1
|
Ward AI, de las Heras JI, Schirmer EC, Fassati A. Memory CD4+ T cells sequentially restructure their 3D genome during stepwise activation. Front Cell Dev Biol 2025; 13:1514627. [PMID: 40018706 PMCID: PMC11866950 DOI: 10.3389/fcell.2025.1514627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 01/07/2025] [Indexed: 03/01/2025] Open
Abstract
Background CD4+ T cells are a highly differentiated cell type that maintain enough transcriptomic plasticity to cycle between activated and memory statuses. How the 1D chromatin state and 3D chromatin architecture support this plasticity is under intensive investigation. Methods Here, we wished to test a commercially available in situ Hi-C kit (Arima Genomics Inc.) to establish whether published performance on limiting cell numbers from clonal cell lines copies across to a primary immune cell type. We achieved comparable contact matrices from 50,000, 250,000, and 1,000,000 memory CD4+ T-cell inputs. We generated multiple Hi-C and RNA-seq libraries from the same biological blood donors under three separate conditions: unstimulated fresh ex vivo, IL-2-only stimulated, and T cell receptor (TCR)+CD28+IL-2-stimulated, conferring increasingly stronger activation signals. We wished to capture the magnitude and progression of 3D chromatin shifts and correlate these to expression changes under the two stimulations. Results Although some genome organization changes occurred concomitantly with changes in gene expression, at least as many changes occurred without corresponding changes in expression. Counter to the hypothesis that topologically associated domains (TADs) are largely invariant structures providing a scaffold for dynamic looping contacts between enhancers and promotors, we found that there were at least as many dynamic TAD changes. Stimulation with IL-2 alone triggered many changes in genome organization, and many of these changes were strengthened by additional TCR and CD28 co-receptor stimulation. Conclusions This suggests a stepwise process whereby mCD4+ T cells undergo sequential buildup of 3D architecture induced by distinct or combined stimuli likely to "prime" or "deprime" them for expression responses to subsequent TCR-antigen ligation or additional cytokine stimulation.
Collapse
Affiliation(s)
- Alexander I. Ward
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, London, United Kingdom
| | | | - Eric C. Schirmer
- Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Ariberto Fassati
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, London, United Kingdom
| |
Collapse
|
2
|
Radhakrishnan D, Kotulová J, Hofmanová L, Sithara AA, Turi M, Žihala D, Ďurech M, Vrána J, Uleri V, Niederlova V, Stepanek O, Chyra Z, Jelínek T, Hájek R, Hrdinka M. Deubiquitinase BAP1 is crucial for surface expression of T cell receptor (TCR) complex, T cell-B cell conjugate formation, and T cell activation. J Leukoc Biol 2024; 117:qiae184. [PMID: 39189628 DOI: 10.1093/jleuko/qiae184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 08/05/2024] [Indexed: 08/28/2024] Open
Abstract
The adaptive immune response critically hinges on the functionality of T cell receptors, governed by complex molecular mechanisms, including ubiquitination. In this study, we delved into the role of in T cell immunity, focusing on T cell-B cell conjugate formation and T cell activation. Using a CRISPR-Cas9 screening approach targeting deubiquitinases genes in Jurkat T cells, we identified BAP1 as a key positive regulator of T cell-B cell conjugate formation. Subsequent investigations into BAP1 knockout cells revealed impaired T cell activation, evidenced by decreased MAPK and NF-kB signaling pathways and reduced CD69 expression upon T cell receptor stimulation. Flow cytometry and qPCR analyses demonstrated that BAP1 deficiency leads to decreased surface expression of T cell receptor complex components and reduced mRNA levels of the co-stimulatory molecule CD28. Notably, the observed phenotypes associated with BAP1 knockout are specific to T cells and fully dependent on BAP1 catalytic activity. In-depth RNA-seq and mass spectrometry analyses further revealed that BAP1 deficiency induces broad mRNA and protein expression changes. Overall, our findings elucidate the vital role of BAP1 in T cell biology, especially in T cell-B cell conjugate formation and T cell activation, offering new insights and directions for future research in immune regulation.
Collapse
Affiliation(s)
- Dhwani Radhakrishnan
- Faculty of Science, University of Ostrava, 30. dubna 22, 701 03 Ostrava, Czech Republic
- Department of Hematooncology, Faculty of Medicine, University of Ostrava, Syllabova 19, 703 00 Ostrava, Czech Republic
- Department of Hematooncology, University Hospital Ostrava, 17. listopadu 1790, 708 52 Ostrava, Czech Republic
| | - Jana Kotulová
- Department of Hematooncology, Faculty of Medicine, University of Ostrava, Syllabova 19, 703 00 Ostrava, Czech Republic
- Department of Hematooncology, University Hospital Ostrava, 17. listopadu 1790, 708 52 Ostrava, Czech Republic
| | - Lucie Hofmanová
- Department of Hematooncology, Faculty of Medicine, University of Ostrava, Syllabova 19, 703 00 Ostrava, Czech Republic
- Department of Hematooncology, University Hospital Ostrava, 17. listopadu 1790, 708 52 Ostrava, Czech Republic
| | - Anjana Anilkumar Sithara
- Faculty of Science, University of Ostrava, 30. dubna 22, 701 03 Ostrava, Czech Republic
- Department of Hematooncology, Faculty of Medicine, University of Ostrava, Syllabova 19, 703 00 Ostrava, Czech Republic
- Department of Hematooncology, University Hospital Ostrava, 17. listopadu 1790, 708 52 Ostrava, Czech Republic
| | - Marcello Turi
- Faculty of Science, University of Ostrava, 30. dubna 22, 701 03 Ostrava, Czech Republic
- Department of Hematooncology, Faculty of Medicine, University of Ostrava, Syllabova 19, 703 00 Ostrava, Czech Republic
- Department of Hematooncology, University Hospital Ostrava, 17. listopadu 1790, 708 52 Ostrava, Czech Republic
- Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale, 142-KM 3.95-, 10060 Candiolo (TO), Italy
| | - David Žihala
- Faculty of Science, University of Ostrava, 30. dubna 22, 701 03 Ostrava, Czech Republic
- Department of Hematooncology, Faculty of Medicine, University of Ostrava, Syllabova 19, 703 00 Ostrava, Czech Republic
- Department of Hematooncology, University Hospital Ostrava, 17. listopadu 1790, 708 52 Ostrava, Czech Republic
| | - Michal Ďurech
- Department of Hematooncology, Faculty of Medicine, University of Ostrava, Syllabova 19, 703 00 Ostrava, Czech Republic
- Department of Hematooncology, University Hospital Ostrava, 17. listopadu 1790, 708 52 Ostrava, Czech Republic
| | - Jan Vrána
- Department of Hematooncology, Faculty of Medicine, University of Ostrava, Syllabova 19, 703 00 Ostrava, Czech Republic
- Department of Hematooncology, University Hospital Ostrava, 17. listopadu 1790, 708 52 Ostrava, Czech Republic
| | - Valeria Uleri
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Praha, Czech Republic
| | - Veronika Niederlova
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Praha, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University in Prague, Albertov 6, Prague 4, 128 20 Czech Republic
| | - Ondrej Stepanek
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Praha, Czech Republic
| | - Zuzana Chyra
- Department of Hematooncology, Faculty of Medicine, University of Ostrava, Syllabova 19, 703 00 Ostrava, Czech Republic
- Department of Hematooncology, University Hospital Ostrava, 17. listopadu 1790, 708 52 Ostrava, Czech Republic
| | - Tomáš Jelínek
- Department of Hematooncology, Faculty of Medicine, University of Ostrava, Syllabova 19, 703 00 Ostrava, Czech Republic
- Department of Hematooncology, University Hospital Ostrava, 17. listopadu 1790, 708 52 Ostrava, Czech Republic
| | - Roman Hájek
- Department of Hematooncology, Faculty of Medicine, University of Ostrava, Syllabova 19, 703 00 Ostrava, Czech Republic
- Department of Hematooncology, University Hospital Ostrava, 17. listopadu 1790, 708 52 Ostrava, Czech Republic
| | - Matouš Hrdinka
- Faculty of Science, University of Ostrava, 30. dubna 22, 701 03 Ostrava, Czech Republic
- Department of Hematooncology, Faculty of Medicine, University of Ostrava, Syllabova 19, 703 00 Ostrava, Czech Republic
- Department of Hematooncology, University Hospital Ostrava, 17. listopadu 1790, 708 52 Ostrava, Czech Republic
| |
Collapse
|
3
|
Horvath RM, Sadowski I. CBP/p300 lysine acetyltransferases inhibit HIV-1 expression in latently infected T cells. iScience 2024; 27:111244. [PMID: 39640574 PMCID: PMC11617383 DOI: 10.1016/j.isci.2024.111244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/03/2024] [Accepted: 10/22/2024] [Indexed: 12/07/2024] Open
Abstract
HIV-1 latency is regulated by chromatin modifying enzymes, and histone deacetylase inhibitors (HDACi) cause reactivation of provirus expression. Surprisingly, we observed that inhibitors of the CBP/p300 acetyltransferases also cause reversal of latency in T cells. CBP/p300 inhibitors synergize with various latency reversing agents to cause HIV-1 reactivation. In contrast, inhibition of CBP/p300 impaired reversal of latency by the HDACi SAHA, indicating that CBP/p300 must contribute to acetylation on the HIV-1 LTR associated with HDACi-mediated latency reversal. CBP/p300 inhibition caused loss of H3K27ac and H3K4me3 from the LTR, but did not affect association of the inhibitor protein BRD4. Furthermore, inhibition of the additional lysine acetyltransferases PCAF/GCN5 or KAT6A/KAT6B also caused reversal of latency, suggesting that protein acetylation has an inhibitory effect on HIV-1 expression. Collectively, these observations indicate that transcription from the HIV-1 LTR is controlled both positively and negatively by protein acetylation, likely including both histone and non-histone regulatory targets.
Collapse
Affiliation(s)
- Riley M. Horvath
- Department of Biochemistry and Molecular Biology, Molecular Epigenetics Group, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Ivan Sadowski
- Department of Biochemistry and Molecular Biology, Molecular Epigenetics Group, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
4
|
Wang S, Meng L, Xu N, Chen H, Xiao Z, Lu D, Fan X, Xia L, Chen J, Zheng S, Wei Q, Wei X, Xu X. Hepatocellular carcinoma-specific epigenetic checkpoints bidirectionally regulate the antitumor immunity of CD4 + T cells. Cell Mol Immunol 2024; 21:1296-1308. [PMID: 39300319 PMCID: PMC11528031 DOI: 10.1038/s41423-024-01215-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 09/03/2024] [Indexed: 09/22/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly malignant tumor with significant global health implications. The role of CD4+ T cells, particularly conventional CD4+ T cells (Tconvs), in HCC progression remains unexplored. Furthermore, epigenetic factors are crucial in immune regulation, yet their specific role in HCC-infiltrating Tconv cells remains elusive. This study elucidates the role of MATR3, an epigenetic regulator, in modulating Tconv activity and immune evasion within the HCC microenvironment. Reanalysis of the scRNA-seq data revealed that early activation of CD4+ T cells is crucial for establishing an antitumor immune response. In vivo and in vitro experiments revealed that Tconv enhances cDC1-induced CD8+ T-cell activation. Screening identified MATR3 as a critical regulator of Tconv function, which is necessary for antitumour activity but harmful when overexpressed. Excessive MATR3 expression exacerbates Tconv exhaustion and impairs function by recruiting the SWI/SNF complex to relax chromatin in the TOX promoter region, leading to aberrant transcriptional changes. In summary, MATR3 is an HCC-specific epigenetic checkpoint that bidirectionally regulates Tconv antitumour immunity, suggesting new therapeutic strategies targeting epigenetic regulators to enhance antitumour immunity in HCC.
Collapse
Affiliation(s)
- Shuai Wang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou First People's Hospital, Hangzhou, 310006, China.
| | - Lijun Meng
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou First People's Hospital, Hangzhou, 310006, China
| | - Nan Xu
- Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, China
| | - Huan Chen
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhaofeng Xiao
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Di Lu
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou, 310059, Zhejiang, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation Hangzhou China, Hangzhou, China
| | - Xiaohui Fan
- National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314103, China
| | - Limin Xia
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
| | - Jun Chen
- NHC Key Laboratory of Combined Multi-Organ Transplantation Hangzhou China, Hangzhou, China
- Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310000, China
| | - Shusen Zheng
- NHC Key Laboratory of Combined Multi-Organ Transplantation Hangzhou China, Hangzhou, China
- Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, 310000, Zhejiang, China
| | - Qiang Wei
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou, 310059, Zhejiang, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation Hangzhou China, Hangzhou, China
| | - Xuyong Wei
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou First People's Hospital, Hangzhou, 310006, China.
| | - Xiao Xu
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou, 310059, Zhejiang, China.
- NHC Key Laboratory of Combined Multi-Organ Transplantation Hangzhou China, Hangzhou, China.
