1
|
Chen LR, Zhou SS, Yang JX, Liu XQ. Effect of hypoxia on the mucus system and intragastric microecology in the gastrointestinal tract. Microb Pathog 2025; 205:107615. [PMID: 40355054 DOI: 10.1016/j.micpath.2025.107615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 04/03/2025] [Accepted: 04/17/2025] [Indexed: 05/14/2025]
Abstract
Digestive diseases have a high incidence worldwide, with various geographic, age, and gender factors influencing the occurrence and development of the diseases. The main etiologic factors involve genetics, environment, lifestyle, and dietary habits. In a low-oxygen environment, however, the body's tissue cells activate hypoxia-inducible factor (HIF), which produces different inflammatory mediators. Hypoxia impacts health at the molecular level by modulating cellular stress responses, metabolic pathways, and immune functions. It also alters gene expression and cellular behavior, thereby affecting gastrointestinal function. Under normal physiological conditions, the gastrointestinal mucus system serves as a crucial protective barrier, defending against mechanical injury, pathogenic invasion, and exposure to harmful chemicals. The integrity and functionality of this barrier are dependent on the synthesis and regulation of mucins and mucus, which are influenced by multiple factors. Additionally, the composition and diversity of the gastric microbiota are shaped by factors such as Helicobacter pylori infection, diet, and lifestyle. A balanced gastric microbiota supports gastrointestinal health and fortifies the mucus barrier. However, hypoxia can disrupt this equilibrium, leading to inflammation, alterations in the mucus layer, and destabilization of the gastric microbiota. Understanding the interplay between hypoxia, the mucus system, and the gastric microbiota is essential for identifying novel therapeutic strategies. Future research should elucidate the mechanisms through which hypoxia influences these systems and develop interventions to mitigate its adverse effects on gastrointestinal health. We examined the impact of hypoxia on the gastrointestinal mucus system and gastric microbiota, highlighting its implications for human health and potential therapeutic approaches.
Collapse
Affiliation(s)
- Li Rong Chen
- Qinghai University, Xining, 810001, PR China; Affiliated People's Hospital of Qinghai University, Xining, 810001, PR China
| | - Si Si Zhou
- Affiliated People's Hospital of Qinghai University, Xining, 810001, PR China; Department of Gastroenterology, Qinghai Provincial People's Hospital, Xining, 810001, PR China; Qinghai Provincial Clinical Medical Research Center for Digestive Diseases, Xining, 810001, PR China.
| | - Ji Xiang Yang
- Qinghai University, Xining, 810001, PR China; Affiliated People's Hospital of Qinghai University, Xining, 810001, PR China
| | - Xiao Qian Liu
- Qinghai University, Xining, 810001, PR China; Affiliated People's Hospital of Qinghai University, Xining, 810001, PR China
| |
Collapse
|
2
|
Hadiono MA, Kazen AB, Aboulalazm FA, Burnett CML, Reho JJ, Kindel TL, Grobe JL, Kirby JR. Reutericyclin mitigates risperidone-induced suppression of anaerobic energy expenditure. Am J Physiol Regul Integr Comp Physiol 2025; 328:R741-R757. [PMID: 40235074 DOI: 10.1152/ajpregu.00190.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 03/31/2025] [Accepted: 04/02/2025] [Indexed: 04/17/2025]
Abstract
Recent studies from our laboratory demonstrated that the gut microbial community represents a thermogenic biomass, as cecectomy causes an ∼8% decrease in total energy expenditure (EE) via suppression of anaerobic EE. The composition of the microbial community also dictates the EE of the microbial biomass as treatment with the antipsychotic, risperidone, suppresses anaerobic EE in a microbiome-dependent manner. Finally, we have determined that a specialized metabolite produced by Limosilactobacillus reuteri, reutericyclin (RTC), opposes the weight-gain effects of risperidone. In the present study, we performed comprehensive evaluations of energy balance in female C57BL/6J mice treated with risperidone, RTC, or both, to identify mechanisms by which RTC affects energy balance to mitigate risperidone-induced weight gain. We observed that risperidone suppressed anaerobic EE, and that RTC coadministration ameliorated the anaerobic EE suppression and weight gain induced by risperidone. Because anaerobic EE is dependent on the gut microbiota, we performed 16S and whole genome shotgun sequencing on stool and cecal samples following whole animal calorimetry. Risperidone and RTC treatments reciprocally modified the relative abundance of taxa known to participate in fermentation, especially for the production of short-chain fatty acids, which have been correlated with health and leanness in both humans and mice. Together, our data demonstrate that treatment with RTC positively modulates anaerobic EE, possibly by enhancing fermentation of the gut microbial community, and may represent a novel therapeutic in the treatment of obesity.NEW & NOTEWORTHY The gut microbial community represents a thermogenic biomass. The composition of the microbial community dictates energy expenditure of the microbial biomass and is altered by xenobiotics and bacterial metabolites. This study demonstrates that treatment with reutericyclin positively modulates anaerobic energy expenditure and may represent a novel therapeutic in the treatment of obesity.
Collapse
Affiliation(s)
- Matthew A Hadiono
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Alexis B Kazen
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Fatima A Aboulalazm
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Colin M L Burnett
- Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - John J Reho
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Tammy L Kindel
- Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Justin L Grobe
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - John R Kirby
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Center for Microbiome Research, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| |
Collapse
|
3
|
Zhou J, Ou M, Yuan B, Yan B, Wang X, Qiao S, Huang Y, Feng L, Huang L, Luo Y. Dual-modality ultrasound/photoacoustic tomography for mapping tissue oxygen saturation distribution in intestinal strangulation. PHOTOACOUSTICS 2025; 43:100721. [PMID: 40248596 PMCID: PMC12004385 DOI: 10.1016/j.pacs.2025.100721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Accepted: 03/31/2025] [Indexed: 04/19/2025]
Abstract
The strangulation of intestinal obstruction (IO) presents challenges in the assessment of disease progression and surgical decision-making. Intraoperatively, an accurate evaluation of the status of the IO is critical for determining the extent of surgical resection. Dual-modality ultrasound/photoacoustic tomography (US/PAT) imaging has the potential to provide spatially resolved tissue oxygen saturation (SO₂), serving as a valuable marker for IO diagnosis. In this study, US/PAT was utilized for imaging rat models of IO, with the data used for reconstruction, statistical analysis, and distribution evaluation. Results showed that SO₂ decreased with increasing strangulation severity. Notably, the kurtosis and skewness of the SO₂ distribution outperformed SO₂ itself in diagnosis, as they more effectively capture the heterogeneity of SO₂ distribution. Kurtosis reflects distribution concentration, while skewness measures asymmetry, both achieving areas under the receiver operating characteristic curve (AUROC) of 0.969. In conclusion, US/PAT offers a rapid and convenient method for assessing strangulation in IO.
Collapse
Affiliation(s)
- Jie Zhou
- Ultrasound department of West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Mengchuan Ou
- General surgery department of the Sixth People’s Hospital of Chengdu, Sichuan 610000, China
| | - Bo Yuan
- General surgery department of the Sixth People’s Hospital of Chengdu, Sichuan 610000, China
| | - Binzi Yan
- Ultrasound department of West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Xichuan Wang
- Pathology department of the Sixth People’s Hospital of Chengdu, Sichuan 610000, China
| | - Shuaiqi Qiao
- School of Electronic Science and Engineering, University of Electronic Science and Technology, Chengdu, Sichuan 611731, China
| | - Yijie Huang
- School of Electronic Science and Engineering, University of Electronic Science and Technology, Chengdu, Sichuan 611731, China
| | - Lian Feng
- Ultrasound department of West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Lin Huang
- School of Electronic Science and Engineering, University of Electronic Science and Technology, Chengdu, Sichuan 611731, China
| | - Yan Luo
- Ultrasound department of West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
4
|
Owida HA, Saleh RO, Mohammad SI, Vasudevan A, Roopashree R, Kashyap A, Nanda A, Ray S, Hussein A, Yasin HA. Deciphering the role of circular RNAs in cancer progression under hypoxic conditions. Med Oncol 2025; 42:191. [PMID: 40314834 DOI: 10.1007/s12032-025-02727-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Accepted: 04/14/2025] [Indexed: 05/03/2025]
Abstract
Hypoxia, characterized by reduced oxygen levels, plays a pivotal role in cancer progression, profoundly influencing tumor behavior and therapeutic responses. A hallmark of solid tumors, hypoxia drives significant metabolic adaptations in cancer cells, primarily mediated by hypoxia-inducible factor-1α (HIF-1α), a key transcription factor activated in low-oxygen conditions. This hypoxic environment promotes epithelial-mesenchymal transition (EMT), enhancing cancer cell migration, metastasis, and the development of cancer stem cell-like properties, which contribute to therapy resistance. Moreover, hypoxia modulates the expression of circular RNAs (circRNAs), leading to their accumulation in the tumor microenvironment. These hypoxia-responsive circRNAs regulate gene expression and cellular processes critical for cancer progression, making them promising candidates for diagnostic and prognostic biomarkers in various cancers. This review delves into the intricate interplay between hypoxic circRNAs, microRNAs, and RNA-binding proteins, emphasizing their role as molecular sponges that modulate gene expression and signaling pathways involved in cell proliferation, apoptosis, and metastasis. It also explores the relationship between circRNAs and the tumor microenvironment, particularly how hypoxia influences their expression and functional dynamics. Additionally, the review highlights the potential of circRNAs as diagnostic and prognostic tools, as well as their therapeutic applications in innovative cancer treatments. By consolidating current knowledge, this review underscores the critical role of circRNAs in cancer biology and paves the way for future research aimed at harnessing their unique properties for clinical advancements. Specifically, this review examines the biogenesis, expression patterns, and mechanistic actions of hypoxic circRNAs, focusing on their ability to act as molecular sponges for microRNAs and their interactions with RNA-binding proteins. These interactions impact key signaling pathways related to tumor growth, metastasis, and drug resistance, offering new insights into the complex regulatory networks governed by circRNAs under hypoxic stress.
Collapse
Affiliation(s)
- Hamza Abu Owida
- Department of Medical Engineering, Faculty of Engineering, Al-Ahliyya Amman University, Amman, Jordan
| | - Raed Obaid Saleh
- Department of Medical Laboratories Techniques, College of Health and Medical Techniques, University of Al Maarif, Al Anbar, 31001, Iraq.
| | - Suleiman Ibrahim Mohammad
- Research Follower, INTI International University, 71800, Negeri Sembilan, Malaysia.
- Electronic Marketing and Social Media, Economic and Administrative Sciences, Zarqa University, Zarqa, Jordan.
| | - Asokan Vasudevan
- Faculty of Business and Communications, INTI International University, 71800, Negeri Sembilan, Malaysia
| | - R Roopashree
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Aditya Kashyap
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India
| | - Anima Nanda
- Department of Biomedical, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Subhashree Ray
- Department of Biochemistry, IMS and SUM Hospital, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751003, India
| | - Ahmed Hussein
- Medical Laboratory Technique College, The Islamic University, Najaf, Iraq
| | - Hatif Abdulrazaq Yasin
- Department of Medical Laboratories Technology, Al-Nisour University College, Nisour Seq. Karkh, Baghdad, Iraq
| |
Collapse
|
5
|
Yang H, Xia R, Teame T, Meng D, Li S, Wang T, Ding Q, Yao Y, Xu X, Yang Y, Ran C, Zhang Y, Li S, Niemann B, Guan LL, Zhang Z, Zhou Z. Activation of Gut Microbiota-HIF1α Axis Effectively Restores Resistance to Aeromonas veronii Caused by Improper Administration of AiiO-AIO6. J Nutr 2025; 155:1429-1441. [PMID: 40064423 DOI: 10.1016/j.tjnut.2025.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/26/2025] [Accepted: 03/02/2025] [Indexed: 03/28/2025] Open
Abstract
BACKGROUND Feeding adult zebrafish a diet supplemented with quenching enzyme AiiO-AIO6 (AIO6) for 3 wk improved the growth performance and disease resistance. However, when the feeding period was extended to 8 wk, zebrafish's disease resistance to Aeromonas veronii decreased. OBJECTIVES We investigated the mechanisms of the reduced disease resistance of zebrafish induced by feeding on an AIO6 supplemented diet for a long term (8 wk) and assessed the effectiveness of feed additives in restoring the low disease resistance. METHODS One-month-old (adult) zebrafish were fed with a basal diet and the basal diet supplemented with AIO6 (10 U/g) for 8 wk (experiment 1). Furthermore, the zebrafish larvae model (experiment 2) was developed and used to study the mechanisms of how AIO6 affected disease resistance (experiment 3). We also investigated the effectiveness of selected prebiotic tributyrin, β-glucan or mannan in activating gut microbiota- HIF1α to restore the low disease resistance of adult zebrafish fed with AIO6 for 8 wk (experiment 4). Lastly, the effects of Bacillus subtilis in activating the gut microbiota-HIF1α and improving the low disease resistance of zebrafish larvae induced by AIO6 were examined (experiment 5). RESULTS Feeding adult zebrafish with AIO6 for 8 wk promoted growth but disordered the gut microbiota and reduced disease resistance. The zebrafish larvae model confirmed that feeding AIO6 for 2 d increased disease resistance, whereas 7 d decreased the resistance by suppressing HIF1α. Using a germ-free zebrafish larvae model, we also demonstrated that AIO6-induced gut microbiota mediated inhibition of HIF1α. Furthermore, zebrafish fed on the AIO6-containing diet supplement with tributyrin, β-glucan, mannan, or Bacillus subtilis activated the gut microbiota-HIF1α axis to reverse the low resistance caused by AIO6. CONCLUSIONS Activating the gut microbiota-HIF1α axis has a vital role in improving intestinal health and restores the low resistance to Aeromonas veronii caused by improper administration of dietary AIO6 in zebrafish.
