1
|
Berbers RM, Paganelli FL, van Montfrans JM, Ellerbroek PM, Viveen MC, Rogers MRC, Salomons M, Schuurmans J, van Stigt Thans M, Vanmaris RMM, Brosens LAA, van der Wal MM, Dalm VASH, van Hagen PM, van de Ven AAJM, Uh HW, van Wijk F, Willems RJL, Leavis HL. Gut microbial dysbiosis, IgA, and Enterococcus in common variable immunodeficiency with immune dysregulation. MICROBIOME 2025; 13:12. [PMID: 39819634 PMCID: PMC11740714 DOI: 10.1186/s40168-024-01982-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 11/19/2024] [Indexed: 01/19/2025]
Abstract
BACKGROUND Common variable immunodeficiency (CVID) is characterized by hypogammaglobulinemia and recurrent infections. Significant morbidity and mortality are caused by immune dysregulation complications (CVIDid), which affect around one-third of CVID patients and have a poorly understood etiology. Here, we investigate the hypothesis that gut microbial dysbiosis contributes to the inflammation underlying CVIDid. RESULTS Bacterial invasion of colonic crypts was observed in CVID (3/15) and X-linked agammaglobulinemia (XLA, 1/3), but not in healthy control (HC, 0/9) biopsies. Fecal gut microbiota was characterized using 16S rRNA-targeted amplicon sequencing. Increased bacterial load, decreased alpha diversity and distinct beta diversity were observed in CVIDid (n = 42) compared to HC (n = 48), and similar results were seen in CVID with IgA deficiency (n = 40) compared to HC. CVIDid and CVID-IgA showed enrichment of the genus Enterococcus, and in vitro studies confirmed the inflammatory potential of Enterococcus gallinarum and Enterococcus hirae in patient monocytes. CONCLUSIONS This study further supports the hypothesis that a dysregulated gut microbiota, with IgA deficiency as an important driving factor, contributes to systemic inflammation in primary antibody deficiency, and introduces enterococci as potential pathobionts in CVIDid. Video Abstract.
Collapse
Affiliation(s)
- Roos-Marijn Berbers
- Department of Medical Microbiology, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Fernanda L Paganelli
- Department of Medical Microbiology, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Joris M van Montfrans
- Department of Pediatric Immunology and Infectious Diseases, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Pauline M Ellerbroek
- Department of Internal Medicine and Infectious Diseases, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Marco C Viveen
- Department of Medical Microbiology, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Malbert R C Rogers
- Department of Medical Microbiology, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Moniek Salomons
- Department of Medical Microbiology, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Jaap Schuurmans
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Martine van Stigt Thans
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Remi M M Vanmaris
- Department of Medical Microbiology, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Lodewijk A A Brosens
- Department of Pathology, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Maria Marlot van der Wal
- Center for Translational Immunology, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Virgil A S H Dalm
- Department of Internal Medicine, Division of Clinical Immunology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
- Department of Immunology, Academic Center for Rare Immunological Diseases (RIDC), Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - P Martin van Hagen
- Department of Internal Medicine, Division of Clinical Immunology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
- Department of Immunology, Academic Center for Rare Immunological Diseases (RIDC), Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Annick A J M van de Ven
- Departments of Internal Medicine and Allergology, Rheumatology and Clinical Immunology, University Medical Center Groningen, Groningen, the Netherlands
| | - Hae-Won Uh
- Department of Data Science and Biostatistics, Julius Center, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Femke van Wijk
- Center for Translational Immunology, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Rob J L Willems
- Department of Medical Microbiology, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Helen L Leavis
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
2
|
Yang S, Tong L, Li X, Zhang Y, Chen H, Zhang W, Zhang H, Chen Y, Chen R. A novel clinically relevant human fecal microbial transplantation model in humanized mice. Microbiol Spectr 2024; 12:e0043624. [PMID: 39162553 PMCID: PMC11448399 DOI: 10.1128/spectrum.00436-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/12/2024] [Indexed: 08/21/2024] Open
Abstract
The intact immune system of mice exhibits resistance to colonization by exogenous microorganisms, but the gut microbiota profiles of the humanized mice and the patterns of human fecal microbiota colonization remain unexplored. Humanized NCG (huNCG) mice were constructed by injected CD34 +stem cells. 16S rRNA sequencing and fecal microbiota transplantation (FMT) technologies were used to detect the differences in microbiota and selective colonization ability for exogenous community colonization among three mice cohorts (C57BL/6J, NCG, and huNCG). Flow cytometry analysis showed that all huNCG mice had over 25% hCD45 +in peripheral blood. 16S rRNA gene sequence analysis showed that compared with NCG mice, the gut microbiota of huNCG mice were significantly altered. After FMT, the principal coordinates analysis (PCoA) showed that the gut microbial composition of huNCG mice (huNCG-D9) was similar to that of donors. The relative abundance of Firmicutes and Bacteroidetes were significantly increased in huNCG mice compared to NCG mice. Further comparison of ASV sequences revealed that Bacteroides plebeius, Bacteroides finegoldii, Escherichia fergusonii, Escherichia albertii, Klebsiella pneumoniae, and Klebsiella variicola exhibited higher abundance and stability in huNCG mice after FMT. Furthermore, PICRUSt2 analysis showed that huNCG mice had significantly enhanced metabolism and immunity. This study demonstrated that humanized mice are more conducive to colonization within the human gut microbiota, which provides a good method for studying the association between human diseases and microbiota.IMPORTANCEThe gut microbiota and biomarkers of humanized mice are systematically revealed for the first time. The finding that human fecal microbiota colonize humanized mice more stably provides new insights into the study of interactions between immune responses and gut microbiota.
Collapse
Affiliation(s)
- Shuai Yang
- College of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Linglin Tong
- College of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xin Li
- College of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yuchen Zhang
- College of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hao Chen
- Department of Neurology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Wei Zhang
- Department of Neurology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - He Zhang
- College of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yang Chen
- College of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Renjin Chen
- College of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
3
|
Gagliano C, Salvetat ML, Musa M, D'Esposito F, Rusciano D, Maniaci A, Pellegrini F, Scibilia G, Zeppieri M. Bacterial Insights: Unraveling the Ocular Microbiome in Glaucoma Pathogenesis. FRONT BIOSCI-LANDMRK 2024; 29:310. [PMID: 39206909 DOI: 10.31083/j.fbl2908310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/12/2024] [Accepted: 06/27/2024] [Indexed: 09/04/2024]
Abstract
This review explores the connection between the ocular surface microbiome and glaucoma, highlighting its impact on disease progression. Beginning with an overview of global glaucoma significance, it emphasizes the importance of understanding the cellular characteristics and microbiology of the ocular microbiome. A search was conducted on the PubMed and Cochrane Library databases using the phrase "ocular microbiome glaucoma". 0 records were returned from the Cochrane Library while 21 were returned from PubMed. A total of 21 results were retrieved from 2017 to 2024. This comprised one opinion paper, four original research articles, and 16 reviews. This review covered the anatomy of the ocular surface, advanced analysis methods, and the ocular microbiome. It also delved into dysbiosis in glaucoma, addressing altered microbial communities and their potential role in disease progression. The intricate interplay between the ocular microbiome and the host's immune system is explored, emphasizing crosstalk and inflammatory responses. The review concludes by discussing therapeutic implications, including modulating ocular microbiota and potential future treatment strategies. Understanding the microbiome in healthy and glaucomatous eyes can help researchers and clinicians in innovative approaches to ocular health.
Collapse
Affiliation(s)
- Caterina Gagliano
- Department of Medicine and Surgery, University of Enna "Kore", 94100 Enna, Italy
- Eye Clinic, Catania University San Marco Hospital, 95121 Catania, Italy
| | - Maria Letizia Salvetat
- Department of Ophthalmology, Azienda Sanitaria Friuli Occidentale, 33170 Pordenone, Italy
| | - Mutali Musa
- Department of Optometry, University of Benin, 300238 Benin, Edo, Nigeria
| | - Fabiana D'Esposito
- Imperial College Ophthalmic Research Group (ICORG) Unit, Imperial College, NW15QH London, UK
- Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples Federico II, 80131 Napoli, Italy
| | | | - Antonino Maniaci
- Department of Medicine and Surgery, University of Enna "Kore", 94100 Enna, Italy
| | - Francesco Pellegrini
- Department of Ophthalmology, Azienda Sanitaria Friuli Occidentale, 33170 Pordenone, Italy
| | - Giuseppe Scibilia
- Department of Obstetrics and Gynecology, "Giovanni Paolo II" Hospital, 97100 Ragusa, Italy
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy
| |
Collapse
|
4
|
DeCandia AL, Adeduro L, Thacher P, Crosier A, Marinari P, Bortner R, Garelle D, Livieri T, Santymire R, Comizzoli P, Maslanka M, Maldonado JE, Koepfli KP, Muletz-Wolz C, Bornbusch SL. Gut bacterial composition shows sex-specific shifts during breeding season in ex situ managed black-footed ferrets. J Hered 2024; 115:385-398. [PMID: 37886904 DOI: 10.1093/jhered/esad065] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/16/2023] [Accepted: 10/26/2023] [Indexed: 10/28/2023] Open
Abstract
The gut microbiome of mammals engages in a dynamic relationship with the body and contributes to numerous physiological processes integral to overall health. Understanding the factors shaping animal-associated bacterial communities is therefore paramount to the maintenance and management in ex situ wildlife populations. Here, we characterized the gut microbiome of 48 endangered black-footed ferrets (Mustela nigripes) housed at Smithsonian's National Zoo and Conservation Biology Institute (Front Royal, Virginia, USA). We collected longitudinal fecal samples from males and females across two distinct reproductive seasons to consider the role of host sex and reproductive physiology in shaping bacterial communities, as measured using 16S rRNA amplicon sequencing. Within each sex, gut microbial composition differed between breeding and non-breeding seasons, with five bacterial taxa emerging as differentially abundant. Between sexes, female and male microbiomes were similar during non-breeding season but significantly different during breeding season, which may result from sex-specific physiological changes associated with breeding. Finally, we found low overall diversity consistent with other mammalian carnivores alongside high relative abundances of potentially pathogenic microbes such as Clostridium, Escherichia, Paeniclostridium, and (to a lesser degree) Enterococcus-all of which have been associated with gastrointestinal or reproductive distress in mammalian hosts, including black-footed ferrets. We recommend further study of these microbes and possible therapeutic interventions to promote more balanced microbial communities. These results have important implications for ex situ management practices that can improve the gut microbial health and long-term viability of black-footed ferrets.
Collapse
Affiliation(s)
- Alexandra L DeCandia
- Biology Department, Georgetown University, Washington, DC, United States
- Center for Conservation Genomics, Smithsonian's National Zoo and Conservation Biology Institute, Washington, DC, United States
| | - Laura Adeduro
- Biology Department, Georgetown University, Washington, DC, United States
| | - Piper Thacher
- Center for Conservation Genomics, Smithsonian's National Zoo and Conservation Biology Institute, Washington, DC, United States
- Smithsonian-Mason School of Conservation, George Mason University, Front Royal, VA, United States
| | - Adrienne Crosier
- Center for Animal Care Sciences, Smithsonian's National Zoo and Conservation Biology Institute, Front Royal, VA, United States
| | - Paul Marinari
- Center for Animal Care Sciences, Smithsonian's National Zoo and Conservation Biology Institute, Front Royal, VA, United States
| | - Robyn Bortner
- National Black-Footed Ferret Conservation Center, Carr, CO, United States
| | - Della Garelle
- National Black-Footed Ferret Conservation Center, Carr, CO, United States
| | - Travis Livieri
- Prairie Wildlife Research, Stevens Point, WI, United States
| | - Rachel Santymire
- Biology Department, Georgia State University, Atlanta, GA, United States
| | - Pierre Comizzoli
- Center for Species Survival, Smithsonian's National Zoo and Conservation Biology Institute, Front Royal, VA, United States
| | - Michael Maslanka
- Department of Nutrition Science, Smithsonian's National Zoo and Conservation Biology Institute, Washington, DC, United States
| | - Jesús E Maldonado
- Center for Conservation Genomics, Smithsonian's National Zoo and Conservation Biology Institute, Washington, DC, United States
| | - Klaus-Peter Koepfli
- Smithsonian-Mason School of Conservation, George Mason University, Front Royal, VA, United States
- Center for Species Survival, Smithsonian's National Zoo and Conservation Biology Institute, Front Royal, VA, United States
| | - Carly Muletz-Wolz
- Center for Conservation Genomics, Smithsonian's National Zoo and Conservation Biology Institute, Washington, DC, United States
| | - Sally L Bornbusch
- Center for Conservation Genomics, Smithsonian's National Zoo and Conservation Biology Institute, Washington, DC, United States
- Department of Nutrition Science, Smithsonian's National Zoo and Conservation Biology Institute, Washington, DC, United States
| |
Collapse
|
5
|
Buso H, Discardi C, Bez P, Muscianisi F, Ceccato J, Milito C, Firinu D, Landini N, Jones MG, Felice C, Rattazzi M, Scarpa R, Cinetto F. Sarcoidosis versus Granulomatous and Lymphocytic Interstitial Lung Disease in Common Variable Immunodeficiency: A Comparative Review. Biomedicines 2024; 12:1503. [PMID: 39062076 PMCID: PMC11275071 DOI: 10.3390/biomedicines12071503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/24/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
Sarcoidosis and Granulomatous and Lymphocytic Interstitial Lung Diseases (GLILD) are two rare entities primarily characterised by the development of Interstitial Lung Disease (ILD) in the context of systemic immune dysregulation. These two conditions partially share the immunological background and pathologic findings, with granuloma as the main common feature. In this narrative review, we performed a careful comparison between sarcoidosis and GLILD, with an overview of their main similarities and differences, starting from a clinical perspective and ending with a deeper look at the immunopathogenesis and possible target therapies. Sarcoidosis occurs in immunocompetent individuals, whereas GLILD occurs in patients affected by common variable immunodeficiency (CVID). Moreover, peculiar extrapulmonary manifestations and radiological and histological features may help distinguish the two diseases. Despite that, common pathogenetic pathways have been suggested and both these disorders can cause progressive impairment of lung function and variable systemic granulomatous and non-granulomatous complications, leading to significant morbidity, reduced quality of life, and survival. Due to the rarity of these conditions and the extreme clinical variability, there are still many open questions concerning their pathogenesis, natural history, and optimal management. However, if studied in parallel, these two entities might benefit from each other, leading to a better understanding of their pathogenesis and to more tailored treatment approaches.
