1
|
Wang X, Liu Q, Cheng P, Yang T, Zhao T, Liu M, Dai E, Sha W, Yuan J, Rong J, Qu H, Zhou H. LuQi formula ameliorates pressure overload-induced heart failure by regulating macrophages and regulatory T cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 141:156527. [PMID: 40118747 DOI: 10.1016/j.phymed.2025.156527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 02/11/2025] [Accepted: 02/15/2025] [Indexed: 03/23/2025]
Abstract
BACKGROUND Inflammatory macrophages in failing myocardium secrete CCL17, which targets CCR4 in immunosuppressive Tregs and inhibits the intracellular second messenger ARRB2-mediated cardiac chemotaxis. Traditional Chinese medicine (TCM) LuQi formula (LQF) is safe and effective in treating heart failure (HF). This study aims to elucidate the cardioprotective mechanism of LQF through its modulation of cardiac macrophages and Tregs. METHODS In vivo, the HF mouse model was established via transverse aortic constriction (TAC), with the superagonistic anti-CD28 monoclonal antibody (CD28-SA)-induced Tregs expansion as a positive control. Proteomics analysis elucidated the core link of LQF in anti-HF. In vitro, bone marrow-derived macrophages (BMDMs) were isolated, and Naive CD4+T cells were sorted and stimulated to differentiate into Tregs. The pharmacological mechanism of LQF was confirmed through histological and molecular biology experiments. RESULTS Proteomics reveals that LQF modulates the immune microenvironment of failing myocardium. We revealed that LQF inhibited cardiac inflammatory macrophage infiltration and NF-κB (p50, p65)/CCL17 axis expression, and promoted cardiac Tregs recruitment against HF, with the comparable efficacy of CD-SA28-induced Tregs expansion. Mechanistically, LQF inhibited the NF-κB activator 1-induced NF-κB (p50, p65)/CCL17 axis overexpression, and JSH-23 (NF-κB Inhibitor) abolished NF-κB (p50, p65)/CCL17 axis expression in inflammatory macrophages. Furthermore, the inhibition of CCL17 expression in inflammatory macrophages by LQF was found to be mediated by NF-κB (p50, p65). LQF concentration-dependently promoted Tregs CD73/Foxp3 axis expression, enhancing Tregs immunosuppressive function. LQF activated CCR4-ARRB2 complex and CCR4/ARRB2 axis expression in Tregs. Although AZD2098 (CCR4 Inhibitor) blocked CCR4 expression and CCR4-ARRB2 complex, LQF promoted ARRB2-mediated Tregs cardiac chemotaxis independent of the CCR4. We revealed that NF-κB p50SEP337-CCL17, NF-κB p65SEP536-CCL17, and CCR4-ARRB2 highly bound subunit interface targets. Molecular docking analysis demonstrated that the LQF's active ingredients exhibit good binding affinity with the NF-κB (p50, p65) /CCL17 axis in macrophages and Foxp3 in Tregs. CONCLUSION LQF has the potential to enhance the cardiac immune microenvironment and effectively prevent and treat HF by modulating both innate and adaptive immune responses. It achieves this by inhibiting the infiltration of inflammatory macrophages, suppressing the NF-κB (p50, p65)/CCL17 axis, and promoting Tregs recruitment. The active ingredients of LQF provide valuable candidate compounds for developing new anti-HF drugs. Furthermore, CD-28SA-induced Tregs expansion showed cardioprotective effects in TAC-induced non-ischemic HF models.
Collapse
Affiliation(s)
- Xinting Wang
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qian Liu
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Peipei Cheng
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Tianshu Yang
- Department of Cardiovascular Disease, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, ShangHai 200040, China
| | - Tingyao Zhao
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200050, China
| | - Meng Liu
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200050, China
| | - Enrui Dai
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wanjing Sha
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jinfeng Yuan
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jingfeng Rong
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Huiyan Qu
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hua Zhou
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
2
|
Polonio CM, McHale KA, Sherr DH, Rubenstein D, Quintana FJ. The aryl hydrocarbon receptor: a rehabilitated target for therapeutic immune modulation. Nat Rev Drug Discov 2025:10.1038/s41573-025-01172-x. [PMID: 40247142 DOI: 10.1038/s41573-025-01172-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2025] [Indexed: 04/19/2025]
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor originally identified as the target mediating the toxic effects of environmental pollutants including polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and dioxins. For years, AHR activation was actively avoided during drug development. However, the AHR was later identified as an important physiological regulator of the immune response. These findings triggered a paradigm shift that resulted in identification of the AHR as a regulator of both innate and adaptive immunity and outlined a pathway for its modulation by the diet, commensal flora and metabolism in the context of autoimmunity, cancer and infection. Moreover, the AHR was revealed as a candidate target for the therapeutic modulation of the immune response. Indeed, the first AHR-activating drug (tapinarof) was recently approved for the treatment of psoriasis. Clinical trials are underway to evaluate the effects of tapinarof and other AHR-targeting therapeutics in inflammatory diseases, cancer and infections. This Review outlines the molecular mechanism of AHR action, and describes how it regulates the immune response. We also discuss links to disease and AHR-targeting therapeutics that have been tested in past and ongoing clinical trials.
Collapse
Affiliation(s)
- Carolina M Polonio
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - David H Sherr
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | | | - Francisco J Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Colomb F, McSorley HJ. Protein families secreted by nematodes to modulate host immunity. Curr Opin Microbiol 2025; 84:102582. [PMID: 39954371 DOI: 10.1016/j.mib.2025.102582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/14/2025] [Accepted: 01/24/2025] [Indexed: 02/17/2025]
Abstract
Parasitic nematodes release a wide variety of immunomodulatory proteins, which allow them to escape the host's immune-mediated killing or ejection mechanisms. This immunomodulation is mediated by nematode excretory/secretory (E/S) products, which contain multiple families of immunomodulatory proteins. Many of these families are conserved across different parasitic nematodes, while others are apparently unique to specific species. While some E/S products interact with host proteins, others have evolved to target host lipids, glycans, and metabolites. In this review, we will focus on three families of immunomodulatory proteins, which are particularly expanded in intestinal nematodes: the venom allergen-like proteins, the apyrases, and the complement control protein domain-containing proteins. These families of proteins suppress host immune responses, and evidence is gathering that these could be effective vaccine antigens against these intractable parasites.
Collapse
Affiliation(s)
- Florent Colomb
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| | - Henry J McSorley
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland.
| |
Collapse
|
4
|
Villalba A, Nuño L, Benito-Miguel M, Nieto-Carvalhal B, Monjo I, Novella-Navarro M, Peiteado D, García-Carazo S, Balsa A, Miranda-Carús ME. Transiently increased circulating CD39+FoxP3+ Treg cells predicts the clinical response to methotrexate in early rheumatoid arthritis. Rheumatology (Oxford) 2025; 64:2282-2289. [PMID: 39141491 DOI: 10.1093/rheumatology/keae446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 07/18/2024] [Accepted: 08/03/2024] [Indexed: 08/16/2024] Open
Abstract
OBJECTIVES A subset of human circulating FoxP3+ regulatory T cells expresses CD39 (cTreg39+) and hydrolyses pro-inflammatory adenine nucleotides released at inflammatory foci, releasing the anti-inflammatory agent adenosine. Methotrexate (MTX), inhibiting 5-aminoimidazole-4-carboxamide ribonucleotide transformylase, enhances the extrusion of adenine nucleotides and may help Treg39+ cells control inflammation. Therefore, we examined the relation of cTreg39+ cells with the effect of MTX in early rheumatoid arthritis (eRA). METHODS Freshly isolated peripheral blood lymphocytes from 98 untreated eRA patients and 98 healthy controls (HC) were examined by cytometry. Twelve months (12 m) after initiating MTX, 82 patients were clinically re-evaluated and cytometry was repeated in 40 of them. The effect of MTX on Treg cell potency was assessed in Treg/Tresp cocultures. RESULTS The baseline (0 m) cTreg39+ cell frequency was elevated in eRA above HC levels. Patients who reached low disease activity at 12 months (12 m-LDA, DAS28-ESR ≤ 3.2, n = 51) had presented with a significantly higher 0 m cTreg39+ frequency vs those who did not (n = 31). The 0 m cTreg39+ cutoff for attaining 12 m-LDA was 42.0% (sensitivity = 90.4%, specificity = 96.8%). At 12 m, the cTreg39+ frequency was no longer elevated but its association with disease activity remained: it was still significantly higher in patients who had reached LDA vs those who had not. In vitro, MTX augmented the Treg39+ cell potency but had no effect on Treg39- cells. CONCLUSION MTX cooperates with Treg39+ cells and the baseline cTreg39+ frequency predicts the response to MTX in eRA. In addition, the transiently elevated baseline cTreg39+ frequency in eRA may provide a slot for prompt MTX initiation.
Collapse
Affiliation(s)
- Alejandro Villalba
- Department of Rheumatology, Hospital Universitario La Paz-IdiPaz, Madrid, Spain
| | - Laura Nuño
- Department of Rheumatology, Hospital Universitario La Paz-IdiPaz, Madrid, Spain
| | - Marta Benito-Miguel
- Fundación San Juan de Dios, Centro de Ciencias de la Salud San Rafael, Department of Physiology, Universidad de Nebrija, Madrid, Spain
| | | | - Irene Monjo
- Department of Rheumatology, Hospital Universitario La Paz-IdiPaz, Madrid, Spain
| | | | - Diana Peiteado
- Department of Rheumatology, Hospital Universitario La Paz-IdiPaz, Madrid, Spain
| | - Sara García-Carazo
- Department of Rheumatology, Hospital Universitario La Paz-IdiPaz, Madrid, Spain
| | - Alejandro Balsa
- Department of Rheumatology, Hospital Universitario La Paz-IdiPaz, Madrid, Spain
| | | |
Collapse
|
5
|
Aoki T, Endo Y, Yin T, Kazmi JS, Kuschner CE, Hagiwara J, Ito-Hagiwara K, Nakamura E, Becker LB, Hayashida K. Mitochondrial transplantation improves outcomes after cardiac arrest and resuscitation in mice. Resuscitation 2025; 208:110535. [PMID: 39947277 DOI: 10.1016/j.resuscitation.2025.110535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/01/2025] [Accepted: 02/03/2025] [Indexed: 02/28/2025]
Abstract
INTRODUCTION Mitochondrial transplantation (MTx) is an emerging strategy for restoring cellular bioenergetics and mitigating ischemia-reperfusion (IR) injury. We previously demonstrated that MTx improved neurological outcomes and survival in a rat model of cardiac arrest (CA). However, the mechanisms underlying these benefits, particularly regarding immune modulation and transcriptional regulation, remain unclear. METHODS Adult C57BL/6 mice and Sprague-Dawley rats underwent CA and resuscitation protocols, followed by intravenous MTx with species-matched donor mitochondria. Survival and neurological outcomes were assessed up to 72 h. Biodistribution and cellular uptake of fluorescent dye-labeled mitochondria were analyzed via in vivo imaging and flow cytometry. Gene expression related to mitochondrial dynamics, inflammation, and immune regulation was evaluated using qPCR. RESULTS MTx improved 72-hour survival (33.3% vs. 0%, P = 0.006) and neurological scores compared to vehicle treatment. Reduced brain edema was observed in MTx-treated animals. Mitochondrial uptake was significantly enhanced in the brain and spleen post-CA, with key infiltrating and resident immune cell populations-including monocytes, macrophages, microglia, astrocytes, and endothelial cells-preferentially internalizing transplanted mitochondria. Circulating myeloid cells rapidly internalized functional mitochondria, with 53.9% uptake in MTx-treated CA animals versus 10.6% in controls (P < 0.001). MTx also modulated immune profiles, reducing pro-inflammatory macrophages and enhancing cytotoxic T cell numbers. Gene expression analysis showed that MTx downregulated Fission 1, preserved Mitofusin 2, and upregulated protective genes, including Hmox1, Sirt1, and Entpd1. CONCLUSIONS MTx improves outcomes after CA, accompanied by mitochondrial uptake by immune cells and redistribution to injured tissues. This process likely modulates immune responses, enhances mitochondrial fusion, and activates cytoprotective gene expression.
Collapse
Affiliation(s)
- Tomoaki Aoki
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY, USA
| | - Yusuke Endo
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY, USA
| | - Tai Yin
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY, USA
| | - Jacob S Kazmi
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY, USA
| | - Cyrus E Kuschner
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY, USA; Department of Emergency Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell Health, Hempstead, NY, USA
| | - Jun Hagiwara
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY, USA
| | - Kanako Ito-Hagiwara
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY, USA
| | - Eriko Nakamura
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY, USA
| | - Lance B Becker
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY, USA; Department of Emergency Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell Health, Hempstead, NY, USA
| | - Kei Hayashida
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY, USA; Department of Emergency Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell Health, Hempstead, NY, USA.
| |
Collapse
|
6
|
Okeugo B, Armbrister SA, Daniel RC, Saleh ZM, Wang J, Giorgberidze S, Rhoads JM, Liu Y. Reduced autoimmunity associated with deletion of host CD73. Immunohorizons 2025; 9:vlae004. [PMID: 39846845 PMCID: PMC11841978 DOI: 10.1093/immhor/vlae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/24/2024] [Indexed: 01/24/2025] Open
Abstract
CD73 is ubiquitously expressed and regulates critical functions across multiple organ systems. The sequential actions of CD39 and CD73 accomplish the conversion of adenosine triphosphate to adenosine and shift the adenosine triphosphate-driven proinflammatory immune cell milieu toward an anti-inflammatory state. This immunological switch is a major mechanism by which regulatory T (Treg) cells control inflammation. Foxp3 engages in Treg development and function. Foxp3 mutations result in the scurfy (SF) mouse phenotype and a rapidly lethal lymphoproliferative syndrome. We generated double knockout (KO) mouse (CD73KOSF) by breeding heterozygous Foxp3sf/J females to CD73KO male mice to remove host CD73. We initially aimed to use these mice to identify a specific probiotic-CD73 effect, previously shown for Limosilactobacillus reuteri DSM 17938. We expected CD73 deletion to enhance the severity of autoimmunity in SF mice. However, we unexpectedly observed that KO of host CD73 in SF mice clinically reduced the severity of autoimmunity including reduced ear thickness, increased ear size, and less deformed ears, along with less dry and brittle skin. KO of CD73 in SF mice significantly reduced the numbers of CD4+ and CD8+T cells in spleen and blood. We identified that KO of CD73 in SF mice reduced the numbers of T cells in the thymus compared with those in SF mice, indicating that the milder clinical phenotype may be due to reduced central and peripheral lymphoproliferation. These new findings suggest targeting CD73 could improve T cell-mediated dermatitis, one of the most common symptoms in Treg deficiency-associated primary immune deficiencies.
Collapse
Affiliation(s)
- Beanna Okeugo
- Department of Pediatrics, Division of Gastroenterology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Shabba A Armbrister
- Department of Pediatrics, Division of Gastroenterology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Rhea C Daniel
- Department of Pediatrics, Division of Gastroenterology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Zeina M Saleh
- Department of Pediatrics, Division of Gastroenterology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Jessica Wang
- Department of Pediatrics, Division of Gastroenterology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Salomea Giorgberidze
- Department of Pediatrics, Division of Gastroenterology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - J Marc Rhoads
- Department of Pediatrics, Division of Gastroenterology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Yuying Liu
- Department of Pediatrics, Division of Gastroenterology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
7
|
Zhang X, Xia C, Guo L. Nitrogen-Rich Molybdenum Nitride with Intrinsic CD39 Nucleotidase Activity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407648. [PMID: 39511860 DOI: 10.1002/smll.202407648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/23/2024] [Indexed: 11/15/2024]
Abstract
CD39 is one of the important nucleotidases to adjust extracellular adenosine triphosphate (ATP) and adenosine diphosphate (ADP) concentration. However, the enzyme mimics to simulate the activity of CD39 still remains to be explored. Herein nitrogen-rich molybdenum nitride (Mo5N6) nanosheets are explored to possess CD39-like activity, which are able to catalyze the hydrolysis of the high-energy phosphate bonds (HEPBs) in ATP and ADP but not the common phosphate bonds in adenosine monophosphate (AMP). The catalytic hydrolysis of the phosphate bond over Mo5N6-700 nanosheets is first investigated using para-nitrophenyl phosphate as the model substrate and then the CD39-like activity is further explored and verified by 31p NMR spectroscopy. Mo4+ on the surface of Mo5N6-700 nanosheets are the catalytic active sites. Using ATP as the model substrate, the Km and Vmax values of CD39-like activity at optimal pH 9.0 are 3.2 µmol L-1 and 18.5 µmol L-1 h-1, respectively. The CD39-like activity of Mo5N6-700 nanosheets enabled the down-regulation of intracellular ATP concentration to a larger degree for cancer cells than normal cells, which makes Mo5N6-700 nanosheets a potential therapeutic reagent for cancers.