Collapse
Affiliation(s)
- Hongwei Yang
- China-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China; Institute of Marine Sciences, Shantou University, Shantou, China
| | - Rui Xia
- China-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China; Kunpeng Institute of Modern Agriculture at Foshan, Chinese Academy of Agricultural Sciences, Foshan, China
| | - Tsegay Teame
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China; Department of Aquaculture and Fisheries, Tigray Agricultural Research Institute (TARI), Mekelle, Tigray, Ethiopia
| | - Delong Meng
- China-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shenghui Li
- China-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tiantian Wang
- China-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qianwen Ding
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuanyuan Yao
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoqing Xu
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yalin Yang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chao Ran
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yaqing Zhang
- Beijing Jingwa Agricultural Science and Technology Innovation Center, Beijing, China
| | - Shengkang Li
- Institute of Marine Sciences, Shantou University, Shantou, China
| | - Benjamin Niemann
- Faculty of Land and Food Systems, The University of British Columbia, Vancouver, Canada
| | - Le Luo Guan
- Faculty of Land and Food Systems, The University of British Columbia, Vancouver, Canada
| | - Zhen Zhang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China; Faculty of Land and Food Systems, The University of British Columbia, Vancouver, Canada.
| | - Zhigang Zhou
- China-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
6
|
Qi P, Jiang X, Wang X, Sheng L, Liang J, Zhang L. Unraveling the pathogenesis and prevention strategies of acute high-altitude illness through gut microecology. NPJ Biofilms Microbiomes 2025; 11:62. [PMID: 40263277 PMCID: PMC12015534 DOI: 10.1038/s41522-025-00701-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 04/08/2025] [Indexed: 04/24/2025] Open
Abstract
High-altitude environments, characterized by hypobaric and hypoxic conditions, induce acute hypoxia, resulting in decreased blood oxygen saturation. This hypoxic stress perturbs gut microecological homeostasis, significantly contributing to the pathogenesis of acute mountain sickness. Consequently, elucidating the mechanisms by which high altitude affects gut homeostasis is crucial for developing effective interventions.
Collapse
Affiliation(s)
- Ping Qi
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, PR China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, PR China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, 730000, PR China
- Precision Medicine Laboratory, the First Hospital of Lanzhou University, Lanzhou, 730000, PR China
| | - Xiansen Jiang
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, PR China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, PR China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, 730000, PR China
- Precision Medicine Laboratory, the First Hospital of Lanzhou University, Lanzhou, 730000, PR China
| | - Xiaojuan Wang
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, PR China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, PR China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, 730000, PR China
- Precision Medicine Laboratory, the First Hospital of Lanzhou University, Lanzhou, 730000, PR China
| | - Liang Sheng
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, PR China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, PR China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, 730000, PR China
- Precision Medicine Laboratory, the First Hospital of Lanzhou University, Lanzhou, 730000, PR China
| | - Jiawen Liang
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, PR China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, PR China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, 730000, PR China
- Precision Medicine Laboratory, the First Hospital of Lanzhou University, Lanzhou, 730000, PR China
| | - Lei Zhang
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, PR China.
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, PR China.
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, 730000, PR China.
- Precision Medicine Laboratory, the First Hospital of Lanzhou University, Lanzhou, 730000, PR China.
- Clinical Research Center for General Surgery of Gansu Province, Lanzhou, 730000, PR China.
- Hepatopancreatobiliary Surgery Institute of Gansu Province, Lanzhou, 730000, PR China.
| |
Collapse
|
7
|
Ma X, Duan C, Wang X, Tao Y, Yang L, Teng Y, Pan Y, Zhang M, Xu J, Sheng J, Wang X, Jin P. Human gut microbiota adaptation to high-altitude exposure: longitudinal analysis over acute and prolonged periods. Microbiol Spectr 2025:e0291624. [PMID: 40257273 DOI: 10.1128/spectrum.02916-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 03/21/2025] [Indexed: 04/22/2025] Open
Abstract
This study investigated the longitudinal effects of acute (7-day) and prolonged (3-month) high-altitude exposure on gut microbiota in healthy adult males, addressing the limited data available in human populations. A cohort of 406 healthy adult males was followed, and fecal samples were collected at three time points: baseline at 800 m (406 samples), 7 days after ascending to 4,500 m (406 samples), and 2 weeks post-return to 800 m following 3 months at high altitude (186 samples). High-throughput 16S ribosomal DNA sequencing was employed to analyze microbiota composition and diversity. Results revealed significant changes in alpha- and beta-diversity, with acute high-altitude exposure inducing more pronounced effects compared to prolonged exposure. Specifically, acute exposure increased opportunistic pathogens (Ruminococcus and Oscillibacter) but decreased beneficial short-chain fatty acid producers (Faecalibacterium and Bifidobacterium). Notably, these changes in microbiota persisted even after returning to low altitude, indicating long-term remodeling. Functional analyses revealed substantial changes in metabolic pathways, suggesting microbiota-driven adaptations to energy utilization under high-altitude hypoxic conditions. In summary, acute high-altitude exposure caused dramatic changes in gut microbiota, while prolonged exposure led to structural and functional reshaping. These findings enhance our understanding of how high-altitude environments reshape gut microbiota. IMPORTANCE This study is the first to investigate the impact of high-altitude exposure on gut microbiota adaptation in a large-scale longitudinal cohort. It seeks to enhance understanding of how high-altitude environments reshape gut microbiota. Acute exposure to high altitude significantly affected both α-diversity and β-diversity of gut microbiota, with acute exposure causing more pronounced changes than prolonged adaptation, indicating temporary disruptions in microbial communities. Notable shifts in microbial abundance were observed, including increased levels of genera linked to hypoxic stress (e.g., Gemmiger, Ruminococcus, and Parabacteroides) and decreased levels of beneficial bacteria (e.g., Faecalibacterium, Roseburia, and Bifidobacterium), suggesting possible adverse health effects. Functional analysis indicated changes in metabolism-related pathways post-exposure, supporting the idea that high-altitude adaptations involve metabolic adjustments for energy management. These findings enhance understanding of high-altitude physiology, illustrating the role of gut microbiota in hypoxic health.
Collapse
Affiliation(s)
- Xianzong Ma
- Senior Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
- Department of Gastroenterology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| | | | - Xiaoying Wang
- Department of Gastroenterology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yurong Tao
- Senior Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
- Department of Gastroenterology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Lang Yang
- Senior Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
- Department of Gastroenterology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yongsheng Teng
- Department of Gastroenterology, Chongqing General Hospital, Chongqing University, Chongqing, China
| | - Yuanming Pan
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Mingjie Zhang
- Department of Gastroenterology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Junfeng Xu
- Senior Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jianqiu Sheng
- Senior Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
- Department of Gastroenterology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Xin Wang
- Department of Gastroenterology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Peng Jin
- Senior Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
- Department of Gastroenterology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| |
Collapse
|
8
|
Yu K, Choi I, Kim M, Pyung YJ, Lee JS, Choi Y, Won S, Kim Y, Park BC, Han SH, Park TS, Dalgaard TS, Yun CH. Florfenicol-induced dysbiosis impairs intestinal homeostasis and host immune system in laying hens. J Anim Sci Biotechnol 2025; 16:56. [PMID: 40223090 PMCID: PMC11995664 DOI: 10.1186/s40104-025-01186-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 02/27/2025] [Indexed: 04/15/2025] Open
Abstract
BACKGROUND Despite growing concerns about the adverse effects of antibiotics in farm animals, there has been little investigation of the effects of florfenicol in laying hens. This study examined the effect of florfenicol on the intestinal homeostasis, immune system, and pathogen susceptibility of laying hens. RESULTS The oral administration of florfenicol at field-relevant levels for 5 d resulted in a decrease in the gut microbiota genera Lactobacillus, Bacillus, and Bacteroides, indicating the development of intestinal dysbiosis. The dysbiosis led to decreased mRNA levels of key regulators peroxisome proliferator-activated receptor gamma (PPAR-γ) and hypoxia-inducible factor-1α (HIF-1α), compromising intestinal hypoxia. Intestinal homeostasis was also disrupted, with decreased expression of Occludin and Mucin 2 (Muc2) genes combined with increased gut epithelial permeability. The breakdown in intestinal homeostasis and immune function provided a favorable environment for opportunistic bacteria like avian pathogenic Escherichia coli (APEC), culminating in systemic infection. Immunologically, florfenicol treatment resulted in increased proportion and absolute number of MRC1L-B+ monocytes/macrophages in the spleen, indicating an exacerbated infection. Furthermore, both the proportion and absolute number of γδ T cells in the lamina propria of the cecum decreased. Treatment with florfenicol reduced butyrate levels in the cecum. However, the administration of butyrate before and during florfenicol treatment restored factors associated with intestinal homeostasis, including PPAR-γ, Occludin, and Muc2, while partially restoring HIF-1α, normalized intestinal hypoxia and gut permeability, and reversed immune cell changes, suppressing APEC systemic infection. CONCLUSION The uncontrolled and widespread use of florfenicol can negatively affect intestinal health in chickens. Specifically, florfenicol was found to impair intestinal homeostasis and immune function in laying hens, including by reducing butyrate levels, thereby increasing their susceptibility to systemic APEC infection. The development of strategies for mitigating the adverse effects of florfenicol on gut health and pathogen susceptibility in laying hens is therefore essential.
Collapse
Affiliation(s)
- Keesun Yu
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Inhwan Choi
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Minseong Kim
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Young Jin Pyung
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jin-Sun Lee
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Youbin Choi
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sohyoung Won
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea
| | - Younghoon Kim
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Byung-Chul Park
- Graduate School of International Agricultural Technology and Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang-Gun, Gangwon-Do, 25354, Republic of Korea
| | - Seung Hyun Han
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Tae Sub Park
- Graduate School of International Agricultural Technology and Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang-Gun, Gangwon-Do, 25354, Republic of Korea
| | | | - Cheol-Heui Yun
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
9
|
Giambra V, Caldarelli M, Franza L, Rio P, Bruno G, di Iasio S, Mastrogiovanni A, Gasbarrini A, Gambassi G, Cianci R. The Role of Notch Signaling and Gut Microbiota in Autoinflammatory Diseases: Mechanisms and Future Views. Biomedicines 2025; 13:768. [PMID: 40299348 PMCID: PMC12024679 DOI: 10.3390/biomedicines13040768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/06/2025] [Accepted: 03/18/2025] [Indexed: 04/30/2025] Open
Abstract
Notch signaling is an evolutionarily conserved, multifunctional pathway involved in cell fate determination and immune modulation and contributes to the pathogenesis of autoinflammatory diseases. Emerging evidence reveals a bidirectional interaction between Notch and the gut microbiota (GM), whereby GM composition is capable of modulating Notch signaling through the binding of microbial elements to Notch receptors, leading to immune modulation. Furthermore, Notch regulates the GM by promoting SCFA-producing bacteria while suppressing proinflammatory strains. Beneficial microbes, such as Lactobacillus and Akkermansia muciniphila, modulate Notch and reduce proinflammatory cytokine production (such as IL-6 and TNF-α). The interaction between GM and Notch can either amplify or attenuate inflammatory pathways in inflammatory bowel diseases (IBDs), Behçet's disease, and PAPA syndrome. Together, these findings provide novel therapeutic perspectives for autoinflammatory diseases by targeting the GM via probiotics or inhibiting Notch signaling. This review focuses on Notch-GM crosstalk and how GM-based and/or Notch-targeted approaches may modulate immune responses and promote better clinical outcomes.
Collapse
Affiliation(s)
- Vincenzo Giambra
- Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy; (V.G.)
| | - Mario Caldarelli
- Department of Translational Medicine and Surgery, Catholic University of Sacred Heart, 00168 Rome, Italy; (M.C.); (A.M.); (G.G.); (R.C.)
- Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy
| | - Laura Franza
- Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy
- Department of Emergency Medicine, AOU Modena, 41125 Modena, Italy
| | - Pierluigi Rio
- Department of Translational Medicine and Surgery, Catholic University of Sacred Heart, 00168 Rome, Italy; (M.C.); (A.M.); (G.G.); (R.C.)
- Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy
| | - Gaja Bruno
- Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy; (V.G.)
| | - Serena di Iasio
- Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy; (V.G.)
| | - Andrea Mastrogiovanni
- Department of Translational Medicine and Surgery, Catholic University of Sacred Heart, 00168 Rome, Italy; (M.C.); (A.M.); (G.G.); (R.C.)
- Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy
| | - Antonio Gasbarrini
- Department of Translational Medicine and Surgery, Catholic University of Sacred Heart, 00168 Rome, Italy; (M.C.); (A.M.); (G.G.); (R.C.)
- Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy
| | - Giovanni Gambassi
- Department of Translational Medicine and Surgery, Catholic University of Sacred Heart, 00168 Rome, Italy; (M.C.); (A.M.); (G.G.); (R.C.)
- Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy
| | - Rossella Cianci
- Department of Translational Medicine and Surgery, Catholic University of Sacred Heart, 00168 Rome, Italy; (M.C.); (A.M.); (G.G.); (R.C.)
- Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy
| |
Collapse
|
10
|
Ding W, Cheng Y, Liu X, Zhu Z, Wu L, Gao J, Lei W, Li Y, Zhou X, Wu J, Gao Y, Ling Z, Jiang R. Harnessing the human gut microbiota: an emerging frontier in combatting multidrug-resistant bacteria. Front Immunol 2025; 16:1563450. [PMID: 40165964 PMCID: PMC11955657 DOI: 10.3389/fimmu.2025.1563450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 02/25/2025] [Indexed: 04/02/2025] Open
Abstract
Antimicrobial resistance (AMR) has become a major and escalating global health threat, undermining the effectiveness of current antibiotic and antimicrobial therapies. The rise of multidrug-resistant bacteria has led to increasingly difficult-to-treat infections, resulting in higher morbidity, mortality, and healthcare costs. Tackling this crisis requires the development of novel antimicrobial agents, optimization of current therapeutic strategies, and global initiatives in infection surveillance and control. Recent studies highlight the crucial role of the human gut microbiota in defending against AMR pathogens. A balanced microbiota protects the body through mechanisms such as colonization resistance, positioning it as a key ally in the fight against AMR. In contrast, gut dysbiosis disrupts this defense, thereby facilitating the persistence, colonization, and dissemination of resistant pathogens. This review will explore how gut microbiota influence drug-resistant bacterial infections, its involvement in various types of AMR-related infections, and the potential for novel microbiota-targeted therapies, such as fecal microbiota transplantation, prebiotics, probiotics, phage therapy. Elucidating the interactions between gut microbiota and AMR pathogens will provide critical insights for developing novel therapeutic strategies to prevent and treat AMR infections. While previous reviews have focused on the general impact of the microbiota on human health, this review will specifically look at the latest research on the interactions between the gut microbiota and the evolution and spread of AMR, highlighting potential therapeutic strategies.