Collapse
Affiliation(s)
- Helena Buso
- Rare Diseases Referral Center, Internal Medicine 1, Department of Medicine (DIMED), AULSS2 Marca Trevigiana, Ca’ Foncello Hospital, University of Padova, 35124 Padova, Italy (C.F.); (M.R.); (R.S.); (F.C.)
| | - Claudia Discardi
- Rare Diseases Referral Center, Internal Medicine 1, Department of Medicine (DIMED), AULSS2 Marca Trevigiana, Ca’ Foncello Hospital, University of Padova, 35124 Padova, Italy (C.F.); (M.R.); (R.S.); (F.C.)
| | - Patrick Bez
- Rare Diseases Referral Center, Internal Medicine 1, Department of Medicine (DIMED), AULSS2 Marca Trevigiana, Ca’ Foncello Hospital, University of Padova, 35124 Padova, Italy (C.F.); (M.R.); (R.S.); (F.C.)
| | - Francesco Muscianisi
- Rare Diseases Referral Center, Internal Medicine 1, Department of Medicine (DIMED), AULSS2 Marca Trevigiana, Ca’ Foncello Hospital, University of Padova, 35124 Padova, Italy (C.F.); (M.R.); (R.S.); (F.C.)
| | - Jessica Ceccato
- Haematology and Clinical Immunology Unit, Department of Medicine (DIMED), University of Padova, 35124 Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), 35131 Padova, Italy
| | - Cinzia Milito
- Department of Molecular Medicine, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Davide Firinu
- Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy
| | - Nicholas Landini
- Department of Radiological, Oncological and Pathological Sciences, Policlinico Umberto I Hospital, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Mark G. Jones
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 YD, UK;
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton SO16 6YD, UK
| | - Carla Felice
- Rare Diseases Referral Center, Internal Medicine 1, Department of Medicine (DIMED), AULSS2 Marca Trevigiana, Ca’ Foncello Hospital, University of Padova, 35124 Padova, Italy (C.F.); (M.R.); (R.S.); (F.C.)
| | - Marcello Rattazzi
- Rare Diseases Referral Center, Internal Medicine 1, Department of Medicine (DIMED), AULSS2 Marca Trevigiana, Ca’ Foncello Hospital, University of Padova, 35124 Padova, Italy (C.F.); (M.R.); (R.S.); (F.C.)
| | - Riccardo Scarpa
- Rare Diseases Referral Center, Internal Medicine 1, Department of Medicine (DIMED), AULSS2 Marca Trevigiana, Ca’ Foncello Hospital, University of Padova, 35124 Padova, Italy (C.F.); (M.R.); (R.S.); (F.C.)
| | - Francesco Cinetto
- Rare Diseases Referral Center, Internal Medicine 1, Department of Medicine (DIMED), AULSS2 Marca Trevigiana, Ca’ Foncello Hospital, University of Padova, 35124 Padova, Italy (C.F.); (M.R.); (R.S.); (F.C.)
| |
Collapse
|
6
|
Kamel M, Aleya S, Alsubih M, Aleya L. Microbiome Dynamics: A Paradigm Shift in Combatting Infectious Diseases. J Pers Med 2024; 14:217. [PMID: 38392650 PMCID: PMC10890469 DOI: 10.3390/jpm14020217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/24/2024] Open
Abstract
Infectious diseases have long posed a significant threat to global health and require constant innovation in treatment approaches. However, recent groundbreaking research has shed light on a previously overlooked player in the pathogenesis of disease-the human microbiome. This review article addresses the intricate relationship between the microbiome and infectious diseases and unravels its role as a crucial mediator of host-pathogen interactions. We explore the remarkable potential of harnessing this dynamic ecosystem to develop innovative treatment strategies that could revolutionize the management of infectious diseases. By exploring the latest advances and emerging trends, this review aims to provide a new perspective on combating infectious diseases by targeting the microbiome.
Collapse
Affiliation(s)
- Mohamed Kamel
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza 11221, Egypt
| | - Sami Aleya
- Faculty of Medecine, Université de Bourgogne Franche-Comté, Hauts-du-Chazal, 25030 Besançon, France;
| | - Majed Alsubih
- Department of Civil Engineering, King Khalid University, Guraiger, Abha 62529, Saudi Arabia;
| | - Lotfi Aleya
- Laboratoire de Chrono-Environnement, Université de Bourgogne Franche-Comté, UMR CNRS 6249, La Bouloie, 25030 Besançon, France;
| |
Collapse
|
7
|
Mazuryk J, Klepacka K, Kutner W, Sharma PS. Glyphosate: Impact on the microbiota-gut-brain axis and the immune-nervous system, and clinical cases of multiorgan toxicity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 271:115965. [PMID: 38244513 DOI: 10.1016/j.ecoenv.2024.115965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 09/25/2023] [Accepted: 01/06/2024] [Indexed: 01/22/2024]
Abstract
Glyphosate (GLP) and GLP-based herbicides (GBHs), such as polyethoxylated tallow amine-based GLP surfactants (GLP-SH), developed in the late 70', have become the most popular and controversial agrochemicals ever produced. Nowadays, GBHs have reached 350 million hectares of crops in over 140 countries, with an annual turnover of 5 billion and 11 billion USD in the U.S.A. and worldwide, respectively. Because of the highly efficient inhibitory activity of GLP targeted to the 5-enolpyruvylshikimate-3-phosphate synthase pathway, present in plants and several bacterial strains, the GLP-resistant crop-based genetic agricultural revolution has decreased famine and improved the costs and quality of living in developing countries. However, this progress has come at the cost of the 50-year GBH overuse, leading to environmental pollution, animal intoxication, bacterial resistance, and sustained occupational exposure of the herbicide farm and companies' workers. According to preclinical and clinical studies covered in the present review, poisoning with GLP, GLP-SH, and GBHs devastatingly affects gut microbiota and the microbiota-gut-brain (MGB) axis, leading to dysbiosis and gastrointestinal (GI) ailments, as well as immunosuppression and inappropriate immunostimulation, cholinergic neurotransmission dysregulation, neuroendocrinal system disarray, and neurodevelopmental and neurobehavioral alterations. Herein, we mainly focus on the contribution of gut microbiota (GM) to neurological impairments, e.g., stroke and neurodegenerative and neuropsychiatric disorders. The current review provides a comprehensive introduction to GLP's microbiological and neurochemical activities, including deviation of the intestinal Firmicutes-to-Bacteroidetes ratio, acetylcholinesterase inhibition, excitotoxicity, and mind-altering processes. Besides, it summarizes and critically discusses recent preclinical studies and clinical case reports concerning the harmful impacts of GBHs on the GI tract, MGB axis, and nervous system. Finally, an insightful comparison of toxic effects caused by GLP, GBH-SH, and GBHs is presented. To this end, we propose a first-to-date survey of clinical case reports on intoxications with these herbicides.
Collapse
Affiliation(s)
- Jarosław Mazuryk
- Department of Electrode Processes, Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland; Bio & Soft Matter, Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, 1 Place Louis Pasteur, 1348 Louvain-la-Neuve, Belgium.
| | - Katarzyna Klepacka
- Functional Polymers Research Team, Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland; ENSEMBLE(3) sp. z o. o., 01-919 Warsaw, Poland
| | - Włodzimierz Kutner
- Department of Electrode Processes, Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland; Faculty of Mathematics and Natural Sciences. School of Sciences, Cardinal Stefan Wyszynski University in Warsaw, 01-938 Warsaw, Poland
| | - Piyush Sindhu Sharma
- Functional Polymers Research Team, Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
| |
Collapse
|
8
|
Cabanero-Navalon MD, Garcia-Bustos V, Mira A, Moral Moral P, Salavert-Lleti M, Forner Giner MJ, Núñez Beltrán M, Todolí Parra J, Bracke C, Carda-Diéguez M. Dysimmunity in common variable immunodeficiency is associated with alterations in oral, respiratory, and intestinal microbiota. Clin Immunol 2023; 256:109796. [PMID: 37774905 DOI: 10.1016/j.clim.2023.109796] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/10/2023] [Accepted: 09/25/2023] [Indexed: 10/01/2023]
Abstract
Common variable immunodeficiency (CVID) is the most common symptomatic primary immunodeficiency characterized by decreased immunoglobulins and recurrent infections. Its aetiology remains unknown, and some patients present with severe non-infectious autoimmune or inflammatory complications with elevated associated morbimortality. Recently, intestinal dysbiosis has been proposed as a driver of immune dysregulation. In this study, we assessed the oral, respiratory, and gastrointestinal microbiota of 41 CVID patients (24 with dysimmune and 17 with infection complications) and 15 healthy volunteers using 16S rRNA gene sequencing to explore associations between microbiome profiles and CVID phenotypes. Profound differences in the composition of the microbiota in saliva, sputum, and stool were detected between dysimmune CVID patients and healthy individuals. Globally, respiratory species diversity and faecal bacterial richness were lower in CVID individuals with immune complications. Although a single species could not be identified as a robust predictor of dysimmunity, a combination of around 5-7 bacterial species in each type of sample could predict this severe phenotype with an accuracy of around 90% in the study population. Our study provides new insights into these previously unexplored but highly interrelated ecological niches among themselves and with patient profiles. Our data suggest that this disease-related systemic dysbiosis could be implicated in the immune dysregulation associated with severe cases of CVID.
Collapse
Affiliation(s)
- Marta Dafne Cabanero-Navalon
- Primary Immune Deficiencies Unit, Department of Internal Medicine, University and Polytechnic Hospital La Fe, Valencia, Spain; Research Group of Chronic Diseases and HIV Infection, Health Research Institute La Fe, Valencia, Spain
| | - Victor Garcia-Bustos
- Primary Immune Deficiencies Unit, Department of Internal Medicine, University and Polytechnic Hospital La Fe, Valencia, Spain; Severe Infection Research Group, Health Research Institute La Fe, Valencia, Spain.
| | - Alex Mira
- Genomics & Health Department, FISABIO Foundation, Valencia, Spain
| | - Pedro Moral Moral
- Primary Immune Deficiencies Unit, Department of Internal Medicine, University and Polytechnic Hospital La Fe, Valencia, Spain; Research Group of Chronic Diseases and HIV Infection, Health Research Institute La Fe, Valencia, Spain
| | - Miguel Salavert-Lleti
- Severe Infection Research Group, Health Research Institute La Fe, Valencia, Spain; Unit of Infectious Diseases, Department of Internal Medicine of the University and Polytechnic Hospital La Fe, Valencia, Spain
| | | | - María Núñez Beltrán
- Primary Immune Deficiencies Unit, Department of Internal Medicine, University and Polytechnic Hospital La Fe, Valencia, Spain
| | - José Todolí Parra
- Primary Immune Deficiencies Unit, Department of Internal Medicine, University and Polytechnic Hospital La Fe, Valencia, Spain; Research Group of Chronic Diseases and HIV Infection, Health Research Institute La Fe, Valencia, Spain
| | - Carme Bracke
- Department of Infectious Diseases, Germans Trias i Pujol Hospital, Badalona, Spain
| | | |
Collapse
|
9
|
Poto R, Pecoraro A, Ferrara AL, Punziano A, Lagnese G, Messuri C, Loffredo S, Spadaro G, Varricchi G. Cytokine dysregulation despite immunoglobulin replacement therapy in common variable immunodeficiency (CVID). Front Immunol 2023; 14:1257398. [PMID: 37841257 PMCID: PMC10568625 DOI: 10.3389/fimmu.2023.1257398] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/07/2023] [Indexed: 10/17/2023] Open
Abstract
Introduction Common variable immunodeficiency (CVID) is the most prevalent symptomatic primary immunodeficiency. CVID is a heterogeneous disorder with a presumed multifactorial etiology. Intravenous or subcutaneous immunoglobulin replacement therapy (IgRT) can prevent severe infections but not underlying immune dysregulation. Methods In this study, we evaluated the serum concentrations of proinflammatory (TNF-α, IL-1β, IL-6) and immunoregulatory cytokines (IL-10), as well as lipopolysaccharide (LPS) and soluble CD14 (sCD14) in CVID individuals with infectious only (INF-CVID), and those with additional systemic autoimmune and inflammatory disorders (NIC-CVID), and healthy donors (HD). Results Our results showed increased serum concentrations of TNF-α, IL-1β, IL-6, and IL-10 in both INF-CVID and NIC-CVID subjects compared to HD. However, elevations of TNF-α, IL-1β, IL-6, and IL-10 were significantly more marked in NIC-CVID than INF-CVID. Additionally, LPS concentrations were increased only in NIC-CVID but not in INF-CVID compared to HD. Circulating levels of sCD14 were significantly increased in NIC-CVID compared to both INF-CVID and HD. Discussion These findings indicate persistent cytokine dysregulation despite IgRT in individuals with CVID. Moreover, the circulating cytokine profile reveals the heterogeneity of immune dysregulation in different subgroups of CVID subjects.
