1
|
Zhang T, Yin Y, Xia X, Que X, Liu X, Zhao G, Chen J, Chen Q, Xu Z, Tang Y, Qin Q. Regulation of synaptic function and lipid metabolism. Neural Regen Res 2026; 21:1037-1057. [PMID: 40313084 DOI: 10.4103/nrr.nrr-d-24-01412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/16/2025] [Indexed: 05/03/2025] Open
Abstract
Synapses are key structures involved in transmitting information in the nervous system, and their functions rely on the regulation of various lipids. Lipids play important roles in synapse formation, neurotransmitter release, and signal transmission, and dysregulation of lipid metabolism is closely associated with various neurodegenerative diseases. The complex roles of lipids in synaptic function and neurological diseases have recently garnered increasing attention, but their specific mechanisms remain to be fully understood. This review aims to explore how lipids regulate synaptic activity in the central nervous system, focusing on their roles in synapse formation, neurotransmitter release, and signal transmission. Additionally, it discusses the mechanisms by which glial cells modulate synaptic function through lipid regulation. This review shows that within the central nervous system, lipids are essential components of the cell membrane bilayer, playing critical roles in synaptic structure and function. They regulate presynaptic vesicular trafficking, postsynaptic signaling pathways, and glial-neuronal interactions. Cholesterol maintains membrane fluidity and promotes the formation of lipid rafts. Glycerophospholipids contribute to the structural integrity of synaptic membranes and are involved in the release of synaptic vesicles. Sphingolipids interact with synaptic receptors through various mechanisms to regulate their activity and are also involved in cellular processes such as inflammation and apoptosis. Fatty acids are vital for energy metabolism and the synthesis of signaling molecules. Abnormalities in lipid metabolism may lead to impairments in synaptic function, affecting information transmission between neurons and the overall health of the nervous system. Therapeutic strategies targeting lipid metabolism, particularly through cholesterol modulation, show promise for treating these conditions. In neurodegenerative diseases such as Alzheimer's disease, Parkinson disease, and amyotrophic lateral sclerosis, dysregulation of lipid metabolism is closely linked to synaptic dysfunction. Therefore, lipids are not only key molecules in neural regeneration and synaptic repair but may also contribute to neurodegenerative pathology when metabolic dysregulation occurs. Further research is needed to elucidate the specific mechanisms linking lipid metabolism to synaptic dysfunction and to develop targeted lipid therapies for neurological diseases.
Collapse
Affiliation(s)
- Tongtong Zhang
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yunsi Yin
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xinyi Xia
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xinwei Que
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xueyu Liu
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Guodong Zhao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jiahao Chen
- Department of Pathology, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
| | - Qiuyue Chen
- Department of Pathology, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
| | - Zhiqing Xu
- Department of Pathology, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
| | - Yi Tang
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
- National Center for Neurological Disorders, Beijing, China
| | - Qi Qin
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
- National Center for Neurological Disorders, Beijing, China
| |
Collapse
|
2
|
Zhao JY, Zhou Y, Zhou CW, Zhan KB, Yang M, Wen M, Zhu LQ. Revisiting the critical roles of reactive microglia in traumatic brain injury. Int J Surg 2025; 111:3942-3978. [PMID: 40358653 PMCID: PMC12165506 DOI: 10.1097/js9.0000000000002420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 04/11/2025] [Indexed: 05/15/2025]
Abstract
Traumatic brain injury (TBI) triggers a complex neuroinflammatory cascade, with microglia serving as key regulators of both pathological damage and tissue structural restoration. Despite extensive research, the precise temporal evolution of microglial activation and its implications for long-term neurological outcomes remain incompletely understood. Here, we provide a comprehensive review of the molecular and cellular mechanisms underlying microglial responses in TBI, highlighting their role in neuroinflammation, neurogenesis, and tissue remodeling. We systematically compare clinical and preclinical TBI classifications, lesion patterns, and animal modeling strategies, evaluating their translational relevance. Furthermore, we explore the limitations of the conventional M1/M2 dichotomy and emphasize recent insights from single-cell transcriptomic analyses that reveal distinct microglial subpopulations across different injury phases. Finally, we discuss current therapeutic strategies targeting microglial modulation and propose future directions for neuroimmune interventions in TBI. By integrating findings from experimental and clinical studies, this review aims to bridge mechanistic insights with therapeutic advancements, paving the way for precision-targeted neuroimmune therapies.
Collapse
Affiliation(s)
- Jing-Yu Zhao
- Department of Neurosurgery, Wuhan Hankou Hospital, Hankou Hospital Affiliated to Wuhan University of Science and Technology, Jiang`an District, Wuhan, People’s Republic of China
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Yang Zhou
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Chao-Wen Zhou
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Ke-Bin Zhan
- Department of Neurology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, People’s Republic of China
| | - Ming Yang
- Department of Neurosurgery, Wuhan Hankou Hospital, Hankou Hospital Affiliated to Wuhan University of Science and Technology, Jiang`an District, Wuhan, People’s Republic of China
| | - Ming Wen
- Department of Neurosurgery, Wuhan Hankou Hospital, Hankou Hospital Affiliated to Wuhan University of Science and Technology, Jiang`an District, Wuhan, People’s Republic of China
| | - Ling-Qiang Zhu
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| |
Collapse
|
3
|
Chen ZP, Zhao X, Wang S, Cai R, Liu Q, Ye H, Wang MJ, Peng SY, Xue WX, Zhang YX, Li W, Tang H, Huang T, Zhang Q, Li L, Gao L, Zhou H, Hang C, Zhu JN, Li X, Liu X, Cong Q, Yan C. GABA-dependent microglial elimination of inhibitory synapses underlies neuronal hyperexcitability in epilepsy. Nat Neurosci 2025:10.1038/s41593-025-01979-2. [PMID: 40425792 DOI: 10.1038/s41593-025-01979-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 04/16/2025] [Indexed: 05/29/2025]
Abstract
Neuronal hyperexcitability is a common pathophysiological feature of many neurological diseases. Neuron-glia interactions underlie this process but the detailed mechanisms remain unclear. Here, we reveal a critical role of microglia-mediated selective elimination of inhibitory synapses in driving neuronal hyperexcitability. In epileptic mice of both sexes, hyperactive inhibitory neurons directly activate surveilling microglia via GABAergic signaling. In response, these activated microglia preferentially phagocytose inhibitory synapses, disrupting the balance between excitatory and inhibitory synaptic transmission and amplifying network excitability. This feedback mechanism depends on both GABA-GABAB receptor-mediated microglial activation and complement C3-C3aR-mediated microglial engulfment of inhibitory synapses, as pharmacological or genetic blockage of both pathways effectively prevents inhibitory synapse loss and ameliorates seizure symptoms in mice. Additionally, putative cell-cell interaction analyses of brain tissues from males and females with temporal lobe epilepsy reveal that inhibitory neurons induce microglial phagocytic states and inhibitory synapse loss. Our findings demonstrate that inhibitory neurons can directly instruct microglial states to control inhibitory synaptic transmission through a feedback mechanism, leading to the development of neuronal hyperexcitability in temporal lobe epilepsy.
Collapse
Affiliation(s)
- Zhang-Peng Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
- Songjiang Hospital and Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Epilepsy Center, the Affiliated Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, China
- Institute for Brain Sciences, Nanjing University, Nanjing, China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, China
| | - Xiansen Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Suji Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Ruolan Cai
- Department of Neurology of the Second Affiliated Hospital and Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, China
- MOE Frontier Science Center for Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Qiangqiang Liu
- Clinical Neuroscience Center, Ruijin Hospital Luwan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haojie Ye
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Meng-Ju Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Shi-Yu Peng
- School of Life Sciences, Westlake Institute for Advanced Study, Westlake University, Hangzhou, China
| | - Wei-Xuan Xue
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yang-Xun Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Wei Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Hua Tang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Tengfei Huang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Qipeng Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
- Institute for Brain Sciences, Nanjing University, Nanjing, China
| | - Liang Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
- Institute for Brain Sciences, Nanjing University, Nanjing, China
| | - Lixia Gao
- Department of Neurology of the Second Affiliated Hospital and Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, China
- MOE Frontier Science Center for Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Hong Zhou
- Department of Cell Biology, College of Life Sciences, Anhui Medical University, Hefei, China
| | - Chunhua Hang
- Department of Neurosurgery, the Affiliated Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Jing-Ning Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
- Institute for Brain Sciences, Nanjing University, Nanjing, China
| | - Xinjian Li
- Department of Neurology of the Second Affiliated Hospital and Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, China.
- MOE Frontier Science Center for Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China.
| | - Xiangyu Liu
- Epilepsy Center, the Affiliated Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, China.
- Department of Neurosurgery, the Affiliated Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, China.
| | - Qifei Cong
- Institute of Neuroscience and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, China.
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China.
| | - Chao Yan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.
- Epilepsy Center, the Affiliated Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, China.
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, China.
- Department of Neurosurgery, the Affiliated Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, China.
- Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, China.
- Engineering Research Center of Protein and Peptide Medicine, Ministry of Education, Nanjing, China.
| |
Collapse
|
4
|
Wood LB, Singer AC. Neurons as Immunomodulators: From Rapid Neural Activity to Prolonged Regulation of Cytokines and Microglia. Annu Rev Biomed Eng 2025; 27:55-72. [PMID: 39805040 DOI: 10.1146/annurev-bioeng-110122-120158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Regulation of the brain's neuroimmune system is central to development, normal function, and disease. Neuronal communication to microglia, the primary immune cells of the brain, is well known to involve purinergic signaling mediated via ATP secretion and the cytokine fractalkine. Recent evidence shows that neurons release multiple cytokines beyond fractalkine, yet these are less studied and poorly understood. In contrast to ATP, cytokines are a class of signaling molecule that are much larger, with longer signaling and farther diffusion. We posit that neuron-expressed cytokines are an essential mechanism of neuron-microglia communication that arises as part of both normal learning and memory and in response to tissue pathology. Thus, neurons are underappreciated immunomodulatory cells that express diverse immunomodulatory signals. While neuronally sourced cytokines have been understudied, new technical advances make this a timely topic. The goal of this review is to define what is known about the cytokines expressed from neurons, how they are regulated, and the effects of these cytokines on microglia. We delineate key knowledge gaps and needs for new tools to define and analyze neuronal roles in immunomodulation. Given that cytokines are central regulators of microglial function, a broad new body of work is required to illuminate functional links between these neuronally expressed cytokines and sustained and transient microglial function.
Collapse
Affiliation(s)
- Levi B Wood
- Wallace H. Coulter Department of Biomedical Engineering, George W. Woodruff School of Mechanical Engineering and Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA; ,
| | - Annabelle C Singer
- Wallace H. Coulter Department of Biomedical Engineering, George W. Woodruff School of Mechanical Engineering and Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA; ,
| |
Collapse
|
5
|
Zhang Y, Tang Y, Illes P. Modification of Neural Circuit Functions by Microglial P2Y6 Receptors in Health and Neurodegeneration. Mol Neurobiol 2025; 62:4139-4148. [PMID: 39400857 PMCID: PMC11880064 DOI: 10.1007/s12035-024-04531-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 10/02/2024] [Indexed: 10/15/2024]
Abstract
Neural circuits consisting of neurons and glial cells help to establish all functions of the CNS. Microglia, the resident immunocytes of the CNS, are endowed with UDP-sensitive P2Y6 receptors (P2Y6Rs) which regulate phagocytosis/pruning of excessive synapses during individual development and refine synapses in an activity-dependent manner during adulthood. In addition, this type of receptor plays a decisive role in primary (Alzheimer's disease, Parkinson's disease, neuropathic pain) and secondary (epilepsy, ischemic-, mechanical-, or irradiation-induced) neurodegeneration. A whole range of microglial cytokines controlled by P2Y6Rs, such as the interleukins IL-1β, IL-6, IL-8, and tumor necrosis factor-α (TNF-α), leads to neuroinflammation, resulting in neurodegeneration. Hence, small molecular antagonists of P2Y6Rs and genetic knockdown of this receptor provide feasible ways to alleviate inflammation-induced neurological disorders but might also interfere with the regulation of the synaptic circuitry. The present review aims at investigating this dual role of P2Y6Rs in microglia, both in shaping neural circuits by targeted phagocytosis and promoting neurodegenerative illnesses by fostering neuroinflammation through multiple transduction mechanisms.
Collapse
Affiliation(s)
- Yi Zhang
- International Joint Research Centre on Purinergic Signaling, School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yong Tang
- International Joint Research Centre on Purinergic Signaling, School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China.
- School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Peter Illes
- International Joint Research Centre on Purinergic Signaling, School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China.
- Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, Leipzig, Germany.
| |
Collapse
|
6
|
Chen X, Kim Y, Kawaguchi D. Development of the rodent prefrontal cortex: circuit formation, plasticity, and impacts of early life stress. Front Neural Circuits 2025; 19:1568610. [PMID: 40206866 PMCID: PMC11979153 DOI: 10.3389/fncir.2025.1568610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 03/11/2025] [Indexed: 04/11/2025] Open
Abstract
The prefrontal cortex (PFC), located at the anterior region of the cerebral cortex, is a multimodal association cortex essential for higher-order brain functions, including decision-making, attentional control, memory processing, and regulation of social behavior. Structural, circuit-level, and functional abnormalities in the PFC are often associated with neurodevelopmental disorders. Here, we review recent findings on the postnatal development of the PFC, with a particular emphasis on rodent studies, to elucidate how its structural and circuit properties are established during critical developmental windows and how these processes influence adult behaviors. Recent evidence also highlights the lasting effects of early life stress on the PFC structure, connectivity, and function. We explore potential mechanisms underlying these stress-induced alterations, with a focus on epigenetic regulation and its implications for PFC maturation and neurodevelopmental disorders. By integrating these insights, this review provides an overview of the developmental processes shaping the PFC and their implications for brain health and disease.
Collapse
Affiliation(s)
| | | | - Daichi Kawaguchi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
7
|
Egorova D, Kerever A, Inada M, Itoh Y, Arikawa-Hirasawa E, Miyata S. Microglial depletion increases aggrecan and hyaluronan levels in the diffuse and aggregated extracellular matrix of the mouse brain. Sci Rep 2025; 15:9376. [PMID: 40102604 PMCID: PMC11920245 DOI: 10.1038/s41598-025-94224-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 03/12/2025] [Indexed: 03/20/2025] Open
Abstract
The extracellular matrix (ECM) in the brain can be divided into aggregated ECM, such as perineuronal nets (PNNs) around neurons, and diffuse ECM, which is present throughout the brain parenchyma. Both aggregated and diffuse ECM restrict synaptic plasticity and stabilize neural circuits in the adult brain. Hyaluronan (HA) acts as a scaffold for the brain ECM, and multiple proteoglycans, such as aggrecan, bind to HA to form a macromolecular complex. Recent evidence suggests that microglia, the resident immune cells of the brain, play a crucial role in ECM homeostasis. However, it remains unclear how microglia influence the molecular composition of the ECM. Using a tissue-clearing technique and histochemical analysis, we found that microglial depletion increased the staining intensity of aggrecan and HA in both PNNs and diffuse ECM. Biochemical analyses further confirmed the accumulation of the aggrecan core protein and HA following microglial depletion. Our findings highlight the essential role of microglia in regulating the ECM composition and provide new insights into the mechanisms by which microglia influence neuronal function.
