1
|
Georgakis S, Orfanakis M, Fenwick C, Brenna C, Burgermeister S, Lindsay H, de Medeiros GX, Bruno FR, Ribeiro SP, Gottardo R, Pantaleo G, Petrovas C. Delineation of the Human Germinal Centre Immune Landscape Using Multiplex Imaging Analysis. Immunology 2025. [PMID: 40421691 DOI: 10.1111/imm.13955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 04/29/2025] [Accepted: 05/14/2025] [Indexed: 05/28/2025] Open
Abstract
Given the role of follicular immune dynamics, especially the germinal centre, for the development of pathogen-specific antibodies, their in situ characterisation is of great importance. We have developed a multiplex immunofluorescence imaging pipeline that allows the analysis of human follicular adaptive and innate immune cell subsets. Our data revealed the in situ phenotypic heterogeneity and differential localisation of follicular helper CD4 T (TFH) cell subsets across follicular areas in tonsils and reactive lymph nodes (LNs). Cell clustering analysis identified specific TFH subsets with differential prevalence between tonsils and LNs. Further, a multiplex RNAscope/protein imaging assay revealed the functional heterogeneity of TFH cells. No significant differences in follicular innate immune cell densities were found between tonsils and LNs. In conclusion, we present a combinatory experimental approach that provides a comprehensive analysis of human follicular and/or germinal centre immune dynamics and could be used to further understand the pathogenesis of diseases such as HIV and lymphomas.
Collapse
Affiliation(s)
- Spiros Georgakis
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Michail Orfanakis
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Craig Fenwick
- Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Cloe Brenna
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Simon Burgermeister
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Helen Lindsay
- Biomedical Data Science Center, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Giuliana Xavier de Medeiros
- Pathology Advanced Translational Research Unit (PATRU), Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Fernanda Romano Bruno
- Pathology Advanced Translational Research Unit (PATRU), Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Susan Pereira Ribeiro
- Pathology Advanced Translational Research Unit (PATRU), Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Vaccine Center, Atlanta, Georgia, USA
- Winship Cancer Institute of Emory University, Atlanta, Georgia, USA
| | - Raphael Gottardo
- Biomedical Data Science Center, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Giuseppe Pantaleo
- Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Constantinos Petrovas
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| |
Collapse
|
2
|
Tang T, Wang W, Gan L, Bai J, Tan D, Jiang Y, Zheng P, Zhang W, He Y, Zuo Q, Zhang L. TIGIT expression in extrahepatic cholangiocarcinoma and its impact on CD8 + T cell exhaustion: implications for immunotherapy. Cell Death Dis 2025; 16:90. [PMID: 39939322 PMCID: PMC11822069 DOI: 10.1038/s41419-025-07388-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 01/13/2025] [Accepted: 01/22/2025] [Indexed: 02/14/2025]
Abstract
Extrahepatic cholangiocarcinoma (ECCA) is a malignant tumor. The precise role of T-cell immunoreceptor with Ig and ITIM domains (TIGIT), an emerging immunosuppressive receptor, in ECCA, and its impact on CD8+ T cell exhaustion (Tex) remains unclear. We performed single-cell RNA sequencing (scRNA-seq) to characterize tumor-infiltrating lymphocytes (TILs) isolated from ECCA. We found that TIGIT was significantly overexpressed in TOX+CD8 T cells. Tissue microarray and immunohistochemistry staining demonstrated that increased TIGIT expression was associated with poorer patient survival. Flow cytometry analysis revealed that TIGIT+CD8+ T cells exhibited decreased TNF-α, IFN-γ, and TCF-1 expression, accompanied by elevated PD-1 and TIM-3 expression compared to TIGIT-CD8+ T cells. In the patient-derived xenograft (PDX) model, the anti-TIGIT treatment group demonstrated reduced tumor weight, enhanced CD8 frequency, and an increased IFN-γ proportion compared to the PBS treatment group. The TIGIT antibody-treated group exhibited a notably higher fraction of GRZB, and anti-TIGIT treatment led to elevated TCF-1 protein levels and decreased protein levels of TOX1 and NR4A1. Moreover, TIGIT+CD8 T cells from TILs appear to be in a state of exhaustion with low potential killing capacity in ECCA, as shown by scRNA-seq. Taken together, the present study underscores the significant role of TIGIT in ECCA, contributing to T cell exhaustion and a compromised CD8+ T cell immune response. Targeting TIGIT presents a promising therapeutic avenue to enhance the CD8+ T-cell response, thereby potentially improving ECCA therapeutic benefits.
Collapse
Affiliation(s)
- Tengqian Tang
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Army Medical University, Chongqing, 400038, PR China
| | - Wenhao Wang
- College of Pharmacy, Henan University, Kaifeng, 475001, PR China
| | - Lang Gan
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Army Medical University, Chongqing, 400038, PR China
| | - Jie Bai
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Army Medical University, Chongqing, 400038, PR China
| | - Dehong Tan
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Army Medical University, Chongqing, 400038, PR China
| | - Yan Jiang
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Army Medical University, Chongqing, 400038, PR China
| | - Ping Zheng
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Army Medical University, Chongqing, 400038, PR China
| | - Weijun Zhang
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, 400038, PR China
| | - Yu He
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Army Medical University, Chongqing, 400038, PR China.
| | - Qianfei Zuo
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, 400038, PR China.
| | - Leida Zhang
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Army Medical University, Chongqing, 400038, PR China.
| |
Collapse
|
3
|
Zhou H, Bao G, Zhao J, Zhu X. Nuclear Molecular Imaging for Evaluating T Cell Exhaustion. Mol Pharm 2025; 22:103-112. [PMID: 39586059 DOI: 10.1021/acs.molpharmaceut.4c00970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
T cells are indispensable for the therapeutic efficacy of cancer immunotherapies, including immune checkpoint blockade. However, prolonged antigen exposure also drives T cells into exhaustion, which is characterized by upregulated inhibitory molecules, impaired effector functions, reduced cytotoxicity, altered metabolism, etc. Noninvasive monitoring of T cell exhaustion allows a timely identification of cancer patients that are most likely to benefit from immunotherapies. In this Review, we briefly explain the biological cascades underlying the modulation of inhibitory molecules, present a concise update on the nuclear molecular imaging tracers of T cell exhaustion, and then discuss the potential opportunities for future development.
Collapse
Affiliation(s)
- Huimin Zhou
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Guangfa Bao
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Department of Nuclear Medicine, The First People's Hospital of Yunnan Province, Kunming, Yunnan 650032, China
| | - Jun Zhao
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Department of Anatomy, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xiaohua Zhu
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| |
Collapse
|
4
|
Huang H, Liu J, An F, Wu S, Guo H, Wang B, Mo K, Huang Y, Tan J, Zhu J, Lin Z, Han Z, Li M, Wang L, Mao Z, Ouyang H. Retinoic acid drives surface epithelium fate determination through the TCF7-MSX2 axis. Cell Mol Life Sci 2024; 82:16. [PMID: 39725818 DOI: 10.1007/s00018-024-05525-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/18/2024] [Accepted: 11/22/2024] [Indexed: 12/28/2024]
Abstract
Understanding how embryonic progenitors decode extrinsic signals and transform into lineage-specific regulatory networks to drive cell fate specification is a fundamental, yet challenging question. Here, we develop a new model of surface epithelium (SE) differentiation induced by human embryonic stem cells (hESCs) using retinoic acid (RA), and identify BMP4 as an essential downstream signal in this process. We show that the retinoid X receptors, RXRA and RXRB, orchestrate SE commitment by shaping lineage-specific epigenetic and transcriptomic landscapes. Moreover, we find that TCF7, as a RA effector, regulates the transition from pluripotency to SE initiation by directly silencing pluripotency genes and activating SE genes. MSX2, a downstream activator of TCF7, primes the SE chromatin accessibility landscape and activates SE genes. Our work reveals the regulatory hierarchy between key morphogens RA and BMP4 in SE development, and demonstrates how the TCF7-MSX2 axis governs SE fate, providing novel insights into RA-mediated regulatory principles.
Collapse
Affiliation(s)
- Huaxing Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Jiafeng Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Fengjiao An
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Siqi Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Huizhen Guo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Bofeng Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Kunlun Mo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Ying Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Jieying Tan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Jin Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Zesong Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Zhuo Han
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Mingsen Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Li Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Zhen Mao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China.
| | - Hong Ouyang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China.
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Zhongshan School of Medicine, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510060, China.
| |
Collapse
|
5
|
Førde D, Kilvær T, Pedersen MI, Blix ES, Urbarova I, Paulsen EE, Rakaee M, Busund LTR, Donnem T, Andersen S. High density of TCF1+ stem-like tumor-infiltrating lymphocytes is associated with favorable disease-specific survival in NSCLC. Front Immunol 2024; 15:1504220. [PMID: 39749327 PMCID: PMC11693705 DOI: 10.3389/fimmu.2024.1504220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 12/02/2024] [Indexed: 01/04/2025] Open
Abstract
Introduction Tumor-infiltrating lymphocytes are both prognostic and predictive biomarkers for immunotherapy response. However, less is known about the survival benefits oftheir subpopulations. Methods Using machine learning models, we assessed the clinical association of the CD8+, PD1+, TCF1+ cel l subset by multiplex immunohistochemistry using tissue microarrays in 553 non-small cell lung cancer (NSCLC) patients and its correlation with other immune cell biomarkers. Results We observed positive correlations between TCF1 and CD20 (r=0.37), CD3 (r=0.45)and CD4 (r=0.33). Notably, triple positive (CD8+PD1+TCF1+) were rare, only observed in 29 of 553 patients (5%). Our analysis revealed that cells coexpressing TCF1 with either CD8+ or PD1+ were independent prognostic markers of disease-specific survival in multivariable analysis (HR=0.728, p=0.029 for CD8+TCF1+, and HR=0.612, p=0.002 for PD1+TCF1+). To pilot the subtype of abundant CD8-TCF1+ cells, we explored an immune cell infiltrated whole slideimage and found the majority to be CD4+. Discussion Overall, these findings suggest that assessment of CD8+, PD1+, TCF1+ could serve as a potential prognostic biomarker in NSCLC.
Collapse
Affiliation(s)
- Dagny Førde
- Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway
| | - Thomas Kilvær
- Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway
- Department of Oncology, University Hospital of North Norway, Tromsø, Norway
| | - Mona Irene Pedersen
- Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway
| | - Egil S Blix
- Department of Oncology, University Hospital of North Norway, Tromsø, Norway
| | - Ilona Urbarova
- Department of Community Medicine, UiT The Arctic University of Norway, Tromsø, Norway
| | - Erna-Elise Paulsen
- Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway
- Department of Pulmonology, University Hospital of North Norway, Tromsø, Norway
| | - Mehrdad Rakaee
- Department of Medical Biology, UiT The Arctic University of Norway, Tromsø, Norway
- Department of Clinical Pathology, University Hospital of North Norway, Tromsø, Norway
- Department of Cancer Genetics, Oslo University Hospital, Oslo, Norway
| | - Lill-Tove Rasmussen Busund
- Department of Medical Biology, UiT The Arctic University of Norway, Tromsø, Norway
- Department of Clinical Pathology, University Hospital of North Norway, Tromsø, Norway
| | - Tom Donnem
- Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway
- Department of Oncology, University Hospital of North Norway, Tromsø, Norway
| | - Sigve Andersen
- Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway
- Department of Oncology, University Hospital of North Norway, Tromsø, Norway
| |
Collapse
|
6
|
Park J, Nam SK, Kwak Y, Oh HJ, Kong SH, Park DJ, Lee HJ, Yang HK, Lee HS. Prognostic significance of CD8 and TCF1 double positive T cell subset in microsatellite unstable gastric cancer. Sci Rep 2024; 14:28810. [PMID: 39567670 PMCID: PMC11579470 DOI: 10.1038/s41598-024-80450-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/19/2024] [Indexed: 11/22/2024] Open
Abstract
Microsatellite instability-high (MSI-H) gastric cancer (GC) exhibits high tumor-infiltrating lymphocyte (TIL) density. Despite the recognized significance of the immune microenvironment in MSI-H GC, our understanding of TIL remains limited. This study aimed to investigate the clinicopathologic and prognostic implications of T cell subsets in MSI-H GC. Single immunohistochemistry (IHC) for CD8, TCF1, and CD103, and double IHC for CD8/TCF1 and CD8/CD103 were performed in 382 surgically resected MSI-H GC samples. Densities of single or double positive immune cells were quantified and correlated with clinicopathologic features and overall survival (OS). TCF1 + cell densities showed weak correlations with CD8 + and CD103 + cell densities, while CD8+/TCF1 + cell density moderately correlated with CD8+/CD103 + cell density (R2 = 0.539, p < 0.001). Single IHC analyses showed no significant associations between CD8+, TCF1+, or CD103 + cell densities and OS (p > 0.05). Notably, elevated CD8+/TCF1 + cell density and a high CD8+/TCF1 + to CD8 + ratio correlated with less aggressive clinicopathologic features and improved OS (p = 0.017 and 0.001, respectively). Multivariable Cox-regression identified CD8+/TCF1 + to CD8 + ratio as an independent prognostic factor (p = 0.028). We demonstrated the prognostic significance of CD8+/TCF1 + to CD8 + ratio using double IHC in a large cohort of MSI-H GC.
Collapse
Affiliation(s)
- Juhyeong Park
- Seoul National University College of Medicine, Seoul, Korea
| | - Soo Kyung Nam
- Department of Interdisciplinary Program in Cancer Biology, Seoul National University College of Medicine, Seoul, Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Yoonjin Kwak
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Hyeon Jeong Oh
- Department of Pathology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Seong-Ho Kong
- Department of Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Do Joong Park
- Department of Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Hyuk-Joon Lee
- Department of Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Han-Kwang Yang
- Department of Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Hye Seung Lee
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
7
|
Tran K, Kumari AN, Raghu D, Cox DR, Goh SK, Perini MV, Muralidharan V, Tebbutt NC, Behren A, Mariadason J, Williams DS, Mielke LA. T cell factor 1 (TCF-1) defines T cell differentiation in colorectal cancer. iScience 2024; 27:110754. [PMID: 39280606 PMCID: PMC11401206 DOI: 10.1016/j.isci.2024.110754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/11/2024] [Accepted: 08/13/2024] [Indexed: 09/18/2024] Open
Abstract
The presence of precursor to exhausted (Tpex) CD8+ T cells is important to maintain robust immunity following treatment with immune checkpoint inhibition (ICI). Impressive responses to ICI are emerging in patients with stage II-III mismatch repair (MMR)-deficient (dMMR) colorectal cancer (CRC). We found 64% of dMMR and 15% of mismatch repair-proficient (pMMR) stage III CRCs had a high frequency of tumor infiltrating lymphocytes (TIL-hi). Furthermore, expression of TCF-1 (Tcf7) by CD8+ T cells predicted improved patient prognosis and Tpex cells (CD3+CD8+TCF-1+PD-1+) were abundant within lymphoid aggregates of stage III CRCs. In contrast, CD3+CD8+TCF-1-PD-1+ cells were more abundant at the invasive front and tumor core, while γδ T cells were equally abundant in all tumor areas. Interestingly, no differences in the frequency of Tpex cells were observed between TIL-hi dMMR and TIL-hi pMMR CRCs. Therefore, Tpex cell function and ICI response rates in TIL-hi CRC warrants further investigation.
