Medicine Initiative, Department of Medical Research, China Medical University Hospital, Taichung 404327, Taiwan, R.O.C
| | - Shih-Chang Tsai
- Department of Biological Science and Technology, China Medical University, Taichung 406040, Taiwan, R.O.C
| | - Wen-Ling Liao
- Graduate Institute of Integrated Medicine, China Medical University, Taichung 404333, Taiwan, R.O.C
- Center for Personalized Medicine, China Medical University Hospital, Taichung 404327, Taiwan, R.O.C
| | - Yu-Jen Chiu
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Taipei Veterans General Hospital, Taipei 112201, Taiwan, R.O.C
- Department of Surgery, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan, R.O.C
| | - Yu-Wen Wang
- Million-Person Precision Medicine Initiative, Department of Medical Research, China Medical University Hospital, Taichung 404327, Taiwan, R.O.C
| | - Fuu-Jen Tsai
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 404333, Taiwan, R.O.C
- Department of Pediatric Genetics, China Medical University Children's Hospital, Taichung 404327, Taiwan, R.O.C
- Department of Medical Genetics, China Medical University Hospital, Taichung 404327, Taiwan, R.O.C
| |
Collapse
|
32
|
Wu X, Song J, Zhang Y, Kuai L, Liu C, Ma X, Li B, Zhang Z, Luo Y. Exploring the role of autophagy in psoriasis pathogenesis: Insights into sustained inflammation and dysfunctional keratinocyte differentiation. Int Immunopharmacol 2024; 135:112244. [PMID: 38776847 DOI: 10.1016/j.intimp.2024.112244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/08/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
Psoriasis is a common and prevalent chronic papulosquamous cutaneous disorder characterized by sustained inflammation, uncontrolled keratinocyte proliferation, dysfunctional differentiation, and angiogenesis. Autophagy, an intracellular catabolic process, can be induced in response to nutrient stress. It entails the degradation of cellular constituents through the lysosomal machinery, and its association with psoriasis has been well-documented. Nevertheless, there remains a notable dearth of research concerning the involvement of autophagy in the pathogenesis of psoriasis within human skin. This review provides a comprehensive overview of autophagy in psoriasis pathogenesis, focusing on its involvement in two key pathological manifestations: sustained inflammation and uncontrolled keratinocyte proliferation and differentiation. Additionally, it discusses potential avenues for disease management.
Collapse
Affiliation(s)
- Xinxin Wu
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai 200443, China
| | - Jiankun Song
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai 200443, China
| | - Ying Zhang
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai 200443, China
| | - Le Kuai
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai 201203, China
| | - Changya Liu
- Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China
| | - Xin Ma
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai 200443, China; Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Bin Li
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai 200443, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhan Zhang
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Ying Luo
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
33
|
Joo K, Karsulovic C, Sore M, Hojman L. Pivotal Role of mTOR in Non-Skin Manifestations of Psoriasis. Int J Mol Sci 2024; 25:6778. [PMID: 38928483 PMCID: PMC11204213 DOI: 10.3390/ijms25126778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/30/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Psoriasis is a chronic inflammatory condition affecting 2% of the Western population. It includes diverse manifestations influenced by genetic predisposition, environmental factors, and immune status. The sustained activation of mTOR is a key element in psoriasis pathogenesis, leading to an uncontrolled proliferation of cytokines. Furthermore, mTOR activation has been linked with the transition from psoriasis to non-skin manifestations such as psoriatic arthritis and cardiovascular events. While therapies targeting pro-inflammatory cytokines have shown efficacy, additional pathways may offer therapeutic potential. The PI3K/Akt/mTOR pathway, known for its role in cell growth, proliferation, and metabolism, has emerged as a potential therapeutic target in psoriasis. This review explores the relevance of mTOR in psoriasis pathophysiology, focusing on its involvement in cutaneous and atheromatous plaque proliferation, psoriatic arthritis, and cardiovascular disease. The activation of mTOR promotes keratinocyte and synovial cell proliferation, contributing to plaque formation and joint inflammation. Moreover, mTOR activation may exacerbate the cardiovascular risk by promoting pro-inflammatory cytokine production and dysregulation lipid and glucose metabolism. The inhibition of mTOR has shown promise in preclinical studies, reducing skin inflammation and plaque proliferation. Furthermore, mTOR inhibition may mitigate cardiovascular risk by modulating cholesterol metabolism and attenuating atherosclerosis progression. Understanding the role of mTOR in psoriasis, psoriatic arthritis, and cardiovascular disease provides insight into the potential treatment avenues and sheds light on the complex interplay of the immune and metabolic pathways in these conditions.
Collapse
Affiliation(s)
- Ka Joo
- Facultad de Medicina Clínica Alemana de Santiago, Universidad del Desarrollo, Santiago P.O. Box 7630000, Chile;
- Investigation in Dermatology and Autoimmunity—IDeA Lab, Instituto de Ciencias e Innovación en Medicina, Universidad del Desarrollo, Santiago P.O. Box 7630000, Chile; (C.K.); (M.S.)
| | - Claudio Karsulovic
- Investigation in Dermatology and Autoimmunity—IDeA Lab, Instituto de Ciencias e Innovación en Medicina, Universidad del Desarrollo, Santiago P.O. Box 7630000, Chile; (C.K.); (M.S.)
- Rheumatology Section, Internal Medicine Department, Facultad de Medicina Clínica Alemana de Santiago, Universidad del Desarrollo, Santiago P.O. Box 7630000, Chile
| | - Milisa Sore
- Investigation in Dermatology and Autoimmunity—IDeA Lab, Instituto de Ciencias e Innovación en Medicina, Universidad del Desarrollo, Santiago P.O. Box 7630000, Chile; (C.K.); (M.S.)
| | - Lia Hojman
- Investigation in Dermatology and Autoimmunity—IDeA Lab, Instituto de Ciencias e Innovación en Medicina, Universidad del Desarrollo, Santiago P.O. Box 7630000, Chile; (C.K.); (M.S.)