Collapse
Affiliation(s)
- Diana Egorova
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo, 183-8509, Japan
| | - Aurelien Kerever
- Research Institute for Diseases of Old Age, Graduate School of Medicine, Juntendo University, Tokyo, 113-8421, Japan
| | - Masaki Inada
- Cooperative Major of Advanced Health Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka, Koganei, Tokyo, 184-8588, Japan
| | - Yoshifumi Itoh
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, OX3 7FY, UK
| | - Eri Arikawa-Hirasawa
- Research Institute for Diseases of Old Age, Graduate School of Medicine, Juntendo University, Tokyo, 113-8421, Japan
| | - Shinji Miyata
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo, 183-8509, Japan.
| |
Collapse
|
8
|
Zorigt O, Yasuda H, Nakajima T, Tsushima Y. Concentration-dependent bidirectional modification of evoked synaptic transmission by gadolinium and adverse effects of gadolinium-based contrast agent. J Neurosci 2025; 45:e1622242025. [PMID: 40097182 PMCID: PMC12019106 DOI: 10.1523/jneurosci.1622-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 02/27/2025] [Accepted: 03/08/2025] [Indexed: 03/19/2025] Open
Abstract
Gadolinium-based contrast agents (GBCAs) for magnetic resonance imaging (MRI) are gadolinium chelates and can leave gadolinium in brain regions after administration, causing damage to brain tissues. However, the exact effects of gadolinium on synaptic function and the underlying mechanisms have not yet been elucidated. Here, we report that gadolinium differentially modulates evoked and spontaneous synaptic transmission and induces bidirectional changes in the efficacy of evoked synaptic transmission in the mouse hippocampus in a concentration-dependent manner. Low concentration gadolinium (100 μM) modestly potentiated evoked field excitatory postsynaptic potentials (fEPSPs), while high concentration gadolinium induced group 1 metabotropic glutamate receptor (mGluR)-, endocannabinoid (eCB)-, and purinergic P2Y1 receptor (P2Y1R)-dependent, presynaptically-expressed long-term depression (LTD). Higher concentration of gadolinium (1,000 μM) also induced NMDAR- and mGluR-independent, partially P2Y13R-dependent, postssynaptically-expressed LTD. Low concentration gadolinium greatly increased miniature excitatory postsynaptic current (mEPSC) frequency, while high concentration gadolinium much more robustly increased its frequency and amplitude. Finally, we found that evoked EPSCs were not affected by a macrocyclic GBCA, gadoterate meglumine (Gd-GOTA, Magnescope). However, evoked EPSCs were enhanced by a linear GBCA, gadopentetate dimeglumine (Gd-DTPA, Magnevist), at 100 μM, a clinically relevant concentration in the human brain after repeated clinical GBCA administration and in the cerebrospinal fluid in the rodent brain during experimental GBCA administration. Thus, evoked and spontaneous synaptic transmission are independently modulated by gadolinium. Furthermore, Gd-GOTA effectively chelated gadolinium; however, Gd-DTPA had side effects on the evoked synaptic transmission, presumably because it did not completely chelate gadolinium.Significance Statement Gadolinium is used in gadolinium-based contrast agents (GBCAs), gadolinium chelates, for magnetic resonance imaging examination. Herein, we report influences of gadolinium and GBCAs on synaptic transmission. High concentration gadolinium (500-1000 μM) induces metabotropic glutamate receptor-, endocannabinoid-, and purinergic receptor-dependent long-term depression, and simultaneously enhances spontaneous glutamate release. In contrast, gadolinium enhances evoked synaptic transmission at 100 μM, which is the concentration observed in the human patient brain after repeated GBCA administration. Gadoterate meglumine (Magnescope, 100 μM), a macrocyclic GBCA, did not affect synaptic transmission. However, gadopentetate dimeglumine (Magnevist, 100 μM), a liner GBCA, enhanced synaptic transmission, suggesting that gadopentetate dimeglumine does not fully chelate gadolinium, which can have a negative effect on brain function.
Collapse
Affiliation(s)
- Odgerel Zorigt
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan
| | - Hiroki Yasuda
- Education and Research Support Center, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan
- Division of Physiology, Faculty of Medicine, Saga University, Saga 849-8501, Japan
| | - Takahito Nakajima
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan
- Department of Radiology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Yoshito Tsushima
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan
| |
Collapse
|
9
|
Liang B, Zhou Y, Jiang C, Zhao T, Qin D, Gao F. Role and related mechanisms of non-invasive brain stimulation in the treatment of Tourette syndrome. Brain Res Bull 2025; 222:111258. [PMID: 39954818 DOI: 10.1016/j.brainresbull.2025.111258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/03/2025] [Accepted: 02/10/2025] [Indexed: 02/17/2025]
Abstract
Tourette syndrome (TS) is a neurodevelopmental disorder characterized by impaired or delayed functional development. Although the pathology of TS remains to be determined, the continuous development of science and technology has provided new perspectives to understand its pathological mechanism. Research into non-invasive brain stimulation (NIBS) techniques, such as transcranial magnetic stimulation and direct current stimulation, have shown promising therapeutic potential in clinical studies. Furthermore, NIBS has been shown to affect the brain of patients with TS, including synaptic transmission, release of neurotransmitters, in addition to the activation of microglial cells and astrocytes. However, an exploration of the innate mechanisms is still lacking. This review aims to summarize the pathogenesis of TS and intervention with NIBS in clinical patients with TS. It aims to provide a theoretical basis for more in-depth investigations of innovative therapies for TS in the future.
Collapse
Affiliation(s)
- Boshen Liang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China
| | - Yang Zhou
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China
| | - Chengting Jiang
- Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China
| | - Ting Zhao
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Dongdong Qin
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Disease, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China.
| | - Fabao Gao
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China.
| |
Collapse
|
10
|
Moran ER, Gabriele ML. Microglial Engulfment of Multisensory Terminals in the Midbrain Inferior Colliculus During an Early Critical Period. J Comp Neurol 2025; 533:e70033. [PMID: 40023818 PMCID: PMC11879250 DOI: 10.1002/cne.70033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/20/2025] [Accepted: 02/10/2025] [Indexed: 03/04/2025]
Abstract
The lateral cortex of the inferior colliculus (LCIC) receives multisensory input arrays that preferentially target its compartmental organization. Inputs of somatosensory origin end within modular zones, while auditory inputs terminate throughout an encompassing matrix. Such discrete mapping emerges during an early postnatal critical period (birth to postnatal day 12, P12) via a process of segregation. Similar to other primitive brain maps, it appears an initial excess of connections may be pruned through a refinement process. Microglial cells (MGCs) are involved in a variety of systems in the selective removal and degradation of unnecessary contacts. Aberrations in map plasticity during early critical periods have been associated with certain neurodevelopmental conditions, including autism spectrum disorders (ASD). Despite evidence linking multisensory integration deficits with cognitive/behavioral disturbances associated with ASD, mechanisms that govern multimodal network modifications remain poorly understood. Thus, the present study combines novel tract-tracing approaches in living brain preparations and immunocytochemistry in CX3CR1-GFP knock-in mice to determine: (1) if fractalkine signaling (CX3CL1-CX3CR1) influences MGC engulfment of auditory afferents, (2) whether individual MGCs phagocytose endings of multisensory origin (auditory and somatosensory), and (3) whether consumed product is degraded via the MGC's lysosomal pathway. We demonstrate active MGC pruning of auditory endings at peak LCIC stages for projection shaping (P4, P8) that significantly decreases coincident with its critical period closure (P12). While developmentally regulated, auditory engulfment appears fractalkine signaling-independent. We also provide evidence that individual LCIC microglia engulf both auditory and somatosensory terminals that co-localize with the lysosomal marker, CD68. These results suggest a prominent role for microglia in the remodeling of early multisensory midbrain maps.
Collapse
Affiliation(s)
- Emily R. Moran
- Dept. of Biology, James Madison Univ, Harrisonburg, VA, USA
| | | |
Collapse
|
11
|
Câmara AB, Brandão IA. The neuroinflammatory effects of Nociceptin/Orphanin FQ receptor activation can be related to depressive-like behavior. J Psychiatr Res 2025; 183:174-188. [PMID: 39978292 DOI: 10.1016/j.jpsychires.2025.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/08/2024] [Accepted: 02/07/2025] [Indexed: 02/22/2025]
Abstract
There is limited information on the role of the Nociceptin/Orphanin FQ receptor (NOPR) in neuroinflammation, and there is growing interest in the participation of the NOPR in depression etiology. This study aims to evaluate the neuroinflammatory effects of the NOPR activation in mice submitted to social defeat protocol (SDP). Firstly, male Swiss mice were submitted to the social defeat protocol during 10 or 20 days and treated with the NOPR agonist Ro 65-6570 (1.5 or 2 mg/kg; ip). Subsequently, behavioral tests were applied to evaluate depressive-like behaviors. Finally, inflammatory cytokines were measured in the animals' brains and blood. A meta-analysis, including 11 experiments, was also conducted to evaluate if the NOPR activation contributes to inflammation. The studies' weights, odds ratios, and confidence intervals were used to calculate the average effect size as the main outcome measure. The software SPSS v.29 and R programming language were used to analyze the data. The SDP and/or NOP agonist reduced distance traveled and exploration rate in the open field test. The SDP and/or the NOP agonist also increased immobility time in the tail suspension test, as well as reduced social interaction. Additionally, the NOP agonist increased the concentration of IL-6 and TNF alpha in the hippocampus, as well as reduced the IL-10 concentration in the hippocampus, but not in prefrontal cortex and serum. The SDP increased the concentration of IL-6 and TNF alpha in animals' serum and prefrontal cortex, but not in the hippocampus. The role of NOPR in neuroinflammation was regardless of the social defeat stress in the hippocampus. Meta-analysis also demonstrated the participation of NOPR activation in inducing inflammation in mice models. We suggest that upregulation of NOPR can activate signaling pathways involved in neuroinflammation, contributing to depression etiology.
Collapse
Affiliation(s)
| | - Igor Augusto Brandão
- Bioinformatics Multidisciplinary Environment, Federal University of Rio Grande do Norte, Brazil
| |
Collapse
|
12
|
Cappelletti G, Brambilla L, Strizzi S, Limanaqi F, Melzi V, Rizzuti M, Nizzardo M, Saulle I, Trabattoni D, Corti S, Clerici M, Biasin M. iPSC-derived human cortical organoids display profound alterations of cellular homeostasis following SARS-CoV-2 infection and Spike protein exposure. FASEB J 2025; 39:e70396. [PMID: 39950320 PMCID: PMC11826378 DOI: 10.1096/fj.202401604rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 01/31/2025] [Accepted: 02/05/2025] [Indexed: 02/16/2025]
Abstract
COVID-19 commonly leads to respiratory issues, yet numerous patients also exhibit a diverse range of neurological conditions, suggesting a detrimental impact of SARS-CoV-2 or the viral Spike protein on the central nervous system. Nonetheless, the molecular pathway behind neurological pathology and the presumed neurotropism of SARS-CoV-2 remains largely unexplored. We generated human cortical organoids (HCOs) derived from human induced pluripotent stem cells (hiPSC) to assess: (1) the expression of SARS-CoV-2 main entry factors; (2) their vulnerability to SARS-CoV-2 infection; and (3) the impact of SARS-CoV-2 infection and exposure to the Spike protein on their transcriptome. Results proved that (1) HCOs express the main SARS-CoV-2 receptors and co-receptors; (2) HCOs may be productively infected by SARS-CoV-2; (3) the viral particles released by SARS-CoV-2-infected HCOs are able to re-infect another cellular line; and (4) the infection resulted in the activation of apoptotic and stress pathways, along with inflammatory processes. Notably, these effects were recapitulated when HCOs were exposed to the Spike protein alone. The data obtained demonstrate that SARS-CoV-2 likely infects HCOs probably through the binding of ACE2, CD147, and NRP1 entry factors. Furthermore, exposure to the Spike protein alone proved sufficient to disrupt their homeostasis and induce neurotoxic effects, potentially contributing to the onset of long-COVID symptoms.
Collapse
Affiliation(s)
- Gioia Cappelletti
- Department of Biomedical and Clinical SciencesUniversity of MilanMilanItaly
| | - Lorenzo Brambilla
- Neurology UnitFoundation IRCCS Ca’ Granda Ospedale Maggiore PoliclinicoMilanItaly
| | - Sergio Strizzi
- Department of Biomedical and Clinical SciencesUniversity of MilanMilanItaly
| | - Fiona Limanaqi
- Department of Biomedical and Clinical SciencesUniversity of MilanMilanItaly
- Department of Pathophysiology and TransplantationUniversity of MilanMilanItaly
| | - Valentina Melzi
- Neurology UnitFoundation IRCCS Ca’ Granda Ospedale Maggiore PoliclinicoMilanItaly
| | - Mafalda Rizzuti
- Neurology UnitFoundation IRCCS Ca’ Granda Ospedale Maggiore PoliclinicoMilanItaly
| | - Monica Nizzardo
- Neurology UnitFoundation IRCCS Ca’ Granda Ospedale Maggiore PoliclinicoMilanItaly
| | - Irma Saulle
- Department of Biomedical and Clinical SciencesUniversity of MilanMilanItaly
- Department of Pathophysiology and TransplantationUniversity of MilanMilanItaly
| | - Daria Trabattoni
- Department of Biomedical and Clinical SciencesUniversity of MilanMilanItaly
| | - Stefania Corti
- Neurology UnitFoundation IRCCS Ca’ Granda Ospedale Maggiore PoliclinicoMilanItaly
- Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, Neuroscience SectionUniversity of MilanMilanItaly
- Neuromuscular and Rare Diseases Unit, Department of NeuroscienceFondazione IRCCS Ca' Granda Ospedale Maggiore PoliclinicoMilanItaly
| | - Mario Clerici
- Department of Pathophysiology and TransplantationUniversity of MilanMilanItaly
- Don C. Gnocchi FoundationIstituto di Ricovero e Cura a Carattere Scientifico (IRCCS) FoundationMilanItaly
| | - Mara Biasin
- Department of Biomedical and Clinical SciencesUniversity of MilanMilanItaly
| |
Collapse
|
13
|
Bano N, Khan S, Ahamad S, Dar NJ, Alanazi HH, Nazir A, Bhat SA. Microglial Autophagic Dysregulation in Traumatic Brain Injury: Molecular Insights and Therapeutic Avenues. ACS Chem Neurosci 2025; 16:543-562. [PMID: 39920904 DOI: 10.1021/acschemneuro.4c00617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2025] Open
Abstract
Traumatic brain injury (TBI) is a complex and multifaceted condition that can result in cognitive and behavioral impairments. One aspect of TBI that has received increasing attention in recent years is the role of microglia, the brain-resident immune cells, in the pathophysiology of the injury. Specifically, increasing evidence suggests that dysfunction in microglial autophagy, the process by which cells degrade and recycle their own damaged components, may contribute to the development and progression of TBI-related impairments. Here, we unravel the pathways by which microglia autophagic dysregulation predisposes the brain to secondary damage and neurological deficits following TBI. An overview of the role of autophagic dysregulation in perpetuation and worsening of the inflammatory response, neuroinflammation, and neuronal cell death in TBI follows. Further, we have evaluated several signaling pathways and processes that contribute to autophagy dysfunction-mediated inflammation, neurodegeneration, and poor outcome in TBI. Additionally, a discussion on the small molecule therapeutics employed to modulate these pathways and mechanisms to treat TBI have been presented. However, additional research is required to fully understand the processes behind these underlying pathways and uncover potential therapeutic targets for restoring microglial autophagic failure in TBI.