Collapse
Affiliation(s)
- Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
| | - Antonio Pecoraro
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
- Unità Operativa (UO) Medicina Trasfusionale, Azienda Sanitaria Territoriale, Ascoli Piceno, Italy
| | - Anne Lise Ferrara
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
| | - Alessandra Punziano
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
| | - Gianluca Lagnese
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
| | - Carla Messuri
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Stefania Loffredo
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- Institute of Experimental Endocrinology and Oncology, National Research Council (CNR), Naples, Italy
| | - Giuseppe Spadaro
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- Institute of Experimental Endocrinology and Oncology, National Research Council (CNR), Naples, Italy
| |
Collapse
|
10
|
Deng F, Wang H, Wang X. Chronic Diarrhea with Villous Blunting of the Small Intestine Under Capsule Endoscopy in Common Variable Immunodeficiency and X-Linked Agammaglobulinemia: A Case Series. J Asthma Allergy 2023; 16:997-1006. [PMID: 37772267 PMCID: PMC10522781 DOI: 10.2147/jaa.s418996] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 09/14/2023] [Indexed: 09/30/2023] Open
Abstract
Introduction Primary immunodeficiencies (PIDs) are a heterogeneous group of disorders, common variable immunodeficiency disorder (CVID) and X-linked agammaglobulinemia (XLA) are PIDs related to B-cell defect, characterized by reduced levels of immunoglobulins and immune dysregulation. Infections are the most common clinical manifestations, while underlying autoimmune and inflammatory conditions are present in some patients with CVID and XLA, leading to clinical misdiagnosis and diagnostic delay. Chronic diarrhea in patients with CVID and XLA, particularly complicated malabsorption and protein-energy malnutrition, is responsible for poor prognostic outcomes. Methods In this study, we described three PID adult patients (two with CVID and one with XLA) who presented with varying degrees of chronic diarrhea, weight loss, and protein-energy malnutrition. We suggest that villous blunting of the small intestine under capsule endoscopy may be an endoscopic feature of PID-related enteropathy, thus highlighting the application of capsule endoscopy in patients with CVID and XLA presenting with chronic diarrhea. Conclusion We also summarize regular Ig supplementation is the basic treatment for CVID and XLA patients, proper enteral nutrition and probiotic therapy can be explored to use to alter gut microbiota and modulate intestinal immune response. However, vedolizumab is not helpful to PID-related enteropathy therapy, as it exacerbates the inflammatory response in extra-intestinal organs and ultimately causes poor clinical outcomes.
Collapse
Affiliation(s)
- Feihong Deng
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
- Research Center of Digestive Disease, Central South University, Changsha, Hunan, 410011, People’s Republic of China
| | - Hanyu Wang
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
- Research Center of Digestive Disease, Central South University, Changsha, Hunan, 410011, People’s Republic of China
| | - Xuehong Wang
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
- Research Center of Digestive Disease, Central South University, Changsha, Hunan, 410011, People’s Republic of China
| |
Collapse
|
11
|
Sanchez DA, Rotella K, Toribio C, Hernandez M, Cunningham-Rundles C. Characterization of infectious and non-infectious gastrointestinal disease in common variable immunodeficiency: analysis of 114 patient cohort. Front Immunol 2023; 14:1209570. [PMID: 37711607 PMCID: PMC10498782 DOI: 10.3389/fimmu.2023.1209570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/31/2023] [Indexed: 09/16/2023] Open
Abstract
Common Variable Immunodeficiency (CVID), a complex primary immunodeficiency syndrome defined by defective B cell responses to infection and vaccination, has heterogeneous clinical manifestations. Gastrointestinal (GI) complications in CVID, both infectious and non-infectious, can cause significant impairment leading to malabsorption and frank malnutrition. In order to better characterize the spectrum of GI disease associated with CVID, we describe 114 patients with GI disease (15.6%) from our 728 patient single center CVID cohort. Norovirus, Giardia and Cytomegalovirus were the most frequently isolated infectious pathogens. CVID enteropathy was the most encountered GI diagnosis based on endoscopy, with only a minority of patients having Crohn's disease (6.1%) or ulcerative colitis/proctitis (4.5%). Concurrent autoimmunity (30.7%), lung disease (18.4%) and malignancy (8.7%) were also present in significant proportion of subjects. Lastly, 16 of 47 (34%) who underwent whole exome sequencing demonstrated a culprit gene defect associated with CVID.
Collapse
Affiliation(s)
- David A. Sanchez
- Division of Allergy and Immunology, Mount Sinai, New York, NY, United States
| | - Karina Rotella
- Division of Allergy and Immunology, Mount Sinai, New York, NY, United States
| | | | - Matthew Hernandez
- Division of Allergy and Immunology, Mount Sinai, New York, NY, United States
| | | |
Collapse
|
12
|
Peng Y, Chen Y, Wang Y, Wang W, Qiao S, Lan J, Wang M. Dysbiosis and primary B-cell immunodeficiencies: current knowledge and future perspective. Immunol Res 2023; 71:528-536. [PMID: 36933165 DOI: 10.1007/s12026-023-09365-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 01/27/2023] [Indexed: 03/19/2023]
Abstract
According to Elie Metchnikoff, an originator of modern immunology, several pivotal functions for disease and health are provided by indigenous microbiota. Nonetheless, important mechanistic insights have been elucidated more recently, owing to the growing availability of DNA sequencing technology. There are 10 to 100 trillion symbiotic microbes (such as viruses, bacteria, and yeast) in each human gut microbiota. Both locally and systemically, the gut microbiota has been demonstrated to impact immune homeostasis. Primary B-cell immunodeficiencies (PBIDs) are a group of primary immunodeficiency diseases (PIDs) referring to the dysregulated antibody production due to either intrinsic genetic defects or failures in functions of B cells. Recent studies have found that PBIDs cause disruptions in the gut's typical homeostatic systems, resulting in inadequate immune surveillance in the gastrointestinal (GI) tract, which is linked to increased dysbiosis, which is characterized by a disruption in the microbial homeostasis. This study aimed to review the published articles in this field to provide a comprehensive view of the existing knowledge about the crosstalk between the gut microbiome and PBID, the factors shaping the gut microbiota in PBID, as well as the potential clinical approaches for restoring a normal microbial community.
Collapse
Affiliation(s)
- Ye Peng
- Cancer Center, Department of Hematology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, 58 Shangtang Road, Zhejiang, 310014, Hangzhou, China
| | - Yirui Chen
- Cancer Center, Department of Hematology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, 58 Shangtang Road, Zhejiang, 310014, Hangzhou, China
| | - Yanzhong Wang
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Zhejiang, Hangzhou, China
| | - Wensong Wang
- Cancer Center, Department of Hematology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, 58 Shangtang Road, Zhejiang, 310014, Hangzhou, China
| | - Sai Qiao
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Zhejiang, Hangzhou, China
| | - Jianping Lan
- Cancer Center, Department of Hematology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, 58 Shangtang Road, Zhejiang, 310014, Hangzhou, China.
| | - Manling Wang
- Cancer Center, Department of Hematology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, 58 Shangtang Road, Zhejiang, 310014, Hangzhou, China.
| |
Collapse
|
13
|
Cai F, Zhou C, Jiao N, Liang X, Ye Z, Chen W, Yang Q, Peng H, Tang Y, Niu C, Zhao G, Wang Z, Zhang G, Yu X. Systematic Microbiome Dysbiosis Is Associated with IgA Nephropathy. Microbiol Spectr 2023; 11:e0520222. [PMID: 37227280 PMCID: PMC10269816 DOI: 10.1128/spectrum.05202-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 05/04/2023] [Indexed: 05/26/2023] Open
Abstract
IgA nephropathy (IgAN) is reportedly associated with microbial dysbiosis. However, the microbiome dysregulation of IgAN patients across multiple niches remains unclear. To gain a systematic understanding of microbial dysbiosis, we conducted large-scale 16S rRNA gene sequencing in IgAN patients and healthy volunteers across 1,732 oral, pharynx, gut, and urine samples. We observed a niche-specific increase of several opportunistic pathogens, including Bergeyella and Capnocytophaga in the oral and pharynx, whereas some beneficial commensals decreased in IgAN patients. Similar alterations were also observed in the early versus advanced stage of chronic kidney disease (CKD) progression. Moreover, Bergeyella, Capnocytophaga, and Comamonas in the oral and pharynx were positively associated with creatinine and urea, indicating renal lesions. Random forest classifiers were developed by using the microbial abundance to predict IgAN, achieving an optimal accuracy of 0.879 in the discovery phase and 0.780 in the validation phase. IMPORTANCE This study provides microbial profiles of IgAN across multiple niches and underlines the potential of these biomarkers as promising, noninvasive tools with which to differentiate IgAN patients for clinical applications.
Collapse
Affiliation(s)
- Fengtao Cai
- School of Medicine, South China University of Technology, Guangzhou, China
- Department of Nephrology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Chenfen Zhou
- National Genomics Data Center & Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Na Jiao
- National Clinical Research Center for Child Health, the Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xinling Liang
- Department of Nephrology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Zhiming Ye
- Department of Nephrology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Wei Chen
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qiongqiong Yang
- Department of Nephrology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hui Peng
- Department of Nephrology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ying Tang
- Department of Nephrology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Chaoqun Niu
- National Genomics Data Center & Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Guoping Zhao
- National Genomics Data Center & Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Zefeng Wang
- National Genomics Data Center & Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Guoqing Zhang
- National Genomics Data Center & Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xueqing Yu
- School of Medicine, South China University of Technology, Guangzhou, China
- Department of Nephrology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangzhou, China
| |
Collapse
|
14
|
Sharma M, Dhaliwal M, Tyagi R, Goyal T, Sharma S, Rawat A. Microbiome and Its Dysbiosis in Inborn Errors of Immunity. Pathogens 2023; 12:pathogens12040518. [PMID: 37111404 PMCID: PMC10145396 DOI: 10.3390/pathogens12040518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/20/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Inborn errors of immunity (IEI) can present with infections, autoimmunity, lymphoproliferation, granulomas, and malignancy. IEIs are due to genetic abnormalities that disrupt normal host-immune response or immune regulation. The microbiome appears essential for maintaining host immunity, especially in patients with a defective immune system. Altered gut microbiota in patients with IEI can lead to clinical symptoms. Microbial dysbiosis is the consequence of an increase in pro-inflammatory bacteria or a reduction in anti-inflammatory bacteria. However, functional and compositional differences in microbiota are also involved. Dysbiosis and a reduced alpha-diversity are well documented, particularly in conditions like common variable immunodeficiency. Deranged microbiota is also seen in Wiskott–Aldrich syndrome, severe combined immunodeficiency, chronic granulomatous disease, selective immunoglobulin-A deficiency, Hyper IgE syndrome (HIGES), X-linked lymphoproliferative disease-2, immunodysregulation, polyendocrinopathy, enteropathy, x-linked syndrome, and defects of IL10 signalling. Distinct gastrointestinal, respiratory, and cutaneous symptoms linked to dysbiosis are seen in several IEIs, emphasizing the importance of microbiome identification. In this study, we discuss the processes that maintain immunological homeostasis between commensals and the host and the disruptions thereof in patients with IEIs. As the connection between microbiota, host immunity, and infectious illnesses is better understood, microbiota manipulation as a treatment strategy or infection prevention method would be more readily employed. Therefore, optimal prebiotics, probiotics, postbiotics, and fecal microbial transplantation can be promising strategies to restore the microbiota and decrease disease pathology in patients with IEIs.
Collapse
|
15
|
Nöltner C, Bulashevska A, Hübscher K, Haberstroh H, Grimbacher B, Proietti M. Fecal Immunoglobulin Levels as a Modifier of the Gut Microbiome in Patients with Common Variable Immunodeficiency. J Clin Immunol 2023:10.1007/s10875-023-01469-9. [PMID: 36961604 DOI: 10.1007/s10875-023-01469-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 03/06/2023] [Indexed: 03/25/2023]
Abstract
OBJECTIVE Common variable immunodeficiency (CVID) is the most common clinically relevant entity of inborn errors of immunity. In these patients, an altered gut microbiome composition with reduced diversity has been described. We sought to investigate the fecal immunoglobulin levels and their impact on the gut microflora in patients with CVID. METHODS We analyzed the gut microbiome of 28 CVID patients and 42 healthy donors (HDs), including 21 healthy household controls, by sequencing the V3 and V4 regions of the bacterial 16S rRNA gene extracted from stool samples. The fecal levels of immunoglobulin A, M, and G of 27 CVID patients and 41 HDs were measured in the supernatant by ELISA and normalized for protein concentration. RESULTS We measured decreased IgA and increased IgG in stool samples from CVID patients compared to HDs. Decreased levels of fecal IgA and IgM were associated with reduced microbial diversity and increased dysbiosis. We identified a large number of significantly differentially abundant taxa, especially in patients with decreased IgA levels, but also in patients with decreased IgM levels compared to their counterparts. CONCLUSIONS CVID patients have an altered gut microbiota composition, which is most prevalent in patients with decreased fecal IgA and IgM levels. In this study, we identify fecal immunoglobulins as a potential modifier of the gut microbiome in CVID patients.