Collapse
Affiliation(s)
- Kelly Tran
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
- School of Cancer Medicine, La Trobe University, Heidelberg, VIC, Australia
- La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, Australia
| | - Anita N. Kumari
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
- School of Cancer Medicine, La Trobe University, Heidelberg, VIC, Australia
| | - Dinesh Raghu
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
- School of Cancer Medicine, La Trobe University, Heidelberg, VIC, Australia
| | - Daniel R.A. Cox
- Department of Surgery (Austin Precinct), University of Melbourne, Melbourne, VIC, Australia
- HPB & Liver Transplant Surgery Unit, Department of Surgery, Austin Health, Heidelberg, VIC, Australia
| | - Su Kah Goh
- Department of Surgery (Austin Precinct), University of Melbourne, Melbourne, VIC, Australia
- HPB & Liver Transplant Surgery Unit, Department of Surgery, Austin Health, Heidelberg, VIC, Australia
| | - Marcos V. Perini
- Department of Surgery (Austin Precinct), University of Melbourne, Melbourne, VIC, Australia
- HPB & Liver Transplant Surgery Unit, Department of Surgery, Austin Health, Heidelberg, VIC, Australia
| | - Vijayaragavan Muralidharan
- Department of Surgery (Austin Precinct), University of Melbourne, Melbourne, VIC, Australia
- HPB & Liver Transplant Surgery Unit, Department of Surgery, Austin Health, Heidelberg, VIC, Australia
| | - Niall C. Tebbutt
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
- School of Cancer Medicine, La Trobe University, Heidelberg, VIC, Australia
- Department of Surgery (Austin Precinct), University of Melbourne, Melbourne, VIC, Australia
- Department of Medical Oncology, Austin Health, Heidelberg, VIC, Australia
| | - Andreas Behren
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
- School of Cancer Medicine, La Trobe University, Heidelberg, VIC, Australia
| | - John Mariadason
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
- School of Cancer Medicine, La Trobe University, Heidelberg, VIC, Australia
| | - David S. Williams
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
- School of Cancer Medicine, La Trobe University, Heidelberg, VIC, Australia
- Department of Pathology, Austin Health, Heidelberg, VIC, Australia
| | - Lisa A. Mielke
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
- School of Cancer Medicine, La Trobe University, Heidelberg, VIC, Australia
- La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, Australia
| |
Collapse
|
8
|
Wang Y, Zeng W, Xie W, Zhao W, Chen Y, Yang G. Lymphopenia associated with whole-brain radiotherapy and its effects on clinical outcomes of patients with brain metastases. Sci Rep 2024; 14:21315. [PMID: 39266704 PMCID: PMC11393099 DOI: 10.1038/s41598-024-71943-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 09/02/2024] [Indexed: 09/14/2024] Open
Abstract
There is increasing awareness of radiotherapy's potential side effects, such as lymphopenia. Therefore, this study aimed to establish the association between WBRT and the development of lymphopenia in patients with brain metastases undergoing brain radiotherapy (RT), along with evaluating the corresponding clinical outcomes. Including 116 patients with brain metastases undergoing brain radiotherapy, the study collected the absolute lymphocyte counts (ALC) within 2 weeks before brain radiotherapy (pre-radiotherapy, pre-RT), as well as ones at 1 and 2 months after completing RT (post-RT). Univariate and multivariate analyses were performed to identify associations between radiation modality and post-RT ALC. The relationships between post-RT ALC and overall survival were evaluated with Kaplan-Meier analysis and a multivariate Cox regression model. The median ALC definitely decreased at 1 month post-RT, but at 2 months post-RT, gradually rose but not to the pre-RT ALC. The multivariate analysis identified WBRT and lower pre-RT ALC as independent risk factors associated with the decrease in post-RT ALC at 1 month. It also revealed more than 4 brain metastases, G3-4 lymphopenia at 1 month and lower post-RT ALC at 2 months exhibited significantly worse prognosis regardless of the radiation modality. However, there was indeed an independent correlation between radiation modality and the outcome of intracranial progression-free survival (PFS). To approach the feasibility and reasonableness of treatment, clinicians should carefully consider various factors to achieve long-term survival of patients.
Collapse
Affiliation(s)
- Yue Wang
- Department of Oncology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Weiwei Zeng
- Department of Oncology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wenyue Xie
- Department of Oncology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Wei Zhao
- Department of Oncology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yonghong Chen
- Department of Oncology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guiping Yang
- Department of Oncology, People's Hospital of Xiushan Tujia and Miao Autonomous County, Chongqing, China
| |
Collapse
|
9
|
Kang K, Lin X, Chen P, Liu H, Liu F, Xiong W, Li G, Yi M, Li X, Wang H, Xiang B. T cell exhaustion in human cancers. Biochim Biophys Acta Rev Cancer 2024; 1879:189162. [PMID: 39089484 DOI: 10.1016/j.bbcan.2024.189162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024]
Abstract
T cell exhaustion refers to a progressive state in which T cells become functionally impaired due to sustained antigenic stimulation, which is characterized by increased expression of immune inhibitory receptors, but weakened effector functions, reduced self-renewal capacity, altered epigenetics, transcriptional programme and metabolism. T cell exhaustion is one of the major causes leading to immune escape of cancer, creating an environment that supports tumor development and metastatic spread. In addition, T cell exhaustion plays a pivotal role to the efficacy of current immunotherapies for cancer. This review aims to provide a comprehensive view of roles of T cell exhaustion in cancer development and progression. We summerized the regulatory mechanisms that involved in T cell exhaustion, including transcription factors, epigenetic and metabolic reprogramming events, and various microenvironmental factors such as cytokines, microorganisms, and tumor autocrine substances. The paper also discussed the challenges posed by T cell exhaustion to cancer immunotherapies, including immune checkpoint blockade (ICB) therapies and chimeric antigen receptor T cell (CAR-T) therapy, highlightsing the obstacles encountered in ICB therapies and CAR-T therapies due to T cell exhaustion. Finally, the article provides an overview of current therapeutic options aimed to reversing or alleviating T cell exhaustion in ICB and CAR-T therapies. These therapeutic approaches seek to overcome T cell exhaustion and enhance the effectiveness of immunotherapies in treating tumors.
Collapse
Affiliation(s)
- Kuan Kang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410008, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410078, Hunan, China
| | - Xin Lin
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410008, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410078, Hunan, China
| | - Pan Chen
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China
| | - Huai Liu
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Feng Liu
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Wei Xiong
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410008, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410078, Hunan, China
| | - Guiyuan Li
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410008, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410078, Hunan, China
| | - Mei Yi
- Department of Dermatology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Xiayu Li
- Hunan Key Laboratory of Nonresolving Infammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China.
| | - Hui Wang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China.
| | - Bo Xiang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410008, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410078, Hunan, China; FuRong Laboratory, Changsha 410078, Hunan, China.
| |
Collapse
|
10
|
Zhao L, Jin S, Wang S, Zhang Z, Wang X, Chen Z, Wang X, Huang S, Zhang D, Wu H. Tertiary lymphoid structures in diseases: immune mechanisms and therapeutic advances. Signal Transduct Target Ther 2024; 9:225. [PMID: 39198425 PMCID: PMC11358547 DOI: 10.1038/s41392-024-01947-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/02/2024] [Accepted: 08/01/2024] [Indexed: 09/01/2024] Open
Abstract
Tertiary lymphoid structures (TLSs) are defined as lymphoid aggregates formed in non-hematopoietic organs under pathological conditions. Similar to secondary lymphoid organs (SLOs), the formation of TLSs relies on the interaction between lymphoid tissue inducer (LTi) cells and lymphoid tissue organizer (LTo) cells, involving multiple cytokines. Heterogeneity is a distinguishing feature of TLSs, which may lead to differences in their functions. Growing evidence suggests that TLSs are associated with various diseases, such as cancers, autoimmune diseases, transplant rejection, chronic inflammation, infection, and even ageing. However, the detailed mechanisms behind these clinical associations are not yet fully understood. The mechanisms by which TLS maturation and localization affect immune function are also unclear. Therefore, it is necessary to enhance the understanding of TLS development and function at the cellular and molecular level, which may allow us to utilize them to improve the immune microenvironment. In this review, we delve into the composition, formation mechanism, associations with diseases, and potential therapeutic applications of TLSs. Furthermore, we discuss the therapeutic implications of TLSs, such as their role as markers of therapeutic response and prognosis. Finally, we summarize various methods for detecting and targeting TLSs. Overall, we provide a comprehensive understanding of TLSs and aim to develop more effective therapeutic strategies.
Collapse
Affiliation(s)
- Lianyu Zhao
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Song Jin
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Shengyao Wang
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Zhe Zhang
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Xuan Wang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Zhanwei Chen
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Xiaohui Wang
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Shengyun Huang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
- School of Stomatology, Shandong First Medical University, Jinan, China.
| | - Dongsheng Zhang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
- School of Stomatology, Shandong First Medical University, Jinan, China.
| | - Haiwei Wu
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
- School of Stomatology, Shandong First Medical University, Jinan, China.
| |
Collapse
|
11
|
Harris MA, Savas P, Virassamy B, O'Malley MMR, Kay J, Mueller SN, Mackay LK, Salgado R, Loi S. Towards targeting the breast cancer immune microenvironment. Nat Rev Cancer 2024; 24:554-577. [PMID: 38969810 DOI: 10.1038/s41568-024-00714-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/31/2024] [Indexed: 07/07/2024]
Abstract
The tumour immune microenvironment is shaped by the crosstalk between cancer cells, immune cells, fibroblasts, endothelial cells and other stromal components. Although the immune tumour microenvironment (TME) serves as a source of therapeutic targets, it is also considered a friend or foe to tumour-directed therapies. This is readily illustrated by the importance of T cells in triple-negative breast cancer (TNBC), culminating in the advent of immune checkpoint therapy in combination with cytotoxic chemotherapy as standard of care for both early and advanced-stage TNBC, as well as recent promising signs of efficacy in a subset of hormone receptor-positive disease. In this Review, we discuss the various components of the immune TME in breast cancer and therapies that target or impact the immune TME, as well as the complexity of host physiology.
Collapse
Affiliation(s)
- Michael A Harris
- The Sir Peter MacCallum Department of Medical Oncology, University of Melbourne, Melbourne, Victoria, Australia
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Peter Savas
- The Sir Peter MacCallum Department of Medical Oncology, University of Melbourne, Melbourne, Victoria, Australia
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Balaji Virassamy
- The Sir Peter MacCallum Department of Medical Oncology, University of Melbourne, Melbourne, Victoria, Australia
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Megan M R O'Malley
- The Sir Peter MacCallum Department of Medical Oncology, University of Melbourne, Melbourne, Victoria, Australia
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Jasmine Kay
- The Sir Peter MacCallum Department of Medical Oncology, University of Melbourne, Melbourne, Victoria, Australia
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Scott N Mueller
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria, Australia
| | - Laura K Mackay
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria, Australia
| | - Roberto Salgado
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Department of Pathology, ZAS Ziekenhuizen, Antwerp, Belgium
| | - Sherene Loi
- The Sir Peter MacCallum Department of Medical Oncology, University of Melbourne, Melbourne, Victoria, Australia.
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.
| |
Collapse
|
12
|
Wang Y, Ma L, Chen Y, Yun W, Yu J, Meng X. Prognostic effect of TCF1+ CD8+ T cell and TOX+ CD8+ T cell infiltration in lung adenocarcinoma. Cancer Sci 2024; 115:2184-2195. [PMID: 38590234 PMCID: PMC11247562 DOI: 10.1111/cas.16177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 03/19/2024] [Accepted: 03/26/2024] [Indexed: 04/10/2024] Open
Abstract
Recent studies have highlighted the pivotal roles of T cell transcription factors TCF-1 and TOX in modulating the immune response in cancer, with TCF-1 maintaining CD8+ T cell stemness and TOX promoting T cell exhaustion. The prognostic significance of these factors in lung adenocarcinoma (LUAD) remains a critical area of investigation. The retrospective study included 191 patients with LUAD who underwent surgery, of whom 83% were in stages II and III. These patients were divided into exploratory (n = 135) and validation (n = 56) groups based on the time of diagnosis. Multiplex fluorescence immunohistochemistry was used to examine the infiltration levels of CD8+ T cells, TCF1+ CD8+ T cells, and TOX+ CD8+ T cells. The percentage of CD8+ T cells in tumor was markedly lower than that in stroma (p < 0.05). In tumor-draining lymph nodes (TDLNs) invaded by tumor, the proportion of stem-like TCF1+ CD8+ T cells was significantly decreased (p < 0.01). Importantly, higher infiltration levels of CD8+ T cells and TCF1+ CD8+ T cells were associated with improved disease-free survival (DFS) (p = 0.009 and p = 0.006, respectively) and overall survival (OS) (p = 0.018 and p = 0.010, respectively). This study underscores the potential of TCF1+ CD8+ T cells as prognostic biomarkers in LUAD, providing insights into the tumor immune microenvironment and guiding future therapeutic strategies.
Collapse
Affiliation(s)
- Yao Wang
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanChina
- Research Unit of Radiation OncologyChinese Academy of Medical SciencesJinanChina
| | - Lin Ma
- Research Unit of Radiation OncologyChinese Academy of Medical SciencesJinanChina
- Department of OncologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Yu Chen
- Research Unit of Radiation OncologyChinese Academy of Medical SciencesJinanChina
- Cheeloo College of MedicineShandong UniversityJinanChina
| | - Wenhua Yun
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanChina
- Research Unit of Radiation OncologyChinese Academy of Medical SciencesJinanChina
| | - Jinming Yu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanChina
- Research Unit of Radiation OncologyChinese Academy of Medical SciencesJinanChina
| | - Xiangjiao Meng
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanChina
- Research Unit of Radiation OncologyChinese Academy of Medical SciencesJinanChina
| |
Collapse
|
13
|
Franks ML, An JH, Leavenworth JW. The Role of Natural Killer Cells in Oncolytic Virotherapy: Friends or Foes? Vaccines (Basel) 2024; 12:721. [PMID: 39066359 PMCID: PMC11281503 DOI: 10.3390/vaccines12070721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/26/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
Oncolytic virotherapy (OVT) has emerged as a promising cancer immunotherapy, and is capable of potentiating other immunotherapies due to its capacity to increase tumor immunogenicity and to boost host antitumor immunity. Natural killer (NK) cells are a critical cellular component for mediating the antitumor response, but hold a mixed reputation for their role in mediating the therapeutic efficacy of OVT. This review will discuss the pros and cons of how NK cells impact OVT, and how to harness this knowledge for the development of effective strategies that could modulate NK cells to improve OVT-based therapeutic outcomes.
Collapse
Affiliation(s)
- Michael L. Franks
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (M.L.F.)
- Graduate Biomedical Sciences Program, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ju-Hyun An
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (M.L.F.)
| | - Jianmei W. Leavenworth
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (M.L.F.)