Collapse
Affiliation(s)
- Nargis Bano
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | - Sameera Khan
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | - Shakir Ahamad
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Nawab John Dar
- CNB, SALK Institute of Biological Sciences, La Jolla, California 92037, United States
| | - Hamad H Alanazi
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, Al Jouf University, Sakaka 77455, Saudi Arabia
| | - Aamir Nazir
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India
- Academy of Scientific and Innovative Research, New Delhi 201002, India
| | | |
Collapse
|
14
|
Hu J, Ji WJ, Liu GY, Su XH, Zhu JM, Hong Y, Xiong YF, Zhao YY, Li WP, Xie W. IDO1 modulates pain sensitivity and comorbid anxiety in chronic migraine through microglial activation and synaptic pruning. J Neuroinflammation 2025; 22:42. [PMID: 39966822 PMCID: PMC11837436 DOI: 10.1186/s12974-025-03367-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 02/03/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Chronic migraine is a prevalent and potentially debilitating neurological disorder that is often comorbid with mental health conditions (such as anxiety and depression), but the underlying mechanisms linking these conditions remain poorly understood. Indoleamine 2,3-dioxygenase 1 (IDO1) has been implicated in inflammatory processes, including neuroinflammation and pain. However, its role as a link between neuroinflammation and pain sensitization in chronic migraine is not well defined. METHODS Male mice were used to establish a model of chronic migraine by recurrent intraperitoneal injections of nitroglycerin (NTG, 10 mg/kg). Using pharmacological approaches, transgenic strategies and adeno-associated virus (AAV) intervention, we investigated the role of IDO1 in pain sensitization and migraine-related mood disorders in an NTG-induced chronic migraine mouse model. We employed a combination of immunoblotting, immunohistochemistry, three-dimensional reconstruction, RNA sequencing, electrophysiology, in vivo fiber photometry, and behavioral assays to elucidate the underlying mechanisms involved. RESULTS Our findings demonstrated that pharmacological inhibition and genetic knockout of IDO1 significantly alleviated pain sensitivity in a chronic migraine model. Neuronal activity in the anterior cingulate cortex (ACC) was evaluated with in vitro c-Fos immunostaining as well as in vivo fiber photometry, and a shift in the excitation/inhibition (E/I) balance toward excitation was observed through whole-cell patch clamp recording. Notably, IDO1 expression was increased in the ACC, and AAV-mediated IDO1 knockdown in the ACC rescued pain sensitivity, electrophysiological E/I balance changes, and anxiety-like behavior in chronic migraine model mice. Furthermore, IDO1 regulated microglial activation and pruning of neuronal synapses in the ACC. IDO1's microglial pruning function appears to be mediated through the interferon (IFN) signaling pathway, and the behavioral changes induced by IDO1 knockdown in the ACC could be reversed by activating this pathway. CONCLUSIONS Our findings revealed that microglial IDO1 in the ACC drives pain sensitization and anxiety in chronic migraine, highlighting IDO1 as a potential therapeutic target for chronic migraine treatment.
Collapse
Affiliation(s)
- Jiao Hu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
- Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Guangzhou, 510515, China
| | - Wen-Juan Ji
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
- Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Guangzhou, 510515, China
| | - Gui-Yu Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
- Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Guangzhou, 510515, China
| | - Xiao-Hong Su
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Jun-Ming Zhu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
- Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Guangzhou, 510515, China
| | - Yu Hong
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Yi-Fan Xiong
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Yun-Yan Zhao
- Department of Critical Care Medicine, The Affiliated Traditional Chinese Medicine Hospital of Guangzhou Medical University, Guangzhou, 510130, China.
| | - Wei-Peng Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
- Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Guangzhou, 510515, China.
- Department of Neurology, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, 510317, China.
| | - Wei Xie
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
- Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Guangzhou, 510515, China.
| |
Collapse
|
15
|
Nelson N, Miller V, Broadie K. Neuron-to-glia and glia-to-glia signaling directs critical period experience-dependent synapse pruning. Front Cell Dev Biol 2025; 13:1540052. [PMID: 40040788 PMCID: PMC11876149 DOI: 10.3389/fcell.2025.1540052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 01/31/2025] [Indexed: 03/06/2025] Open
Abstract
Experience-dependent glial synapse pruning plays a pivotal role in sculpting brain circuit connectivity during early-life critical periods of development. Recent advances suggest a layered cascade of intercellular communication between neurons and glial phagocytes orchestrates this precise, targeted synapse elimination. We focus here on studies from the powerful Drosophila forward genetic model, with reference to complementary findings from mouse work. We present both neuron-to-glia and glia-to-glia intercellular signaling pathways directing experience-dependent glial synapse pruning. We discuss a putative hierarchy of secreted long-distance cues and cell surface short-distance cues that act to sequentially orchestrate glia activation, infiltration, target recognition, engulfment, and then phagocytosis for synapse pruning. Ligand-receptor partners mediating these stages in different contexts are discussed from recent Drosophila and mouse studies. Signaling cues include phospholipids, small neurotransmitters, insulin-like peptides, and proteins. Conserved receptors for these ligands are discussed, together with mechanisms where the receptor identity remains unknown. Potential mechanisms are proposed for the tight temporal-restriction of heightened experience-dependent glial synapse elimination during early-life critical periods, as well as potential means to re-open such plasticity at maturity.
Collapse
Affiliation(s)
- Nichalas Nelson
- Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN, United States
| | - Vanessa Miller
- Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN, United States
| | - Kendal Broadie
- Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN, United States
- Department of Cell and Developmental Biology, Vanderbilt University and Medical Center, Nashville, TN, United States
- Department of Pharmacology, Vanderbilt University and Medical Center, Nashville, TN, United States
- Kennedy Center for Research on Human Development, Vanderbilt University and Medical Center, Nashville, TN, United States
- Vanderbilt Brain Institute, Vanderbilt University and Medical Center, Nashville, TN, United States
| |
Collapse
|
16
|
Samà M, Musillo C, Cirulli F. Counteracting the effects of maternal obesity on offspring neurodevelopment through Omega-3-based nutritional strategies. Neuroscience 2025; 566:142-148. [PMID: 39722288 DOI: 10.1016/j.neuroscience.2024.12.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/09/2024] [Accepted: 12/21/2024] [Indexed: 12/28/2024]
Abstract
It is becoming increasingly recognized that, in addition to psychological stress, unbalanced maternal nutritional habits can threaten fetal brain development. Maternal obesity is one of the most pressing public health problems facing the world today, as about 40% of pregnant women are obese or gain excessive weight worldwide. This condition can negatively impact offspring's brain development, increasing the risk for autism spectrum disorders, cognitive deficits, attention deficit hyperactivity disorder, as well as anxiety and depression. In the context of fetal development, nutritional interventions may represent a feasible and safe approach for preventing the negative effects of maternal obesity. We argue that maternal Omega-3 supplementation, among the many dietary strategies available, is especially promising as it buffers oxidative stress and inflammation, both recognized as candidate mechanisms underlying the negative long-term effects of maternal obesity on the offspring. Notwithstanding the current knowledge, both preclinical studies and clinical trials are needed to refine current strategies addressing dietary content and length of administration according to individual characteristics and needs.
Collapse
Affiliation(s)
- Marianna Samà
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena 299 00161, Rome, Italy
| | - Chiara Musillo
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena 299 00161, Rome, Italy.
| | - Francesca Cirulli
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena 299 00161, Rome, Italy
| |
Collapse
|
17
|
Leier HC, Foden AJ, Jindal DA, Wilkov AJ, Van der Linden Costello P, Vanderzalm PJ, Coutinho-Budd J, Tabuchi M, Broihier HT. Glia control experience-dependent plasticity in an olfactory critical period. eLife 2025; 13:RP100989. [PMID: 39883485 PMCID: PMC11781797 DOI: 10.7554/elife.100989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025] Open
Abstract
Sensory experience during developmental critical periods has lifelong consequences for circuit function and behavior, but the molecular and cellular mechanisms through which experience causes these changes are not well understood. The Drosophila antennal lobe houses synapses between olfactory sensory neurons (OSNs) and downstream projection neurons (PNs) in stereotyped glomeruli. Many glomeruli exhibit structural plasticity in response to early-life odor exposure, indicating a general sensitivity of the fly olfactory circuitry to early sensory experience. We recently found that glia shape antennal lobe development in young adults, leading us to ask if glia also drive experience-dependent plasticity during this period. Here, we define a critical period for structural and functional plasticity of OSN-PN synapses in the ethyl butyrate (EB)-sensitive glomerulus VM7. EB exposure for the first 2 days post-eclosion drives large-scale reductions in glomerular volume, presynapse number, and post- synaptic activity. Crucially, pruning during the critical period has long-term consequences for circuit function since both OSN-PN synapse number and spontaneous activity of PNs remain persistently decreased following early-life odor exposure. The highly conserved engulfment receptor Draper is required for this critical period plasticity as ensheathing glia upregulate Draper, invade the VM7 glomerulus, and phagocytose OSN presynaptic terminals in response to critical-period EB exposure. Loss of Draper fully suppresses the morphological and physiological consequences of critical period odor exposure, arguing that phagocytic glia engulf intact synaptic terminals. These data demonstrate experience-dependent pruning of synapses and argue that Drosophila olfactory circuitry is a powerful model for defining the function of glia in critical period plasticity.
Collapse
Affiliation(s)
- Hans C Leier
- Department of Neurosciences, Case Western Reserve University School of MedicineClevelandUnited States
| | - Alexander J Foden
- Department of Neurosciences, Case Western Reserve University School of MedicineClevelandUnited States
| | - Darren A Jindal
- Department of Neurosciences, Case Western Reserve University School of MedicineClevelandUnited States
| | - Abigail J Wilkov
- Department of Neurosciences, Case Western Reserve University School of MedicineClevelandUnited States
| | | | - Pamela J Vanderzalm
- Department of Biology, John Carroll UniversityUniversity HeightsUnited States
| | - Jaeda Coutinho-Budd
- Department of Neuroscience, University of Virginia School of MedicineCharlottesvilleUnited States
| | - Masashi Tabuchi
- Department of Neurosciences, Case Western Reserve University School of MedicineClevelandUnited States
| | - Heather T Broihier
- Department of Neurosciences, Case Western Reserve University School of MedicineClevelandUnited States
| |
Collapse
|
18
|
Shi S, Gong X. The Role of Microglia in Perioperative Pain and Pain Treatment: Recent Advances in Research. J Integr Neurosci 2025; 24:22675. [PMID: 40018770 DOI: 10.31083/jin22675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/29/2024] [Accepted: 08/12/2024] [Indexed: 03/01/2025] Open
Abstract
Microglia play a crucial role in monitoring the microenvironment of the central nervous system. Over the past decade, the role of microglia in the field of pain has gradually been unraveled. Microglia activation not only releases proinflammatory factors that enhance nociceptive signaling, but also participates in the resolving of pain. Opioids induce microglia activation, which enhances phagocytic activity and release of neurotoxic substances. Conversely, microglia activation reduces opioid efficacy and results in opioid tolerance. The application of microglia research to clinical pain management and drug development is a promising but challenging area. Microglia-targeted therapies may provide new avenues for pain management.
Collapse
Affiliation(s)
- Shengnan Shi
- Department of Anesthesiology, Institution of Neuroscience and Brain Disease, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, 441000 Xiangyang, Hubei, China
| | - Xingrui Gong
- Department of Anesthesiology, Institution of Neuroscience and Brain Disease, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, 441000 Xiangyang, Hubei, China
| |
Collapse
|
19
|
Buonfiglioli A, Kübler R, Missall R, De Jong R, Chan S, Haage V, Wendt S, Lin AJ, Mattei D, Graziani M, Latour B, Gigase F, Chiu R, Zhang Y, Nygaard HB, De Jager PL, De Witte LD. A microglia-containing cerebral organoid model to study early life immune challenges. Brain Behav Immun 2025; 123:1127-1146. [PMID: 39500415 PMCID: PMC11753195 DOI: 10.1016/j.bbi.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/10/2024] [Accepted: 11/02/2024] [Indexed: 11/13/2024] Open
Abstract
Prenatal infections and activation of the maternal immune system have been proposed to contribute to causing neurodevelopmental disorders (NDDs), chronic conditions often linked to brain abnormalities. Microglia are the resident immune cells of the brain and play a key role in neurodevelopment. Disruption of microglial functions can lead to brain abnormalities and increase the risk of developing NDDs. How the maternal as well as the fetal immune system affect human neurodevelopment and contribute to NDDs remains unclear. An important reason for this knowledge gap is the fact that the impact of exposure to prenatal risk factors has been challenging to study in the human context. Here, we characterized a model of cerebral organoids (CO) with integrated microglia (COiMg). These organoids express typical microglial markers and respond to inflammatory stimuli. The presence of microglia influences cerebral organoid development, including cell density and neural differentiation, and regulates the expression of several ciliated and mesenchymal cell markers. Moreover, COiMg and organoids without microglia show similar but also distinct responses to inflammatory stimuli. Additionally, IFN-γ induced significant transcriptional and structural changes in the cerebral organoids, that appear to be regulated by the presence of microglia. Specifically, interferon-gamma (IFN-γ) was found to alter the expression of genes linked to autism. This model provides a valuable tool to study how inflammatory perturbations and microglial presence affect neurodevelopmental processes.
Collapse
Affiliation(s)
- Alice Buonfiglioli
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Raphael Kübler
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Human Genetics, Radboud UMC, Nijmegen, Netherlands (the)
| | - Roy Missall
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Renske De Jong
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Stephanie Chan
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Verena Haage
- Center for Translational & Computational Neuroimmunology, Department of Neurology and the Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Stefan Wendt
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver V6T 1Z3, Canada
| | - Ada J Lin
- Division of Neurology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver V6T 1Z3, Canada
| | - Daniele Mattei
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mara Graziani
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Human Genetics, Radboud UMC, Nijmegen, Netherlands (the); Donders Institute for Brain, Cognition and Behaviour, 6500 HB, Nijmegen, Netherlands (the)
| | - Brooke Latour
- Department of Human Genetics, Radboud UMC, Nijmegen, Netherlands (the); Donders Institute for Brain, Cognition and Behaviour, 6500 HB, Nijmegen, Netherlands (the)
| | - Frederieke Gigase
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rebecca Chiu
- Center for Translational & Computational Neuroimmunology, Department of Neurology and the Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Ya Zhang
- Center for Translational & Computational Neuroimmunology, Department of Neurology and the Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Haakon B Nygaard
- Division of Neurology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver V6T 1Z3, Canada
| | - Philip L De Jager
- Center for Translational & Computational Neuroimmunology, Department of Neurology and the Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Lot D De Witte
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Human Genetics, Radboud UMC, Nijmegen, Netherlands (the); Donders Institute for Brain, Cognition and Behaviour, 6500 HB, Nijmegen, Netherlands (the); Department of Psychiatry, Radboud UMC, Nijmegen, Netherlands (the)
| |
Collapse
|
20
|
Silva NJ, Anderson S, Mula SA, Escoubas CC, Nakajo H, Molofsky AV. Microglial cathepsin B promotes neuronal efferocytosis during brain development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.03.626596. [PMID: 39677624 PMCID: PMC11642881 DOI: 10.1101/2024.12.03.626596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Half of all newborn neurons in the developing brain are removed via efferocytosis - the phagocytic clearance of apoptotic cells. Microglia are brain-resident professional phagocytes that play important roles in neural circuit development including as primary effectors of efferocytosis. While the mechanisms through which microglia recognize potential phagocytic cargo are widely studied, the lysosomal mechanisms that are necessary for efficient digestion are less well defined. Here we show that the lysosomal protease cathepsin B promotes microglial efferocytosis of neurons and restricts the accumulation of apoptotic cells during brain development. We show that cathepsin B is microglia-specific and enriched in brain regions where neuronal turnover is high in both zebrafish and mouse. Myeloid-specific cathepsin B knockdown in zebrafish led to dysmorphic microglia containing undigested dead cells, as well as an accumulation of dead cells in surrounding tissue. These effects where phenocopied in mice globally deficient for Ctsb using markers for apoptosis. We also observed behavioral impairments in both models. Live imaging studies in zebrafish revealed deficits in phagolysosomal fusion and acidification, and live imaging of cultured mouse microglia reveal delayed phagocytosis consistent with impairments in digestion and resolution of phagocytosis rather than initial uptake. These data reveal a novel role for microglial cathepsin B in mediating neuronal efferocytosis during typical brain development.