- Institute of Translational Medicine, Zhejiang University, 310000, Hangzhou, China.
| |
Collapse
|
5
|
Han P, Guo Y, Zhang W, Wang D, Wu Y, Li X, Zhu M. Single-Cell RNA-Sequencing Reveals Heterogeneity and Transcriptional Dynamics in Porcine Circulating CD8 + T Cells. Cells 2024; 13:692. [PMID: 38667307 PMCID: PMC11049515 DOI: 10.3390/cells13080692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/05/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Pigs are the most important source of meat and valuable biomedical models. However, the porcine immune system, especially the heterogeneity of CD8 T cell subtypes, has not been fully characterized. Here, using single-cell RNA sequencing, we identified 14 major cell types from peripheral blood circulating cells of pigs and observed remarkable heterogeneity among CD8 T cell types. Upon re-clustering of CD8+ T cells, we defined four CD8 T cell subtypes and revealed their potential differentiation trajectories and transcriptomic differences among them. Additionally, we identified transcription factors with potential regulatory roles in maintaining CD8 T cell differentiation. The cell-cell communication analysis inferred an extensive interaction between CD8 T cells and other immune cells. Finally, cross-species analysis further identified species-specific and conserved cell types across different species. Overall, our study provides the first insight into the extensive functional heterogeneity and state transitions among porcine CD8 T cell subtypes in pig peripheral blood, complements the knowledge of porcine immunity, and enhances its potential as a biomedical model.
Collapse
Affiliation(s)
- Pingping Han
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (P.H.); (Y.G.); (W.Z.); (D.W.); (Y.W.); (X.L.)
| | - Yaping Guo
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (P.H.); (Y.G.); (W.Z.); (D.W.); (Y.W.); (X.L.)
| | - Wei Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (P.H.); (Y.G.); (W.Z.); (D.W.); (Y.W.); (X.L.)
| | - Daoyuan Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (P.H.); (Y.G.); (W.Z.); (D.W.); (Y.W.); (X.L.)
| | - Yalan Wu
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (P.H.); (Y.G.); (W.Z.); (D.W.); (Y.W.); (X.L.)
| | - Xinyun Li
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (P.H.); (Y.G.); (W.Z.); (D.W.); (Y.W.); (X.L.)
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Mengjin Zhu
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (P.H.); (Y.G.); (W.Z.); (D.W.); (Y.W.); (X.L.)
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
6
|
Han P, Zhang W, Wang D, Wu Y, Li X, Zhao S, Zhu M. Comparative transcriptome analysis of T lymphocyte subpopulations and identification of critical regulators defining porcine thymocyte identity. Front Immunol 2024; 15:1339787. [PMID: 38384475 PMCID: PMC10879363 DOI: 10.3389/fimmu.2024.1339787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/18/2024] [Indexed: 02/23/2024] Open
Abstract
Introduction The development and migration of T cells in the thymus and peripheral tissues are crucial for maintaining adaptive immunity in mammals. However, the regulatory mechanisms underlying T cell development and thymocyte identity formation in pigs remain largely underexplored. Method Here, by integrating bulk and single-cell RNA-sequencing data, we investigated regulatory signatures of porcine thymus and lymph node T cells. Results The comparison of T cell subpopulations derived from porcine thymus and lymph nodes revealed that their transcriptomic differences were influenced more by tissue origin than by T cell phenotypes, and that lymph node cells exhibited greater transcriptional diversity than thymocytes. Through weighted gene co-expression network analysis (WGCNA), we identified the key modules and candidate hub genes regulating the heterogeneity of T cell subpopulations. Further, we integrated the porcine thymocyte dataset with peripheral blood mononuclear cell (PBMC) dataset to systematically compare transcriptomic differences between T cell types from different tissues. Based on single-cell datasets, we further identified the key transcription factors (TFs) responsible for maintaining porcine thymocyte identity and unveiled that these TFs coordinately regulated the entire T cell development process. Finally, we performed GWAS of cell type-specific differentially expressed genes (DEGs) and 30 complex traits, and found that the DEGs in thymus-related and peripheral blood-related cell types, especially CD4_SP cluster and CD8-related cluster, were significantly associated with pig productive and reproductive traits. Discussion Our findings provide an insight into T cell development and lay a foundation for further exploring the porcine immune system and genetic mechanisms underlying complex traits in pigs.
Collapse
Affiliation(s)
- Pingping Han
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Wei Zhang
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Daoyuan Wang
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Yalan Wu
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Xinyun Li
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Shuhong Zhao
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Mengjin Zhu
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
7
|
Baßler K, Schmidleithner L, Shakiba MH, Elmzzahi T, Köhne M, Floess S, Scholz R, Ohkura N, Sadlon T, Klee K, Neubauer A, Sakaguchi S, Barry SC, Huehn J, Bonaguro L, Ulas T, Beyer M. Identification of the novel FOXP3-dependent T reg cell transcription factor MEOX1 by high-dimensional analysis of human CD4 + T cells. Front Immunol 2023; 14:1107397. [PMID: 37559728 PMCID: PMC10407399 DOI: 10.3389/fimmu.2023.1107397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 06/27/2023] [Indexed: 08/11/2023] Open
Abstract
CD4+ T cells play a central role in the adaptive immune response through their capacity to activate, support and control other immune cells. Although these cells have become the focus of intense research, a comprehensive understanding of the underlying regulatory networks that orchestrate CD4+ T cell function and activation is still incomplete. Here, we analyzed a large transcriptomic dataset consisting of 48 different human CD4+ T cell conditions. By performing reverse network engineering, we identified six common denominators of CD4+ T cell functionality (CREB1, E2F3, AHR, STAT1, NFAT5 and NFATC3). Moreover, we also analyzed condition-specific genes which led us to the identification of the transcription factor MEOX1 in Treg cells. Expression of MEOX1 was comparable to FOXP3 in Treg cells and can be upregulated by IL-2. Epigenetic analyses revealed a permissive epigenetic landscape for MEOX1 solely in Treg cells. Knockdown of MEOX1 in Treg cells revealed a profound impact on downstream gene expression programs and Treg cell suppressive capacity. These findings in the context of CD4+ T cells contribute to a better understanding of the transcriptional networks and biological mechanisms controlling CD4+ T cell functionality, which opens new avenues for future therapeutic strategies.
Collapse
Affiliation(s)
- Kevin Baßler
- Systems Medicine, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- LIMES-Institute, Laboratory for Genomics and Immunoregulation, University of Bonn, Bonn, Germany
| | - Lisa Schmidleithner
- Immunogenomics & Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | | | - Tarek Elmzzahi
- Immunogenomics & Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Maren Köhne
- Immunogenomics & Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Stefan Floess
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Rebekka Scholz
- Immunogenomics & Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Naganari Ohkura
- Laboratory of Experimental Immunology, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Timothy Sadlon
- Molecular Immunology, Robinson Research Institute, University of Adelaide, Norwich Centre, North Adelaide, SA, Australia
| | - Kathrin Klee
- LIMES-Institute, Laboratory for Genomics and Immunoregulation, University of Bonn, Bonn, Germany
| | - Anna Neubauer
- Immunogenomics & Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Shimon Sakaguchi
- Laboratory of Experimental Immunology, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Simon C. Barry
- Molecular Immunology, Robinson Research Institute, University of Adelaide, Norwich Centre, North Adelaide, SA, Australia
| | - Jochen Huehn
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Lorenzo Bonaguro
- Systems Medicine, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- LIMES-Institute, Laboratory for Genomics and Immunoregulation, University of Bonn, Bonn, Germany
| | - Thomas Ulas
- Systems Medicine, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- LIMES-Institute, Laboratory for Genomics and Immunoregulation, University of Bonn, Bonn, Germany
- PRECISE, Platform for Single Cell Genomics and Epigenomics at the German Center for Neurodegenerative Diseases and the University of Bonn, Bonn, Germany
| | - Marc Beyer
- Immunogenomics & Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- PRECISE, Platform for Single Cell Genomics and Epigenomics at the German Center for Neurodegenerative Diseases and the University of Bonn, Bonn, Germany
| |
Collapse
|
8
|
Cui K, Chen Z, Cao Y, Liu S, Ren G, Hu G, Fang D, Wei D, Liu C, Zhu J, Wu C, Zhao K. Restraint of IFN-γ expression through a distal silencer CNS-28 for tissue homeostasis. Immunity 2023; 56:944-958.e6. [PMID: 37040761 PMCID: PMC10175192 DOI: 10.1016/j.immuni.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 01/13/2023] [Accepted: 03/13/2023] [Indexed: 04/13/2023]
Abstract
Interferon-γ (IFN-γ) is a key cytokine in response to viral or intracellular bacterial infection in mammals. While a number of enhancers are described to promote IFN-γ responses, to the best of our knowledge, no silencers for the Ifng gene have been identified. By examining H3K4me1 histone modification in naive CD4+ T cells within Ifng locus, we identified a silencer (CNS-28) that restrains Ifng expression. Mechanistically, CNS-28 maintains Ifng silence by diminishing enhancer-promoter interactions within Ifng locus in a GATA3-dependent but T-bet-independent manner. Functionally, CNS-28 restrains Ifng transcription in NK cells, CD4+ cells, and CD8+ T cells during both innate and adaptive immune responses. Moreover, CNS-28 deficiency resulted in repressed type 2 responses due to elevated IFN-γ expression, shifting Th1 and Th2 paradigm. Thus, CNS-28 activity ensures immune cell quiescence by cooperating with other regulatory cis elements within the Ifng gene locus to minimize autoimmunity.
Collapse
Affiliation(s)
- Kairong Cui
- Laboratory of Epigenome Biology, Systems Biology Center, NHLBI, NIH, Bethesda, MD, USA
| | - Zuojia Chen
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Yaqiang Cao
- Laboratory of Epigenome Biology, Systems Biology Center, NHLBI, NIH, Bethesda, MD, USA
| | - Shuai Liu
- Laboratory of Epigenome Biology, Systems Biology Center, NHLBI, NIH, Bethesda, MD, USA
| | - Gang Ren
- Laboratory of Epigenome Biology, Systems Biology Center, NHLBI, NIH, Bethesda, MD, USA
| | - Gangqing Hu
- Laboratory of Epigenome Biology, Systems Biology Center, NHLBI, NIH, Bethesda, MD, USA
| | - Difeng Fang
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Danping Wei
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chengyu Liu
- Transgenic Core Facility, DIR, NHLBI, NIH, Bethesda, MD, USA
| | - Jinfang Zhu
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chuan Wu
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD, USA.
| | - Keji Zhao
- Laboratory of Epigenome Biology, Systems Biology Center, NHLBI, NIH, Bethesda, MD, USA.
| |
Collapse
|
9
|
Bhansali RS, Barta SK. Central Nervous System Progression/Relapse in Mature T- and NK-Cell Lymphomas. Cancers (Basel) 2023; 15:925. [PMID: 36765882 PMCID: PMC9913807 DOI: 10.3390/cancers15030925] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
Non-Hodgkin lymphomas (NHL) are cancers of mature B-, T-, and NK-cells which display marked biological heterogeneity between different subtypes. Mature T- and NK-cell neoplasms are an often-aggressive subgroup of NHL and make up approximately 15% of all NHL. Long-term follow up studies have demonstrated that patients with relapsed/refractory disease have dismal outcomes; in particular, secondary central nervous system (CNS) involvement is associated with higher mortality, though it remains controversial whether this independently confers worse outcomes or if it simply reflects more aggressive systemic disease. Possible risk factors predictive of CNS involvement, such as an elevated lactate dehydrogenase and more than two sites of extranodal involvement, may suggest the latter, though several studies have suggested that discrete sites of anatomic involvement or tumor histology may be independent risk factors as well. Ultimately, small retrospective case series form the basis of our understanding of this rare but devastating event but have not yet demonstrated a consistent benefit of CNS-directed prophylaxis in preventing this outcome. Nonetheless, ongoing efforts are working to establish the epidemiology of CNS progression/relapse in mature T- and NK-cell lymphomas with the goal of identifying clinicopathologic risk factors, which may potentially help discern which patients may benefit from CNS-directed prophylactic therapy or more aggressive systemic therapy.
Collapse
Affiliation(s)
| | - Stefan K. Barta
- Department of Medicine, Division of Hematology and Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
10
|
Wang X, Jiao A, Sun L, Li W, Yang B, Su Y, Ding R, Zhang C, Liu H, Yang X, Sun C, Zhang B. Zinc finger protein Zfp335 controls early T cell development and survival through β-selection-dependent and -independent mechanisms. eLife 2022; 11:75508. [PMID: 35113015 PMCID: PMC8871394 DOI: 10.7554/elife.75508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 02/03/2022] [Indexed: 11/23/2022] Open
Abstract
T-cell development in the thymus undergoes the process of differentiation, selective proliferation, and survival from CD4−CD8− double negative (DN) stage to CD4+CD8+ double positive (DP) stage prior to the formation of CD4+ helper and CD8+ cytolytic T cells ready for circulation. Each developmental stage is tightly regulated by sequentially operating molecular networks, of which only limited numbers of transcription regulators have been deciphered. Here, we identified Zfp335 transcription factor as a new player in the regulatory network controlling thymocyte development in mice. We demonstrate that Zfp335 intrinsically controls DN to DP transition, as T-cell-specific deficiency in Zfp335 leads to a substantial accumulation of DN3 along with reduction of DP, CD4+, and CD8+ thymocytes. This developmental blockade at DN stage results from the impaired intracellular TCRβ (iTCRβ) expression as well as increased susceptibility to apoptosis in thymocytes. Transcriptomic and ChIP-seq analyses revealed a direct regulation of transcription factors Bcl6 and Rorc by Zfp335. Importantly, enhanced expression of TCRβ and Bcl6/Rorc restores the developmental defect during DN3 to DN4 transition and improves thymocytes survival, respectively. These findings identify a critical role of Zfp335 in controlling T-cell development by maintaining iTCRβ expression-mediated β-selection and independently activating cell survival signaling.