- Dermatology Section, Surgery Department, Facultad de Medicina Clínica Alemana de Santiago, Universidad del Desarrollo, Santiago P.O. Box 7630000, Chile
| |
Collapse
|
34
|
Scala E, Mercurio L, Albanesi C, Madonna S. The Intersection of the Pathogenic Processes Underlying Psoriasis and the Comorbid Condition of Obesity. Life (Basel) 2024; 14:733. [PMID: 38929716 PMCID: PMC11204971 DOI: 10.3390/life14060733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/20/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
In the past decade, our understanding of psoriasis pathogenesis has made significant steps forward, leading to the development of multiple game-changing therapies. While psoriasis primarily affects the skin, it is increasingly recognized as a systemic disease that can have effects beyond the skin. Obesity is associated with more severe forms of psoriasis and can potentially worsen the systemic inflammation and metabolic dysfunction seen in psoriatic patients. The exact mechanisms underlying the link between these two conditions are not fully understood, but it is believed that chronic inflammation and immune dysregulation play a role. In this review, we examine the existing body of knowledge regarding the intersection of pathogenic processes responsible for psoriasis and obesity. The ability of biological therapies to reduce systemic and obesity-related inflammation in patients with psoriasis will be also discussed.
Collapse
|
35
|
Wei J, Zhang J, Hu F, Zhang W, Wu Y, Liu B, Lu Y, Li L, Han L, Lu C. Anti-psoriasis effect of 18β-glycyrrhetinic acid by breaking CCL20/CCR6 axis through its vital active group targeting GUSB/ATF2 signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155524. [PMID: 38552435 DOI: 10.1016/j.phymed.2024.155524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 02/02/2024] [Accepted: 03/07/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Psoriasis is an immune-mediated chronic inflammatory skin disease. Current research suggests that the long-term persistence and recurrence of psoriasis are closely related to the feedback loop formed between keratinocytes and immune cells, especially in Th 17 or DC cells expressing CCR6. CCL20 is the ligand of CCR6. Therefore, drugs that block the expression of CCL20 or CCR6 may have a certain therapeutic effect on psoriasis. Glycyrrhetinic acid (GA) is the main active ingredient of the plant drug licorice and is often used to treat autoimmune diseases, including psoriasis. However, its mechanism of action is still unclear. METHODS Psoriasis like skin lesion model was established by continuously applying imiquimod on the back skin of normal mice and CCR6-/- mice for 7 days. The therapeutic and preventive effects of glycyrrhetinic acid (GA) on the model were observed and compared. The severity of skin injury is estimated through clinical PASI scores and histopathological examination. qRT-PCR and multiple cytoline assay were explored to detect the expression levels of cytokines in animal dorsal skin lesions and keratinocyte line HaCaT cells, respectively. The dermis and epidermis of the mouse back were separated for the detection of CCL20 expression. Transcription factor assay was applied to screen, and luciferase activity assay to validate transcription factors regulated by GA. Technology of surface plasmon laser resonance with LC-MS (SPR-MS), molecular docking, and enzyme activity assay were used to identified the target proteins for GA. Finally, we synthesized different derivatives of 18beta-GA and compared their effects, as well as glycyrrhetinic acid (GL), on the skin lesion of imiquimod-induced mice to evaluate the active groups of 18beta-GA. RESULTS 18β-glycyrrhetinic acid (GA) improved IMQ-induced psoriatic lesions, and could specifically reduce the chemokine CCL20 level of the epidermis in lesion area, especially in therapeutic administration manner. The process was mainly regulated by transcription factor ATF2 in the keratinocytes. In addition, GUSB was identified as the primary target of 18βGA. Our findings indicated that the subject on molecular target research of glycyrrhizin should be glycyrrhetinic acid (GA) instead of glycyrrhizic acid (GL), because GL showed little activity in vitro or in vivo. Apart from that, α, β, -unsaturated carbonyl in C11/12 positions was crucial or unchangeable to its activity of 18βGA, while proper modification of C3 or C30 position of 18βGA may vastly increase its activity. CONCLUSION Our research indicates that 18βGA exerted its anti-psoriasis effect mainly by suppressing ATF2 and downstream molecule CCL20 predominately through α, β, -unsaturated carbonyl at C11/12 position binding to GUSB in the keratinocytes, and then broke the feedback loop between keratinocytes and CCR6-expressing immune cells. GA has more advantages than GL in the external treatment of psoriasis. A highlight of this study is to investigate the influence of special active groups on the pharmacological action of a natural product, inspired by the molecular docking result.
Collapse
Affiliation(s)
- Jianan Wei
- Research Team of Molecular and Systems Biology of Chinese medicine, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510120, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Junhong Zhang
- The Second Clinical School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Fengju Hu
- The Second Clinical School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Wenjuan Zhang
- The Second Clinical School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Yunshan Wu
- Laboratory of Chinese Medicine Quality Standard, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Bo Liu
- Laboratory of Chinese Medicine Quality Standard, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Yue Lu
- Research Team of Molecular and Systems Biology of Chinese medicine, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Li Li
- Research Team of Molecular and Systems Biology of Chinese medicine, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Ling Han
- Research Team of Molecular and Systems Biology of Chinese medicine, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510120, China; State Key laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou 510120, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou 510120, China.
| | - Chuanjian Lu
- State Key laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou 510120, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou 510120, China.