Collapse
Affiliation(s)
- Wenwen Ding
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
- Medical School of Nantong University, Nantong, Jiangsu, China
| | - Yiwen Cheng
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xia Liu
- Department of Intensive Care Unit, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhangcheng Zhu
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lingbin Wu
- Department of Intensive Care Unit, Lishui Second People’s Hospital, Lishui, Zhejiang, China
| | - Jie Gao
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wenhui Lei
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
| | - Yating Li
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xin Zhou
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, United States
- Stanford Center for Genomics and Personalized Medicine, Stanford, CA, United States
- Stanford Diabetes Research Center, Stanford, CA, United States
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States
| | - Jian Wu
- Department of Clinical Laboratory, Suzhou Municipal Hospital, Suzhou, Jiangsu, China
| | - Yongtao Gao
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
- Medical School of Nantong University, Nantong, Jiangsu, China
| | - Zongxin Ling
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ruilai Jiang
- Department of Intensive Care Unit, Lishui Second People’s Hospital, Lishui, Zhejiang, China
| |
Collapse
|
11
|
Zhao Z, Zhang X, Sun N, Duan L, Xin J, Li H, Ni X, Wang H, Ma H, Bai Y. Lactobacillus johnsonii HL79 modulates the microbiota-gut-brain axis to protect cognitive function in mice chronically exposed to high altitude. Front Microbiol 2025; 16:1561400. [PMID: 40124891 PMCID: PMC11925889 DOI: 10.3389/fmicb.2025.1561400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 02/19/2025] [Indexed: 03/25/2025] Open
Abstract
Introduction High-altitude environments have significant effects on brain function, particularly a decline in cognitive function, due to insufficient oxygen supply. The microbiome-gut-brain axis (MGBA) plays an important role in regulating cognitive function, but its specific mechanism of action in high-altitude environments is unclear. Therefore, the aim of this study was to investigate whether the probiotic Lactobacillus johnsonii HL79 could alleviate high altitude-induced cognitive dysfunction in mice by modulating the gut microbiota. Methods and results Sixty C57BL/6 mice aged 8 weeks were randomly divided into four groups: control, high altitude exposure (HA), HL79-treated (P), and high altitude exposure plus HL79-treated (HAP). the HA and HAP groups were exposed to a low-pressure oxygen chamber at a simulated altitude of 3,500-4,000 m for 20 weeks, while the Control and P groups were maintained at the normal barometric pressure level. Probiotic HL79 was given daily by gavage in the P and HAP groups, while saline gavage was given daily in the other two groups. The cognitive functions of the mice were assessed by new object recognition test and elevated plus maze test. The results showed that HL79 treatment significantly improved the working memory abilities of high altitude exposed mice. In addition, HL79 treatment improved antioxidant capacity, decreased malondialdehyde (MDA) content, and increased superoxide dismutase (SOD) and catalase (CAT) activities in serum and whole brain tissue. Gut microbiota analysis showed that HL79 was able to modulate the structure of gut microbiota and increase the relative abundance of beneficial flora in high altitude environment. Conclusion Lactobacillus johnsonii HL79 significantly ameliorated cognitive dysfunction in high altitude-exposed mice by modulating the gut microbiota and antioxidant capacity, further confirming the important role of MGBA in high altitude environment.
Collapse
Affiliation(s)
- Zhifang Zhao
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Gastroenterology, National Institution of Drug Clinical Trial, Guizhou Provincial People's Hospital, Medical College of Guizhou University, Guiyang, China
| | - Xufei Zhang
- Key Laboratory of High Altitudes Brain, Science and Environmental Acclimation, Tibet University, Lhasa, China
- Plateau Brain Science Research Center, Tibet University, Lhasa, China
- Tibet Autonomous Region Psychological Society, Lhasa, China
| | - Ning Sun
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lixiao Duan
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Jinge Xin
- Baiyun Branch, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hao Li
- Key Laboratory of High Altitudes Brain, Science and Environmental Acclimation, Tibet University, Lhasa, China
- Plateau Brain Science Research Center, Tibet University, Lhasa, China
- Tibet Autonomous Region Psychological Society, Lhasa, China
| | - Xueqin Ni
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Hesong Wang
- Baiyun Branch, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hailin Ma
- Key Laboratory of High Altitudes Brain, Science and Environmental Acclimation, Tibet University, Lhasa, China
- Plateau Brain Science Research Center, Tibet University, Lhasa, China
- Tibet Autonomous Region Psychological Society, Lhasa, China
| | - Yang Bai
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Baiyun Branch, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
12
|
Kiouri DP, Batsis GC, Mavromoustakos T, Giuliani A, Chasapis CT. Structure-Based Modeling of the Gut Bacteria-Host Interactome Through Statistical Analysis of Domain-Domain Associations Using Machine Learning. BIOTECH 2025; 14:13. [PMID: 40227324 PMCID: PMC11940256 DOI: 10.3390/biotech14010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/16/2025] [Accepted: 02/21/2025] [Indexed: 04/15/2025] Open
Abstract
The gut microbiome, a complex ecosystem of microorganisms, plays a pivotal role in human health and disease. The gut microbiome's influence extends beyond the digestive system to various organs, and its imbalance is linked to a wide range of diseases, including cancer and neurodevelopmental, inflammatory, metabolic, cardiovascular, autoimmune, and psychiatric diseases. Despite its significance, the interactions between gut bacteria and human proteins remain understudied, with less than 20,000 experimentally validated protein interactions between the host and any bacteria species. This study addresses this knowledge gap by predicting a protein-protein interaction network between gut bacterial and human proteins. Using statistical associations between Pfam domains, a comprehensive dataset of over one million experimentally validated pan-bacterial-human protein interactions, as well as inter- and intra-species protein interactions from various organisms, were used for the development of a machine learning-based prediction method to uncover key regulatory molecules in this dynamic system. This study's findings contribute to the understanding of the intricate gut microbiome-host relationship and pave the way for future experimental validation and therapeutic strategies targeting the gut microbiome interplay.
Collapse
Affiliation(s)
- Despoina P. Kiouri
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece; (D.P.K.); (G.C.B.)
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15772 Athens, Greece;
| | - Georgios C. Batsis
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece; (D.P.K.); (G.C.B.)
| | - Thomas Mavromoustakos
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15772 Athens, Greece;
| | - Alessandro Giuliani
- Environment and Health Department, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Christos T. Chasapis
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece; (D.P.K.); (G.C.B.)
| |
Collapse
|
13
|
Dou Y, Niu Y, Shen H, Wang L, Lv Y, Liu S, Xie X, Feng A, Liu X. Identification of disease-specific gut microbial markers in vitiligo. Front Microbiol 2025; 16:1499035. [PMID: 39967732 PMCID: PMC11833150 DOI: 10.3389/fmicb.2025.1499035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 01/21/2025] [Indexed: 02/20/2025] Open
Abstract
There is a potential correlation between vitiligo and gut microbiota, although research in this area is currently limited. The research employed high-throughput sequencing of 16S rRNA to examine the gut microbiome in the stool samples of 49 individuals with vitiligo and 49 without the condition. The study encompassed four comparison groups: (1) DI (disease) group vs. HC (healthy control) group; (2) DI_m group (disease group of minors) vs. HC_m group (healthy control group of minors); (3) DI_a group (adult disease group) vs. HC_a group (adult healthy control group); (4) DI_m group vs. DI_a group. Research findings have indicated the presence of spatial heterogeneity in the gut microbiota composition between individuals with vitiligo and healthy controls. A significant reduction in gut microbiota diversity has been observed in vitiligo patients across both minors and adult groups. However, variations have been noted in the composition of disease-related differential microbial markers among different age groups. Specifically, Bacteroides and Parabacteroides have been identified as specific markers of the intestinal microbiota of vitiligo patients in both minor and adult groups. Correlative analyses have revealed a positive correlation of these two genera with the Vitiligo Area Scoring Index (VASI) and disease duration. It is noteworthy that there are no significant differences in diversity between the DI_m group and the DI_a group, with similarities in microbiota composition and functional characteristics. Nevertheless, correlative analyses suggest a declining trend in Bacteroides and Parabacteroides with increasing age. Individuals with vitiligo exhibit distinct features in their gut microbiome when contrasted with those in the healthy control group. Additionally, the microbial marker genera that show variances between patients and healthy controls vary among different age groups. Disease-specific microbial marker genera (Bacteroides and Parabacteroides) are associated with VASI, duration of the condition, and age. These findings are essential for improving early diagnosis and developing potential treatment strategies for individuals with vitiligo.
Collapse
Affiliation(s)
- Yimin Dou
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Niu
- Department of Gastroenterology Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hexiao Shen
- School of Life Science, Hubei University, Wuhan, China
| | - Lan Wang
- School of Life Science, Hubei University, Wuhan, China
| | - Yongling Lv
- School of Life Science, Hubei University, Wuhan, China
| | - Suwen Liu
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiafei Xie
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Aiping Feng
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinxin Liu
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
14
|
Dardi P, Coutinho CP, de Oliveira S, Teixeira SA, Gacek RRF, Purgatto E, Vinolo MAR, Muscará MN, Rossoni LV. Changes in the intestinal microbiota induced by the postnatal environment and their association with hypertension. Pharmacol Res 2025; 212:107621. [PMID: 39848350 DOI: 10.1016/j.phrs.2025.107621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/20/2025] [Accepted: 01/20/2025] [Indexed: 01/25/2025]
Abstract
It has been established that cross-fostering impacts the development of hypertension in spontaneously hypertensive rats (SHR). However, the ability of the cross-fostering protocol to shape gut microbiota profile in SHR and impact hypertension is not known. In this sense, the current study explored the influence of normotensive and hypertensive postnatal environments on the intestinal microbiota structure, composition, and functional capacity of SHR and Wistar rats. Our findings revealed significant differences in the microbiota's composition and its metabolic activity in young non-fostered SHR (SS) vs. Wistar (WW) rats, even before hypertension onset, characterized by a reduction of the "low-abundance" bacterial genera, a diminished availability of fecal butyrate and elevated hydrogen sulfide (H2S) production by the SS gut microbiota. Despite influencing the microbiota of both strains, cross-fostering did not fully replicate the microbiota composition of the naturally reared groups in the SHR nursed by Wistar mothers (SW), or in the Wistar rats breastfed by SHR mothers (WS). The SW group had fewer significant genera identified at the Partial Least Squares Discriminant Analysis (PLS-DA), despite resembling the genera profile identified in the normotensive group. While sharing bacterial genera with both SS and WW groups, the WS group is distinguished by its unique microbial composition, particularly by a greater diversity of the 'low-abundance' bacterial genera. Moreover, decreased systolic blood pressure was observed in the SW group compared to the SS group in adulthood. Thus, we could establish a link between microbiota composition and hypertension development, associating it with the loss of the "low-abundance" bacterial taxa. Our data suggest that the postnatal environment is pivotal to promoting gut microbiota compositional changes and contributes to hypertension development.
Collapse
Affiliation(s)
- Patrizia Dardi
- Laboratory of Vascular Physiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Camille Perella Coutinho
- Department of Food and Experimental Nutrition /FoRC - Food Research Center, University of Sao Paulo, Sao Paulo, Brazil
| | - Sarah de Oliveira
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Simone Aparecida Teixeira
- Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Eduardo Purgatto
- Department of Food and Experimental Nutrition /FoRC - Food Research Center, University of Sao Paulo, Sao Paulo, Brazil
| | - Marco Aurélio Ramirez Vinolo
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Marcelo Nicolás Muscará
- Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Luciana Venturini Rossoni
- Laboratory of Vascular Physiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil.
| |
Collapse
|
15
|
Yi C, Huang S, Zhang W, Guo L, Xia T, Huang F, Yan Y, Li H, Yu B. Synergistic interactions between gut microbiota and short chain fatty acids: Pioneering therapeutic frontiers in chronic disease management. Microb Pathog 2025; 199:107231. [PMID: 39681288 DOI: 10.1016/j.micpath.2024.107231] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 12/04/2024] [Accepted: 12/12/2024] [Indexed: 12/18/2024]
Abstract
Microorganisms in the gut play a pivotal role in human health, influencing various pathophysiological processes. Certain microorganisms are particularly essential for maintaining intestinal homeostasis, reducing inflammation, supporting nervous system function, and regulating metabolic processes. Short-chain fatty acids (SCFAs) are a subset of fatty acids produced by the gut microbiota (GM) during the fermentation of indigestible polysaccharides. The interaction between GM and SCFAs is inherently bidirectional: the GM not only shapes SCFAs composition and metabolism but SCFAs also modulate microbiota's diversity, stability, growth, proliferation, and metabolism. Recent research has shown that GM and SCFAs communicate through various pathways, mainly involving mechanisms related to inflammation and immune responses, intestinal barrier function, the gut-brain axis, and metabolic regulation. An imbalance in GM and SCFA homeostasis can lead to the development of several chronic diseases, including inflammatory bowel disease, colorectal cancer, systemic lupus erythematosus, Alzheimer's disease, and type 2 diabetes mellitus. This review explores the synergistic interactions between GM and SCFAs, and how these interactions directly or indirectly influence the onset and progression of various diseases through the regulation of the mechanisms mentioned above.