Collapse
Affiliation(s)
- Xin Wang
- Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University, Xi'an, China
| | - Anjun Jiao
- Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University, Xi'an, China
| | - Lina Sun
- Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University, Xi'an, China
| | - Wenhua Li
- Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University, Xi'an, China
| | - Biao Yang
- Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University, Xi'an, China
| | - Yanhong Su
- Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University, Xi'an, China
| | - Renyi Ding
- Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University, Xi'an, China
| | - Cangang Zhang
- Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University, Xi'an, China
| | - Haiyan Liu
- Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University, Xi'an, China
| | - Xiaofeng Yang
- Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University, Xi'an, China
| | - Chenming Sun
- Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University, Xi'an, China
| | - Baojun Zhang
- Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
11
|
Johanson TM, Keenan CR, Allan RS. Shedding Structured Light on Molecular Immunity: The Past, Present and Future of Immune Cell Super Resolution Microscopy. Front Immunol 2021; 12:754200. [PMID: 34975842 PMCID: PMC8715013 DOI: 10.3389/fimmu.2021.754200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/23/2021] [Indexed: 12/16/2022] Open
Abstract
In the two decades since the invention of laser-based super resolution microscopy this family of technologies has revolutionised the way life is viewed and understood. Its unparalleled resolution, speed, and accessibility makes super resolution imaging particularly useful in examining the highly complex and dynamic immune system. Here we introduce the super resolution technologies and studies that have already fundamentally changed our understanding of a number of central immunological processes and highlight other immunological puzzles only addressable in super resolution.
Collapse
Affiliation(s)
- Timothy M. Johanson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Christine R. Keenan
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Rhys S. Allan
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
12
|
Fernandes SJ, Ericsson M, Khademi M, Jagodic M, Olsson T, Gomez-Cabrero D, Kockum I, Tegnér J. Deep characterization of paired chromatin and transcriptomes in four immune cell types from multiple sclerosis patients. Epigenomics 2021; 13:1607-1618. [PMID: 34676774 DOI: 10.2217/epi-2021-0205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background: The putative involvement of chromatin states in multiple sclerosis (MS) is thus far unclear. Here we determined the association of chromatin-accessibility with concurrent genetic, epigenetic and transcriptional events. Material & methods: We generated paired assay for transposase-accessible chromatin sequencing and RNA-sequencing profiles from sorted blood immune CD4+ and CD8+ T cells, CD14+ monocytes and CD19+ B cells from healthy controls (HCs) and MS patients. Results: We identified differentially accessible regions between MS patients and HCs, primarily in CD4+ and CD19+. CD4+ regions were enriched for MS-associated single nucleotide polymorphisms and differentially methylated loci. In the vicinity of differentially accessible regions of CD4+ cells, 42 differentially expressed genes were identified. The top two dysregulated genes identified in this multilayer analysis were CCDC114 and SERTAD1. Conclusion: These findings provide new insight into the primary role of CD4+ and CD19+ cells in MS.
Collapse
Affiliation(s)
- Sunjay Jude Fernandes
- Unit of Computational Medicine, Department of Medicine, Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, 17165, Sweden.,Science for Life Laboratory, Solna, Stockholm, 17165, Sweden.,Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, 17165, Sweden
| | - Matilda Ericsson
- Unit of Computational Medicine, Department of Medicine, Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, 17165, Sweden.,Science for Life Laboratory, Solna, Stockholm, 17165, Sweden
| | - Mohsen Khademi
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, 17165, Sweden
| | - Maja Jagodic
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, 17165, Sweden
| | - Tomas Olsson
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, 17165, Sweden
| | - David Gomez-Cabrero
- Unit of Computational Medicine, Department of Medicine, Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, 17165, Sweden.,Science for Life Laboratory, Solna, Stockholm, 17165, Sweden.,Mucosal & Salivary Biology Division, King's College London Dental Institute, London, SE1 9RT, UK.,Translational Bioinformatics Unit, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain.,Biological & Environmental Sciences & Engineering Division, Computer, Electrical & Mathematical Sciences & Engineering Division, King Abdullah University of Science & Technology, Thuwal, Kingdom of Saudi Arabia
| | - Ingrid Kockum
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, 17165, Sweden
| | - Jesper Tegnér
- Unit of Computational Medicine, Department of Medicine, Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, 17165, Sweden.,Science for Life Laboratory, Solna, Stockholm, 17165, Sweden.,Biological & Environmental Sciences & Engineering Division, Computer, Electrical & Mathematical Sciences & Engineering Division, King Abdullah University of Science & Technology, Thuwal, Kingdom of Saudi Arabia
| |
Collapse
|
13
|
Xia L, Jiang L, Chen Y, Zhang G, Chen L. ThPOK transcriptionally inactivates TNFRSF12A to increase the proliferation of T cells with the involvement of the NF-kB pathway. Cytokine 2021; 148:155658. [PMID: 34353698 DOI: 10.1016/j.cyto.2021.155658] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/05/2021] [Accepted: 07/19/2021] [Indexed: 01/20/2023]
Abstract
Gastric cancer (GC), originated from gastric mucosa, is a malignant tumor causing numerous deaths globally. The present study used the coculture of T cells with supernatant of the GC cells (HGC-27, SNU-1) and investigated the function and regulatory mechanism of Zinc finger and BTB domain containing 7B (ZBTB7B, alias ThPOK) on T cell proliferation. Flow cytometry analysis was used to measure the proliferation of CD3+ T cells and IFN-γ+ T cells. We found that low level of ThPOK was associated with poor prognosis in GC patients. ThPOK was lowly expressed in GC cells at the mRNA and protein levels. ThPOK overexpression inhibited GC cell viability and promoted proliferation of T cells. ThPOK was identified to function as a transcription factor for TNFRSF12A. TNFRSF12A was upregulated in GC tissues and cells and high level of TNFRSF12A was associated with poor prognosis in GC patients. ThPOK knockdown elevated TNFRSF12A level in GC cells. ThPOK was revealed to bind with the promoter of TNFRSF12A. TNFRSF12A silencing also inhibited GC cell viability and promoted T cell activation and proliferation. Additionally, ThPOK was demonstrated to inactivate the NF-kB pathway by downregulating TNFRSF12A in GC cells. Overall, ThPOK suppresses cell viability in GC and increases the activation and proliferation of T cells by targeting TNFRSF12A to inactivate the NF-kB pathway.
Collapse
Affiliation(s)
- Lingli Xia
- Department of Gastroenterology, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, Wuhan 430015, Hubei, China
| | - Lili Jiang
- Department of Gastroenterology, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, Wuhan 430015, Hubei, China
| | - Ying Chen
- Department of Gastroenterology, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, Wuhan 430015, Hubei, China
| | - Gang Zhang
- Department of Gastroenterology, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, Wuhan 430015, Hubei, China
| | - Lan Chen
- Department of Gastroenterology, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, Wuhan 430015, Hubei, China.
| |
Collapse
|
14
|
Oh S, Gray DHD, Chong MMW. Single-Cell RNA Sequencing Approaches for Tracing T Cell Development. THE JOURNAL OF IMMUNOLOGY 2021; 207:363-370. [PMID: 34644259 DOI: 10.4049/jimmunol.2100408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 05/20/2021] [Indexed: 01/17/2023]
Abstract
T cell development occurs in the thymus, where uncommitted progenitors are directed into a range of sublineages with distinct functions. The goal is to generate a TCR repertoire diverse enough to recognize potential pathogens while remaining tolerant of self. Decades of intensive research have characterized the transcriptional programs controlling critical differentiation checkpoints at the population level. However, greater precision regarding how and when these programs orchestrate differentiation at the single-cell level is required. Single-cell RNA sequencing approaches are now being brought to bear on this question, to track the identity of cells and analyze their gene expression programs at a resolution not previously possible. In this review, we discuss recent advances in the application of these technologies that have the potential to yield unprecedented insight to T cell development.
Collapse
Affiliation(s)
- Seungyoul Oh
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia.,Department of Medicine (St. Vincent's), The University of Melbourne, Fitzroy, Victoria, Australia
| | - Daniel H D Gray
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia; and.,Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Mark M W Chong
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia; .,Department of Medicine (St. Vincent's), The University of Melbourne, Fitzroy, Victoria, Australia
| |
Collapse
|
15
|
Tian Y, Han C, Wei Z, Dong H, Shen X, Cui Y, Fu X, Tian Z, Wang S, Zhou J, Yang D, Sun Y, Yuan J, Ni B, Wu Y. SOX-5 activates a novel RORγt enhancer to facilitate experimental autoimmune encephalomyelitis by promoting Th17 cell differentiation. Nat Commun 2021; 12:481. [PMID: 33473108 PMCID: PMC7817841 DOI: 10.1038/s41467-020-20786-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 12/17/2020] [Indexed: 01/05/2023] Open
Abstract
T helper type 17 (Th17) cells have important functions in the pathogenesis of inflammatory and autoimmune diseases. Retinoid-related orphan receptor-γt (RORγt) is necessary for Th17 cell differentiation and functions. However, the transcriptional regulation of RORγt expression, especially at the enhancer level, is still poorly understood. Here we identify a novel enhancer of RORγt gene in Th17 cells, RORCE2. RORCE2 deficiency suppresses RORγt expression and Th17 differentiation, leading to reduced severity of experimental autoimmune encephalomyelitis. Mechanistically, RORCE2 is looped to RORγt promoter through SRY-box transcription factor 5 (SOX-5) in Th17 cells, and the loss of SOX-5 binding site in RORCE abolishes RORCE2 function and affects the binding of signal transducer and activator of transcription 3 (STAT3) to the RORγt locus. Taken together, our data highlight a molecular mechanism for the regulation of Th17 differentiation and functions, which may represent a new intervening clue for Th17-related diseases.
Collapse
Affiliation(s)
- Yi Tian
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), 400038, Chongqing, People's Republic of China
| | - Chao Han
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), 400038, Chongqing, People's Republic of China
| | - Zhiyuan Wei
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), 400038, Chongqing, People's Republic of China.,The First Affiliated Hospital of Third Military Medical University (Army Medical University), 400038, Chongqing, People's Republic of China
| | - Hui Dong
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), 400038, Chongqing, People's Republic of China
| | - Xiaohe Shen
- Department of Microbiology and Immunology, Shanxi Medical University, 030001, Taiyuan, People's Republic of China
| | - Yiqiang Cui
- Department of Histology and Embryology, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Xiaolan Fu
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), 400038, Chongqing, People's Republic of China
| | - Zhiqiang Tian
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), 400038, Chongqing, People's Republic of China
| | - Shufeng Wang
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), 400038, Chongqing, People's Republic of China
| | - Jian Zhou
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), 400038, Chongqing, People's Republic of China
| | - Di Yang
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), 400038, Chongqing, People's Republic of China
| | - Yi Sun
- The First Affiliated Hospital of Third Military Medical University (Army Medical University), 400038, Chongqing, People's Republic of China
| | - Jizhao Yuan
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), 400038, Chongqing, People's Republic of China
| | - Bing Ni
- Department of Pathophysiology, Third Military Medical University (Army Medical University), 400038, Chongqing, People's Republic of China. .,Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, 400038, Chongqing, People's Republic of China. .,Key Laboratory of High Altitude Medicine, PLA, 400038, Chongqing, People's Republic of China.
| | - Yuzhang Wu
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), 400038, Chongqing, People's Republic of China.
| |
Collapse
|
16
|
Vahedi G. Remodeling the chromatin landscape in T lymphocytes by a division of labor among transcription factors. Immunol Rev 2021; 300:167-180. [PMID: 33452686 DOI: 10.1111/imr.12942] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/18/2020] [Accepted: 12/23/2020] [Indexed: 12/16/2022]
Abstract
An extraordinary degree of condensation is required to fit the eukaryotic genome inside the nucleus. This compaction is attained by first coiling the DNA around structures called nucleosomes. Mammalian genomes are further folded into sophisticated three-dimensional (3D) configurations, enabling the genetic code to dictate a diverse range of cell fates. Recent advances in molecular and computational technologies have enabled the query of higher-order chromatin architecture at an unprecedented resolution and scale. In T lymphocytes, similar to other developmental programs, the hierarchical genome organization is shaped by a highly coordinated division of labor among different classes of sequence-specific transcription factors. In this review, we will summarize the general principles of 1D and 3D genome organization, introduce the common experimental and computational techniques to measure the multilayer chromatin organization, and discuss the pervasive role of transcription factors on chromatin organization in T lymphocytes.
Collapse
Affiliation(s)
- Golnaz Vahedi
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
17
|
Chen C, Liu Y, Cui B. Effect of radiotherapy on T cell and PD-1 / PD-L1 blocking therapy in tumor microenvironment. Hum Vaccin Immunother 2021; 17:1555-1567. [PMID: 33428533 DOI: 10.1080/21645515.2020.1840254] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cancer is a worldwide problem that threatens human health. Radiotherapy plays an important role in a variety of cancer treatment methods. The administration of radiotherapy can alter the differentiation pathways and functions of T cells, which in turn improves the immune response of T cells. Radiotherapy can also induce up-regulation of PD-L1 expression, which means that it has great potential for enhancing the therapeutic effect of anti-PD-1/PD-L1 inhibitors and reducing the risk of drug resistance toward them. At present, the combination of radiotherapy and anti-PD-1/PD-L1 inhibitors has shown significant therapeutic effects in clinical tumor research. This review focuses on the mechanism of radiotherapy on T cells reported in recent years, as well as related research progress in the application of PD-1/PD-L1 blockers. It will provide a theoretical basis for the rational clinical application of radiotherapy combined with PD-1/PD-L1 inhibitors.