| |
Collapse
|
36
|
Li M, Yu W, Liu Z, Liu S. CD169 + Skin Macrophages Function as a Specialized Subpopulation in Promoting Psoriasis-like Skin Disease in Mice. Int J Mol Sci 2024; 25:5705. [PMID: 38891893 PMCID: PMC11171985 DOI: 10.3390/ijms25115705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/15/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Skin macrophages are critical to maintain and restore skin homeostasis. They serve as major producers of cytokines and chemokines in the skin, participating in diverse biological processes such as wound healing and psoriasis. The heterogeneity and functional diversity of macrophage subpopulations endow them with multifaceted roles in psoriasis development. A distinct subpopulation of skin macrophages, characterized by high expression of CD169, has been reported to exist in both mouse and human skin. However, its role in psoriasis remains unknown. Here, we report that CD169+ macrophages exhibit increased abundance in imiquimod (IMQ) induced psoriasis-like skin lesions. Specific depletion of CD169+ macrophages in CD169-ditheria toxin receptor (CD169-DTR) mice inhibits IMQ-induced psoriasis, resulting in milder symptoms, diminished proinflammatory cytokine levels and reduced proportion of Th17 cells within the skin lesions. Furthermore, transcriptomic analysis uncovers enhanced activity in CD169+ macrophages when compared with CD169- macrophages, characterized by upregulated genes that are associated with cell activation and cell metabolism. Mechanistically, CD169+ macrophages isolated from IMQ-induced skin lesions produce more proinflammatory cytokines and exhibit enhanced ability to promote Th17 cell differentiation in vitro. Collectively, our findings highlight the crucial involvement of CD169+ macrophages in psoriasis development and offer novel insights into the heterogeneity of skin macrophages in the context of psoriasis.
Collapse
Affiliation(s)
| | | | - Zhiduo Liu
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (M.L.); (W.Y.)
| | - Siming Liu
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (M.L.); (W.Y.)
| |
Collapse
|
37
|
Zhang M, Niu Z, Huang Q, Han L, Du J, Liang J, Cheng Y, Cao R, Yawalkar N, Zhang Z, Yan K. Identification of an exosomal miRNA-mRNA regulatory network contributing to methotrexate efficacy. Int Immunopharmacol 2024; 135:112280. [PMID: 38776848 DOI: 10.1016/j.intimp.2024.112280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 05/05/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
OBJECTIVE Methotrexate (MTX) is an economic and effective medicine treatment for psoriasis. Extracellular vesicle (EV) miRNA biomarkers related to its efficiency have been identified in various diseases. Whether certain miRNA profiles are associated with psoriasis treatment is unknown. In order to determine specific miRNA biomarkers for MTX effectiveness prediction and the severity of psoriasis, our study looked at the variations in circulating EV miRNA profiles before and after MTX therapy. METHODS Plasma EV isolation and next-generation sequencing were performed to identify differentially expressed EV miRNAs between GRs (n = 14) and NRs (n = 6). Univariate and multiple linear regression analyses were performed to evaluate the correlation between PASI scores and miRNA expression levels. RESULTS 15 miRNAs out of a total profile of 443 miRNAs were substantially different between GRs and NRs at baseline, 4 of them (miR-199a-5p, miR-195-5p, miR-196a-5p, and miR-1246) have the potential to distinguish between GRs and NRs [area under the curve (AUC) ≥ 0.70, all P < 0.05]. KEGG pathway analyses revealed differentially expressed miRNAs to potentially target immune-related pathways. SIRT1 was discovered to be a target of miR-199a-5p and involved in MAPK signaling pathway. MiR-191-5p and miR-21-5p expression levels have been discovered to positively correlate with PASI scores[P < 0.05]. CONCLUSION This pilot investigation found that miR-199a-5p, miR-195-5p, miR-196a-5p, and miR-1246 might be prospective biomarkers to predict the efficacy of MTX, and that miR-191-5p and miR-21-5p were correlated with psoriasis severity. Five of them previously reported to be involved in MAPK signaling pathway, indicating a potential role of MTX in delaying the progression of psoriatic inflammation.
Collapse
Affiliation(s)
- Mengmeng Zhang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhenmin Niu
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai and Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Qiong Huang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Ling Han
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Juan Du
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jun Liang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yanwen Cheng
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Ruoshui Cao
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Nikhil Yawalkar
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Zhenghua Zhang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China.
| | - Kexiang Yan
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
38
|
Yao Y, Zeng L, Huang X, Zhang J, Zhang G, Wang L. Role of co‑inhibitory molecules in the treatment of psoriasis (Review). Exp Ther Med 2024; 27:209. [PMID: 38590557 PMCID: PMC11000047 DOI: 10.3892/etm.2024.12497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 01/24/2024] [Indexed: 04/10/2024] Open
Abstract
Psoriasis is a common chronic inflammatory skin disease characterized by abnormal activation and infiltration of T-cells and excessive proliferation of keratinocytes (KCs). Its pathogenesis is complex and frequently accompanied by the imbalance of T-cell subpopulations, contributing to its development and further exacerbation. Therefore, the immune system, especially T-cells, is mainly involved in the pathogenesis of psoriasis. While T-cell activation not only requires the first recognition of T-cell receptor and major histocompatibility complex peptide, co-stimulatory and co-inhibitory pathways are reported to promote or dampen T-cell responses through a variety of mechanisms. In recent years, immuno-related agents have been applied in the treatment of numerous clinical diseases, including psoriasis, and are starting to show promising and potential therapy prospects in autoimmune skin diseases. The present review outlined the role of co-inhibitory molecules in the pathogenesis of psoriasis and their application in the treatment of psoriasis.