Collapse
Affiliation(s)
- Xiaomin Zhang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Chunqiu Xia
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116, China
- Key Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103, China
- College of Chemistry, Jilin Normal University, Siping, 136000, China
| | - Liangqia Guo
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| |
Collapse
|
8
|
Chandwaskar R, Dalal R, Gupta S, Sharma A, Parashar D, Kashyap VK, Sohal JS, Tripathi SK. Dysregulation of T cell response in the pathogenesis of inflammatory bowel disease. Scand J Immunol 2024; 100:e13412. [PMID: 39394898 DOI: 10.1111/sji.13412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 08/26/2024] [Accepted: 09/17/2024] [Indexed: 10/14/2024]
Abstract
Inflammatory bowel disease (IBD), comprised of Crohn's disease (CD) and ulcerative colitis (UC), are gut inflammatory diseases that were earlier prevalent in the Western Hemisphere but now are on the rise in the East, with India standing second highest in the incidence rate in the world. Inflammation in IBD is a cause of dysregulated immune response, wherein helper T (Th) cell subsets and their cytokines play a major role in the pathogenesis of IBD. In addition, gut microbiota, environmental factors such as dietary factors and host genetics influence the outcome and severity of IBD. Dysregulation between effector and regulatory T cells drives gut inflammation, as effector T cells like Th1, Th17 and Th9 subsets Th cell lineages were found to be increased in IBD patients. In this review, we attempted to discuss the role of different Th cell subsets together with other T cells like CD8+ T cells, NKT and γδT cells in the outcome of gut inflammation in IBD. We also highlighted the potential therapeutic candidates for IBD.
Collapse
Affiliation(s)
- Rucha Chandwaskar
- Amity Institute of Microbial Technology (AIMT), Amity University Jaipur, Rajasthan, India
| | - Rajdeep Dalal
- Infection and Immunology Lab, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, India
| | - Saurabh Gupta
- Centre for Vaccines and Diagnostic Research, GLA University, Mathura, Uttar Pradesh, India
| | - Aishwarya Sharma
- Sri Siddhartha Medical College and Research Center, Tumkur, Karnataka, India
| | - Deepak Parashar
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Vivek K Kashyap
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas, USA
| | - Jagdip Singh Sohal
- Centre for Vaccines and Diagnostic Research, GLA University, Mathura, Uttar Pradesh, India
| | - Subhash K Tripathi
- Center for Immunity and Immunotherapies and Program for Cell and Gene Therapy, Seattle Children's Research Institute, Seattle, Washington, USA
| |
Collapse
|
9
|
Pruitt L, Abbott RK. Hypoxia-adenosinergic regulation of B cell responses. Front Immunol 2024; 15:1478506. [PMID: 39559353 PMCID: PMC11570280 DOI: 10.3389/fimmu.2024.1478506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/15/2024] [Indexed: 11/20/2024] Open
Abstract
Hypoxic microenvironments induce widespread metabolic changes that have been shown to be critical in regulating innate and adaptive immune responses. Hypoxia-induced changes include the generation of extracellular adenosine followed by subsequent signaling through adenosine receptors on immune cells. This evolutionarily conserved "hypoxia-adenosinergic" pathway of hypoxia → extracellular adenosine → adenosine receptor signaling has been shown to be critical in limiting and redirecting T cell responses including in tumor microenvironments and the gut mucosa. However, the question of whether hypoxic microenvironments are involved in the development of B cell responses has remained unexplored until recently. The discovery that germinal centers (GC), the anatomic site in which B cells undergo secondary diversification and affinity maturation, develop a hypoxic microenvironment has sparked new interest in how this evolutionarily conserved pathway affects antibody responses. In this review we will summarize what is known about hypoxia-adenosinergic microenvironments in lymphocyte development and ongoing immune responses. Specific focus will be placed on new developments regarding the role of the hypoxia-adenosinergic pathway in regulating GC development and humoral immunity.
Collapse
Affiliation(s)
| | - Robert K. Abbott
- Department of Pathology, University of Texas Medical Branch,
Galveston, TX, United States
| |
Collapse
|
10
|
Wu E, Yin X, Liang F, Zhou X, Hu J, Yuan W, Gu F, Zhao J, Gao Z, Cheng M, Yang S, Zhang L, Wang Q, Sun X, Shao W. Analysis of immunogenic cell death in periodontitis based on scRNA-seq and bulk RNA-seq data. Front Immunol 2024; 15:1438998. [PMID: 39555084 PMCID: PMC11568468 DOI: 10.3389/fimmu.2024.1438998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 09/30/2024] [Indexed: 11/19/2024] Open
Abstract
Background Recent studies have suggested that cell death may be involved in bone loss or the resolution of inflammation in periodontitis. Immunogenic cell death (ICD), a recently identified cell death pathway, may be involved in the development of this disease. Methods By analyzing single-cell RNA sequencing (scRNA-seq) for periodontitis and scoring gene set activity, we identified cell populations associated with ICD, which were further verified by qPCR, enzyme linked immunosorbent assay (ELISA) and immunofluorescence (IF) staining. By combining the bulk transcriptome and applying machine learning methods, we identified several potential ICD-related hub genes, which were then used to build diagnostic models. Subsequently, consensus clustering analysis was performed to identify ICD-associated subtypes, and multiple bioinformatics algorithms were used to investigate differences in immune cells and pathways between subtypes. Finally, qPCR and immunohistochemical staining were performed to validate the accuracy of the models. Results Single-cell gene set activity analysis found that in non-immune cells, fibroblasts had a higher ICD activity score, and KEGG results showed that fibroblasts were enriched in a variety of ICD-related pathways. qPCR, Elisa and IF further verified the accuracy of the results. From the bulk transcriptome, we identified 11 differentially expressed genes (DEGs) associated with ICD, and machine learning methods further identified 5 hub genes associated with ICD. Consensus cluster analysis based on these 5 genes showed that there were differences in immune cells and immune functions among subtypes associated with ICD. Finally, qPCR and immunohistochemistry confirmed the ability of these five genes as biomarkers for the diagnosis of periodontitis. Conclusion Fibroblasts may be the main cell source of ICD in periodontitis. Adaptive immune responses driven by ICD may be one of the pathogenesis of periodontitis. Five key genes associated with ICD (ENTPD1, TLR4, LY96, PRF1 and P2RX7) may be diagnostic biomarkers of periodontitis and future therapeutic targets.
Collapse
Affiliation(s)
- Erli Wu
- Key Laboratory. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei, China
| | - Xuan Yin
- Key Laboratory. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei, China
| | - Feng Liang
- Key Laboratory. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei, China
| | - Xianqing Zhou
- Key Laboratory. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei, China
| | - Jiamin Hu
- Key Laboratory. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei, China
| | - Wanting Yuan
- Key Laboratory. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei, China
| | - Feihan Gu
- Key Laboratory. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei, China
| | - Jingxin Zhao
- Key Laboratory. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei, China
| | - Ziyang Gao
- Key Laboratory. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei, China
| | - Ming Cheng
- Key Laboratory. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei, China
| | - Shouxiang Yang
- Key Laboratory. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei, China
| | - Lei Zhang
- Key Laboratory. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei, China
| | - Qingqing Wang
- Key Laboratory. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei, China
- Department of Periodontology, Anhui Stomatology Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Xiaoyu Sun
- Key Laboratory. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei, China
- Department of Periodontology, Anhui Stomatology Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Wei Shao
- Key Laboratory. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei, China
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
11
|
Han K, Wang F, Ma X, Wu Y, Zhang H, Zhao Y, Wang H, Ma J, Luan X. Human placental mesenchymal stromal cells alleviate intestinal oxidative damage in mice with graft-versus-host disease via CD73/adenosine/PI3K/Akt/GSK-3β axis. Cell Signal 2024; 123:111372. [PMID: 39209221 DOI: 10.1016/j.cellsig.2024.111372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/03/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Intestinal damage is a common and serious complication in patients with graft-versus-host disease (GVHD). Human placental mesenchymal stromal cells (hPMSCs) ameliorate GVHD tissue damage by exerting anti-oxidative effects; however, the underlying mechanisms remain not fully clear. METHODS A GVHD mouse model and tumor necrosis factor-α (TNF-α)-stimulated human colon epithelial cell lines NCM460 and HT-29 cells were used to investigate the mechanisms of hPMSCs alleviating GVHD-induced intestinal oxidative damage. RESULTS hPMSCs reduced TNF-α concentrations and the number of CD3+TNF-α+ T-cells, which were negatively correlated with the expression of claudin-1, occludin, and ZO-1, through CD73 in the colon tissue of GVHD mice. Meanwhile, hPMSCs reduced the mean fluorescence intensity (MFI) of reactive oxygen species (ROS) and the concentration of malondialdehyde (MDA), promoted superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) activities, as well as claudin-1, occludin, and ZO-1 expression, in colonic epithelial cells of GVHD mice and TNF-α-stimulated cells via CD73. Moreover, hPMSCs upregulated adenosine (ADO) concentrations in GVHD mice and TNF-α-stimulated cells and mitigated the loss of tight junction proteins via the CD73/ADO/ADO receptors. Further analysis showed that hPMSCs diminished Fyn expression and enhanced Nrf2, GCLC, and HO-1 expression in both TNF-α-stimulated cells and colonic epithelial cells of GVHD mice by activating PI3K/Akt/GSK-3β pathway. CONCLUSIONS The results suggested that hPMSC-mediated redox metabolism balance and promoted tight junction protein expression were achieved via CD73/ADO/PI3K/Akt/GSK-3β/Fyn/Nrf2 axis, by which alleviating intestinal oxidative injury in GVHD mice.
Collapse
Affiliation(s)
- Kaiyue Han
- Department of Immunology, Binzhou Medical University, Yantai, 264000, Shandong Province, China
| | - Feifei Wang
- Anesthesiology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264000, Shandong Province, China
| | - Xiaolin Ma
- Hematology, the Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong Province, China
| | - Yunhua Wu
- Department of Immunology, Binzhou Medical University, Yantai, 264000, Shandong Province, China
| | - Hengchao Zhang
- Yantaishan Hospital Affiliated to Binzhou Medical University, Yantai, 264000, Shandong Province, China
| | - Yaxuan Zhao
- Department of Immunology, Binzhou Medical University, Yantai, 264000, Shandong Province, China
| | - Hua Wang
- Hematology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264000, Shandong Province, China
| | - Junjie Ma
- Yuhuangding Hospital Affiliated to Qingdao University, Yantai, 264000, Shandong Province, China.
| | - Xiying Luan
- Department of Immunology, Binzhou Medical University, Yantai, 264000, Shandong Province, China.
| |
Collapse
|
12
|
Manoharan V, Adegbayi OO, Maynard JP. P2 purinergic receptor expression and function in tumor-related immune cells. Purinergic Signal 2024:10.1007/s11302-024-10054-7. [PMID: 39387963 DOI: 10.1007/s11302-024-10054-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 09/27/2024] [Indexed: 10/12/2024] Open
Abstract
P2 purinergic receptor expression is dysregulated in multiple cancer subtypes and is associated with worse outcomes. Studies identify roles for P2 purinergic receptors in tumor cells that drive disease aggressiveness. There is also sufficient evidence that P2 purinergic receptor expression within the tumor microenvironment (TME) is critical for disease initiation and progression. Immune cells constitute a significant component of the TME and display both tumorigenic and anti-tumorigenic potential. Studies pre-dating the investigation of P2 purinergic receptors in cancer identify P2 receptor expression on multiple immune cells including macrophages, neutrophils, T-cells, and dendritic cells; all of which are implicated in tumor initiation, tumor promotion, or response to treatment. Herein, we discuss P2 purinergic receptor expression and function in tumor-related immune cells. We provide a rationale for further investigations of P2 purinergic receptors within the TME to better define the mechanistic pathways of inflammation-mediate tumorigenesis and explore P2 purinergic receptors as potential targets for novel immunotherapeutic approaches.
Collapse
Affiliation(s)
- Vahinipriya Manoharan
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Oluwafemi O Adegbayi
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Janielle P Maynard
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
13
|
Dei Zotti F, Qiu A, D’Agati VD, Jagnarine S, Kyritsis E, Miller A, Tredicine M, Fliginger D, Stone EF, Panch S, Hudson KE. Mitigation of checkpoint inhibitor-induced autoimmune hemolytic anemia through modulation of purinergic signaling. Blood 2024; 144:1581-1594. [PMID: 39102659 PMCID: PMC11487644 DOI: 10.1182/blood.2024024230] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/03/2024] [Accepted: 07/04/2024] [Indexed: 08/07/2024] Open
Abstract
ABSTRACT Immune checkpoint inhibitors (ICPis) have revolutionized cancer immunotherapy but also can induce autoimmune hemolytic anemia (AIHA), a severe disease with high mortality. However, the cellular and molecular mechanism(s) of AIHA secondary to ICPi therapy (ICPi-AIHA) are unclear, other than being initiated through decreased checkpoint inhibition. Herein, we report ICPi-AIHA in a novel mouse model that shows similar characteristics of known human ICPi-AIHA (eg, autoantibodies, hemolysis, and increased mortality). During ICPi-AIHA, there is the simultaneous reduction of 2 regulatory T-cell populations (FoxP3+ and Tr1 [type 1 regulatory cells]) and an increase in inflammatory T helper cell 17 (TH17). Moreover, a novel CD39+CD73-FoxP3-CD25- CD4+ T-cell subset (ie, CD39 single positive [CD39SP]) emerges, and early increases in CD39SP predict AIHA development; CD39 is an ectonuclease that breaks down adenosine triphosphate (ATP). Additionally, we found that boosting ATPase activity by injecting recombinant apyrase mitigates AIHA development and significant CD39SP reductions, both suggesting a functional role for CD39 and demonstrating a novel therapeutic approach. Importantly, CD39SP are detectable in multiple mouse models developing AIHA and in patients with AIHA, demonstrating applicability to idiopathic and secondary AIHA. Highlighting broader autoimmunity relevance, ICPi-treated NZB mice experienced accelerated onset and severity of lupus, including AIHA. Moreover, ICPi treatment of healthy B6 animals led to detectable CD39SP and development of autoantibodies against multiple autoantigens including those on red blood cells and platelets. Together, our findings provide further insight into the cellular and molecular mechanisms of ICPi-AIHA, leading to novel diagnostic and therapeutic approaches with translational potential for use in humans being treated with ICPi.