Collapse
Affiliation(s)
- Chunmei Yi
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shanshan Huang
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Wenlan Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Lin Guo
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Tong Xia
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Fayin Huang
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yijing Yan
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Huhu Li
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Bin Yu
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
16
|
Bermúdez-Sánchez S, Bahl MI, Hansen EB, Licht TR, Laursen MF. Oral amoxicillin treatment disrupts the gut microbiome and metabolome without interfering with luminal redox potential in the intestine of Wistar Han rats. FEMS Microbiol Ecol 2025; 101:fiaf003. [PMID: 39779288 PMCID: PMC11775830 DOI: 10.1093/femsec/fiaf003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 11/04/2024] [Accepted: 01/07/2025] [Indexed: 01/11/2025] Open
Abstract
Oral antibiotic treatment is well known to be one of the main factors affecting gut microbiota composition by altering bacterial diversity. It decreases the abundance of butyrate-producing bacteria such as Lachnospiraceae and Ruminococcaceae, while increasing abundance of Enterobacteriaceae. The recovery time of commensal bacteria post-antibiotic treatment varies among individuals, and often, complete recovery is not achieved. Recently, gut microbiota disruption has been associated with increased gut oxygen levels and higher redox potential in faecal samples. Given that redox balance is crucial for microbial metabolism and gut health, influencing fermentation processes and maintaining anaerobic conditions, we investigated the impact of oral amoxicillin treatment on the redox potential in the caecum. We used 24 Wistar Han male rats and measured caecal redox potential in situ with a probe, before and after 7 days of amoxicillin treatment, as well as after 7 days of recovery. Additionally, we analysed caecal weight, pH, antioxidant capacity, caecal microbiota, metabolome, and colonic tissue expression of relevant genes involved in the redox potential state. Our findings show that oral amoxicillin treatment significantly reduced archaeal load, and decreased the bacterial alpha diversity and affected bacterial composition of the caecal microbiome. The caecal metabolome was also significantly affected, exemplified by reduced amounts of short chain fatty acids during amoxicillin treatment. While the caecal metabolome fully recovered 7 days post amoxicillin treatment, the microbiome did not fully recover within this time frame. However, amoxicillin did not lead to an increase in luminal redox potential in the cecum during or post amoxicillin treatment. Limited differences were observed for colonic expression of genes involved in intestinal barrier function and generation of reactive oxygen species, except for the catalase gene, which was significantly upregulated post-amoxicillin treatment. Our results suggest that while oral amoxicillin disrupts the gut microbiome and metabolome, it does not directly interfere with gut luminal redox state.
Collapse
Affiliation(s)
- Sandra Bermúdez-Sánchez
- National Food Institute, Technical University of Denmark, Kemitorvet, 2800 Kongens Lyngby, Denmark
| | - Martin Iain Bahl
- National Food Institute, Technical University of Denmark, Kemitorvet, 2800 Kongens Lyngby, Denmark
| | - Egon Bech Hansen
- National Food Institute, Technical University of Denmark, Kemitorvet, 2800 Kongens Lyngby, Denmark
| | - Tine Rask Licht
- National Food Institute, Technical University of Denmark, Kemitorvet, 2800 Kongens Lyngby, Denmark
| | - Martin Frederik Laursen
- National Food Institute, Technical University of Denmark, Kemitorvet, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
17
|
Galkin F, Pulous FE, Fu Y, Zhang M, Pun FW, Ren F, Zhavoronkov A. Roles of hypoxia-inducible factor-prolyl hydroxylases in aging and disease. Ageing Res Rev 2024; 102:102551. [PMID: 39447706 DOI: 10.1016/j.arr.2024.102551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 10/07/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024]
Abstract
The prolyl hydroxylase domain-containing (PHD or EGL9-homologs) enzyme family is mainly known for its role in the cellular response to hypoxia. HIF-PH inhibitors can stabilize hypoxia-inducible factors (HIFs), activating transcriptional programs that promote processes such as angiogenesis and erythropoiesis to adapt to changes in oxygen levels. HIF-PH inhibitors have been clinically approved for treating several types of anaemia. While most discussions of the HIF-PH signalling axis focus on hypoxia, there is a growing recognition of its importance under normoxic conditions. Recent advances in PHD biology have highlighted the potential of targeting this pathway therapeutically for a range of aging-related diseases. In this article, we review these recent discoveries, situate them within the broader context of aging and disease, and explore current therapeutic strategies that target PHD enzymes for these indications.
Collapse
Affiliation(s)
- Fedor Galkin
- Insilico Medicine AI Ltd., Level 6, Unit 08, Block A, IRENA HQ Building, Masdar City, Abu Dhabi, UAE
| | - Fadi E Pulous
- Insilico Medicine US Inc., 1000 Massachusetts Avenue, Suite 126, Cambridge, MA 02138, United States
| | - Yanyun Fu
- Insilico Medicine Shanghai Ltd., Suite 902, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong, Shanghai 201203, China
| | - Man Zhang
- Insilico Medicine Shanghai Ltd., Suite 902, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong, Shanghai 201203, China
| | - Frank W Pun
- Insilico Medicine Hong Kong Ltd., Unit 310, 3/F, Building 8W, Hong Kong Science and Technology Park, Hong Kong SAR
| | - Feng Ren
- Insilico Medicine AI Ltd., Level 6, Unit 08, Block A, IRENA HQ Building, Masdar City, Abu Dhabi, UAE; Insilico Medicine Shanghai Ltd., Suite 902, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong, Shanghai 201203, China; Insilico Medicine Hong Kong Ltd., Unit 310, 3/F, Building 8W, Hong Kong Science and Technology Park, Hong Kong SAR
| | - Alex Zhavoronkov
- Insilico Medicine AI Ltd., Level 6, Unit 08, Block A, IRENA HQ Building, Masdar City, Abu Dhabi, UAE; Insilico Medicine US Inc., 1000 Massachusetts Avenue, Suite 126, Cambridge, MA 02138, United States; Insilico Medicine Hong Kong Ltd., Unit 310, 3/F, Building 8W, Hong Kong Science and Technology Park, Hong Kong SAR; Insilico Medicine Canada Inc., 1250 René-Lévesque Ouest, Suite 3710, Montréal, Québec H3B 4W8, Canada; Buck Institute for Research on Aging, Novato, CA, United States.
| |
Collapse
|
18
|
Cheng H, Liu J, Zhang D, Wu J, Wu J, Zhou Y, Tan Y, Feng W, Peng C. Natural products: Harnessing the power of gut microbiota for neurological health. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156019. [PMID: 39305747 DOI: 10.1016/j.phymed.2024.156019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/19/2024] [Accepted: 09/01/2024] [Indexed: 12/01/2024]
Abstract
BACKGROUND Neurological diseases are the primary cause of disability and death and impose substantial financial burdens. However, existing treatments only relieve symptoms and may cause many adverse effects. Natural products are a promising source of neurological therapeutic agents due to their excellent neuroprotective effect and safety. The gut microbiota has an essential impact on maintaining brain homeostasis via the gut-brain axis. Multiple investigations show that natural products offer neuroprotective effects by regulating gut microbiota-driven signaling networks. OBJECTIVES This review aims to provide a systematic review of how natural products promote neurological health by harnessing the power of gut microbiota. METHODS The pre-January 1, 2024 literature was gathered from several databases, including Scopus, PubMed, Google Scholar, and Web of Science, utilizing appropriate keywords. The gathered publications underwent a review process and were classified based on their study content, specifically focusing on the impact of natural products on gut microbiota and neurological health. RESULTS Here, we review how natural products promote neurological health by regulating the gut microbiota-brain axis. Specifically, we focus on the following areas. (1) Altering microorganism community structure, including increasing α-diversity and altering β-diversity. (2) Regulating the population of certain bacteria, including enriching beneficial microorganisms Akkermansia and Bifidobacterium, and inhibiting potentially hazardous microorganisms Bilophila, Klebsiella, and Helicobacter. (3) Regulating microbial neuroactive metabolites levels, including short-chain fatty acids, tryptophan and its derivatives, trimethylamine N-oxide, dopa/dopamine, γ-aminobutyric acid, and lipopolysaccharide. Furthermore, we review how natural products promote neurological health by regulating intestinal barrier homeostasis. CONCLUSION Natural products promote neurological health by harnessing the power of gut microbiota. This review will contribute to understanding how natural products promote neurological health by orchestrating the gut microbiota-brain axis.
Collapse
Affiliation(s)
- Hao Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Juan Liu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Dandan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinlu Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yaochuan Zhou
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yuzhu Tan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wuwen Feng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China; School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
19
|
Burge KY, Zhong H, Wilson AP, Chaaban H. Network-Based Bioinformatics Highlights Broad Importance of Human Milk Hyaluronan. Int J Mol Sci 2024; 25:12679. [PMID: 39684390 DOI: 10.3390/ijms252312679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 11/20/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Human milk (HM) is rich in bioactive factors promoting postnatal small intestinal development and maturation of the microbiome. HM is also protective against necrotizing enterocolitis (NEC), a devastating inflammatory condition predominantly affecting preterm infants. The HM glycosaminoglycan, hyaluronan (HA), is present at high levels in colostrum and early milk. Our group has demonstrated that HA with a molecular weight of 35 kDa (HA35) promotes maturation of the murine neonatal intestine and protects against two distinct models of NEC. However, the molecular mechanisms underpinning HA35-induced changes in the developing ileum are unclear. CD-1 mouse pups were treated with HA35 or vehicle control daily, from P7 to P14, and we used network and functional analyses of bulk RNA-seq ileal transcriptomes to further characterize molecular mechanisms through which HA35 likely influences intestinal maturation. HA35-treated pups separated well by principal component analysis, and cell deconvolution revealed increases in stromal, Paneth, and mature enterocyte and progenitor cells in HA35-treated pups. Gene set enrichment and pathway analyses demonstrated upregulation in key processes related to antioxidant and growth pathways, such as nuclear factor erythroid 2-related factor-mediated oxidative stress response, hypoxia inducible factor-1 alpha, mechanistic target of rapamycin, and downregulation of apoptotic signaling. Collectively, pro-growth and differentiation signals induced by HA35 may present novel mechanisms by which this HM bioactive factor may protect against NEC.
Collapse
Affiliation(s)
- Kathryn Y Burge
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Hua Zhong
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Adam P Wilson
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Hala Chaaban
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
20
|
Zhang HY, Shu YQ, Li Y, Hu YL, Wu ZH, Li ZP, Deng Y, Zheng ZJ, Zhang XJ, Gong LF, Luo Y, Wang XY, Li HP, Liao XP, Li G, Ren H, Qiu W, Sun J. Metabolic disruption exacerbates intestinal damage during sleep deprivation by abolishing HIF1α-mediated repair. Cell Rep 2024; 43:114915. [PMID: 39527478 DOI: 10.1016/j.celrep.2024.114915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 09/22/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024] Open
Abstract
Sleep deprivation (SD) has been reported to induce intestinal damage by several mechanisms, yet its role in modulating epithelial repair remains unclear. In this study, we find that chronic SD leads to colonic damage through continuous hypoxia. However, HIF1α, which generally responds to hypoxia to modulate barrier integrity, was paradoxically dysregulated in the colon. Further investigation revealed that a metabolic disruption during SD causes accumulation of α-ketoglutarate in the colon. The excessive α-ketoglutarate degrades HIF1α protein through PHD2 (prolyl hydroxylase 2) to abolish the intestinal repair functions of HIF1α. Collectively, these findings provide insights into how SD can exacerbate intestinal damage by fine-tuning metabolism to abolish HIF1α-mediated repair.
Collapse
Affiliation(s)
- Hai-Yi Zhang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ya-Qing Shu
- The Third Affiliated Hospital of Sun Yat-sen University, Department of Neurology, Guangzhou, China
| | - Yan Li
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ya-Lin Hu
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zhi-Hong Wu
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zhi-Peng Li
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yao Deng
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zi-Jian Zheng
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xiao-Jing Zhang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Liu-Fei Gong
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yang Luo
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xiao-Yu Wang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | | | - Xiao-Ping Liao
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Gong Li
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Hao Ren
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Wei Qiu
- The Third Affiliated Hospital of Sun Yat-sen University, Department of Neurology, Guangzhou, China.
| | - Jian Sun
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
21
|
Hou S, Wang X, Guo J, Han Y, You J, Tian Z, Zheng X, Zheng S, Ling Y, Pei L, Wu E. Triangle correlations of lung microbiome, host physiology and gut microbiome in a rat model of idiopathic pulmonary fibrosis. Sci Rep 2024; 14:28743. [PMID: 39567656 PMCID: PMC11579350 DOI: 10.1038/s41598-024-80023-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/14/2024] [Indexed: 11/22/2024] Open
Abstract
Changes in lung and gut microbial communities have been associated with idiopathic pulmonary fibrosis (IPF). This study aimed to investigate correlations between microbial changes in the lung and gut and host physiological indices in an IPF model, exploring potential mechanisms of the lung-gut axis in IPF pathogenesis. IPF model rats were established via trans-tracheal injection of bleomycin, with assessments of hematological indices, serum cytokines, lung histopathology, and microbiome alterations. Significant differences in microbial structure and composition were observed in the IPF model compared to controls, with 14 lung and 7 gut microbial genera showing significant abundance changes. Further analysis revealed 20 significant correlations between pulmonary and gut genera. Notably, 11 pairs of correlated genera were linked to the same IPF-related physiological indices, such as hydroxyproline, mean corpuscular volume (MCV), and red cell distribution width-standard deviation (RDW-SD). We identified 24 instances where a lung and a gut genus were each associated with the same physiological index, forming "lung genus-index-gut genus" relationships. Mediation analysis showed that indices like hydroxyproline, MCV, and RDW-SD mediated correlations between 10 lung genera (e.g., Cetobacterium, Clostridium XVIII ) and the gut genus Allobaculum. This study first describes gut-lung microbial interactions in pulmonary fibrosis. Mediation analysis suggests pathways underlying "lung genus-host index-gut genus" and "gut genus-host index-lung genus" correlations, thus providing clues to further elucidate the mechanisms of the "gut-lung axis" in IPF pathogenesis.