Collapse
Affiliation(s)
- Yue Yao
- Department of Dermatology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050031, P.R. China
- Candidate Branch of National Clinical Research Center for Skin Diseases, Shijiazhuang, Hebei 050031, P.R. China
| | - Linxi Zeng
- Department of Dermatology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050031, P.R. China
- Candidate Branch of National Clinical Research Center for Skin Diseases, Shijiazhuang, Hebei 050031, P.R. China
| | - Xin Huang
- Department of Dermatology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050031, P.R. China
- Candidate Branch of National Clinical Research Center for Skin Diseases, Shijiazhuang, Hebei 050031, P.R. China
| | - Jinfang Zhang
- Department of Dermatology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050031, P.R. China
- Candidate Branch of National Clinical Research Center for Skin Diseases, Shijiazhuang, Hebei 050031, P.R. China
| | - Guoqiang Zhang
- Department of Dermatology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050031, P.R. China
- Candidate Branch of National Clinical Research Center for Skin Diseases, Shijiazhuang, Hebei 050031, P.R. China
| | - Ling Wang
- Department of Orthopedic Oncology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| |
Collapse
|
39
|
Zhang Y, Lu Q. Immune cells in skin inflammation, wound healing, and skin cancer. J Leukoc Biol 2024; 115:852-865. [PMID: 37718697 DOI: 10.1093/jleuko/qiad107] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/22/2023] [Accepted: 09/05/2023] [Indexed: 09/19/2023] Open
Abstract
Given the self-evident importance of cutaneous immunity in the maintenance of body-surface homeostasis, disturbance of the steady-state skin is inextricably intertwined with dysfunction in cutaneous immunity. It is often overlooked by people that skin, well-known as a solid physical barrier, is also a strong immunological barrier, considering the abundant presence of immune cells including lymphocytes, granulocytes, dendritic cells, and macrophages. What's more, humoral immune components including cytokines, immunoglobulins, and antimicrobial peptides are also rich in the skin. This review centers on skin inflammation (acute and chronic, infection and aseptic inflammation), wound healing, and skin cancer to elucidate the elaborate network of immune cells in skin diseases.
Collapse
Affiliation(s)
- Yuhan Zhang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Jiangwangmiao Street No. 12, Xuanwu, Nanjing 210042, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Jiangwangmiao Street No. 12, Xuanwu, Nanjing 210042, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China
| | - Qianjin Lu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Jiangwangmiao Street No. 12, Xuanwu, Nanjing 210042, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Jiangwangmiao Street No. 12, Xuanwu, Nanjing 210042, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China
| |
Collapse
|
40
|
Tubau-Juni N, Hontecillas R, Leber AJ, Alva SS, Bassaganya-Riera J. Treating Autoimmune Diseases With LANCL2 Therapeutics: A Novel Immunoregulatory Mechanism for Patients With Ulcerative Colitis and Crohn's Disease. Inflamm Bowel Dis 2024; 30:671-680. [PMID: 37934790 DOI: 10.1093/ibd/izad258] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Indexed: 11/09/2023]
Abstract
Lanthionine synthetase C-like 2 (LANCL2) therapeutics have gained increasing recognition as a novel treatment modality for a wide range of autoimmune diseases. Genetic ablation of LANCL2 in mice results in severe inflammatory phenotypes in inflammatory bowel disease (IBD) and lupus. Pharmacological activation of LANCL2 provides therapeutic efficacy in mouse models of intestinal inflammation, systemic lupus erythematosus, rheumatoid arthritis, multiple sclerosis, and psoriasis. Mechanistically, LANCL2 activation enhances regulatory CD4 + T cell (Treg) responses and downregulates effector responses in the gut. The stability and suppressive capacities of Treg cells are enhanced by LANCL2 activation through engagement of immunoregulatory mechanisms that favor mitochondrial metabolism and amplify IL-2/CD25 signaling. Omilancor, the most advanced LANCL2 immunoregulatory therapeutic in late-stage clinical development, is a phase 3 ready, first-in-class, gut-restricted, oral, once-daily, small-molecule therapeutic in clinical development for the treatment of UC and CD. In this review, we discuss this novel mechanism of mucosal immunoregulation and how LANCL2-targeting therapeutics could help address the unmet clinical needs of patients with autoimmune diseases, starting with IBD.
Collapse
|
41
|
Li J, Pang D, Zhou L, Ouyang H, Tian Y, Yu H. miR-26a-5p inhibits the proliferation of psoriasis-like keratinocytes in vitro and in vivo by dual interference with the CDC6/CCNE1 axis. Aging (Albany NY) 2024; 16:4631-4653. [PMID: 38446584 PMCID: PMC10968694 DOI: 10.18632/aging.205618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 02/02/2024] [Indexed: 03/08/2024]
Abstract
Psoriasis is a chronic inflammatory proliferative dermatological ailment that currently lacks a definitive cure. Employing data mining techniques, this study identified a collection of substantially downregulated miRNAs (top 10). Notably, 32 targets were implicated in both the activation of the IL-17 signaling pathway and cell cycle dysregulation. In silico analysis revealed that one of these miRNAs, miR-26a-5p, is a highly conserved cross-species miRNA. Strikingly, the miR-26a-5p sequences in humans and mice are identical, and mmu-miR-26a-5p was found to target the same 7 cell cycle targets as its human counterpart, hsa-miR-26a-5p. Among these targets, CDC6 and CCNE1 were the most effective targets of miR-26a-5p, which was further validated in vitro using a dual luciferase reporter system and qPCR assay. The therapeutic assessment of miR-26a-5p revealed its remarkable efficacy in inhibiting the proliferation and G1/S transition of keratinocytes (HaCaT and HEKs) in vitro. In vivo experiments corroborated these findings, demonstrating that miR-26a-5p effectively suppressed imiquimod (IMQ)-induced psoriasis-like skin lesions in mice over an 8-day treatment period. Histological analysis via H&E staining revealed that miR-26a-5p treatment resulted in reduced keratinocyte thickness and immune cell infiltration into the spleens of IMQ-treated mice. Mechanistic investigations revealed that miR-26a-5p induced a cascade of downregulated genes associated with the IL-23/IL-17A axis, which is known to be critical in psoriasis pathogenesis, while concomitantly suppressing CDC6 and CCNE1 expression. These findings were corroborated by qPCR and Western blot analyses. Collectively, our study provides compelling evidence supporting the therapeutic potential of miR-26a-5p as a safe and reliable endogenous small nucleic acid for the treatment of psoriasis.