Collapse
|
21
|
Hu Y, Tao W. Current perspectives on microglia-neuron communication in the central nervous system: Direct and indirect modes of interaction. J Adv Res 2024; 66:251-265. [PMID: 38195039 PMCID: PMC11674795 DOI: 10.1016/j.jare.2024.01.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 10/05/2023] [Accepted: 01/06/2024] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND The incessant communication that takes place between microglia and neurons is essential the development, maintenance, and pathogenesis of the central nervous system (CNS). As mobile phagocytic cells, microglia serve a critical role in surveilling and scavenging the neuronal milieu to uphold homeostasis. AIM OF REVIEW This review aims to discuss the various mechanisms that govern the interaction between microglia and neurons, from the molecular to the organ system level, and to highlight the importance of these interactions in the development, maintenance, and pathogenesis of the CNS. KEY SCIENTIFIC CONCEPTS OF REVIEW Recent research has revealed that microglia-neuron interaction is vital for regulating fundamental neuronal functions, such as synaptic pruning, axonal remodeling, and neurogenesis. The review will elucidate the intricate signaling pathways involved in these interactions, both direct and indirect, to provide a better understanding of the fundamental mechanisms of brain function. Furthermore, gaining insights into these signals could lead to the development of innovative therapies for neural disorders.
Collapse
Affiliation(s)
- Yue Hu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 220023, China; School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Weiwei Tao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 220023, China; School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
22
|
Cai Y, Liu S, Ge X, Cheng L, Zhang X. Inhibitory effect of tea flower polysaccharides on oxidative stress and microglial oxidative damage in aging mice by regulating gut microbiota. Food Funct 2024; 15:11444-11457. [PMID: 39479919 DOI: 10.1039/d4fo03484h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Tea flower polysaccharides (TFPS) have prominent anti-aging effect. In this study, we used an animal model of aging induced by D-galactose in mice to investigate the effect of TFPS on reducing inflammatory factors, lowering oxidative stress levels, and inhibiting oxidative damage to microglia from the perspective of regulating gut microbiota. The results showed that TFPS could improve the homeostasis of gut microbiota in aging mice, reduce the ratio of Firmicutes to Bacteroidota, and significantly increase the abundance of Lactobacillus. At the same time, TFPS reduced the excessive activation of hippocampal microglia in aging mice, significantly down-regulated the levels of pro-inflammatory factors IL-6, IL-1β, TNF-α, and nuclear transcription factor NF-κB, increased the activity of antioxidant enzymes SOD, CAT, and POD, and reduced the content of MDA. Our research results indicate that TFPS can improve the disorder of gut microbiota, alleviate oxidative damage to glial cells, alleviate neuroinflammation, and play a role in delaying aging.
Collapse
Affiliation(s)
- Yidan Cai
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, P. R. China.
| | - Siyu Liu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, P. R. China.
| | - Xing Ge
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, P. R. China.
| | - Lu Cheng
- Department of Food Science, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, USA.
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, P. R. China.
| |
Collapse
|
23
|
Leier HC, Foden AJ, Jindal DA, Wilkov AJ, Costello PVDL, Vanderzalm PJ, Coutinho-Budd JC, Tabuchi M, Broihier HT. Glia control experience-dependent plasticity in an olfactory critical period. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.05.602232. [PMID: 39005309 PMCID: PMC11245089 DOI: 10.1101/2024.07.05.602232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Sensory experience during developmental critical periods has lifelong consequences for circuit function and behavior, but the molecular and cellular mechanisms through which experience causes these changes are not well understood. The Drosophila antennal lobe houses synapses between olfactory sensory neurons (OSNs) and downstream projection neurons (PNs) in stereotyped glomeruli. Many glomeruli exhibit structural plasticity in response to early-life odor exposure, indicating a general sensitivity of the fly olfactory circuitry to early sensory experience. We recently found that glia shape antennal lobe development in young adults, leading us to ask if glia also drive experience-dependent plasticity during this period. Here we define a critical period for structural and functional plasticity of OSN-PN synapses in the ethyl butyrate (EB)-sensitive glomerulus VM7. EB exposure for the first two days post-eclosion drives large-scale reductions in glomerular volume, presynapse number, and post-synaptic activity. Crucially, pruning during the critical period has long-term consequences for circuit function since both OSN-PN synapse number and spontaneous activity of PNs remain persistently decreased following early-life odor exposure. The highly conserved engulfment receptor Draper is required for this critical period plasticity as ensheathing glia upregulate Draper, invade the VM7 glomerulus, and phagocytose OSN presynaptic terminals in response to critical-period EB exposure. Loss of Draper fully suppresses the morphological and physiological consequences of critical period odor exposure, arguing that phagocytic glia engulf intact synaptic terminals. These data demonstrate experience-dependent pruning of synapses and argue that Drosophila olfactory circuitry is a powerful model for defining the function of glia in critical period plasticity.
Collapse
Affiliation(s)
- Hans C Leier
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, United States
| | - Alexander J Foden
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, United States
| | - Darren A Jindal
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, United States
| | - Abigail J Wilkov
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, United States
| | | | - Pamela J Vanderzalm
- Department of Biology, John Carroll University, University Heights, United States
| | - Jaeda C Coutinho-Budd
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, United States
| | - Masashi Tabuchi
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, United States
| | - Heather T Broihier
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, United States
| |
Collapse
|
24
|
Benarroch E. What Is the Role of Cytokines in Synaptic Transmission? Neurology 2024; 103:e209928. [PMID: 39303183 DOI: 10.1212/wnl.0000000000209928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024] Open
|
25
|
Ortiz-Valladares M, Gonzalez-Perez O, Pedraza-Medina R. Bridging the gap: Prenatal nutrition, myelination, and schizophrenia etiopathogenesis. Neuroscience 2024; 558:58-69. [PMID: 39159841 DOI: 10.1016/j.neuroscience.2024.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/02/2024] [Accepted: 08/13/2024] [Indexed: 08/21/2024]
Abstract
Schizophrenia (SZ) is a complex mental illness characterized by disturbances in thinking, emotionality, and behavior, significantly impacting the quality of life for individuals affected and those around them. The etiology of SZ involves intricate interactions between genetic and environmental factors, although the precise mechanisms remain incompletely understood. Genetic predisposition, neurotransmitter dysregulation (particularly involving dopamine and serotonin), and structural brain abnormalities, including impaired prefrontal cortex function, have been implicated in SZ development. However, increasing evidence reveals the role of environmental factors, such as nutrition, during critical periods like pregnancy and lactation. Epidemiological studies suggest that early malnutrition significantly increases the risk of SZ symptoms manifesting in late adolescence, a crucial period coinciding with peak myelination and brain maturation. Prenatal undernutrition may disrupt myelin formation, rendering individuals more susceptible to SZ pathology. This review explores the potential relationship between prenatal undernutrition, myelin alterations, and susceptibility to SZ. By delineating the etiopathogenesis, examining genetic and environmental factors associated with SZ, and reviewing the relationship between SZ and myelination disorders, alongside the impact of malnutrition on myelination, we aim to examine how malnutrition might be linked to SZ by altering myelination processes, which contribute to increasing the understanding of SZ etiology and help identify targets for intervention and management.
Collapse
Affiliation(s)
| | - Oscar Gonzalez-Perez
- Laboratory of Neuroscience, School of Psychology, University of Colima, Colima 28040. México
| | - Ricardo Pedraza-Medina
- Medical Science Postgraduate Program, School of Medicine, University of Colima, Colima 28040. México
| |
Collapse
|
26
|
Wu W, He Y, Chen Y, Fu Y, He S, Liu K, Qu JY. In vivo imaging in mouse spinal cord reveals that microglia prevent degeneration of injured axons. Nat Commun 2024; 15:8837. [PMID: 39397028 PMCID: PMC11471772 DOI: 10.1038/s41467-024-53218-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 10/02/2024] [Indexed: 10/15/2024] Open
Abstract
Microglia, the primary immune cells in the central nervous system, play a critical role in regulating neuronal function and fate through their interaction with neurons. Despite extensive research, the specific functions and mechanisms of microglia-neuron interactions remain incompletely understood. In this study, we demonstrate that microglia establish direct contact with myelinated axons at Nodes of Ranvier in the spinal cord of mice. The contact associated with neuronal activity occurs in a random scanning pattern. In response to axonal injury, microglia rapidly transform their contact into a robust wrapping form, preventing acute axonal degeneration from extending beyond the nodes. This wrapping behavior is dependent on the function of microglial P2Y12 receptors, which may be activated by ATP released through axonal volume-activated anion channels at the nodes. Additionally, voltage-gated sodium channels (NaV) and two-pore-domain potassium (K2P) channels contribute to the interaction between nodes and glial cells following injury, and inhibition of NaV delays axonal degeneration. Through in vivo imaging, our findings reveal a neuroprotective role of microglia during the acute phase of single spinal cord axon injury, achieved through neuron-glia interaction.
Collapse
Grants
- ITCPD/17-9 Innovation and Technology Commission (ITF)
- ITCPD/17-9 Innovation and Technology Commission (ITF)
- 32101211, 32192400 National Natural Science Foundation of China (National Science Foundation of China)
- 82171384 National Natural Science Foundation of China (National Science Foundation of China)
- the Hong Kong Research Grants Council through grants (16102122, 16102123, 16102421, 16102518, 16102920, T13-607/12R, T13-605/18W, T13-602/21N, C6002-17GF, C6001-19E);the Area of Excellence Scheme of the University Grants Committee (AoE/M-604/16, AOE/M-09/12) and the Hong Kong University of Science & Technology (HKUST) through grant 30 for 30 Research Initiative Scheme.
- Guangdong Basic and Applied Basic Research Foundation 2024A1515012414 Shenzhen Medical Research Fund (B2301004)
- Guangzhou Key Projects of Brain Science and Brain-Like Intelligence Technology (20200730009), Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions (2019SHIBS0001);the Area of Excellence Scheme of the University Grants Committee (AoE/M-604/16); Hong Kong Research Grants Council through grants (T13-602/21N, C6034-21G)
Collapse
Affiliation(s)
- Wanjie Wu
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong, P. R. China
| | - Yingzhu He
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong, P. R. China
| | - Yujun Chen
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, P. R. China
| | - Yiming Fu
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong, P. R. China
| | - Sicong He
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Kai Liu
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, P. R. China.
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, Hong Kong, P. R. China.
- StateKey Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, P. R. China.
- Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China.
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, Shenzhen, Guangdong, China.
- HKUST Shenzhen Research Institute, Guangdong, China.
- Shenzhen-Hong Kong Institute of Brain Science, Guangdong, China.
| | - Jianan Y Qu
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong, P. R. China.
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, Hong Kong, P. R. China.
- Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong, P. R. China.
| |
Collapse
|
27
|
He Y, Cheng S, Yang L, Ding L, Chen Y, Lu J, Zheng R. Associations between plasma markers and symptoms of anxiety and depression in patients with breast cancer. BMC Psychiatry 2024; 24:678. [PMID: 39394561 PMCID: PMC11468209 DOI: 10.1186/s12888-024-06143-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 10/07/2024] [Indexed: 10/13/2024] Open
Abstract
BACKGROUND AND PURPOSE Among patients with solid tumors, those with breast cancer (BC) experience the most severe psychological issues, exhibiting a high global prevalence of depression that negatively impacts prognosis. Depression can be easily missed, and clinical markers for its diagnosis are lacking. Therefore, this study in order to investigate the diagnostic markers for BC patients with depression and anxiety and explore the specific changes of metabolism. METHOD AND RESULTS Thirty-eight BC patients and thirty-six matched healthy controls were included in the study. The anxiety and depression symptoms of the participants were evaluated by the 17-item Hamilton Depression Scale (HAMD-17) and Hamilton Anxiety Scale (HAMA). Plasma levels of glial fibrillary acidic protein (GFAP) and lipocalin-2 (LCN2) were evaluated using enzyme linked immunosorbent assay, and plasma lactate levels and metabolic characteristics were analyzed. CONCLUSION This study revealed that GFAP and LCN2 may be good diagnostic markers for anxiety or depression in patients with BC and that plasma lactate levels are also a good diagnostic marker for anxiety. In addition, specific changes in metabolism in patients with BC were preliminarily explored.
Collapse
Affiliation(s)
- Yibo He
- Department of Oncology, Hangzhou Cancer Hospital, Hangzhou, 310002, China
| | - Shangping Cheng
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lingrong Yang
- Department of Hangzhou Cancer Institution, Hangzhou Cancer Hospital, Hangzhou, 310002, China
| | - Lingyu Ding
- Department of Oncology, Hangzhou Cancer Hospital, Hangzhou, 310002, China
| | - Yidan Chen
- Department of Hangzhou Cancer Institution, Hangzhou Cancer Hospital, Hangzhou, 310002, China
| | - Jing Lu
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
- Zhejiang Key Laboratory of Precision Psychiatry, Hangzhou, 310003, China.
| | - Ruzhen Zheng
- Department of Oncology, Hangzhou Cancer Hospital, Hangzhou, 310002, China.
| |
Collapse
|
28
|
Jiao H, Kalsbeek A, Yi CX. Microglia, circadian rhythm and lifestyle factors. Neuropharmacology 2024; 257:110029. [PMID: 38852838 DOI: 10.1016/j.neuropharm.2024.110029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024]
Abstract
Microglia, a vital homeostasis-keeper of the central nervous system, perform critical functions such as synaptic pruning, clearance of cellular debris, and participation in neuroinflammatory processes. Recent research has shown that microglia exhibit strong circadian rhythms that not only actively regulate their own immune activity, but also affect neuronal function. Disruptions of the circadian clock have been linked to a higher risk of developing a variety of diseases. In this article we will provide an overview of how lifestyle factors impact microglial function, with a focus on disruptions caused by irregular sleep-wake patterns, reduced physical activity, and eating at the wrong time-of-day. We will also discuss the potential connection between these lifestyle factors, disrupted circadian rhythms, and the role of microglia in keeping brain health. This article is part of the Special Issue on "Microglia".