Collapse
Affiliation(s)
- Sihan Hou
- School of Pharmacy, Minzu University of China, Beijing, China
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Minzu University of China, No. 27 Zhongguancun South Avenue, Beijing, 100081, China
- Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Xueer Wang
- School of Pharmacy, Minzu University of China, Beijing, China
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Minzu University of China, No. 27 Zhongguancun South Avenue, Beijing, 100081, China
| | - Jiarui Guo
- School of Pharmacy, Minzu University of China, Beijing, China
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Minzu University of China, No. 27 Zhongguancun South Avenue, Beijing, 100081, China
| | - Yue Han
- School of Pharmacy, Minzu University of China, Beijing, China
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Minzu University of China, No. 27 Zhongguancun South Avenue, Beijing, 100081, China
| | - Jia You
- Biotherapy Center, The Seventh Medical Center of PLA General Hospital, Beijing, 100081, China
| | - Zhigang Tian
- Department of Respiratory and Critical Care Medicine, General Hospital of Ningxia Medical University, No.804 Shenglijie, Xingqing District, Yinchuan, 750004, China
| | - Xiwei Zheng
- Department of Respiratory and Critical Care Medicine, General Hospital of Ningxia Medical University, No.804 Shenglijie, Xingqing District, Yinchuan, 750004, China
| | - Siriguleng Zheng
- Department of Information Technology, Polytechnic College, Beijing, China
| | - Yaqing Ling
- School of Pharmacy, Minzu University of China, Beijing, China
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Minzu University of China, No. 27 Zhongguancun South Avenue, Beijing, 100081, China
| | - Lingpeng Pei
- School of Pharmacy, Minzu University of China, Beijing, China.
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Minzu University of China, No. 27 Zhongguancun South Avenue, Beijing, 100081, China.
| | - Enqi Wu
- School of Pharmacy, Minzu University of China, Beijing, China.
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Minzu University of China, No. 27 Zhongguancun South Avenue, Beijing, 100081, China.
| |
Collapse
|
22
|
Liang Y, Chen Y, Lin Y, Huang W, Qiu Q, Sun C, Yuan J, Xu N, Chen X, Xu F, Shang X, Deng Y, Liu Y, Tan F, He C, Li J, Deng Q, Zhang X, Guan H, Liang Y, Fang X, Jiang X, Han L, Huang L, Yang Z. The increased tendency for anemia in traditional Chinese medicine deficient body constitution is associated with the gut microbiome. Front Nutr 2024; 11:1359644. [PMID: 39360281 PMCID: PMC11445043 DOI: 10.3389/fnut.2024.1359644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/23/2024] [Indexed: 10/04/2024] Open
Abstract
Background Constitution is a valuable part of traditional Chinese medicine theory; it is defined as the internal foundation for the occurrence, development, transformation and outcome of diseases, and has its characteristic gut microbiota. Previous study showed that deficiency constitution was related to lower Hb counts. However, no research has examined how alterations in the gut microbiome induced by deficiency constitution may increase the tendency for anemia. Methods We used a multiomics strategy to identify and quantify taxonomies and compounds found under deficient constitution individuals and further explore the possible pathological factors that affect red blood cell indices. Results ① People with deficient constitution showed lower hemoglobin (Hb), more Firmicutes, less Bacteroidetes, and higher α diversity. ② We identified Escherichia coli, Clostridium bolteae, Ruminococcus gnavus, Streptococcus parasanguinis and Flavonifractor plautii as potential biomarkers of deficient constitution. ③ Slackia piriformis, Clostridium_sp_L2_50 and Bacteroides plebeius were enriched in balanced-constitution individuals, and Parabacteroides goldsteinii was the key bacterial marker of balanced constitution. ④ Flavonifractor plautii may be a protective factor against the tendency for anemia among deficient individuals. ⑤ Ruminococcus gnavus may be the shared microbe base of deficiency constitution-related the tendency for anemia. ⑥ The microorganism abundance of the anaerobic phenotype was lower in deficient constitution group. ⑦ Alterations in the microbiome of deficient-constitution individuals were associated with worse health status and a greater risk of anemia, involving intestinal barrier function, metabolism and immune responses, regulated by short-chain fatty acids and bile acid production. Conclusion The composition of the gut microbiome was altered in people with deficient constitution, which may explain their poor health status and tendency toward anemia.
Collapse
Affiliation(s)
- Yuanjun Liang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Yang Chen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Yanzhao Lin
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Wei Huang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Qinwei Qiu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Chen Sun
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Jiamin Yuan
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Ning Xu
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Xinyan Chen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Fuping Xu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Xiaoxiao Shang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Yusheng Deng
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Yanmin Liu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Fei Tan
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Chunxiang He
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Jiasheng Li
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Qinqin Deng
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Xiaoxuan Zhang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Huahua Guan
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Yongzhu Liang
- Zhuhai Branch of Guangdong Provincial Hospital of Chinese Medicine, Zhuhai, China
| | - Xiaodong Fang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Xuanting Jiang
- Department of Scientific Research, Kangmeihuada GeneTech Co., Ltd., Shenzhen, China
| | - Lijuan Han
- Department of Scientific Research, Kangmeihuada GeneTech Co., Ltd., Shenzhen, China
| | - Li Huang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Zhimin Yang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| |
Collapse
|
23
|
Ohuchi H, Asano R, Mori A, Ishibashi T, Motooka D, Nakai M, Nakaoka Y. Gut Dysbiosis in Patients With Fontan Circulation. J Am Heart Assoc 2024; 13:e034538. [PMID: 39248279 PMCID: PMC11935625 DOI: 10.1161/jaha.124.034538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 07/09/2024] [Indexed: 09/10/2024]
Abstract
BACKGROUND The process underlying Fontan pathophysiology is multifactorial and may include gut dysbiosis (GD). We investigated the presence of GD and elucidated its correlation with Fontan pathophysiology. METHODS AND RESULTS Gut microbiomes of 155 consecutive patients with Fontan pathophysiology and 44 healthy individuals were analyzed using 16S rRNA sequencing of bacterial DNA extracted from fecal samples. GD was evaluated on the basis of α and ß diversities of the gut microbiome and was compared with natural log-transformed C-reactive protein, hemodynamics, von Willebrand factor antigen (a bacterial translocation marker), Mac-2 binding protein glycosylation isomer (a liver fibrosis indicator), peak oxygen uptake, and heart failure hospitalization. Patients with Fontan exhibited GD in terms of α and ß diversities as compared with controls (P<0.01). Reduced α diversity was associated with a failed hemodynamic phenotype, hypoxia, high natural log-transformed C-reactive protein levels, and elevated von Willebrand factor antigen and Mac-2 binding protein glycosylation isomer levels (P<0.05-0.01). In addition to elevated von Willebrand factor antigen and hypoxia, decreased α diversity was independently correlated with a high natural log-transformed C-reactive protein level (P<0.05), which was associated with liver imaging abnormalities and a heightened risk of heart failure hospitalization (P<0.01 for both). CONCLUSIONS Patients with Fontan pathophysiology exhibited GD compared with healthy individuals, and GD was linked to failed hemodynamics and systemic inflammation with a poor prognosis. Therefore, GD may play a pivotal role in a failing Fontan status, including Fontan-associated liver disease, through GD-associated systemic inflammation.
Collapse
Affiliation(s)
- Hideo Ohuchi
- Department of Pediatric CardiologyNational Cerebral and Cardiovascular CenterSuitaJapan
- Adult Congenital Heart Disease CenterNational Cerebral and Cardiovascular CenterSuitaJapan
| | - Ryotaro Asano
- Department of Vascular PhysiologyNational Cerebral and Cardiovascular Center Research InstituteSuitaJapan
- Department of Cardiovascular MedicineNational Cerebral and Cardiovascular CenterSuitaJapan
| | - Aki Mori
- Department of Pediatric CardiologyNational Cerebral and Cardiovascular CenterSuitaJapan
- Adult Congenital Heart Disease CenterNational Cerebral and Cardiovascular CenterSuitaJapan
| | - Tomohiko Ishibashi
- Department of Vascular PhysiologyNational Cerebral and Cardiovascular Center Research InstituteSuitaJapan
| | - Daisuke Motooka
- Department of Infection Metagenomics, Research Institute for Microbial DiseasesOsaka UniversitySuitaJapan
| | - Michikazu Nakai
- Clinical Research Support CenterUniversity of Miyazaki HospitalMiyazakiJapan
| | - Yoshikazu Nakaoka
- Department of Vascular PhysiologyNational Cerebral and Cardiovascular Center Research InstituteSuitaJapan
- Department of Cardiovascular MedicineNational Cerebral and Cardiovascular CenterSuitaJapan
| |
Collapse
|
24
|
Feng C, Yan J, Luo T, Zhang H, Zhang H, Yuan Y, Chen Y, Chen H. Vitamin B12 ameliorates gut epithelial injury via modulating the HIF-1 pathway and gut microbiota. Cell Mol Life Sci 2024; 81:397. [PMID: 39261351 PMCID: PMC11391010 DOI: 10.1007/s00018-024-05435-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/27/2024] [Accepted: 09/02/2024] [Indexed: 09/13/2024]
Abstract
Inflammatory bowel diseases (IBDs) are immune chronic diseases characterized by recurrent episodes, resulting in continuous intestinal barrier damage and intestinal microbiota dysbiosis. Safe strategies aimed at stabilizing and reducing IBDs recurrence have been vigorously pursued. Here, we constructed a recurrent intestinal injury Drosophila model and found that vitamin B12 (VB12), an essential co-factor for organism physiological functions, could effectively protect the intestine and reduce dextran sulfate sodium-induced intestinal barrier disruption. VB12 also alleviated microbial dysbiosis in the Drosophila model and inhibited the growth of gram-negative bacteria. We demonstrated that VB12 could mitigate intestinal damage by activating the hypoxia-inducible factor-1 signaling pathway in injured conditions, which was achieved by regulating the intestinal oxidation. In addition, we also validated the protective effect of VB12 in a murine acute colitis model. In summary, we offer new insights and implications for the potential supportive role of VB12 in the management of recurrent IBDs flare-ups.
Collapse
Affiliation(s)
- Chenxi Feng
- Division of Gastrointestinal Surgery, Laboratory of Stem Cell and Anti-Aging Research, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jinhua Yan
- Center of Gerontology and Geriatrics, Laboratory of Stem Cell and Anti-Aging Research, National Clinical Research Center for Geriatrics and Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ting Luo
- Center of Gerontology and Geriatrics, Laboratory of Stem Cell and Anti-Aging Research, National Clinical Research Center for Geriatrics and Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Hong Zhang
- Department of Gastroenterology and Hepatology and Laboratory of Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Hu Zhang
- Department of Gastroenterology and Hepatology and Laboratory of Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yu Yuan
- Division of Gastrointestinal Surgery, Laboratory of Stem Cell and Anti-Aging Research, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yi Chen
- Division of Gastrointestinal Surgery, Laboratory of Stem Cell and Anti-Aging Research, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Haiyang Chen
- Division of Gastrointestinal Surgery, Laboratory of Stem Cell and Anti-Aging Research, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
- Center of Gerontology and Geriatrics, Laboratory of Stem Cell and Anti-Aging Research, National Clinical Research Center for Geriatrics and Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
25
|
Jensen O, Trujillo E, Hanson L, Ost KS. Controlling Candida: immune regulation of commensal fungi in the gut. Infect Immun 2024; 92:e0051623. [PMID: 38647290 PMCID: PMC11385159 DOI: 10.1128/iai.00516-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Abstract
The intestinal microbiome harbors fungi that pose a significant risk to human health as opportunistic pathogens and drivers of inflammation. Inflammatory and autoimmune diseases are associated with dysbiotic fungal communities and the expansion of potentially pathogenic fungi. The gut is also the main reservoir for disseminated fungal infections. Immune interactions are critical for preventing commensal fungi from becoming pathogenic. Significant strides have been made in defining innate and adaptive immune pathways that regulate intestinal fungi, and these discoveries have coincided with advancements in our understanding of the fungal molecular pathways and effectors involved in both commensal colonization and pathogenesis within the gut. In this review, we will discuss immune interactions important for regulating commensal fungi, with a focus on how specific cell types and effectors interact with fungi to limit their colonization or pathogenic potential. This will include how innate and adaptive immune pathways target fungi and orchestrate antifungal immune responses, in addition to how secreted immune effectors, such as mucus and antimicrobial peptides, regulate fungal colonization and inhibit pathogenic potential. These immune interactions will be framed around our current understanding of the fungal effectors and pathways regulating colonization and pathogenesis within this niche. Finally, we highlight important unexplored mechanisms by which the immune system regulates commensal fungi in the gut.
Collapse
Affiliation(s)
- Owen Jensen
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Emma Trujillo
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Luke Hanson
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kyla S. Ost
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
26
|
Ma XN, Li MY, Qi GQ, Wei LN, Zhang DK. SUMOylation at the crossroads of gut health: insights into physiology and pathology. Cell Commun Signal 2024; 22:404. [PMID: 39160548 PMCID: PMC11331756 DOI: 10.1186/s12964-024-01786-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 08/10/2024] [Indexed: 08/21/2024] Open
Abstract
SUMOylation, a post-translational modification involving the covalent attachment of small ubiquitin-like modifier (SUMO) proteins to target substrates, plays a pivotal role at the intersection of gut health and disease, influencing various aspects of intestinal physiology and pathology. This review provides a comprehensive examination of SUMOylation's diverse roles within the gut microenvironment. We examine its critical roles in maintaining epithelial barrier integrity, regulating immune responses, and mediating host-microbe interactions, thereby highlighting the complex molecular mechanisms that underpin gut homeostasis. Furthermore, we explore the impact of SUMOylation dysregulation in various intestinal disorders, including inflammatory bowel diseases and colorectal cancer, highlighting its implications as a potential diagnostic biomarker and therapeutic target. By integrating current research findings, this review offers valuable insights into the dynamic interplay between SUMOylation and gut health, paving the way for novel therapeutic strategies aimed at restoring intestinal equilibrium and combating associated pathologies.