Collapse
Affiliation(s)
- Christina Nöltner
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Breisacher Str. 115, 79106, Freiburg, Germany
| | - Alla Bulashevska
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Breisacher Str. 115, 79106, Freiburg, Germany
| | - Katrin Hübscher
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Breisacher Str. 115, 79106, Freiburg, Germany
| | - Hanna Haberstroh
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Breisacher Str. 115, 79106, Freiburg, Germany
| | - Bodo Grimbacher
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Breisacher Str. 115, 79106, Freiburg, Germany
- DZIF- German Center for Infection Research, Satellite Center Freiburg, Freiburg, Germany
- CIBSS- Centre for Integrative Biological Signalling Studies, Albert-Ludwigs-University, Freiburg, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
- Institute of Immunity and Transplantation, Royal Free Hospital, University College London, London, UK
| | - Michele Proietti
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Breisacher Str. 115, 79106, Freiburg, Germany.
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany.
- Department of Rheumatology and Immunology, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
16
|
Hajjar J, Voigt A, Conner M, Swennes A, Fowler S, Calarge C, Mendonca D, Armstrong D, Chang CY, Walter J, Butte M, Savidge T, Oh J, Kheradmand F, Petrosino J. Common Variable Immunodeficiency Patient Fecal Microbiota Transplant Recapitulates Gut Dysbiosis. RESEARCH SQUARE 2023:rs.3.rs-2640584. [PMID: 36993518 PMCID: PMC10055500 DOI: 10.21203/rs.3.rs-2640584/v1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
Purpose Patients with non-infectious complications have worse clinical outcomes in common variable immunodeficiency (CVID) than those with infections-only. Non-infectious complications are associated with gut microbiome aberrations, but there are no reductionist animal models that emulate CVID. Our aim in this study was to uncover potential microbiome roles in the development of non-infectious complications in CVID. Methods We examined fecal whole genome shotgun sequencing from patients CVID, and non-infectious complications, infections-only, and their household controls. We also performed Fecal Microbiota transplant from CVID patients to Germ-Free Mice. Results We found potentially pathogenic microbes Streptococcus parasanguinis and Erysipelatoclostridium ramosum were enriched in gut microbiomes of CVID patients with non-infectious complications. In contrast, Fusicatenibacter saccharivorans and Anaerostipes hadrus, known to suppress inflammation and promote healthy metabolism, were enriched in gut microbiomes of infections-only CVID patients. Fecal microbiota transplant from non-infectious complications, infections-only, and their household controls into germ-free mice revealed gut dysbiosis patterns in recipients from CVID patients with non-infectious complications, but not infections-only CVID, or household controls recipients. Conclusion Our findings provide a proof of concept that fecal microbiota transplant from CVID patients with non-infectious complications to Germ-Free mice recapitulates microbiome alterations observed in the donors.
Collapse
|
17
|
Hazime R, Eddehbi FE, El Mojadili S, Lakhouaja N, Souli I, Salami A, M’Raouni B, Brahim I, Oujidi M, Guennouni M, Bousfiha AA, Admou B. Inborn errors of immunity and related microbiome. Front Immunol 2022; 13:982772. [PMID: 36177048 PMCID: PMC9513548 DOI: 10.3389/fimmu.2022.982772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/19/2022] [Indexed: 11/15/2022] Open
Abstract
Inborn errors of immunity (IEI) are characterized by diverse clinical manifestations that are dominated by atypical, recurrent, chronic, or severe infectious or non-infectious features, including autoimmunity, lymphoproliferative disease, granulomas, and/or malignancy, which contribute substantially to morbidity and mortality. Some data suggest a correlation between clinical manifestations of IEI and altered gut microbiota. Many IEI display microbial dysbiosis resulting from the proliferation of pro-inflammatory bacteria or a decrease in anti-inflammatory bacteria with variations in the composition and function of numerous microbiota. Dysbiosis is considered more established, mainly within common variable immunodeficiency, selective immunoglobulin A deficiency, severe combined immunodeficiency diseases, Wiskott–Aldrich syndrome, Hyper-IgE syndrome, autoimmune polyendocrinopathy–candidiasis–ectodermal-dystrophy (APECED), immune dysregulation, polyendocrinopathy, enteropathy X-linked (IPEX) syndrome, IL-10 receptor deficiency, chronic granulomatous disease, and Kostmann disease. For certain IEIs, the specific predominance of gastrointestinal, respiratory, and cutaneous involvement, which is frequently associated with dysbiosis, justifies the interest for microbiome identification. With the better understanding of the relationship between gut microbiota, host immunity, and infectious diseases, the integration of microbiota modulation as a therapeutic approach or a preventive measure of infection becomes increasingly relevant. Thus, a promising strategy is to develop optimized prebiotics, probiotics, postbiotics, and fecal microbial transplantation to rebalance the intestinal microbiota and thereby attenuate the disease activity of many IEIs.
Collapse
Affiliation(s)
- Raja Hazime
- Laboratory of Immunology, Center of Clinical Research, Mohammed VI University Hospital, Marrakech, Morocco
- Biosciences Research Laboratory, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco
| | - Fatima-Ezzohra Eddehbi
- Laboratory of Immunology, Center of Clinical Research, Mohammed VI University Hospital, Marrakech, Morocco
| | - Saad El Mojadili
- Laboratory of Immunology, Center of Clinical Research, Mohammed VI University Hospital, Marrakech, Morocco
| | - Nadia Lakhouaja
- Laboratory of Immunology, Center of Clinical Research, Mohammed VI University Hospital, Marrakech, Morocco
| | - Ikram Souli
- Laboratory of Immunology, Center of Clinical Research, Mohammed VI University Hospital, Marrakech, Morocco
| | - Abdelmouïne Salami
- Laboratory of Immunology, Center of Clinical Research, Mohammed VI University Hospital, Marrakech, Morocco
| | - Bouchra M’Raouni
- Laboratory of Immunology, Center of Clinical Research, Mohammed VI University Hospital, Marrakech, Morocco
| | - Imane Brahim
- Laboratory of Immunology, Center of Clinical Research, Mohammed VI University Hospital, Marrakech, Morocco
| | - Mohamed Oujidi
- Laboratory of Immunology, Center of Clinical Research, Mohammed VI University Hospital, Marrakech, Morocco
| | - Morad Guennouni
- Laboratory of Immunology, Center of Clinical Research, Mohammed VI University Hospital, Marrakech, Morocco
| | - Ahmed Aziz Bousfiha
- Pediatric infectious and Immunology Department, Ibn Rochd University Hospital, Casablanca, Morocco
- Laboratory of Clinical Immunology inflammation and Allergy, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Brahim Admou
- Laboratory of Immunology, Center of Clinical Research, Mohammed VI University Hospital, Marrakech, Morocco
- Biosciences Research Laboratory, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco
- *Correspondence: Brahim Admou,
| |
Collapse
|
18
|
Antmen E, Muller CB, Calligaro C, Dupret-Bories A, Barthes J, Lavalle P, Vrana NE. In vitro two-step granuloma formation model for testing innate immune response to implants and coatings. BIOMATERIALS ADVANCES 2022; 138:212872. [PMID: 35913252 DOI: 10.1016/j.bioadv.2022.212872] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 02/20/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
The extensive innate immune response to implanted biomaterials contributes significantly to their sub-par performance and failure. Granuloma formation is one of such reactions which results in multi-cell type clusters in line with the immune reaction to implanted materials. However, currently no in vitro model of granuloma formation exists that takes into account the arrival of multiple cell types (immune cells and connective tissue cells) to the implant insertion site. In this study, we developed a two-step model based on stimulated macrophage seeding followed by fibroblast introduction after a physiologically relevant time period for mimicking initial steps of immune reaction to biomaterials and inducing granuloma like behavior. Both LPS and TNF-α induction resulted in granuloma like formations which persisted longer than the control conditions. Introduction of human fibroblasts resulted in the colonization of the surfaces where the cell numbers and the collagen secretion were dependent on the microenvironment. In order to demonstrate the capacity of our model system to monitor the reaction to a given coating, a validated antimicrobial coating (Polyarginine (PAR)/Hyaluronic acid (HA)) was used as a testing bed. The coating prevented the adhesion of macrophages while allowing the adhesion of the fibroblast at the time of their arrival. Similar to its antimicrobial activity, macrophage metabolic activity and M2 differentiation in the presence of PAR was dependent to its chain length. The incorporation of fibroblasts resulted in decreased TNF-α and increased IL-1RA secretion especially in stimulation conditions. The pro- and anti-inflammatory cytokine secretions were low for PAR/HA coatings in line with the decreased number of macrophage presence. In the presence of complex PBMC population, the coating resulted in slightly less cellular attachment, without any significant cytokine secretion; the absence of inflammatory reaction was also demonstrated in vivo in a mouse model. The described in vitro granuloma testing system can control the macrophage reaction as a function of stimulation. It can also be used for testing new biomaterials for the potential innate immune responses and also for validation of implant coatings beyond their primary function from the immune response point of view.
Collapse
Affiliation(s)
- Ezgi Antmen
- BIOMATEN, Middle East Technical University, Center of Excellence in Biomaterials and Tissue Engineering, Ankara, Turkey
| | - Celine B Muller
- SPARTHA Medical, 14B Rue de la Canardiere, Strasbourg Cedex 67100, France; INSERM Unité 1121 Biomaterials and Bioengineering, CRBS, 1 Rue Eugène Boeckel, Strasbourg Cedex 67000, France
| | - Cynthia Calligaro
- SPARTHA Medical, 14B Rue de la Canardiere, Strasbourg Cedex 67100, France; INSERM Unité 1121 Biomaterials and Bioengineering, CRBS, 1 Rue Eugène Boeckel, Strasbourg Cedex 67000, France
| | - Agnes Dupret-Bories
- Surgery Department, Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse Oncopole, 1 avenue Irène Joliot Curie, Toulouse 31052, France
| | - Julien Barthes
- INSERM Unité 1121 Biomaterials and Bioengineering, CRBS, 1 Rue Eugène Boeckel, Strasbourg Cedex 67000, France
| | - Philippe Lavalle
- SPARTHA Medical, 14B Rue de la Canardiere, Strasbourg Cedex 67100, France; INSERM Unité 1121 Biomaterials and Bioengineering, CRBS, 1 Rue Eugène Boeckel, Strasbourg Cedex 67000, France
| | - Nihal Engin Vrana
- SPARTHA Medical, 14B Rue de la Canardiere, Strasbourg Cedex 67100, France; INSERM Unité 1121 Biomaterials and Bioengineering, CRBS, 1 Rue Eugène Boeckel, Strasbourg Cedex 67000, France.
| |
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW The current understanding of the relationship of the microbiota to clinical manifestation in patients with primary immunodeficiency, specifically the inflammatory processes caused by or that result in microbial dysbiosis, and their potential therapeutic options in primary immunodeficiency diseases (PID), is the basis of this review. RECENT FINDINGS PIDs are heterogeneous diseases with variable presentations, genetic backgrounds, complications, and severity. The immune-mediators may be extrinsic, such as therapeutic regimens that patients are on, including immunoglobin, biologics, antibiotics and diet, or intrinsic, like cytokines, microRNA and microbiome. The microbiome in PID, in particular, appears to play a crucial role in helping the host's immune system maintain hemostatic control in the intestine. Many of the clinical manifestations and complications of PID may be attributed to inflammatory and immune dysregulatory processes connected to the imbalances of the diet-microbiota-host-immunity axis, as shown by data pointing to the loss of microbial diversity, dysbiosis, in PID. SUMMARY The gut microbiome is a promising area of study in PID. Although the connection of the microbiome to humoral immunodeficiency is evident, the possibility of utilizing the association of humoral and cellular immunodeficiency and the microbiome for therapeutic benefit is still under investigation.
Collapse
Affiliation(s)
- Maryam Ali Al-Nesf
- Allergy and Immunology Section, Hamad Medical Corporation, Doha, Qatar
- Center of Metabolism and Inflammation, Division of Medicine, Royal Free Campus, University College London, London, UK
| | - David Morgan
- School of Cellular & Molecular Medicine, University of Bristol, Bristol, UK
| | - Vidya Mohamed-Ali
- Anti-Doping Laboratory Qatar, Doha, Qatar
- Center of Metabolism and Inflammation, Division of Medicine, Royal Free Campus, University College London, London, UK
| |
Collapse
|
20
|
Varricchi G, Poto R, Ianiro G, Punziano A, Marone G, Gasbarrini A, Spadaro G. Gut Microbiome and Common Variable Immunodeficiency: Few Certainties and Many Outstanding Questions. Front Immunol 2021; 12:712915. [PMID: 34408753 PMCID: PMC8366412 DOI: 10.3389/fimmu.2021.712915] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/12/2021] [Indexed: 12/12/2022] Open
Abstract
Common variable immunodeficiency (CVID) is the most common symptomatic primary antibody immunodeficiency, characterized by reduced serum levels of IgG, IgA, and/or IgM. The vast majority of CVID patients have polygenic inheritance. Immune dysfunction in CVID can frequently involve the gastrointestinal tract and lung. Few studies have started to investigate the gut microbiota profile in CVID patients. Overall, the results suggest that in CVID patients there is a reduction of alpha and beta diversity compared to controls. In addition, these patients can exhibit increased plasma levels of lipopolysaccharide (LPS) and markers (sCD14 and sCD25) of systemic immune cell activation. CVID patients with enteropathy exhibit decreased IgA expression in duodenal tissue. Mouse models for CVID unsatisfactorily recapitulate the polygenic causes of human CVID. The molecular pathways by which gut microbiota contribute to systemic inflammation and possibly tumorigenesis in CVID patients remain poorly understood. Several fundamental questions concerning the relationships between gut microbiota and the development of chronic inflammatory conditions, autoimmune disorders or cancer in CVID patients remain unanswered. Moreover, it is unknown whether it is possible to modify the microbiome and the outcome of CVID patients through specific therapeutic interventions.