Collapse
Affiliation(s)
- Chen Chen
- Department of Colorectal Surgery, The Tumor Hospital of Harbin Medical University, Harbin, Heilongjiang Province, P. R. China
| | - Yanlong Liu
- Department of Colorectal Surgery, The Tumor Hospital of Harbin Medical University, Harbin, Heilongjiang Province, P. R. China
| | - Binbin Cui
- Department of Colorectal Surgery, The Tumor Hospital of Harbin Medical University, Harbin, Heilongjiang Province, P. R. China
| |
Collapse
|
18
|
Deng W, Ma Y, Su Z, Liu Y, Liang P, Huang C, Liu X, Shao J, Zhang Y, Zhang K, Chen J, Li R. Single-cell RNA-sequencing analyses identify heterogeneity of CD8 + T cell subpopulations and novel therapy targets in melanoma. MOLECULAR THERAPY-ONCOLYTICS 2020; 20:105-118. [PMID: 33575475 PMCID: PMC7851490 DOI: 10.1016/j.omto.2020.12.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/02/2020] [Indexed: 12/11/2022]
Abstract
CD8+ T cells are crucial to establish antitumor immunity, and their high infiltration associates with favorable prognoses. However, several CD8+ T cell subpopulations in the tumor microenvironment may play different roles in prognosis, progression, and immunotherapy. Here, we analyzed prior published single-cell RNA-sequencing (scRNA-seq) melanoma data to explore the heterogeneity of CD8+ T cell subpopulations and identified 7 major subpopulations. We found that high infiltration of exhausted CD8+ T cell subpopulation 2 would contribute to unfavorable prognoses. In contrast, a large proportion of naive/memory cells and cytotoxic CD8+ T cell subpopulation 3 would lead to favorable prognoses. Notably, the proportion of the cytotoxic CD8+ T cell subpopulation 3 would decrease in later-stage melanoma samples, while that of the exhausted CD8+ T cell subpopulation 2 would increase. We also found that high abnormal activities of metabolic pathways existed in exhausted CD8+ T cell subpopulation 1. Significantly, immunosuppressive checkpoints PD-1 and CTLA-4 signaling pathways were upregulated in exhausted CD8+ T cell subpopulations. In addition, a dynamic transcript landscape of immune checkpoints among different subpopulations was also depicted in this study. Moreover, we identified three overexpressed genes (PMEL, TYRP1, and EDNRB) that were significantly correlated to poor prognoses and only expressed in exhausted CD8+ T cell subpopulation 2. Importantly, they showed the highest expression in melanoma samples compared to other tumors. In general, we characterized the CD8+ T cell subpopulations in melanoma and identified that not only genes of immunosuppressive checkpoints but also PMEL, TYRP1, and EDNRB could serve as potential targets for melanoma therapy.
Collapse
Affiliation(s)
- Weiwei Deng
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China.,Research Center for Medical Mycology, Peking University, Beijing 100034, China.,Beijing Key Laboratory of Molecular Diagnosis of Dermatoses, Peking University First Hospital, Beijing, China.,National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Yubo Ma
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China.,Research Center for Medical Mycology, Peking University, Beijing 100034, China.,Beijing Key Laboratory of Molecular Diagnosis of Dermatoses, Peking University First Hospital, Beijing, China.,National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Zhen Su
- Department of Dermatology and Venerology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, China
| | - Yufang Liu
- Department of Dermatology and Venerology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, China
| | - Panpan Liang
- Clinical Laboratory, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Chen Huang
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China.,Research Center for Medical Mycology, Peking University, Beijing 100034, China.,Beijing Key Laboratory of Molecular Diagnosis of Dermatoses, Peking University First Hospital, Beijing, China.,National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Xiao Liu
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China.,Research Center for Medical Mycology, Peking University, Beijing 100034, China.,Beijing Key Laboratory of Molecular Diagnosis of Dermatoses, Peking University First Hospital, Beijing, China.,National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Jin Shao
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China.,Research Center for Medical Mycology, Peking University, Beijing 100034, China.,Beijing Key Laboratory of Molecular Diagnosis of Dermatoses, Peking University First Hospital, Beijing, China.,National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Yi Zhang
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China.,Research Center for Medical Mycology, Peking University, Beijing 100034, China.,Beijing Key Laboratory of Molecular Diagnosis of Dermatoses, Peking University First Hospital, Beijing, China.,National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Kai Zhang
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China.,Research Center for Medical Mycology, Peking University, Beijing 100034, China.,Beijing Key Laboratory of Molecular Diagnosis of Dermatoses, Peking University First Hospital, Beijing, China.,National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Jian Chen
- Department of Dermatology and Venerology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, China
| | - Ruoyu Li
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China.,Research Center for Medical Mycology, Peking University, Beijing 100034, China.,Beijing Key Laboratory of Molecular Diagnosis of Dermatoses, Peking University First Hospital, Beijing, China.,National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| |
Collapse
|
19
|
He S, Wang LH, Liu Y, Li YQ, Chen HT, Xu JH, Peng W, Lin GW, Wei PP, Li B, Xia X, Wang D, Bei JX, He X, Guo Z. Single-cell transcriptome profiling of an adult human cell atlas of 15 major organs. Genome Biol 2020; 21:294. [PMID: 33287869 PMCID: PMC7720616 DOI: 10.1186/s13059-020-02210-0] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 11/20/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND As core units of organ tissues, cells of various types play their harmonious rhythms to maintain the homeostasis of the human body. It is essential to identify the characteristics of cells in human organs and their regulatory networks for understanding the biological mechanisms related to health and disease. However, a systematic and comprehensive single-cell transcriptional profile across multiple organs of a normal human adult is missing. RESULTS We perform single-cell transcriptomes of 84,363 cells derived from 15 tissue organs of one adult donor and generate an adult human cell atlas. The adult human cell atlas depicts 252 subtypes of cells, including major cell types such as T, B, myeloid, epithelial, and stromal cells, as well as novel COCH+ fibroblasts and FibSmo cells, each of which is distinguished by multiple marker genes and transcriptional profiles. These collectively contribute to the heterogeneity of major human organs. Moreover, T cell and B cell receptor repertoire comparisons and trajectory analyses reveal direct clonal sharing of T and B cells with various developmental states among different tissues. Furthermore, novel cell markers, transcription factors, and ligand-receptor pairs are identified with potential functional regulations in maintaining the homeostasis of human cells among tissues. CONCLUSIONS The adult human cell atlas reveals the inter- and intra-organ heterogeneity of cell characteristics and provides a useful resource in uncovering key events during the development of human diseases in the context of the heterogeneity of cells and organs.
Collapse
Affiliation(s)
- Shuai He
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060 People’s Republic of China
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 People’s Republic of China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 People’s Republic of China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 People’s Republic of China
| | - Lin-He Wang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 People’s Republic of China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 People’s Republic of China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 People’s Republic of China
| | - Yang Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060 People’s Republic of China
| | - Yi-Qi Li
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060 People’s Republic of China
| | - Hai-Tian Chen
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 People’s Republic of China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 People’s Republic of China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 People’s Republic of China
| | - Jing-Hong Xu
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 People’s Republic of China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 People’s Republic of China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 People’s Republic of China
| | - Wan Peng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060 People’s Republic of China
| | - Guo-Wang Lin
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060 People’s Republic of China
- Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282 People’s Republic of China
| | - Pan-Pan Wei
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060 People’s Republic of China
| | - Bo Li
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 People’s Republic of China
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120 People’s Republic of China
| | - Xiaojun Xia
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060 People’s Republic of China
| | - Dan Wang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060 People’s Republic of China
| | - Jin-Xin Bei
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060 People’s Republic of China
- Center for Precision Medicine, Sun Yat-sen University, Guangzhou, 510080 People’s Republic of China
| | - Xiaoshun He
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 People’s Republic of China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 People’s Republic of China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 People’s Republic of China
| | - Zhiyong Guo
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 People’s Republic of China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 People’s Republic of China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 People’s Republic of China
| |
Collapse
|
20
|
Spinner CA, Lazarevic V. Transcriptional regulation of adaptive and innate lymphoid lineage specification. Immunol Rev 2020; 300:65-81. [PMID: 33615514 DOI: 10.1111/imr.12935] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/26/2020] [Accepted: 11/16/2020] [Indexed: 12/28/2022]
Abstract
Once alerted to the presence of a pathogen, activated CD4+ T cells initiate distinct gene expression programs that produce multiple functionally specialized T helper (Th) subsets. The cytokine milieu present at the time of antigen encounter instructs CD4+ T cells to differentiate into interferon-(IFN)-γ-producing Th1 cells, interleukin-(IL)-4-producing Th2 cells, IL-17-producing Th17 cells, follicular T helper (Tfh) cells, or regulatory T (Treg) cells. In each of these Th cell subsets, a single transcription factor has been identified as a critical regulator of its specialized differentiation program. In this context, the expression of the "master regulator" is necessary and sufficient to activate lineage-specific genes while restricting the gene expression program of alternative Th fates. Thus, the transcription factor T-bet controls Th1 differentiation program, while the development of Th2, Th17, Tfh, and Treg cells is dependent on transcription factors GATA3, RORγt, Bcl6, and Foxp3, respectively. Nevertheless, master regulators or, more precisely, lineage-defining transcription factors do not function in isolation. In fact, they interact with a complex network of transcription factors, orchestrating cell lineage specification programs. In this review, we discuss the concept of the combinatorial interactions of key transcription factors in determining helper T cell identity. Additionally, lineage-defining transcription factors have well-established functions beyond their role in CD4+ Th subsets. They play critically important functions at distinct stages during T cell development in the thymus and they control the development of innate lymphoid cells (ILCs) in the bone marrow. In tracking the journey of T cells traversing from the thymus to the periphery and during the immune response, we discuss in broad terms developmental stage and context-dependent functions of lineage-defining transcription factors in regulating specification programs of innate and adaptive lymphocytes.
Collapse
Affiliation(s)
- Camille A Spinner
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Vanja Lazarevic
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
21
|
Laukkanen S, Oksa L, Nikkilä A, Lahnalampi M, Parikka M, Seki M, Takita J, Degerman S, de Bock CE, Heinäniemi M, Lohi O. SIX6 is a TAL1-regulated transcription factor in T-ALL and associated with inferior outcome. Leuk Lymphoma 2020; 61:3089-3100. [PMID: 32835548 DOI: 10.1080/10428194.2020.1804560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is a hematological malignancy driven by abnormal activity of transcription factors. Here we report an aberrant expression of the developmental transcription factor SIX6 in the TAL1-subtype of T-ALL. Our results demonstrate that the binding of TAL1 and GATA3 transcription factors into an upstream enhancer element directly regulates SIX6 expression. High expression of SIX6 was associated with inferior event-free survival within three independent patient cohorts. At a functional level, CRISPR-Cas9-mediated knockout of the SIX6 gene in TAL1 positive Jurkat cells induced changes in genes associated with the mTOR-, K-RAS-, and TNFα-related molecular signatures but did not impair cell proliferation or viability. There was also no acceleration of T-ALL development within a Myc driven zebrafish tumor model in vivo. Taken together, our results show that SIX6 belongs to the TAL1 regulatory gene network in T-ALL but is alone insufficient to influence the development or maintenance of T-ALL.
Collapse
Affiliation(s)
- Saara Laukkanen
- Faculty of Medicine and Health Technology, Tampere Center for Child Health Research, Tampere University, Tampere, Finland
| | - Laura Oksa
- Faculty of Medicine and Health Technology, Tampere Center for Child Health Research, Tampere University, Tampere, Finland
| | - Atte Nikkilä
- Faculty of Medicine and Health Technology, Tampere Center for Child Health Research, Tampere University, Tampere, Finland
| | - Mari Lahnalampi
- The Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Mataleena Parikka
- Faculty of Medicine and Health Technology, BioMediTech, Tampere University, Tampere, Finland.,Oral and Maxillofacial Unit, Tampere University Hospital, Tampere, Finland
| | - Masafumi Seki
- Department of Cell and Molecular Biology, Karolinska Institutet, Solna, Sweden
| | - Junko Takita
- Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Sofie Degerman
- Department of Medical Biosciences and Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Charles E de Bock
- Children's Cancer Institute, Lowy Cancer Research Centre, Sydney, Australia.,School of Women's and Children's Health, University of New South Wales Sydney, Sydney, Australia
| | - Merja Heinäniemi
- The Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Olli Lohi
- Faculty of Medicine and Health Technology, Tampere Center for Child Health Research, Tampere University, Tampere, Finland.,Tays Cancer Centre, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
22
|
Maqbool MA, Pioger L, El Aabidine AZ, Karasu N, Molitor AM, Dao LTM, Charbonnier G, van Laethem F, Fenouil R, Koch F, Lacaud G, Gut I, Gut M, Amigorena S, Joffre O, Sexton T, Spicuglia S, Andrau JC. Alternative Enhancer Usage and Targeted Polycomb Marking Hallmark Promoter Choice during T Cell Differentiation. Cell Rep 2020; 32:108048. [PMID: 32814051 DOI: 10.1016/j.celrep.2020.108048] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/13/2020] [Accepted: 07/28/2020] [Indexed: 01/08/2023] Open
Abstract
During thymic development and upon peripheral activation, T cells undergo extensive phenotypic and functional changes coordinated by lineage-specific developmental programs. To characterize the regulatory landscape controlling T cell identity, we perform a wide epigenomic and transcriptional analysis of mouse thymocytes and naive CD4 differentiated T helper cells. Our investigations reveal a dynamic putative enhancer landscape, and we could validate many of the enhancers using the high-throughput CapStarr sequencing (CapStarr-seq) approach. We find that genes using multiple promoters display increased enhancer usage, suggesting that apparent "enhancer redundancy" might relate to isoform selection. Furthermore, we can show that two Runx3 promoters display long-range interactions with specific enhancers. Finally, our analyses suggest a novel function for the PRC2 complex in the control of alternative promoter usage. Altogether, our study has allowed for the mapping of an exhaustive set of active enhancers and provides new insights into their function and that of PRC2 in controlling promoter choice during T cell differentiation.