Collapse
Affiliation(s)
- Xue-Ni Ma
- Key Laboratory of Digestive Diseases, Lanzhou University Second Hospital, Lanzhou, 730030, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730030, China
| | - Mu-Yang Li
- Key Laboratory of Digestive Diseases, Lanzhou University Second Hospital, Lanzhou, 730030, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730030, China
| | - Guo-Qing Qi
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Li-Na Wei
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - De-Kui Zhang
- Key Laboratory of Digestive Diseases, Lanzhou University Second Hospital, Lanzhou, 730030, China.
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, 730030, China.
| |
Collapse
|
27
|
Zong B, Wang J, Wang K, Hao J, Han JY, Jin R, Ge Q. Effects of Ginsenoside Rb1 on the Crosstalk between Intestinal Stem Cells and Microbiota in a Simulated Weightlessness Mouse Model. Int J Mol Sci 2024; 25:8769. [PMID: 39201456 PMCID: PMC11354315 DOI: 10.3390/ijms25168769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024] Open
Abstract
Exposure to the space microenvironment has been found to disrupt the homeostasis of intestinal epithelial cells and alter the composition of the microbiota. To investigate this in more detail and to examine the impact of ginsenoside Rb1, we utilized a mouse model of hindlimb unloading (HU) for four weeks to simulate the effects of microgravity. Our findings revealed that HU mice had ileum epithelial injury with a decrease in the number of intestinal stem cells (ISCs) and the level of cell proliferation. The niche functions for ISCs were also impaired in HU mice, including a reduction in Paneth cells and Wnt signaling, along with an increase in oxidative stress. The administration of Rb1 during the entire duration of HU alleviated the observed intestinal defects, suggesting its beneficial influence on epithelial cell homeostasis. Hindlimb unloading also resulted in gut dysbiosis. The supplementation of Rb1 in the HU mice or the addition of Rb1 derivative compound K in bacterial culture in vitro promoted the growth of beneficial probiotic species such as Akkermansia. The co-housing experiment further showed that Rb1 treatment in ground control mice alone could alleviate the defects in HU mice that were co-housed with Rb1-treated ground mice. Together, these results underscore a close relationship between dysbiosis and impaired ISC functions in the HU mouse model. It also highlights the beneficial effects of Rb1 in mitigating HU-induced epithelial injury by promoting the expansion of intestinal probiotics. These animal-based insights provide valuable knowledge for the development of improved approaches to maintaining ISC homeostasis in astronauts.
Collapse
Affiliation(s)
- Beibei Zong
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (B.Z.); (J.-Y.H.)
| | - Jingyi Wang
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (J.W.); (K.W.); (J.H.)
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing 100191, China
| | - Kai Wang
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (J.W.); (K.W.); (J.H.)
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing 100191, China
| | - Jie Hao
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (J.W.); (K.W.); (J.H.)
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing 100191, China
| | - Jing-Yan Han
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (B.Z.); (J.-Y.H.)
| | - Rong Jin
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (J.W.); (K.W.); (J.H.)
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing 100191, China
| | - Qing Ge
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (B.Z.); (J.-Y.H.)
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (J.W.); (K.W.); (J.H.)
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing 100191, China
| |
Collapse
|
28
|
Wen X, Tang S, Wan F, Zhong R, Chen L, Zhang H. The PI3K/Akt-Nrf2 Signaling Pathway and Mitophagy Synergistically Mediate Hydroxytyrosol to Alleviate Intestinal Oxidative Damage. Int J Biol Sci 2024; 20:4258-4276. [PMID: 39247828 PMCID: PMC11379072 DOI: 10.7150/ijbs.97263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/24/2024] [Indexed: 09/10/2024] Open
Abstract
Oxidative stress is a major pathogenic factor in many intestinal diseases, such as inflammatory bowel disease (IBD) and colorectal cancer (CRC). The Nrf2 signaling pathway and mitophagy can reduce reactive oxygen species (ROS) and alleviate oxidative stress, but their relationship is unclear. Hydroxytyrosol (HT), a polyphenolic compound abundant in olive oil, has strong antioxidant activity and may help treat these diseases. We used pigs as a model to investigate HT's effect on intestinal oxidative damage and its mechanisms. Diquat (DQ) induced oxidative stress and impaired intestinal barrier function, which HT mitigated. Mechanistic studies in IPEC-J2 cells showed that HT protected against oxidative damage by activating the PI3K/Akt-Nrf2 signaling pathway and promoting mitophagy. Our study highlighted the synergistic relationship between Nrf2 and mitophagy in mediating HT's antioxidant effects. Inhibition studies confirmed that disrupting either pathway compromised HT's protective effects. Maintaining redox balance through Nrf2 and mitophagy is important for eliminating excess ROS. Nrf2 increases antioxidant enzymes to clear existing ROS, while mitophagy removes damaged mitochondria and reduces ROS generation. This study demonstrates that these pathways collaboratively modulate the antioxidant effects of HT, with neither being dispensable. Targeting Nrf2 and mitophagy could be a promising strategy for treating oxidative stress-related intestinal diseases, with HT as a potential treatment.
Collapse
Affiliation(s)
- Xiaobin Wen
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Shanlong Tang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Fan Wan
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Ruqing Zhong
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Liang Chen
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| |
Collapse
|
29
|
Ribatti D. Microbiota and angiogenesis in the intestinal vasculature. Tissue Cell 2024; 89:102466. [PMID: 38986346 DOI: 10.1016/j.tice.2024.102466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/20/2024] [Accepted: 07/08/2024] [Indexed: 07/12/2024]
Abstract
The gut microbiota is responsible for several metabolic functions, producing various metabolites with numerous roles for the host. The gut microbiota plays a key role in constructing the microvascular network in the intestinal villus, depending on the Paneth cells, strategically positioned to coordinate the development of both the microbiota and the microvasculature. The gut microbiota secretes several molecules and chemokines involved in the induction of the secretion of pro-angiogenic factors.
Collapse
Affiliation(s)
- Domenico Ribatti
- Department of Translational Biomedicine and Neuroscience, University of Bari Medical School, Bari, Italy.
| |
Collapse
|
30
|
Di Mattia M, Sallese M, Neri M, Lopetuso LR. Hypoxic Functional Regulation Pathways in the GI Tract: Focus on the HIF-1α and Microbiota's Crosstalk. Inflamm Bowel Dis 2024; 30:1406-1418. [PMID: 38484200 DOI: 10.1093/ibd/izae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Indexed: 08/02/2024]
Abstract
Hypoxia is an essential gastrointestinal (GI) tract phenomenon that influences both physiologic and pathologic states. Hypoxia-inducible factors (HIFs), the primary drivers of cell adaptation to low-oxygen environments, have been identified as critical regulators of gut homeostasis: directly, through the induction of different proteins linked to intestinal barrier stabilization (ie, adherent proteins, tight junctions, mucins, integrins, intestinal trefoil factor, and adenosine); and indirectly, through the regulation of several immune cell types and the modulation of autophagy and inflammatory processes. Furthermore, hypoxia and HIF-related sensing pathways influence the delicate relationship existing between bacteria and mammalian host cells. In turn, gut commensals establish and maintain the physiologic hypoxia of the GI tract and HIF-α expression. Based on this premise, the goals of this review are to (1) highlight hypoxic molecular pathways in the GI tract, both in physiologic and pathophysiologic settings, such as inflammatory bowel disease; and (2) discuss a potential strategy for ameliorating gut-related disorders, by targeting HIF signaling, which can alleviate inflammatory processes, restore autophagy correct mechanisms, and benefit the host-microbiota equilibrium.
Collapse
Affiliation(s)
- Miriam Di Mattia
- Department of Medicine and Ageing Sciences, Gabriele d'Annunzio University of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology, Gabriele d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Michele Sallese
- Department of Medicine and Ageing Sciences, Gabriele d'Annunzio University of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology, Gabriele d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Matteo Neri
- Department of Medicine and Ageing Sciences, Gabriele d'Annunzio University of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology, Gabriele d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Loris Riccardo Lopetuso
- Department of Medicine and Ageing Sciences, Gabriele d'Annunzio University of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology, Gabriele d'Annunzio University of Chieti-Pescara, Chieti, Italy
- Medicina Interna e Gastroenterologia, CEMAD Centro Malattie dell'Apparato Digerente, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| |
Collapse
|
31
|
Mann ER, Lam YK, Uhlig HH. Short-chain fatty acids: linking diet, the microbiome and immunity. Nat Rev Immunol 2024; 24:577-595. [PMID: 38565643 DOI: 10.1038/s41577-024-01014-8] [Citation(s) in RCA: 231] [Impact Index Per Article: 231.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2024] [Indexed: 04/04/2024]
Abstract
The short-chain fatty acids (SCFAs) butyrate, propionate and acetate are microbial metabolites and their availability in the gut and other organs is determined by environmental factors, such as diet and use of antibiotics, that shape the diversity and metabolism of the microbiota. SCFAs regulate epithelial barrier function as well as mucosal and systemic immunity via evolutionary conserved processes that involve G protein-coupled receptor signalling or histone deacetylase activity. Indicatively, the anti-inflammatory role of butyrate is mediated through direct effects on the differentiation of intestinal epithelial cells, phagocytes, B cells and plasma cells, and regulatory and effector T cells. Intestinally derived SCFAs also directly and indirectly affect immunity at extra-intestinal sites, such as the liver, the lungs, the reproductive tract and the brain, and have been implicated in a range of disorders, including infections, intestinal inflammation, autoimmunity, food allergies, asthma and responses to cancer therapies. An ecological understanding of microbial communities and their interrelated metabolic states, as well as the engineering of butyrogenic bacteria may support SCFA-focused interventions for the prevention and treatment of immune-mediated diseases.
Collapse
Affiliation(s)
- Elizabeth R Mann
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Ying Ka Lam
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | - Holm H Uhlig
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK.
- Department of Paediatrics, University of Oxford, Oxford, UK.
- Oxford Biomedical Research Centre, University of Oxford, Oxford, UK.
| |
Collapse
|
32
|
Zachos KA, Gamboa JA, Dewji AS, Lee J, Brijbassi S, Andreazza AC. The interplay between mitochondria, the gut microbiome and metabolites and their therapeutic potential in primary mitochondrial disease. Front Pharmacol 2024; 15:1428242. [PMID: 39119601 PMCID: PMC11306032 DOI: 10.3389/fphar.2024.1428242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024] Open
Abstract
The various roles of the mitochondria and the microbiome in health and disease have been thoroughly investigated, though they are often examined independently and in the context of chronic disease. However, the mitochondria and microbiome are closely connected, namely, through their evolution, maternal inheritance patterns, overlapping role in many diseases and their importance in the maintenance of human health. The concept known as the "mitochondria-microbiome crosstalk" is the ongoing bidirectional crosstalk between these two entities and warrants further exploration and consideration, especially in the context of primary mitochondrial disease, where mitochondrial dysfunction can be detrimental for clinical manifestation of disease, and the role and composition of the microbiome is rarely investigated. A potential mechanism underlying this crosstalk is the role of metabolites from both the mitochondria and the microbiome. During digestion, gut microbes modulate compounds found in food, which can produce metabolites with various bioactive effects. Similarly, mitochondrial metabolites are produced from substrates that undergo biochemical processes during cellular respiration. This review aims to provide an overview of current literature examining the mitochondria-microbiome crosstalk, the role of commonly studied metabolites serve in signaling and mediating these biochemical pathways, and the impact diet has on both the mitochondria and the microbiome. As a final point, this review highlights the up-to-date implications of the mitochondria-microbiome crosstalk in mitochondrial disease and its potential as a therapeutic tool or target.
Collapse
Affiliation(s)
- Kassandra A. Zachos
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
- Mitochondrial Innovation Initiative, MITO2i, Toronto, ON, Canada
| | - Jann Aldrin Gamboa
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Aleena S. Dewji
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Jocelyn Lee
- Mitochondrial Innovation Initiative, MITO2i, Toronto, ON, Canada
| | - Sonya Brijbassi
- Mitochondrial Innovation Initiative, MITO2i, Toronto, ON, Canada
| | - Ana C. Andreazza
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
- Mitochondrial Innovation Initiative, MITO2i, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
33
|
Hai S, Li X, Xie E, Wu W, Gao Q, Yu B, Hu J, Xu F, Zheng X, Zhang BH, Wu D, Yan W, Ning Q, Wang X. Intestinal IL-33 promotes microbiota-derived trimethylamine N -oxide synthesis and drives metabolic dysfunction-associated steatotic liver disease progression by exerting dual regulation on HIF-1α. Hepatology 2024:01515467-990000000-00950. [PMID: 38985971 DOI: 10.1097/hep.0000000000000985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 06/13/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND AND AIMS Gut microbiota plays a prominent role in the pathogenesis of metabolic dysfunction-associated steatotic liver disease (MASLD). IL-33 is highly expressed at mucosal barrier sites and regulates intestinal homeostasis. Herein, we aimed to investigate the role and mechanism of intestinal IL-33 in MASLD. APPROACH AND RESULTS In both humans and mice with MASLD, hepatic expression of IL-33 and its receptor suppression of tumorigenicity 2 (ST2) showed no significant change compared to controls, while serum soluble ST2 levels in humans, as well as intestinal IL-33 and ST2 expression in mice were significantly increased in MASLD. Deletion of global or intestinal IL-33 in mice alleviated metabolic disorders, inflammation, and fibrosis associated with MASLD by reducing intestinal barrier permeability and rectifying gut microbiota dysbiosis. Transplantation of gut microbiota from IL-33 deficiency mice prevented MASLD progression in wild-type mice. Moreover, IL-33 deficiency resulted in a decrease in the abundance of trimethylamine N -oxide-producing bacteria. Inhibition of trimethylamine N -oxide synthesis by 3,3-dimethyl-1-butanol mitigated hepatic oxidative stress in mice with MASLD. Nuclear IL-33 bound to hypoxia-inducible factor-1α and suppressed its activation, directly damaging the integrity of the intestinal barrier. Extracellular IL-33 destroyed the balance of intestinal Th1/Th17 and facilitated Th1 differentiation through the ST2- Hif1a - Tbx21 axis. Knockout of ST2 resulted in a diminished MASLD phenotype resembling that observed in IL-33 deficiency mice. CONCLUSIONS Intestinal IL-33 enhanced gut microbiota-derived trimethylamine N -oxide synthesis and aggravated MASLD progression through dual regulation on hypoxia-inducible factor-1α. Targeting IL-33 and its associated microbiota may provide a potential therapeutic strategy for managing MASLD.