Collapse
Affiliation(s)
- Han Jiao
- Department of Endocrinology and Metabolism, Amsterdam University Medical Center, location AMC, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam, the Netherlands; Department of Clinical Chemistry, Laboratory of Endocrinology, Amsterdam University Medical Center, location AMC, Amsterdam, the Netherlands; Netherlands Institute for Neuroscience, Amsterdam, the Netherlands
| | - Andries Kalsbeek
- Department of Endocrinology and Metabolism, Amsterdam University Medical Center, location AMC, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam, the Netherlands; Department of Clinical Chemistry, Laboratory of Endocrinology, Amsterdam University Medical Center, location AMC, Amsterdam, the Netherlands; Netherlands Institute for Neuroscience, Amsterdam, the Netherlands
| | - Chun-Xia Yi
- Department of Endocrinology and Metabolism, Amsterdam University Medical Center, location AMC, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam, the Netherlands; Department of Clinical Chemistry, Laboratory of Endocrinology, Amsterdam University Medical Center, location AMC, Amsterdam, the Netherlands; Netherlands Institute for Neuroscience, Amsterdam, the Netherlands.
| |
Collapse
|
29
|
Pramanik S, Devi M H, Chakrabarty S, Paylar B, Pradhan A, Thaker M, Ayyadhury S, Manavalan A, Olsson PE, Pramanik G, Heese K. Microglia signaling in health and disease - Implications in sex-specific brain development and plasticity. Neurosci Biobehav Rev 2024; 165:105834. [PMID: 39084583 DOI: 10.1016/j.neubiorev.2024.105834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/21/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
Microglia, the intrinsic neuroimmune cells residing in the central nervous system (CNS), exert a pivotal influence on brain development, homeostasis, and functionality, encompassing critical roles during both aging and pathological states. Recent advancements in comprehending brain plasticity and functions have spotlighted conspicuous variances between male and female brains, notably in neurogenesis, neuronal myelination, axon fasciculation, and synaptogenesis. Nevertheless, the precise impact of microglia on sex-specific brain cell plasticity, sculpting diverse neural network architectures and circuits, remains largely unexplored. This article seeks to unravel the present understanding of microglial involvement in brain development, plasticity, and function, with a specific emphasis on microglial signaling in brain sex polymorphism. Commencing with an overview of microglia in the CNS and their associated signaling cascades, we subsequently probe recent revelations regarding molecular signaling by microglia in sex-dependent brain developmental plasticity, functions, and diseases. Notably, C-X3-C motif chemokine receptor 1 (CX3CR1), triggering receptors expressed on myeloid cells 2 (TREM2), calcium (Ca2+), and apolipoprotein E (APOE) emerge as molecular candidates significantly contributing to sex-dependent brain development and plasticity. In conclusion, we address burgeoning inquiries surrounding microglia's pivotal role in the functional diversity of developing and aging brains, contemplating their potential implications for gender-tailored therapeutic strategies in neurodegenerative diseases.
Collapse
Affiliation(s)
- Subrata Pramanik
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| | - Harini Devi M
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Saswata Chakrabarty
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Berkay Paylar
- Biology, The Life Science Center, School of Science and Technology, Örebro University, Örebro 70182, Sweden
| | - Ajay Pradhan
- Biology, The Life Science Center, School of Science and Technology, Örebro University, Örebro 70182, Sweden
| | - Manisha Thaker
- Eurofins Lancaster Laboratories, Inc., 2425 New Holland Pike, Lancaster, PA 17601, USA
| | - Shamini Ayyadhury
- The Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Arulmani Manavalan
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu 600077, India
| | - Per-Erik Olsson
- Biology, The Life Science Center, School of Science and Technology, Örebro University, Örebro 70182, Sweden
| | - Gopal Pramanik
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215, India.
| | - Klaus Heese
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133791, the Republic of Korea.
| |
Collapse
|
30
|
Serrano C, Cananzi S, Shen T, Wang LL, Zhang CL. Simple and highly specific targeting of resident microglia with adeno-associated virus. iScience 2024; 27:110706. [PMID: 39297168 PMCID: PMC11407971 DOI: 10.1016/j.isci.2024.110706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/28/2024] [Accepted: 08/07/2024] [Indexed: 09/21/2024] Open
Abstract
Microglia, as the immune cells of the central nervous system (CNS), play dynamic roles in both healthy and diseased conditions. The ability to genetically target microglia using viruses is crucial for understanding their functions and advancing microglia-based treatments. We here show that resident microglia can be simply and specifically targeted using adeno-associated virus (AAV) vectors containing a 466-bp DNA fragment from the human IBA1 (hIBA1) promoter. This targeting approach is applicable to both resting and reactive microglia. When combining the short hIBA1 promoter with the target sequence of miR124, up to 98% of transduced cells are identified as microglia. Such a simple and highly specific microglia-targeting strategy may be further optimized for research and therapeutics.
Collapse
Affiliation(s)
- Carolina Serrano
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sergio Cananzi
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tianjin Shen
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lei-Lei Wang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chun-Li Zhang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
31
|
Piedade de Souza T, Santana de Araújo G, Magalhães L, Cavalcante GC, Ribeiro-Dos-Santos A, Sena-Dos-Santos C, Silva CS, Eufraseo GL, de Freitas Escudeiro A, Soares-Souza GB, Santos-Lobato BL, Ribeiro-Dos-Santos Â. Unveiling differential gene co-expression networks and its effects on levodopa-induced dyskinesia. iScience 2024; 27:110835. [PMID: 39297167 PMCID: PMC11409023 DOI: 10.1016/j.isci.2024.110835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/25/2024] [Accepted: 08/23/2024] [Indexed: 09/21/2024] Open
Abstract
Levodopa-induced dyskinesia (LID) refers to involuntary motor movements of chronic use of levodopa in Parkinson's disease (PD) that negatively impact the overall well-being of people with this disease. The molecular mechanisms involved in LID were investigated through whole-blood transcriptomic analysis for differential gene expression and identification of new co-expression and differential co-expression networks. We found six differentially expressed genes in patients with LID, and 13 in patients without LID. We also identified 12 co-expressed genes exclusive to LID, and six exclusive hub genes involved in 23 gene-gene interactions in patients with LID. Convergently, we identified novel genes associated with PD and LID that play roles in mitochondrial dysfunction, dysregulation of lipid metabolism, and neuroinflammation. We observed significant changes in disease progression, consistent with previous findings of maladaptive plastic changes in the basal ganglia leading to the development of LID, including a chronic pro-inflammatory state in the brain.
Collapse
Affiliation(s)
- Tatiane Piedade de Souza
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, Belém 66075-110, Pará, Brazil
| | | | | | - Giovanna C Cavalcante
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, Belém 66075-110, Pará, Brazil
| | - Arthur Ribeiro-Dos-Santos
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, Belém 66075-110, Pará, Brazil
| | - Camille Sena-Dos-Santos
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, Belém 66075-110, Pará, Brazil
| | - Caio Santos Silva
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, Belém 66075-110, Pará, Brazil
| | - Gracivane Lopes Eufraseo
- Laboratório de Neurologia Experimental, Universidade Federal do Pará, Belém 66073-000, Pará, Brazil
| | | | - Giordano Bruno Soares-Souza
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, Belém 66075-110, Pará, Brazil
- Instituto Tecnológico Vale, Belém 66055-090, Pará, Brazil
| | | | - Ândrea Ribeiro-Dos-Santos
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, Belém 66075-110, Pará, Brazil
- Núcleo de Pesquisa em Oncologia, Universidade Federal do Pará (UFPA), Belém 66073-005, Pará, Brazil
| |
Collapse
|
32
|
Milazzo R, Montepeloso A, Kumar R, Ferro F, Cavalca E, Rigoni P, Cabras P, Ciervo Y, Das S, Capotondo A, Pellin D, Peviani M, Biffi A. Therapeutic efficacy of intracerebral hematopoietic stem cell gene therapy in an Alzheimer's disease mouse model. Nat Commun 2024; 15:8024. [PMID: 39271711 PMCID: PMC11399302 DOI: 10.1038/s41467-024-52301-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
The conditions supporting the generation of microglia-like cells in the central nervous system (CNS) after transplantation of hematopoietic stem/progenitor cells (HSPC) have been studied to advance the treatment of neurodegenerative disorders. Here, we explored the transplantation efficacy of different cell subsets and delivery routes with the goal of favoring the establishment of a stable and exclusive engraftment of HSPCs and their progeny in the CNS of female mice. In this setting, we show that the CNS environment drives the expansion, distribution and myeloid differentiation of the locally transplanted cells towards a microglia-like phenotype. Intra-CNS transplantation of HSPCs engineered to overexpress TREM2 decreased neuroinflammation, Aβ aggregation and improved memory in 5xFAD female mice. Our proof of concept study demonstrates the therapeutic potential of HSPC gene therapy for Alzheimer's disease.
Collapse
Affiliation(s)
- Rita Milazzo
- Division of Hematology, Oncology and Stem Cell Transplantation, Department of Women and Child's Health, University of Padua, Padua, Italy
- San Raffaele Telethon Institute for Gene Therapy, Division of Regenerative Medicine, Stem Cell and Gene Therapy, San Raffaele Scientific Institute, Milan, Italy
| | - Annita Montepeloso
- Gene Therapy Program, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
| | - Rajesh Kumar
- Gene Therapy Program, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
| | - Francesca Ferro
- San Raffaele Telethon Institute for Gene Therapy, Division of Regenerative Medicine, Stem Cell and Gene Therapy, San Raffaele Scientific Institute, Milan, Italy
- Gene Therapy Program, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
| | - Eleonora Cavalca
- San Raffaele Telethon Institute for Gene Therapy, Division of Regenerative Medicine, Stem Cell and Gene Therapy, San Raffaele Scientific Institute, Milan, Italy
- Gene Therapy Program, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
| | - Pietro Rigoni
- Division of Hematology, Oncology and Stem Cell Transplantation, Department of Women and Child's Health, University of Padua, Padua, Italy
| | - Paolo Cabras
- Department of Biology and Biotechnology "L. Spallanzani", Cellular and Molecular Neuropharmacology lab, University of Pavia, Pavia, Italy
| | - Yuri Ciervo
- Division of Hematology, Oncology and Stem Cell Transplantation, Department of Women and Child's Health, University of Padua, Padua, Italy
| | - Sabyasachi Das
- Gene Therapy Program, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
| | - Alessia Capotondo
- San Raffaele Telethon Institute for Gene Therapy, Division of Regenerative Medicine, Stem Cell and Gene Therapy, San Raffaele Scientific Institute, Milan, Italy
| | - Danilo Pellin
- Gene Therapy Program, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
| | - Marco Peviani
- Gene Therapy Program, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
- Department of Biology and Biotechnology "L. Spallanzani", Cellular and Molecular Neuropharmacology lab, University of Pavia, Pavia, Italy
| | - Alessandra Biffi
- Division of Hematology, Oncology and Stem Cell Transplantation, Department of Women and Child's Health, University of Padua, Padua, Italy.
- San Raffaele Telethon Institute for Gene Therapy, Division of Regenerative Medicine, Stem Cell and Gene Therapy, San Raffaele Scientific Institute, Milan, Italy.
- Gene Therapy Program, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA.
| |
Collapse
|
33
|
Zhu H, Pan H, Fang Y, Wang H, Chen Z, Hu W, Tong L, Ren J, Lu X, Huang C. Apoptosis-induced decline in hippocampal microglia mediates the development of depression-like behaviors in adult mice triggered by unpredictable stress during adolescence. Eur J Pharmacol 2024; 978:176763. [PMID: 38906239 DOI: 10.1016/j.ejphar.2024.176763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/09/2024] [Accepted: 06/19/2024] [Indexed: 06/23/2024]
Abstract
Depression triggered by harmful stress during adolescence is a common problem that can affect mental health. To date, the mechanisms underlying this type of depression remain unclear. One mechanism for the promotion of depression by chronic stress in adulthood is the loss of hippocampal microglia. Since deleterious stress in adolescence also activates microglia, we investigated the dynamic changes of microglia in the hippocampus in mice exposed to chronic unpredictable stress (CUS) in adolescence. Our results showed that 12 days of CUS stimulation in adolescence induced typical depression-like behaviors in adult mice, which were accompanied by a significant decrease and dystrophy of microglia in the dentate gyrus of the hippocampus. Further analysis showed that this decrease in microglia was mediated by the initial response of microglia to unpredictable stress in the dentate gyrus of the hippocampus and their subsequent apoptosis. Blocking the initial response of microglia to unpredictable stress by pretreatment with minocycline was able to prevent apoptosis and microglial decline as well as the development of depression-like behaviors in adult mice induced by adolescent CUS. Moreover, administration of lipopolysaccharide (LPS) or macrophage-colony stimulatory factor (M-CSF), two drugs that reversed microglia decline in the dentate gyrus, ameliorated the depression-like behaviors induced by CUS stimulation in adolescence. These findings reveal a novel mechanism for the development of depression-like behaviors in animals triggered by deleterious stress in adolescence and suggest that reversing microglial decline in the hippocampus may be a hopeful strategy for the treatment of depression triggered by deleterious stress in adolescence.
Collapse
Affiliation(s)
- Haojie Zhu
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, 226001, Jiangsu Province, China
| | - Hainan Pan
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, 226001, Jiangsu Province, China
| | - Yunli Fang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, 226001, Jiangsu Province, China
| | - Hanxiao Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, 226001, Jiangsu Province, China
| | - Zhuo Chen
- Invasive Technology Department, Nantong First People's Hospital, The Second Affiliated Hospital of Nantong University, #6 North Road Hai'er Xiang, Nantong, 226001, Jiangsu Province, China
| | - Wenfeng Hu
- Department of Pharmacy, Affiliated Maternal and Child Health Hospital of Nantong University, #399 Shijidadao, Nantong, 226007, Jiangsu Province, China
| | - Lijuan Tong
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, 226001, Jiangsu Province, China
| | - Jie Ren
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, 226001, Jiangsu Province, China
| | - Xu Lu
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, 226001, Jiangsu Province, China.
| | - Chao Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, 226001, Jiangsu Province, China.
| |
Collapse
|
34
|
Kuhn MK, Proctor EA. Microglial Drivers of Alzheimer's Disease Pathology: An Evolution of Diverse Participating States. Proteins 2024:10.1002/prot.26723. [PMID: 39219300 PMCID: PMC11871049 DOI: 10.1002/prot.26723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/05/2024] [Accepted: 06/12/2024] [Indexed: 09/04/2024]
Abstract
Microglia, the resident immune-competent cells of the brain, become dysfunctional in Alzheimer's disease (AD), and their aberrant immune responses contribute to the accumulation of pathological proteins and neuronal injury. Genetic studies implicate microglia in the development of AD, prompting interest in developing immunomodulatory therapies to prevent or ameliorate disease. However, microglia take on diverse functional states in disease, playing both protective and detrimental roles in AD, which largely overlap and may shift over the disease course, complicating the identification of effective therapeutic targets. Extensive evidence gathered using transgenic mouse models supports an active role of microglia in pathology progression, though results vary and can be contradictory between different types of models and the degree of pathology at the time of study. Here, we review microglial immune signaling and responses that contribute to the accumulation and spread of pathological proteins or directly affect neuronal health. We additionally explore the use of induced pluripotent stem cell (iPSC)-derived models to study living human microglia and how they have contributed to our knowledge of AD and may begin to fill in the gaps left by mouse models. Ultimately, mouse and iPSC-derived models have their own limitations, and a comprehensive understanding of microglial dysfunction in AD will only be established by an integrated view across models and an appreciation for their complementary viewpoints and limitations.
Collapse
Affiliation(s)
- Madison K. Kuhn
- Department of Biomedical Engineering, Penn State University
- Department of Neurosurgery, Penn State College of Medicine
- Department of Pharmacology, Penn State College of Medicine
- Center for Neural Engineering, Penn State University
| | - Elizabeth A. Proctor
- Department of Biomedical Engineering, Penn State University
- Department of Neurosurgery, Penn State College of Medicine
- Department of Pharmacology, Penn State College of Medicine
- Center for Neural Engineering, Penn State University
- Department of Engineering Science & Mechanics, Penn State University
| |
Collapse
|
35
|
Piccioni G, Maisto N, d'Ettorre A, Strimpakos G, Nisticò R, Triaca V, Mango D. Switch to phagocytic microglia by CSFR1 inhibition drives amyloid-beta clearance from glutamatergic terminals rescuing LTP in acute hippocampal slices. Transl Psychiatry 2024; 14:338. [PMID: 39179543 PMCID: PMC11344079 DOI: 10.1038/s41398-024-03019-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 06/21/2024] [Accepted: 07/08/2024] [Indexed: 08/26/2024] Open
Abstract
Microglia, traditionally regarded as innate immune cells in the brain, drive neuroinflammation and synaptic dysfunctions in the early phases of Alzheimer disease (AD), acting upstream to Aβ accumulation. Colony stimulating factor 1-receptor (CSF-1R) is predominantly expressed on microglia and its levels are significantly increased in neurodegenerative diseases, possibly contributing to the chronic inflammatory microglial response. On the other hand, CSF-1R inhibitors confer neuroprotection in preclinical models of neurodegenerative diseases. Here, we determined the effects of the CSF-1R inhibitor PLX3397 on the Aβ-mediated synaptic alterations in ex vivo hippocampal slices. Electrophysiological findings show that PLX3397 rescues LTP impairment and neurotransmission changes induced by Aβ. In addition, using confocal imaging experiments, we demonstrate that PLX3397 stimulates a microglial transition toward a phagocytic phenotype, which in turn promotes the clearance of Aβ from glutamatergic terminals. We believe that the selective pruning of Aβ-loaded synaptic terminals might contribute to the restoration of LTP and excitatory transmission alterations observed upon acute PLX3397 treatment. This result is in accordance with the mechanism proposed for CSF1R inhibitors, that is to eliminate responsive microglia and replace it with newly generated, homeostatic microglia, capable of promoting brain repair. Overall, our findings identify a connection between the rapid microglia adjustments and the early synaptic alterations observed in AD, possibly highlighting a novel disease-modifying target.