Collapse
Affiliation(s)
- Jianing Li
- Key Lab for Zoonoses Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Daxin Pang
- Key Lab for Zoonoses Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
- Chongqing Research Institute, Jilin University, Chongqing 401123, China
- Chongqing Jitang Biotechnology Research Institute Co., Ltd., Chongqing 401123, China
| | - Lin Zhou
- Joint International Research Laboratory of Reproduction and Development, School of Basic Medicine, Chong-qing Medical University, Chongqing 400016, China
| | - Hongsheng Ouyang
- Key Lab for Zoonoses Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
- Chongqing Research Institute, Jilin University, Chongqing 401123, China
- Chongqing Jitang Biotechnology Research Institute Co., Ltd., Chongqing 401123, China
| | - Yaping Tian
- Department of Dermatology and Venerology, First Bethune Hospital of Jilin University, Changchun 130021, China
| | - Hao Yu
- Key Lab for Zoonoses Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
| |
Collapse
|
42
|
Liu S, Liu F, Zhang Z, Zhuang Z, Chen Y. PTPN2 inhibits the proliferation of psoriatic keratinocytes by dephosphorylation of STAT3. Cell Biochem Funct 2024; 42:e3947. [PMID: 38379221 DOI: 10.1002/cbf.3947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 02/22/2024]
Abstract
Psoriasis is a recurrent and protracted disease that severely impacts the patient's physical and mental health. Thus, there is an urgent need to explore its pathogenesis to identify therapeutic targets. The expression level of protein tyrosine phosphatase nonreceptor type 2 (PTPN2) was analyzed by immunohistochemistry techniques in psoriatic tissues and imiquimod-induced psoriatic mouse models. PTPN2 and signal transducer and activator of transcription 3 (STAT3) were overexpressed or silenced in human keratinocytes or an interleukin (IL)-6-induced psoriasis HaCaT cell model using overexpression plasmid transfection or small interfering RNA technology in vitro, and the effects of PTPN2 on STAT3, HaCaT cell function, and autophagy levels were investigated using reverse transcription-quantitative polymerase chain reaction, Western blot, Cell Counting Kit 8, 5-ethynyl-20-deoxyuridine, flow cytometry, and transmission electron microscopy. PTPN2 expression was found to be significantly downregulated in psoriatic tissues. Then, the in vitro antipsoriatic properties of PTPN2 were investigated in an IL-6-induced psoriasis-like cell model, and the results demonstrated that inhibition of keratinocyte proliferation by PTPN2 may be associated with elevated STAT3 dephosphorylation and autophagy levels. These findings provide novel insights into the mechanisms of autophagy in psoriatic keratinocytes and may be essential for developing new therapeutic strategies to improve inflammatory homeostasis in psoriatic patients.
Collapse
Affiliation(s)
- Shougang Liu
- Department of Dermatology, Dermatology Hospital of Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Fanghua Liu
- Department of Dermatology, Guangdong Medical University, Zhanjiang, Guangdong, People's Republic of China
- Department of Dermatology, Ganzhou Municipal Hospital, Ganzhou, Jiangxi, People's Republic of China
| | - Zeqiao Zhang
- Department of Dermatology, Dermatology Hospital of Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Zhe Zhuang
- Department of Dermatology, Guangdong Medical University, Zhanjiang, Guangdong, People's Republic of China
| | - Yongfeng Chen
- Department of Dermatology, Dermatology Hospital of Southern Medical University, Guangzhou, Guangdong, People's Republic of China
- Department of Dermatology, Guangdong Medical University, Zhanjiang, Guangdong, People's Republic of China
| |
Collapse
|
43
|
Kim H, Choi MR, Jeon SH, Jang Y, Yang YD. Pathophysiological Roles of Ion Channels in Epidermal Cells, Immune Cells, and Sensory Neurons in Psoriasis. Int J Mol Sci 2024; 25:2756. [PMID: 38474002 DOI: 10.3390/ijms25052756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/23/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024] Open
Abstract
Psoriasis is a chronic inflammatory skin disease characterized by the rapid abnormal growth of skin cells in the epidermis, driven by an overactive immune system. Consequently, a complex interplay among epidermal cells, immune cells, and sensory neurons contributes to the development and progression of psoriasis. In these cellular contexts, various ion channels, such as acetylcholine receptors, TRP channels, Ca2+ release-activated channels, chloride channels, and potassium channels, each serve specific functions to maintain the homeostasis of the skin. The dysregulation of ion channels plays a major role in the pathophysiology of psoriasis, affecting various aspects of epidermal cells, immune responses, and sensory neuron signaling. Impaired function of ion channels can lead to altered calcium signaling, inflammation, proliferation, and sensory signaling, all of which are central features of psoriasis. This overview summarizes the pathophysiological roles of ion channels in epidermal cells, immune cells, and sensory neurons during early and late psoriatic processes, thereby contributing to a deeper understanding of ion channel involvement in the interplay of psoriasis and making a crucial advance toward more precise and personalized approaches for psoriasis treatment.
Collapse
Affiliation(s)
- Hyungsup Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Mi Ran Choi
- Laboratory Animal Research Center, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Seong Ho Jeon
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Pocheon 11160, Republic of Korea
| | - Yongwoo Jang
- Department of Pharmacology, College of Medicine, Hanyang University, Seoul 04736, Republic of Korea
| | - Young Duk Yang
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Pocheon 11160, Republic of Korea
| |
Collapse
|
44
|
Goudarzi R, Min-Ho Kim, Partoazar A. Anti-psoriatic characteristics of ROCEN (topical Arthrocen) in comparison with Cyclosporine A in a murine model. BMC Complement Med Ther 2024; 24:100. [PMID: 38402151 PMCID: PMC10893663 DOI: 10.1186/s12906-024-04405-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 02/16/2024] [Indexed: 02/26/2024] Open
Abstract
Topical ROCEN (Roc), liposomal arthrocen hydrogel, is a robust anti-inflammatory formulation which has been developed for skin diseases such as eczema. Therefore, we aimed to evaluate the efficacy of Roc 2% on the healing of imiquimod (Imiq)-induced psoriasis in a mouse model. Psoriasis was induced by applying Imiq topically to the mice's back skin once daily for five consecutive days. Moreover, a group of animal experiments was treated with Cyclosporine A (CsA), as a standard drug, for comparison with Roc treated group. The efficacy of Roc on skin lesions was evaluated by employing Psoriasis Area and Severity Index (PASI) scores. Subsequently, the skin samples were assessed using Baker's scoring system and Masson's trichrome staining, immunohistochemistry, and real-time PCR analysis. The observational and histopathological results indicated that topical application of Roc significantly reduced the PASI and Baker's scores in the plaque-type psoriasis model. Moreover, biochemical assessments showed that Roc suppressed significantly the increase of IL-17, IL-23, and TNF-α cytokines gene expression in the lesion site of psoriatic animals. In conclusion topical Roc 2% could significantly alleviate major pathological aspects of Imiq-induced psoriasis through inflammation inhibition which was comparable to the CsA drug. The beneficial outcomes of Roc application in the psoriasis model suggest its potential usage in complementary medicine.