Collapse
Affiliation(s)
- Muhammad Ahmad Maqbool
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, CNRS, 1919 Route de Mende, Montpellier 34293, France.
| | - Léo Pioger
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, CNRS, 1919 Route de Mende, Montpellier 34293, France
| | - Amal Zine El Aabidine
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, CNRS, 1919 Route de Mende, Montpellier 34293, France
| | - Nezih Karasu
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), 1 rue Laurent Fries, 67404 Illkirch, France; CNRS UMR7104, 1 rue Laurent Fries, 67404 Illkirch, France; INSERM U1258, 1 rue Laurent Fries, 67404 Illkirch, France; University of Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Anne Marie Molitor
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), 1 rue Laurent Fries, 67404 Illkirch, France; CNRS UMR7104, 1 rue Laurent Fries, 67404 Illkirch, France; INSERM U1258, 1 rue Laurent Fries, 67404 Illkirch, France; University of Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Lan T M Dao
- Aix-Marseille University, UMR-S 1090, TAGC, Marseille 13009, France
| | | | - Francois van Laethem
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, CNRS, 1919 Route de Mende, Montpellier 34293, France
| | - Romain Fenouil
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, CNRS, 1919 Route de Mende, Montpellier 34293, France
| | - Frederic Koch
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, CNRS, 1919 Route de Mende, Montpellier 34293, France
| | - Georges Lacaud
- CRUK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Aderley Park, Macclesfield SK104TG, UK
| | - Ivo Gut
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Marta Gut
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Sebastian Amigorena
- Institut Curie, Université Paris Sciences et Lettres, INSERM U932, 75005 Paris, France
| | - Olivier Joffre
- Centre de Physiopathologie de Toulouse Purpan, INSERM UMR1043 CHU Purpan - BP 3028, 31024 Toulouse Cedex 3, France
| | - Thomas Sexton
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), 1 rue Laurent Fries, 67404 Illkirch, France; CNRS UMR7104, 1 rue Laurent Fries, 67404 Illkirch, France; INSERM U1258, 1 rue Laurent Fries, 67404 Illkirch, France; University of Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France
| | | | - Jean-Christophe Andrau
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, CNRS, 1919 Route de Mende, Montpellier 34293, France.
| |
Collapse
|
23
|
Rad S. M. AH, Poudel A, Tan GMY, McLellan AD. Promoter choice: Who should drive the CAR in T cells? PLoS One 2020; 15:e0232915. [PMID: 32706785 PMCID: PMC7380635 DOI: 10.1371/journal.pone.0232915] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/07/2020] [Indexed: 12/24/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy is an effective treatment for B cell malignancies, with emerging potential for the treatment of other hematologic cancers and solid tumors. The strength of the promoter within the CAR cassette will alter CAR-polypeptide levels on the cell surface of the T cell-impacting on the kinetics of activation, survival and memory cell formation in T cells. In addition to the CAR, promoters can be used to drive other genes of interest to enhance CAR T cell function. Expressing multiple genes from a single RNA transcript can be effectively achieved by linking the genes via a ribosomal skip site. However, promoters may differ in their ability to transcribe longer RNAs, or could interfere with lentiviral production, or transduction frequencies. In this study we compared the ability of the strong well-characterized promoters CMV, EF-1, hPGK and RPBSA to drive functional expression of a single RNA encoding three products: GFP, CAR, plus an additional cell-survival gene, Mcl-1. Although the four promoters produced similarly high lentiviral titres, EF-1 gave the best transduction efficacy of primary T cells. Major differences were found in the ability of the promoters to drive expression of long RNA encoding GFP, CAR and Mcl-1, highlighting promoter choice as an important consideration for gene therapy applications requiring the expression of long and complex mRNA.
Collapse
Affiliation(s)
| | - Aarati Poudel
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Grace Min Yi Tan
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Alexander D. McLellan
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
24
|
Transcriptomic features of tumour-infiltrating CD4 lowCD8 high double positive αβ T cells in melanoma. Sci Rep 2020; 10:5900. [PMID: 32246006 PMCID: PMC7125144 DOI: 10.1038/s41598-020-62664-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/17/2020] [Indexed: 12/17/2022] Open
Abstract
Peripheral CD4+CD8+ double positive (DP) T cells are a phenotypically and functionally heterogeneous population depending on their origin and pathologic context. We previously identified among tumour infiltrating lymphocytes in melanoma, a tumour-reactive MHC class-I restricted CD4lowCD8high DP αβ T-cell subpopulation with CD4-like function. In this study, we used an in-depth comparative transriptomic analysis of intra-melanoma DP T cells and CD4 and CD8 single positive (SP) T cells, to better comprehend the origin of this DP phenotype, and define the transcriptomic signature of activated DP T cells. We observed that intra-melanoma DP T cells were transcriptome-wise closer to their CD8 SP T-cell counterparts in terms of number of genes differentially expressed (97 in common with CD8 SP T cells and 15 with CD4 SP T cells) but presented hallmarks of a transition to a CD4-like functional profile (CD40LG) with a decreased cytotoxic signature (KLRC1) in favour of an increased cytokine-receptor interaction signature (IL4, IL24, IL17A…). This unleashed CD4-like program could be the results of the observed unbalanced expression of the THPOK/Runx3 transcription factors in DP T cells. Overall, this study allow us to speculate that intra-melanoma DP T cells arise from CD8 SP T cells being reprogrammed to a helper function.
Collapse
|
25
|
Ye L, Pan J, Liang M, Pasha MA, Shen X, D'Souza SS, Fung ITH, Wang Y, Patel G, Tang DD, Yang Q. A critical role for c-Myc in group 2 innate lymphoid cell activation. Allergy 2020; 75:841-852. [PMID: 31833571 DOI: 10.1111/all.14149] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 09/29/2019] [Accepted: 10/19/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Asthma is a complicated chronic inflammatory disorder characterized by airway inflammation and bronchial hyperresponsiveness. Group 2 innate lymphoid cells (ILC2) are tissue-resident innate effector cells that can mediate airway inflammation and hyperresponsiveness through production of IL-5, IL-13 and VEGFA. ILC2 in asthma patients exhibit an activated phenotype. However, molecular pathways that control ILC2 activation are not well understood. METHODS MYC expression was examined in ILC2 sorted from peripheral blood of healthy controls and asthma patients or cultured with or without activating cytokines. CRISPR knockout technique was used to delete c-Myc in primary murine lung ILC2 or an ILC2 cell line. Cell proliferation was examined, gene expression pattern was profiled by genome-wide microarray analysis, and direct gene targets were identified by Chromatin immunoprecipitation (ChIP). ILC2 responses, airway inflammation and airway hyperresponsiveness were examined in Balb/c mice challenged with Alternaria extracts, with or without treatment with JQ1. RESULTS ILC2 from asthma patients expressed increased amounts of MYC. Deletion of c-Myc in ILC2 results in reduced proliferation, decreased cytokine production, and reduced expression of many lymphocyte activation genes. ChIP identified Stat6 as a direct gene target of c-Myc in ILC2. In vivo inhibition of c-Myc by JQ1 treatment repressed ILC2 activity and suppressed Alternaria-induced airway inflammation and AHR. CONCLUSION c-Myc expression is upregulated during ILC2 activation. c-Myc is essential for ILC2 activation and their in vivo pathogenic effects. These findings suggest that targeting c-Myc may unlock novel strategies to combat asthma or asthma exacerbation.
Collapse
Affiliation(s)
- Longyun Ye
- Department of Immunology & Microbial Diseases Albany Medical College Albany NY USA
| | - Jiexue Pan
- Department of Immunology & Microbial Diseases Albany Medical College Albany NY USA
| | - Mingwei Liang
- Department of Immunology & Microbial Diseases Albany Medical College Albany NY USA
| | - Muhammad Asghar Pasha
- Division of Allergy/Immunology Department of Medicine Albany Medical College Albany NY USA
| | - Xiaofei Shen
- Department of Immunology & Microbial Diseases Albany Medical College Albany NY USA
| | - Shanti S. D'Souza
- Department of Immunology & Microbial Diseases Albany Medical College Albany NY USA
| | - Ivan Ting Hin Fung
- Department of Immunology & Microbial Diseases Albany Medical College Albany NY USA
| | - Yinna Wang
- Department of Molecular and Cellular Physiology Albany Medical College Albany NY USA
| | - Gargi Patel
- Division of Allergy/Immunology Department of Medicine Albany Medical College Albany NY USA
| | - Dale D. Tang
- Department of Molecular and Cellular Physiology Albany Medical College Albany NY USA
| | - Qi Yang
- Department of Immunology & Microbial Diseases Albany Medical College Albany NY USA
- Division of Allergy/Immunology Department of Medicine Albany Medical College Albany NY USA
| |
Collapse
|
26
|
Gao J, Gu J, Pan X, Gan X, Ju Z, Zhang S, Xia Y, Lu L, Wang X. Blockade of miR-142-3p promotes anti-apoptotic and suppressive function by inducing KDM6A-mediated H3K27me3 demethylation in induced regulatory T cells. Cell Death Dis 2019; 10:332. [PMID: 30988391 PMCID: PMC6465300 DOI: 10.1038/s41419-019-1565-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 02/06/2023]
Abstract
In vitro induced human regulatory T cells (iTregs) have in vivo therapeutic utility. MicroRNAs (miRNAs) are a family of approximately 22-nucleotide non-coding RNAs that are processed from longer precursors by the RNases Drosha and Dicer. miRNAs regulate post-transcriptional protein expression through messenger RNA destabilization or translational silencing; miR-142-3p regulates natural Treg function through autophagy. We hypothesized that this miRNA may also have an iTreg regulation function. Antagomir-mediated knockdown of miR-142-3p improved Foxp3 (forkhead box P3) expression, regulatory function, cytokine expression, and apoptosis of iTregs in vitro, with or without inflammatory cytokine stimulation. miR-142-3p knockdown increased autophagy-related protein 16-1-mediated autophagy. Target prediction and luciferase assay results indicated that miR-142-3p binds directly to lysine demethylase 6A (KDM6A), which resulted in demethylation of H3K27me3 and in turn upregulated expression of the anti-apoptotic protein Bcl-2. Based on these results, we propose a novel strategy that uses knockdown of miR-142-3p to enhance anti-apoptotic ability and function of iTregs by increasing KDM6A and Bcl-2 expression. This approach might be used as a treatment to control established chronic immune-mediated autoimmune and inflammatory diseases.
Collapse
Affiliation(s)
- Ji Gao
- Hepatobiliary Center, First Affiliated Hospital, Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, Jiangsu Province, 210029, China
| | - Jian Gu
- Hepatobiliary Center, First Affiliated Hospital, Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, Jiangsu Province, 210029, China
| | - Xiongxiong Pan
- Department of Anesthesiology, First Affiliated Hospital, Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, Jiangsu Province, 210029, China
| | - Xiaojie Gan
- Hepatobiliary Center, First Affiliated Hospital, Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, Jiangsu Province, 210029, China
| | - Zheng Ju
- Hepatobiliary Center, First Affiliated Hospital, Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, Jiangsu Province, 210029, China
| | - Shaopeng Zhang
- Hepatobiliary Center, First Affiliated Hospital, Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, Jiangsu Province, 210029, China
| | - Yongxiang Xia
- Hepatobiliary Center, First Affiliated Hospital, Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, Jiangsu Province, 210029, China
| | - Ling Lu
- Hepatobiliary Center, First Affiliated Hospital, Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, Jiangsu Province, 210029, China.
| | - Xuehao Wang
- Hepatobiliary Center, First Affiliated Hospital, Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, Jiangsu Province, 210029, China.
| |
Collapse
|
27
|
Harrison DL, Fang Y, Huang J. T-Cell Mechanobiology: Force Sensation, Potentiation, and Translation. FRONTIERS IN PHYSICS 2019; 7:45. [PMID: 32601597 PMCID: PMC7323161 DOI: 10.3389/fphy.2019.00045] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A T cell is a sensitive self-referential mechanical sensor. Mechanical forces influence the recognition, activation, differentiation, and function throughout the lifetime of a T cell. T cells constantly perceive and respond to physical stimuli through their surface receptors, cytoskeleton, and subcellular structures. Surface receptors receive physical cues in the form of forces generated through receptor-ligand binding events, which are dynamically regulated by contact tension, shear stress, and substrate rigidity. The resulting mechanotransduction not only influences T-cell recognition and signaling but also possibly modulates cell metabolism and gene expression. Moreover, forces also dynamically regulate the deformation, organization, and translocation of cytoskeleton and subcellular structures, leading to changes in T-cell mobility, migration, and infiltration. However, the roles and mechanisms of how mechanical forces modulate T-cell recognition, signaling, metabolism, and gene expression, are largely unknown and underappreciated. Here, we review recent technological and scientific advances in T-cell mechanobiology, discuss possible roles and mechanisms of T-cell mechanotransduction, and propose new research directions of this emerging field in health and disease.