Collapse
Affiliation(s)
- Gaia Piccioni
- Laboratory Pharmacology of Synaptic Plasticity, European Brain Research Institute, Rome, Italy
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
| | - Nunzia Maisto
- Laboratory Pharmacology of Synaptic Plasticity, European Brain Research Institute, Rome, Italy
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
| | - Asia d'Ettorre
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), International Campus A. Buzzati-Traverso, Rome, Italy
- School of Pharmacy, University of Rome "Tor Vergata", Rome, Italy
| | - Georgios Strimpakos
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), International Campus A. Buzzati-Traverso, Rome, Italy
| | - Robert Nisticò
- Laboratory Pharmacology of Synaptic Plasticity, European Brain Research Institute, Rome, Italy.
- School of Pharmacy, University of Rome "Tor Vergata", Rome, Italy.
| | - Viviana Triaca
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), International Campus A. Buzzati-Traverso, Rome, Italy.
| | - Dalila Mango
- Laboratory Pharmacology of Synaptic Plasticity, European Brain Research Institute, Rome, Italy.
- School of Pharmacy, University of Rome "Tor Vergata", Rome, Italy.
| |
Collapse
|
36
|
Hatch K, Lischka F, Wang M, Xu X, Stimpson CD, Barvir T, Cramer NP, Perl DP, Yu G, Browne CA, Dickstein DL, Galdzicki Z. The role of microglia in neuronal and cognitive function during high altitude acclimatization. Sci Rep 2024; 14:18981. [PMID: 39152179 PMCID: PMC11329659 DOI: 10.1038/s41598-024-69694-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024] Open
Abstract
Due to their interactions with the neurovasculature, microglia are implicated in maladaptive responses to hypobaric hypoxia at high altitude (HA). To explore these interactions at HA, pharmacological depletion of microglia with the colony-stimulating factor-1 receptor inhibitor, PLX5622, was employed in male C57BL/6J mice maintained at HA or sea level (SL) for 3-weeks, followed by assessment of ex-vivo hippocampal long-term potentiation (LTP), fear memory recall and microglial dynamics/physiology. Our findings revealed that microglia depletion decreased LTP and reduced glucose levels by 25% at SL but did not affect fear memory recall. At HA, the absence of microglia did not significantly alter HA associated deficits in fear memory or HA mediated decreases in peripheral glucose levels. In regard to microglial dynamics in the cortex, HA enhanced microglial surveillance activity, ablation of microglia resulted in increased chemotactic responses and decreased microglia tip proliferation during ball formation. In contrast, vessel ablation increased cortical microglia tip path tortuosity. In the hippocampus, changes in microglial dynamics were only observed in response to vessel ablation following HA. As the hippocampus is critical for learning and memory, poor hippocampal microglial context-dependent adaptation may be responsible for some of the enduring neurological deficits associated with HA.
Collapse
Affiliation(s)
- Kathleen Hatch
- Neuroscience Graduate Program, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc. (HJF), 6720A Rockledge Drive, Bethesda, MD, 20817, USA
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Fritz Lischka
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc. (HJF), 6720A Rockledge Drive, Bethesda, MD, 20817, USA
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Mengfan Wang
- Department of Electrical and Computer Engineering, Virginia Tech, Arlington, VA, USA
| | - Xiufen Xu
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc. (HJF), 6720A Rockledge Drive, Bethesda, MD, 20817, USA
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Cheryl D Stimpson
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc. (HJF), 6720A Rockledge Drive, Bethesda, MD, 20817, USA
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Tara Barvir
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc. (HJF), 6720A Rockledge Drive, Bethesda, MD, 20817, USA
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Nathan P Cramer
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc. (HJF), 6720A Rockledge Drive, Bethesda, MD, 20817, USA
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, MD, 21201, USA
| | - Daniel P Perl
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Guoqiang Yu
- Department of Electrical and Computer Engineering, Virginia Tech, Arlington, VA, USA
| | - Caroline A Browne
- Neuroscience Graduate Program, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc. (HJF), 6720A Rockledge Drive, Bethesda, MD, 20817, USA
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Dara L Dickstein
- Neuroscience Graduate Program, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc. (HJF), 6720A Rockledge Drive, Bethesda, MD, 20817, USA
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Zygmunt Galdzicki
- Neuroscience Graduate Program, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA.
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA.
| |
Collapse
|
37
|
Bitar L, Puig B, Oertner TG, Dénes Á, Magnus T. Changes in Neuroimmunological Synapses During Cerebral Ischemia. Transl Stroke Res 2024:10.1007/s12975-024-01286-1. [PMID: 39103660 DOI: 10.1007/s12975-024-01286-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/24/2024] [Accepted: 07/25/2024] [Indexed: 08/07/2024]
Abstract
The direct interplay between the immune and nervous systems is now well established. Within the brain, these interactions take place between neurons and resident glial cells, i.e., microglia and astrocytes, or infiltrating immune cells, influenced by systemic factors. A special form of physical cell-cell interactions is the so-called "neuroimmunological (NI) synapse." There is compelling evidence that the same signaling pathways that regulate inflammatory responses to injury or ischemia also play potent roles in brain development, plasticity, and function. Proper synaptic wiring is as important during development as it is during disease states, as it is necessary for activity-dependent refinement of neuronal circuits. Since the process of forming synaptic connections in the brain is highly dynamic, with constant changes in strength and connectivity, the immune component is perfectly suited for the regulatory task as it is in constant turnover. Many cellular and molecular players in this interaction remain to be uncovered, especially in pathological states. In this review, we discuss and propose possible communication hubs between components of the adaptive and innate immune systems and the synaptic element in ischemic stroke pathology.
Collapse
Affiliation(s)
- Lynn Bitar
- Neurology Department, Experimental Research in Stroke and Inflammation (ERSI) Group, University Medical Center Hamburg-Eppendorf (UKE), Martinistraße, 52, Hamburg, 20246, Germany
| | - Berta Puig
- Neurology Department, Experimental Research in Stroke and Inflammation (ERSI) Group, University Medical Center Hamburg-Eppendorf (UKE), Martinistraße, 52, Hamburg, 20246, Germany
| | - Thomas G Oertner
- Institute for Synaptic Physiology, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ádám Dénes
- "Momentum" Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Tim Magnus
- Neurology Department, Experimental Research in Stroke and Inflammation (ERSI) Group, University Medical Center Hamburg-Eppendorf (UKE), Martinistraße, 52, Hamburg, 20246, Germany.
| |
Collapse
|
38
|
Yoshioka M, Takahashi M, Kershaw J, Handa M, Takada A, Takuwa H. Two-photon optogenetics-based assessment of neuronal connectivity in healthy and chronic hypoperfusion mice. NEUROPHOTONICS 2024; 11:035009. [PMID: 39345733 PMCID: PMC11436461 DOI: 10.1117/1.nph.11.3.035009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 08/16/2024] [Accepted: 08/22/2024] [Indexed: 10/01/2024]
Abstract
Significance Two-photon optogenetics and simultaneous calcium imaging can be used to visualize the response of surrounding neurons with respect to the activity of an optically stimulated target neuron, providing a direct method to assess neuronal connectivity. Aim We aim to develop a two-photon optogenetics-based method for evaluating neuronal connectivity, compare it to the existing indirect resting-state synchrony method, and investigate the application of the method to brain pathophysiology. Approach C1V1-mScarlet was introduced into GCaMP6s-expressing transgenic mice with an adeno-associated virus. Optical stimulation of a single target neuron and simultaneous calcium imaging of the target and surrounding cells were performed. Neuronal connectivity was evaluated from the correlation between the fluorescence intensity of the target and surrounding cells. Results The neuronal connectivity in the living brain was evaluated using two-photon optogenetics. However, resting-state synchrony was not always consistent with two-photon optogenetics-based connectivity. Comparison with neuronal synchrony measured during sensory stimulation suggested that the disagreement was due to external sensory input. Two-photon optogenetics-based connectivity significantly decreased in the common carotid artery occlusion model, whereas there was no significant change in the control group. Conclusions We successfully developed a direct method to evaluate neuronal connectivity in the living brain using two-photon optogenetics. The technique was successful in detecting connectivity impairment in hypoperfusion model mice.
Collapse
Affiliation(s)
- Masaki Yoshioka
- National Institutes for Quantum Science and Technology, Institute for Quantum Life Science, Quantum Neuromapping and Neuromodulation Team, Chiba, Japan
- Chiba University, Graduate School of Medicine, Department of Neurological Surgery, Chiba, Japan
| | - Manami Takahashi
- National Institutes for Quantum Science and Technology, Institute for Quantum Life Science, Quantum Neuromapping and Neuromodulation Team, Chiba, Japan
| | - Jeff Kershaw
- National Institutes for Quantum Science and Technology, Institute for Quantum Medical Science, Department of Molecular Imaging and Theranostics, Chiba, Japan
| | - Mariko Handa
- National Institutes for Quantum Science and Technology, Institute for Quantum Life Science, Quantum Neuromapping and Neuromodulation Team, Chiba, Japan
- Chiba University, Graduate School of Science, Department of Quantum Life Science, Chiba, Japan
| | - Ayaka Takada
- National Institutes for Quantum Science and Technology, Institute for Quantum Life Science, Quantum Neuromapping and Neuromodulation Team, Chiba, Japan
- Chiba University, Graduate School of Science, Department of Quantum Life Science, Chiba, Japan
| | - Hiroyuki Takuwa
- National Institutes for Quantum Science and Technology, Institute for Quantum Life Science, Quantum Neuromapping and Neuromodulation Team, Chiba, Japan
- Chiba University, Graduate School of Science, Department of Quantum Life Science, Chiba, Japan
| |
Collapse
|
39
|
Yao X, Yang C, Jia X, Yu Z, Wang C, Zhao J, Chen Y, Xie B, Zhuang H, Sun C, Li Q, Kang X, Xiao Y, Liu L. High-fat diet consumption promotes adolescent neurobehavioral abnormalities and hippocampal structural alterations via microglial overactivation accompanied by an elevated serum free fatty acid concentration. Brain Behav Immun 2024; 119:236-250. [PMID: 38604269 DOI: 10.1016/j.bbi.2024.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024] Open
Abstract
Mounting evidence suggests that high-fat diet (HFD) consumption increases the risk for depression, but the neurophysiological mechanisms involved remain to be elucidated. Here, we demonstrated that HFD feeding of C57BL/6J mice during the adolescent period (from 4 to 8 weeks of age) resulted in increased depression- and anxiety-like behaviors concurrent with changes in neuronal and myelin structure in the hippocampus. Additionally, we showed that hippocampal microglia in HFD-fed mice assumed a hyperactive state concomitant with increased PSD95-positive and myelin basic protein (MBP)-positive inclusions, implicating microglia in hippocampal structural alterations induced by HFD consumption. Along with increased levels of serum free fatty acids (FFAs), abnormal deposition of lipid droplets and increased levels of HIF-1α protein (a transcription factor that has been reported to facilitate cellular lipid accumulation) within hippocampal microglia were observed in HFD-fed mice. The use of minocycline, a pharmacological suppressor of microglial overactivation, effectively attenuated neurobehavioral abnormalities and hippocampal structural alterations but barely altered lipid droplet accumulation in the hippocampal microglia of HFD-fed mice. Coadministration of triacsin C abolished the increases in lipid droplet formation, phagocytic activity, and ROS levels in primary microglia treated with serum from HFD-fed mice. In conclusion, our studies demonstrate that the adverse influence of early-life HFD consumption on behavior and hippocampal structure is attributed at least in part to microglial overactivation that is accompanied by an elevated serum FFA concentration and microglial aberrations represent a potential preventive and therapeutic target for HFD-related emotional disorders.
Collapse
Affiliation(s)
- Xiuting Yao
- Medical College, Southeast University, Nanjing 210009, China
| | - Chenxi Yang
- Medical College, Southeast University, Nanjing 210009, China
| | - Xirui Jia
- School of Life Science and Technology, Southeast University, Nanjing 210009, China
| | - Zhehao Yu
- Medical College, Southeast University, Nanjing 210009, China
| | - Conghui Wang
- Medical College, Southeast University, Nanjing 210009, China
| | - Jingyi Zhao
- School of Life Science and Technology, Southeast University, Nanjing 210009, China
| | - Yuxi Chen
- Medical College, Southeast University, Nanjing 210009, China
| | - Bingjie Xie
- Medical College, Southeast University, Nanjing 210009, China
| | - Hong Zhuang
- Medical College, Southeast University, Nanjing 210009, China
| | - Congli Sun
- Medical College, Southeast University, Nanjing 210009, China
| | - Qian Li
- Medical College, Southeast University, Nanjing 210009, China
| | - Xiaomin Kang
- School of Life Science and Technology, Southeast University, Nanjing 210009, China
| | - Yu Xiao
- Medical College, Southeast University, Nanjing 210009, China
| | - Lijie Liu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Physiology, School of Medicine, Southeast University, Nanjing 210009, China.
| |
Collapse
|
40
|
Hinkle JJ, Olschowka JA, Williams JP, O'Banion MK. Pharmacologic Manipulation of Complement Receptor 3 Prevents Dendritic Spine Loss and Cognitive Impairment After Acute Cranial Radiation. Int J Radiat Oncol Biol Phys 2024; 119:912-923. [PMID: 38142839 DOI: 10.1016/j.ijrobp.2023.12.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 12/08/2023] [Accepted: 12/15/2023] [Indexed: 12/26/2023]
Abstract
PURPOSE Cranial irradiation induces healthy tissue damage that can lead to neurocognitive complications, negatively affecting patient quality of life. One damage indicator associated with cognitive impairment is loss of neuronal spine density. We previously demonstrated that irradiation-mediated spine loss is microglial complement receptor 3 (CR3) and sex dependent. We hypothesized that these changes are associated with late-delayed cognitive deficits and amenable to pharmacologic intervention. METHODS AND MATERIALS Our model of cranial irradiation (acute, 10 Gy gamma) used male and female CR3-wild type and CR3-deficient Thy-1 YFP mice of C57BL/6 background. Forty-five days after irradiation and behavioral testing, we quantified spine density and markers of microglial reactivity in the hippocampal dentate gyrus. In a separate experiment, male Thy-1 YFP C57BL/6 mice were treated with leukadherin-1, a modulator of CR3 function. RESULTS We found that male mice demonstrate irradiation-mediated spine loss and cognitive deficits but that female and CR3 knockout mice do not. These changes were associated with greater reactivity of microglia in male mice. Pharmacologic manipulation of CR3 with LA1 prevented spine loss and cognitive deficits in irradiated male mice. CONCLUSIONS This work improves our understanding of irradiation-mediated mechanisms and sex dependent responses and may help identify novel therapeutics to reduce irradiation-induced cognitive decline and improve patient quality of life.