Collapse
MESH Headings
- Animals
- Anemia, Hemolytic, Autoimmune/immunology
- Anemia, Hemolytic, Autoimmune/drug therapy
- Anemia, Hemolytic, Autoimmune/pathology
- Mice
- Immune Checkpoint Inhibitors/adverse effects
- Immune Checkpoint Inhibitors/pharmacology
- Apyrase
- Signal Transduction/drug effects
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/drug effects
- Humans
- Autoantibodies/immunology
- Female
- Disease Models, Animal
- Mice, Inbred C57BL
- Antigens, CD
Collapse
Affiliation(s)
- Flavia Dei Zotti
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY
| | - Annie Qiu
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY
| | - Vivette D. D’Agati
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY
| | - Shwatina Jagnarine
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY
| | - Emmalene Kyritsis
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY
| | - Anabel Miller
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY
| | - Maria Tredicine
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY
| | - Daysha Fliginger
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY
| | - Elizabeth F. Stone
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY
| | - Sandhya Panch
- Division of Hematology and Oncology, Fred Hutchinson Cancer Center, University of Washington, Seattle, WA
| | - Krystalyn E. Hudson
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY
| |
Collapse
|
14
|
Rytkönen KT, Adossa N, Zúñiga Norman S, Lönnberg T, Poutanen M, Elo LL. Gene Regulatory Network Analysis of Decidual Stromal Cells and Natural Killer Cells. Reprod Sci 2024; 31:3159-3174. [PMID: 39090334 PMCID: PMC11438719 DOI: 10.1007/s43032-024-01653-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 07/11/2024] [Indexed: 08/04/2024]
Abstract
Human reproductive success relies on the proper differentiation of the uterine endometrium to facilitate implantation, formation of the placenta, and pregnancy. This process involves two critical types of decidual uterine cells: endometrial/decidual stromal cells (dS) and uterine/decidual natural killer (dNK) cells. To better understand the transcription factors governing the in vivo functions of these cells, we analyzed single-cell transcriptomics data from first-trimester terminations of pregnancy, and for the first time conducted gene regulatory network analysis of dS and dNK cell subpopulations. Our analysis revealed stromal cell populations that corresponded to previously described in vitro decidualized cells and senescent decidual cells. We discovered new decidualization driving transcription factors of stromal cells for early pregnancy, including DDIT3 and BRF2, which regulate oxidative stress protection. For dNK cells, we identified transcription factors involved in the immunotolerant (dNK1) subpopulation, including IRX3 and RELB, which repress the NFKB pathway. In contrast, for the less immunotolerant (dNK3) population we predicted TBX21 (T-bet) and IRF2-mediated upregulation of the interferon pathway. To determine the clinical relevance of our findings, we tested the overrepresentation of the predicted transcription factors target genes among cell type-specific regulated genes from pregnancy disorders, such as recurrent pregnancy loss and preeclampsia. We observed that the predicted decidualized stromal and dNK1-specific transcription factor target genes were enriched with the genes downregulated in pregnancy disorders, whereas the predicted dNK3-specific targets were enriched with genes upregulated in pregnancy disorders. Our findings emphasize the importance of stress tolerance pathways in stromal cell decidualization and immunotolerance promoting regulators in dNK differentiation.
Collapse
Affiliation(s)
- Kalle T Rytkönen
- Turku Bioscience Centre, University of Turku, Åbo Akademi University, Turku, Finland.
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Turku, Finland.
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland.
| | - Nigatu Adossa
- Turku Bioscience Centre, University of Turku, Åbo Akademi University, Turku, Finland
| | - Sebastián Zúñiga Norman
- Turku Bioscience Centre, University of Turku, Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Tapio Lönnberg
- Turku Bioscience Centre, University of Turku, Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Matti Poutanen
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Laura L Elo
- Turku Bioscience Centre, University of Turku, Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
- Institute of Biomedicine, University of Turku, Turku, Finland
| |
Collapse
|
15
|
Di Virgilio F, Vultaggio-Poma V, Tarantini M, Giuliani AL. Overview of the role of purinergic signaling and insights into its role in cancer therapy. Pharmacol Ther 2024; 262:108700. [PMID: 39111410 DOI: 10.1016/j.pharmthera.2024.108700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 07/05/2024] [Accepted: 07/31/2024] [Indexed: 08/30/2024]
Abstract
Innovation of cancer therapy has received a dramatic acceleration over the last fifteen years thanks to the introduction of the novel immune checkpoint inhibitors (ICI). On the other hand, the conspicuous scientific knowledge accumulated in purinergic signaling since the early seventies is finally being transferred to the clinic. Several Phase I/II clinical trials are currently underway to investigate the effect of drugs interfering with purinergic signaling as stand-alone or combination therapy in cancer. This is supporting the novel concept of "purinergic immune checkpoint" (PIC) in cancer therapy. In the present review we will address a) the basic pharmacology and cell biology of the purinergic system; b) principles of its pathophysiology in human diseases; c) implications for cell death, cell proliferation and cancer; d) novel molecular tools to investigate nucleotide homeostasis in the extracellular environment; e) recent developments in the pharmacology of P1, P2 receptors and related ecto-enzymes; f) P1 and P2 ligands as novel diagnostic tools; g) current issues in PIC-based anti-cancer therapy. This review will provide an appraisal of the current status of purinergic signaling in cancer and will help identify future avenues of development.
Collapse
Affiliation(s)
| | | | - Mario Tarantini
- Department of Medical Sciences, University of Ferrara, Italy
| | | |
Collapse
|
16
|
Hansen FJ, Mittelstädt A, Clausen FN, Knoedler S, Knoedler L, Klöckner S, Kuchenreuther I, Mazurie J, Arnold LS, Anthuber A, Jacobsen A, Merkel S, Weisel N, Klösch B, Karabiber A, Tacyildiz I, Czubayko F, Reitberger H, Gendy AE, Brunner M, Krautz C, Wolff K, Mihai S, Neufert C, Siebler J, Grützmann R, Weber GF, David P. CD71 expressing circulating neutrophils serve as a novel prognostic biomarker for metastatic spread and reduced outcome in pancreatic ductal adenocarcinoma patients. Sci Rep 2024; 14:21164. [PMID: 39256468 PMCID: PMC11387421 DOI: 10.1038/s41598-024-70916-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/22/2024] [Indexed: 09/12/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignancies, presenting a persisting global health burden. Neutrophils have a double-edged role in tumor progression exhibiting both pro-tumor and anti-tumor functions. CD71, also known as transferrin receptor 1, performs a critical role in cellular iron uptake and is highly expressed on proliferating cells, and especially on activated immune cells. CD71 is known to be elevated in various types of solid cancers and is associated with poor prognosis, however, the expression of CD71 on neutrophils in PDAC and its potential clinical impact is still unknown. Therefore, we analyzed CD71 on circulating neutrophils in PDAC and clinical control patients and found a significant increased expression in PDAC patients. High expression of CD71 on neutrophils in PDAC patients was associated with reduced outcome compared to low expression. CD71 on neutrophils correlated positively with the levels of proinflammatory cytokines IL-6, IFN-γ, and growth factor ligands CD40-L, and BAFF in plasma of PDAC patients. Finally, we have demonstrated that high expression of CD71 on neutrophils was also associated with an increased expression of CD39 and CD25 on circulating T-cells. Based on our findings, we hypothesize that CD71 on neutrophils is associated with tumor progression in PDAC. Further studies are required to investigate the distinct functionality of CD71 expressing neutrophils and their potential clinical application.
Collapse
Affiliation(s)
- Frederik J Hansen
- Department of General and Visceral Surgery, Friedrich-Alexander-University, Krankenhausstraße 12, 91054, Erlangen, Germany
| | - Anke Mittelstädt
- Department of General and Visceral Surgery, Friedrich-Alexander-University, Krankenhausstraße 12, 91054, Erlangen, Germany
| | - Finn-Niklas Clausen
- Department of General and Visceral Surgery, Friedrich-Alexander-University, Krankenhausstraße 12, 91054, Erlangen, Germany
| | - Samuel Knoedler
- Institute of Regenerative Biology and Medicine, Helmholtz Center Munich, Ingolstädter Landtsraße 1, 85764, Neuherberg, Germany
| | - Leonard Knoedler
- Division of Genetic Immunotherapy (LIT), University of Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | - Sebastian Klöckner
- Department of General and Visceral Surgery, Friedrich-Alexander-University, Krankenhausstraße 12, 91054, Erlangen, Germany
| | - Isabelle Kuchenreuther
- Department of General and Visceral Surgery, Friedrich-Alexander-University, Krankenhausstraße 12, 91054, Erlangen, Germany
| | - Johanne Mazurie
- Department of General and Visceral Surgery, Friedrich-Alexander-University, Krankenhausstraße 12, 91054, Erlangen, Germany
| | - Lisa-Sophie Arnold
- Department of General and Visceral Surgery, Friedrich-Alexander-University, Krankenhausstraße 12, 91054, Erlangen, Germany
| | - Anna Anthuber
- Department of General and Visceral Surgery, Friedrich-Alexander-University, Krankenhausstraße 12, 91054, Erlangen, Germany
| | - Anne Jacobsen
- Department of General and Visceral Surgery, Friedrich-Alexander-University, Krankenhausstraße 12, 91054, Erlangen, Germany
| | - Susanne Merkel
- Department of General and Visceral Surgery, Friedrich-Alexander-University, Krankenhausstraße 12, 91054, Erlangen, Germany
| | - Nadine Weisel
- Department of General and Visceral Surgery, Friedrich-Alexander-University, Krankenhausstraße 12, 91054, Erlangen, Germany
| | - Bettina Klösch
- Department of General and Visceral Surgery, Friedrich-Alexander-University, Krankenhausstraße 12, 91054, Erlangen, Germany
| | - Alara Karabiber
- Department of General and Visceral Surgery, Friedrich-Alexander-University, Krankenhausstraße 12, 91054, Erlangen, Germany
| | - Irem Tacyildiz
- Department of General and Visceral Surgery, Friedrich-Alexander-University, Krankenhausstraße 12, 91054, Erlangen, Germany
| | - Franziska Czubayko
- Department of General and Visceral Surgery, Friedrich-Alexander-University, Krankenhausstraße 12, 91054, Erlangen, Germany
| | - Helena Reitberger
- Department of General and Visceral Surgery, Friedrich-Alexander-University, Krankenhausstraße 12, 91054, Erlangen, Germany
| | - Amr El Gendy
- Department of General and Visceral Surgery, Friedrich-Alexander-University, Krankenhausstraße 12, 91054, Erlangen, Germany
| | - Maximilian Brunner
- Department of General and Visceral Surgery, Friedrich-Alexander-University, Krankenhausstraße 12, 91054, Erlangen, Germany
| | - Christian Krautz
- Department of General and Visceral Surgery, Friedrich-Alexander-University, Krankenhausstraße 12, 91054, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), Erlangen, Germany
| | - Kerstin Wolff
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), Erlangen, Germany
- First Department of Medicine, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sidonia Mihai
- Zentrallabor im Universitätsklinikum, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Krankenhausstr. 12, Erlangen, Germany
| | - Clemens Neufert
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), Erlangen, Germany
- First Department of Medicine, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jürgen Siebler
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), Erlangen, Germany
- First Department of Medicine, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Robert Grützmann
- Department of General and Visceral Surgery, Friedrich-Alexander-University, Krankenhausstraße 12, 91054, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), Erlangen, Germany
| | - Georg F Weber
- Department of General and Visceral Surgery, Friedrich-Alexander-University, Krankenhausstraße 12, 91054, Erlangen, Germany.
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany.
- Bavarian Cancer Research Center (BZKF), Erlangen, Germany.
| | - Paul David
- Department of General and Visceral Surgery, Friedrich-Alexander-University, Krankenhausstraße 12, 91054, Erlangen, Germany
| |
Collapse
|
17
|
Jonić N, Koprivica I, Kyrkou SG, Bistas VP, Chatzigiannis C, Radulović N, Pilipović I, Jovanović A, Jovanović MB, Dimitrijević M, Tzakos AG, Stojanović I. Novel AHR ligand AGT-5 ameliorates type 1 diabetes in mice through regulatory cell activation in the early phase of the disease. Front Immunol 2024; 15:1454156. [PMID: 39308860 PMCID: PMC11412818 DOI: 10.3389/fimmu.2024.1454156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/23/2024] [Indexed: 09/25/2024] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease with a strong chronic inflammatory component. One possible strategy for the treatment of T1D is to stimulate the regulatory arm of the immune response, i.e. to promote the function of tolerogenic dendritic cells (tolDC) and regulatory T cells (Treg). Since both cell types have been shown to be responsive to the aryl hydrocarbon receptor (AHR) activation, we used a recently characterized member of a new class of fluorescent AHR ligands, AGT-5, to modulate streptozotocin-induced T1D in C57BL/6 mice. Prophylactic oral administration of AGT-5 reduced hyperglycemia and insulitis in these mice. Phenotypic and functional analysis of cells in the pancreatic infiltrates of AGT-5-treated mice (at the early phase of T1D) revealed a predominantly anti-inflammatory environment, as evidenced by the upregulation of tolDC and Treg frequency, while CD8+ cell, Th1 and Th17 cells were significantly reduced. Similarly, AGT-5 enhanced the proportion of Treg and tolDC in small intestine lamina propria and suppressed the activation status of antigen-presenting cells through down-regulation of co-stimulatory molecules CD40, CD80 and CD86. The expression levels of Cyp1a1, controlled by the AHR, were increased in CD4+, CD8+ and Treg, confirming the AHR-mediated effect of AGT-5 in these cells. Finally, AGT-5 stimulated the function of regulatory cells in the pancreatic islets and lamina propria by upregulating indoleamine 2,3-dioxigenase 1 (IDO1) in tolDC. These findings were supported by the abrogation of AGT-5-mediated in vitro effects on DC in the presence of IDO1 inhibitor. AGT-5 also increased the expression of CD39 or CD73 ATP-degrading ectoenzymes by Treg. The increase in Treg is further supported by the upregulated frequency of IL-2-producing type 3 innate lymphoid cells (ILC3) in the lamina propria. Anti-inflammatory effects of AGT-5 were also validated on human tonsil cells, where in vitro exposure to AGT-5 increased the proportion of immunosuppressive dendritic cells and ILC3. These results suggest that AGT-5, by stimulating AHR, may promote a general immunosuppressive environment in the pancreas and small intestine lamina propria at the early phase of disease, and thereby inhibit the severity of T1D in mice.
Collapse
Affiliation(s)
- Natalija Jonić
- Department of Immunology, Institute for Biological Research “Siniša Stanković” - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Ivan Koprivica
- Department of Immunology, Institute for Biological Research “Siniša Stanković” - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Stavroula G. Kyrkou
- Section of Organic Chemistry & Biochemistry, Department of Chemistry, University of Ioannina, Ioannina, Greece
| | - Vasileios-Panagiotis Bistas
- Section of Organic Chemistry & Biochemistry, Department of Chemistry, University of Ioannina, Ioannina, Greece
| | - Christos Chatzigiannis
- Section of Organic Chemistry & Biochemistry, Department of Chemistry, University of Ioannina, Ioannina, Greece
| | - Nataša Radulović
- Department of Immunology, Institute for Biological Research “Siniša Stanković” - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Ivan Pilipović
- Department of Immunology, Institute for Biological Research “Siniša Stanković” - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Andjelina Jovanović
- Department of Otorhinolaryngology with Maxillofacial Surgery, Clinical Hospital Center “Zemun”, Belgrade, Serbia
| | - Milan B. Jovanović
- Department of Otorhinolaryngology with Maxillofacial Surgery, Clinical Hospital Center “Zemun”, Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Mirjana Dimitrijević
- Department of Immunology, Institute for Biological Research “Siniša Stanković” - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Andreas G. Tzakos
- Section of Organic Chemistry & Biochemistry, Department of Chemistry, University of Ioannina, Ioannina, Greece
- Institute of Materials Science and Computing, University Research Center of Ioannina (URCI), Ioannina, Greece
| | - Ivana Stojanović
- Department of Immunology, Institute for Biological Research “Siniša Stanković” - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
18
|
Doleski PH, Cabral FL, Jantsch MH, Ebone RS, Adefegha SA, Leal DBR, Schetinger MRC. Kinetic properties of E-NTPDase activity in lymphocytes isolated from bone marrow, thymus and mesenteric lymph nodes of Wistar rats. Mol Cell Biochem 2024; 479:2447-2458. [PMID: 37792238 DOI: 10.1007/s11010-023-04860-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/12/2023] [Indexed: 10/05/2023]
Abstract
Plasma membrane anchored nucleotidases (E-ATPDases), as the E-NTPDase family, could hydrolyze and regulate the pericellular levels of nucleotides in lymphocytes. Each immune organ has a different microenvironment and display lymphocytes with different functions and phenotypes. Considering the different functions of each resident subpopulations of lymphocytes, the E-ATPDases activities in bone marrow (BML), thymus (TL) and mesenteric lymph node (MLL) lymphocytes of Wistar rats were characterized. The hydrolysis of extracellular nucleotides (eATP and eADP) showed linearity in time of reaction between 0 and 120 min, and concentration of lymphocytes expressed in proteins between 1 and 6 μg protein in the reaction medium. The optimal activity was attained at 37 °C in a pH value of 8.0. The necessity of the cofactors Ca2+ and Mg2+ for the enzymatic activity was confirmed through a curve of concentration of 0-1000 µM in the reaction medium, with both cofactors showing similar effects in the enzymatic activity. The Chevillard plot revealed that the hydrolysis of eATP and eADP occurred at the same active site of the enzyme. The analyses of E-ATPDases inhibitor and enzyme specificity showed possible involvement of E-NTPDase isoforms - 1 and - 2 in the isolated cells. Furthermore, different kinetic behavior of the nucleotide hydrolysis in each resident subpopulation lymphocyte was observed in this study, as MLL showed the higher Vmax with the lowest km values, while TL had the lowest Vmax and high km values. The kinetic values for E-NTPDase activity of each immune tissue lymphocytes can be an important therapeutic target for numeral immune-related diseases.