Collapse
Affiliation(s)
- Devin L. Harrison
- The Graduate Program in Biophysical Sciences, The University of Chicago, Chicago, IL, United States
| | - Yun Fang
- The Graduate Program in Biophysical Sciences, The University of Chicago, Chicago, IL, United States
- Section of Pulmonary and Critical Care, Department of Medicine, The University of Chicago, Chicago, IL, United States
| | - Jun Huang
- The Graduate Program in Biophysical Sciences, The University of Chicago, Chicago, IL, United States
- Institute for Molecular Engineering, The University of Chicago, Chicago, IL, United States
| |
Collapse
|
28
|
Arenzana TL, Lianoglou S, Seki A, Eidenschenk C, Cheung T, Seshasayee D, Hagenbeek T, Sambandam A, Noubade R, Peng I, Lesch J, DeVoss J, Wu X, Lee WP, Caplazi P, Webster J, Liu J, Pham VC, Arnott D, Lill JR, Modrusan Z, Dey A, Rutz S. Tumor suppressor BAP1 is essential for thymic development and proliferative responses of T lymphocytes. Sci Immunol 2019; 3:3/22/eaal1953. [PMID: 29678836 DOI: 10.1126/sciimmunol.aal1953] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 11/06/2017] [Accepted: 02/23/2018] [Indexed: 12/11/2022]
Abstract
Loss of function of the nuclear deubiquitinating enzyme BRCA1-associated protein-1 (BAP1) is associated with a wide spectrum of cancers. We report that tamoxifen-induced BAP1 deletion in adult mice resulted in severe thymic atrophy. BAP1 was critical for T cell development at several stages. In the thymus, BAP1 was required for progression through the pre-T cell receptor checkpoint. Peripheral T cells lacking BAP1 demonstrated a defect in homeostatic and antigen-driven expansion. Deletion of BAP1 resulted in suppression of E2F target genes and defects in cell cycle progression, which was dependent on the catalytic activity of BAP1, but did not require its interaction with host cell factor-1 (HCF-1). Loss of BAP1 led to increased monoubiquitination of histone H2A at Lys119 (H2AK119ub) throughout the T cell lineage, in particular in immature thymocytes, but did not alter trimethylation of histone H3 at Lys27 (H3K27me3). Deletion of BAP1 also abrogated B cell development in the bone marrow. Our findings uncover a nonredundant function for BAP1 in maintaining the lymphoid lineage.
Collapse
Affiliation(s)
- Teresita L Arenzana
- Department of Cancer Immunology, Genentech, 1 DNA Way, South San Francisco, USA
| | - Steve Lianoglou
- Department of Bioinformatics, Genentech, South San Francisco, USA
| | - Akiko Seki
- Department of Cancer Immunology, Genentech, 1 DNA Way, South San Francisco, USA
| | - Celine Eidenschenk
- Department of Biochemical and Cellular Pharmacology, Genentech, South San Francisco, USA
| | - Tommy Cheung
- Department of Proteomics and Biological Resources, Genentech, South San Francisco, USA
| | - Dhaya Seshasayee
- Department of Antibody Engineering, Genentech, South San Francisco, USA
| | - Thijs Hagenbeek
- Department of Discovery Oncology, Genentech, South San Francisco, USA
| | | | | | - Ivan Peng
- Department of Immunology, Genentech, South San Francisco, USA
| | - Justin Lesch
- Department of Immunology, Genentech, South San Francisco, USA
| | - Jason DeVoss
- Department of Immunology, Genentech, South San Francisco, USA
| | - Xiumin Wu
- Department of Immunology, Genentech, South San Francisco, USA
| | - Wyne P Lee
- Department of Immunology, Genentech, South San Francisco, USA
| | - Patrick Caplazi
- Department of Pathology, Genentech, South San Francisco, USA
| | - Joshua Webster
- Department of Pathology, Genentech, South San Francisco, USA
| | - Jinfeng Liu
- Department of Bioinformatics, Genentech, South San Francisco, USA
| | - Victoria C Pham
- Department of Proteomics and Biological Resources, Genentech, South San Francisco, USA
| | - David Arnott
- Department of Proteomics and Biological Resources, Genentech, South San Francisco, USA
| | - Jennie R Lill
- Department of Proteomics and Biological Resources, Genentech, South San Francisco, USA
| | - Zora Modrusan
- Department of Molecular Biology, Genentech, South San Francisco, USA
| | - Anwesha Dey
- Department of Discovery Oncology, Genentech, South San Francisco, USA.
| | - Sascha Rutz
- Department of Cancer Immunology, Genentech, 1 DNA Way, South San Francisco, USA.
| |
Collapse
|
29
|
Li P, Leonard WJ. Chromatin Accessibility and Interactions in the Transcriptional Regulation of T Cells. Front Immunol 2018; 9:2738. [PMID: 30524449 PMCID: PMC6262064 DOI: 10.3389/fimmu.2018.02738] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/06/2018] [Indexed: 12/24/2022] Open
Abstract
During T cell differentiation and activation, specific stimuli, and a network of transcription factors (TFs) are involved in orchestrating chromatin accessibility, establishing enhancer-promoter interactions, and regulating gene expression. Over the past few years, there have been new insights into how chromatin interactions coordinate differentiation during T cell development and how regulatory elements are programmed to allow T cells to differentially respond to distinct stimuli. In this review, we discuss recent advances related to the roles of TFs in establishing the regulatory chromatin landscapes that orchestrate T cell development and differentiation. In particular, we focus on the role of TFs (e.g., TCF-1, BCL11B, PU.1, STAT3, STAT5, AP-1, and IRF4) in mediating chromatin accessibility and interactions and in regulating gene expression in T cells, including gene expression that is dependent on IL-2 and IL-21. Furthermore, we discuss the state of knowledge on enhancer-promoter interactions and how autoimmune disease risk variants can be linked to molecular functions of putative target genes.
Collapse
Affiliation(s)
- Peng Li
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Warren J Leonard
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
30
|
Shen J, Yin C, Jiang X, Wang X, Yang S, Song G. Aberrant histone modification and inflammatory cytokine production of peripheral CD4+ T cells in patients with oral lichen planus. J Oral Pathol Med 2018; 48:136-142. [PMID: 30329194 PMCID: PMC6588086 DOI: 10.1111/jop.12790] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/05/2018] [Accepted: 10/11/2018] [Indexed: 12/13/2022]
Abstract
Backgrounds To investigate alterations in histone modification and histone deacetylases (HDACs) in patients with oral lichen planus (OLP), and to evaluate correlations with inflammatory cytokine production. Methods Global histone H3/H4 acetylation and HDAC activity in CD4+ T cells from 23 patients with OLP and 10 healthy control subjects were examined using spectrophotometry. The mRNA levels of eight members of four classes of HDAC genes were measured by real‐time quantitative polymerase chain reaction. Forty cytokines involved in inflammation were examined with a cytokine array. The correlation between histone modification and cytokine production was analyzed. Results Global histone H3 hypo‐acetylation was observed in OLP patients. Patients with OLP had significantly higher HDACs activity,and higher HDAC6 and HDAC7 mRNA level compared with the controls. Of the 40 cytokines in the cytokine array, eight were significantly increased in OLP patients: interleukin (IL)‐4, IL‐8, IL‐1ra, tumor necrosis factor receptor II (TNFR II), macrophage inflammatory protein 1b (MIP‐1b), fibrosis‐associated tissue inhibitors of metalloproteinase 1 (TIMP)‐1, monocyte chemotactic protein 1 (MCP‐1), and eotaxin‐2. In the OLP group, the acetylation level of histone H3 was negatively correlated with IL‐4 and MCP‐1 production, and the expression of HDAC6 mRNA was positively correlated with MCP‐1 production. In the non‐erosive subgroup, acetylation of histone H3 was negatively correlated with IL‐4, IL‐16, and TIMP‐2 production. In the erosive OLP subgroup, the expression of HDAC7 mRNA was positively correlated with MIP‐1a production. Conclusion Aberrant histone modification of CD4+ T cells in peripheral blood could occur in OLP patients, and possibly affects inflammatory cytokine production.
Collapse
Affiliation(s)
- Jun Shen
- Department of Oral Medicine, Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Cao Yin
- Department of Oral Medicine, Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiao Jiang
- Department of Oral Medicine, Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xuan Wang
- Department of Oral Medicine, Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Shujuan Yang
- Department of Oral Pathology, Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Guangbao Song
- Department of Oral Medicine, Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
31
|
Kunze-Schumacher H, Winter SJ, Imelmann E, Krueger A. miRNA miR-21 Is Largely Dispensable for Intrathymic T-Cell Development. Front Immunol 2018; 9:2497. [PMID: 30455689 PMCID: PMC6230590 DOI: 10.3389/fimmu.2018.02497] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 10/09/2018] [Indexed: 12/13/2022] Open
Abstract
Development of T cells in the thymus is tightly controlled to continually produce functional, but not autoreactive, T cells. miRNAs provide a layer of post-transcriptional gene regulation to this process, but the role of many individual miRNAs in T-cell development remains unclear. miR-21 is prominently expressed in immature thymocytes followed by a steep decline in more mature cells. We hypothesized that such a dynamic expression was indicative of a regulatory function in intrathymic T-cell development. To test this hypothesis, we analyzed T-cell development in miR-21-deficient mice at steady state and under competitive conditions in mixed bone-marrow chimeras. We complemented analysis of knock-out animals by employing over-expression in vivo. Finally, we assessed miR-21 function in negative selection in vivo as well as differentiation in co-cultures. Together, these experiments revealed that miR-21 is largely dispensable for physiologic T-cell development. Given that miR-21 has been implicated in regulation of cellular stress responses, we assessed a potential role of miR-21 in endogenous regeneration of the thymus after sublethal irradiation. Again, miR-21 was completely dispensable in this process. We concluded that, despite prominent and highly dynamic expression in thymocytes, miR-21 expression was not required for physiologic T-cell development or endogenous regeneration.
Collapse
Affiliation(s)
| | - Samantha J Winter
- Institute for Molecular Medicine, Goethe University Frankfurt, Frankfurt, Germany
| | - Esther Imelmann
- Institute for Molecular Medicine, Goethe University Frankfurt, Frankfurt, Germany
| | - Andreas Krueger
- Institute for Molecular Medicine, Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
32
|
Goronzy JJ, Hu B, Kim C, Jadhav RR, Weyand CM. Epigenetics of T cell aging. J Leukoc Biol 2018; 104:691-699. [PMID: 29947427 PMCID: PMC6162101 DOI: 10.1002/jlb.1ri0418-160r] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/06/2018] [Accepted: 06/08/2018] [Indexed: 02/06/2023] Open
Abstract
T cells are a heterogeneous population of cells that differ in their differentiation stages. Functional states are reflected in the epigenome that confers stability in cellular identity and is therefore important for naïve as well as memory T cell function. In many cellular systems, changes in chromatin structure due to alterations in histone expression, histone modifications and DNA methylation are characteristic of the aging process and cause or at least contribute to cellular dysfunction in senescence. Here, we review the epigenetic changes in T cells that occur with age and discuss them in the context of canonical epigenetic marks in aging model systems as well as recent findings of chromatin accessibility changes in T cell differentiation. Remarkably, transcription factor networks driving T cell differentiation account for many of the age-associated modifications in chromatin structures suggesting that loss of quiescence and activation of differentiation pathways are major components of T cell aging.
Collapse
Affiliation(s)
- Jörg J. Goronzy
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA, United States
- Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA, United States
| | - Bin Hu
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA, United States
- Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA, United States
| | - Chulwoo Kim
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA, United States
- Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA, United States
| | - Rohit R. Jadhav
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA, United States
- Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA, United States
| | - Cornelia M. Weyand
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA, United States
- Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA, United States
| |
Collapse
|
33
|
Gleason-Rodríguez G, Castillo-Méndez M, Maya K, Ramos-Castañeda J, Valverde-Garduño V. Dengue virus infection induces chromatin remodeling at locus AAEL006536 in the midgut of Aedes aegypti. SALUD PUBLICA DE MEXICO 2018; 60:41-47. [PMID: 29689655 DOI: 10.21149/8471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 08/14/2017] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVE To identify and characterize Aedes aegypti's AAEL006536 gene proximal upstream cis-regulatory sequences activated by dengue virus infection. MATERIALS AND METHODS A. aegypti Rockefeller strain mosquitoes were blood fed or infected with dengue virus 2. Open chromatinprofiling was then carried out in pools of midguts from each group of mosquitoes. RESULTS The proximal upstream region does not contain open chromatin sites in the midguts of blood-fed mosquitoes as detected by FAIRE-qPCR. In contrast, two cis-regulatory sites were identified in the same upstream region of dengue virus-infected mosquito midguts. The distal sequence contains STAT-, REL- and C/EBP-type transcription factor binding sites. CONCLUSIONS The activation of two proximal cis-regulatory sequences, induced by dengue virus infection, is mediated by chromatin remodeling mechanisms. Binding sites suggest a dengue virus infectioninduced participation of immunity transcription factors in the up-regulation of this gene. This suggests the participation of the AAEL006536 gene in the mosquito's antiviral innate immune response.