Collapse
Affiliation(s)
- Joshua J Hinkle
- Department of Neuroscience and Del Monte Neuroscience Institute
| | | | | | - M Kerry O'Banion
- Department of Neuroscience and Del Monte Neuroscience Institute; Department of Neurology, University of Rochester School of Medicine and Dentistry, Rochester, New York.
| |
Collapse
|
41
|
Berki P, Cserép C, Környei Z, Pósfai B, Szabadits E, Domonkos A, Kellermayer A, Nyerges M, Wei X, Mody I, Kunihiko A, Beck H, Kaikai H, Ya W, Lénárt N, Wu Z, Jing M, Li Y, Gulyás AI, Dénes Á. Microglia contribute to neuronal synchrony despite endogenous ATP-related phenotypic transformation in acute mouse brain slices. Nat Commun 2024; 15:5402. [PMID: 38926390 PMCID: PMC11208608 DOI: 10.1038/s41467-024-49773-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Acute brain slices represent a workhorse model for studying the central nervous system (CNS) from nanoscale events to complex circuits. While slice preparation inherently involves tissue damage, it is unclear how microglia, the main immune cells and damage sensors of the CNS react to this injury and shape neuronal activity ex vivo. To this end, we investigated microglial phenotypes and contribution to network organization and functioning in acute brain slices. We reveal time-dependent microglial phenotype changes influenced by complex extracellular ATP dynamics through P2Y12R and CX3CR1 signalling, which is sustained for hours in ex vivo mouse brain slices. Downregulation of P2Y12R and changes of microglia-neuron interactions occur in line with alterations in the number of excitatory and inhibitory synapses over time. Importantly, functional microglia modulate synapse sprouting, while microglial dysfunction results in markedly impaired ripple activity both ex vivo and in vivo. Collectively, our data suggest that microglia are modulators of complex neuronal networks with important roles to maintain neuronal network integrity and activity. We suggest that slice preparation can be used to model time-dependent changes of microglia-neuron interactions to reveal how microglia shape neuronal circuits in physiological and pathological conditions.
Collapse
Affiliation(s)
- Péter Berki
- János Szentágothai Doctoral School of Neuroscience, Semmelweis University, Budapest, H-1083, Hungary
- Laboratory of Cerebral Cortex Research, HUN-REN Institute of Experimental Medicine, Budapest, H-1083, Hungary
- Laboratory of Neuronal Network and Behaviour, HUN-REN Institute of Experimental Medicine, Budapest, H-1083, Hungary
| | - Csaba Cserép
- Momentum Laboratory of Neuroimmunology, HUN-REN Institute of Experimental Medicine, Budapest, H-1083, Hungary
| | - Zsuzsanna Környei
- Momentum Laboratory of Neuroimmunology, HUN-REN Institute of Experimental Medicine, Budapest, H-1083, Hungary
| | - Balázs Pósfai
- Momentum Laboratory of Neuroimmunology, HUN-REN Institute of Experimental Medicine, Budapest, H-1083, Hungary
| | - Eszter Szabadits
- Momentum Laboratory of Neuroimmunology, HUN-REN Institute of Experimental Medicine, Budapest, H-1083, Hungary
| | - Andor Domonkos
- Momentum Laboratory of Neuroimmunology, HUN-REN Institute of Experimental Medicine, Budapest, H-1083, Hungary
- Laboratory of Thalamus Research, HUN-REN Institute of Experimental Medicine, Budapest, H-1083, Hungary
| | - Anna Kellermayer
- Momentum Laboratory of Neuroimmunology, HUN-REN Institute of Experimental Medicine, Budapest, H-1083, Hungary
| | - Miklós Nyerges
- Momentum Laboratory of Neuroimmunology, HUN-REN Institute of Experimental Medicine, Budapest, H-1083, Hungary
| | - Xiaofei Wei
- Department of Neurology, The David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Istvan Mody
- Department of Neurology, The David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Araki Kunihiko
- Institute of Experimental Epileptology and Cognition Research, Medical University of Bonn, Bonn, 53127, Germany
- University Hospital Bonn, Bonn, Germany
| | - Heinz Beck
- Institute of Experimental Epileptology and Cognition Research, Medical University of Bonn, Bonn, 53127, Germany
- University Hospital Bonn, Bonn, Germany
| | - He Kaikai
- State Key Laboratory of Membrane Biology, New Cornerstone Science Laboratory, School of Life Sciences, Peking University, 100871, Beijing, China
| | - Wang Ya
- Chinese Institute for Brain Research, 102206, Beijing, China
| | - Nikolett Lénárt
- Momentum Laboratory of Neuroimmunology, HUN-REN Institute of Experimental Medicine, Budapest, H-1083, Hungary
| | - Zhaofa Wu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Miao Jing
- Chinese Institute for Brain Research, 102206, Beijing, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, New Cornerstone Science Laboratory, School of Life Sciences, Peking University, 100871, Beijing, China
| | - Attila I Gulyás
- Laboratory of Cerebral Cortex Research, HUN-REN Institute of Experimental Medicine, Budapest, H-1083, Hungary
| | - Ádám Dénes
- Momentum Laboratory of Neuroimmunology, HUN-REN Institute of Experimental Medicine, Budapest, H-1083, Hungary.
| |
Collapse
|
42
|
Rong M, Jia JJ, Lin MQ, He XLS, Xie ZY, Wang N, Zhang ZH, Dong YJ, Xu WF, Huang JH, Li B, Jiang NH, Lv GY, Chen SH. The effect of modified Qiyuan paste on mice with low immunity and sleep deprivation by regulating GABA nerve and immune system. Chin Med 2024; 19:84. [PMID: 38867320 PMCID: PMC11167779 DOI: 10.1186/s13020-024-00939-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/01/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Low immunity and sleep disorders are prevalent suboptimal health conditions in contemporary populations, which render them susceptible to the infiltration of pathogenic factors. LJC, which has a long history in traditional Chinese medicine for nourishing the Yin and blood and calming the mind, is obtained by modifying Qiyuan paste. Dendrobium officinale Kimura et Migo has been shown to improve the immune function in sleep-deprived mice. In this study, based on the traditional Chinese medicine theory, LJC was prepared by adding D. officinale Kimura et Migo to Qiyuan paste decoction. METHODS Indicators of Yin deficiency syndrome, such as back temperature and grip strength, were measured in each group of mice; furthermore, behavioral tests and pentobarbital sodium-induced sleep tests were performed. An automatic biochemical analyzer, enzyme-linked immunosorbent assay kit, and other methods were used to determine routine blood parameters, serum immunoglobulin (IgG, IgA, and IgM), cont (C3, C4), acid phosphatase (ACP) and lactate dehydrogenase (LDH) levels in the spleen, serum hemolysin, and delayed-type hypersensitivity (DTH) levels. In addition, serum levels of γ-aminobutyric acid (GABA) and glutamate (Glu) were detected using high-performance liquid chromatography (HPLC). Hematoxylin-eosin staining and Nissl staining were used to assess the histological alterations in the hypothalamus tissue. Western blot and immunohistochemistry were used to detect the expressions of the GABA pathway proteins GABRA1, GAD, GAT1, and GABAT1 and those of CD4+ and CD8+ proteins in the thymus and spleen tissues. RESULTS The findings indicated that LJC prolonged the sleep duration, improved the pathological changes in the hippocampus, effectively upregulated the GABA content in the serum of mice, downregulated the Glu content and Glu/GABA ratio, enhanced the expressions of GABRA1, GAT1, and GAD, and decreased the expression of GABAT1 to assuage sleep disorders. Importantly, LJC alleviated the damage to the thymus and spleen tissues in the model mice and enhanced the activities of ACP and LDH in the spleen of the immunocompromised mice. Moreover, serum hemolysin levels and serum IgG, IgA, and IgM levels increased after LJC administration, which manifested as increased CD4+ content, decreased CD8+ content, and enhanced DTH response. In addition, LJC significantly increased the levels of complement C3 and C4, increased the number of white blood cells and lymphocytes, and decreased the percentage of neutrophils in the blood. CONCLUSIONS LJC can lead to improvements in immunocompromised mice models with insufficient sleep. The underlying mechanism may involve regulation of the GABA/Glu content and the expression levels of GABA metabolism pathway-related proteins in the brain of mice, enhancing their specific and nonspecific immune functions.
Collapse
Affiliation(s)
- Mei Rong
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Xiacheng District, Hangzhou, 310014, Zhejiang, China
- Zhejiang Key Laboratory of Innovative Research and Development and Digital Intelligent Manufacturing of Traditional Chinese Medicine Health Products, Huzhou, 310053, Zhejiang, China
| | - Jiu-Jie Jia
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Xiacheng District, Hangzhou, 310014, Zhejiang, China
- Zhejiang Key Laboratory of Innovative Research and Development and Digital Intelligent Manufacturing of Traditional Chinese Medicine Health Products, Huzhou, 310053, Zhejiang, China
| | - Min-Qiu Lin
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Xiacheng District, Hangzhou, 310014, Zhejiang, China
- Zhejiang Key Laboratory of Innovative Research and Development and Digital Intelligent Manufacturing of Traditional Chinese Medicine Health Products, Huzhou, 310053, Zhejiang, China
| | - Xing-Li-Shang He
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Xiacheng District, Hangzhou, 310014, Zhejiang, China
- Zhejiang Key Laboratory of Innovative Research and Development and Digital Intelligent Manufacturing of Traditional Chinese Medicine Health Products, Huzhou, 310053, Zhejiang, China
| | - Zhi-Yi Xie
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Xiacheng District, Hangzhou, 310014, Zhejiang, China
- Zhejiang Key Laboratory of Innovative Research and Development and Digital Intelligent Manufacturing of Traditional Chinese Medicine Health Products, Huzhou, 310053, Zhejiang, China
| | - Ning Wang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Xiacheng District, Hangzhou, 310014, Zhejiang, China
- Zhejiang Key Laboratory of Innovative Research and Development and Digital Intelligent Manufacturing of Traditional Chinese Medicine Health Products, Huzhou, 310053, Zhejiang, China
| | - Ze-Hua Zhang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Xiacheng District, Hangzhou, 310014, Zhejiang, China
- Zhejiang Key Laboratory of Innovative Research and Development and Digital Intelligent Manufacturing of Traditional Chinese Medicine Health Products, Huzhou, 310053, Zhejiang, China
| | - Ying-Jie Dong
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Xiacheng District, Hangzhou, 310014, Zhejiang, China
- Zhejiang Key Laboratory of Innovative Research and Development and Digital Intelligent Manufacturing of Traditional Chinese Medicine Health Products, Huzhou, 310053, Zhejiang, China
| | - Wan-Feng Xu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Xiacheng District, Hangzhou, 310014, Zhejiang, China
- Zhejiang Key Laboratory of Innovative Research and Development and Digital Intelligent Manufacturing of Traditional Chinese Medicine Health Products, Huzhou, 310053, Zhejiang, China
| | - Jia-Hui Huang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Xiacheng District, Hangzhou, 310014, Zhejiang, China
- Zhejiang Key Laboratory of Innovative Research and Development and Digital Intelligent Manufacturing of Traditional Chinese Medicine Health Products, Huzhou, 310053, Zhejiang, China
| | - Bo Li
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Xiacheng District, Hangzhou, 310014, Zhejiang, China.
- Zhejiang Key Laboratory of Innovative Research and Development and Digital Intelligent Manufacturing of Traditional Chinese Medicine Health Products, Huzhou, 310053, Zhejiang, China.
| | - Ning-Hua Jiang
- The Second Affiliated Hospital of Jiaxing University, Jiaxing, 314000, Zhejiang, China.
| | - Gui-Yuan Lv
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, No. 548, Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, China.
| | - Su-Hong Chen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Xiacheng District, Hangzhou, 310014, Zhejiang, China.
- Zhejiang Key Laboratory of Innovative Research and Development and Digital Intelligent Manufacturing of Traditional Chinese Medicine Health Products, Huzhou, 310053, Zhejiang, China.
| |
Collapse
|
43
|
Chamera K, Curzytek K, Kamińska K, Leśkiewicz M, Basta-Kaim A. Prenatal Immune Challenge Differentiates the Effect of Aripiprazole and Risperidone on CD200-CD200R and CX3CL1-CX3CR1 Dyads and Microglial Polarization: A Study in Organotypic Cortical Cultures. Life (Basel) 2024; 14:721. [PMID: 38929704 PMCID: PMC11205240 DOI: 10.3390/life14060721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/20/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
Microglia are the primary innate immune cells of the central nervous system and extensively contribute to brain homeostasis. Dysfunctional or excessive activity of microglia may be associated with several neuropsychiatric disorders, including schizophrenia. Therefore, we examined whether aripiprazole and risperidone could influence the expression of the Cd200-Cd200r and Cx3cl1-Cx3cr1 axes, which are crucial for the regulation of microglial activity and interactions of these cells with neurons. Additionally, we evaluated the impact of these drugs on microglial pro- and anti-inflammatory markers (Cd40, Il-1β, Il-6, Cebpb, Cd206, Arg1, Il-10 and Tgf-β) and cytokine release (IL-6, IL-10). The research was executed in organotypic cortical cultures (OCCs) prepared from the offspring of control rats (control OCCs) or those exposed to maternal immune activation (MIA OCCs), which allows for the exploration of schizophrenia-like disturbances in animals. All experiments were performed under basal conditions and after additional stimulation with lipopolysaccharide (LPS), following the "two-hit" hypothesis of schizophrenia. We found that MIA diminished the mRNA level of Cd200r and affected the OCCs' response to additional LPS exposure in terms of this parameter. LPS downregulated the Cx3cr1 expression and profoundly changed the mRNA levels of pro- and anti-inflammatory microglial markers in both types of OCCs. Risperidone increased Cd200 expression in MIA OCCs, while aripiprazole treatment elevated the gene levels of the Cx3cl1-Cx3cr1 dyad in control OCCs. The antipsychotics limited the LPS-generated increase in the expression of proinflammatory factors (Il-1β and Il-6) and enhanced the mRNA levels of anti-inflammatory components (Cd206 and Tgf-β) of microglial polarization, mostly in the absence of the MIA procedure. Finally, we observed a more pronounced modulating impact of aripiprazole on the expression of pro- and anti-inflammatory cytokines when compared to risperidone in MIA OCCs. In conclusion, our data suggest that MIA might influence microglial activation and crosstalk of microglial cells with neurons, whereas aripiprazole and risperidone could beneficially affect these changes in OCCs.
Collapse
Affiliation(s)
| | | | | | | | - Agnieszka Basta-Kaim
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St., 31-343 Kraków, Poland
| |
Collapse
|
44
|
Su L, Zhang M, Ji F, Zhao J, Wang Y, Wang W, Zhang S, Ma H, Wang Y, Jiao J. Microglia homeostasis mediated by epigenetic ARID1A regulates neural progenitor cells response and leads to autism-like behaviors. Mol Psychiatry 2024; 29:1595-1609. [PMID: 35858990 DOI: 10.1038/s41380-022-01703-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 01/26/2023]
Abstract
Microglia are resident macrophages of the central nervous system that selectively emerge in embryonic cortical proliferative zones and regulate neurogenesis by altering molecular and phenotypic states. Despite their important roles in inflammatory phagocytosis and neurodegenerative diseases, microglial homeostasis during early brain development has not been fully elucidated. Here, we demonstrate a notable interplay between microglial homeostasis and neural progenitor cell signal transduction during embryonic neurogenesis. ARID1A, an epigenetic subunit of the SWI/SNF chromatin-remodeling complex, disrupts genome-wide H3K9me3 occupancy in microglia and changes the epigenetic chromatin landscape of regulatory elements that influence the switching of microglial states. Perturbation of microglial homeostasis impairs the release of PRG3, which regulates neural progenitor cell self-renewal and differentiation during embryonic development. Furthermore, the loss of microglia-driven PRG3 alters the downstream cascade of the Wnt/β-catenin signaling pathway through its interaction with the neural progenitor receptor LRP6, which leads to misplaced regulation in neuronal development and causes autism-like behaviors at later stages. Thus, during early fetal brain development, microglia progress toward a more homeostatic competent phenotype, which might render neural progenitor cells respond to environmental cross-talk perturbations.