Collapse
Affiliation(s)
- Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples, Italy
| | - Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Gianluca Ianiro
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Cattolica del Sacro Cuore University, Rome, Italy
| | - Alessandra Punziano
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples, Italy
| | - Antonio Gasbarrini
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Cattolica del Sacro Cuore University, Rome, Italy
| | - Giuseppe Spadaro
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| |
Collapse
|
21
|
Gámez-Díaz L, Seidel MG. Different Apples, Same Tree: Visualizing Current Biological and Clinical Insights into CTLA-4 Insufficiency and LRBA and DEF6 Deficiencies. Front Pediatr 2021; 9:662645. [PMID: 33996698 PMCID: PMC8113415 DOI: 10.3389/fped.2021.662645] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/24/2021] [Indexed: 12/12/2022] Open
Abstract
Cytotoxic T lymphocyte antigen-4 (CTLA-4) is a crucial immune checkpoint that is constitutively expressed in regulatory T (Treg) cells. Following T-cell activation, CTLA-4 is rapidly mobilized from its intracellular vesicle pool to the cell surface to control the availability of co-stimulatory B7 molecules, thereby maintaining immune homeostasis. Heterozygous mutations in CTLA-4 lead to defects in (i) CTLA-4 ligand binding, (ii) homo-dimerization, (iii) B7-transendocytosis, and (iv) CTLA-4 vesicle trafficking, resulting in an inborn error of immunity with predominant autoimmunity. CTLA-4 vesicle trafficking impairment is also observed in patients with lipopolysaccharide-responsive beige-like anchor protein (LRBA) deficiency or the differentially expressed in FDCP6 homolog (DEF6) deficiency, caused by biallelic mutations in LRBA and DEF6, respectively. Therefore, patients with CTLA-4 insufficiency, LRBA deficiency, and-most recently reported-DEF6 deficiency present an overlapping clinical phenotype mainly attributed to a defective suppressive activity of Tregs, as all three diseases reduce overall surface expression of CTLA-4. In this paper, we describe the clinical phenotypes of these immune checkpoint defects, their patho-mechanisms, and visually compare them to other immune regulatory disorders (IPEX syndrome, CD27, and CD70 deficiencies) by using the immune deficiency and dysregulation (IDDA version 2.1) "kaleidoscope" score. This illustrates the variability of the degrees and manifestations of immune deficiency and dysregulation. Patients characteristically present with an increased risk of infections, autoimmune cytopenias, multi-organ autoimmunity, and inflammation, which are often severe and life-threatening. Furthermore, these patients suffer an increased risk of developing malignancies, especially Non-Hodgkin's lymphoma. Successful treatment options include regular administration of soluble CTLA-4-Ig fusion protein, Treg cell-sparing immune suppressants like sirolimus or mycophenolate mofetil, and hematopoietic stem cell transplantation. This mini-review highlights the most relevant biological and clinical features as well as treatment options for CTLA-4 insufficiency and LRBA and DEF6 deficiencies.
Collapse
Affiliation(s)
- Laura Gámez-Díaz
- Faculty of Medicine, Center for Chronic Immunodeficiency, Institute for Immunodeficiency, Medical Center, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Markus G. Seidel
- Division of Pediatric Hematology-Oncology, Department of Pediatrics and Adolescent Medicine, Medical University of Graz, Graz, Austria
- Research Unit for Pediatric Hematology and Immunology, Medical University of Graz, Graz, Austria
| |
Collapse
|
22
|
Chauhan A, Apostolov R, van Langenberg D, Garg M. Faecal microbiota transplantation for recurrent Clostridioides difficile infection: an Australian experience - effective, safe, yet room for improvement. Intern Med J 2021; 51:106-110. [PMID: 33572016 DOI: 10.1111/imj.15162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 05/29/2020] [Accepted: 08/31/2020] [Indexed: 11/28/2022]
Abstract
Faecal microbiota transplantation (FMT) is reportedly effective and safe for the management of recurrent or refractory Clostridioides difficile infection (CDI), yet real-world data of outcomes of FMT in Australia are limited. In this series, FMT safely resulted in resolution of CDI in 19 patients with reduced healthcare utilisation after 25 FMT, but one patient was diagnosed with an anti-nuclear antibody-positive constitutional illness and Hashimoto thyroiditis following FMT. Further prospective evaluation of the utility of FMT earlier in CDI treatment algorithms to minimise cost and morbidity, and recipient follow up for immune-mediated conditions, is required.
Collapse
Affiliation(s)
- Ayushi Chauhan
- Department of Gastroenterology, Eastern Health, Melbourne, Victoria, Australia
| | - Ross Apostolov
- Department of Gastroenterology, Eastern Health, Melbourne, Victoria, Australia
| | - Daniel van Langenberg
- Department of Gastroenterology, Eastern Health, Melbourne, Victoria, Australia.,Eastern Health Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Mayur Garg
- Department of Gastroenterology, Eastern Health, Melbourne, Victoria, Australia.,Eastern Health Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Gastroenterology and Hepatology, Royal Melbourne Hospital, Melbourne, Victoria, Australia.,Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
23
|
Gut Microbiota-Host Interactions in Inborn Errors of Immunity. Int J Mol Sci 2021; 22:ijms22031416. [PMID: 33572538 PMCID: PMC7866830 DOI: 10.3390/ijms22031416] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 12/11/2022] Open
Abstract
Inborn errors of immunity (IEI) are a group of disorders that are mostly caused by genetic mutations affecting immune host defense and immune regulation. Although IEI present with a wide spectrum of clinical features, in about one third of them various degrees of gastrointestinal (GI) involvement have been described and for some IEI the GI manifestations represent the main and peculiar clinical feature. The microbiome plays critical roles in the education and function of the host's innate and adaptive immune system, and imbalances in microbiota-immunity interactions can contribute to intestinal pathogenesis. Microbial dysbiosis combined to the impairment of immunosurveillance and immune dysfunction in IEI, may favor mucosal permeability and lead to inflammation. Here we review how immune homeostasis between commensals and the host is established in the gut, and how these mechanisms can be disrupted in the context of primary immunodeficiencies. Additionally, we highlight key aspects of the first studies on gut microbiome in patients affected by IEI and discuss how gut microbiome could be harnessed as a therapeutic approach in these diseases.
Collapse
|
24
|
|
25
|
New developments in respiratory medicine: a primary immunodeficiency perspective. Curr Opin Allergy Clin Immunol 2020; 20:549-556. [PMID: 32941317 DOI: 10.1097/aci.0000000000000690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW To consider recent developments in respiratory medicine that are of relevance to clinicians caring for adults affected by primary immunodeficiency disorders. RECENT FINDINGS We consider impulse oscillometry, new bronchoscopic techniques for sampling, MRI and PET, the concept of the human airway microbiome, and new treatment approaches for bronchiectasis and interstitial lung disease to better understand the future of respiratory care for people with PID. SUMMARY New approaches to the diagnosis and management of respiratory manifestations of PID have been driven by better understanding of the lung in health and disease, progress in imaging and sampling modalities, and new therapeutics.
Collapse
|
26
|
Primary Humoral Immune Deficiencies: Overlooked Mimickers of Chronic Immune-Mediated Gastrointestinal Diseases in Adults. Int J Mol Sci 2020; 21:ijms21155223. [PMID: 32718006 PMCID: PMC7432083 DOI: 10.3390/ijms21155223] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 12/12/2022] Open
Abstract
In recent years, the incidence of immune-mediated gastrointestinal disorders, including celiac disease (CeD) and inflammatory bowel disease (IBD), is increasingly growing worldwide. This generates a need to elucidate the conditions that may compromise the diagnosis and treatment of such gastrointestinal disorders. It is well established that primary immunodeficiencies (PIDs) exhibit gastrointestinal manifestations and mimic other diseases, including CeD and IBD. PIDs are often considered pediatric ailments, whereas between 25 and 45% of PIDs are diagnosed in adults. The most common PIDs in adults are the selective immunoglobulin A deficiency (SIgAD) and the common variable immunodeficiency (CVID). A trend to autoimmunity occurs, while gastrointestinal disorders are common in both diseases. Besides, the occurrence of CeD and IBD in SIgAD/CVID patients is significantly higher than in the general population. However, some differences concerning diagnostics and management between enteropathy/colitis in PIDs, as compared to idiopathic forms of CeD/IBD, have been described. There is an ongoing discussion whether CeD and IBD in CVID patients should be considered a true CeD and IBD or just CeD-like and IBD-like diseases. This review addresses the current state of the art of the most common primary immunodeficiencies in adults and co-occurring CeD and IBD.
Collapse
|
27
|
Guevara-Hoyer K, Vasconcelos J, Marques L, Fernandes AA, Ochoa-Grullón J, Marinho A, Sequeira T, Gil C, Rodríguez de la Peña A, Serrano García I, Recio MJ, Fernández-Arquero M, Pérez de Diego R, Ramos JT, Neves E, Sánchez-Ramón S. Variable immunodeficiency study: Evaluation of two European cohorts within a variety of clinical phenotypes. Immunol Lett 2020; 223:78-88. [PMID: 32344018 DOI: 10.1016/j.imlet.2020.03.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 02/02/2020] [Accepted: 03/16/2020] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Given the wide heterogeneity of common variable immunodeficiency (CVID), several groups have proposed clinical and immunological classifications to better define follow-up and prognostic algorithms. The present study aims to validate recent clinical and laboratory algorithms, based on different combinations of CVID biomarkers, to provide more personalized treatment and follow-up strategies. METHODS We analysed clinical and immunological features of 80 patients with suspected or diagnosed CVID, in two reference centres of Portugal and Spain. Clinical manifestations were categorized into clinical phenotyping proposed by Chapel et al. [1] that included cytopenia; polyclonal lymphocytic infiltration; unexplained enteropathy; and no disease-related complications. RESULTS 76% of patients in our cohort entered one of the four categories of clinical phenotyping, without overlap (cytopenia; polyclonal lymphocytic infiltration; unexplained enteropathy; and no disease-related complications). The most prominent phenotype was "cytopenia" (40%) followed by "polyclonal lymphocytic infiltration" (19%). The remaining 24% patients of our cohort had overlap of 2 clinical phenotypes (cytopenia and unexplained enteropathy mainly). A delay of CVID diagnosis in more than 6 years presented 3.7-fold higher risk of developing lymphoproliferation and/or malignancy (p < 0.05), and was associated with increased CD8+CD45RO + T-lymphocytes (p < 0.05). An association between decreased switched-memory B cells with lymphoproliferation and malignancy was observed (p < 0.03 and p < 0.05, respectively). CD4 + T-lymphocytopenia correlated with autoimmune phenotype, with 30% prevalence (p < 0.05). HLA-DR7 expression was related to CVID onset in early life in our patients (13 vs 25 years), and DQ2.5 or DQ2.2 with unexplained enteropathy (p < 0.05). CONCLUSIONS The phenotypic and genetic study is crucial for an adequate clinical orientation of CVID patients. In these two independent cohorts of patients, classification based in clinical and laboratory algorithms, provides more personalized treatment and follow-up strategies.