Collapse
Affiliation(s)
- Pedro Henrique Doleski
- Department of Biochemistry and Molecular Biology, Universidade Federal de Santa Maria, Santa Maria, Brazil.
- Department of Microbiology and Parasitology, Universidade Federal de Santa Maria, Santa Maria, Brazil.
| | - Fernanda Licker Cabral
- Department of Microbiology and Parasitology, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Matheus Henrique Jantsch
- Department of Biochemistry and Molecular Biology, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Renan Silva Ebone
- Department of Biochemistry and Molecular Biology, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Stephen Adeniyi Adefegha
- Department of Biochemistry and Molecular Biology, Universidade Federal de Santa Maria, Santa Maria, Brazil
- Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| | - Daniela Bitencourt Rosa Leal
- Department of Biochemistry and Molecular Biology, Universidade Federal de Santa Maria, Santa Maria, Brazil
- Department of Microbiology and Parasitology, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | | |
Collapse
|
19
|
Nwaduru C, Ovalle LA, Hoareau GL, Baker E, Buff M, Selim M, Baker TB, Zimmerman MA. Ectonucleotidases in Ischemia Reperfusion Injury: Unravelling the Interplay With Mitochondrial Dysfunction in Liver Transplantation. Transplant Proc 2024; 56:1598-1606. [PMID: 39183080 DOI: 10.1016/j.transproceed.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/10/2024] [Accepted: 07/12/2024] [Indexed: 08/27/2024]
Abstract
Ischemia-reperfusion injury (IRI) profoundly impacts organ transplantation, especially in orthotopic liver transplantation (OLT). Disruption of the mitochondrial respiratory chain during ischemia leads to ATP loss and ROS production. Reperfusion exacerbates mitochondrial damage, triggering the release of damage-associated molecular patterns (DAMPs) and inflammatory responses. Mitochondrial dysfunction, a pivotal aspect of IRI, is explored in the context of the regulatory role of ectonucleotidases in purinergic signaling and immune responses. CD39, by hydrolyzing ATP and ADP; and CD73, by converting AMP to adenosine, emerge as key players in mitigating liver IRI, particularly through ischemic preconditioning and adenosine receptor signaling. Despite established roles in vascular health and immunity, the impact of ectonucleotidases on mitochondrial function during hepatic IRI is unclear. This review aims to elucidate the interplay between CD39/73 and mitochondria, emphasizing their potential as therapeutic targets for liver transplantation. This article explores the role of CD39/73 in tissue hypoxia, emphasizing adenosine production during inflammation. CD39 and CD73 upregulation under hypoxic conditions regulate immune responses, demonstrating protective effects in various organ-specific ischemic models. However, prolonged adenosine activation may have dual effects, beneficial in acute settings but detrimental in chronic hypoxia. Herein, we raise questions about ectonucleotidases influencing mitochondrial function during hepatic IRI, drawing parallels with cancer cell responses to chemotherapy. The review underscores the need for comprehensive research into the intricate interplay between ectonucleotidases, mitochondrial dynamics, and their therapeutic implications in hepatic IRI, providing valuable insights for advancing transplantation outcomes.
Collapse
Affiliation(s)
- Chinedu Nwaduru
- Department of Surgery, Division of Transplantation and Advanced Hepatobiliary Surgery, University of Utah School of Medicine, Salt Lake City, Utah.
| | - Leo Aviles Ovalle
- Department of Surgery, Division of Transplantation and Advanced Hepatobiliary Surgery, University of Utah School of Medicine, Salt Lake City, Utah
| | - Guillaume L Hoareau
- Department of Surgery, Division of Transplantation and Advanced Hepatobiliary Surgery, University of Utah School of Medicine, Salt Lake City, Utah
| | - Emma Baker
- Department of Surgery, Division of Transplantation and Advanced Hepatobiliary Surgery, University of Utah School of Medicine, Salt Lake City, Utah
| | - Michelle Buff
- Department of Surgery, Division of Transplantation and Advanced Hepatobiliary Surgery, University of Utah School of Medicine, Salt Lake City, Utah
| | - Motaz Selim
- Department of Surgery, Division of Transplantation and Advanced Hepatobiliary Surgery, University of Utah School of Medicine, Salt Lake City, Utah
| | - Talia B Baker
- Department of Surgery, Division of Transplantation and Advanced Hepatobiliary Surgery, University of Utah School of Medicine, Salt Lake City, Utah
| | - Michael A Zimmerman
- Department of Surgery, Division of Transplantation and Advanced Hepatobiliary Surgery, University of Utah School of Medicine, Salt Lake City, Utah
| |
Collapse
|
20
|
Fathi M, Zarei A, Moghimi A, Jalali P, Salehi Z, Gholamin S, Jadidi-Niaragh F. Combined cancer immunotherapy based on targeting adenosine pathway and PD-1/PDL-1 axis. Expert Opin Ther Targets 2024; 28:757-777. [PMID: 39305018 DOI: 10.1080/14728222.2024.2405090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 09/12/2024] [Indexed: 10/02/2024]
Abstract
INTRODUCTION Cancer immunotherapy has revolutionized the field of oncology, offering new hope to patients with advanced malignancies. Tumor-induced immunosuppression limits the effectiveness of current immunotherapeutic strategies, such as PD-1/PDL-1 checkpoint inhibitors. Adenosine, a purine nucleoside molecule, is crucial to this immunosuppression because it stops T cells from activating and helps regulatory T cells grow. Targeting the adenosine pathway and blocking PD-1/PDL-1 is a potential way to boost the immune system's response to tumors. AREAS COVERED This review discusses the current understanding of the adenosine pathway in tumor immunology and the preclinical and clinical data supporting the combination of adenosine pathway inhibitors with PD-1/PDL-1 blockade. We also discuss the challenges and future directions for developing combination immunotherapy targeting the adenosine pathway and the PD-1/PDL-1 axis for cancer treatment. EXPERT OPINION The fact that the adenosine signaling pathway controls many immune system processes suggests that it has a wide range of therapeutic uses. Within the next five years, there will be tremendous progress in this area, and the standard of care for treating malignant tumors will have switched from point-to-point therapy to the integration of immunological networks comprised of multiple signaling pathways, like the adenosine axis.
Collapse
Affiliation(s)
- Mehrdad Fathi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Asieh Zarei
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ata Moghimi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pooya Jalali
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Centre, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Salehi
- Hematology, Oncology and Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| | - Sharareh Gholamin
- City of Hope Beckman Research Institute and Medical Center, Duarte, CA, USA
- City of Hope Department of Radiation Oncology, Duarte, CA, USA
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
21
|
Zhou D, Zi C, Gan G, Tang S, Chen Q. An exploration of the causal relationship between 731 immunophenotypes and osteoporosis: a bidirectional Mendelian randomized study. Front Endocrinol (Lausanne) 2024; 15:1341002. [PMID: 39086903 PMCID: PMC11288873 DOI: 10.3389/fendo.2024.1341002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 07/03/2024] [Indexed: 08/02/2024] Open
Abstract
Background There are complex interactions between osteoporosis and the immune system, and it has become possible to explore their causal relationship based on Mendelian randomization methods. Methods Utilizing openly accessible genetic data and employing Mendelian randomization analysis, we investigated the potential causal connection between 731 immune cell traits and the risk of developing osteoporosis. Results Ten immune cell phenotypes were osteoporosis protective factors and three immune cell phenotypes were osteoporosis risk factors. Specifically, the odds ratio (OR) of IgD+ CD24+ %B cell (B cell panel) risk on Osteoporosis was estimated to be 0.9986 (95% CI = 0.9978~0.9996, P<0.01). The OR of CD24+ CD27+ %B cell (B cell panel) risk on Osteoporosis was estimated to be 0.9991 (95% CI = 0.9984~0.9998, P = 0.021). The OR of CD33- HLA DR+AC (Myeloid cell panel) risk on Osteoporosis was estimated to be 0.9996 (95% CI = 0.9993~0.9999, P = 0.038). The OR of EM CD8br %CD8br (Maturation stages of T cell panel) risk on Osteoporosis was estimated to be 1.0004 (95% CI = 1.0000~1.0008, P = 0.045). The OR of CD25 on IgD+ (B cell panel) risk on Osteoporosis was estimated to be 0.9995 (95% CI = 0.9991~0.9999, P = 0.024). The OR of CD25 on CD39+ activated Treg+ (Treg panel) risk on Osteoporosis was estimated to be 1.001 (95% CI = 1.0001~1.0019, P = 0.038). The OR of CCR2 on CD62L+ myeloid DC (cDC panel) risk on Osteoporosis was estimated to be 0.9992 (95% CI = 0.9984~0.9999, P = 0.048). The OR of CCR2 on CD62L+ plasmacytoid DC (cDC panel) risk on Osteoporosis was estimated to be 0.9993 (95% CI = 0.9987~0.9999, P = 0.035). The OR of CD45 on CD33dim HLA DR+ CD11b- (Myeloid cell panel) risk on Osteoporosis was estimated to be 0.9988 (95% CI = 0.9977~0.9998, P = 0.031). The OR of CD45 on Mo MDSC (Myeloid cell panel) risk on Osteoporosis was estimated to be 0.9992 (95% CI = 0.9985~0.9998, P = 0.017). The OR of SSC-A on B cell (TBNK panel) risk on Osteoporosis was estimated to be 0.9986 (95% CI = 0.9972~0.9999, P = 0.042). The OR of CD11c on CD62L+ myeloid DC (cDC panel) risk on Osteoporosis was estimated to be 0.9987 (95% CI = 0.9978~0.9996, P<0.01). The OR of HLA DR on DC (cDC panel) risk on Osteoporosis was estimated to be 1.0007 (95% CI = 1.0002~1.0011, P<0.01). No causal effect of osteoporosis on immune cells was observed. Conclusions Our study identified 13 unreported immune phenotypes that are causally related to osteoporosis, providing a theoretical basis for the bone immunology doctrine.
Collapse
Affiliation(s)
- Dongqi Zhou
- Department of Traditional Chinese Medicine, Sichuan Taikang Hospital, Chengdu, Sichuan, China
| | - Changyan Zi
- Department of Traditional Chinese Medicine, Sichuan Taikang Hospital, Chengdu, Sichuan, China
| | - Gaofeng Gan
- Department of Traditional Chinese Medicine, Sichuan Taikang Hospital, Chengdu, Sichuan, China
| | - Shiyun Tang
- Department of Good Clinical Practice (GCP), Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Qiu Chen
- Department of Endocrine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
22
|
Foltz JA, Tran J, Wong P, Fan C, Schmidt E, Fisk B, Becker-Hapak M, Russler-Germain DA, Johnson J, Marin ND, Cubitt CC, Pence P, Rueve J, Pureti S, Hwang K, Gao F, Zhou AY, Foster M, Schappe T, Marsala L, Berrien-Elliott MM, Cashen AF, Bednarski JJ, Fertig E, Griffith OL, Griffith M, Wang T, Petti AA, Fehniger TA. Cytokines drive the formation of memory-like NK cell subsets via epigenetic rewiring and transcriptional regulation. Sci Immunol 2024; 9:eadk4893. [PMID: 38941480 DOI: 10.1126/sciimmunol.adk4893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 05/31/2024] [Indexed: 06/30/2024]
Abstract
Activation of natural killer (NK) cells with the cytokines interleukin-12 (IL-12), IL-15, and IL-18 induces their differentiation into memory-like (ML) NK cells; however, the underlying epigenetic and transcriptional mechanisms are unclear. By combining ATAC-seq, CITE-seq, and functional analyses, we discovered that IL-12/15/18 activation results in two main human NK fates: reprogramming into enriched memory-like (eML) NK cells or priming into effector conventional NK (effcNK) cells. eML NK cells had distinct transcriptional and epigenetic profiles and enhanced function, whereas effcNK cells resembled cytokine-primed cNK cells. Two transcriptionally discrete subsets of eML NK cells were also identified, eML-1 and eML-2, primarily arising from CD56bright or CD56dim mature NK cell subsets, respectively. Furthermore, these eML subsets were evident weeks after transfer of IL-12/15/18-activated NK cells into patients with cancer. Our findings demonstrate that NK cell activation with IL-12/15/18 results in previously unappreciated diverse cellular fates and identifies new strategies to enhance NK therapies.
Collapse
Affiliation(s)
| | - Jennifer Tran
- Washington University School of Medicine, Saint Louis, MO, USA
| | - Pamela Wong
- Washington University School of Medicine, Saint Louis, MO, USA
| | - Changxu Fan
- Washington University School of Medicine, Saint Louis, MO, USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Evelyn Schmidt
- Washington University School of Medicine, Saint Louis, MO, USA
| | - Bryan Fisk
- Washington University School of Medicine, Saint Louis, MO, USA
| | | | | | | | - Nancy D Marin
- Washington University School of Medicine, Saint Louis, MO, USA
| | - Celia C Cubitt
- Washington University School of Medicine, Saint Louis, MO, USA
| | - Patrick Pence
- Washington University School of Medicine, Saint Louis, MO, USA
| | - Joseph Rueve
- Washington University School of Medicine, Saint Louis, MO, USA
| | - Sushanth Pureti
- Washington University School of Medicine, Saint Louis, MO, USA
| | - Kimberly Hwang
- Washington University School of Medicine, Saint Louis, MO, USA
| | - Feng Gao
- Washington University School of Medicine, Saint Louis, MO, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Alice Y Zhou
- Washington University School of Medicine, Saint Louis, MO, USA
| | - Mark Foster
- Washington University School of Medicine, Saint Louis, MO, USA
| | - Timothy Schappe
- Washington University School of Medicine, Saint Louis, MO, USA
| | - Lynne Marsala
- Washington University School of Medicine, Saint Louis, MO, USA
| | | | - Amanda F Cashen
- Washington University School of Medicine, Saint Louis, MO, USA
| | | | | | - Obi L Griffith
- Washington University School of Medicine, Saint Louis, MO, USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Malachi Griffith
- Washington University School of Medicine, Saint Louis, MO, USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Ting Wang
- Washington University School of Medicine, Saint Louis, MO, USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Allegra A Petti
- Washington University School of Medicine, Saint Louis, MO, USA
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Todd A Fehniger
- Washington University School of Medicine, Saint Louis, MO, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
23
|
Jonić N, Koprivica I, Chatzigiannis CM, Tsiailanis AD, Kyrkou SG, Tzakos EP, Pavić A, Dimitrijević M, Jovanović A, Jovanović MB, Marinho S, Castro-Almeida I, Otašević V, Moura-Alves P, Tzakos AG, Stojanović I. Development of FluoAHRL: A Novel Synthetic Fluorescent Compound That Activates AHR and Potentiates Anti-Inflammatory T Regulatory Cells. Molecules 2024; 29:2988. [PMID: 38998940 PMCID: PMC11243367 DOI: 10.3390/molecules29132988] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/05/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
Aryl Hydrocarbon Receptor (AHR) ligands, upon binding, induce distinct gene expression profiles orchestrated by the AHR, leading to a spectrum of pro- or anti-inflammatory effects. In this study, we designed, synthesized and evaluated three indole-containing potential AHR ligands (FluoAHRL: AGT-4, AGT-5 and AGT-6). All synthesized compounds were shown to emit fluorescence in the near-infrared. Their AHR agonist activity was first predicted using in silico docking studies, and then confirmed using AHR luciferase reporter cell lines. FluoAHRLs were tested in vitro using mouse peritoneal macrophages and T lymphocytes to assess their immunomodulatory properties. We then focused on AGT-5, as it illustrated the predominant anti-inflammatory effects. Notably, AGT-5 demonstrated the ability to foster anti-inflammatory regulatory T cells (Treg) while suppressing pro-inflammatory T helper (Th)17 cells in vitro. AGT-5 actively induced Treg differentiation from naïve CD4+ cells, and promoted Treg proliferation, cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) expression and interleukin-10 (IL-10) production. The increase in IL-10 correlated with an upregulation of Signal Transducer and Activator of Transcription 3 (STAT3) expression. Importantly, the Treg-inducing effect of AGT-5 was also observed in human tonsil cells in vitro. AGT-5 showed no toxicity when applied to zebrafish embryos and was therefore considered safe for animal studies. Following oral administration to C57BL/6 mice, AGT-5 significantly upregulated Treg while downregulating pro-inflammatory Th1 cells in the mesenteric lymph nodes. Due to its fluorescent properties, AGT-5 could be visualized both in vitro (during uptake by macrophages) and ex vivo (within the lamina propria of the small intestine). These findings make AGT-5 a promising candidate for further exploration in the treatment of inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Natalija Jonić
- Department of Immunology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, 11108 Belgrade, Serbia; (N.J.); (I.K.); (M.D.)
| | - Ivan Koprivica
- Department of Immunology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, 11108 Belgrade, Serbia; (N.J.); (I.K.); (M.D.)
| | - Christos M. Chatzigiannis
- Section of Organic Chemistry & Biochemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (C.M.C.); (A.D.T.); (S.G.K.)
| | - Antonis D. Tsiailanis
- Section of Organic Chemistry & Biochemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (C.M.C.); (A.D.T.); (S.G.K.)
| | - Stavroula G. Kyrkou
- Section of Organic Chemistry & Biochemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (C.M.C.); (A.D.T.); (S.G.K.)
| | | | - Aleksandar Pavić
- Laboratory for Microbial Molecular Genetics and Ecology, Institute for Molecular Genetics and Genetic Engineering, University of Belgrade, 11000 Belgrade, Serbia;
| | - Mirjana Dimitrijević
- Department of Immunology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, 11108 Belgrade, Serbia; (N.J.); (I.K.); (M.D.)
| | - Andjelina Jovanović
- Department of Otorhinolaryngology with Maxillofacial Surgery, Clinical Hospital Center “Zemun”, 11080 Belgrade, Serbia; (A.J.); (M.B.J.)
| | - Milan B. Jovanović
- Department of Otorhinolaryngology with Maxillofacial Surgery, Clinical Hospital Center “Zemun”, 11080 Belgrade, Serbia; (A.J.); (M.B.J.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Sérgio Marinho
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135 Porto, Portugal; (S.M.); (I.C.-A.)