- The O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
14
|
Talvard-Balland N, Braun LM, Dixon KO, Zwick M, Engel H, Hartmann A, Duquesne S, Penter L, Andrieux G, Rindlisbacher L, Acerbis A, Ehmann J, Köllerer C, Ansuinelli M, Rettig A, Moschallski K, Apostolova P, Brummer T, Illert AL, Schramm MA, Cheng Y, Köttgen A, Duyster J, Menssen HD, Ritz J, Blazar BR, Boerries M, Schmitt-Gräff A, Sariipek N, Van Galen P, Buescher JM, Cabezas-Wallscheid N, Pahl HL, Pearce EL, Soiffer RJ, Wu CJ, Vago L, Becher B, Köhler N, Wertheimer T, Kuchroo VK, Zeiser R. Oncogene-induced TIM-3 ligand expression dictates susceptibility to anti-TIM-3 therapy in mice. J Clin Invest 2024; 134:e177460. [PMID: 38916965 PMCID: PMC11324309 DOI: 10.1172/jci177460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 06/20/2024] [Indexed: 06/27/2024] Open
Abstract
Leukemia relapse is a major cause of death after allogeneic hematopoietic cell transplantation (allo-HCT). We tested the potential of targeting T cell (Tc) immunoglobulin and mucin-containing molecule 3 (TIM-3) for improving graft-versus-leukemia (GVL) effects. We observed differential expression of TIM-3 ligands when hematopoietic stem cells overexpressed certain oncogenic-driver mutations. Anti-TIM-3 Ab treatment improved survival of mice bearing leukemia with oncogene-induced TIM-3 ligand expression. Conversely, leukemia cells with low ligand expression were anti-TIM-3 treatment resistant. In vitro, TIM-3 blockade or genetic deletion in CD8+ Tc enhanced Tc activation, proliferation, and IFN-γ production while enhancing GVL effects, preventing Tc exhaustion, and improving Tc cytotoxicity and glycolysis in vivo. Conversely, TIM-3 deletion in myeloid cells did not affect allogeneic Tc proliferation and activation in vitro, suggesting that anti-TIM-3 treatment-mediated GVL effects are Tc induced. In contrast to anti-programmed cell death protein 1 (anti-PD-1) and anti-cytotoxic T lymphocyte-associated protein 4 (anti-CTLA-4) treatment, anti-TIM-3-treatment did not enhance acute graft-versus-host disease (aGVHD). TIM-3 and its ligands were frequently expressed in acute myeloid leukemia (AML) cells of patients with post-allo-HCT relapse. We decipher the connections between oncogenic mutations found in AML and TIM-3 ligand expression and identify anti-TIM-3 treatment as a strategy for enhancing GVL effects via metabolic and transcriptional Tc reprogramming without exacerbation of aGVHD. Our findings support clinical testing of anti-TIM-3 Ab in patients with AML relapse after allo-HCT.
Collapse
MESH Headings
- Animals
- Hepatitis A Virus Cellular Receptor 2/genetics
- Hepatitis A Virus Cellular Receptor 2/metabolism
- Mice
- Hematopoietic Stem Cell Transplantation
- Graft vs Leukemia Effect/immunology
- Graft vs Leukemia Effect/genetics
- Humans
- Allografts
- Ligands
- Oncogenes
- CD8-Positive T-Lymphocytes/immunology
- Mice, Knockout
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/pathology
- CTLA-4 Antigen/genetics
- CTLA-4 Antigen/immunology
- CTLA-4 Antigen/metabolism
- CTLA-4 Antigen/antagonists & inhibitors
- Gene Expression Regulation, Leukemic
Collapse
Affiliation(s)
- Nana Talvard-Balland
- Department of Internal Medicine I, Faculty of Medicine and Medical Center
- CIBSS–Centre for Integrative Biological Signalling Studies, and
| | - Lukas M. Braun
- Department of Internal Medicine I, Faculty of Medicine and Medical Center
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Karen O. Dixon
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women’s Hospital, Massachusetts General Hospital, and Harvard Medical School, Boston, Massachusetts, USA
- Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Melissa Zwick
- Department of Internal Medicine I, Faculty of Medicine and Medical Center
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Helena Engel
- Department of Internal Medicine I, Faculty of Medicine and Medical Center
| | - Alina Hartmann
- Department of Internal Medicine I, Faculty of Medicine and Medical Center
| | - Sandra Duquesne
- Department of Internal Medicine I, Faculty of Medicine and Medical Center
| | - Livius Penter
- Department of Medical Oncology, Dana-Farber Cancer Institute, and Harvard Medical School, Boston, Massachusetts, USA
- Department of Hematology, Oncology, and Tumorimmunology, Campus Virchow Klinikum, Berlin, Charité–Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Geoffroy Andrieux
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lukas Rindlisbacher
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Andrea Acerbis
- Department of Internal Medicine I, Faculty of Medicine and Medical Center
| | - Jule Ehmann
- Department of Internal Medicine I, Faculty of Medicine and Medical Center
| | - Christoph Köllerer
- Department of Internal Medicine I, Faculty of Medicine and Medical Center
| | - Michela Ansuinelli
- Department of Medical Oncology, Dana-Farber Cancer Institute, and Harvard Medical School, Boston, Massachusetts, USA
- Hematology, Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Andres Rettig
- Department of Internal Medicine I, Faculty of Medicine and Medical Center
| | - Kevin Moschallski
- Department of Internal Medicine I, Faculty of Medicine and Medical Center
| | - Petya Apostolova
- German Cancer Consortium (DKTK) Partner Site Freiburg, a partnership between German Cancer Research Center (DKFZ) and Medical Center, University of Freiburg, Freiburg, Germany
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Tilman Brummer
- German Cancer Consortium (DKTK) Partner Site Freiburg, a partnership between German Cancer Research Center (DKFZ) and Medical Center, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS–Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- Institute of Molecular Medicine and Cell Research (IMMZ), Freiburg, Germany
| | - Anna L. Illert
- Department of Internal Medicine I, Faculty of Medicine and Medical Center
- German Cancer Consortium (DKTK) Partner Site Freiburg, a partnership between German Cancer Research Center (DKFZ) and Medical Center, University of Freiburg, Freiburg, Germany
- Department of Internal Medicine III, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | | | - Yurong Cheng
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center–University of Freiburg, Freiburg, Germany
| | - Anna Köttgen
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center–University of Freiburg, Freiburg, Germany
| | - Justus Duyster
- Department of Internal Medicine I, Faculty of Medicine and Medical Center
| | | | - Jerome Ritz
- Department of Medical Oncology, Dana-Farber Cancer Institute, and Harvard Medical School, Boston, Massachusetts, USA
| | - Bruce R. Blazar
- University of Minnesota, Department of Pediatrics, Division of Blood and Marrow Transplant & Cellular Therapy, Minneapolis, Minnesota, USA
| | - Melanie Boerries
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, a partnership between German Cancer Research Center (DKFZ) and Medical Center, University of Freiburg, Freiburg, Germany
| | | | - Nurefsan Sariipek
- Division of Hematology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Peter Van Galen
- Division of Hematology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Joerg M. Buescher
- Max-Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | | | - Heike L. Pahl
- Department of Internal Medicine I, Faculty of Medicine and Medical Center
| | - Erika L. Pearce
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Robert J. Soiffer
- Department of Medical Oncology, Dana-Farber Cancer Institute, and Harvard Medical School, Boston, Massachusetts, USA
| | - Catherine J. Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, and Harvard Medical School, Boston, Massachusetts, USA
| | - Luca Vago
- Unit of Immunogenetics, Leukemia Genomics and Immunobiology, Division of Immunology, Transplantation and Infectious Disease, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Natalie Köhler
- Department of Internal Medicine I, Faculty of Medicine and Medical Center
- CIBSS–Centre for Integrative Biological Signalling Studies, and
| | - Tobias Wertheimer
- Department of Internal Medicine I, Faculty of Medicine and Medical Center
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Vijay K. Kuchroo
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women’s Hospital, Massachusetts General Hospital, and Harvard Medical School, Boston, Massachusetts, USA
| | - Robert Zeiser
- Department of Internal Medicine I, Faculty of Medicine and Medical Center
- German Cancer Consortium (DKTK) Partner Site Freiburg, a partnership between German Cancer Research Center (DKFZ) and Medical Center, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS–Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
15
|
Dai A, Zhang X, Wang X, Liu G, Wang Q, Yu F. Transcription factors in chimeric antigen receptor T-cell development. Hum Cell 2024; 37:571-581. [PMID: 38436882 DOI: 10.1007/s13577-024-01040-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/30/2024] [Indexed: 03/05/2024]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy is a new and innovative approach to treating cancers that has shown promising results in the treatment of lymphoma. However, it has been found to be less effective in the treatment of solid tumors. To overcome the limitation, researchers have explored the use of combined CAR-T therapy with other complementary regimens that target specific genes or biomarkers, which would enhance the synergistic therapeutic effects. Transcription factors (TFs) have been identified as potential markers that can regulate gene expression in CAR-T cells to enhance their cytotoxicity and safety. TFs are known to bind DNA specifically and recruit cofactor proteins to regulate the expression of target genes. By targeting TFs, it is possible to improve the anti-tumor response of CAR-T cells by altering their phenotype and transcriptional map, thereby increasing their effector function, such as reducing the exhaustion, enhancing the survival, and cytotoxicity of CAR-T cells. This review summarizes the application of transcription factors in CART therapy to enhance the synergistic therapeutic effect of CAR-T cells in the treatment of solid tumors and improve their anti-tumor responses.
Collapse
Affiliation(s)
- Anran Dai
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Xiangzhi Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Xiaoyan Wang
- Department of Gastroenterology, Suqian First People's Hospital, Suqian, 223800, Jiangsu, China
| | - Guodong Liu
- Department of General Surgery, Suqian First People's Hospital, Suqian, 223800, Jiangsu, China
| | - Qiang Wang
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Feng Yu
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
16
|
Nie Y, Song C, Huang H, Mao S, Ding K, Tang H. Chromatin modifiers in human disease: from functional roles to regulatory mechanisms. MOLECULAR BIOMEDICINE 2024; 5:12. [PMID: 38584203 PMCID: PMC10999406 DOI: 10.1186/s43556-024-00175-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/21/2024] [Indexed: 04/09/2024] Open
Abstract
The field of transcriptional regulation has revealed the vital role of chromatin modifiers in human diseases from the beginning of functional exploration to the process of participating in many types of disease regulatory mechanisms. Chromatin modifiers are a class of enzymes that can catalyze the chemical conversion of pyrimidine residues or amino acid residues, including histone modifiers, DNA methyltransferases, and chromatin remodeling complexes. Chromatin modifiers assist in the formation of transcriptional regulatory circuits between transcription factors, enhancers, and promoters by regulating chromatin accessibility and the ability of transcription factors to acquire DNA. This is achieved by recruiting associated proteins and RNA polymerases. They modify the physical contact between cis-regulatory factor elements, transcription factors, and chromatin DNA to influence transcriptional regulatory processes. Then, abnormal chromatin perturbations can impair the homeostasis of organs, tissues, and cells, leading to diseases. The review offers a comprehensive elucidation on the function and regulatory mechanism of chromatin modifiers, thereby highlighting their indispensability in the development of diseases. Furthermore, this underscores the potential of chromatin modifiers as biomarkers, which may enable early disease diagnosis. With the aid of this paper, a deeper understanding of the role of chromatin modifiers in the pathogenesis of diseases can be gained, which could help in devising effective diagnostic and therapeutic interventions.
Collapse
Affiliation(s)
- Yali Nie
- Hunan Provincial Key Laboratory of Multi-omics and Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan, 421001, China
- The First Affiliated Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Clinical Research Center for Myocardial Injury in Hunan Province, Hengyang, Hunan, 421001, China
| | - Chao Song
- Hunan Provincial Key Laboratory of Multi-omics and Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan, 421001, China
- The First Affiliated Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- The First Affiliated Hospital, Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Hong Huang
- Hunan Provincial Key Laboratory of Multi-omics and Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan, 421001, China
- The First Affiliated Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Clinical Research Center for Myocardial Injury in Hunan Province, Hengyang, Hunan, 421001, China
- The First Affiliated Hospital, Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Shuqing Mao
- Hunan Provincial Key Laboratory of Multi-omics and Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan, 421001, China
- The First Affiliated Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Clinical Research Center for Myocardial Injury in Hunan Province, Hengyang, Hunan, 421001, China
| | - Kai Ding
- The First Affiliated Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Clinical Research Center for Myocardial Injury in Hunan Province, Hengyang, Hunan, 421001, China
| | - Huifang Tang
- Hunan Provincial Key Laboratory of Multi-omics and Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan, 421001, China.
- The First Affiliated Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
- The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
- Clinical Research Center for Myocardial Injury in Hunan Province, Hengyang, Hunan, 421001, China.
- The First Affiliated Hospital, Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
17
|
Yu J, Gadwa J, Ross RB, Knitz M, Darragh LB, Abdelazeem KNM, Beynor J, Neupert B, Nguyen A, Nguyen D, Olimpo N, Corbo S, Van Court B, D'Alessandro A, Saviola A, Karam SD. IL7 in combination with radiotherapy stimulates a memory T-cell response to improve outcomes in HNSCC models. Cancer Immunol Immunother 2024; 73:90. [PMID: 38554147 PMCID: PMC10981637 DOI: 10.1007/s00262-024-03664-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/27/2024] [Indexed: 04/01/2024]
Abstract
Clinically approved head and neck squamous cell carcinoma (HNSCC) immunotherapies manipulate the immune checkpoint blockade (ICB) axis but have had limited success outside of recurrent/metastatic disease. Interleukin-7 (IL7) has been shown to be essential for effector T-cell survival, activation, and proliferation. Here, we show that IL7 in combination with radiotherapy (RT) is effective in activating CD8 + T-cells for reducing tumor growth. Our studies were conducted using both human papillomavirus related and unrelated orthotopic HNSCC murine models. Immune populations from the tumor, draining lymph nodes, and blood were compared between treatment groups and controls using flow cytometry, proteomics, immunofluorescence staining, and RNA sequencing. Treatment with RT and IL7 (RT + IL7) resulted in significant tumor growth reduction, high CD8 T-cell tumor infiltration, and increased proliferation of T-cell progenitors in the bone marrow. IL7 also expanded a memory-like subpopulation of CD8 T-cells. These results indicate that IL7 in combination with RT can serve as an effective immunotherapy strategy outside of the conventional ICB axis to drive the antitumor activity of CD8 T-cells.
Collapse
Affiliation(s)
- Justin Yu
- Department of Otolaryngology - Head and Neck Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Jacob Gadwa
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Richard B Ross
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Michael Knitz
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Laurel B Darragh
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Khalid N M Abdelazeem
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Radiation Biology Research Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Jessica Beynor
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Brooke Neupert
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Alexander Nguyen
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Diemmy Nguyen
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Nicholas Olimpo
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Sophia Corbo
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Benjamin Van Court
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Anthony Saviola
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Sana D Karam
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
18
|
Jia D, Wang Q, Qi Y, Jiang Y, He J, Lin Y, Sun Y, Xu J, Chen W, Fan L, Yan R, Zhang W, Ren G, Xu C, Ge Q, Wang L, Liu W, Xu F, Wu P, Wang Y, Chen S, Wang L. Microbial metabolite enhances immunotherapy efficacy by modulating T cell stemness in pan-cancer. Cell 2024; 187:1651-1665.e21. [PMID: 38490195 DOI: 10.1016/j.cell.2024.02.022] [Citation(s) in RCA: 60] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 12/31/2023] [Accepted: 02/20/2024] [Indexed: 03/17/2024]
Abstract
The immune checkpoint blockade (ICB) response in human cancers is closely linked to the gut microbiota. Here, we report that the abundance of commensal Lactobacillus johnsonii is positively correlated with the responsiveness of ICB. Supplementation with Lactobacillus johnsonii or tryptophan-derived metabolite indole-3-propionic acid (IPA) enhances the efficacy of CD8+ T cell-mediated αPD-1 immunotherapy. Mechanistically, Lactobacillus johnsonii collaborates with Clostridium sporogenes to produce IPA. IPA modulates the stemness program of CD8+ T cells and facilitates the generation of progenitor exhausted CD8+ T cells (Tpex) by increasing H3K27 acetylation at the super-enhancer region of Tcf7. IPA improves ICB responsiveness at the pan-cancer level, including melanoma, breast cancer, and colorectal cancer. Collectively, our findings identify a microbial metabolite-immune regulatory pathway and suggest a potential microbial-based adjuvant approach to improve the responsiveness of immunotherapy.