Collapse
Affiliation(s)
- Ramin Goudarzi
- Division of Research and Development, Pharmin USA, LLC, San Jose, CA, USA
| | - Min-Ho Kim
- Department of Biological Sciences, Kent State University, Kent, OH, 44240, USA
| | - Alireza Partoazar
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
45
|
Zhao Q, Wu Y, Wu X, Liu M, Nan L. Single-cell transcriptome analysis reveals keratinocyte subpopulations contributing to psoriasis in corneum and granular layer. Skin Res Technol 2024; 30:e13572. [PMID: 38279596 PMCID: PMC10818132 DOI: 10.1111/srt.13572] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 12/20/2023] [Indexed: 01/28/2024]
Abstract
BACKGROUND Psoriasis is a chronic, inflammatory skin disease that is common and relapses easily. While the importance of keratinocyte proliferation in psoriasis development is well-documented, the specific functional subpopulations of epidermal keratinocytes associated with this disease remain enigmatic. MATERIALS AND METHODS Therefore, in our analysis of single-cell transcriptome data from both normal and psoriatic skin tissues, we observed significant increases in certain keratinocytes in the stratum corneum (KC) and stratum granulosum (KG) within psoriatic skin. Furthermore, we identified upregulated expression of specific secreted factors known to promote inflammatory responses. Additionally, we conducted a KEGG pathway enrichment analysis on these identified subsets. RESULTS In the stratum corneum, the expression of FTL was upregulated in HIST1H1C+ KC. S100P+ KC displayed a significant increase in the expression of both S100P and S100A10, whereas PRR9+ KC showed upregulated expression of DEFB4B, S100A8, and S100A12. SLURP1+ KC was characterized by elevated expression levels of IL-36G, SLURP1, and S100A12. Meanwhile, in the stratum granulosum, KRT1+ KG highly expressed SLURP1, S100A7, S100A8, and S100A9, while DEFB4B expression was upregulated in PI3+ KG. Our findings indicated that subsets within the stratum corneum primarily participate in pathways related to MAPK, NOD-like receptors, HIF-1, cell senescence, and other crucial processes. In contrast, subsets in the stratum granulosum were predominantly associated with pathways involving MAPK, NOD-like receptors, HIF-1, Hippo, mTOR, and IL-17. CONCLUSION These findings not only uncover the keratinocyte subsets linked to psoriasis but also unveil the molecular mechanisms and related signaling pathways that drive psoriasis development. This knowledge opens new horizons for the development of innovative clinical treatment strategies for psoriasis.
Collapse
Affiliation(s)
- Qianya Zhao
- First Clinical Medical CollegeGansu University of Chinese MedicineLanzhouGansuChina
- Department of DermatologyGansu Provincial HospitalLanzhouGansuChina
| | - Yan Wu
- First Clinical Medical CollegeGansu University of Chinese MedicineLanzhouGansuChina
| | - Xianwei Wu
- First Clinical Medical CollegeGansu University of Chinese MedicineLanzhouGansuChina
- Department of DermatologyGansu Provincial HospitalLanzhouGansuChina
| | - Meng Liu
- First Clinical Medical CollegeGansu University of Chinese MedicineLanzhouGansuChina
- Department of DermatologyGansu Provincial HospitalLanzhouGansuChina
| | - Lisheng Nan
- First Clinical Medical CollegeGansu University of Chinese MedicineLanzhouGansuChina
- Department of DermatologyGansu Provincial HospitalLanzhouGansuChina
| |
Collapse
|
46
|
Reali E, Caliceti C, Lorenzini A, Rizzo P. The Use of Microbial Modifying Therapies to Prevent Psoriasis Exacerbation and Associated Cardiovascular Comorbidity. Inflammation 2024; 47:13-29. [PMID: 37953417 PMCID: PMC10799147 DOI: 10.1007/s10753-023-01915-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 11/14/2023]
Abstract
Psoriasis has emerged as a systemic disease characterized by skin and joint manifestations as well as systemic inflammation and cardiovascular comorbidities. Many progresses have been made in the comprehension of the immunological mechanisms involved in the exacerbation of psoriatic plaques, and initial studies have investigated the mechanisms that lead to extracutaneous disease manifestations, including endothelial disfunction and cardiovascular disease. In the past decade, the involvement of gut dysbiosis in the development of pathologies with inflammatory and autoimmune basis has clearly emerged. More recently, a major role for the skin microbiota in establishing the immunological tolerance in early life and as a source of antigens leading to cross-reactive responses towards self-antigens in adult life has also been evidenced. Gut microbiota can indeed be involved in shaping the immune and inflammatory response at systemic level and in fueling inflammation in the cutaneous and vascular compartments. Here, we summarized the microbiota-mediated mechanisms that, in the skin and gut, may promote and modulate local or systemic inflammation involved in psoriatic disease and endothelial dysfunction. We also analyze the emerging strategies for correcting dysbiosis or modulating skin and gut microbiota composition to integrate systemically existing pharmacological therapies for psoriatic disease. The possibility of merging systemic treatment and tailored microbial modifying therapies could increase the efficacy of the current treatments and potentially lower the effect on patient's life quality.
Collapse
Affiliation(s)
- Eva Reali
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy.
| | - Cristiana Caliceti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Antonello Lorenzini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- Istituto Nazionale Biosistemi e Biostrutture (INBB), Rome, Italy
| | - Paola Rizzo
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy.