Collapse
Affiliation(s)
- Libo Su
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China
| | - Mengtian Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China
| | - Fen Ji
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China
| | - Jinyue Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China
| | - Yuanyuan Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China
| | - Wenwen Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- School of Life Sciences, University of Science and Technology of China, Hefei, 230026, China
| | - Shukui Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- College of Life Sciences, Yantai University, Yantai, 264005, Shandong, China
| | - Hongyan Ma
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China
| | - Yanyan Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China
| | - Jianwei Jiao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China.
| |
Collapse
|
45
|
Huo A, Wang J, Li Q, Li M, Qi Y, Yin Q, Luo W, Shi J, Cong Q. Molecular mechanisms underlying microglial sensing and phagocytosis in synaptic pruning. Neural Regen Res 2024; 19:1284-1290. [PMID: 37905877 PMCID: PMC11467947 DOI: 10.4103/1673-5374.385854] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/08/2023] [Accepted: 08/03/2023] [Indexed: 11/02/2023] Open
Abstract
Microglia are the main non-neuronal cells in the central nervous system that have important roles in brain development and functional connectivity of neural circuits. In brain physiology, highly dynamic microglial processes are facilitated to sense the surrounding environment and stimuli. Once the brain switches its functional states, microglia are recruited to specific sites to exert their immune functions, including the release of cytokines and phagocytosis of cellular debris. The crosstalk of microglia between neurons, neural stem cells, endothelial cells, oligodendrocytes, and astrocytes contributes to their functions in synapse pruning, neurogenesis, vascularization, myelination, and blood-brain barrier permeability. In this review, we highlight the neuron-derived "find-me," "eat-me," and "don't eat-me" molecular signals that drive microglia in response to changes in neuronal activity for synapse refinement during brain development. This review reveals the molecular mechanism of neuron-microglia interaction in synaptic pruning and presents novel ideas for the synaptic pruning of microglia in disease, thereby providing important clues for discovery of target drugs and development of nervous system disease treatment methods targeting synaptic dysfunction.
Collapse
Affiliation(s)
- Anran Huo
- Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University; Institute of Neuroscience and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu Province, China
| | - Jiali Wang
- Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University; Institute of Neuroscience and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu Province, China
| | - Qi Li
- Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University; Institute of Neuroscience and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu Province, China
| | - Mengqi Li
- Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University; Institute of Neuroscience and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu Province, China
| | - Yuwan Qi
- Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University; Institute of Neuroscience and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu Province, China
| | - Qiao Yin
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Weifeng Luo
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Jijun Shi
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Qifei Cong
- Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University; Institute of Neuroscience and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
46
|
Buonfiglioli A, Kübler R, Missall R, De Jong R, Chan S, Haage V, Wendt S, Lin AJ, Mattei D, Graziani M, Latour B, Gigase F, Nygaard HB, De Jager PL, De Witte LD. A microglia-containing cerebral organoid model to study early life immune challenges. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.24.595814. [PMID: 38826204 PMCID: PMC11142229 DOI: 10.1101/2024.05.24.595814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Prenatal infections and activation of the maternal immune system have been proposed to contribute to causing neurodevelopmental disorders (NDDs), chronic conditions often linked to brain abnormalities. Microglia are the resident immune cells of the brain and play a key role in neurodevelopment. Disruption of microglial functions can lead to brain abnormalities and increase the risk of developing NDDs. How the maternal as well as the fetal immune system affect human neurodevelopment and contribute to NDDs remains unclear. An important reason for this knowledge gap is the fact that the impact of exposure to prenatal risk factors has been challenging to study in the human context. Here, we characterized a model of cerebral organoids (CO) with integrated microglia (COiMg). These organoids express typical microglial markers and respond to inflammatory stimuli. The presence of microglia influences cerebral organoid development, including cell density and neural differentiation, and regulates the expression of several ciliated mesenchymal cell markers. Moreover, COiMg and organoids without microglia show similar but also distinct responses to inflammatory stimuli. Additionally, IFN-γ induced significant transcriptional and structural changes in the cerebral organoids, that appear to be regulated by the presence of microglia. Specifically, interferon-gamma (IFN-γ) was found to alter the expression of genes linked to autism. This model provides a valuable tool to study how inflammatory perturbations and microglial presence affect neurodevelopmental processes.
Collapse
Affiliation(s)
- Alice Buonfiglioli
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Raphael Kübler
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Human Genetics, Radboud UMC, Nijmegen, The Netherlands
| | - Roy Missall
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Renske De Jong
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Stephanie Chan
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Verena Haage
- Center for Translational & Computational Neuroimmunology, Department of Neurology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Stefan Wendt
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - Ada J. Lin
- Division of Neurology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - Daniele Mattei
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mara Graziani
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Human Genetics, Radboud UMC, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, 6500 HB, Nijmegen, The Netherlands
| | - Brooke Latour
- Department of Human Genetics, Radboud UMC, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, 6500 HB, Nijmegen, The Netherlands
| | - Frederieke Gigase
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Haakon B. Nygaard
- Division of Neurology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - Philip L. De Jager
- Center for Translational & Computational Neuroimmunology, Department of Neurology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Lot D. De Witte
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Human Genetics, Radboud UMC, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, 6500 HB, Nijmegen, The Netherlands
- Department of Psychiatry, Radboud UMC, Nijmegen, The Netherlands
| |
Collapse
|
47
|
Hiramoto K, Kubo S, Tsuji K, Sugiyama D, Hamano H. Decreased Memory and Learning Ability Mediated by Bmal1/M1 Macrophages/Angptl2/Inflammatory Cytokine Pathway in Mice Exposed to Long-Term Blue Light Irradiation. Curr Issues Mol Biol 2024; 46:4924-4934. [PMID: 38785563 PMCID: PMC11120424 DOI: 10.3390/cimb46050295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/16/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024] Open
Abstract
Humans are persistently exposed to massive amounts of blue light via sunlight, computers, smartphones, and similar devices. Although the positive and negative effects of blue light on living organisms have been reported, its impact on learning and memory remains unknown. Herein, we examined the effects of widespread blue light exposure on the learning and memory abilities of blue light-exposed mice. Ten-week-old male ICR mice were divided into five groups (five mice/group) and irradiated with blue light from a light-emitting diode daily for 6 months. After 6 months of blue light irradiation, mice exhibited a decline in memory and learning abilities, assessed using the Morris water maze and step-through passive avoidance paradigms. Blue light-irradiated mice exhibited a decreased expression of the clock gene brain and muscle arnt-like 1 (Bmal1). The number of microglia and levels of M1 macrophage CC-chemokine receptor 7 and inducible nitric oxide synthase were increased, accompanied by a decrease in M2 macrophage arginase-1 levels. Levels of angiopoietin-like protein 2 and inflammatory cytokines interleukin-6, tumor necrosis factor-α, and interleukin-1β were elevated. Our findings suggest that long-term blue light exposure could reduce Bmal1 expression, activate the M1 macrophage/Angptl2/inflammatory cytokine pathway, induce neurodegeneration, and lead to a decline in memory.
Collapse
Affiliation(s)
- Keiichi Hiramoto
- Department of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka 513-8670, Mie, Japan
| | - Sayaka Kubo
- Research Department, Daiichi Sankyo Healthcare Co., Ltd., Chuo-ku 140-8170, Tokyo, Japan; (S.K.); (K.T.); (D.S.); (H.H.)
| | - Keiko Tsuji
- Research Department, Daiichi Sankyo Healthcare Co., Ltd., Chuo-ku 140-8170, Tokyo, Japan; (S.K.); (K.T.); (D.S.); (H.H.)
| | - Daijiro Sugiyama
- Research Department, Daiichi Sankyo Healthcare Co., Ltd., Chuo-ku 140-8170, Tokyo, Japan; (S.K.); (K.T.); (D.S.); (H.H.)
| | - Hideo Hamano
- Research Department, Daiichi Sankyo Healthcare Co., Ltd., Chuo-ku 140-8170, Tokyo, Japan; (S.K.); (K.T.); (D.S.); (H.H.)
| |
Collapse
|
48
|
Liu C, Zhao Y, Zhao WJ. Positive Effect of 6-Gingerol on Functional Plasticity of Microglia in a rat Model of LPS-induced Depression. J Neuroimmune Pharmacol 2024; 19:20. [PMID: 38758335 DOI: 10.1007/s11481-024-10123-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 05/09/2024] [Indexed: 05/18/2024]
Abstract
Neuroinflammation has emerged as a crucial factor in the development of depression. Despite the well-known anti-inflammatory properties of 6-gingerol, its potential impact on depression remains poorly understood. This study aimed to investigate the antidepressant effects of 6-gingerol by suppressing microglial activation. In vivo experiments were conducted to evaluate the effect of 6-gingerol on lipopolysaccharide (LPS)-induced behavioral changes and neuroinflammation in rat models. In vitro studies were performed to examine the neuroprotective properties of 6-gingerol against LPS-induced microglial activation. Furthermore, a co-culture system of microglia and neurons was established to assess the influence of 6-gingerol on the expression of synaptic-related proteins, namely synaptophysin (SYP) and postsynaptic density protein 95 (PSD95), which are influenced by microglial activation. In the in vivo experiments, administration of 6-gingerol effectively alleviated LPS-induced depressive behavior in rats. Moreover, it markedly suppressed the activation of rat prefrontal cortex (PFC) microglia induced by LPS and the activation of the NF-κB/NLRP3 inflammatory pathway, while also reducing the levels of inflammatory cytokines IL-1β and IL-18. In the in vitro experiments, 6-gingerol mitigated nuclear translocation of NF-κB p65, NLRP3 activation, and maturation of IL-1β and IL-18, all of which were induced by LPS. Furthermore, in the co-culture system of microglia and neurons, 6-gingerol effectively restored the decreased expression of SYP and PSD95. The findings of this study demonstrate the neuroprotective effects of 6-gingerol in the context of LPS-induced depression-like behavior. These effects are attributed to the inhibition of microglial hyperactivation through the suppression of the NF-κB/NLRP3 inflammatory pathway.
Collapse
Affiliation(s)
- Chong Liu
- Department of Cell Biology, Wuxi School of Medicine, Jiangnan University, 1800 Lihu Dadao, Binhu District, Wuxi, Jiangsu, 214122, P.R. China
| | - Yan Zhao
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Wei-Jiang Zhao
- Department of Cell Biology, Wuxi School of Medicine, Jiangnan University, 1800 Lihu Dadao, Binhu District, Wuxi, Jiangsu, 214122, P.R. China.
- Center for Neuroscience, Shantou University Medical College, Shantou, Guangdong, 515041, P.R. China.
| |
Collapse
|
49
|
Paing YMM, Eom Y, Song GB, Kim B, Choi MG, Hong S, Lee SH. Neurotoxic effects of polystyrene nanoplastics on memory and microglial activation: Insights from in vivo and in vitro studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171681. [PMID: 38490422 DOI: 10.1016/j.scitotenv.2024.171681] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/05/2024] [Accepted: 03/10/2024] [Indexed: 03/17/2024]
Abstract
Nanoplastics, arising from the fragmentation of plastics into environmental pollutants and specialized commercial applications, such as cosmetics, have elicited concerns due to their potential toxicity. Evidence suggests that the oral ingestion of nanoplastics smaller than 100 nm may penetrate the brain and induce neurotoxicity. However, comprehensive research in this area has been hampered by technical challenges associated with the detection and synthesis of nanoplastics. This study aimed to bridge this research gap by successfully synthesizing fluorescent polystyrene nanoplastics (PSNPs, 30-50 nm) through the incorporation of IR-813 and validating them using various analytical techniques. We administered PSNPs orally (10 and 20 mg/kg/day) to mice and observed that they reached brain tissues and induced cognitive dysfunction, as measured by spatial and fear memory tests, while locomotor and social behaviors remained unaffected. In vitro studies (200 μg/mL) demonstrated a predominant uptake of PSNPs by microglia over astrocytes or neurons, leading to microglial activation, as evidenced by immunostaining of cellular markers and morphological analysis. Transcriptomic analysis indicated that PSNPs altered gene expression in microglia, highlighting neuroinflammatory responses that may contribute to cognitive deficits. To further explore the neurotoxic effects of PSNPs mediated by microglial activation, we measured endogenous neuronal activity using a multi-electrode array in cultured hippocampal neurons. The application of conditioned media from microglia exposed to PSNPs suppressed neuronal activity, which was reversed by inhibitors of microglial activation. Our findings offer detailed insights into the mechanisms by which nanoplastics damage the brain, particularly emphasizing the potential environmental risk factors that contribute to cognitive impairment in neurodegenerative diseases.
Collapse
Affiliation(s)
- Yunn Me Me Paing
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Yunkyung Eom
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Gyeong Bae Song
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Bokyung Kim
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Myung Gil Choi
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Sungguan Hong
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea.
| | - Sung Hoon Lee
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea.
| |
Collapse
|
50
|
Kline-Schoder AR, Chintamen S, Willner MJ, DiBenedetto MR, Noel RL, Batts AJ, Kwon N, Zacharoulis S, Wu CC, Menon V, Kernie SG, Konofagou EE. Characterization of the responses of brain macrophages to focused ultrasound-mediated blood-brain barrier opening. Nat Biomed Eng 2024; 8:650-663. [PMID: 37857722 PMCID: PMC11734153 DOI: 10.1038/s41551-023-01107-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 09/16/2023] [Indexed: 10/21/2023]
Abstract
The opening of the blood-brain barrier (BBB) by focused ultrasound (FUS) coupled with intravenously injected microbubbles can be leveraged as a form of immunotherapy for the treatment of neurodegenerative disorders. However, how FUS BBB opening affects brain macrophages is not well understood. Here by using single-cell sequencing to characterize the distinct responses of microglia and central nervous system-associated macrophages (CAMs) to FUS-mediated BBB opening in mice, we show that the treatment remodels the immune landscape via the recruitment of CAMs and the proliferation of microglia and via population size increases in disease-associated microglia. Both microglia and CAMs showed early and late increases in population sizes, yet only the proliferation of microglia increased at both timepoints. The population of disease-associated microglia also increased, accompanied by the upregulation of genes associated with gliogenesis and phagocytosis, with the depletion of brain macrophages significantly decreasing the duration of BBB opening.
Collapse
Affiliation(s)
| | - Sana Chintamen
- Department of Neurobiology and Behaviour, Columbia University, New York, NY, USA
| | - Moshe J Willner
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | | | - Rebecca L Noel
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Alec J Batts
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Nancy Kwon
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | | | - Cheng-Chia Wu
- Department of Pediatrics, Columbia University, New York, NY, USA
| | - Vilas Menon
- Department of Neurology, Columbia University, New York, NY, USA
| | - Steven G Kernie
- Department of Pediatrics, Columbia University, New York, NY, USA
| | - Elisa E Konofagou
- Department of Biomedical Engineering, Columbia University, New York, NY, USA.
- Department of Radiology, Columbia University, New York, NY, USA.
| |
Collapse
|