Collapse
Affiliation(s)
- Dingjiacheng Jia
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310058, China; Institution of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Qiwen Wang
- Institution of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang Province 310058, China; Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Yadong Qi
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310058, China; Institution of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Yao Jiang
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310058, China; Institution of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Jiamin He
- Institution of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang Province 310058, China; Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Yifeng Lin
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310058, China; Institution of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Yong Sun
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310058, China; Institution of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Jilei Xu
- Institution of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang Province 310058, China; Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Wenwen Chen
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310058, China; Institution of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Lina Fan
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310058, China; Institution of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Ruochen Yan
- Institution of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang Province 310058, China; Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Wang Zhang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Guohong Ren
- Department of Breast Surgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310058, China
| | - Chaochao Xu
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310058, China; Institution of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Qiwei Ge
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310058, China; Institution of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Lan Wang
- Institution of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang Province 310058, China; Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Wei Liu
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agriculture Sciences, Hangzhou, Zhejiang Province 310021, China
| | - Fei Xu
- Institute of Pharmaceutical Biotechnology and Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310058, China
| | - Pin Wu
- Department of Thoracic Surgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310058, China
| | - Yuhao Wang
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310029, China
| | - Shujie Chen
- Institution of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang Province 310058, China; Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang Province 310058, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang Province 310001, China.
| | - Liangjing Wang
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310058, China; Institution of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang Province 310058, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang Province 310001, China.
| |
Collapse
|
19
|
Lin Y, Li X, Shan H, Gao J, Yang Y, Jiang L, Sun L, Chen Y, Liu F, Yu X. Scd-1 deficiency promotes the differentiation of CD8 + T effector. Front Cell Infect Microbiol 2024; 14:1325390. [PMID: 38379772 PMCID: PMC10876803 DOI: 10.3389/fcimb.2024.1325390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 01/02/2024] [Indexed: 02/22/2024] Open
Abstract
The impact of various fatty acid types on adaptive immunity remains uncertain, and their roles remain unelucidated. Stearoyl-CoA desaturase (Scd) is a Δ-9 desaturase, which is a key rate-limiting enzyme for the conversion of saturated fatty acids (SFA) to monounsaturated fatty acids (MUFA) in the fatty acid de novo synthesis. Scd-1 converts stearic acid (SA) and palmitic acid (PA) to oleic acid (OA) and palmitoleic acid (PO), respectively. In this study, through a series of experiments, we showed that Scd-1 and its resulting compound, OA, have a substantial impact on the transformation of CD8+ naïve T cells into effector T cells. Inactivation of Scd-1 triggers the specialization of CD8+ T cells into the Teff subset, enhancing the effector function and mitochondrial metabolism of Teff cells, and OA can partially counteract this. A deeper understanding of lipid metabolism in immune cells and its impact on cell function can lead to new therapeutic approaches for controlling the immune response and improving prognosis.
Collapse
Affiliation(s)
- Yiwei Lin
- Department of Orthopaedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xushuo Li
- Jinshan Hospital Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, China
| | - Haojie Shan
- Department of Orthopaedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Gao
- Department of Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yanying Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Key Laboratory of Bioactive Small Molecules, Fudan University, Shanghai, China
| | - Linlan Jiang
- Department of Oncology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lu Sun
- Department of Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuwen Chen
- Jinshan Hospital Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, China
| | - Fangming Liu
- Jinshan Hospital Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, China
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaowei Yu
- Department of Orthopaedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
20
|
Oba T, Long MD, Ito KI, Ito F. Clinical and immunological relevance of SLAMF6 expression in the tumor microenvironment of breast cancer and melanoma. Sci Rep 2024; 14:2394. [PMID: 38287061 PMCID: PMC10825192 DOI: 10.1038/s41598-023-50062-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 12/14/2023] [Indexed: 01/31/2024] Open
Abstract
Compelling evidence shows that the frequency of T cells in the tumor microenvironment correlates with prognosis as well as response to immunotherapy. However, considerable heterogeneity exists within tumor-infiltrating T cells, and significance of their genomic and transcriptomic landscape on clinical outcomes remains to be elucidated. Signaling lymphocyte activation molecule 6 (SLAMF6) is expressed on intra-tumoral progenitor-exhausted T cells, which exhibit the capacity to proliferate, self-renew and produce terminally-exhausted T cells in pre-clinical models and patients. Here, we investigated the impact of SLAMF6 expression on prognosis in two immunologically different tumor types using publicly available databases. Our findings demonstrate that high SLAMF6 expression is associated with better prognosis, expression of TCF7 (encoding T-cell factor 1), and increased gene signatures associated with conventional type 1 dendritic cells and effector function of T cells in melanoma and breast cancer. Single-cell profiling of breast cancer tumor microenvironment reveals SLAMF6 expression overlaps CD8 T cells with a T-effector signature, which includes subsets expressing TCF7, memory and effector-related genes, analogous to progenitor-exhausted T cells. These findings illustrate the significance of SLAMF6 in the tumor as a marker for better effector responses, and provide insights into the predictive and prognostic determinants for cancer patients.
Collapse
Affiliation(s)
- Takaaki Oba
- Division of Breast and Endocrine Surgery, Department of Surgery, Shinshu University School of Medicine, Matsumoto, Japan
| | - Mark D Long
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Ken-Ichi Ito
- Division of Breast and Endocrine Surgery, Department of Surgery, Shinshu University School of Medicine, Matsumoto, Japan
| | - Fumito Ito
- Department of Surgery, Keck School of Medicine, University of Southern California, 1450 Biggy St. NRT 3505, Los Angeles, CA, 90033, USA.
| |
Collapse
|
21
|
Landy E, Varghese J, Dang V, Szymczak-Workman A, Kane LP, Canna SW. Complementary HLH susceptibility factors converge on CD8 T-cell hyperactivation. Blood Adv 2023; 7:6949-6963. [PMID: 37738167 PMCID: PMC10690564 DOI: 10.1182/bloodadvances.2023010502] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/24/2023] Open
Abstract
Hemophagocytic lymphohistiocytosis (HLH) and macrophage activation syndrome (MAS) are life-threatening hyperinflammatory syndromes. Familial HLH is caused by genetic impairment of granule-mediated cytotoxicity (eg, perforin deficiency). MAS is linked to excess activity of the inflammasome-activated cytokine interleukin-18 (IL-18). Though individually tolerated, mice with dual susceptibility (Prf1⁻/⁻Il18tg; DS) succumb to spontaneous, lethal hyperinflammation. We hypothesized that understanding how these susceptibility factors synergize would uncover key pathomechanisms in the activation, function, and persistence of hyperactivated CD8 T cells. In IL-18 transgenic (Il18tg) mice, IL-18 effects on CD8 T cells drove MAS after a viral (lymphocytic choriomeningitis virus), but not innate (toll like receptor 9), trigger. In vitro, CD8 T cells also required T-cell receptor (TCR) stimulation to fully respond to IL-18. IL-18 induced but perforin deficiency impaired immunoregulatory restimulation-induced cell death (RICD). Paralleling hyperinflammation, DS mice displayed massive postthymic oligoclonal CD8 T-cell hyperactivation in their spleens, livers, and bone marrow as early as 3 weeks. These cells increased proliferation and interferon gamma production, which contrasted with increased expression of receptors and transcription factors associated with exhaustion. Broad-spectrum antibiotics and antiretrovirals failed to ameliorate the disease. Attempting to genetically "fix" TCR antigen-specificity instead demonstrated the persistence of spontaneous HLH and hyperactivation, chiefly on T cells that had evaded TCR fixation. Thus, drivers of HLH may preferentially act on CD8 T cells: IL-18 amplifies activation and demand for RICD, whereas perforin supplies critical immunoregulation. Together, these factors promote a terminal CD8 T-cell activation state, combining features of exhaustion and effector function. Therefore, susceptibility to hyperinflammation may converge on a unique, unrelenting, and antigen-dependent state of CD8 T-cell hyperactivation.
Collapse
Affiliation(s)
- Emily Landy
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA
- Graduate Program in Microbiology and Immunology, University of Pittsburgh, Pittsburgh, PA
| | - Jemy Varghese
- Rheumatology & Immune Dysregulation, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Vinh Dang
- Rheumatology & Immune Dysregulation, Children’s Hospital of Philadelphia, Philadelphia, PA
| | | | - Lawrence P. Kane
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA
| | - Scott W. Canna
- Rheumatology & Immune Dysregulation, Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
22
|
Yakou MH, Ghilas S, Tran K, Liao Y, Afshar-Sterle S, Kumari A, Schmid K, Dijkstra C, Inguanti C, Ostrouska S, Wilcox J, Smith M, Parathan P, Allam A, Xue HH, Belz GT, Mariadason JM, Behren A, Drummond GR, Ruscher R, Williams DS, Pal B, Shi W, Ernst M, Raghu D, Mielke LA. TCF-1 limits intraepithelial lymphocyte antitumor immunity in colorectal carcinoma. Sci Immunol 2023; 8:eadf2163. [PMID: 37801516 DOI: 10.1126/sciimmunol.adf2163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 08/07/2023] [Indexed: 10/08/2023]
Abstract
Intraepithelial lymphocytes (IELs), including αβ and γδ T cells (T-IELs), constantly survey and play a critical role in maintaining the gastrointestinal epithelium. We show that cytotoxic molecules important for defense against cancer were highly expressed by T-IELs in the small intestine. In contrast, abundance of colonic T-IELs was dependent on the microbiome and displayed higher expression of TCF-1/TCF7 and a reduced effector and cytotoxic profile, including low expression of granzymes. Targeted deletion of TCF-1 in γδ T-IELs induced a distinct effector profile and reduced colon tumor formation in mice. In addition, TCF-1 expression was significantly reduced in γδ T-IELs present in human colorectal cancers (CRCs) compared with normal healthy colon, which strongly correlated with an enhanced γδ T-IEL effector phenotype and improved patient survival. Our work identifies TCF-1 as a colon-specific T-IEL transcriptional regulator that could inform new immunotherapy strategies to treat CRC.
Collapse
Affiliation(s)
- Marina H Yakou
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria 3084, Australia
| | - Sonia Ghilas
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria 3084, Australia
| | - Kelly Tran
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria 3084, Australia
| | - Yang Liao
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria 3084, Australia
| | - Shoukat Afshar-Sterle
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria 3084, Australia
| | - Anita Kumari
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria 3084, Australia
| | - Kevin Schmid
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria 3084, Australia
| | - Christine Dijkstra
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria 3084, Australia
| | - Chantelle Inguanti
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria 3084, Australia
| | - Simone Ostrouska
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria 3084, Australia
| | - Jordan Wilcox
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria 3084, Australia
| | - Maxine Smith
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Pavitha Parathan
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria 3084, Australia
| | - Amr Allam
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria 3084, Australia
| | - Hai-Hui Xue
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ, USA
- New Jersey Veterans Affairs Health Care System, East Orange, NJ, USA
| | - Gabrielle T Belz
- University of Queensland Frazer Institute, Faculty of Medicine, University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - John M Mariadason
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria 3084, Australia
| | - Andreas Behren
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria 3084, Australia
| | - Grant R Drummond
- Centre for Cardiovascular Biology and Disease Research; Department of Microbiology, Anatomy, Physiology and Pharmacology; and School of Agriculture, Biomedicine, and Environment, La Trobe University, Bundoora, Victoria, Australia
| | - Roland Ruscher
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - David S Williams
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria 3084, Australia
- Department of Anatomical Pathology, Austin Health, Heidelberg, Victoria, Australia
| | - Bhupinder Pal
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria 3084, Australia
| | - Wei Shi
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria 3084, Australia
| | - Matthias Ernst
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria 3084, Australia
| | - Dinesh Raghu
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria 3084, Australia
| | - Lisa A Mielke
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria 3084, Australia
| |
Collapse
|
23
|
Liu S, Zhao K. Disorder-based T cell developmental order. Nat Immunol 2023; 24:1602-1603. [PMID: 37709987 PMCID: PMC10868516 DOI: 10.1038/s41590-023-01623-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Many transcription factors contain intrinsically disordered regions whose functions are not well characterized.An intrinsically disordered region in TCF-1 has now been found to have an essential function in coordinating T cell lineage commitment.
Collapse
Affiliation(s)
- Shuai Liu
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Keji Zhao
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
24
|
Affiliation(s)
- Irina Tsymala
- Department of Medical Biochemistry, Max Perutz Labs Vienna, Medical University of Vienna, Campus Vienna Biocenter, Vienna, Austria
| | - Karl Kuchler
- Department of Medical Biochemistry, Max Perutz Labs Vienna, Medical University of Vienna, Campus Vienna Biocenter, Vienna, Austria
| |
Collapse
|
25
|
Zhao P, Sun L, Zhao C, Malik S. PD1 is transcriptionally regulated by LEF1 in mature T cells. Immunobiology 2023; 228:152708. [PMID: 37523793 DOI: 10.1016/j.imbio.2023.152708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/09/2023] [Accepted: 07/12/2023] [Indexed: 08/02/2023]
Abstract
The role of programmed cell death 1 (PD1) in cancer immune evasion is of considerable importance, prompting the development of monoclonal antibodies that specifically target PD-1 to enhance the immune system for cancer therapy. Nevertheless, the efficacy of PD1/programmed cell death-Ligand 1 (PD-L1) blocking antibodies is limited to certain patients or tumor types. Although researchers have demonstrated the influence of PD-1 on the positive selection of T cells, its effect on the T-cell repertoire remains uncertain. Lymphoid enhancer binding factor 1 (LEF1) has been known to play a critical role as a transcription factor in the development and maturation of T cells. Despite the greater focus on the study of its homologous protein, T cell factor 1 (TCF1), we discovered that LEF1 had a positive regulatory effect on the transcription of PD1 in mature T cells, including CD4+ T cells, CD8+ T cells, and Treg cells. This finding was observed in LEF1 knockout and LEF1-stimulated mice models. Additionally, we confirmed the direct regulation of PD1 by LEF1 in tumor-infiltrating lymphocytes through tumor-implantation experiments. The direct regulation of PD1 by LEF1 was further validated in the LEF1 knockout cell line. The results of our study provide novel perspectives on the regulation of PD1 in immune responses and investigate potential approaches for clinical anti-PD1 therapy.
Collapse
Affiliation(s)
- Pin Zhao
- National Clinical Research Center for Infectious Diseases, The Third People's Hospital of Shenzhen, Southern University of Science and Technology, Shenzhen, China.
| | - Lanming Sun
- Department of Prevention, Health Care and Fertility, Xinfuli Community Hospital, Linhongnong Road, Dahongmen, Fengtai District, Beijing, China
| | - Cong Zhao
- Department of Prevention, Health Care and Fertility, Xinfuli Community Hospital, Linhongnong Road, Dahongmen, Fengtai District, Beijing, China
| | - Samiullah Malik
- Department of Pathogen Biology, Shenzhen University Health Science Center, Shenzhen 518055, China
| |
Collapse
|
26
|
Jiang K, Liu S, Chen Y, Xu Z, Xu Z, Qian B, Ding Q, Cui H, Sui Y, Cao D, Xu W, Shen M. Characterization of TCF-1 and its relationship between CD8+ TIL densities and immune checkpoints and their joint influences on prognoses of lung adenocarcinoma patients. Thorac Cancer 2023; 14:2745-2753. [PMID: 37536668 PMCID: PMC10518226 DOI: 10.1111/1759-7714.15058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 08/05/2023] Open
Abstract
BACKGROUND T cell factor-1 (TCF-1) + stem-like tumor-infiltrating lymphocytes (stem-like TILs) are important memory cells in the tumor microenvironment. However, their relationship with clinicopathological features, CD8+ TIL densities, immune checkpoint inhibitors (ICs), and prognostic values remain unknown for lung adenocarcinomas (LUADs). In this study, we aimed to characterize TCF-1+ TILs and their prognostic significance in patients with surgically resected LUADs. METHODS Expression of TCF-1, CD8, and ICs including programmed death-1 (PD-1), lymphocyte activating-3 (LAG-3), and T cell immunoglobulin and mucin-domain containing-3 (TIM-3) in TILs were estimated using immunohistochemistry of resected LUADs. The association between TCF-1 expressions and clinicopathological characteristics of patient prognoses were analyzed. RESULTS Positive TCF-1 expression significantly correlated with advanced pathological stage, tumor grade, CD8+ TILs density, TIM-3 expression, LAG-3 expression, and PD-1 expression. TCF-1 positivity was significantly associated with a better recurrence-free survival (RFS), and overall survival (OS). Subgroup analysis revealed that the TCF-1+/CD8+ group had the best RFS and OS, while the TCF-1-/CD8- group had the worst RFS and OS. Similarly, patients with TCF-1 + PD-1- had the best prognoses and patients with TCF-1-PD-1+ had the worst prognoses. CONCLUSION TCF-1 had relatively high positive expression and special clinicopathological features in patients with LUAD. TCF-1+ TILs were related to CD8 density, TIM-3 expression, LAG-3 expression, and PD-1 expression, and were associated with better prognoses in LUAD patients. A combination of TCF-1 and CD8 densities or PD-1 expression further stratified patients into different groups with distinct prognoses.