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
| | - Inês Castro-Almeida
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135 Porto, Portugal; (S.M.); (I.C.-A.)
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
| | - Vesna Otašević
- Department of Molecular Biology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, 11108 Belgrade, Serbia;
| | - Pedro Moura-Alves
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135 Porto, Portugal; (S.M.); (I.C.-A.)
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
| | - Andreas G. Tzakos
- Section of Organic Chemistry & Biochemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (C.M.C.); (A.D.T.); (S.G.K.)
- Institute of Materials Science and Computing, University Research Center of Ioannina (URCI), 45110 Ioannina, Greece
| | - Ivana Stojanović
- Department of Immunology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, 11108 Belgrade, Serbia; (N.J.); (I.K.); (M.D.)
| |
Collapse
|
24
|
Li Y, Li F, Xu L, Shi X, Xue H, Liu J, Bai S, Wu Y, Yang Z, Xue F, Xia Y, Dong H, Shen F, Wang K. Single cell analyses reveal the PD-1 blockade response-related immune features in hepatocellular carcinoma. Theranostics 2024; 14:3526-3547. [PMID: 38948071 PMCID: PMC11209711 DOI: 10.7150/thno.95971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/22/2024] [Indexed: 07/02/2024] Open
Abstract
Background: Immunotherapy has demonstrated its potential to improve the prognosis of patients with hepatocellular carcinoma (HCC); however, patients' responses to immunotherapy vary a lot. A comparative analysis of the tumor microenvironment (TME) in responders and non-responders is expected to unveil the mechanisms responsible for the immunotherapy resistance and provide potential treatment targets. Methods: We performed sequencing analyses using 10x Genomics technology on six HCC patients who responded to anti-PD-1 therapy and one HCC patient who did not respond. Additionally, we obtained single cell data from untreated, responsive, and nonresponsive HCC patients from public databases, and used part of the datasets as a validation cohort. These data were integrated using algorithms such as Harmony. An independent validation cohort was established. Furthermore, we performed spatial transcriptomic sequencing on the tumor adjacent tissues of three HCC responsive patients using 10x Genomics spatial transcriptomic technology. Additionally, we analyzed data about three HCC patients obtained from public databases. Finally, we validated our conclusions using immunofluorescence, flow cytometry, and in vivo experiments. Results: Our findings confirmed the presence of "immune barrier" partially accounting for the limited efficacy of immunotherapy. Our analysis revealed a significant increase in TREM2+ Macrophages among non-responsive patients expressing multiple immunosuppressive signals. anti-Csf1r monoclonal antibodies effectively eliminated these macrophages and augmented the therapeutic effects of anti-PD-1 therapy. TCR+ Macrophages possessed direct tumor-killing capabilities. IL1B+ cDC2 was the primary functional subtype of cDC2 cells. Absence of THEMIShi CD8+ T subtypes might diminish immunotherapeutic effects. Furthermore, CD8+ T cells entered a state of stress after anti-PD-1 treatment, which might be associated with CD8+ T cell exhaustion and senescence. Conclusions: The profiles of immune TMEs showed differences in HCC patients responsive, non-responsive and untreated. These differences might explain the discounted efficacy of immunotherapy in some HCC patients. The cells and molecules, which we found to carry unique capabilities, may be targeted to enhance immunotherapeutic outcomes in patients with HCC.
Collapse
Affiliation(s)
- Yao Li
- Department of Hepatic Surgery II, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Fengwei Li
- Department of Hepatic Surgery II, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Lei Xu
- Department of Gastroenterology Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| | - Xiaodong Shi
- Department of Hepatic Surgery II, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Hui Xue
- Department of Hepatic Surgery II, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Jianwei Liu
- Department of Hepatic Surgery II, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Shilei Bai
- Department of Hepatic Surgery II, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Yeye Wu
- Department of Hepatic Surgery II, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Zhao Yang
- Department of Hepatic Surgery II, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Feng Xue
- Department of Hepatic Surgery II, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Yong Xia
- Department of Hepatic Surgery IV, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Hui Dong
- Department of Pathology, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Feng Shen
- Department of Hepatic Surgery IV, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Kui Wang
- Department of Hepatic Surgery II, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
25
|
Liu Y, Zhang Y, Du L, Chen D. The genetic relationships between immune cell traits, circulating inflammatory proteins and preeclampsia/eclampsia. Front Immunol 2024; 15:1389843. [PMID: 38873604 PMCID: PMC11170637 DOI: 10.3389/fimmu.2024.1389843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/06/2024] [Indexed: 06/15/2024] Open
Abstract
Objectives Preeclampsia/eclampsia (PE), a critical complication during pregnancy, has been suggested to correlate with immune cell phenotypes and levels of circulating inflammatory proteins. Our study aimed to employ a two-sample mendelian randomization (MR) analysis to assess the potential causal effects of immune cell phenotypes and circulating inflammatory proteins on the onset of PE. Methods We utilized summary-level data from genome-wide association studies (GWAS). This included statistics for 371 immune cell phenotypes from 3,757 individuals in the Sardinian founder population, and data on 91 circulating inflammatory proteins from 14,824 European ancestry participants. Additionally, genetic associations related to PE were extracted from the FinnGen consortium, involving 1,413 cases and 287,137 controls. We applied inverse variance weighting (IVW) and supplementary methods like MR-Egger, weighted median, and weighted mode to comprehensively assess potential causal links. Results Our analysis revealed significant causal associations of several immune cells type and inflammatory proteins with PE. Out of the immune cell phenotypes analyzed, six immune phenotypes emerged as significant risk factors (p <0.01), mainly include CD4 on activated and secreting CD4 regulatory T cells, CD28 on CD39+ CD4+ T cells, CD127- CD8+ T cell absolute cell (AC) counts, HLA DR on HLA DR+ CD8+ T cell, CD66b on CD66b++ myeloid cells, and HLA DR on dendritic cells. And ten were identified as protective factors (p <0.01). Such as CD45 on CD33br HLA DR+ CD14-, CD33+ HLA DR+ AC, CD33+ HLA DR+ CD14- AC, CD33+ HLA DR+ CD14dim AC, CD27 on CD24+ CD27+ B cell, CD20- CD38- %B cell, IgD- CD24- %B cell CD80 on plasmacytoid DC, CD25 on CD4+ T cell, and CD25 on activated & secreting CD4 regulatory T cell. Furthermore, among the inflammatory proteins studied, five showed a significant association with PE, with three offering protective effects mainly include that C-X-C motif chemokine 1, tumor necrosis factor ligand superfamily member 14, and C-C motif chemokine 19 and two exacerbating PE risk such as STAM-binding domain and Interleukin-6 (p <0.05). Conclusions Our study highlights the pivotal roles played by diverse immune cell phenotypes and circulating inflammatory proteins in the pathophysiology of PE. These findings illuminate the underlying genetic mechanisms, emphasizing the criticality of immune regulation during pregnancy. Such insights could pave the way for novel intervention strategies in managing PE, potentially enhancing maternal and neonatal health outcomes.
Collapse
Affiliation(s)
- Yu Liu
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China, Guangzhou, Guangdong, China
- Guangdong-Hong Kong Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China, Guangzhou, Guangdong, China
| | - Yuliang Zhang
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China, Guangzhou, Guangdong, China
- Guangdong-Hong Kong Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China, Guangzhou, Guangdong, China
| | - Lili Du
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China, Guangzhou, Guangdong, China
- Guangdong-Hong Kong Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China, Guangzhou, Guangdong, China
| | - Dunjin Chen
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China, Guangzhou, Guangdong, China
- Guangdong-Hong Kong Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China, Guangzhou, Guangdong, China
| |
Collapse
|
26
|
Benito JM, Jiménez-Carretero D, Restrepo C, Ligos JM, Valentín-Quiroga J, Mahillo I, Cabello A, López-Collazo E, Sánchez-Cabo F, Górgolas M, Estrada V, Rallón N. T Cell Homeostasis Disturbances in a Cohort of Long-Term Elite Controllers of HIV Infection. Int J Mol Sci 2024; 25:5937. [PMID: 38892124 PMCID: PMC11172696 DOI: 10.3390/ijms25115937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Elite controllers (ECs) are people living with HIV (PLWH) able to control HIV replication without antiretroviral therapy and have been proposed as a model of a functional HIV cure. Much evidence suggests that this spontaneous control of HIV has a cost in terms of T cell homeostasis alterations. We performed a deep phenotypic study to obtain insight into T cell homeostasis disturbances in ECs maintaining long-term virologic and immunologic control of HIV (long-term elite controllers; LTECs). Forty-seven PLWH were included: 22 LTECs, 15 non-controllers under successful antiretroviral therapy (onART), and 10 non-controllers not receiving ART (offART). Twenty uninfected participants (UCs) were included as a reference. T cell homeostasis was analyzed by spectral flow cytometry and data were analyzed using dimensionality reduction and clustering using R software v3.3.2. Dimensionality reduction and clustering yielded 57 and 54 different CD4 and CD8 T cell clusters, respectively. The offART group showed the highest perturbation of T cell homeostasis, with 18 CD4 clusters and 15 CD8 clusters significantly different from those of UCs. Most of these alterations were reverted in the onART group. Interestingly, LTECs presented several disturbances of T cell homeostasis with 15 CD4 clusters and 13 CD8 clusters different from UC. Moreover, there was a specific profile of T cell homeostasis alterations associated with LTECs, characterized by increases in clusters of naïve T cells, increases in clusters of non-senescent effector CD8 cells, and increases in clusters of central memory CD4 cells. These results demonstrate that, compared to ART-mediated control of HIV, the spontaneous control of HIV is associated with several disturbances in CD4 and CD8 T cell homeostasis. These alterations could be related to the existence of a potent and efficient virus-specific T cell response, and to the ability to halt disease progression by maintaining an adequate pool of CD4 T cells.
Collapse
Affiliation(s)
- José M. Benito
- HIV and Viral Hepatitis Research Laboratory, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain; (C.R.); (N.R.)
- Hospital Universitario Rey Juan Carlos, 28933 Móstoles, Spain
| | - Daniel Jiménez-Carretero
- Unidad de Bioinformática, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain; (D.J.-C.); (F.S.-C.)
| | - Clara Restrepo
- HIV and Viral Hepatitis Research Laboratory, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain; (C.R.); (N.R.)
- Hospital Universitario Rey Juan Carlos, 28933 Móstoles, Spain
| | | | - Jaime Valentín-Quiroga
- Grupo de Respuesta Inmune Innata, IdiPAZ, Hospital Universitario La Paz, 28046 Madrid, Spain; (J.V.-Q.); (E.L.-C.)
| | - Ignacio Mahillo
- Department of Statistics, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain;
| | - Alfonso Cabello
- Hospital Universitario Fundación Jiménez Díaz, 28040 Madrid, Spain; (A.C.); (M.G.)
| | - Eduardo López-Collazo
- Grupo de Respuesta Inmune Innata, IdiPAZ, Hospital Universitario La Paz, 28046 Madrid, Spain; (J.V.-Q.); (E.L.-C.)
| | - Fátima Sánchez-Cabo
- Unidad de Bioinformática, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain; (D.J.-C.); (F.S.-C.)
| | - Miguel Górgolas
- Hospital Universitario Fundación Jiménez Díaz, 28040 Madrid, Spain; (A.C.); (M.G.)
| | - Vicente Estrada
- Hospital Universitario Clínico San Carlos, 28040 Madrid, Spain;
| | - Norma Rallón
- HIV and Viral Hepatitis Research Laboratory, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain; (C.R.); (N.R.)
- Hospital Universitario Rey Juan Carlos, 28933 Móstoles, Spain
| |
Collapse
|
27
|
Hu Y, Hao F, An Q, Jiang W. Immune cell signatures and inflammatory mediators: unraveling their genetic impact on chronic kidney disease through Mendelian randomization. Clin Exp Med 2024; 24:94. [PMID: 38703294 PMCID: PMC11069478 DOI: 10.1007/s10238-024-01341-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/27/2024] [Indexed: 05/06/2024]
Abstract
Prior research has established associations between immune cells, inflammatory proteins, and chronic kidney disease (CKD). Our Mendelian randomization study aims to elucidate the genetic causal relationships among these factors and CKD. We applied Mendelian randomization using genetic variants associated with CKD from a large genome-wide association study (GWAS) and inflammatory markers from a comprehensive GWAS summary. The causal links between exposures (immune cell subtypes and inflammatory proteins) and CKD were primarily analyzed using the inverse variance-weighted, supplemented by sensitivity analyses, including MR-Egger, weighted median, weighted mode, and MR-PRESSO. Our analysis identified both absolute and relative counts of CD28 + CD45RA + CD8 + T cell (OR = 1.01; 95% CI = 1.01-1.02; p < 0.001, FDR = 0.018) (OR = 1.01; 95% CI = 1.00-1.01; p < 0.001, FDR = 0.002), CD28 on CD39 + CD8 + T cell(OR = 0.97; 95% CI = 0.96-0.99; p < 0.001, FDR = 0.006), CD16 on CD14-CD16 + monocyte (OR = 1.02; 95% CI = 1.01-1.03; p < 0.001, FDR = 0.004) and cytokines, such as IL-17A(OR = 1.11, 95% CI = 1.06-1.16, p < 0.001, FDR = 0.001), and LIF-R(OR = 1.06, 95% CI = 1.02-1.10, p = 0.005, FDR = 0.043) that are genetically predisposed to influence the risk of CKD. Moreover, the study discovered that CKD itself may causatively lead to alterations in certain proteins, including CST5(OR = 1.16, 95% CI = 1.09-1.24, p < 0.001, FDR = 0.001). No evidence of reverse causality was found for any single biomarker and CKD. This comprehensive MR investigation supports a genetic causal nexus between certain immune cell subtypes, inflammatory proteins, and CKD. These findings enhance the understanding of CKD's immunological underpinnings and open avenues for targeted treatments.