- Laboratory for Technologies of Advanced Therapies (LTTA) Centre, University of Ferrara, Ferrara, Italy.
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, Ravenna, Italy.
| |
Collapse
|
47
|
Yang Y, Zheng X, Lv H, Tang B, Bi Y, Luo Q, Yao D, Chen H, Lu C. A bibliometrics study on the status quo and hot topics of pathogenesis of psoriasis based on Web of Science. Skin Res Technol 2024; 30:e13538. [PMID: 38174774 PMCID: PMC10765367 DOI: 10.1111/srt.13538] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 11/06/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Psoriasis is an immune-mediated chronic inflammatory skin disease. Great progress has been made in the pathogenesis of psoriasis in recent years, but there is no bibliometric study on the pathogenesis of psoriasis. The purpose of this study was to use bibliometrics method to analyze the research overview and hot spots of pathogenesis of psoriasis in recent 10 years, so as to further understand the development trend and frontier of this field. METHODS The core literatures on the pathogenesis of psoriasis were searched in the Web of Science database, and analyzed by VOSviewer, CiteSpace, and Bibliometrix in terms of the annual publication volume, country, institution, author, journal, keywords, and so on. RESULTS A total of 3570 literatures were included. China and the United States were the main research countries in this field, and Rockefeller University was the main research institution. Krueger JG, the author, had the highest number of publications and the greatest influence, and Boehncke (2015) was the most cited local literature. J INVEST DERMATOL takes the top spot in terms of the number of Dermatol articles and citation frequency. The main research hotspots in the pathogenesis of psoriasis are as follows: (1) The interaction between innate and adaptive immunity and the related inflammatory loop dominated by Th17 cells and IL-23/IL-17 axis are still the key mechanisms of psoriasis; (2) molecular genetic studies represented by Long Non-Coding RNA (LncRNA); (3) integrated research of multi-omics techniques represented by gut microbiota; and (4) Exploring the comorbidity mechanism of psoriasis represented by Metabolic Syndrome (MetS). CONCLUSION This study is a summary of the current research status and hot trend of the pathogenesis of psoriasis, which will provide some reference for the scholars studying the pathogenesis of psoriasis.
Collapse
Affiliation(s)
- Yujie Yang
- The Second Clinical College of Guangzhou University of Chinese MedicineGuangzhouChina
| | - Xuwei Zheng
- The Second Clinical College of Guangzhou University of Chinese MedicineGuangzhouChina
| | - Haiying Lv
- The Second Clinical College of Guangzhou University of Chinese MedicineGuangzhouChina
| | - Bin Tang
- The Second Clinical College of Guangzhou University of Chinese MedicineGuangzhouChina
- State Key Laboratory of Dampness Syndrome of Chinese MedicineThe Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine)GuangzhouChina
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine SyndromeGuangzhouChina
- Guangdong Provincial Clinical Medicine Research Center for Chinese Medicine DermatologyGuangzhouChina
- Guangdong‐Hong Kong‐Macau Joint Lab on Chinese Medicine and Immune Disease ResearchGuangzhou University of Chinese MedicineGuangzhouChina
| | - Yang Bi
- The Second Clinical College of Guangzhou University of Chinese MedicineGuangzhouChina
| | - Qianqian Luo
- The Second Clinical College of Guangzhou University of Chinese MedicineGuangzhouChina
| | - Danni Yao
- The Second Clinical College of Guangzhou University of Chinese MedicineGuangzhouChina
- State Key Laboratory of Dampness Syndrome of Chinese MedicineThe Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine)GuangzhouChina
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine SyndromeGuangzhouChina
- Guangdong Provincial Clinical Medicine Research Center for Chinese Medicine DermatologyGuangzhouChina
- Guangdong‐Hong Kong‐Macau Joint Lab on Chinese Medicine and Immune Disease ResearchGuangzhou University of Chinese MedicineGuangzhouChina
| | - Haiming Chen
- The Second Clinical College of Guangzhou University of Chinese MedicineGuangzhouChina
- State Key Laboratory of Dampness Syndrome of Chinese MedicineThe Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine)GuangzhouChina
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine SyndromeGuangzhouChina
- Guangdong Provincial Clinical Medicine Research Center for Chinese Medicine DermatologyGuangzhouChina
- Guangdong‐Hong Kong‐Macau Joint Lab on Chinese Medicine and Immune Disease ResearchGuangzhou University of Chinese MedicineGuangzhouChina
| | - Chuanjian Lu
- The Second Clinical College of Guangzhou University of Chinese MedicineGuangzhouChina
- State Key Laboratory of Dampness Syndrome of Chinese MedicineThe Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine)GuangzhouChina
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine SyndromeGuangzhouChina
- Guangdong Provincial Clinical Medicine Research Center for Chinese Medicine DermatologyGuangzhouChina
- Guangdong‐Hong Kong‐Macau Joint Lab on Chinese Medicine and Immune Disease ResearchGuangzhou University of Chinese MedicineGuangzhouChina
| |
Collapse
|
48
|
Rahmanian-Devin P, Askari VR, Sanei-Far Z, Baradaran Rahimi V, Kamali H, Jaafari MR, Golmohammadzadeh S. Preparation and characterization of solid lipid nanoparticles encapsulated noscapine and evaluation of its protective effects against imiquimod-induced psoriasis-like skin lesions. Biomed Pharmacother 2023; 168:115823. [PMID: 37924792 DOI: 10.1016/j.biopha.2023.115823] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 10/23/2023] [Accepted: 10/31/2023] [Indexed: 11/06/2023] Open
Abstract
Psoriasis is a chronic inflammatory skin disease characterized by thickening the epidermis with erythema, scaling, and proliferation. Noscapine (NOS) has several anti-inflammatory, anti-angiogenic, and anti-fibrotic effects, but its low solubility and large size results in its lower efficacy in the clinic. In this regard, solid lipid nanoparticles (SLN) encapsulated NOS (SLN-NOS) were fabricated using the well-known response surface method based on the central composite design and modified high-shear homogenization and ultrasound method. As a result, Precirol® was selected as the best lipid base for the SLN formulation based on Hildebrand-Hansen solubility parameters, in which SLN-NOS 1 % had the best zeta potential (-35.74 ± 2.59 mV), average particle size (245.66 ± 17 nm), polydispersity index (PDI, 0.226 ± 0.09), high entrapment efficiency (89.77 %), and ICH-based stability results. After 72 h, the SLN-NOS 1 % released 83.23 % and 58.49 % of the NOS at pH 5.8 and 7.4, respectively. Moreover, Franz diffusion cell's results indicated that the skin levels of NOS for SLN and cream formulations were 46.88 % and 13.5 % of the total amount, respectively. Our pharmacological assessments revealed that treatment with SLN-NOS 1 % significantly attenuated clinical parameters, namely ear thickness, length, and psoriasis area and severity index, compared to the IMQ group. Interestingly, SLN-NOS 1 % reduced the levels of interleukin (IL)-17, tumor necrosis factor-α, and transforming growth factor-β, while elevating IL-10, compared to the IMQ group. Histology studies also showed that topical application of SLN-NOS 1 % significantly decreased parakeratosis, hyperkeratosis, acanthosis, and inflammation compared to the IMQ group. Taken together, SLN-NOS 1 % showed a high potential to attenuate skin inflammation.