Collapse
Affiliation(s)
- Kanqiu Jiang
- Department of Thoracic and Cardiac SurgeryThe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Shasha Liu
- Department of Rehabilitation MedicineThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Yongbing Chen
- Department of Thoracic and Cardiac SurgeryThe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Zhonghen Xu
- Department of Thoracic and Cardiac SurgeryThe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Zhonghua Xu
- Department of Thoracic and Cardiac SurgeryThe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Bo Qian
- Gerontology DepartmentHuadong SanatoriumWuxiChina
| | - Qifeng Ding
- Department of Thoracic and Cardiac SurgeryThe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Hongxia Cui
- Department of PathologyThe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Yiqun Sui
- Department of PathologyThe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Defu Cao
- Department of Rehabilitation MedicineThe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Weihua Xu
- Department of Thoracic and Cardiac SurgeryThe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Mingjing Shen
- Department of Thoracic and Cardiac SurgeryThe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| |
Collapse
|
27
|
Kostel Bal S, Giuliani S, Block J, Repiscak P, Hafemeister C, Shahin T, Kasap N, Ransmayr B, Miao Y, van de Wetering C, Frohne A, Jimenez Heredia R, Schuster M, Zoghi S, Hertlein V, Thian M, Bykov A, Babayeva R, Bilgic Eltan S, Karakoc-Aydiner E, Shaw LE, Chowdhury I, Varjosalo M, Argüello RJ, Farlik M, Ozen A, Serfling E, Dupré L, Bock C, Halbritter F, Hannich JT, Castanon I, Kraakman MJ, Baris S, Boztug K. Biallelic NFATC1 mutations cause an inborn error of immunity with impaired CD8+ T-cell function and perturbed glycolysis. Blood 2023; 142:827-845. [PMID: 37249233 DOI: 10.1182/blood.2022018303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 04/27/2023] [Accepted: 05/17/2023] [Indexed: 05/31/2023] Open
Abstract
The nuclear factor of activated T cells (NFAT) family of transcription factors plays central roles in adaptive immunity in murine models; however, their contribution to human immune homeostasis remains poorly defined. In a multigenerational pedigree, we identified 3 patients who carry germ line biallelic missense variants in NFATC1, presenting with recurrent infections, hypogammaglobulinemia, and decreased antibody responses. The compound heterozygous NFATC1 variants identified in these patients caused decreased stability and reduced the binding of DNA and interacting proteins. We observed defects in early activation and proliferation of T and B cells from these patients, amenable to rescue upon genetic reconstitution. Stimulation induced early T-cell activation and proliferation responses were delayed but not lost, reaching that of healthy controls at day 7, indicative of an adaptive capacity of the cells. Assessment of the metabolic capacity of patient T cells revealed that NFATc1 dysfunction rendered T cells unable to engage in glycolysis after stimulation, although oxidative metabolic processes were intact. We hypothesized that NFATc1-mutant T cells could compensate for the energy deficit due to defective glycolysis by using enhanced lipid metabolism as an adaptation, leading to a delayed, but not lost, activation responses. Indeed, we observed increased 13C-labeled palmitate incorporation into citrate, indicating higher fatty acid oxidation, and we demonstrated that metformin and rosiglitazone improved patient T-cell effector functions. Collectively, enabled by our molecular dissection of the consequences of loss-of-function NFATC1 mutations and extending the role of NFATc1 in human immunity beyond receptor signaling, we provide evidence of metabolic plasticity in the context of impaired glycolysis observed in patient T cells, alleviating delayed effector responses.
Collapse
Affiliation(s)
- Sevgi Kostel Bal
- St. Anna Children's Cancer Research Institute, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| | - Sarah Giuliani
- St. Anna Children's Cancer Research Institute, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| | - Jana Block
- St. Anna Children's Cancer Research Institute, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Peter Repiscak
- St. Anna Children's Cancer Research Institute, Vienna, Austria
| | | | - Tala Shahin
- St. Anna Children's Cancer Research Institute, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Nurhan Kasap
- Department of Pediatrics, Division of Allergy and Immunology, Marmara University School of Medicine, Istanbul, Turkey
- The Isil Berat Barlan Center for Translational Medicine, Marmara University, Istanbul, Turkey
| | - Bernhard Ransmayr
- St. Anna Children's Cancer Research Institute, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Yirun Miao
- St. Anna Children's Cancer Research Institute, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Cheryl van de Wetering
- St. Anna Children's Cancer Research Institute, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Alexandra Frohne
- St. Anna Children's Cancer Research Institute, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| | - Raul Jimenez Heredia
- St. Anna Children's Cancer Research Institute, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| | - Michael Schuster
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Samaneh Zoghi
- St. Anna Children's Cancer Research Institute, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| | - Vanessa Hertlein
- St. Anna Children's Cancer Research Institute, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Marini Thian
- St. Anna Children's Cancer Research Institute, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Aleksandr Bykov
- St. Anna Children's Cancer Research Institute, Vienna, Austria
| | - Royala Babayeva
- Department of Pediatrics, Division of Allergy and Immunology, Marmara University School of Medicine, Istanbul, Turkey
- The Isil Berat Barlan Center for Translational Medicine, Marmara University, Istanbul, Turkey
| | - Sevgi Bilgic Eltan
- Department of Pediatrics, Division of Allergy and Immunology, Marmara University School of Medicine, Istanbul, Turkey
- The Isil Berat Barlan Center for Translational Medicine, Marmara University, Istanbul, Turkey
| | - Elif Karakoc-Aydiner
- Department of Pediatrics, Division of Allergy and Immunology, Marmara University School of Medicine, Istanbul, Turkey
- The Isil Berat Barlan Center for Translational Medicine, Marmara University, Istanbul, Turkey
| | - Lisa E Shaw
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | | | - Markku Varjosalo
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Rafael J Argüello
- Aix Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Matthias Farlik
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Ahmet Ozen
- Department of Pediatrics, Division of Allergy and Immunology, Marmara University School of Medicine, Istanbul, Turkey
- The Isil Berat Barlan Center for Translational Medicine, Marmara University, Istanbul, Turkey
| | - Edgar Serfling
- Department of Molecular Pathology, Institute of Pathology, and Comprehensive Cancer Center Mainfranken, University of Würzburg, Würzburg, Germany
| | - Loïc Dupré
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- Toulouse Institute for Infectious and Inflammatory Diseases, INSERM, CNRS, Toulouse III Paul Sabatier University, Toulouse, France
| | - Christoph Bock
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Medical University of Vienna, Institute of Artificial Intelligence, Center for Medical Data Science, Vienna, Austria
| | | | - J Thomas Hannich
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Irinka Castanon
- St. Anna Children's Cancer Research Institute, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| | - Michael J Kraakman
- St. Anna Children's Cancer Research Institute, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| | - Safa Baris
- Department of Pediatrics, Division of Allergy and Immunology, Marmara University School of Medicine, Istanbul, Turkey
- The Isil Berat Barlan Center for Translational Medicine, Marmara University, Istanbul, Turkey
| | - Kaan Boztug
- St. Anna Children's Cancer Research Institute, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- St. Anna Children's Hospital, Vienna, Austria
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
28
|
Zhang Z, Chen H, Yan D, Chen L, Sun J, Zhou M. Deep learning identifies a T-cell exhaustion-dependent transcriptional signature for predicting clinical outcomes and response to immune checkpoint blockade. Oncogenesis 2023; 12:37. [PMID: 37433793 PMCID: PMC10336094 DOI: 10.1038/s41389-023-00482-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/09/2023] [Accepted: 06/27/2023] [Indexed: 07/13/2023] Open
Abstract
Immune checkpoint blockade (ICB) therapies have brought unprecedented advances in cancer treatment, but responses are limited to a fraction of patients. Therefore, sustained and substantial efforts are required to advance clinical and translational investigation on managing patients receiving ICB. In this study, we investigated the dynamic changes in molecular profiles of T-cell exhaustion (TEX) during ICB treatment using single-cell and bulk transcriptome analysis, and demonstrated distinct exhaustion molecular profiles associated with ICB response. By applying an ensemble deep-learning computational framework, we identified an ICB-associated transcriptional signature consisting of 16 TEX-related genes, termed ITGs. Incorporating 16 ITGs into a machine-learning model called MLTIP achieved reliable predictive power for clinical ICB response with an average AUC of 0.778, and overall survival (pooled HR = 0.093, 95% CI, 0.031-0.28, P < 0.001) across multiple ICB-treated cohorts. Furthermore, the MLTIP consistently demonstrated superior predictive performance compared to other well-established markers and signatures, with an average increase in AUC of 21.5%. In summary, our results highlight the potential of this TEX-dependent transcriptional signature as a tool for precise patient stratification and personalized immunotherapy, with clinical translation in precision medicine.
Collapse
Affiliation(s)
- Zicheng Zhang
- School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, 325027, Wenzhou, China
| | - Hongyan Chen
- School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, 325027, Wenzhou, China
| | - Dongxue Yan
- School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, 325027, Wenzhou, China
| | - Lu Chen
- School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, 325027, Wenzhou, China
| | - Jie Sun
- School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, 325027, Wenzhou, China.
| | - Meng Zhou
- School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, 325027, Wenzhou, China.
| |
Collapse
|
29
|
Pan B, Chen Z, Zhang X, Wang Z, Yao Y, Wu X, Qiu J, Lin H, Yu L, Tu H, Tang N. 2,5-dimethylcelecoxib alleviated NK and T-cell exhaustion in hepatocellular carcinoma via the gastrointestinal microbiota-AMPK-mTOR axis. J Immunother Cancer 2023; 11:e006817. [PMID: 37316264 DOI: 10.1136/jitc-2023-006817] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2023] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND 2,5-dimethylcelecoxib (DMC), a derivative of celecoxib, is an inhibitor of microsomal prostaglandin E synthase-1 (mPGES-1). Our previous studies have demonstrated that DMC inhibits the expression of programmed death-ligand 1 on hepatocellular carcinoma (HCC) cells to prevent tumor progression. However, the effect and mechanism of DMC on HCC infiltrating immune cells remain unclear. METHODS In this study, single-cell-based high-dimensional mass cytometry was performed on the tumor microenvironment of HCC mice treated with DMC, celecoxib and MK-886 (a known mPGES-1 inhibitor). Moreover, 16S ribosomal RNA sequencing was employed to analyze how DMC improved the tumor microenvironment of HCC by remodeling the gastrointestinal microflora. RESULTS We found that (1) DMC significantly inhibited the growth of HCC and improved the prognosis of the mice, and this depended on the stronger antitumor activity of natural killer (NK) and T cells; (2) compared with celecoxib and MK-886, DMC significantly enhanced the cytotoxic and stem-like potential, and inhibited exhaustion of NK and T cells; (3) mechanistically, DMC inhibited the expression of programmed cell death protein-1 and upregulated interferon-γ expression of NK and T cells via the gastrointestinal microbiota (Bacteroides acidifaciens, Odoribacter laneus, and Odoribacter splanchnicus)-AMPK-mTOR axis. CONCLUSIONS Our study uncovers the role of DMC in improving the tumor microenvironment of HCC, which not only enriches the relationship between the mPGES-1/prostaglandin E2 pathway and the antitumor function of NK and T cells, but also provide an important strategic reference for multitarget or combined immunotherapy of HCC.Cite Now.
Collapse
Affiliation(s)
- Banglun Pan
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Zhanfei Chen
- Department of Laboratory Medicine, Affiliated Hospital of Putian University, Putian, China
- Key Laboratory of Medical Microecology (Putian University), Fujian Province University, Putian, China
| | - Xiaoxia Zhang
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Zengbin Wang
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yuxin Yao
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiaoxuan Wu
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jiacheng Qiu
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Hua Lin
- Department of Laboratory Medicine, Affiliated Hospital of Putian University, Putian, China
- Key Laboratory of Medical Microecology (Putian University), Fujian Province University, Putian, China
| | - Liumin Yu
- Department of Laboratory Medicine, Affiliated Hospital of Putian University, Putian, China
| | - Haijian Tu
- School of Basic Medical Sciences, Putian University, Putian, China
| | - Nanhong Tang
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Cancer Center of Fujian Medical University, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
30
|
Zhang C, Zhang C, Wang H. Immune-checkpoint inhibitor resistance in cancer treatment: Current progress and future directions. Cancer Lett 2023; 562:216182. [PMID: 37076040 DOI: 10.1016/j.canlet.2023.216182] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 04/21/2023]
Abstract
Cancer treatment has been advanced with the advent of immune checkpoint inhibitors (ICIs) exemplified by anti-cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), anti-programmed cell death protein 1 (PD-1) and programmed cell death ligand 1 (PD-L1) drugs. Patients have reaped substantial benefit from ICIs in many cancer types. However, few patients benefit from ICIs whereas the vast majority undergoing these treatments do not obtain survival benefit. Even for patients with initial responses, they may encounter drug resistance in their subsequent treatments, which limits the efficacy of ICIs. Therefore, a deepening understanding of drug resistance is critically important for the explorations of approaches to reverse drug resistance and to boost ICI efficacy. In the present review, different mechanisms of ICI resistance have been summarized according to the tumor intrinsic, tumor microenvironment (TME) and host classifications. We further elaborated corresponding strategies to battle against such resistance accordingly, which include targeting defects in antigen presentation, dysregulated interferon-γ (IFN-γ) signaling, neoantigen depletion, upregulation of other T cell checkpoints as well as immunosuppression and exclusion mediated by TME. Moreover, regarding the host, several additional approaches that interfere with diet and gut microbiome have also been described in reversing ICI resistance. Additionally, we provide an overall glimpse into the ongoing clinical trials that utilize these mechanisms to overcome ICI resistance. Finally, we summarize the challenges and opportunities that needs to be addressed in the investigation of ICI resistance mechanisms, with the aim to benefit more patients with cancer.