Collapse
Affiliation(s)
- Yongzheng Hu
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Fengyun Hao
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Qian An
- Department of Nephrology, Qingdao Central Hospital, Qingdao, Shandong, China
| | - Wei Jiang
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.
| |
Collapse
|
28
|
Araujo Furlan CL, Boccardo S, Rodriguez C, Mary VS, Gimenez CMS, Robson SC, Gruppi A, Montes CL, Acosta Rodríguez EV. CD39 expression by regulatory T cells participates in CD8+ T cell suppression during experimental Trypanosoma cruzi infection. PLoS Pathog 2024; 20:e1012191. [PMID: 38683845 PMCID: PMC11081507 DOI: 10.1371/journal.ppat.1012191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 05/09/2024] [Accepted: 04/12/2024] [Indexed: 05/02/2024] Open
Abstract
An imbalance between suppressor and effector immune responses may preclude cure in chronic parasitic diseases. In the case of Trypanosoma cruzi infection, specialized regulatory Foxp3+ T (Treg) cells suppress protective type-1 effector responses. Herein, we investigated the kinetics and underlying mechanisms behind the regulation of protective parasite-specific CD8+ T cell immunity during acute T. cruzi infection. Using the DEREG mouse model, we found that Treg cells play a role during the initial stages after T. cruzi infection, restraining the magnitude of CD8+ T cell responses and parasite control. Early Treg cell depletion increased the frequencies of polyfunctional short-lived, effector T cell subsets, without affecting memory precursor cell formation or the expression of activation, exhaustion and functional markers. In addition, Treg cell depletion during early infection minimally affected the antigen-presenting cell response but it boosted CD4+ T cell responses before the development of anti-parasite effector CD8+ T cell immunity. Crucially, the absence of CD39 expression on Treg cells significantly bolstered effector parasite-specific CD8+ T cell responses, preventing increased parasite replication in T. cruzi infected mice adoptively transferred with Treg cells. Our work underscores the crucial role of Treg cells in regulating protective anti-parasite immunity and provides evidence that CD39 expression by Treg cells represents a key immunomodulatory mechanism in this infection model.
Collapse
Affiliation(s)
- Cintia L. Araujo Furlan
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| | - Santiago Boccardo
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| | - Constanza Rodriguez
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| | - Verónica S. Mary
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| | - Camila M. S. Gimenez
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| | - Simon C. Robson
- Center for Inflammation Research, Department of Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Adriana Gruppi
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| | - Carolina L. Montes
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| | - Eva V. Acosta Rodríguez
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| |
Collapse
|
29
|
Liang R, Qi X, Cai Q, Niu L, Huang X, Zhang D, Ling J, Wu Y, Chen Y, Yang P, Liu J, Zhang J, Yu P. The role of NLRP3 inflammasome in aging and age-related diseases. Immun Ageing 2024; 21:14. [PMID: 38317229 PMCID: PMC10840156 DOI: 10.1186/s12979-023-00395-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/15/2023] [Indexed: 02/07/2024]
Abstract
The gradual aging of the global population has led to a surge in age-related diseases, which seriously threaten human health. Researchers are dedicated to understanding and coping with the complexities of aging, constantly uncovering the substances and mechanism related to aging like chronic low-grade inflammation. The NOD-like receptor protein 3 (NLRP3), a key regulator of the innate immune response, recognizes molecular patterns associated with pathogens and injury, initiating an intrinsic inflammatory immune response. Dysfunctional NLRP3 is linked to the onset of related diseases, particularly in the context of aging. Therefore, a profound comprehension of the regulatory mechanisms of the NLRP3 inflammasome in aging-related diseases holds the potential to enhance treatment strategies for these conditions. In this article, we review the significance of the NLRP3 inflammasome in the initiation and progression of diverse aging-related diseases. Furthermore, we explore preventive and therapeutic strategies for aging and related diseases by manipulating the NLRP3 inflammasome, along with its upstream and downstream mechanisms.
Collapse
Affiliation(s)
- Ruikai Liang
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang, China
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang, China
| | - Xinrui Qi
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang, China
- Queen Mary School, Nanchang University, Nanchang, China
| | - Qi Cai
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang, China
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang, China
| | - Liyan Niu
- Huan Kui College of Nanchang University, Nanchang, China
| | - Xi Huang
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang, China
| | - Deju Zhang
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Jitao Ling
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang, China
| | - Yuting Wu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang, China
| | - Yixuan Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Pingping Yang
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang, China
| | - Jianping Liu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang, China
| | - Jing Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China.
| | - Peng Yu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang, China.
| |
Collapse
|
30
|
Scholl JN, Weber AF, Dias CK, Lima VP, Grun LK, Zambonin D, Anzolin E, Dos Santos Dias WW, Kus WP, Barbé-Tuana F, Battastini AMO, Worm PV, Figueiró F. Characterization of purinergic signaling in tumor-infiltrating lymphocytes from lower- and high-grade gliomas. Purinergic Signal 2024; 20:47-64. [PMID: 36964277 PMCID: PMC10828327 DOI: 10.1007/s11302-023-09931-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/06/2023] [Indexed: 03/26/2023] Open
Abstract
Malignant gliomas are highly heterogeneous glia-derived tumors that present an aggressive and invasive nature, with a dismal prognosis. The multi-dimensional interactions between glioma cells and other tumor microenvironment (TME) non-tumoral components constitute a challenge to finding successful treatment strategies. Several molecules, such as extracellular purines, participate in signaling events and support the immunosuppressive TME of glioma patients. The purinergic signaling and the ectoenzymes network involved in the metabolism of these extracellular nucleotides are still unexplored in the glioma TME, especially in lower-grade gliomas (LGG). Also, differences between IDH-mutant (IDH-Mut) versus wild-type (IDH-WT) gliomas are still unknown in this context. For the first time, to our knowledge, this study characterizes the TME of LGG, high-grade gliomas (HGG) IDH-Mut, and HGG IDH-WT patients regarding purinergic ectoenzymes and P1 receptors, focusing on tumor-infiltrating lymphocytes. Here, we show that ectoenzymes from both canonical and non-canonical pathways are increased in the TME when compared to the peripheral blood. We hypothesize this enhancement supports extracellular adenosine generation, hence increasing TME immunosuppression.
Collapse
Affiliation(s)
- Juliete Nathali Scholl
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brazil
| | - Augusto Ferreira Weber
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brazil
| | - Camila Kehl Dias
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brazil
| | - Vinícius Pierdoná Lima
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brazil
| | - Lucas Kich Grun
- Programa de Pós-Graduação Em Pediatria E Saúde da Criança, Escola de Medicina, PUCRS, Porto Alegre, RS, Brazil
| | - Diego Zambonin
- Departamento de Neurocirurgia, Hospital Cristo Redentor, Porto Alegre, Brazil
| | - Eduardo Anzolin
- Departamento de Neurocirurgia, Hospital Cristo Redentor, Porto Alegre, Brazil
| | | | | | - Florencia Barbé-Tuana
- Programa de Pós-Graduação Em Biologia Celular E Molecular, Escola de Ciências da Saúde E da Vida, PUCRS, Porto Alegre, RS, Brazil
| | - Ana Maria Oliveira Battastini
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brazil
| | - Paulo Valdeci Worm
- Departamento de Neurocirurgia, Hospital Cristo Redentor, Porto Alegre, Brazil
- Departmento de Cirurgia, Universidade Federal de Ciências da Saúde de Porto Alegre, Rio Grande Do Sul, Porto Alegre, Brazil
| | - Fabrício Figueiró
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brazil.
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brazil.
| |
Collapse
|
31
|
Wiencke JK, Nissen E, Koestler DC, Tamaki SJ, Tamaki CM, Hansen HM, Warrier G, Hadad S, McCoy L, Rice T, Clarke J, Taylor JW, Salas LA, Christensen BC, Kelsey KT, Butler R, Molinaro AM. Enrichment of a neutrophil-like monocyte transcriptional state in glioblastoma myeloid suppressor cells. RESEARCH SQUARE 2023:rs.3.rs-3793353. [PMID: 38234734 PMCID: PMC10793488 DOI: 10.21203/rs.3.rs-3793353/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Glioblastomas (GBM) are lethal central nervous system cancers associated with tumor and systemic immunosuppression. Heterogeneous monocyte myeloid-derived suppressor cells (M-MDSC) are implicated in the altered immune response in GBM, but M-MDSC ontogeny and definitive phenotypic markers are unknown. Using single-cell transcriptomics, we revealed heterogeneity in blood M-MDSC from GBM subjects and an enrichment in a transcriptional state reminiscent of neutrophil-like monocytes (NeuMo), a newly described pathway of monopoiesis in mice. Human NeuMo gene expression and Neu-like deconvolution fraction algorithms were created to quantitate the enrichment of this transcriptional state in GBM subjects. NeuMo populations were also observed in M-MDSCs from lung and head and neck cancer subjects. Dexamethasone (DEX) and prednisone exposures increased the usage of Neu-like states, which were inversely associated with tumor purity and survival in isocitrate dehydrogenase wildtype (IDH WT) gliomas. Anti-inflammatory ZC3HA12/Regnase-1 transcripts were highly correlated with NeuMo expression in tumors and in blood M-MDSC from GBM, lung, and head and neck cancer subjects. Additional novel transcripts of immune-modulating proteins were identified. Collectively, these findings provide a framework for understanding the heterogeneity of M-MDSCs in GBM as cells with different clonal histories and may reshape approaches to study and therapeutically target these cells.
Collapse
Affiliation(s)
- J K Wiencke
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA
| | - Emily Nissen
- Department of Biostatistics & Data Science, University of Kansas Medical Center, Kansas City, KS
| | - Devin C Koestler
- Department of Biostatistics & Data Science, University of Kansas Medical Center, Kansas City, KS
| | - Stan J Tamaki
- Parnassus Flow Cytometry CoLab, University of California San Francisco, San Francisco, CA 94143-0511, USA
| | - Courtney M Tamaki
- Parnassus Flow Cytometry CoLab, University of California San Francisco, San Francisco, CA 94143-0511, USA
| | - Helen M Hansen
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA
| | - Gayathri Warrier
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA
| | - Sara Hadad
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA
| | - Lucie McCoy
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA
| | - Terri Rice
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA
| | - Jennifer Clarke
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA
- Department of Neurology, University of California San Francisco, San Francisco, CA
| | - Jennie W Taylor
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA
- Department of Neurology, University of California San Francisco, San Francisco, CA
| | - Lucas A Salas
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, NH
| | - Brock C Christensen
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, NH
- Department of Molecular and Systems Biology, Geisel School of Medicine, Dartmouth College, Lebanon, NH
- Department of Community and Family Medicine, Geisel School of Medicine, Dartmouth College, Lebanon, NH
| | - Karl T Kelsey
- Department of Epidemiology, Brown University, Providence, RI
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI
| | - Rondi Butler
- Department of Epidemiology, Brown University, Providence, RI
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI
| | - Annette M Molinaro
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA
| |
Collapse
|
32
|
Ortiz MA, Diaz-Torné C, De Agustin JJ, Estrada P, Reina D, Hernandez MV, Sang H, Zamora C, Cantó E, Corominas H, Vidal S. Altered CD39 and CD73 Expression in Rheumatoid Arthritis: Implications for Disease Activity and Treatment Response. Biomolecules 2023; 14:1. [PMID: 38275742 PMCID: PMC10813161 DOI: 10.3390/biom14010001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/30/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024] Open
Abstract
In rheumatoid arthritis (RA) synovium, ATP, and ADP are released, sparking inflammation. Ectoenzymes CD39 and CD73 metabolize these purine nucleotides, generating anti-inflammatory adenosine. Therefore, dysregulated CD39 and CD73 expression may impact RA development. We assessed CD39 and CD73 expression in peripheral blood from 15 healthy controls (Cs) and 35 RA patients at baseline and after 3 and 6 months of tocilizumab treatment using flow cytometry. Additionally, ectoenzyme expression was examined on cultured T cells to understand activation and IL-6 effects. At baseline, RA patients exhibited a lower CD8+CD39-CD73+ cell percentage, which inversely correlated with DAS28. Additionally, they had lower percentages of Treg CD39+CD73+ and CD39-CD73- cells. Good responders tended to have lower B CD39+CD73+ cell percentages at baseline and 3 months. Additionally, Treg, CD8+ T and B cells inversely correlated with DAS28. T-cell activation increased CD39 and decreased CD73 expression, regardless of IL-6. IL-6 reduced IFNγ-secreting CD4+ T-cell percentage in Cs, but increased the percentage of IFNγ-secreting CD4+ and CD8+ T cells in RA patients. These findings indicate differing CD39 and CD73 expression in RA and Cs, influenced by T-cell activation and IL-6. Correlations between these molecules and RA activity suggest their role in dysregulated inflammation in RA.
Collapse
Affiliation(s)
- María Angels Ortiz
- Inflammatory Diseases, Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain; (C.Z.); (E.C.); (S.V.)
| | - Cesar Diaz-Torné
- Rheumatology Department, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (C.D.-T.); (H.S.); (H.C.)
| | | | - Paula Estrada
- Rheumatology Department, Hospital Moisès Broggi, Sant Joan Despí, 08970 Barcelona, Spain; (P.E.); (D.R.)
| | - Delia Reina
- Rheumatology Department, Hospital Moisès Broggi, Sant Joan Despí, 08970 Barcelona, Spain; (P.E.); (D.R.)
| | | | - Hye Sang
- Rheumatology Department, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (C.D.-T.); (H.S.); (H.C.)
| | - Carlos Zamora
- Inflammatory Diseases, Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain; (C.Z.); (E.C.); (S.V.)
| | - Elisabet Cantó
- Inflammatory Diseases, Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain; (C.Z.); (E.C.); (S.V.)
| | - Hector Corominas
- Rheumatology Department, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (C.D.-T.); (H.S.); (H.C.)
- Department of Rheumatology, Universitat Autònoma de Barcelona, Plaça Cívica, 08193 Bellaterra, Spain
| | - Silvia Vidal
- Inflammatory Diseases, Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain; (C.Z.); (E.C.); (S.V.)
| |
Collapse
|
33
|
Shafaghat Z, Ghomi AHK, Khorramdelazad H, Safari E. Purinergic signaling: decoding its role in COVID-19 pathogenesis and promising treatment strategies. Inflammopharmacology 2023; 31:3005-3020. [PMID: 37805959 DOI: 10.1007/s10787-023-01344-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/12/2023] [Indexed: 10/10/2023]
Abstract
The pathogenesis of coronavirus disease (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2), is complex and involves dysregulated immune responses, inflammation, and coagulopathy. Purinergic signaling, mediated by extracellular nucleotides and nucleosides, has emerged as a significant player in the pathogenesis of COVID-19. Extracellular adenosine triphosphate (ATP), released from damaged or infected cells, is a danger signal triggering immune responses. It activates immune cells, releasing pro-inflammatory cytokines, contributing to the cytokine storm observed in severe COVID-19 cases. ATP also promotes platelet activation and thrombus formation, contributing to the hypercoagulability seen in COVID-19 patients. On the other hand, adenosine, an immunosuppressive nucleoside, can impair anti-viral immune responses and promote tissue damage through its anti-inflammatory effects. Modulating purinergic receptors represents a promising therapeutic strategy for COVID-19. Understanding the role of purinergic signaling in COVID-19 pathogenesis and developing targeted therapeutic approaches can potentially improve patient outcomes. This review focuses on the part of purinergic signaling in COVID-19 pathogenesis and highlights potential therapeutic approaches targeting purinergic receptors.
Collapse
Affiliation(s)
- Zahra Shafaghat
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| | - Elaheh Safari
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
34
|
Tian S, Hu Y, Zhang M, Wang K, Guo G, Li B, Shang Y, Han Y. Integrative bioinformatics analysis and experimental validation of key biomarkers for risk stratification in primary biliary cholangitis. Arthritis Res Ther 2023; 25:186. [PMID: 37784152 PMCID: PMC10544390 DOI: 10.1186/s13075-023-03163-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 09/07/2023] [Indexed: 10/04/2023] Open
Abstract
BACKGROUND Primary biliary cholangitis (PBC) is an autoimmune liver disease, whose etiology is yet to be fully elucidated. Currently, ursodeoxycholic acid (UDCA) is the only first-line drug. However, 40% of PBC patients respond poorly to it and carry a potential risk of disease progression. So, in this study, we aimed to explore new biomarkers for risk stratification in PBC patients to enhance treatment. METHODS We first downloaded the clinical characteristics and microarray datasets of PBC patients from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were identified and subjected to enrichment analysis. Hub genes were further validated in multiple public datasets and PBC mouse model. Furthermore, we also verified the expression of the hub genes and developed a predictive model in our clinical specimens. RESULTS A total of 166 DEGs were identified in the GSE79850 dataset, including 95 upregulated and 71 downregulated genes. Enrichment analysis indicated that DEGs were significantly enriched in inflammatory or immune-related process. Among these DEGs, 15 risk-related genes were recognized and further validated in the GSE119600 cohort. Then, TXNIP, CD44, ENTPD1, and PDGFRB were identified as candidate hub genes. Finally, we proceeded to the next screening with these four genes in our serum samples and developed a three-gene panel. The gene panel could effectively identify those patients at risk of disease progression, yielding an AUC of 0.777 (95% CI, 0.657-0.870). CONCLUSIONS In summary, combining bioinformatics analysis and experiment validation, we identified TXNIP, CD44, and ENTPD1 as promising biomarkers for risk stratification in PBC patients.