Collapse
Affiliation(s)
- Graciela Gleason-Rodríguez
- Departamento de Infección e Inmunidad, Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública. México.,Escuela de Salud Pública de México, Instituto Nacional de Salud Pública. México
| | - Manuel Castillo-Méndez
- Departamento de Infección e Inmunidad, Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública. México.,Escuela de Salud Pública de México, Instituto Nacional de Salud Pública. México
| | - Krystal Maya
- Departamento de Infección e Inmunidad, Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública. México
| | - José Ramos-Castañeda
- Departamento de Infección e Inmunidad, Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública. México
| | - Verónica Valverde-Garduño
- Departamento de Infección e Inmunidad, Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública. México.,Escuela de Salud Pública de México, Instituto Nacional de Salud Pública. México
| |
Collapse
|
34
|
Johnson JL, Vahedi G. Do Memory CD4 T Cells Keep Their Cell-Type Programming: Plasticity versus Fate Commitment? Epigenome: A Dynamic Vehicle for Transmitting and Recording Cytokine Signaling. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a028779. [PMID: 28432132 DOI: 10.1101/cshperspect.a028779] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
CD4+ T cells are critical for the elimination of an immense array of microbial pathogens. Although there are aspects of helper T-cell differentiation that can be modeled as a classic cell-fate commitment, CD4+ T cells also maintain considerable flexibility in their transcriptional program. Here, we present an overview of chromatin biology during cellular reprogramming and, within this context, envision how the scope of cellular reprogramming may be expanded to further our understanding of the controversy surrounding CD4+ T lymphocyte plasticity or determinism.
Collapse
Affiliation(s)
- John L Johnson
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Golnaz Vahedi
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
35
|
Boller S, Li R, Grosschedl R. Defining B Cell Chromatin: Lessons from EBF1. Trends Genet 2018; 34:257-269. [PMID: 29336845 DOI: 10.1016/j.tig.2017.12.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 12/14/2017] [Accepted: 12/19/2017] [Indexed: 12/11/2022]
Abstract
Hematopoiesis is regulated by signals from the microenvironment, transcription factor networks, and changes of the epigenetic landscape. Transcription factors interact with and shape chromatin to allow for lineage- and cell type-specific changes in gene expression. During B lymphopoiesis, epigenetic regulation is observed in multilineage progenitors in which a specific chromatin context is established, at the onset of the B cell differentiation when early B cell factor 1 (EBF1) induces lineage-specific changes in chromatin, during V(D)J recombination and after antigen-driven activation of B cells and terminal differentiation. In this review, we discuss the epigenetic changes underlying B cell differentiation, focusing on the role of transcription factor EBF1 in B cell lineage priming.
Collapse
Affiliation(s)
- Sören Boller
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Rui Li
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Rudolf Grosschedl
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany.
| |
Collapse
|
36
|
Candéias SM, Mika J, Finnon P, Verbiest T, Finnon R, Brown N, Bouffler S, Polanska J, Badie C. Low-dose radiation accelerates aging of the T-cell receptor repertoire in CBA/Ca mice. Cell Mol Life Sci 2017; 74:4339-4351. [PMID: 28667356 PMCID: PMC11107572 DOI: 10.1007/s00018-017-2581-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 06/15/2017] [Accepted: 06/26/2017] [Indexed: 11/28/2022]
Abstract
While the biological effects of high-dose-ionizing radiation on human health are well characterized, the consequences of low-dose radiation exposure remain poorly defined, even though they are of major importance for radiological protection. Lymphocytes are very radiosensitive, and radiation-induced health effects may result from immune cell loss and/or immune system impairment. To decipher the mechanisms of effects of low doses, we analyzed the modulation of the T-cell receptor gene repertoire in mice exposed to a single low (0.1 Gy) or high (1 Gy) dose of radiation. High-throughput T-cell receptor gene profiling was used to visualize T-lymphocyte dynamics over time in control and irradiated mice. Radiation exposure induces "aging-like" effects on the T-cell receptor gene repertoire, detectable as early as 1 month post-exposure and for at least 6 months. Surprisingly, these effects are more pronounced in animals exposed to 0.1 Gy than to 1 Gy, where partial correction occurs over time. Importantly, we found that low-dose radiation effects are partially due to the hematopoietic stem cell impairment. Collectively, our findings show that acute low-dose radiation exposure specifically results in long-term alterations of the T-lymphocyte repertoire.
Collapse
Affiliation(s)
- Serge M Candéias
- CEA, Fundamental Research Division, Biosciences and Biotechnologies Institute, Laboratory of Chemistry and Biology of Metals, 38054, Grenoble, France.
- Laboratory of Chemistry and Biology of Metals, CNRS, UMR5249, 38054, Grenoble, France.
- Laboratory of Chemistry and Biology of Metals, UMR5249, University of Grenoble-Alpes, 38054, Grenoble, France.
| | - Justyna Mika
- Data Mining Group, Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, Gliwice, Poland
| | - Paul Finnon
- Cancer Mechanisms and Biomarkers Group, Radiation Effects Department, CRCE, Public Health England, Didcot, UK
| | - Tom Verbiest
- Cancer Mechanisms and Biomarkers Group, Radiation Effects Department, CRCE, Public Health England, Didcot, UK
| | - Rosemary Finnon
- Cancer Mechanisms and Biomarkers Group, Radiation Effects Department, CRCE, Public Health England, Didcot, UK
| | - Natalie Brown
- Cancer Mechanisms and Biomarkers Group, Radiation Effects Department, CRCE, Public Health England, Didcot, UK
| | - Simon Bouffler
- Cancer Mechanisms and Biomarkers Group, Radiation Effects Department, CRCE, Public Health England, Didcot, UK
| | - Joanna Polanska
- Data Mining Group, Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, Gliwice, Poland
| | - Christophe Badie
- Cancer Mechanisms and Biomarkers Group, Radiation Effects Department, CRCE, Public Health England, Didcot, UK.
| |
Collapse
|
37
|
Brignall R, Cauchy P, Bevington SL, Gorman B, Pisco AO, Bagnall J, Boddington C, Rowe W, England H, Rich K, Schmidt L, Dyer NP, Travis MA, Ott S, Jackson DA, Cockerill PN, Paszek P. Integration of Kinase and Calcium Signaling at the Level of Chromatin Underlies Inducible Gene Activation in T Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 199:2652-2667. [PMID: 28904128 PMCID: PMC5632840 DOI: 10.4049/jimmunol.1602033] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 08/21/2017] [Indexed: 01/20/2023]
Abstract
TCR signaling pathways cooperate to activate the inducible transcription factors NF-κB, NFAT, and AP-1. In this study, using the calcium ionophore ionomycin and/or PMA on Jurkat T cells, we show that the gene expression program associated with activation of TCR signaling is closely related to specific chromatin landscapes. We find that calcium and kinase signaling cooperate to induce chromatin remodeling at ∼2100 chromatin regions, which demonstrate enriched binding motifs for inducible factors and correlate with target gene expression. We found that these regions typically function as inducible enhancers. Many of these elements contain composite NFAT/AP-1 sites, which typically support cooperative binding, thus further reinforcing the need for cooperation between calcium and kinase signaling in the activation of genes in T cells. In contrast, treatment with PMA or ionomycin alone induces chromatin remodeling at far fewer regions (∼600 and ∼350, respectively), which mostly represent a subset of those induced by costimulation. This suggests that the integration of TCR signaling largely occurs at the level of chromatin, which we propose plays a crucial role in regulating T cell activation.
Collapse
Affiliation(s)
- Ruth Brignall
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Pierre Cauchy
- Institute of Biomedical Research, College of Medicine and Dentistry, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Sarah L Bevington
- Institute of Biomedical Research, College of Medicine and Dentistry, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Bethany Gorman
- Institute of Biomedical Research, College of Medicine and Dentistry, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Angela O Pisco
- Centre for Stem Cells and Regenerative Medicine, King's College London, London SE1 9RT, United Kingdom
| | - James Bagnall
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Christopher Boddington
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| | - William Rowe
- Department of Chemistry, Loughborough University, Loughborough LE11 3TU, United Kingdom
| | - Hazel England
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Kevin Rich
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester M13 9PT, United Kingdom
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester M13 9PT, United Kingdom; and
| | - Lorraine Schmidt
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Nigel P Dyer
- Warwick Systems Biology Centre, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Mark A Travis
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester M13 9PT, United Kingdom
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester M13 9PT, United Kingdom; and
| | - Sascha Ott
- Warwick Systems Biology Centre, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Dean A Jackson
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Peter N Cockerill
- Institute of Biomedical Research, College of Medicine and Dentistry, University of Birmingham, Birmingham B15 2TT, United Kingdom;
| | - Pawel Paszek
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom;
| |
Collapse
|
38
|
Coelho-Lima J, Spyridopoulos I. Non-coding RNA regulation of T cell biology: Implications for age-associated cardiovascular diseases. Exp Gerontol 2017; 109:38-46. [PMID: 28652179 DOI: 10.1016/j.exger.2017.06.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 06/19/2017] [Accepted: 06/20/2017] [Indexed: 01/26/2023]
Abstract
Prevalence of age-associated cardiovascular diseases (CVD) has dramatically increased as a result of improvements in life expectancy. Chronic inflammation is a shared pathophysiological feature of age-associated CVDs, indicating a role for the immune system in the onset and development of CVDs. Indeed, ageing elicits profound changes in both the cardiovascular and immune system, especially in the T cell compartment. Although such changes have been well described at the cellular level, the molecular mechanisms underlying immune-mediated cardiovascular ageing remain largely unexplored. Non-coding RNAs (ncRNAs) comprise a heterogeneous family of RNA transcripts that regulate gene expression at the epigenetic, transcriptional, post-transcriptional, and post-translational levels. Non-coding RNAs have recently emerged as master modulators of T cell immunity. In this review, the state-of-the-art knowledge on ncRNA regulatory effects over T cell differentiation, function, and ageing in the context of age-associated CVDs, such as atherosclerosis, acute coronary syndromes, and heart failure, is discussed.
Collapse
Affiliation(s)
- Jose Coelho-Lima
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, United Kingdom
| | - Ioakim Spyridopoulos
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, United Kingdom; Freeman Hospital, Newcastle upon Tyne NHS Foundation Trust, Freeman Road, High Heaton, Newcastle upon Tyne NE7 7DN, United Kingdom.
| |
Collapse
|
39
|
Abstract
Signaling pathways regulate gene expression programs via the modulation of the chromatin structure at different levels, such as by post-translational modifications (PTMs) of histone tails, the exchange of canonical histones with histone variants, and nucleosome eviction. Such regulation requires the binding of signal-sensitive transcription factors (TFs) that recruit chromatin-modifying enzymes at regulatory elements defined as enhancers. Understanding how signaling cascades regulate enhancer activity requires a comprehensive analysis of the binding of TFs, chromatin modifying enzymes, and the occupancy of specific histone marks and histone variants. Chromatin immunoprecipitation (ChIP) assays utilize highly specific antibodies to immunoprecipitate specific protein/DNA complexes. The subsequent analysis of the purified DNA allows for the identification the region occupied by the protein recognized by the antibody. This work describes a protocol to efficiently perform ChIP of histone proteins in a mature mouse T-cell line. The presented protocol allows for the performance of ChIP assays in a reasonable timeframe and with high reproducibility.
Collapse
|
40
|
Reciprocal regulation of the Il9 locus by counteracting activities of transcription factors IRF1 and IRF4. Nat Commun 2017; 8:15366. [PMID: 28497800 PMCID: PMC5437292 DOI: 10.1038/ncomms15366] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/24/2017] [Indexed: 02/06/2023] Open
Abstract
The T helper 9 (Th9) cell transcriptional network is formed by an equilibrium of signals induced by cytokines and antigen presentation. Here we show that, within this network, two interferon regulatory factors (IRF), IRF1 and IRF4, display opposing effects on Th9 differentiation. IRF4 dose-dependently promotes, whereas IRF1 inhibits, IL-9 production. Likewise, IRF1 inhibits IL-9 production by human Th9 cells. IRF1 counteracts IRF4-driven Il9 promoter activity, and IRF1 and IRF4 have opposing function on activating histone modifications, thus modulating RNA polymerase II recruitment. IRF1 occupancy correlates with decreased IRF4 abundance, suggesting an IRF1-IRF4-binding competition at the Il9 locus. Furthermore, IRF1 shapes Th9 cells with an interferon/Th1 gene signature. Consistently, IRF1 restricts the IL-9-dependent pathogenicity of Th9 cells in a mouse model of allergic asthma. Thus our study reveals that the molecular ratio between IRF4 and IRF1 balances Th9 fate, thus providing new possibilities for manipulation of Th9 differentiation. IFN-γ signalling inhibits production of IL-9, the defining cytokine of the Th9 cell subset. Here the authors show that IFN-γ does this by driving IRF1 to compete with IRF4 for Il9 promoter binding and skewing these cells towards a Th1 phenotype, an effect that reduces asthmatic inflammation in mice.