Collapse
Affiliation(s)
- Chenyue Zhang
- Department of Integrated Therapy, Fudan University Shanghai Cancer Center, Shanghai Medical College, Shanghai, China
| | - Chenxing Zhang
- Department of Nephrology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haiyong Wang
- Department of Internal Medicine-Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.
| |
Collapse
|
31
|
Single-Cell RNA sequencing highlights the regulatory role of T cell marker genes Ctla4, Ccl5 and Tcf7 in corneal allograft rejection of mouse model. Int Immunopharmacol 2023; 117:109911. [PMID: 37012887 DOI: 10.1016/j.intimp.2023.109911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 02/02/2023] [Accepted: 02/14/2023] [Indexed: 03/10/2023]
Abstract
BACKGROUND A mouse corneal allograft model was induced and single-cell RNA sequencing (scRNA-seq) data of corneal tissues and T cells were analyzed to reveal a T cell-mediated mechanism for corneal allograft rejection in mice. METHODS Corneal tissue samples from a mouse model of corneal allograft were collected for scRNA-seq analysis, followed by quality control, dimensionality reduction, cluster analysis and enrichment analysis. A large number of highly variable genes were identified in mice with corneal allograft. Significant difference existed in immune T cells, especially in CD4 + T cells. RESULTS It was found that T cell marker genes Ctla4, Ccl5, Tcf7, Lgals1, and Itgb1 may play key roles in the corneal allograft rejection. Mice with allograft rejection showed a significant increase in the proportion of CD4 + T cells in the corneal tissues. Besides, Ccl5 and Tcf7 expression was increased in mice with allograft rejection and positively linked to the proportion of CD4 + T cells. Whereas, Ctla4 expression was downregulated and negatively associated with the proportion of CD4 + T cells. CONCLUSION Collectively, Ctla4, Ccl5 and Tcf7 may participate in the rejection of corneal allograft in mice by affecting CD4 + T cell activation.
Collapse
|
32
|
Chronic lymphocytic leukemia presence impairs antigen-specific CD8 + T-cell responses through epigenetic reprogramming towards short-lived effectors. Leukemia 2023; 37:606-616. [PMID: 36658390 PMCID: PMC9851097 DOI: 10.1038/s41375-023-01817-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 12/22/2022] [Accepted: 01/10/2023] [Indexed: 01/20/2023]
Abstract
T-cell dysregulation in chronic lymphocytic leukemia (CLL) associates with low response rates to autologous T cell-based therapies. How CLL affects antigen-specific T-cell responses remains largely unknown. We investigated (epi)genetic and functional consequences of antigen-specific T-cell responses in presence of CLL in vitro and in an adoptive-transfer murine model. Already at steady-state, antigen-experienced patient-derived T cells were skewed towards short-lived effector cells (SLEC) at the expense of memory-precursor effector cells (MPEC). Stimulation of these T cells in vitro showed rapid induction of effector genes and suppression of key memory transcription factors only in presence of CLL cells, indicating epigenetic regulation. This was investigated in vivo by following antigen-specific responses of naïve OT-I CD8+ cells to mCMV-OVA in presence/absence of TCL1 B-cell leukemia. Presence of leukemia resulted in increased SLEC formation, with disturbed inflammatory cytokine production. Chromatin and transcriptome profiling revealed strong epigenetic modifications, leading to activation of an effector and silencing of a memory profile through presence of CLL cells. Secondary challenge in vivo confirmed dysfunctional memory responses by antigen-experienced OT-I cells generated in presence of CLL. Altogether, we show that presence of CLL induces a short-lived effector phenotype and impaired memory responses by epigenetic reprogramming during primary responses.
Collapse
|
33
|
Lu Y, Li W, Li Y, Zhai W, Zhou X, Wu Z, Jiang S, Liu T, Wang H, Hu R, Zhou Y, Zou J, Hu P, Guan G, Xu Q, Canário AVM, Chen L. Population genomics of an icefish reveals mechanisms of glacier-driven adaptive radiation in Antarctic notothenioids. BMC Biol 2022; 20:231. [PMID: 36224580 PMCID: PMC9560024 DOI: 10.1186/s12915-022-01432-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 10/03/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Antarctica harbors the bulk of the species diversity of the dominant teleost fish suborder-Notothenioidei. However, the forces that shape their evolution are still under debate. RESULTS We sequenced the genome of an icefish, Chionodraco hamatus, and used population genomics and demographic modelling of sequenced genomes of 52 C. hamatus individuals collected mainly from two East Antarctic regions to investigate the factors driving speciation. Results revealed four icefish populations with clear reproduction separation were established 15 to 50 kya (kilo years ago) during the last glacial maxima (LGM). Selection sweeps in genes involving immune responses, cardiovascular development, and photoperception occurred differentially among the populations and were correlated with population-specific microbial communities and acquisition of distinct morphological features in the icefish taxa. Population and species-specific antifreeze glycoprotein gene expansion and glacial cycle-paced duplication/degeneration of the zona pellucida protein gene families indicated fluctuating thermal environments and periodic influence of glacial cycles on notothenioid divergence. CONCLUSIONS We revealed a series of genomic evidence indicating differential adaptation of C. hamatus populations and notothenioid species divergence in the extreme and unique marine environment. We conclude that geographic separation and adaptation to heterogeneous pathogen, oxygen, and light conditions of local habitats, periodically shaped by the glacial cycles, were the key drivers propelling species diversity in Antarctica.
Collapse
Affiliation(s)
- Ying Lu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education), Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences (Ministry of Science and Technology), Shanghai Ocean University, Shanghai, China
| | - Wenhao Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education), Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences (Ministry of Science and Technology), Shanghai Ocean University, Shanghai, China
| | - Yalin Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education), Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences (Ministry of Science and Technology), Shanghai Ocean University, Shanghai, China
| | - Wanying Zhai
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education), Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences (Ministry of Science and Technology), Shanghai Ocean University, Shanghai, China
| | - Xuming Zhou
- Institute of Zoology, Chinese Academy of Science, Beijing, China
| | - Zhichao Wu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education), Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences (Ministry of Science and Technology), Shanghai Ocean University, Shanghai, China
| | - Shouwen Jiang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education), Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences (Ministry of Science and Technology), Shanghai Ocean University, Shanghai, China
| | - Taigang Liu
- International Research Center for Marine Biosciences (Ministry of Science and Technology), Shanghai Ocean University, Shanghai, China
- College of Information Technology, Shanghai Ocean University, Shanghai, China
| | - Huamin Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education), Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences (Ministry of Science and Technology), Shanghai Ocean University, Shanghai, China
| | - Ruiqin Hu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education), Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences (Ministry of Science and Technology), Shanghai Ocean University, Shanghai, China
| | - Yan Zhou
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education), Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences (Ministry of Science and Technology), Shanghai Ocean University, Shanghai, China
| | - Jun Zou
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education), Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences (Ministry of Science and Technology), Shanghai Ocean University, Shanghai, China
| | - Peng Hu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education), Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences (Ministry of Science and Technology), Shanghai Ocean University, Shanghai, China
| | - Guijun Guan
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education), Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences (Ministry of Science and Technology), Shanghai Ocean University, Shanghai, China
| | - Qianghua Xu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education), Shanghai Ocean University, Shanghai, China.
- International Research Center for Marine Biosciences (Ministry of Science and Technology), Shanghai Ocean University, Shanghai, China.
| | - Adelino V M Canário
- International Research Center for Marine Biosciences (Ministry of Science and Technology), Shanghai Ocean University, Shanghai, China.
- Centre of Marine Sciences (CCMAR-CIMAR LA), University of Algarve, Faro, Portugal.
| | - Liangbiao Chen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education), Shanghai Ocean University, Shanghai, China.
- International Research Center for Marine Biosciences (Ministry of Science and Technology), Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
34
|
Cheng X, Hou J, Wen X, Dong R, Lu Z, Jiang Y, Wu G, Yuan Y. Immunotherapeutic Value of Transcription Factor 19 (TCF19) Associated with Renal Clear Cell Carcinoma: A Comprehensive Analysis of 33 Human Cancer Cases. JOURNAL OF ONCOLOGY 2022; 2022:1488165. [PMID: 36111242 PMCID: PMC9470357 DOI: 10.1155/2022/1488165] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 06/30/2022] [Accepted: 07/06/2022] [Indexed: 12/04/2022]
Abstract
Background We aimed to study the relationship between transcription factor 19 (TCF19) and cancer immunotherapy in the 33 types of human cancers. Methods The Cancer Genome Atlas database was analyzed to obtain the gene expression data and clinical characteristics for the cases of 33 types of cancers. GSE67501, GSE78220, and IMvigor 210 were included in the immunotherapy cohorts. Relevant data were obtained by analyzing the gene expression database. The prognostic value of TCF19 was determined by analyzing various clinical parameters, such as survival duration, age, the stage of the tumor, and sex of the patients. The single-sample gene set enrichment analysis method was used to determine the activity of TCF19 and the method was also used to assess the differences between the TCF19 transcriptome and protein levels. The correlation between TCF19 and various immune processes and elements such as immunosuppressants, stimulants, and major histocompatibility complexes were analyzed to gain insights into the role of TCF19. The coherent paths associated with the process of TCF19 signal transduction and the influence of TCF19 on immunotherapy biomarkers have also been discussed herein. Finally, three independent immunotherapy methods were used to understand the relationship between TCF19 and immunotherapy response. Results It was observed that TCF19 was not significantly influenced by the age (5/33), sex (3/33), or tumor stage (3/21) of cancer patients. But the results revealed that TCF19 exhibited a potential prognostic value and could predict the survival rate of the patients. In some cases of this study, the activity and expression of TCF19 were taken at the same level (7/33). Conclusion TCF19 is strongly related to immune cell infiltration, immunomodulators, and immunotherapy markers. Our study demonstrated that high expression levels of TCF19 are strongly linked with the immune-related pathways. Nevertheless, it is noteworthy that TCF19 is not significantly associated with immunotherapy response.
Collapse
Affiliation(s)
- Xiaobao Cheng
- Department of Urology, The University of Hongkong-Shenzhen Hospital, Shenzhen, China
| | - Jian Hou
- Department of Urology, The University of Hongkong-Shenzhen Hospital, Shenzhen, China
| | - Xiangyang Wen
- Department of Urology, The University of Hongkong-Shenzhen Hospital, Shenzhen, China
| | - Runan Dong
- Department of Urology, The University of Hongkong-Shenzhen Hospital, Shenzhen, China
| | - Zhenquan Lu
- Department of Urology, The University of Hongkong-Shenzhen Hospital, Shenzhen, China
| | - Yi Jiang
- Department of Urology, The University of Hongkong-Shenzhen Hospital, Shenzhen, China
| | - Guoqing Wu
- Department of Urology, The University of Hongkong-Shenzhen Hospital, Shenzhen, China
| | - Yuan Yuan
- Department of Urology, The University of Hongkong-Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
35
|
Wilson TL, Kim H, Chou CH, Langfitt D, Mettelman RC, Minervina AA, Allen EK, Métais JY, Pogorelyy MV, Riberdy JM, Velasquez MP, Kottapalli P, Trivedi S, Olsen SR, Lockey T, Willis C, Meagher MM, Triplett BM, Talleur AC, Gottschalk S, Crawford JC, Thomas PG. Common Trajectories of Highly Effective CD19-Specific CAR T Cells Identified by Endogenous T-cell Receptor Lineages. Cancer Discov 2022; 12:2098-2119. [PMID: 35792801 PMCID: PMC9437573 DOI: 10.1158/2159-8290.cd-21-1508] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 05/18/2022] [Accepted: 06/27/2022] [Indexed: 11/16/2022]
Abstract
Current chimeric antigen receptor-modified (CAR) T-cell products are evaluated in bulk, without assessing functional heterogeneity. We therefore generated a comprehensive single-cell gene expression and T-cell receptor (TCR) sequencing data set using pre- and postinfusion CD19-CAR T cells from blood and bone marrow samples of pediatric patients with B-cell acute lymphoblastic leukemia. We identified cytotoxic postinfusion cells with identical TCRs to a subset of preinfusion CAR T cells. These effector precursor cells exhibited a unique transcriptional profile compared with other preinfusion cells, corresponding to an unexpected surface phenotype (TIGIT+, CD62Llo, CD27-). Upon stimulation, these cells showed functional superiority and decreased expression of the exhaustion-associated transcription factor TOX. Collectively, these results demonstrate diverse effector potentials within preinfusion CAR T-cell products, which can be exploited for therapeutic applications. Furthermore, we provide an integrative experimental and analytic framework for elucidating the mechanisms underlying effector development in CAR T-cell products. SIGNIFICANCE Utilizing clonal trajectories to define transcriptional potential, we find a unique signature of CAR T-cell effector precursors present in preinfusion cell products. Functional assessment of cells with this signature indicated early effector potential and resistance to exhaustion, consistent with postinfusion cellular patterns observed in patients. This article is highlighted in the In This Issue feature, p. 2007.
Collapse
Affiliation(s)
- Taylor L. Wilson
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Hyunjin Kim
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Ching-Heng Chou
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Deanna Langfitt
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Robert C. Mettelman
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | | | - E. Kaitlynn Allen
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jean-Yves Métais
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Mikhail V. Pogorelyy
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Janice M. Riberdy
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - M. Paulina Velasquez
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Pratibha Kottapalli
- Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Sanchit Trivedi
- Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Scott R. Olsen
- Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Timothy Lockey
- Therapeutic Production and Quality, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Catherine Willis
- Therapeutic Production and Quality, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Michael M. Meagher
- Therapeutic Production and Quality, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Brandon M. Triplett
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Aimee C. Talleur
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Stephen Gottschalk
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee
| | | | - Paul G. Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
36
|
Liu H, Wang X, Ding R, Jiao A, Zheng H, Zhang C, Feng Z, Su Y, Yang X, Lei L, Sun L, Zhang L, Sun C, Zhang B. The Transcription Factor Zfp335 Promotes Differentiation and Persistence of Memory CD8 +T Cells by Regulating TCF-1. THE JOURNAL OF IMMUNOLOGY 2022; 209:886-895. [DOI: 10.4049/jimmunol.2200026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/17/2022] [Indexed: 11/05/2022]
|
37
|
Hai R, Yang D, Zheng F, Wang W, Han X, Bode AM, Luo X. The emerging roles of HDACs and their therapeutic implications in cancer. Eur J Pharmacol 2022; 931:175216. [PMID: 35988787 DOI: 10.1016/j.ejphar.2022.175216] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/03/2022] [Accepted: 08/12/2022] [Indexed: 12/25/2022]
Abstract
Deregulation of protein post-translational modifications is intensively involved in the etiology of diseases, including degenerative diseases, inflammatory injuries, and cancers. Acetylation is one of the most common post-translational modifications of proteins, and the acetylation levels are controlled by two mutually antagonistic enzyme families, histone acetyl transferases (HATs) and histone deacetylases (HDACs). HATs loosen the chromatin structure by neutralizing the positive charge of lysine residues of histones; whereas HDACs deacetylate certain histones, thus inhibiting gene transcription. Compared with HATs, HDACs have been more intensively studied, particularly regarding their clinical significance. HDACs extensively participate in the regulation of proliferation, migration, angiogenesis, immune escape, and therapeutic resistance of cancer cells, thus emerging as critical targets for clinical cancer therapy. Compared to HATs, inhibitors of HDAC have been clinically used for cancer treatment. Here, we enumerate and integratethe mechanisms of HDAC family members in tumorigenesis and cancer progression, and address the new and exciting therapeutic implications of single or combined HDAC inhibitor (HDACi) treatment.