Collapse
Affiliation(s)
- Siyuan Tian
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Yinan Hu
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Miao Zhang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Kemei Wang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Guanya Guo
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Bo Li
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an, 710032, Shaanxi, China.
| | - Yulong Shang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an, 710032, Shaanxi, China.
| | - Ying Han
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
35
|
Potenza A, Balestrieri C, Spiga M, Albarello L, Pedica F, Manfredi F, Cianciotti BC, De Lalla C, Botrugno OA, Faccani C, Stasi L, Tassi E, Bonfiglio S, Scotti GM, Redegalli M, Biancolini D, Camisa B, Tiziano E, Sirini C, Casucci M, Iozzi C, Abbati D, Simeoni F, Lazarevic D, Elmore U, Fiorentini G, Di Lullo G, Casorati G, Doglioni C, Tonon G, Dellabona P, Rosati R, Aldrighetti L, Ruggiero E, Bonini C. Revealing and harnessing CD39 for the treatment of colorectal cancer and liver metastases by engineered T cells. Gut 2023; 72:1887-1903. [PMID: 37399271 DOI: 10.1136/gutjnl-2022-328042] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 06/02/2023] [Indexed: 07/05/2023]
Abstract
OBJECTIVE Colorectal tumours are often densely infiltrated by immune cells that have a role in surveillance and modulation of tumour progression but are burdened by immunosuppressive signals, which might vary from primary to metastatic stages. Here, we deployed a multidimensional approach to unravel the T-cell functional landscape in primary colorectal cancers (CRC) and liver metastases, and genome editing tools to develop CRC-specific engineered T cells. DESIGN We paired high-dimensional flow cytometry, RNA sequencing and immunohistochemistry to describe the functional phenotype of T cells from healthy and neoplastic tissue of patients with primary and metastatic CRC and we applied lentiviral vectors (LV) and CRISPR/Cas9 genome editing technologies to develop CRC-specific cellular products. RESULTS We found that T cells are mainly localised at the front edge and that tumor-infiltrating T cells co-express multiple inhibitory receptors, which largely differ from primary to metastatic sites. Our data highlighted CD39 as the major driver of exhaustion in both primary and metastatic colorectal tumours. We thus simultaneously redirected T-cell specificity employing a novel T-cell receptor targeting HER-2 and disrupted the endogenous TCR genes (TCR editing (TCRED)) and the CD39 encoding gene (ENTPD1), thus generating TCREDENTPD1KOHER-2-redirected lymphocytes. We showed that the absence of CD39 confers to HER-2-specific T cells a functional advantage in eliminating HER-2+ patient-derived organoids in vitro and in vivo. CONCLUSION HER-2-specific CD39 disrupted engineered T cells are promising advanced medicinal products for primary and metastatic CRC.
Collapse
Affiliation(s)
- Alessia Potenza
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Balestrieri
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Martina Spiga
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luca Albarello
- Pathology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federica Pedica
- Pathology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesco Manfredi
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Claudia De Lalla
- Experimental Immunology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Oronza A Botrugno
- Functional Genomics of Cancer Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Cristina Faccani
- Experimental Immunology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Lorena Stasi
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elena Tassi
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Bonfiglio
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giulia Maria Scotti
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Miriam Redegalli
- Pathology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Donatella Biancolini
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Barbara Camisa
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Innovative Immunotherapies Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elena Tiziano
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Innovative Immunotherapies Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Camilla Sirini
- Innovative Immunotherapies Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Monica Casucci
- Innovative Immunotherapies Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Iozzi
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Danilo Abbati
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Fabio Simeoni
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Dejan Lazarevic
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ugo Elmore
- Gastrointestinal Surgery Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Guido Fiorentini
- Gastrointestinal Surgery Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giulia Di Lullo
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giulia Casorati
- Experimental Immunology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Claudio Doglioni
- Pathology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Giovanni Tonon
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Functional Genomics of Cancer Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Paolo Dellabona
- Experimental Immunology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Riccardo Rosati
- Vita-Salute San Raffaele University, Milan, Italy
- Gastrointestinal Surgery Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luca Aldrighetti
- Vita-Salute San Raffaele University, Milan, Italy
- Hepatobiliary Surgery Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Eliana Ruggiero
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Bonini
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
36
|
Araujo Furlan CL, Boccardo S, Rodriguez C, Robson SC, Gruppi A, Montes CL, Acosta Rodríguez EV. CD39 expression by regulatory T cells drives CD8+ T cell suppression during experimental Trypanosoma cruzi infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.14.557792. [PMID: 37745571 PMCID: PMC10515944 DOI: 10.1101/2023.09.14.557792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
An imbalance between suppressor and effector immune responses may preclude cure in chronic parasitic diseases. In the case of Trypanosoma cruzi infection, specialized regulatory Foxp3+ T (Treg) cells suppress protective type-1 effector responses. Herein, we investigated the kinetics and underlying mechanisms behind the regulation of protective parasite-specific CD8+ T cell immunity during acute T. cruzi infection. Using the DEREG mouse model, we found that Treg cells play a critical role during the initial stages after T. cruzi infection, subsequently influencing CD8+ T cells. Early Treg cell depletion increased the frequencies of polyfunctional short-lived, effector T cell subsets, without affecting memory precursor cell formation or the expression of activation markers. In addition, Treg cell depletion during early infection minimally affected the antigen-presenting cell response but it boosted CD4+ T cell responses before the development of anti-parasite effector CD8+ T cell responses. Crucially, the absence of CD39 expression on Treg cells significantly bolstered effector parasite-specific CD8+ T cell responses, leading to improved parasite control during T. cruzi infection. Our work underscores the crucial role of Treg cells in regulating protective anti-parasite immunity and provides evidence that CD39 expression by Treg cells represents a key immunomodulatory mechanism in this infection model.
Collapse
|
37
|
Ferreira NS, Lima NF, Sulczewski FB, Soares IS, Ferreira MU, Boscardin SB. Plasmodium vivax infection alters the peripheral immunoregulatory network of CD4 T follicular cells and B cells. Eur J Immunol 2023; 53:e2350372. [PMID: 37160134 DOI: 10.1002/eji.202350372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/10/2023] [Accepted: 05/08/2023] [Indexed: 05/11/2023]
Abstract
Regulatory and effector cell responses to Plasmodium vivax, the most common human malaria parasite outside Africa, remain understudied in naturally infected populations. Here, we describe peripheral CD4+ T- and B-cell populations during and shortly after an uncomplicated P. vivax infection in 38 continuously exposed adult Amazonians. Consistent with previous observations, we found an increased frequency in CD4+ CD45RA- CD25+ FoxP3+ T regulatory cells that express the inhibitory molecule CTLA-4 during the acute infection, with a sustained expansion of CD21- CD27- atypical memory cells within the CD19+ B-cell compartment. Both Th1- and Th2-type subsets of CXCR5+ ICOShi PD-1+ circulating T follicular helper (cTfh) cells, which are thought to contribute to antibody production, were induced during P. vivax infection, with a positive correlation between overall cTfh cell frequency and IgG antibody titers to the P. vivax blood-stage antigen MSP119 . We identified significant changes in cell populations that had not been described in human malaria, such as an increased frequency of CTLA-4+ T follicular regulatory cells that antagonize Tfh cells, and a decreased frequency of circulating CD24hi CD27+ B regulatory cells in response to acute infection. In conclusion, we disclose a complex immunoregulatory network that is critical to understand how naturally acquired immunity develops in P. vivax malaria.
Collapse
Affiliation(s)
- Natália S Ferreira
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Nathália F Lima
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Fernando B Sulczewski
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Irene S Soares
- Department of Clinical and Toxicological Analyses, University of São Paulo, São Paulo, Brazil
| | - Marcelo U Ferreira
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Global Health and Tropical Medicine, Institute of Hygiene and Tropical Medicine, NOVA University of Lisbon, Lisbon, Portugal
| | - Silvia B Boscardin
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
38
|
Hansson C, Lebrero-Fernández C, Schön K, Angeletti D, Lycke N. Tr1 cell-mediated protection against autoimmune disease by intranasal administration of a fusion protein targeting cDC1 cells. Mucosal Immunol 2023; 16:486-498. [PMID: 37192682 DOI: 10.1016/j.mucimm.2023.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 05/05/2023] [Indexed: 05/18/2023]
Abstract
Curative therapies against autoimmune diseases are lacking. Indeed, most of the currently available treatments are only targeting symptoms. We have developed a novel strategy for a therapeutic vaccine against autoimmune diseases based on intranasal administration of a fusion protein tolerogen, which consists of a mutant, enzymatically inactive, cholera toxin A1 (CTA1)-subunit genetically fused to disease-relevant high-affinity peptides and a dimer of D-fragments from protein A (DD). The CTA1 R7K mutant - myelin oligodendrocyte glycoprotein (MOG), or proteolipid protein (PLP) - DD (CTA1R7K-MOG/PLP-DD) fusion proteins effectively reduced clinical symptoms in the experimental autoimmune encephalitis model of multiple sclerosis. The treatment induced Tr1 cells, in the draining lymph node, which produced interleukin (IL)-10 and suppressed effector clusters of differentiation 4+ T-cell responses. This effect was dependent on IL-27 signaling because treatment was ineffective in bone marrow chimeras lacking IL-27Ra within their hematopoietic compartment. Single-cell RNA sequencing of dendritic cells in draining lymph nodes demonstrated distinct gene transcriptional changes of classic dendritic cells 1, including enhanced lipid metabolic pathways, induced by the tolerogenic fusion protein. Thus, our results with the tolerogenic fusion protein demonstrate the possibility to vaccinate and protect against disease progression by reinstating tolerance in multiple sclerosis and other autoimmune diseases.
Collapse
Affiliation(s)
- Charlotta Hansson
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Cristina Lebrero-Fernández
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Karin Schön
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Davide Angeletti
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden.
| | - Nils Lycke
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
39
|
Talotta R. Molecular Mimicry and HLA Polymorphisms May Drive Autoimmunity in Recipients of the BNT-162b2 mRNA Vaccine: A Computational Analysis. Microorganisms 2023; 11:1686. [PMID: 37512859 PMCID: PMC10384367 DOI: 10.3390/microorganisms11071686] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND After the start of the worldwide COVID-19 vaccination campaign, there were increased reports of autoimmune diseases occurring de novo after vaccination. This in silico analysis aimed to investigate the presence of protein epitopes encoded by the BNT-162b2 mRNA vaccine, one of the most widely administered COVID-19 vaccines, which could induce autoimmunity in predisposed individuals. METHODS The FASTA sequence of the protein encoded by the BNT-162b2 vaccine served as the key input to the Immune Epitope Database and Analysis Resource. Linear peptides with 90% BLAST homology were selected, and T-cell, B-cell, and MHC-ligand assays without MHC restriction were searched and analyzed. HLA disease associations were screened on the HLA-SPREAD platform by selecting only positive markers. RESULTS By 7 May 2023, a total of 5693 epitopes corresponding to 21 viral but also human proteins were found. The latter included CHL1, ENTPD1, MEAF6, SLC35G2, and ZFHX2. Importantly, some autoepitopes may be presented by HLA alleles positively associated with various immunological diseases. CONCLUSIONS The protein product of the BNT-162b2 mRNA vaccine contains immunogenic epitopes that may trigger autoimmune phenomena in predisposed individuals through a molecular mimicry mechanism. Genotyping for HLA alleles may help identify individuals at risk. However, further wet-lab studies are needed to confirm this hypothesis.
Collapse
Affiliation(s)
- Rossella Talotta
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University Hospital "G. Martino", 98124 Messina, Italy
| |
Collapse
|
40
|
Liu Y, Li Z, Zhao X, Xiao J, Bi J, Li XY, Chen G, Lu L. Review immune response of targeting CD39 in cancer. Biomark Res 2023; 11:63. [PMID: 37287049 DOI: 10.1186/s40364-023-00500-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/11/2023] [Indexed: 06/09/2023] Open
Abstract
The ATP-adenosine pathway has emerged as a promising target for cancer therapy, but challenges remain in achieving effective tumor control. Early research focused on blocking the adenosine generating enzyme CD73 and the adenosine receptors A2AR or A2BR in cancer. However, recent studies have shown that targeting CD39, the rate-limiting ecto-enzyme of the ATP-adenosine pathway, can provide more profound anti-tumor efficacy by reducing immune-suppressive adenosine accumulation and increasing pro-inflammatory ATP levels. In addition, combining CD39 blocking antibody with PD-1 immune checkpoint therapy may have synergistic anti-tumor effects and improve patient survival. This review will discuss the immune components that respond to CD39 targeting in the tumor microenvironment. Targeting CD39 in cancer has been shown to not only decrease adenosine levels in the tumor microenvironment (TME), but also increase ATP levels. Additionally, targeting CD39 can limit the function of Treg cells, which are known to express high levels of CD39. With phase I clinical trials of CD39 targeting currently underway, further understanding and rational design of this approach for cancer therapy are expected.
Collapse
Affiliation(s)
- Yao Liu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, 519000, Guangdong, P.R. China
| | - Zhongliang Li
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, 519000, Guangdong, P.R. China
| | - Xiaoguang Zhao
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, 519000, Guangdong, P.R. China
| | - Jing Xiao
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Jiacheng Bi
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xian-Yang Li
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, 519000, Guangdong, P.R. China.
- Department of R&D, OriCell Therapeutics Co. Ltd, No.1227, Zhangheng Rd, Pudong, Shanghai, China.
| | - Guokai Chen
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau, China.
| | - Ligong Lu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, 519000, Guangdong, P.R. China.
| |
Collapse
|
41
|
Chen Y, Wang Y, Fu Y, Yin Y, Xu K. Modulating AHR function offers exciting therapeutic potential in gut immunity and inflammation. Cell Biosci 2023; 13:85. [PMID: 37179416 PMCID: PMC10182712 DOI: 10.1186/s13578-023-01046-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Aryl hydrocarbon receptor (AHR) is a ligand-dependent transcription factor. 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is a classical exogenous synthetic ligand of AHR that has significant immunotoxic effects. Activation of AHR has beneficial effects on intestinal immune responses, but inactivation or overactivation of AHR can lead to intestinal immune dysregulation and even intestinal diseases. Sustained potent activation of AHR by TCDD results in impairment of the intestinal epithelial barrier. However, currently, AHR research has been more focused on elucidating physiologic AHR function than on dioxin toxicity. The appropriate level of AHR activation plays a role in maintaining gut health and protecting against intestinal inflammation. Therefore, AHR offers a crucial target to modulate intestinal immunity and inflammation. Herein, we summarize our current understanding of the relationship between AHR and intestinal immunity, the ways in which AHR affects intestinal immunity and inflammation, the effects of AHR activity on intestinal immunity and inflammation, and the effect of dietary habits on intestinal health through AHR. Finally, we discuss the therapeutic role of AHR in maintaining gut homeostasis and relieving inflammation.
Collapse
Affiliation(s)
- Yue Chen
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450000, China
| | - Yadong Wang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Yawei Fu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450000, China
| | - Yulong Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450000, China
| | - Kang Xu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
| |
Collapse
|
42
|
Wei S, Wei F, Li M, Yang Y, Zhang J, Li C, Wang J. Target immune components to circumvent sorafenib resistance in hepatocellular carcinoma. Biomed Pharmacother 2023; 163:114798. [PMID: 37121146 DOI: 10.1016/j.biopha.2023.114798] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/23/2023] [Accepted: 04/25/2023] [Indexed: 05/02/2023] Open
Abstract
Sorafenib, a multi-kinase inhibitor, has been approved for cancer treatment for decades, especially hepatocellular carcinoma (HCC). Although sorafenib produced substantial clinical benefits in the initial stage, a large proportion of cancer patients acquired drug resistance in subsequent treatment, which always disturbs clinical physicians. Cumulative evidence unraveled the underlying mechanism of sorafenib, but few reports focused on the role of immune subpopulations, since the immunological rationale of sorafenib resistance has not yet been defined. Here, we reviewed the immunoregulatory effects of sorafenib on the tumor microenvironment and emphasized the potential immunological mechanisms of therapeutic resistance to sorafenib. Moreover, we also summarized the clinical outcomes and ongoing trials in combination of sorafenib with immunotherapy, highlighted the immunotherapeutic strategies to improve sorafenib efficacy, and put forward several prospective questions aimed at guiding future research in overcoming sorafenib resistance in HCC.