Collapse
Affiliation(s)
- Kissy Guevara-Hoyer
- Department of Immunology, IML and IdSSC, Hospital Clínico San Carlos, Madrid, Spain; Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, Madrid, Spain; Immunodeficiency Interdepartmental Group (GIID), Madrid, Spain
| | - Julia Vasconcelos
- Department of Immunology, Centro Hospitalar e Universitário Do Porto, Porto, Portugal
| | - Laura Marques
- Department of Pediatrics, Centro Hospitalar e Universitário Do Porto, Porto, Portugal
| | | | - Juliana Ochoa-Grullón
- Department of Immunology, IML and IdSSC, Hospital Clínico San Carlos, Madrid, Spain; Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, Madrid, Spain; Immunodeficiency Interdepartmental Group (GIID), Madrid, Spain
| | - Antonio Marinho
- Clinical Immunology Unit, Centro Hospitalar e Universitário Do Porto, Porto, Portugal
| | - Teresa Sequeira
- Clinical Immunology Unit, Centro Hospitalar e Universitário Do Porto, Porto, Portugal
| | - Celia Gil
- Department of Pediatrics, Hospital Clínico San Carlos, Madrid, Spain
| | | | - Irene Serrano García
- Department of Epidemiology and Preventive Medicine, Hospital Clínico San Carlos, Madrid, Spain
| | - M José Recio
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, Madrid, Spain; Immunodeficiency Interdepartmental Group (GIID), Madrid, Spain
| | - Miguel Fernández-Arquero
- Department of Immunology, IML and IdSSC, Hospital Clínico San Carlos, Madrid, Spain; Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, Madrid, Spain; Immunodeficiency Interdepartmental Group (GIID), Madrid, Spain
| | - Rebeca Pérez de Diego
- Immunodeficiency Interdepartmental Group (GIID), Madrid, Spain; Laboratory of Immunogenetics of Human Diseases, IdiPAZ Institute for Health Research, Madrid, Spain
| | - José Tomas Ramos
- Department of Pediatrics, Hospital Clínico San Carlos, Madrid, Spain
| | - Esmeralda Neves
- Department of Immunology, Centro Hospitalar e Universitário Do Porto, Porto, Portugal
| | - Silvia Sánchez-Ramón
- Department of Immunology, IML and IdSSC, Hospital Clínico San Carlos, Madrid, Spain; Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, Madrid, Spain; Immunodeficiency Interdepartmental Group (GIID), Madrid, Spain.
| |
Collapse
|
28
|
The architecture of the IgG anti-carbohydrate repertoire in primary antibody deficiencies. Blood 2020; 134:1941-1950. [PMID: 31537530 DOI: 10.1182/blood.2019001705] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 09/08/2019] [Indexed: 02/06/2023] Open
Abstract
Immune system failure in primary antibody deficiencies (PADs) has been linked to recurrent infections, autoimmunity, and cancer, yet clinical judgment is often based on the reactivity to a restricted panel of antigens. Previously, we demonstrated that the human repertoire of carbohydrate-specific immunoglobulin G (IgG) exhibits modular organization related to glycan epitope structure. The current study compares the glycan-specific IgG repertoires between different PAD entities. Distinct repertoire profiles with extensive qualitative glycan-recognition defects were observed, which are characterized by the common loss of Galα and GalNAc reactivity and disease-specific recognition of microbial antigens, self-antigens, and tumor-associated carbohydrate antigens. Antibody repertoire analysis may provide a useful tool to elucidate the degree and the clinical implications of immune system failure in individual patients.
Collapse
|
29
|
DeCandia AL, Brenner LJ, King JL, vonHoldt BM. Ear mite infection is associated with altered microbial communities in genetically depauperate Santa Catalina Island foxes (Urocyon littoralis catalinae). Mol Ecol 2020; 29:1463-1475. [PMID: 31821650 DOI: 10.1111/mec.15325] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 11/11/2019] [Accepted: 11/26/2019] [Indexed: 12/12/2022]
Abstract
The host-associated microbiome is increasingly recognized as a critical player in health and immunity. Recent studies have shown that disruption of commensal microbial communities can contribute to disease pathogenesis and severity. Santa Catalina Island foxes (Urocyon littoralis catalinae) present a compelling system in which to examine microbial dynamics in wildlife due to their depauperate genomic structure and extremely high prevalence of ceruminous gland tumors. Although the precise cause is yet unknown, infection with ear mites (Otodectes cynotis) has been linked to chronic inflammation, which is associated with abnormal cell growth and tumor development. Given the paucity of genomic variation in these foxes, other dimensions of molecular diversity, such as commensal microbes, may be critical to host response and disease pathology. We characterized the host-associated microbiome across six body sites of Santa Catalina Island foxes, and performed differential abundance testing between healthy and mite-infected ear canals. We found that mite infection was significantly associated with reduced microbial diversity and evenness, with the opportunistic pathogen Staphylococcus pseudintermedius dominating the ear canal community. These results suggest that secondary bacterial infection may contribute to the sustained inflammation associated with tumor development. As the emergence of antibiotic resistant strains remains a concern of the medical, veterinary, and conservation communities, uncovering high relative abundance of S. pseudintermedius provides critical insight into the pathogenesis of this complex system. Through use of culture-independent sequencing techniques, this study contributes to the broader effort of applying a more inclusive understanding of molecular diversity to questions within wildlife disease ecology.
Collapse
Affiliation(s)
- Alexandra L DeCandia
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | | | | | - Bridgett M vonHoldt
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, NJ, USA
| |
Collapse
|
30
|
Silva SL, Fonseca M, Pereira MLM, Silva SP, Barbosa RR, Serra-Caetano A, Blanco E, Rosmaninho P, Pérez-Andrés M, Sousa AB, Raposo AASF, Gama-Carvalho M, Victorino RMM, Hammarstrom L, Sousa AE. Monozygotic Twins Concordant for Common Variable Immunodeficiency: Strikingly Similar Clinical and Immune Profile Associated With a Polygenic Burden. Front Immunol 2019; 10:2503. [PMID: 31824477 PMCID: PMC6882918 DOI: 10.3389/fimmu.2019.02503] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 10/07/2019] [Indexed: 01/10/2023] Open
Abstract
Monozygotic twins provide a unique opportunity to better understand complex genetic diseases and the relative contribution of heritable factors in shaping the immune system throughout life. Common Variable Immunodeficiency Disorders (CVID) are primary antibody defects displaying wide phenotypic and genetic heterogeneity, with monogenic transmission accounting for only a minority of the cases. Here, we report a pair of monozygotic twins concordant for CVID without a family history of primary immunodeficiency. They featured a remarkably similar profile of clinical manifestations and immunological alterations at diagnosis (established at age 37) and along the subsequent 15 years of follow-up. Interestingly, whole-exome sequencing failed to identify a monogenic cause for CVID, but unraveled a combination of heterozygous variants, with a predicted deleterious impact. These variants were found in genes involved in relevant immunological pathways, such as JUN, PTPRC, TLR1, ICAM1, and JAK3. The potential for combinatorial effects translating into the observed disease phenotype is inferred from their roles in immune pathways, namely in T and B cell activation. The combination of these genetic variants is also likely to impose a significant constraint on environmental influences, resulting in a similar immunological phenotype in both twins, despite exposure to different living conditions. Overall, these cases stress the importance of integrating NGS data with clinical and immunological phenotypes at the single-cell level, as provided by multi-dimensional flow-cytometry, in order to understand the complex genetic landscape underlying the vast majority of patients with CVID, as well as those with other immunodeficiencies.
Collapse
Affiliation(s)
- Susana L Silva
- Faculdade de Medicina, Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, Lisbon, Portugal.,Centro de Imunodeficiências Primárias, Centro Académico de Medicina de Lisboa, Centro Hospitalar Universitário Lisboa Norte and Faculdade de Medicina da Universidade de Lisboa and Instituto de Medicina Molecular, Lisbon, Portugal.,Centro Hospitalar Universitário Lisboa Norte, Hospital de Santa Maria, Lisbon, Portugal
| | - Mariana Fonseca
- Faculdade de Medicina, Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, Lisbon, Portugal.,Centro de Imunodeficiências Primárias, Centro Académico de Medicina de Lisboa, Centro Hospitalar Universitário Lisboa Norte and Faculdade de Medicina da Universidade de Lisboa and Instituto de Medicina Molecular, Lisbon, Portugal
| | - Marcelo L M Pereira
- Faculty of Sciences, BioISI-Biosystems & Integrative Sciences Institute, University of Lisboa, Lisbon, Portugal
| | - Sara P Silva
- Faculdade de Medicina, Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, Lisbon, Portugal.,Centro de Imunodeficiências Primárias, Centro Académico de Medicina de Lisboa, Centro Hospitalar Universitário Lisboa Norte and Faculdade de Medicina da Universidade de Lisboa and Instituto de Medicina Molecular, Lisbon, Portugal.,Centro Hospitalar Universitário Lisboa Norte, Hospital de Santa Maria, Lisbon, Portugal
| | - Rita R Barbosa
- Faculdade de Medicina, Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, Lisbon, Portugal
| | - Ana Serra-Caetano
- Faculdade de Medicina, Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, Lisbon, Portugal.,Centro de Imunodeficiências Primárias, Centro Académico de Medicina de Lisboa, Centro Hospitalar Universitário Lisboa Norte and Faculdade de Medicina da Universidade de Lisboa and Instituto de Medicina Molecular, Lisbon, Portugal
| | - Elena Blanco
- Department of Medicine, Cancer Research Centre (IBMCC, USAL-CSIC), Cytometry Service (NUCLEUS), Institute of Biomedical Research of Salamanca (IBSAL), University of Salamanca (USAL), Salamanca, Spain.,Biomedical Research Networking Centre on Cancer-CIBER-CIBERONC, Number CB16/12/00400, Institute of Health Carlos III, Madrid, Spain
| | - Pedro Rosmaninho
- Faculdade de Medicina, Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, Lisbon, Portugal.,Centro de Imunodeficiências Primárias, Centro Académico de Medicina de Lisboa, Centro Hospitalar Universitário Lisboa Norte and Faculdade de Medicina da Universidade de Lisboa and Instituto de Medicina Molecular, Lisbon, Portugal
| | - Martin Pérez-Andrés
- Department of Medicine, Cancer Research Centre (IBMCC, USAL-CSIC), Cytometry Service (NUCLEUS), Institute of Biomedical Research of Salamanca (IBSAL), University of Salamanca (USAL), Salamanca, Spain.,Biomedical Research Networking Centre on Cancer-CIBER-CIBERONC, Number CB16/12/00400, Institute of Health Carlos III, Madrid, Spain
| | - Ana Berta Sousa
- Faculdade de Medicina, Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, Lisbon, Portugal.,Centro de Imunodeficiências Primárias, Centro Académico de Medicina de Lisboa, Centro Hospitalar Universitário Lisboa Norte and Faculdade de Medicina da Universidade de Lisboa and Instituto de Medicina Molecular, Lisbon, Portugal.,Centro Hospitalar Universitário Lisboa Norte, Hospital de Santa Maria, Lisbon, Portugal
| | - Alexandre A S F Raposo
- Faculdade de Medicina, Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, Lisbon, Portugal.,Centro de Imunodeficiências Primárias, Centro Académico de Medicina de Lisboa, Centro Hospitalar Universitário Lisboa Norte and Faculdade de Medicina da Universidade de Lisboa and Instituto de Medicina Molecular, Lisbon, Portugal
| | - Margarida Gama-Carvalho
- Faculty of Sciences, BioISI-Biosystems & Integrative Sciences Institute, University of Lisboa, Lisbon, Portugal
| | - Rui M M Victorino
- Faculdade de Medicina, Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, Lisbon, Portugal.,Centro de Imunodeficiências Primárias, Centro Académico de Medicina de Lisboa, Centro Hospitalar Universitário Lisboa Norte and Faculdade de Medicina da Universidade de Lisboa and Instituto de Medicina Molecular, Lisbon, Portugal.,Centro Hospitalar Universitário Lisboa Norte, Hospital de Santa Maria, Lisbon, Portugal
| | | | - Ana E Sousa
- Faculdade de Medicina, Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, Lisbon, Portugal.,Centro de Imunodeficiências Primárias, Centro Académico de Medicina de Lisboa, Centro Hospitalar Universitário Lisboa Norte and Faculdade de Medicina da Universidade de Lisboa and Instituto de Medicina Molecular, Lisbon, Portugal
| |
Collapse
|
31
|
Gereige JD, Maglione PJ. Current Understanding and Recent Developments in Common Variable Immunodeficiency Associated Autoimmunity. Front Immunol 2019; 10:2753. [PMID: 31921101 PMCID: PMC6914703 DOI: 10.3389/fimmu.2019.02753] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 11/11/2019] [Indexed: 12/14/2022] Open
Abstract
Common variable immunodeficiency (CVID) is the most prevalent symptomatic primary immunodeficiency and comprises a group of disorders with similar antibody deficiency but a myriad of different etiologies, most of which remain undefined. The variable aspect of CVID refers to the approximately half of patients who develop non-infectious complications in addition to heightened susceptibility to infection. The pathogenesis of these complications is poorly understood and somewhat counterintuitive because these patients that are defined by their immune futility simultaneously have elevated propensity for autoimmune disease. There are numerous aspects of immune dysregulation associated with autoimmunity in CVID that have only begun to be studied. These findings include elevations of T helper type 1 and follicular helper T cells and B cells expressing low levels of CD21 as well as reciprocal decreases in regulatory T cells and isotype-switched memory B cells. Recently, advances in genomics have furthered our understanding of the fundamental biology underlying autoimmunity in CVID and led to precision therapeutic approaches. However, these genetic etiologies are also associated with clinical heterogeneity and incomplete penetrance, highlighting the fact that continued research efforts remain necessary to optimize treatment. Additional factors, such as commensal microbial dysbiosis, remain to be better elucidated. Thus, while recent advances in our understanding of CVID-associated autoimmunity have been exciting and substantial, these current scientific advances must now serve as building blocks for the next stages of discovery.