Collapse
Affiliation(s)
- Rihan Hai
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, PR China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, PR China
| | - Deyi Yang
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, PR China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, PR China
| | - Feifei Zheng
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, PR China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, PR China
| | - Weiqin Wang
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, PR China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, PR China
| | - Xing Han
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, PR China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, PR China
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, MN, 55912, USA
| | - Xiangjian Luo
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, PR China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, PR China; Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China; Key Laboratory of Biological Nanotechnology of National Health Commission, Central South University, Changsha, Hunan, 410078, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410078, China.
| |
Collapse
|
38
|
Koh J, Kim S, Woo YD, Song SG, Yim J, Han B, Lim S, Ahn HK, Mun S, Kim JS, Keam B, Kim YA, Lee SH, Jeon YK, Chung DH. TCF1 +PD-1 + tumour-infiltrating lymphocytes predict a favorable response and prolonged survival after immune checkpoint inhibitor therapy for non-small-cell lung cancer. Eur J Cancer 2022; 174:10-20. [PMID: 35970031 DOI: 10.1016/j.ejca.2022.07.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 07/05/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND T-cell factor 1 (TCF1)+Programmed cell death-1 (PD-1)+ tumour-infiltrating lymphocytes (TILs) are a recently defined subset of exhausted T-cells (Texh-cells) that exhibit a progenitor phenotype. They have been associated with a response to immune checkpoint inhibitor (ICI) therapy in murine tumour models and in patients with malignant melanoma. We investigated the significance of TCF1+PD-1+ TILs as a predictive biomarker for ICI therapy response in non-small-cell lung cancer (NSCLC). METHODS Two different cohorts of NSCLC patients treated with ICI targeting the PD-1/PD-L1 pathway were included. RNA-seq was performed using NSCLC tissues obtained from 234 patients prior to immunotherapy (RNA-seq cohort). Double immunostaining of TCF1 and PD-1 and single immunostaining of other immunologic markers were performed in resected tumour tissues from another 116 patients (immunohistochemistry cohort). RESULTS In the RNA-seq cohort, both Texh-cell and progenitor Texh-cell gene sets were enriched in responders compared with non-responders. Larger Texh-cell fractions and increased progenitor Texh-cell gene sets were significantly associated with better progression-free survival (PFS). In the immunohistochemistry cohort, the TCF1+PD-1+ TIL number and PD-L1 tumour proportion score were significantly higher in responders than in non-responders. A high number of TCF1+PD-1+ TILs was significantly associated with both PFS and overall survival (OS) after ICI therapy, and it independently predicted a better PFS and OS according to multivariate analysis. CONCLUSION TCF1+PD-1+ TILs, representing progenitor Texh-cells, predict both better response and survival in NSCLC patients after ICI therapy. Thus, they may be a useful predictive biomarker for ICI therapy in NSCLC.
Collapse
Affiliation(s)
- Jaemoon Koh
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea; Laboratory of Immune Regulation in Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sehui Kim
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yeon Duk Woo
- Laboratory of Immune Regulation in Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seung Geun Song
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea; Laboratory of Immune Regulation in Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jeemin Yim
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Bogyeong Han
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sojung Lim
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyun Kyung Ahn
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea; Cancer Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Seungchan Mun
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea; Interdiscipilinary Program of Cancer Biology, Seoul National University Graduate School, Seoul, Republic of Korea; Integrated Major in Innovative Medical Science, Seoul National University Graduate School, Republic of Korea
| | - Jung Sun Kim
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea; Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Bhumsuk Keam
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea; Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Young A Kim
- Department of Pathology, Seoul Metropolitan Government Boramae Hospital, Seoul, Republic of Korea
| | - Se-Hoon Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; Department of Health Sciences and Technology, Samsung Advanced Institute of Health Sciences and Technology, Sungkyunkwan University, Seoul, Republic of Korea
| | - Yoon Kyung Jeon
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea; Cancer Research Institute, Seoul National University, Seoul, Republic of Korea; Interdiscipilinary Program of Cancer Biology, Seoul National University Graduate School, Seoul, Republic of Korea; Integrated Major in Innovative Medical Science, Seoul National University Graduate School, Republic of Korea.
| | - Doo Hyun Chung
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea; Laboratory of Immune Regulation in Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
39
|
Xie F, Zhou X, Su P, Li H, Tu Y, Du J, Pan C, Wei X, Zheng M, Jin K, Miao L, Wang C, Meng X, van Dam H, Ten Dijke P, Zhang L, Zhou F. Breast cancer cell-derived extracellular vesicles promote CD8 + T cell exhaustion via TGF-β type II receptor signaling. Nat Commun 2022; 13:4461. [PMID: 35915084 PMCID: PMC9343611 DOI: 10.1038/s41467-022-31250-2] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/07/2022] [Indexed: 02/05/2023] Open
Abstract
Cancer immunotherapies have shown clinical success in various types of tumors but the patient response rate is low, particularly in breast cancer. Here we report that malignant breast cancer cells can transfer active TGF-β type II receptor (TβRII) via tumor-derived extracellular vesicles (TEV) and thereby stimulate TGF-β signaling in recipient cells. Up-take of extracellular vesicle-TβRII (EV-TβRII) in low-grade tumor cells initiates epithelial-to-mesenchymal transition (EMT), thus reinforcing cancer stemness and increasing metastasis in intracardial xenograft and orthotopic transplantation models. EV-TβRII delivered as cargo to CD8+ T cells induces the activation of SMAD3 which we demonstrated to associate and cooperate with TCF1 transcription factor to impose CD8+ T cell exhaustion, resulting in failure of immunotherapy. The levels of TβRII+ circulating extracellular vesicles (crEV) appears to correlate with tumor burden, metastasis and patient survival, thereby serve as a non-invasive screening tool to detect malignant breast tumor stages. Thus, our findings not only identify a possible mechanism by which breast cancer cells can promote T cell exhaustion and dampen host anti-tumor immunity, but may also identify a target for immune therapy against the most devastating breast tumors. Understanding the factors that hamper immune therapy in breast cancer may increase the range of patients who benefit. Here authors show that breast cancer cells produce and subsequently transfer active TGF-β type II receptors to CD8 + T cells to render them exhausted, thus paralyzing the anti-tumor immune response.
Collapse
Affiliation(s)
- Feng Xie
- Institutes of Biology and Medical Science, Soochow University, Suzhou, China
| | - Xiaoxue Zhou
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Peng Su
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Heyu Li
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Yifei Tu
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Jinjin Du
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Chen Pan
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Xiang Wei
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Min Zheng
- State Key Laboratory for Diagnostic and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Hangzhou, China
| | - Ke Jin
- Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Chengdu, China
| | - Liyan Miao
- The first affiliated hospital of soochow university, Suzhou, China
| | - Chao Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, China
| | - Xuli Meng
- Department of Breast Surgery, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Hans van Dam
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter Ten Dijke
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Long Zhang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China.
| | - Fangfang Zhou
- Institutes of Biology and Medical Science, Soochow University, Suzhou, China.
| |
Collapse
|
40
|
Yu X, Cen L, Chen YA, Markowitz J, Shaw TI, Tsai KY, Conejo-Garcia JR, Wang X. Tumor Expression Quantitative Trait Methylation Screening Reveals Distinct CpG Panels for Deconvolving Cancer Immune Signatures. Cancer Res 2022; 82:1724-1735. [PMID: 35176128 DOI: 10.1158/0008-5472.can-21-3113] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/14/2022] [Accepted: 02/09/2022] [Indexed: 11/16/2022]
Abstract
DNA methylation signatures in tumors could serve as reliable biomarkers that are accessible in archival tissues for tracking the epigenetic dynamics shaped by both cancer cells and the tumor microenvironment. However, given the ultrahigh dimensionality and noncollapsible nature of the data, it remains challenging to screen all CpG sites to identify the most promising marker panels. In this article, we introduce the concept of tumor-based expression quantitative trait methylation (eQTM) for the prioritization and systematic mining of predictive biomarkers. In melanoma as a disease model, eQTM CpGs and genes represent new and efficient candidate targets to be investigated for both prognostic and immune status monitoring purposes. Three cis-eQTM CpGs (cg07786657, cg12446199, and cg00027570) were strongly associated with and can serve as surrogate biomarkers for the tumor immune cytolytic activity score (CYT). In addition, multiple eQTM genes could be further exploited for predicting immunoregulatory phenotypes. A targeted gene panel analysis identified one eQTM in TCF7 (cg25947408) as a novel candidate biomarker for uncoupling overall T-cell differentiation and exhaustion status in a tumor. The prognostic significance of this eQTM as an independent signature to CYT was validated by both The Cancer Genome Atlas and Moffitt melanoma cohort data. Overall, eQTMs represent a mechanistically distinct class of potential biomarkers that can be used to predict patient prognosis and immune status. SIGNIFICANCE This study provides a novel and promising approach to identify targeted epigenetic biomarkers in cancer and will spur further analysis in tumor immune phenotyping.
Collapse
Affiliation(s)
- Xiaoqing Yu
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida.,Moffitt Cancer Center Immuno-Oncology Program, Tampa, Florida
| | - Ling Cen
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Y Ann Chen
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Joseph Markowitz
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida.,Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Timothy I Shaw
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Kenneth Y Tsai
- Department of Pathology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Jose R Conejo-Garcia
- Moffitt Cancer Center Immuno-Oncology Program, Tampa, Florida.,Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Xuefeng Wang
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida.,Moffitt Cancer Center Immuno-Oncology Program, Tampa, Florida
| |
Collapse
|
41
|
Tan W, Chen N, Qiu Y, Feng X, Li S, Zhang Y, Li H, Gao J, Zhao D. Exosomal Dvl3 promoted the aggressive phenotypic transformation of RA-FLS via wnt pathway. Autoimmunity 2022; 55:285-293. [PMID: 35499309 DOI: 10.1080/08916934.2022.2067984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
OBJECTIVE This study was performed to explore the function and mechanism of Dvl3 in RA-FLS by exosome intervention. METHODS The expression pattern of Dvl3 was examined by IHC, WB, and qPCR. Modified exosomes obtained from culturing supernatant of RA-FLS infected with Dvl3 over expression (OE) lentivirus were administrated to the target RA-FLS. The ability of survival, migration, and the production of inflammatory factor influenced by exosomal Dvl3 were detected by CKK8 kits, Tunel, migration test, qPCR, and enzyme-linked immunosorbent assay (ELISA) respectively; Flow cytometry analysis was conducted to explorer the inflammatory moderate role of exosomes on CD4+ T cells. The possible downstream pathways of Dvl3 were screened by qPCR and WB and verified by double luciferase reporter experiment. RESULTS The expression level of Dvl3 was significantly increased in RA and CIA. Exosomes from the OE group could significantly promote cell proliferation activity, migration/invasion ability. The augment of TNF-α, IL-1β, IL-17, and IL-21 was observed in exosomal Dvl3-OE group. Th1 and Th17 cells polarisation and cytokines related were both enhanced by Exosomal Dvl3. Over expression of Dvl3 was accompanied by the significant increase of β-catenin and RhoA activities. CONCLUSION This study discovered the high expression of Dvl3 of exosomes derived from RA patients which may possessed the ability to promote phenotypic transformation of RA-FLS through Wnt pathway.
Collapse
Affiliation(s)
- Weixing Tan
- Department of Rheumatology and Immunology, Changhai Hospital, The Second Military Medical University, Shanghai, China.,Air Force Health Care Center for Special Services, Hangzhou, China
| | - Ning Chen
- Department of Rheumatology and Immunology, Changhai Hospital, The Second Military Medical University, Shanghai, China.,Department of Rheumatology and Immunology, The First People's Hospital of Yancheng City, Yancheng, China
| | - Yang Qiu
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiaomei Feng
- Air Force Health Care Center for Special Services, Hangzhou, China
| | - Shuwen Li
- Air Force Health Care Center for Special Services, Hangzhou, China
| | - Yongjin Zhang
- Department of Orthopedics, Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Haoran Li
- Department of Rheumatology and Immunology, Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Jie Gao
- Department of Rheumatology and Immunology, Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Dongbao Zhao
- Department of Rheumatology and Immunology, Changhai Hospital, The Second Military Medical University, Shanghai, China
| |
Collapse
|
42
|
Srour N, Khan S, Richard S. The Influence of Arginine Methylation in Immunity and Inflammation. J Inflamm Res 2022; 15:2939-2958. [PMID: 35602664 PMCID: PMC9114649 DOI: 10.2147/jir.s364190] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 05/06/2022] [Indexed: 12/24/2022] Open
Abstract
Exploration in the field of epigenetics has revealed that protein arginine methyltransferases (PRMTs) contribute to disease, and this has given way to the development of specific small molecule compounds that inhibit arginine methylation. Protein arginine methylation is known to regulate fundamental cellular processes, such as transcription; pre-mRNA splicing and other RNA processing mechanisms; signal transduction, including the anti-viral response; and cellular metabolism. PRMTs are also implicated in the regulation of physiological processes, including embryonic development, myogenesis, and the immune system. Finally, the dysregulation of PRMTs is apparent in cancer, neurodegeneration, muscular disorders, and during inflammation. Herein, we review the functions of PRMTs in immunity and inflammation. We also discuss recent progress with PRMTs regarding the modulation of gene expression related to T and B lymphocyte differentiation, germinal center dynamics, and anti-viral signaling responses, as well as the clinical relevance of using PRMT inhibitors alone or in combination with other drugs to treat cancer, immune, and inflammatory-related diseases.
Collapse
Affiliation(s)
- Nivine Srour
- Segal Cancer Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, H3T 1E2, Canada
- Gerald Bronfman Department of Oncology, and Departments of Biochemistry, Human Genetics, and Medicine, McGill University, Montréal, Québec, H3T 1E2, Canada
| | - Sarah Khan
- Segal Cancer Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, H3T 1E2, Canada
- Gerald Bronfman Department of Oncology, and Departments of Biochemistry, Human Genetics, and Medicine, McGill University, Montréal, Québec, H3T 1E2, Canada
| | - Stephane Richard
- Segal Cancer Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, H3T 1E2, Canada
- Gerald Bronfman Department of Oncology, and Departments of Biochemistry, Human Genetics, and Medicine, McGill University, Montréal, Québec, H3T 1E2, Canada
- Correspondence: Stephane Richard, Email
| |
Collapse
|
43
|
Antoszewski M, Fournier N, Ruiz Buendía GA, Lourenco J, Liu Y, Sugrue T, Dubey C, Nkosi M, Pritchard CE, Huijbers IJ, Segat GC, Alonso-Moreno S, Serracanta E, Belver L, Ferrando AA, Ciriello G, Weng AP, Koch U, Radtke F. Tcf1 is essential for initiation of oncogenic Notch1-driven chromatin topology in T-ALL. Blood 2022; 139:2483-2498. [PMID: 35020836 PMCID: PMC9710489 DOI: 10.1182/blood.2021012077] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 12/22/2021] [Indexed: 01/16/2023] Open
Abstract
NOTCH1 is a well-established lineage specifier for T cells and among the most frequently mutated genes throughout all subclasses of T cell acute lymphoblastic leukemia (T-ALL). How oncogenic NOTCH1 signaling launches a leukemia-prone chromatin landscape during T-ALL initiation is unknown. Here we demonstrate an essential role for the high-mobility-group transcription factor Tcf1 in orchestrating chromatin accessibility and topology, allowing aberrant Notch1 signaling to convey its oncogenic function. Although essential, Tcf1 is not sufficient to initiate leukemia. The formation of a leukemia-prone epigenetic landscape at the distal Notch1-regulated Myc enhancer, which is fundamental to this disease, is Tcf1-dependent and occurs within the earliest progenitor stage even before cells adopt a T lymphocyte or leukemic fate. Moreover, we discovered a unique evolutionarily conserved Tcf1-regulated enhancer element in the distal Myc-enhancer, which is important for the transition of preleukemic cells to full-blown disease.