Collapse
Affiliation(s)
- Pouria Rahmanian-Devin
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Reza Askari
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Zahra Sanei-Far
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vafa Baradaran Rahimi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Hossein Kamali
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shiva Golmohammadzadeh
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
49
|
Inclan-Rico JM, Napuri CM, Lin C, Hung LY, Ferguson AA, Wu Q, Pastore CF, Stephenson A, Femoe UM, Rossi HL, Reed DR, Luo W, Abdus-Saboor I, Herbert DR. "MrgprA3 neurons selectively control myeloid-derived cytokines for IL-17 dependent cutaneous immunity". RESEARCH SQUARE 2023:rs.3.rs-3644984. [PMID: 38076920 PMCID: PMC10705600 DOI: 10.21203/rs.3.rs-3644984/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
Skin employs interdependent cellular networks to facilitate barrier integrity and host immunity through ill-defined mechanisms. This study demonstrates that manipulation of itch-sensing neurons bearing the Mas-related G protein-coupled receptor A3 (MrgprA3) drives IL-17+ γδ T cell expansion, epidermal thickening, and resistance to the human pathogen Schistosoma mansoni through mechanisms that require myeloid antigen presenting cells (APC). Activated MrgprA3 neurons instruct myeloid APCs to downregulate interleukin 33 (IL-33) and up-regulate TNFα partially through the neuropeptide calcitonin gene related peptide (CGRP). Strikingly, cell-intrinsic deletion of IL-33 in myeloid APC basally alters chromatin accessibility at inflammatory cytokine loci and promotes IL-17/23-dependent epidermal thickening, keratinocyte hyperplasia, and resistance to helminth infection. Our findings reveal a previously undescribed mechanism of intercellular cross-talk wherein "itch" neuron activation reshapes myeloid cytokine expression patterns to alter skin composition for cutaneous immunity against invasive pathogens.
Collapse
Affiliation(s)
- Juan M. Inclan-Rico
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Camila M. Napuri
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Cailu Lin
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, USA
| | - Li-Yin Hung
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Annabel A. Ferguson
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Qinxue Wu
- Department of Neuroscience, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Christopher F. Pastore
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Adriana Stephenson
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ulrich M. Femoe
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Heather L. Rossi
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Wenqin Luo
- Department of Neuroscience, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Institute for Regenerative Medicine, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ishmail Abdus-Saboor
- Department of Biological Sciences, Zuckerman Mind, Brain, Behavior Institute, Columbia University, New York, New York, USA
| | - De’Broski R. Herbert
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
50
|
Chen Y, Li X, Yang M, Wang L, Lv X, Shen K, Wu H, Lu Q. A 2-week time-restricted feeding attenuates psoriasis-like lesions with reduced inflammatory cytokines and immunosenescence in mice. Exp Dermatol 2023; 32:2000-2011. [PMID: 37727036 DOI: 10.1111/exd.14932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 08/18/2023] [Accepted: 09/04/2023] [Indexed: 09/21/2023]
Abstract
Psoriasis, a well-established T-cell mediated dermatosis, exhibits a robust correlation with obesity and systemic inflammation, manifesting psoriasis skin lesions and premature immunosenescence within the peripheral blood and lesion. Intermittent fasting (IF) has exhibited various beneficial effects in reducing inflammation, resisting oxidative stress and slowing ageing, as well as losing weight. A form of IF known as time-restricted feeding (TRF) restricts daily caloric intake within 4-8 h. Nonetheless, the advantageous impacts of TRF on psoriasis still require further verification. We measured the acanthosis in Imiquimod (IMQ)-induced psoriasis mice and evaluated their pathological phenotypes. Our study examined the effects of a 2-week TRF on body weight and metabolic parameters. The subsets of T cells in spleens and skin lesions were accessed by flow cytometry. Cytokines and senescence-associated genes were evaluated by immunofluorescence and RT-qPCR. RNA sequencing was conducted on skin lesions. According to our findings, a 2-week TRF attenuates psoriasis-like lesions in mice with reduced inflammatory cytokines and mitigated immunosenescence. TRF increased the counts of CD4+ Treg cells in skin lesions while reducing the counts of Th2 and Th17 cells in spleens. Furthermore, the administration of TRF resulted in a decrease in the population of CD4+ senescent T cells in both the dermis and spleens, concomitant with the expression of senescence-associated genes in spleen CD4+ T cells. The outcomes mentioned above provide valuable evidence in support of TRF for the management of psoriasis.
Collapse
Affiliation(s)
- Yiran Chen
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Xi Li
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Ming Yang
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Lu Wang
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Xinyi Lv
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Kai Shen
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Haijing Wu
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Qianjin Lu
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| |
Collapse
|