Collapse
Affiliation(s)
- Jessica D Gereige
- Department of Pulmonary, Allergy, Sleep & Critical Care Medicine, Boston Medical Center, Boston University School of Medicine, Boston, MA, United States
| | - Paul J Maglione
- Department of Pulmonary, Allergy, Sleep & Critical Care Medicine, Boston Medical Center, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
32
|
Zheng S, Zhao T, Yuan S, Yang L, Ding J, Cui L, Xu M. Immunodeficiency Promotes Adaptive Alterations of Host Gut Microbiome: An Observational Metagenomic Study in Mice. Front Microbiol 2019; 10:2415. [PMID: 31781050 PMCID: PMC6853035 DOI: 10.3389/fmicb.2019.02415] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 10/07/2019] [Indexed: 12/15/2022] Open
Abstract
The crosstalk between the gut microbiota and immune state of the host is an essential focus in academia and clinics. To explore the dynamic role of the microbiota in response to immune deficiency, we comprehensively assessed the microbiome of 90 mouse fecal samples, across three time points including two immunodeficiency models, namely severe combined immunodeficient (SCID) mice and non-obese diabetic SCID (NOD/SCID) mice, with BALB/cA as a control strain. Metagenomic analysis revealed a decrease in alpha diversity and the existence of a clear structural separation in the microbiota of immunodeficient mice. Although nuances exist between SCID and NOD/SCID mice, an increase in the protective microbiota, in particular Lactobacillus, contributed the most to the discrimination of immunodeficient and control mice. Further data regarding the red blood cell (RBC) concentration and serum IgA level during different stages of development support the concept of the microbiota alleviating the advancement of immune deficiency, which is called microbial compensation. Taken together, these results demonstrate the dynamic impact of immunodeficiency on the gut microbiota and the adaptive alteration of the microbiota that may influence the host state.
Collapse
Affiliation(s)
- Shuyu Zheng
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China.,School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Tingting Zhao
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Shuijuan Yuan
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Lingyu Yang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jinmei Ding
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Li Cui
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Mingqing Xu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
33
|
Fiedorová K, Radvanský M, Bosák J, Grombiříková H, Němcová E, Králíčková P, Černochová M, Kotásková I, Lexa M, Litzman J, Šmajs D, Freiberger T. Bacterial but Not Fungal Gut Microbiota Alterations Are Associated With Common Variable Immunodeficiency (CVID) Phenotype. Front Immunol 2019; 10:1914. [PMID: 31456808 PMCID: PMC6700332 DOI: 10.3389/fimmu.2019.01914] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 07/29/2019] [Indexed: 12/18/2022] Open
Abstract
Common Variable Immunodeficiency (CVID) is the most frequent symptomatic immune disorder characterized by reduced serum immunoglobulins. Patients often suffer from infectious and serious non-infectious complications which impact their life tremendously. The monogenic cause has been revealed in a minority of patients so far, indicating the role of multiple genes and environmental factors in CVID etiology. Using 16S and ITS rRNA amplicon sequencing, we analyzed the bacterial and fungal gut microbiota, respectively, in a group of 55 participants constituting of CVID patients and matched healthy controls including 16 case-control pairs living in the same household, to explore possible associations between gut microbiota composition and disease phenotype. We revealed less diverse and significantly altered bacterial but not fungal gut microbiota in CVID patients, which additionally appeared to be associated with a more severe disease phenotype. The factor of sharing the same household impacted both bacterial and fungal microbiome data significantly, although not as strongly as CVID diagnosis in bacterial assessment. Overall, our results suggest that gut bacterial microbiota is altered in CVID patients and may be one of the missing environmental drivers contributing to some of the symptoms and disease severity. Paired samples serving as controls will provide a better resolution between disease-related dysbiosis and other environmental confounders in future studies.
Collapse
Affiliation(s)
- Kristýna Fiedorová
- Centre for Cardiovascular Surgery and Transplantation, Brno, Czechia.,Central European Institute of Technology, Masaryk University, Brno, Czechia.,Department of Clinical Immunology and Allergology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | | | - Juraj Bosák
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Hana Grombiříková
- Centre for Cardiovascular Surgery and Transplantation, Brno, Czechia.,Department of Clinical Immunology and Allergology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Eva Němcová
- Centre for Cardiovascular Surgery and Transplantation, Brno, Czechia
| | - Pavlína Králíčková
- Department of Allergology and Clinical Immunology, Faculty of Medicine, Charles University and University Hospital in Hradec Kralove, Hradec Kralove, Czechia
| | | | - Iva Kotásková
- Centre for Cardiovascular Surgery and Transplantation, Brno, Czechia.,Central European Institute of Technology, Masaryk University, Brno, Czechia.,Department of Clinical Immunology and Allergology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Matej Lexa
- Faculty of Informatics, Masaryk University, Brno, Czechia
| | - Jiří Litzman
- Department of Clinical Immunology and Allergology, Faculty of Medicine, Masaryk University, Brno, Czechia.,Department of Clinical Immunology and Allergology, St. Anne's University Hospital in Brno, Brno, Czechia
| | - David Šmajs
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Tomáš Freiberger
- Centre for Cardiovascular Surgery and Transplantation, Brno, Czechia.,Central European Institute of Technology, Masaryk University, Brno, Czechia.,Department of Clinical Immunology and Allergology, Faculty of Medicine, Masaryk University, Brno, Czechia
| |
Collapse
|
34
|
The microbiome and immunodeficiencies: Lessons from rare diseases. J Autoimmun 2019; 98:132-148. [PMID: 30704941 DOI: 10.1016/j.jaut.2019.01.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 01/21/2019] [Accepted: 01/23/2019] [Indexed: 12/20/2022]
Abstract
Primary immunodeficiencies (PIDs) are inherited disorders of the immune system, associated with a considerable increase in susceptibility to infections. PIDs can also predispose to malignancy, inflammation and autoimmunity. There is increasing awareness that some aspects of the immune dysregulation in PIDs may be linked to intestinal microbiota. Indeed, the gut microbiota and its metabolites have been shown to influence immune functions and immune homeostasis both locally and systemically. Recent studies have indicated that genetic defects causing PIDs lead to perturbations in the conventional mechanisms underlying homeostasis in the gut, resulting in poor immune surveillance at the intestinal barrier, which associates with altered intestinal permeability and bacterial translocation. Consistently, a substantial proportion of PID patients presents with clinically challenging IBD-like pathology. Here, we describe the current body of literature reporting on dysbiosis of the gut microbiota in different PIDs and how this can be either the result or cause of immune dysregulation. Further, we report how infections in PIDs enhance pathobionts colonization and speculate how, in turn, pathobionts may be responsible for increased disease susceptibility and secondary infections in these patients. The potential relationship between the microbial composition in the intestine and other sites, such as the oral cavity and skin, is also highlighted. Finally, we provide evidence, in preclinical models of PIDs, for the efficacy of microbiota manipulation to ameliorate disease complications, and suggest that the potential use of dietary intervention to correct dysbiotic flora in PID patients may hold promise.
Collapse
|
35
|
Migacz-Gruszka K, Branicki W, Obtulowicz A, Pirowska M, Gruszka K, Wojas-Pelc A. What's New in the Pathophysiology of Alopecia Areata? The Possible Contribution of Skin and Gut Microbiome in the Pathogenesis of Alopecia - Big Opportunities, Big Challenges, and Novel Perspectives. Int J Trichology 2019; 11:185-188. [PMID: 31728100 PMCID: PMC6830027 DOI: 10.4103/ijt.ijt_76_19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The term “microbiome” defines the collective genome of all commensal, symbiotic, and pathogenic microbes living in the human body. The composition of microbiota in the gut and skin is influenced by many factors such as the stage of life, nutrition, lifestyle, and gender. In the past few years, several scientific papers have demonstrated an implication of microbiota in many immune-mediated diseases, for example, diabetes, ulcerative colitis, and multiple sclerosis. The alterations in the proportion of gut microbiota have emerged as potential immunomodulators with the capacity to induce physiologic as well as pathologic immune responses against the human body, causing inflammation and destruction of tissues or organs. The microbiota influences the differentiation of adaptive immune cells not only in the gut but also in the skin. Alopecia areata (AA) is a dermatologic disorder which causes hair loss in most cases resistant to treatment. There are some clinical and experimental evidences indicating that AA is the demonstration of autoimmune attack against hair follicles. The factors that may implicate such an autoimmunity in AA still remain unknown. Despite more and more evidences demonstrate that human microbiome plays a key role in human health and diseases, to the best of our knowledge, no study has been conducted to analyze an implication of microbiome in the pathogenesis of AA. Undoubtedly, there is a need to performing a study which might explain the involvement of gut and skin microbiota in the unclear pathogenesis of AA and lead to alternative treatment options for numerous patients suffering from current treatment limitations.
Collapse
Affiliation(s)
| | - Wojciech Branicki
- Malopolska Centre of Biotechnology, Jagiellonian University, Cracow, Poland
| | | | - Magdalena Pirowska
- Department of Dermatology, Jagiellonian University Medical College, Cracow, Poland
| | - Krystian Gruszka
- Department of Cardiology, Interventional Electrocardiology and Arterial Hypertension, Jagiellonian University Medical College, Cracow, Poland
| | - Anna Wojas-Pelc
- Department of Dermatology, Jagiellonian University Medical College, Cracow, Poland
| |
Collapse
|
36
|
Selective colonization ability of human fecal microbes in different mouse gut environments. ISME JOURNAL 2018; 13:805-823. [PMID: 30442907 DOI: 10.1038/s41396-018-0312-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 10/10/2018] [Accepted: 10/16/2018] [Indexed: 12/19/2022]
Abstract
Mammalian hosts constantly interact with diverse exogenous microbes, but only a subset of the microbes manage to colonize due to selective colonization resistance exerted by host genetic factors as well as the native microbiota of the host. An important question in microbial ecology and medical science is if such colonization resistance can discriminate closely related microbial species, or even closely related strains of the same species. Using human-mouse fecal microbiota transplantation and metagenomic shotgun sequencing, we reconstructed colonization patterns of human fecal microbes in mice with different genotypes (C57BL6/J vs. NSG) and with or without an intact gut microbiota. We found that mouse genotypes and the native mouse gut microbiota both exerted different selective pressures on exogenous colonizers: human fecal Bacteroides successfully established in the mice gut, however, different species of Bacteroides selectively enriched under different gut conditions, potentially due to a multitude of functional differences, ranging from versatility in nutrient acquisition to stress responses. Additionally, different clades of Bacteroides cellulosilyticus strains were selectively enriched in different gut conditions, suggesting that the fitness of conspecific microbial strains in a novel host environment could differ.
Collapse
|
37
|
Spaner DE, Venema R, Huang J, Norris P, Lazarus A, Wang G, Shi Y. Association of blood IgG with tumor necrosis factor-alpha and clinical course of chronic lymphocytic leukemia. EBioMedicine 2018; 35:222-232. [PMID: 30174282 PMCID: PMC6156707 DOI: 10.1016/j.ebiom.2018.08.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 08/14/2018] [Accepted: 08/20/2018] [Indexed: 11/16/2022] Open
Abstract
The intrinsic humoral immunodeficiency of chronic lymphocytic leukemia (CLL) is often managed with immunoglobulin replacement therapy (IgRT) to maintain IgG levels in the low-normal range (6–8 g/L) but optimal targets for IgG and timing to commence IgRT are unclear. IgG levels fell near 6 g/L at rates of −0.85±0.14 g/L/year in 51 patients who required treatment for CLL within 4.5±0.4 years from initial diagnosis and − 0.27±0.04 g/L/year in 40 patients with progressive disease who remained untreated after 8.5±0.5 years. In contrast, endogenous IgG levels remained above 8 g/L in patients with highly indolent disease (n = 25) and TNFα and beta-2-microglobulin (β2M) in blood decreased when IgRT was used to increase IgG levels over 9 g/L. At 15 g/L but not 5 g/L, the IgRT product Hizentra® inhibited B cell receptor (BCR)-activation, TNFα production, and survival in vitro, particularly of CLL cells that spontaneously made little TNFα. These findings suggest deterioration of the humoral immune system is associated with progressive CLL and altering the dosing of IgRT to achieve higher than conventional IgG target levels may have therapeutic activity. Immunoglobulin levels decline at rates that reflect the clinical course of CLL. IgG levels over 10 g/L achieved with replacement therapy are associated with evidence of disease control in vivo and inhibition of BCR-mediated activation of CLL cells in vitro. Monitoring rates of decline of Ig levels in CLL patients gives biological information on disease severity. Appropriate IgG target levels for immunoglobulin replacement therapy in CLL may be much higher than for patients with other immunodeficiencies.