Collapse
Affiliation(s)
- Suping Hai
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Xitang Li
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Erliang Xie
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Wenhui Wu
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Qiang Gao
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Binghui Yu
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Junjian Hu
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Feiyang Xu
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Xizhe Zheng
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Bin-Hao Zhang
- Department of Surgery, Hepatic Surgery Center, Institute of Hepato-Pancreato-Biliary Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Di Wu
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Weiming Yan
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Qin Ning
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaojing Wang
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
34
|
Kuo CH, Wu LL, Chen HP, Yu J, Wu CY. Direct effects of alcohol on gut-epithelial barrier: Unraveling the disruption of physical and chemical barrier of the gut-epithelial barrier that compromises the host-microbiota interface upon alcohol exposure. J Gastroenterol Hepatol 2024; 39:1247-1255. [PMID: 38509796 DOI: 10.1111/jgh.16539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/22/2024]
Abstract
The development of alcohol-associated diseases is multifactorial, mechanism of which involves metabolic alteration, dysregulated immune response, and a perturbed intestinal host-environment interface. Emerging evidence has pinpointed the critical role of the intestinal host-microbiota interaction in alcohol-induced injuries, suggesting its contribution to disease initiation and development. To maintain homeostasis in the gut, the intestinal mucosa serves as the first-line defense against exogenous factors in the gastrointestinal tract, including dietary contents and the commensal microbiota. The gut-epithelial barrier comprises a physical barrier lined with a single layer of intestinal epithelial cells and a chemical barrier with mucus trapping host regulatory factors and gut commensal bacteria. In this article, we review recent studies pertaining to the disrupted gut-epithelial barrier upon alcohol exposure and examine how alcohol and its metabolism can affect the regulatory ability of intestinal epithelium.
Collapse
Affiliation(s)
- Cheng-Hao Kuo
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Clinical Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Li-Ling Wu
- Institute of Physiology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Health Innovation Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Microbiota Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hsiao-Ping Chen
- Institute of Biomedical Informatics, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Translational Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Jun Yu
- Department of Medicine and Therapeutics, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China
| | - Chun-Ying Wu
- Institute of Clinical Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Health Innovation Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Microbiota Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Biomedical Informatics, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Translational Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
35
|
Haghebaert M, Laroche B, Sala L, Mondot S, Doré J. A mechanistic modelling approach of the host-microbiota interactions to investigate beneficial symbiotic resilience in the human gut. J R Soc Interface 2024; 21:20230756. [PMID: 38900957 DOI: 10.1098/rsif.2023.0756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/11/2024] [Indexed: 06/22/2024] Open
Abstract
The health and well-being of a host are deeply influenced by the interactions with its gut microbiota. Contrasted environmental conditions, such as diseases or dietary habits, play a pivotal role in modulating these interactions, impacting microbiota composition and functionality. Such conditions can also lead to transitions from beneficial to detrimental symbiosis, viewed as alternative stable states of the host-microbiota dialogue. This article introduces a novel mathematical model exploring host-microbiota interactions, integrating dynamics of the colonic epithelial crypt, microbial metabolic functions, inflammation sensitivity and colon flows in a transverse section. The model considers metabolic shifts in epithelial cells based on butyrate and hydrogen sulfide concentrations, innate immune pattern recognition receptor activation, microbial oxygen tolerance and the impact of antimicrobial peptides on the microbiota. Using the model, we demonstrated that a high-protein, low-fibre diet exacerbates detrimental interactions and compromises beneficial symbiotic resilience, underscoring a destabilizing effect towards an unhealthy state. Moreover, the proposed model provides essential insights into oxygen levels, fibre and protein breakdown, and basic mechanisms of innate immunity in the colon and offers a crucial understanding of factors influencing the colon environment.
Collapse
Affiliation(s)
- Marie Haghebaert
- University Paris-Saclay, INRAE, MaIAGE , Jouy-en-Josas 78350, France
- University Paris-Saclay, INRIA, MUSCA , Palaiseau 91120, France
| | - Béatrice Laroche
- University Paris-Saclay, INRAE, MaIAGE , Jouy-en-Josas 78350, France
- University Paris-Saclay, INRIA, MUSCA , Palaiseau 91120, France
| | - Lorenzo Sala
- University Paris-Saclay, INRAE, MaIAGE , Jouy-en-Josas 78350, France
- University Paris-Saclay, INRIA, MUSCA , Palaiseau 91120, France
| | - Stanislas Mondot
- Micalis Institute, INRAE, AgroParisTech, University Paris-Saclay , Jouy-en-Josas 78350, France
| | - Joël Doré
- Micalis Institute, INRAE, AgroParisTech, University Paris-Saclay , Jouy-en-Josas 78350, France
- University Paris-Saclay, MGP, INRAE , Jouy-en-Josas 78350, France
| |
Collapse
|
36
|
Li H, Zhang G, Liu Y, Gao F, Ye X, Lin R, Wen M. Hypoxia-inducible factor 1α inhibits heat stress-induced pig intestinal epithelial cell apoptosis through eif2α/ATF4/CHOP signaling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171649. [PMID: 38485018 DOI: 10.1016/j.scitotenv.2024.171649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/01/2024] [Accepted: 03/09/2024] [Indexed: 03/17/2024]
Abstract
Unstoppable global warming and increased frequency of extreme heat leads to human and animals easier to suffer from heat stress (HS), with gastrointestinal abnormalities as one of the initial clinical symptoms. HS induces intestinal mucosal damage owing to intestinal hypoxia and hyperthermia. Hypoxia-inducible factor 1α (HIF-1α) activates numerous genes to mediate cell hypoxic responses; however, its role in HS-treated intestinal mucosa is unknown. This work aimed to explore HIF-1α function and regulatory mechanisms in HS-treated pig intestines. We assigned 10 pigs to control and moderate HS groups. Physical signs, stress, and antioxidant levels were detected, and the intestines were harvested after 72 h of HS treatment to study histological changes and HIF-1α, heat shock protein 90 (HSP90), and prolyl-4-hydroxylase 2 (PHD-2) expression. In addition, porcine intestinal columnar epithelial cells (IPEC-J2) underwent HS treatment (42 °C, 5 % O2) to further explore the functions and regulatory mechanism of HIF-1α. The results of histological examination revealed HS caused intestinal villi damage and increased apoptotic epithelial cell; the expression of HIF-1α and HSP90 increased while PHD-2 showed and opposite trend. Transcriptome sequencing analysis revealed that HS activated HIF-1 signaling. To further explore the role of HIF-1α on HS induced IPEC-J2 apoptosis, the HIF-1α was interfered and overexpression respectively, and the result confirmed that HIF-1α could inhibited cell apoptosis under HS. Furthermore, HS-induced apoptosis depends on eukaryotic initiation factor 2 alpha (eif2α)/activating transcription factor 4 (ATF4)/CCAAT-enhancer-binding protein homologous protein (CHOP) pathway, and HIF-1α can inhibit this pathway to alleviate IPEC-J2 cell apoptosis. In conclusion, this study suggests that HS can promote intestinal epithelial cell apoptosis and cause pig intestinal mucosal barrier damage; the HIF-1α can alleviate cell apoptosis by inhibiting eif2α/ATF4/CHOP signaling. These results indicate that HIF-1α plays a protective role in HS, and offers a potential target for HS prevention and mitigation.
Collapse
Affiliation(s)
- Hui Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China; College of Animal Science, Guizhou University, Guiyang 550000, PR China.
| | - Gang Zhang
- College of Animal Science, Guizhou University, Guiyang 550000, PR China
| | - Yongqing Liu
- College of Animal Science, Guizhou University, Guiyang 550000, PR China
| | - Fan Gao
- College of Animal Science, Guizhou University, Guiyang 550000, PR China
| | - Xinyue Ye
- College of Agriculture, Guizhou University, Guiyang 550000, PR China
| | - Rutao Lin
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China; College of Animal Science, Guizhou University, Guiyang 550000, PR China.
| | - Ming Wen
- College of Animal Science, Guizhou University, Guiyang 550000, PR China.
| |
Collapse
|
37
|
Dey P. Good girl goes bad: Understanding how gut commensals cause disease. Microb Pathog 2024; 190:106617. [PMID: 38492827 DOI: 10.1016/j.micpath.2024.106617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/09/2024] [Accepted: 03/10/2024] [Indexed: 03/18/2024]
Abstract
This review examines the complex connection between commensal microbiota and the development of opportunistic infections. Several underlying conditions, such as metabolic diseases and weakened immune systems, increase the vulnerability of patients to opportunistic infections. The increasing antibiotic resistance adds significant complexity to the management of infectious diseases. Although commensals have long been considered beneficial, recent research contradicts this notion by uncovering chronic illnesses linked to atypical pathogens or commensal bacteria. This review examines conditions in which commensal bacteria, which are usually beneficial, contribute to developing diseases. Commensals' support for opportunistic infections can be categorized based on factors such as colonization fitness, pathoadaptive mutation, and evasion of host immune response. Individuals with weakened immune systems are especially susceptible, highlighting the importance of mucosal host-microbiota interaction in promoting infection when conditions are inappropriate. Dysregulation of gut microbial homeostasis, immunological modulation, and microbial interactions are caused by several factors that contribute to the development of chronic illnesses. Knowledge about these mechanisms is essential for developing preventive measures, particularly for susceptible populations, and emphasizes the importance of maintaining a balanced gut microbiota in reducing the impact of opportunistic infections.
Collapse
Affiliation(s)
- Priyankar Dey
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147004, Punjab, India.
| |
Collapse
|
38
|
Han Y, Liu X, Jia Q, Xu J, Shi J, Li X, Xie G, Zhao X, He K. Longitudinal multi-omics analysis uncovers the altered landscape of gut microbiota and plasma metabolome in response to high altitude. MICROBIOME 2024; 12:70. [PMID: 38581016 PMCID: PMC10996103 DOI: 10.1186/s40168-024-01781-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 02/22/2024] [Indexed: 04/07/2024]
Abstract
BACKGROUND Gut microbiota is significantly influenced by altitude. However, the dynamics of gut microbiota in relation to altitude remains undisclosed. METHODS In this study, we investigated the microbiome profile of 610 healthy young men from three different places in China, grouped by altitude, duration of residence, and ethnicity. We conducted widely targeted metabolomic profiling and clinical testing to explore metabolic characteristics. RESULTS Our findings revealed that as the Han individuals migrated from low altitude to high latitude, the gut microbiota gradually converged towards that of the Tibetan populations but reversed upon returning to lower altitude. Across different cohorts, we identified 51 species specifically enriched during acclimatization and 57 species enriched during deacclimatization to high altitude. Notably, Prevotella copri was found to be the most enriched taxon in both Tibetan and Han populations after ascending to high altitude. Furthermore, significant variations in host plasma metabolome and clinical indices at high altitude could be largely explained by changes in gut microbiota composition. Similar to Tibetans, 41 plasma metabolites, such as lactic acid, sphingosine-1-phosphate, taurine, and inositol, were significantly elevated in Han populations after ascending to high altitude. Germ-free animal experiments demonstrated that certain species, such as Escherichia coli and Klebsiella pneumoniae, which exhibited altitude-dependent variations in human populations, might play crucial roles in host purine metabolism. CONCLUSIONS This study provides insights into the dynamics of gut microbiota and host plasma metabolome with respect to altitude changes, indicating that their dynamics may have implications for host health at high altitude and contribute to host adaptation. Video Abstract.
Collapse
Affiliation(s)
- Yang Han
- Medical Big Data Research Center, Medical Innovation Research Division, Chinese PLA General Hospital, Beijing, China
- Beijing Key Laboratory of Precision Medicine for Chronic Heart Failure, Medical Innovation Research Division, Chinese PLA General Hospital, Beijing, China
- National Engineering Research Center for Medical Big Data Application Technology, Chinese PLA General Hospital, Beijing, China
| | | | - Qian Jia
- Beijing Key Laboratory of Precision Medicine for Chronic Heart Failure, Medical Innovation Research Division, Chinese PLA General Hospital, Beijing, China
- National Engineering Research Center for Medical Big Data Application Technology, Chinese PLA General Hospital, Beijing, China
| | - Jiayu Xu
- Medical Big Data Research Center, Medical Innovation Research Division, Chinese PLA General Hospital, Beijing, China
- National Engineering Research Center for Medical Big Data Application Technology, Chinese PLA General Hospital, Beijing, China
| | - Jinlong Shi
- Medical Big Data Research Center, Medical Innovation Research Division, Chinese PLA General Hospital, Beijing, China
- National Engineering Research Center for Medical Big Data Application Technology, Chinese PLA General Hospital, Beijing, China
| | - Xiang Li
- Ping An Healthcare Technology, Beijing, China
| | - Guotong Xie
- Ping An Healthcare Technology, Ping An Health Cloud Company Limited, Beijing, China
| | - Xiaojing Zhao
- Beijing Key Laboratory of Precision Medicine for Chronic Heart Failure, Medical Innovation Research Division, Chinese PLA General Hospital, Beijing, China.
- National Engineering Research Center for Medical Big Data Application Technology, Chinese PLA General Hospital, Beijing, China.
| | - Kunlun He
- Medical Big Data Research Center, Medical Innovation Research Division, Chinese PLA General Hospital, Beijing, China.
- Beijing Key Laboratory of Precision Medicine for Chronic Heart Failure, Medical Innovation Research Division, Chinese PLA General Hospital, Beijing, China.