Collapse
|
41
|
Hedrich CM, Mäbert K, Rauen T, Tsokos GC. DNA methylation in systemic lupus erythematosus. Epigenomics 2017; 9:505-525. [PMID: 27885845 PMCID: PMC6040049 DOI: 10.2217/epi-2016-0096] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 10/12/2016] [Indexed: 12/18/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a systemic autoimmune disease facilitated by aberrant immune responses directed against cells and tissues, resulting in inflammation and organ damage. In the majority of patients, genetic predisposition is accompanied by additional factors conferring disease expression. While the exact molecular mechanisms remain elusive, epigenetic alterations in immune cells have been demonstrated to play a key role in disease pathogenesis through the dysregulation of gene expression. Since epigenetic marks are dynamic, allowing cells and tissues to differentiate and adjust, they can be influenced by environmental factors and also be targeted in therapeutic interventions. Here, we summarize reports on DNA methylation patterns in SLE, underlying molecular defects and their effect on immune cell function. We discuss the potential of DNA methylation as biomarker or therapeutic target in SLE.
Collapse
Affiliation(s)
- Christian M Hedrich
- Pediatric Rheumatology & Immunology, Klinik und Poliklinik für Kinder- und Jugendmedizin, Universitätsklinikum Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Katrin Mäbert
- Pediatric Rheumatology & Immunology, Klinik und Poliklinik für Kinder- und Jugendmedizin, Universitätsklinikum Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Thomas Rauen
- Department of Nephrology & Clinical Immunology, RWTH University Hospital, Aachen, Germany
| | - George C Tsokos
- Division of Rheumatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
42
|
Förster M, Boora RK, Petrov JC, Fodil N, Albanese I, Kim J, Gros P, Nijnik A. A role for the histone H2A deubiquitinase MYSM1 in maintenance of CD8 + T cells. Immunology 2017; 151:110-121. [PMID: 28066899 DOI: 10.1111/imm.12710] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 01/02/2017] [Accepted: 01/03/2017] [Indexed: 12/23/2022] Open
Abstract
Several previous studies outlined the importance of the histone H2A deubiquitinase MYSM1 in the regulation of stem cell quiescence and haematopoiesis. In this study we investigated the role of MYSM1 in T-cell development. Using mouse models that allow conditional Mysm1 ablation at late stages of thymic development, we found that MYSM1 is intricately involved in the maintenance, activation and survival of CD8+ T cells. Mysm1 ablation resulted in a twofold reduction in CD8+ T-cell numbers, and also led to a hyperactivated CD8+ T-cell state accompanied by impaired proliferation and increased pro-inflammatory cytokine production after ex vivo stimulation. These phenotypes coincided with an increased apoptosis and preferential up-regulation of p53 tumour suppressor protein in CD8+ T cells. Lastly, we examined a model of experimental cerebral malaria, in which pathology is critically dependent on CD8+ T cells. In the mice conditionally deleted for Mysm1 in the T-cell compartment, CD8+ T-cell numbers remained reduced following infection, both in the periphery and in the brain, and the mice displayed improved survival after parasite challenge. Collectively, our data identify MYSM1 as a novel factor for CD8+ T cells in the immune system, increasing our understanding of the role of histone H2A deubiquitinases in cytotoxic T-cell biology.
Collapse
Affiliation(s)
- Michael Förster
- Department of Physiology and McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
| | - Rupinder K Boora
- Department of Physiology and McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
| | - Jessica C Petrov
- Department of Physiology and McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
| | - Nassima Fodil
- Department of Biochemistry and McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
| | - Isabella Albanese
- Department of Physiology and McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
| | - Jamie Kim
- Department of Physiology and McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
| | - Philippe Gros
- Department of Biochemistry and McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
| | - Anastasia Nijnik
- Department of Physiology and McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
| |
Collapse
|
43
|
Mirlekar B, Gautam D, Chattopadhyay S. Chromatin Remodeling Protein SMAR1 Is a Critical Regulator of T Helper Cell Differentiation and Inflammatory Diseases. Front Immunol 2017; 8:72. [PMID: 28232831 PMCID: PMC5298956 DOI: 10.3389/fimmu.2017.00072] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 01/17/2017] [Indexed: 12/28/2022] Open
Abstract
T cell differentiation from naïve T cells to specialized effector subsets of mature cells is determined by the iterative action of transcription factors. At each stage of specific T cell lineage differentiation, transcription factor interacts not only with nuclear proteins such as histone and histone modifiers but also with other factors that are bound to the chromatin and play a critical role in gene expression. In this review, we focus on one of such nuclear protein known as tumor suppressor and scaffold matrix attachment region-binding protein 1 (SMAR1) in CD4+ T cell differentiation. SMAR1 facilitates Th1 differentiation by negatively regulating T-bet expression via recruiting HDAC1–SMRT complex to its gene promoter. In contrast, regulatory T (Treg) cell functions are dependent on inhibition of Th17-specific genes mainly IL-17 and STAT3 by SMAR1. Here, we discussed a critical role of chromatin remodeling protein SMAR1 in maintaining a fine-tuned balance between effector CD4+ T cells and Treg cells by influencing the transcription factors during allergic and autoimmune inflammatory diseases.
Collapse
Affiliation(s)
- Bhalchandra Mirlekar
- Chromatin and Disease Biology Laboratory, National Centre for Cell Science, Pune, India; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Dipendra Gautam
- Lineberger Comprehensive Cancer Center, University of North Carolina , Chapel Hill, NC , USA
| | - Samit Chattopadhyay
- Chromatin and Disease Biology Laboratory, National Centre for Cell Science, Pune, India; Cancer Biology and Inflammatory Disorder Division, Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|
44
|
The Role of Epigenetic Regulation in Transcriptional Memory in the Immune System. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2017; 106:43-69. [DOI: 10.1016/bs.apcsb.2016.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
45
|
Bao K, Carr T, Wu J, Barclay W, Jin J, Ciofani M, Reinhardt RL. BATF Modulates the Th2 Locus Control Region and Regulates CD4+ T Cell Fate during Antihelminth Immunity. THE JOURNAL OF IMMUNOLOGY 2016; 197:4371-4381. [PMID: 27798167 DOI: 10.4049/jimmunol.1601371] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 09/27/2016] [Indexed: 11/19/2022]
Abstract
The AP-1 factor basic leucine zipper transcription factor, ATF-like (BATF) is important for CD4+ Th17, Th9, and follicular Th cell development. However, its precise role in Th2 differentiation and function remains unclear, and the requirement for BATF in nonallergic settings of type-2 immunity has not been explored. In this article, we show that, in response to parasitic helminths, Batf-/- mice are unable to generate follicular Th and Th2 cells. As a consequence, they fail to establish productive type-2 immunity during primary and secondary infection. Batf-/- CD4+ T cells do not achieve type-2 cytokine competency, which implies that BATF plays a key role in the regulation of IL-4 and IL-13. In contrast to Th17 and Th9 cell subsets in which BATF binds directly to promoter and enhancer regions to regulate cytokine expression, our results show that BATF is significantly enriched at Rad50 hypersensitivity site (RHS)6 and RHS7 of the locus control region relative to AP-1 sites surrounding type-2 cytokine loci in Th2 cells. Indeed, Batf-/- CD4+ T cells do not obtain permissive epigenetic modifications within the Th2 locus, which were linked to RHS6 and RHS7 function. In sum, these findings reveal BATF as a central modulator of peripheral and humoral hallmarks of type-2 immunity and begin to elucidate a novel mechanism by which it regulates type-2 cytokine production through its modification of the Th2 locus control region.
Collapse
Affiliation(s)
- Katherine Bao
- Department of Immunology, Duke University Medical Center, Durham, NC 27710; and
| | - Tiffany Carr
- Department of Immunology, Duke University Medical Center, Durham, NC 27710; and
| | - Jianxuan Wu
- Department of Immunology, Duke University Medical Center, Durham, NC 27710; and
| | - William Barclay
- Department of Immunology, Duke University Medical Center, Durham, NC 27710; and
| | - Jingxiao Jin
- Department of Immunology, Duke University Medical Center, Durham, NC 27710; and
| | - Maria Ciofani
- Department of Immunology, Duke University Medical Center, Durham, NC 27710; and
| | - R Lee Reinhardt
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206
| |
Collapse
|
46
|
Tong C, Cui Z, Sun X, Lei L, Feng X, Sun C, Gu J, Han W. Mannan Derivatives Instruct Dendritic Cells to Induce Th1/Th2 Cells Polarization via Differential Mitogen-Activated Protein Kinase Activation. Scand J Immunol 2016; 83:10-7. [PMID: 26332129 DOI: 10.1111/sji.12369] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 08/19/2015] [Indexed: 02/06/2023]
Abstract
Mannan derived from fungal cell walls have potential uses as immunomodulating agents and vaccine adjuvants. Immunization with antigen conjugated to oxidized mannan (OM) or reduced mannan (RM) have induced differential immune responses in mice. Yet, the adjuvant effect and differences in molecular profiles of OM and RM on APCs is unresolved. Here, we investigated the response of mouse bone marrow-derived DCs to OM and RM. OM and RM stimulated DCs to produce differential Th1/Th2-inducing cytokines in vitro. OM and RM-activated DCs stimulated allogeneic T-cell Th1 and Th2 polarization reaction. OM instruct DCs to stimulate Th1 responses via IL-12p70 production, which depends on the phosphorylation of p38, RM barely induce IL-12p70, but IL-10 and IL-4, and magnitude of ERK phosphorylation, which results in a Th2 bias. These findings indicate that OM and RM were potent adjuvant capable of directly initiating DC activation Th1 and Th2 polarization respectively.
Collapse
Affiliation(s)
- C Tong
- College of Veterinary Medicine, Jilin University, Changchun, China.,College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Z Cui
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - X Sun
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - L Lei
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - X Feng
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - C Sun
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - J Gu
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - W Han
- College of Veterinary Medicine, Jilin University, Changchun, China.,Jiangsu Co-innovation Center for the Prevention and Control of important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|
47
|
Abstract
The purpose of this review is to provide an overview of the complexity of the epigenetic target space. Chemical modifications of histones and nucleic acids constitute a key epigenetic mechanism. Whereas modifications such as methylation and acetylation are well-known, there are many additional, less explored modifications described here. The writers, readers and erasers of such diverse modifications, which constitute a major portion of the potential epigenetic target space, are discussed, in addition to the various other protein families that do not fall under these three categories. Finally, disease relevance and druggability of epigenetic targets are discussed with concluding remarks about the richness and diversity they will provide for future targeted therapies.
Collapse
Affiliation(s)
- Vineet Pande
- Discovery Sciences, Janssen-Pharmaceutical Companies of Johnson & Johnson , Turnhoutseweg 30, Beerse 2340, Belgium
| |
Collapse
|
48
|
Kondratyeva LG, Vinogradova TV, Chernov IP, Sverdlov ED. Master transcription regulators specifying cell-lineage fates in development as possible therapeutic targets in oncology. RUSS J GENET+ 2015. [DOI: 10.1134/s1022795415100099] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
49
|
Bortnick A, Murre C. Cellular and chromatin dynamics of antibody-secreting plasma cells. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2015; 5:136-49. [PMID: 26488117 DOI: 10.1002/wdev.213] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 07/10/2015] [Accepted: 08/15/2015] [Indexed: 12/12/2022]
Abstract
Plasma cells are terminally differentiated B cells responsible for maintaining protective serum antibody titers. Despite their clinical importance, our understanding of the linear genomic features and chromatin structure of plasma cells is incomplete. The plasma cell differentiation program can be triggered by different signals and in multiple, diverse peripheral B cell subsets. This heterogeneity raises questions about the gene regulatory circuits required for plasma cell specification. Recently, new regulators of plasma cell differentiation have been identified and the enhancer landscapes of naïve B cells have been described. Other studies have revealed that the bone marrow niche harbors heterogeneous plasma cell subsets. Still undefined are the minimal requirements to become a plasma cell and what molecular features make peripheral B cell subsets competent to become antibody-secreting plasma cells. New technologies promise to reveal underlying chromatin configurations that promote efficient antibody secretion. For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Alexandra Bortnick
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Cornelis Murre
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
50
|
González AJ, Setty M, Leslie CS. Early enhancer establishment and regulatory locus complexity shape transcriptional programs in hematopoietic differentiation. Nat Genet 2015; 47:1249-59. [PMID: 26390058 PMCID: PMC4626279 DOI: 10.1038/ng.3402] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 08/19/2015] [Indexed: 12/23/2022]
Abstract
We carried out an integrative analysis of enhancer landscape and gene expression dynamics during hematopoietic differentiation using DNase-seq, histone mark ChIP-seq and RNA sequencing to model how the early establishment of enhancers and regulatory locus complexity govern gene expression changes at cell state transitions. We found that high-complexity genes-those with a large total number of DNase-mapped enhancers across the lineage-differ architecturally and functionally from low-complexity genes, achieve larger expression changes and are enriched for both cell type-specific and transition enhancers, which are established in hematopoietic stem and progenitor cells and maintained in one differentiated cell fate but lost in others. We then developed a quantitative model to accurately predict gene expression changes from the DNA sequence content and lineage history of active enhancers. Our method suggests a new mechanistic role for PU.1 at transition peaks during B cell specification and can be used to correct assignments of enhancers to genes.
Collapse
Affiliation(s)
- Alvaro J González
- Computational Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Manu Setty
- Computational Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Christina S Leslie
- Computational Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|