Collapse
Affiliation(s)
- Shuhua Wei
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, PR China
| | - Fenghua Wei
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou City, Guangdong Province, PR China
| | - Mengyuan Li
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, PR China
| | - Yuhan Yang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, PR China
| | - Jingwen Zhang
- R & D Management Department, China National Biotec Group, Beijing, PR China.
| | - Chunxiao Li
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, PR China.
| | - Junjie Wang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, PR China.
| |
Collapse
|
43
|
Sadeghi Shermeh A, Royzman D, Kuhnt C, Draßner C, Stich L, Steinkasserer A, Knippertz I, Wild AB. Differential Modulation of Dendritic Cell Biology by Endogenous and Exogenous Aryl Hydrocarbon Receptor Ligands. Int J Mol Sci 2023; 24:ijms24097801. [PMID: 37175508 PMCID: PMC10177790 DOI: 10.3390/ijms24097801] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/17/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a decisive regulatory ligand-dependent transcription factor. It binds highly diverse ligands, which can be categorized as either endogenous or exogenous. Ligand binding activates AhR, which can adjust inflammatory responses by modulating immune cells such as dendritic cells (DCs). However, how different AhR ligand classes impact the phenotype and function of human monocyte-derived DCs (hMoDCs) has not been extensively studied in a comparative manner. We, therefore, tested the effect of the representative compounds Benzo(a)pyrene (BP), 6-formylindolo[3,2-b]carbazole (FICZ), and Indoxyl 3-sulfate (I3S) on DC biology. Thereby, we reveal that BP significantly induces a tolerogenic response in lipopolysaccharide-matured DCs, which is not apparent to the same extent when using FICZ or I3S. While all three ligand classes activate AhR-dependent pathways, BP especially induces the expression of negative immune regulators, and subsequently strongly subverts the T cell stimulatory capacity of DCs. Using the CRISPR/Cas9 strategy we also prove that the regulatory effect of BP is strictly AhR-dependent. These findings imply that AhR ligands contribute differently to DC responses and incite further studies to uncover the mechanisms and molecules which are involved in the induction of different phenotypes and functions in DCs upon AhR activation.
Collapse
Affiliation(s)
- Atefeh Sadeghi Shermeh
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Dmytro Royzman
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Christine Kuhnt
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Christina Draßner
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Lena Stich
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Alexander Steinkasserer
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Ilka Knippertz
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Andreas B Wild
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91052 Erlangen, Germany
| |
Collapse
|
44
|
de Salles ÉM, Raeder PL, Angeli CB, Santiago VF, de Souza CN, Ramalho T, Câmara NOS, Palmisano G, Álvarez JM, D'Império Lima MR. P2RX7 signaling drives the differentiation of Th1 cells through metabolic reprogramming for aerobic glycolysis. Front Immunol 2023; 14:1140426. [PMID: 36993971 PMCID: PMC10040773 DOI: 10.3389/fimmu.2023.1140426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/24/2023] [Indexed: 03/16/2023] Open
Abstract
Introduction This study provides evidence of how Th1 cell metabolism is modulated by the purinergic receptor P2X7 (P2RX7), a cation cannel activated by high extracellular concentrations of adenosine triphosphate (ATP). Methods In vivo analysis was performed in the Plasmodium chabaudi model of malaria in view of the great relevance of this infectious disease for human health, as well as the availability of data concerning Th1/Tfh differentiation. Results We show that P2RX7 induces T-bet expression and aerobic glycolysis in splenic CD4+ T cells that respond to malaria, at a time prior to Th1/Tfh polarization. Cell-intrinsic P2RX7 signaling sustains the glycolytic pathway and causes bioenergetic mitochondrial stress in activated CD4+ T cells. We also show in vitro the phenotypic similarities of Th1-conditioned CD4+ T cells that do not express P2RX7 and those in which the glycolytic pathway is pharmacologically inhibited. In addition, in vitro ATP synthase blockade and the consequent inhibition of oxidative phosphorylation, which drives cellular metabolism for aerobic glycolysis, is sufficient to promote rapid CD4+ T cell proliferation and polarization to the Th1 profile in the absence of P2RX7. Conclusion These data demonstrate that P2RX7-mediated metabolic reprograming for aerobic glycolysis is a key event for Th1 differentiation and suggest that ATP synthase inhibition is a downstream effect of P2RX7 signaling that potentiates the Th1 response.
Collapse
Affiliation(s)
- Érika Machado de Salles
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Paulo Lisboa Raeder
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Claudia Blanes Angeli
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Verônica Feijoli Santiago
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Cristiane Naffah de Souza
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Theresa Ramalho
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Niels Olsen Saraiva Câmara
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Giuseppe Palmisano
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - José Maria Álvarez
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | | |
Collapse
|
45
|
Perez-Castro L, Garcia R, Venkateswaran N, Barnes S, Conacci-Sorrell M. Tryptophan and its metabolites in normal physiology and cancer etiology. FEBS J 2023; 290:7-27. [PMID: 34687129 PMCID: PMC9883803 DOI: 10.1111/febs.16245] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/10/2021] [Accepted: 10/21/2021] [Indexed: 02/06/2023]
Abstract
Within the growing field of amino acid metabolism, tryptophan (Trp) catabolism is an area of increasing interest. Trp is essential for protein synthesis, and its metabolism gives rise to biologically active catabolites including serotonin and numerous metabolites in the kynurenine (Kyn) pathway. In normal tissues, the production of Trp metabolites is directly regulated by the tissue-specific expression of Trp-metabolizing enzymes. Alterations of these enzymes in cancers can shift the balance and lead to an increased production of specific byproducts that can function as oncometabolites. For example, increased expression of the enzyme indoleamine 2,3-dioxygenase, which converts Trp into Kyn, leads to an increase in Kyn levels in numerous cancers. Kyn functions as an oncometabolite in cancer cells by promoting the activity of the transcription factor aryl hydrocarbon receptor, which regulates progrowth genes. Moreover, Kyn also inhibits T-cell activity and thus allows cancer cells to evade clearance by the immune system. Therefore, targeting the Kyn pathway has become a therapeutic focus as a novel means to abrogate tumor growth and immune resistance. This review summarizes the biological role and regulation of Trp metabolism and its catabolites with an emphasis on tumor cell growth and immune evasion and outlines areas for future research focus.
Collapse
Affiliation(s)
- Lizbeth Perez-Castro
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Roy Garcia
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Niranjan Venkateswaran
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Spencer Barnes
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Maralice Conacci-Sorrell
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
46
|
Wang X, Zhou H, Liu Q, Cheng P, Zhao T, Yang T, Zhao Y, Sha W, Zhao Y, Qu H. Targeting regulatory T cells for cardiovascular diseases. Front Immunol 2023; 14:1126761. [PMID: 36911741 PMCID: PMC9995594 DOI: 10.3389/fimmu.2023.1126761] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 02/13/2023] [Indexed: 02/25/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death and disability worldwide. The CVDs are accompanied by inflammatory progression, resulting in innate and adaptive immune responses. Regulatory T cells (Tregs) have an immunosuppressive function and are one of the subsets of CD4+T cells that play a crucial role in inflammatory diseases. Whether using Tregs as a biomarker for CVDs or targeting Tregs to exert cardioprotective functions by regulating immune balance, suppressing inflammation, suppressing cardiac and vascular remodeling, mediating immune tolerance, and promoting cardiac regeneration in the treatment of CVDs has become an emerging research focus. However, Tregs have plasticity, and this plastic Tregs lose immunosuppressive function and produce toxic effects on target organs in some diseases. This review aims to provide an overview of Tregs' role and related mechanisms in CVDs, and reports on the research of plasticity Tregs in CVDs, to lay a foundation for further studies targeting Tregs in the prevention and treatment of CVDs.
Collapse
Affiliation(s)
- Xinting Wang
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hua Zhou
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Cardiovascular Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qian Liu
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Peipei Cheng
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tingyao Zhao
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tianshu Yang
- Department of Cardiovascular Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yue Zhao
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wanjing Sha
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanyan Zhao
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huiyan Qu
- Department of Cardiovascular Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
47
|
D’Accardo C, Porcelli G, Mangiapane LR, Modica C, Pantina VD, Roozafzay N, Di Franco S, Gaggianesi M, Veschi V, Lo Iacono M, Todaro M, Turdo A, Stassi G. Cancer cell targeting by CAR-T cells: A matter of stemness. FRONTIERS IN MOLECULAR MEDICINE 2022; 2:1055028. [PMID: 39086964 PMCID: PMC11285689 DOI: 10.3389/fmmed.2022.1055028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/01/2022] [Indexed: 08/02/2024]
Abstract
Chimeric antigen receptor (CAR)-T cell therapy represents one of the most innovative immunotherapy approaches. The encouraging results achieved by CAR-T cell therapy in hematological disorders paved the way for the employment of CAR engineered T cells in different types of solid tumors. This adoptive cell therapy represents a selective and efficacious approach to eradicate tumors through the recognition of tumor-associated antigens (TAAs). Binding of engineered CAR-T cells to TAAs provokes the release of several cytokines, granzyme, and perforin that ultimately lead to cancer cells elimination and patient's immune system boosting. Within the tumor mass a subpopulation of cancer cells, known as cancer stem cells (CSCs), plays a crucial role in drug resistance, tumor progression, and metastasis. CAR-T cell therapy has indeed been exploited to target CSCs specific antigens as an effective strategy for tumor heterogeneity disruption. Nevertheless, a barrier to the efficacy of CAR-T cell-based therapy is represented by the poor persistence of CAR-T cells into the hostile milieu of the CSCs niche, the development of resistance to single targeting antigen, changes in tumor and T cell metabolism, and the onset of severe adverse effects. CSCs resistance is corroborated by the presence of an immunosuppressive tumor microenvironment (TME), which includes stromal cells, cancer-associated fibroblasts (CAFs), tumor-associated macrophages (TAMs), myeloid-derived suppressor cells (MDSCs), and immune cells. The relationship between TME components and CSCs dampens the efficacy of CAR-T cell therapy. To overcome this challenge, the double strategy based on the use of CAR-T cell therapy in combination with chemotherapy could be crucial to evade immunosuppressive TME. Here, we summarize challenges and limitations of CAR-T cell therapy targeting CSCs, with particular emphasis on the role of TME and T cell metabolic demands.
Collapse
Affiliation(s)
- Caterina D’Accardo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Gaetana Porcelli
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Laura Rosa Mangiapane
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Chiara Modica
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Vincenzo Davide Pantina
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Narges Roozafzay
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Simone Di Franco
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Miriam Gaggianesi
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Veronica Veschi
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Melania Lo Iacono
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Matilde Todaro
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Alice Turdo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Giorgio Stassi
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| |
Collapse
|
48
|
Chen X. From immune equilibrium to immunodynamics. Front Microbiol 2022; 13:1018817. [PMID: 36504800 PMCID: PMC9732466 DOI: 10.3389/fmicb.2022.1018817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 10/24/2022] [Indexed: 11/26/2022] Open
Abstract
Objective The immunology field has long been short of a universally applicable theoretical model that can quantitatively describe the immune response, and the theory of immune equilibrium (balance) is usually limited to the interpretation of the philosophical significance of immune phenomena. Therefore, it is necessary to establish a new immunological theory, namely, immunodynamic theory, to reanalyze the immune response. Methods By quantifying the immune dynamic equilibrium as the ratio of positive and negative immune power, the immune dynamic equilibrium equation was established. Then, the area under the curve of the positive and negative immune power was assumed to be equal in the whole process of immune response (regardless of correct or not), and through thought experiments based on this key hypothesis, a series of new concepts and expressions were derived, to establish a series of immunodynamic equations. Results New concepts of immune force and immune braking force and their expression equations, namely, the theoretical equations of immunodynamics, were derived through thought experiments, and the theoretical curves of immunodynamics were obtained according to these equations. Via the equivalent transformation of the theoretical equations and practical calculation of functional data, and by the methods of curve comparison and fitting, some practical equations of immunodynamics were established, and these practical equations were used to solve theoretical and practical problems that are related to the immunotherapy of infectious diseases and cancers. Conclusion The traditional theory of immune equilibrium has been mathematized and transformed from a philosophical category into a new concrete scientific theory, namely the theory of immunodynamics, which solves the dilemma that the traditional theory cannot guide individualized medical practice for a long time. This new theory may develop into one of the core theories of immunology in the future.
Collapse
Affiliation(s)
- Xiaoping Chen
- State Key Laboratory of Respiratory Disease, Center for Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- CAS Lamvac (Guangzhou) Biomedical Technology Co., Ltd., Guangzhou, China
| |
Collapse
|
49
|
Therapeutic targets and biomarkers of tumor immunotherapy: response versus non-response. Signal Transduct Target Ther 2022; 7:331. [PMID: 36123348 PMCID: PMC9485144 DOI: 10.1038/s41392-022-01136-2] [Citation(s) in RCA: 241] [Impact Index Per Article: 80.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/25/2022] [Accepted: 07/25/2022] [Indexed: 02/05/2023] Open
Abstract
Cancers are highly complex diseases that are characterized by not only the overgrowth of malignant cells but also an altered immune response. The inhibition and reprogramming of the immune system play critical roles in tumor initiation and progression. Immunotherapy aims to reactivate antitumor immune cells and overcome the immune escape mechanisms of tumors. Represented by immune checkpoint blockade and adoptive cell transfer, tumor immunotherapy has seen tremendous success in the clinic, with the capability to induce long-term regression of some tumors that are refractory to all other treatments. Among them, immune checkpoint blocking therapy, represented by PD-1/PD-L1 inhibitors (nivolumab) and CTLA-4 inhibitors (ipilimumab), has shown encouraging therapeutic effects in the treatment of various malignant tumors, such as non-small cell lung cancer (NSCLC) and melanoma. In addition, with the advent of CAR-T, CAR-M and other novel immunotherapy methods, immunotherapy has entered a new era. At present, evidence indicates that the combination of multiple immunotherapy methods may be one way to improve the therapeutic effect. However, the overall clinical response rate of tumor immunotherapy still needs improvement, which warrants the development of novel therapeutic designs as well as the discovery of biomarkers that can guide the prescription of these agents. Learning from the past success and failure of both clinical and basic research is critical for the rational design of studies in the future. In this article, we describe the efforts to manipulate the immune system against cancer and discuss different targets and cell types that can be exploited to promote the antitumor immune response.
Collapse
|
50
|
Wang J, Du L, Chen X. Adenosine signaling: Optimal target for gastric cancer immunotherapy. Front Immunol 2022; 13:1027838. [PMID: 36189223 PMCID: PMC9523428 DOI: 10.3389/fimmu.2022.1027838] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 09/05/2022] [Indexed: 11/21/2022] Open
Abstract
Gastric cancer (GC) is one of the most common malignancy and leading cause of cancer-related deaths worldwide. Due to asymptomatic or only nonspecific early symptoms, GC patients are usually in the advanced stage at first diagnosis and miss the best opportunity of treatment. Immunotherapies, especially immune checkpoint inhibitors (ICIs), have dramatically changed the landscape of available treatment options for advanced-stage cancer patients. However, with regards to existing ICIs, the clinical benefit of monotherapy for advanced gastric cancer (AGC) is quite limited. Therefore, it is urgent to explore an optimal target for the treatment of GC. In this review, we summarize the expression profiles and prognostic value of 20 common immune checkpoint-related genes in GC from Gene Expression Profiling Interactive Analysis (GEPIA) database, and then find that the adenosinergic pathway plays an indispensable role in the occurrence and development of GC. Moreover, we discuss the pathophysiological function of adenosinergic pathway in cancers. The accumulation of extracellular adenosine inhibits the normal function of immune effector cells and facilitate the effect of immunosuppressive cells to foster GC cells proliferation and migration. Finally, we provide insights into potential clinical application of adenosinergic-targeting therapies for GC patients.
Collapse
Affiliation(s)
- Junqing Wang
- School of the 1St Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Linyong Du
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Xiangjian Chen, ; Linyong Du,
| | - Xiangjian Chen
- School of the 1St Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Xiangjian Chen, ; Linyong Du,
| |
Collapse
|