Collapse
Affiliation(s)
- Mateusz Antoszewski
- Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Life Sciences, Swiss Institute for Experimental Cancer Research (ISREC), Lausanne, Switzerland
- Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland
| | - Nadine Fournier
- Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Life Sciences, Swiss Institute for Experimental Cancer Research (ISREC), Lausanne, Switzerland
- Bioinformatics Core Facility, Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Gustavo A. Ruiz Buendía
- Bioinformatics Core Facility, Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Joao Lourenco
- Bioinformatics Core Facility, Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Yuanlong Liu
- Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland
- Department of Computational Biology, University of Lausanne (UNIL), Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Tara Sugrue
- Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Life Sciences, Swiss Institute for Experimental Cancer Research (ISREC), Lausanne, Switzerland
- Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland
- Botnar Research Centre for Child Health, University of Basel & ETH Zürich, Basel, Switzerland
| | - Christelle Dubey
- Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Life Sciences, Swiss Institute for Experimental Cancer Research (ISREC), Lausanne, Switzerland
- Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland
- INSELSPITAL, Universitätsspital Bern, Universitätsklinik für Thoraxchirurgie, Forschungsabteilung Thoraxchirurgie, Bern, Switzerland
| | - Marianne Nkosi
- Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Life Sciences, Swiss Institute for Experimental Cancer Research (ISREC), Lausanne, Switzerland
- Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland
| | - Colin E.J. Pritchard
- Mouse Clinic for Cancer & Aging (MCCA)/Transgenic Core Facility, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ivo J. Huijbers
- Mouse Clinic for Cancer & Aging (MCCA)/Transgenic Core Facility, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | - Laura Belver
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Spain
- Catalan Institute of Oncology-Immuno Procure, Barcelona, Spain
| | - Adolfo A. Ferrando
- Institute for Cancer Genetics, Columbia University Medical Center, New York, NY
| | - Giovanni Ciriello
- Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland
- Department of Computational Biology, University of Lausanne (UNIL), Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Andrew P. Weng
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC, Canada
| | - Ute Koch
- Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Life Sciences, Swiss Institute for Experimental Cancer Research (ISREC), Lausanne, Switzerland
- Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland
| | - Freddy Radtke
- Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Life Sciences, Swiss Institute for Experimental Cancer Research (ISREC), Lausanne, Switzerland
- Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland
| |
Collapse
|
44
|
Abstract
TCF1 and its homologue LEF1 are historically known as effector transcription factors downstream of the WNT signalling pathway and are essential for early T cell development. Recent advances bring TCF1 into the spotlight for its versatile, context-dependent functions in regulating mature T cell responses. In the cytotoxic T cell lineages, TCF1 is required for the self-renewal of stem-like CD8+ T cells generated in response to viral or tumour antigens, and for preserving heightened responses to checkpoint blockade immunotherapy. In the helper T cell lineages, TCF1 is indispensable for the differentiation of T follicular helper and T follicular regulatory cells, and crucially regulates immunosuppressive functions of regulatory T cells. Mechanistic investigations have also identified TCF1 as the first transcription factor that directly modifies histone acetylation, with the capacity to bridge transcriptional and epigenetic regulation. TCF1 also has the potential to become an important clinical biomarker for assessing the prognosis of tumour immunotherapy and the success of viral control in treating HIV and hepatitis C virus infection. Here, we summarize the key findings on TCF1 across the fields of T cell immunity and reflect on the possibility of exploring TCF1 and its downstream transcriptional programmes as therapeutic targets for improving antiviral and antitumour immunity.
Collapse
|
45
|
Tcf1 preprograms the mobilization of glycolysis in central memory CD8 + T cells during recall responses. Nat Immunol 2022; 23:386-398. [PMID: 35190717 PMCID: PMC8904300 DOI: 10.1038/s41590-022-01131-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 01/06/2022] [Indexed: 01/09/2023]
Abstract
The mechanisms underlying the heightened protection mediated by central memory CD8+ T (TCM) cells remain unclear. Here we show that the transcription factor Tcf1 was required in resting TCM cells to generate secondary effector CD8+ T cells and to clear pathogens during recall responses. Recall stimulation of CD8+ TCM cells caused extensive reprogramming of the transcriptome and chromatin accessibility, leading to rapid induction of glycolytic enzymes, cell cycle regulators and transcriptional regulators, including Id3. This cluster of genes did not require Tcf1 in resting CD8+ TCM cells, but depended on Tcf1 for optimal induction and chromatin opening in recall-stimulated CD8+ TCM cells. Tcf1 bound extensively to these recall-induced gene loci in resting CD8+ TCM cells and mediated chromatin interactions that positioned these genes in architectural proximity with poised enhancers. Thus, Tcf1 preprogramed a transcriptional program that supported the bioenergetic and proliferative needs of CD8+ TCM cells in case of a secondary challenge.
Collapse
|
46
|
Li Z, Sun C, Wang F, Wang X, Zhu J, Luo L, Ding X, Zhang Y, Ding P, Wang H, Pu M, Li Y, Wang S, Qin Q, Wei Y, Sun J, Wang X, Luo Y, Chen D, Qiu W. Molecular mechanisms governing circulating immune cell heterogeneity across different species revealed by single-cell sequencing. Clin Transl Med 2022; 12:e689. [PMID: 35092700 PMCID: PMC8800483 DOI: 10.1002/ctm2.689] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/30/2021] [Accepted: 12/15/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Immune cells play important roles in mediating immune response and host defense against invading pathogens. However, insights into the molecular mechanisms governing circulating immune cell diversity among multiple species are limited. METHODS In this study, we compared the single-cell transcriptomes of immune cells from 12 species. Distinct molecular profiles were characterized for different immune cell types, including T cells, B cells, natural killer cells, monocytes, and dendritic cells. RESULTS Our data revealed the heterogeneity and compositions of circulating immune cells among 12 different species. Additionally, we explored the conserved and divergent cellular crosstalks and genetic regulatory networks among vertebrate immune cells. Notably, the ligand and receptor pair VIM-CD44 was highly conserved among the immune cells. CONCLUSIONS This study is the first to provide a comprehensive analysis of the cross-species single-cell transcriptome atlas for peripheral blood mononuclear cells (PBMCs). This research should advance our understanding of the cellular taxonomy and fundamental functions of PBMCs, with important implications in evolutionary biology, developmental biology, and immune system disorders.
Collapse
Affiliation(s)
- Zhibin Li
- Department of NeurologyThe Third Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouChina
| | - Chengcheng Sun
- BGI‐ShenzhenShenzhenChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Fei Wang
- BGI‐ShenzhenShenzhenChina
- Department of BiomedicineAarhus UniversityAarhusDenmark
- Lars Bolund Institute of Regenerative MedicineQingdao‐Europe Advanced Institute for Life Sciences, BGI‐Qingdao, BGI‐ShenzhenQingdaoChina
| | - Xiran Wang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original BacteriaSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
| | - Jiacheng Zhu
- BGI‐ShenzhenShenzhenChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Lihua Luo
- BGI‐ShenzhenShenzhenChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Xiangning Ding
- BGI‐ShenzhenShenzhenChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Yanan Zhang
- Tsinghua‐Berkeley Shenzhen InstituteTsinghua UniversityShenzhenChina
| | - Peiwen Ding
- BGI‐ShenzhenShenzhenChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Haoyu Wang
- BGI‐ShenzhenShenzhenChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | | | | | - Shiyou Wang
- BGI‐ShenzhenShenzhenChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | | | | | - Jian Sun
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original BacteriaSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
| | - Xiangdong Wang
- Department of Pulmonary and Critical Care MedicineZhongshan HospitalShanghaiChina
- Fudan University Shanghai Medical CollegeShanghaiChina
| | - Yonglun Luo
- BGI‐ShenzhenShenzhenChina
- Department of BiomedicineAarhus UniversityAarhusDenmark
- Lars Bolund Institute of Regenerative MedicineQingdao‐Europe Advanced Institute for Life Sciences, BGI‐Qingdao, BGI‐ShenzhenQingdaoChina
- Steno Diabetes Center AarhusAarhus University HospitalAarhusDenmark
| | | | - Wei Qiu
- Department of NeurologyThe Third Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouChina
| |
Collapse
|
47
|
Van Braeckel-Budimir N, Dolina JS, Wei J, Wang X, Chen SH, Santiago P, Tu G, Micci L, Al-Khami AA, Pfister S, Ram S, Sundar P, Thomas G, Long H, Yang W, Potluri S, Salek-Ardakani S. Combinatorial immunotherapy induces tumor-infiltrating CD8 + T cells with distinct functional, migratory, and stem-like properties. J Immunother Cancer 2021; 9:jitc-2021-003614. [PMID: 34903555 PMCID: PMC8672007 DOI: 10.1136/jitc-2021-003614] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2021] [Indexed: 01/22/2023] Open
Abstract
Background Programmed death (ligand) 1 (PD-(L)1) blockade and OX40/4-1BB costimulation have been separately evaluated in the clinic to elicit potent antitumor T cell responses. The precise mechanisms underlying single agent activity are incompletely understood. It also remains unclear if combining individual therapies leads to synergism, elicits novel immune mechanisms, or invokes additive effects. Methods We performed high-dimensional flow cytometry and single-cell RNA sequencing-based immunoprofiling of murine tumor-infiltrating lymphocytes (TILs) isolated from hosts bearing B16 or MC38 syngeneic tumors. This baseline infiltrate was compared to TILs after treatment with either anti-PD-(L)1, anti-OX40, or anti-4-1BB as single agents or as double and triple combinatorial therapies. Fingolimod treatment and CXCR3 blockade were used to evaluate the contribution of intratumoral versus peripheral CD8+ T cells to therapeutic efficacy. Results We identified CD8+ T cell subtypes with distinct functional and migratory signatures highly predictive of tumor rejection upon treatment with single agent versus combination therapies. Rather than reinvigorating terminally exhausted CD8+ T cells, OX40/4-1BB agonism expanded a stem-like PD-1loKLRG-1+Ki-67+CD8+ T cell subpopulation, which PD-(L)1 blockade alone did not. However, PD-(L)1 blockade synergized with OX40/4-1BB costimulation by dramatically enhancing stem-like TIL presence via a CXCR3-dependent mechanism. Conclusions Our findings provide new mechanistic insights into the interplay between components of combinatorial immunotherapy, where agonism of select costimulatory pathways seeds a pool of stem-like CD8+ T cells more responsive to immune checkpoint blockade (ICB).
Collapse
Affiliation(s)
| | | | - Jie Wei
- Cancer Immunology Discovery, Pfizer Inc, San Diego, California, USA
| | - Xiao Wang
- Computational Biology, Pfizer Inc, San Diego, California, USA
| | - Shih-Hsun Chen
- Cancer Immunology Discovery, Pfizer Inc, San Diego, California, USA
| | - Pamela Santiago
- Cancer Immunology Discovery, Pfizer Inc, San Diego, California, USA
| | - Guanghuan Tu
- Cancer Immunology Discovery, Pfizer Inc, San Diego, California, USA
| | - Luca Micci
- Cancer Immunology Discovery, Pfizer Inc, San Diego, California, USA
| | - Amir A Al-Khami
- Cancer Immunology Discovery, Pfizer Inc, San Diego, California, USA
| | - Sophia Pfister
- Cancer Immunology Discovery, Pfizer Inc, San Diego, California, USA
| | - Sripad Ram
- Global Pathology, Drug Safety Reserach and Development, Pfizer Inc, San Diego, California, USA
| | - Purnima Sundar
- Cancer Immunology Discovery, Pfizer Inc, San Diego, California, USA
| | - Graham Thomas
- Cancer Immunology Discovery, Pfizer Inc, San Diego, California, USA
| | - Hua Long
- Cancer Immunology Discovery, Pfizer Inc, San Diego, California, USA
| | - Wenjing Yang
- Computational Biology, Pfizer Inc, San Diego, California, USA
| | - Shobha Potluri
- Cancer Immunology Discovery, Pfizer Inc, San Diego, California, USA
| | | |
Collapse
|
48
|
Duckworth BC, Qin RZ, Groom JR. Spatial determinates of effector and memory CD8 + T cell fates. Immunol Rev 2021; 306:76-92. [PMID: 34882817 DOI: 10.1111/imr.13044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/06/2021] [Indexed: 12/17/2022]
Abstract
The lymph node plays a critical role in mounting an adaptive immune response to infection, clearance of foreign pathogens, and cancer immunosurveillance. Within this complex structure, intranodal migration is vital for CD8+ T cell activation and differentiation. Combining tissue clearing and volumetric light sheet fluorescent microscopy of intact lymph nodes has allowed us to explore the spatial regulation of T cell fates. This has determined that short-lived effector (TSLEC ) are imprinted in peripheral lymph node interfollicular regions, due to CXCR3 migration. In contrast, stem-like memory cell (TSCM ) differentiation is determined in the T cell paracortex. Here, we detail the inflammatory and chemokine regulators of spatially restricted T cell differentiation, with a focus on how to promote TSCM . We propose a default pathway for TSCM differentiation due to CCR7-directed segregation of precursors away from the inflammatory effector niche. Although volumetric imaging has revealed the consequences of intranodal migration, we still lack knowledge of how this is orchestrated within a complex chemokine environment. Toward this goal, we highlight the potential of combining microfluidic chambers with pre-determined complexity and subcellular resolution microscopy.
Collapse
Affiliation(s)
- Brigette C Duckworth
- Division of Immunology, Walter and Eliza Hall Institute of Medical Research, Parkville, Vic, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Vic, Australia
| | - Raymond Z Qin
- Division of Immunology, Walter and Eliza Hall Institute of Medical Research, Parkville, Vic, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Vic, Australia
| | - Joanna R Groom
- Division of Immunology, Walter and Eliza Hall Institute of Medical Research, Parkville, Vic, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Vic, Australia
| |
Collapse
|
49
|
Ghilas S, Mielke LA. Dendritic cells shape TCF1 +CD8 + progenitor T cell heterogeneity. Trends Immunol 2021; 42:1063-1065. [PMID: 34774417 DOI: 10.1016/j.it.2021.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 11/29/2022]
Abstract
In two elegant studies, Tyler Jacks' group and colleagues unveil crucial interactions between dendritic cells and TCF1+CD8+ progenitor T cells, shaping their heterogeneity and offering potential to design new putative cancer immunotherapies and vaccines.
Collapse
Affiliation(s)
- Sonia Ghilas
- Olivia Newton-John Cancer Research Institute, La Trobe University School of Cancer Medicine, Heidelberg, Victoria, Australia.
| | - Lisa A Mielke
- Olivia Newton-John Cancer Research Institute, La Trobe University School of Cancer Medicine, Heidelberg, Victoria, Australia.
| |
Collapse
|
50
|
Ma L, Sun L, Zhao K, Dong Z, Huang Z, Meng X. The prognostic value of TCF1+CD8+T in primary small cell carcinoma of the esophagus. Cancer Sci 2021; 112:4968-4976. [PMID: 34657342 PMCID: PMC8645743 DOI: 10.1111/cas.15167] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 12/14/2022] Open
Abstract
TCF1+CD8+T cells are reported to exhibit stem-like properties with the ability to self-renew and differentiate into terminal effector T cells (TCF1-CD8+T cells) to enhance antitumor response. Previous studies indicated that TCF1+CD8+ tumor-infiltrating lymphocytes (TILs) are related to response to immunotherapy. However, their role in predicting prognosis for patients with primary small cell carcinoma of the esophagus (PSCCE) remains unclear. In this study, the expression of TCF1+CD8+T was analyzed by multiplex fluorescence immunohistochemistry in tumor tissues of 79 patients with PSCCE. High infiltration of TCF1+CD8+T cells had longer overall survival (OS) than low infiltration (P = .009, hazard ratio [HR] = 0.506). High TCF1+CD8/CD8 ratio (>21%) showed superior OS compared with low ratio (≤21%) (P < .001, HR = 0.394). In the validation set (n = 20), the prognostic value of TCF1+CD8+T cells on OS was also verified. TCF1+CD8+T cells are strong prognostic predictors.
Collapse
Affiliation(s)
- Lin Ma
- Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Lijun Sun
- Department of Thoracic Tumor, Affiliated Hospital of Jining Medical University, Jining, China
| | - Kaikai Zhao
- Department of Radiation Oncology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Zhengxin Dong
- School of Electronics Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Zhaoqin Huang
- Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Radiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiangjiao Meng
- Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|