Collapse
Affiliation(s)
- David E Spaner
- Biology Platform, Sunnybrook Research Institute, Toronto M4N 3M5, Canada; Dept. of Immunology, University of Toronto, Toronto M5S 1A8, Canada; Dept. of Medical Biophysics, University of Toronto, Toronto M5G 2M9, Canada; Sunnybrook Odette Cancer Center, Toronto M4N 3M5, Canada; Dept. of Medicine, University of Toronto, Toronto M5G 2C4, Canada.
| | - Robertson Venema
- Biology Platform, Sunnybrook Research Institute, Toronto M4N 3M5, Canada
| | - Justin Huang
- Biology Platform, Sunnybrook Research Institute, Toronto M4N 3M5, Canada
| | - Peter Norris
- Keenan Research Center, St. Michael's Hospital, Toronto M5B 1T8, Canada; Dept. of Laboratory Medicine and Pathobiology, University of Toronto, M5S 1A1, Canada
| | - Alan Lazarus
- Keenan Research Center, St. Michael's Hospital, Toronto M5B 1T8, Canada; Dept. of Laboratory Medicine and Pathobiology, University of Toronto, M5S 1A1, Canada
| | - Guizhi Wang
- Biology Platform, Sunnybrook Research Institute, Toronto M4N 3M5, Canada
| | - Yonghong Shi
- Biology Platform, Sunnybrook Research Institute, Toronto M4N 3M5, Canada
| |
Collapse
|
38
|
Opazo MC, Ortega-Rocha EM, Coronado-Arrázola I, Bonifaz LC, Boudin H, Neunlist M, Bueno SM, Kalergis AM, Riedel CA. Intestinal Microbiota Influences Non-intestinal Related Autoimmune Diseases. Front Microbiol 2018; 9:432. [PMID: 29593681 PMCID: PMC5857604 DOI: 10.3389/fmicb.2018.00432] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 02/26/2018] [Indexed: 12/16/2022] Open
Abstract
The human body is colonized by millions of microorganisms named microbiota that interact with our tissues in a cooperative and non-pathogenic manner. These microorganisms are present in the skin, gut, nasal, oral cavities, and genital tract. In fact, it has been described that the microbiota contributes to balancing the immune system to maintain host homeostasis. The gut is a vital organ where microbiota can influence and determine the function of cells of the immune system and contributes to preserve the wellbeing of the individual. Several articles have emphasized the connection between intestinal autoimmune diseases, such as Crohn's disease with dysbiosis or an imbalance in the microbiota composition in the gut. However, little is known about the role of the microbiota in autoimmune pathologies affecting other tissues than the intestine. This article focuses on what is known about the role that gut microbiota can play in the pathogenesis of non-intestinal autoimmune diseases, such as Grave's diseases, multiple sclerosis, type-1 diabetes, systemic lupus erythematosus, psoriasis, schizophrenia, and autism spectrum disorders. Furthermore, we discuss as to how metabolites derived from bacteria could be used as potential therapies for non-intestinal autoimmune diseases.
Collapse
Affiliation(s)
- Maria C Opazo
- Laboratorio de Biología Celular y Farmacología, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Universidad Andres Bello, Santiago, Chile.,Facultad de Medicina, Millennium Institute on Immunology and Immunotherapy, Universidad Andres Bello, Santiago, Chile
| | - Elizabeth M Ortega-Rocha
- Laboratorio de Inmunobiología, Facultad de Medicina, Departamento de Biología Celular y Tisular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Irenice Coronado-Arrázola
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Laura C Bonifaz
- Unidad de Investigación Médica en Inmunoquímica Hospital de Especialidades Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Helene Boudin
- Institut National de la Santé et de la Recherche Médicale U1235, Institut des Maladies de l'Appareil Digestif, Université de Nantes, Nantes, France
| | - Michel Neunlist
- Institut National de la Santé et de la Recherche Médicale U1235, Institut des Maladies de l'Appareil Digestif, Université de Nantes, Nantes, France
| | - Susan M Bueno
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M Kalergis
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad, Metropolitana, Chile
| | - Claudia A Riedel
- Laboratorio de Biología Celular y Farmacología, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Universidad Andres Bello, Santiago, Chile.,Facultad de Medicina, Millennium Institute on Immunology and Immunotherapy, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
39
|
Abstract
Myalgic encephalomyelitis (ME)/chronic fatigue syndrome (CFS) (ME/CFS) is a disabling and debilitating disease of unknown aetiology. It is a heterogeneous disease characterized by various inflammatory, immune, viral, neurological and endocrine symptoms. Several microbiome studies have described alterations in the bacterial component of the microbiome (dysbiosis) consistent with a possible role in disease development. However, in focusing on the bacterial components of the microbiome, these studies have neglected the viral constituent known as the virome. Viruses, particularly those infecting bacteria (bacteriophages), have the potential to alter the function and structure of the microbiome via gene transfer and host lysis. Viral-induced microbiome changes can directly and indirectly influence host health and disease. The contribution of viruses towards disease pathogenesis is therefore an important area for research in ME/CFS. Recent advancements in sequencing technology and bioinformatics now allow more comprehensive and inclusive investigations of human microbiomes. However, as the number of microbiome studies increases, the need for greater consistency in study design and analysis also increases. Comparisons between different ME/CFS microbiome studies are difficult because of differences in patient selection and diagnosis criteria, sample processing, genome sequencing and downstream bioinformatics analysis. It is therefore important that microbiome studies adopt robust, reproducible and consistent study design to enable more reliable and valid comparisons and conclusions to be made between studies. This article provides a comprehensive review of the current evidence supporting microbiome alterations in ME/CFS patients. Additionally, the pitfalls and challenges associated with microbiome studies are discussed.
Collapse
|
40
|
Diagnostic Approach to Ocular Infections Using Various Techniques From Conventional Culture to Next-Generation Sequencing Analysis. Cornea 2018; 36 Suppl 1:S46-S52. [PMID: 28902722 DOI: 10.1097/ico.0000000000001338] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ocular infection is caused by both endogenous (resident) and exogenous (environmental) microbes. As the ocular surface interacts with both outer environment and its own resident microbiota, clinical ocular samples are predicted to contain a diverse set of microorganisms. Microscopy of sample smears is an important step in the diagnostic process of infectious diseases to interpret the culture results. Traditional culture techniques have several limitations in the detection and/or identification of uncharacterized bacteria of environmental origin. Molecular biological techniques, such as polymerase chain reaction of pathogen-specific virulence genes, 16S rRNA gene clone library analysis, and next-generation sequencing of 16S rDNA amplicons, compensate for diagnostic culture techniques in diagnosing infectious diseases. These techniques are expected to provide novel insights into the ocular microbiota and pathology of ocular infections. In this article, we describe various ocular infections, including contact lens-related keratitis, silicone buckle infection, and dacryocystitis, which were analyzed using molecular biological techniques. The advantages and disadvantages of these highly sensitive and inclusive microbiological detection systems for ocular infections are discussed.
Collapse
|
41
|
Maglione PJ, Cols M, Cunningham-Rundles C. Dysregulation of Innate Lymphoid Cells in Common Variable Immunodeficiency. Curr Allergy Asthma Rep 2017; 17:77. [PMID: 28983810 DOI: 10.1007/s11882-017-0746-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Common variable immunodeficiency (CVID) is the most prevalent symptomatic primary immune deficiency. With widespread use of immunoglobulin replacement therapy, non-infectious complications, such as autoimmunity, chronic intestinal inflammation, and lung disease, have replaced infections as the major cause of morbidity and mortality in this immune deficiency. The pathogenic mechanisms that underlie the development of these complications in CVID are not known; however, there have been numerous associated laboratory findings. Among the most intriguing of these associations is elevation of interferon signature genes in CVID patients with inflammatory/autoimmune complications, as a similar gene expression profile is found in systemic lupus erythematosus and other chronic inflammatory diseases. Linked with this heightened interferon signature in CVID is an expansion of circulating IFN-γ-producing innate lymphoid cells. Innate lymphoid cells are key regulators of both protective and pathogenic immune responses that have been extensively studied in recent years. Further exploration of innate lymphoid cell biology in CVID may uncover key mechanisms underlying the development of inflammatory complications in these patients and may inspire much needed novel therapeutic approaches.
Collapse
Affiliation(s)
- Paul J Maglione
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1089, New York, NY, 10029, USA
| | - Montserrat Cols
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Charlotte Cunningham-Rundles
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1089, New York, NY, 10029, USA.
| |
Collapse
|
42
|
Scheich S, Lindner S, Koenig R, Reinheimer C, Wichelhaus TA, Hogardt M, Besier S, Kempf VAJ, Kessel J, Martin H, Wilke AC, Serve H, Bug G, Steffen B. Clinical impact of colonization with multidrug-resistant organisms on outcome after allogeneic stem cell transplantation in patients with acute myeloid leukemia. Cancer 2017; 124:286-296. [PMID: 28960264 DOI: 10.1002/cncr.31045] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 08/28/2017] [Accepted: 09/08/2017] [Indexed: 01/30/2023]
Abstract
BACKGROUND Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a curative treatment option for patients with acute myeloid leukemia (AML). During transplantation, patients undergo a period of severe neutropenia, which puts them at high risk for infectious complications. However, the impact of patient colonization with multidrug-resistant organisms (MDRO) on overall survival remains unclear. METHODS In this retrospective, single-center study, the authors analyzed data from 264 patients with AML who underwent a first allo-HSCT between January 2006 and March 2016 at their institution. Primary endpoints were overall survival and nonrelapse-related mortality. RESULTS One hundred forty-two of 264 patients (53.8%) were colonized by at least 1 MDRO, mainly with vancomycin-resistant Enterococcus faecalis/faecium (n = 122). The characteristics of colonized patients did not differ from those of MDRO-negative patients with respect to median age (53.5 vs 53 years), cytogenetic risk according to European LeukemiaNet criteria, remission status before allo-HSCT (first or second complete remission: 55.7% vs 60.7%, respectively; active disease: 44.4% vs 39.3%, respectively), donor type, or hematopoietic cell transplantation-comorbidity index (HCT-CI). Compared with noncolonized patients, MDRO-positive patients had an inferior probability of survival at 5 years (43.3% vs 65.5%; P = .002), primarily because of a higher cumulative incidence of nonrelapse-related mortality (33.9% vs 9.4%; P < .001). Death caused by infections occurred in 15.5% of colonized patients versus 4.9% of noncolonized patients. There was no difference in the cumulative incidence of relapse in MDRO-positive versus MDRO-negative patients (33.8% vs 42.1%, respectively; P = .798). CONCLUSIONS The current data emphasize the importance of regular MDRO screenings and prompt further investigations into the impact of colonization with MDRO on the immune system after allo-HSCT. Cancer 2018;124:286-96. © 2017 American Cancer Society.
Collapse
Affiliation(s)
- Sebastian Scheich
- Department of Hematology and Oncology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,University Center for Infectious Diseases, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Sarah Lindner
- Department of Hematology and Oncology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,University Center for Infectious Diseases, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Rosalie Koenig
- Department of Hematology and Oncology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Claudia Reinheimer
- University Center for Infectious Diseases, University Hospital Frankfurt, Frankfurt am Main, Germany.,Institute of Medical Microbiology and Infection Control, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Thomas A Wichelhaus
- University Center for Infectious Diseases, University Hospital Frankfurt, Frankfurt am Main, Germany.,Institute of Medical Microbiology and Infection Control, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Michael Hogardt
- University Center for Infectious Diseases, University Hospital Frankfurt, Frankfurt am Main, Germany.,Institute of Medical Microbiology and Infection Control, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Silke Besier
- University Center for Infectious Diseases, University Hospital Frankfurt, Frankfurt am Main, Germany.,Institute of Medical Microbiology and Infection Control, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Volkhard A J Kempf
- University Center for Infectious Diseases, University Hospital Frankfurt, Frankfurt am Main, Germany.,Institute of Medical Microbiology and Infection Control, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Johanna Kessel
- University Center for Infectious Diseases, University Hospital Frankfurt, Frankfurt am Main, Germany.,Department of Medicine, Infectious Diseases Unit, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Hans Martin
- Department of Hematology and Oncology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,University Center for Infectious Diseases, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Anne C Wilke
- Department of Hematology and Oncology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,University Center for Infectious Diseases, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Hubert Serve
- Department of Hematology and Oncology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,University Center for Infectious Diseases, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Gesine Bug
- Department of Hematology and Oncology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,University Center for Infectious Diseases, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Björn Steffen
- Department of Hematology and Oncology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,University Center for Infectious Diseases, University Hospital Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
43
|
Tegtmeyer D, Seidl M, Gerner P, Baumann U, Klemann C. Inflammatory bowel disease caused by primary immunodeficiencies-Clinical presentations, review of literature, and proposal of a rational diagnostic algorithm. Pediatr Allergy Immunol 2017; 28:412-429. [PMID: 28513998 DOI: 10.1111/pai.12734] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/12/2017] [Indexed: 02/07/2023]
Abstract
Inflammatory bowel diseases (IBD) including Crohn's disease (CD) and ulcerative colitis have a multifactorial pathogenesis with complex interactions between polygenetic predispositions and environmental factors. However, IBD can also be caused by monogenic diseases, such as primary immunodeficiencies (PID). Recently, an increasing number of these altogether rare diseases have been described to present often primarily, or solely, as IBD. Early recognition of these conditions enables adaption of therapies and thus directly benefits the course of IBDs. Here, we discuss the different clinical presentations in IBD and characteristic features of patient's history, clinical findings, and diagnostic results indicative for a causative PID. Possible predictors are early onset of disease, necessity of parenteral nutrition, failure to respond to standard immunosuppressive therapy, parental consanguinity, increased susceptibility for infections, certain histopathologic findings, and blood tests that are atypical for classic IBD. We illustrate this with exemplary case studies of IBD due to NEMO deficiency, chronic granulomatous disease, common variable immunodeficiency, CTLA-4 and LRBA deficiency. Taking these factors into account, we propose a diagnostic pathway to enable early diagnosis of IBD due to PID.
Collapse
Affiliation(s)
- Daniel Tegtmeyer
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany.,University Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maximilian Seidl
- Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Institute for Surgical Pathology, Medical Center - University of Freiburg, Freiburg, Germany
| | - Patrick Gerner
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Ulrich Baumann
- Department of Pediatric Pneumology, Allergy and Neonatology, Hannover Medical School, Hannover, Germany
| | - Christian Klemann
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Pediatric Pneumology, Allergy and Neonatology, Hannover Medical School, Hannover, Germany.,Center of Pediatric Surgery, Hannover Medical School, Hannover, Germany
| |
Collapse
|