- National Engineering Research Center for Medical Big Data Application Technology, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
39
|
Xiao J, Guo X, Wang Z. Crosstalk between hypoxia-inducible factor-1α and short-chain fatty acids in inflammatory bowel disease: key clues toward unraveling the mystery. Front Immunol 2024; 15:1385907. [PMID: 38605960 PMCID: PMC11007100 DOI: 10.3389/fimmu.2024.1385907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/19/2024] [Indexed: 04/13/2024] Open
Abstract
The human intestinal tract constitutes a complex ecosystem, made up of countless gut microbiota, metabolites, and immune cells, with hypoxia being a fundamental environmental characteristic of this ecology. Under normal physiological conditions, a delicate balance exists among these complex "residents", with disruptions potentially leading to inflammatory bowel disease (IBD). The core pathology of IBD features a disrupted intestinal epithelial barrier, alongside evident immune and microecological disturbances. Central to these interconnected networks is hypoxia-inducible factor-1α (HIF-1α), which is a key regulator in gut cells for adapting to hypoxic conditions and maintaining gut homeostasis. Short-chain fatty acids (SCFAs), as pivotal gut metabolites, serve as vital mediators between the host and microbiota, and significantly influence intestinal ecosystem. Recent years have seen a surge in research on the roles and therapeutic potential of HIF-1α and SCFAs in IBD independently, yet reviews on HIF-1α-mediated SCFAs regulation of IBD under hypoxic conditions are scarce. This article summarizes evidence of the interplay and regulatory relationship between SCFAs and HIF-1α in IBD, pivotal for elucidating the disease's pathogenesis and offering promising therapeutic strategies.
Collapse
Affiliation(s)
- Jinyin Xiao
- Graduate School, Hunan University of Traditional Chinese Medicine, Changsha, China
- Department of Anorectal, the Second Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, China
| | - Xiajun Guo
- Department of Geriatric, the First People’s Hospital of Xiangtan City, Xiangtan, China
| | - Zhenquan Wang
- Department of Anorectal, the Second Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, China
| |
Collapse
|
40
|
Riaz F, Zhang J, Pan F. Forces at play: exploring factors affecting the cancer metastasis. Front Immunol 2024; 15:1274474. [PMID: 38361941 PMCID: PMC10867181 DOI: 10.3389/fimmu.2024.1274474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/19/2024] [Indexed: 02/17/2024] Open
Abstract
Metastatic disease, a leading and lethal indication of deaths associated with tumors, results from the dissemination of metastatic tumor cells from the site of primary origin to a distant organ. Dispersion of metastatic cells during the development of tumors at distant organs leads to failure to comply with conventional treatments, ultimately instigating abrupt tissue homeostasis and organ failure. Increasing evidence indicates that the tumor microenvironment (TME) is a crucial factor in cancer progression and the process of metastatic tumor development at secondary sites. TME comprises several factors contributing to the initiation and progression of the metastatic cascade. Among these, various cell types in TME, such as mesenchymal stem cells (MSCs), lymphatic endothelial cells (LECs), cancer-associated fibroblasts (CAFs), myeloid-derived suppressor cells (MDSCs), T cells, and tumor-associated macrophages (TAMs), are significant players participating in cancer metastasis. Besides, various other factors, such as extracellular matrix (ECM), gut microbiota, circadian rhythm, and hypoxia, also shape the TME and impact the metastatic cascade. A thorough understanding of the functions of TME components in tumor progression and metastasis is necessary to discover new therapeutic strategies targeting the metastatic tumor cells and TME. Therefore, we reviewed these pivotal TME components and highlighted the background knowledge on how these cell types and disrupted components of TME influence the metastatic cascade and establish the premetastatic niche. This review will help researchers identify these altered components' molecular patterns and design an optimized, targeted therapy to treat solid tumors and restrict metastatic cascade.
Collapse
Affiliation(s)
- Farooq Riaz
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Jing Zhang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Fan Pan
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| |
Collapse
|
41
|
Sinha R, LeVeque RM, Callahan SM, Chatterjee S, Stopnisek N, Kuipel M, Johnson JG, DiRita VJ. Gut metabolite L-lactate supports Campylobacter jejuni population expansion during acute infection. Proc Natl Acad Sci U S A 2024; 121:e2316540120. [PMID: 38170751 PMCID: PMC10786315 DOI: 10.1073/pnas.2316540120] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/15/2023] [Indexed: 01/05/2024] Open
Abstract
How the microaerobic pathogen Campylobacter jejuni establishes its niche and expands in the gut lumen during infection is poorly understood. Using 6-wk-old ferrets as a natural disease model, we examined this aspect of C. jejuni pathogenicity. Unlike mice, which require significant genetic or physiological manipulation to become colonized with C. jejuni, ferrets are readily infected without the need to disarm the immune system or alter the gut microbiota. Disease after C. jejuni infection in ferrets reflects closely how human C. jejuni infection proceeds. Rapid growth of C. jejuni and associated intestinal inflammation was observed within 2 to 3 d of infection. We observed pathophysiological changes that were noted by cryptic hyperplasia through the induction of tissue repair systems, accumulation of undifferentiated amplifying cells on the colon surface, and instability of HIF-1α in colonocytes, which indicated increased epithelial oxygenation. Metabolomic analysis demonstrated that lactate levels in colon content were elevated in infected animals. A C. jejuni mutant lacking lctP, which encodes an L-lactate transporter, was significantly decreased for colonization during infection. Lactate also influences adhesion and invasion by C. jejuni to a colon carcinoma cell line (HCT116). The oxygenation required for expression of lactate transporter (lctP) led to identification of a putative thiol-based redox switch regulator (LctR) that may repress lctP transcription under anaerobic conditions. Our work provides better insights into the pathogenicity of C. jejuni.
Collapse
Affiliation(s)
- Ritam Sinha
- Department of Microbiology, Genetics, & Immunology, Michigan State University, East Lansing, MI48824
| | - Rhiannon M. LeVeque
- Department of Microbiology, Genetics, & Immunology, Michigan State University, East Lansing, MI48824
| | - Sean M. Callahan
- Department of Microbiology, University of Tennessee, Knoxville, TN37996
| | - Shramana Chatterjee
- Department of Microbiology, Genetics, & Immunology, Michigan State University, East Lansing, MI48824
| | - Nejc Stopnisek
- Department of Microbiology, Genetics, & Immunology, Michigan State University, East Lansing, MI48824
| | - Matti Kuipel
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI48824
| | | | - Victor J. DiRita
- Department of Microbiology, Genetics, & Immunology, Michigan State University, East Lansing, MI48824
| |
Collapse
|
42
|
Wu H, Mu C, Xu L, Yu K, Shen L, Zhu W. Host-microbiota interaction in intestinal stem cell homeostasis. Gut Microbes 2024; 16:2353399. [PMID: 38757687 PMCID: PMC11110705 DOI: 10.1080/19490976.2024.2353399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/06/2024] [Indexed: 05/18/2024] Open
Abstract
Intestinal stem cells (ISCs) play a pivotal role in gut physiology by governing intestinal epithelium renewal through the precise regulation of proliferation and differentiation. The gut microbiota interacts closely with the epithelium through myriad of actions, including immune and metabolic interactions, which translate into tight connections between microbial activity and ISC function. Given the diverse functions of the gut microbiota in affecting the metabolism of macronutrients and micronutrients, dietary nutrients exert pronounced effects on host-microbiota interactions and, consequently, the ISC fate. Therefore, understanding the intricate host-microbiota interaction in regulating ISC homeostasis is imperative for improving gut health. Here, we review recent advances in understanding host-microbiota immune and metabolic interactions that shape ISC function, such as the role of pattern-recognition receptors and microbial metabolites, including lactate and indole metabolites. Additionally, the diverse regulatory effects of the microbiota on dietary nutrients, including proteins, carbohydrates, vitamins, and minerals (e.g. iron and zinc), are thoroughly explored in relation to their impact on ISCs. Thus, we highlight the multifaceted mechanisms governing host-microbiota interactions in ISC homeostasis. Insights gained from this review provide strategies for the development of dietary or microbiota-based interventions to foster gut health.
Collapse
Affiliation(s)
- Haiqin Wu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| | - Chunlong Mu
- Food Informatics, AgResearch, Te Ohu Rangahau Kai, Palmerston North, New Zealand
| | - Laipeng Xu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| | - Kaifan Yu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| | - Le Shen
- Department of Surgery, The University of Chicago, Chicago, IL, USA
| | - Weiyun Zhu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
43
|
Fachi JL, Pral LP, Assis HC, Oliveira S, Rodovalho VR, dos Santos JAC, Fernandes MF, Matheus VA, Sesti-Costa R, Basso PJ, Flóro e Silva M, Câmara NOS, Giorgio S, Colonna M, Vinolo MAR. Hyperbaric oxygen augments susceptibility to C. difficile infection by impairing gut microbiota ability to stimulate the HIF-1α-IL-22 axis in ILC3. Gut Microbes 2024; 16:2297872. [PMID: 38165200 PMCID: PMC10763646 DOI: 10.1080/19490976.2023.2297872] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024] Open
Abstract
Hyperbaric oxygen (HBO) therapy is a well-established method for improving tissue oxygenation and is typically used for the treatment of various inflammatory conditions, including infectious diseases. However, its effect on the intestinal mucosa, a microenvironment known to be physiologically hypoxic, remains unclear. Here, we demonstrated that daily treatment with hyperbaric oxygen affects gut microbiome composition, worsening antibiotic-induced dysbiosis. Accordingly, HBO-treated mice were more susceptible to Clostridioides difficile infection (CDI), an enteric pathogen highly associated with antibiotic-induced colitis. These observations were closely linked with a decline in the level of microbiota-derived short-chain fatty acids (SCFAs). Butyrate, a SCFA produced primarily by anaerobic microbial species, mitigated HBO-induced susceptibility to CDI and increased epithelial barrier integrity by improving group 3 innate lymphoid cell (ILC3) responses. Mice displaying tissue-specific deletion of HIF-1 in RORγt-positive cells exhibited no protective effect of butyrate during CDI. In contrast, the reinforcement of HIF-1 signaling in RORγt-positive cells through the conditional deletion of VHL mitigated disease outcome, even after HBO therapy. Taken together, we conclude that HBO induces intestinal dysbiosis and impairs the production of SCFAs affecting the HIF-1α-IL-22 axis in ILC3 and worsening the response of mice to subsequent C. difficile infection.
Collapse
Affiliation(s)
- José L. Fachi
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Laís. P. Pral
- Department of Genetics and Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Helder C. Assis
- Department of Genetics and Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Sarah Oliveira
- Department of Genetics and Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Vinícius R. Rodovalho
- Department of Genetics and Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Jefferson A. C. dos Santos
- Department of Genetics and Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Mariane F. Fernandes
- Department of Genetics and Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Valquíria A. Matheus
- Department of Genetics and Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Renata Sesti-Costa
- Hematology and Hemotherapy Center, University of Campinas, Campinas, Brazil
| | - Paulo J. Basso
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Marina Flóro e Silva
- Department of Animal Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Niels O. S. Câmara
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Selma Giorgio
- Department of Animal Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Marco A. R. Vinolo
- Department of Genetics and Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
- Experimental Medicine Research Cluster, Institute of Biology, University of Campinas, Campinas, Brazil
- Obesity and Comorbidities Research Center (OCRC), University of Campinas, Campinas, Brazil
| |
Collapse
|
44
|
Hays KE, Pfaffinger JM, Ryznar R. The interplay between gut microbiota, short-chain fatty acids, and implications for host health and disease. Gut Microbes 2024; 16:2393270. [PMID: 39284033 PMCID: PMC11407412 DOI: 10.1080/19490976.2024.2393270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
Short-chain fatty acids (SCFAs) - acetate, propionate, and butyrate - are important bacterial fermentation metabolites regulating many important aspects of human physiology. Decreases in the concentrations of any or multiple SCFAs are associated with various detrimental effects to the host. Previous research has broadly focused on gut microbiome produced SCFAs as a group, with minimal distinction between acetate, propionate, and butyrate independently, each with significantly different host effects. In this review, we comprehensively delineate the roles of these SCFAs with emphasis on receptor affinity, signaling pathway involvement, and net host physiologic effects. Butyrate is highlighted due to its unique role in gastrointestinal-associated functions, especially maintaining gut barrier integrity. Butyrate functions by promoting epithelial tight junctions, serving as fuel for colonocyte ATP production, and modulating the immune system. Interaction with the immune system occurs locally in the gastrointestinal tract and systemically in the brain. Investigation into research conducted on butyrate production pathways and specific bacterial players involved highlights a unique risk associated with use of gram-positive targeted antibiotics. We review and discuss evidence showing the relationship between the butyrate-producing gram-positive genus, Roseburia, and susceptibility to commonly prescribed, widely used gram-positive antibiotics. Considering gut microbiome implications when choosing antibiotic therapy may benefit health outcomes in patients.
Collapse
Affiliation(s)
- Kallie E Hays
- Doctor of Osteopathic Medicine Program, Rocky Vista University College of Osteopathic Medicine, Englewood, CO, USA
| | - Jacob M Pfaffinger
- Doctor of Osteopathic Medicine Program, Rocky Vista University College of Osteopathic Medicine, Englewood, CO, USA
| | - Rebecca Ryznar
- Department of Biomedical Sciences, Rocky Vista University College of Osteopathic Medicine, Englewood, CO, USA
| |
Collapse
|
45
|
Bouges E, Segers C, Leys N, Lebeer S, Zhang J, Mastroleo F. Human Intestinal Organoids and Microphysiological Systems for Modeling Radiotoxicity and Assessing Radioprotective Agents. Cancers (Basel) 2023; 15:5859. [PMID: 38136404 PMCID: PMC10741417 DOI: 10.3390/cancers15245859] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Radiotherapy is a commonly employed treatment for colorectal cancer, yet its radiotoxicity-related impact on healthy tissues raises significant health concerns. This highlights the need to use radioprotective agents to mitigate these side effects. This review presents the current landscape of human translational radiobiology, outlining the limitations of existing models and proposing engineering solutions. We delve into radiotherapy principles, encompassing mechanisms of radiation-induced cell death and its influence on normal and cancerous colorectal cells. Furthermore, we explore the engineering aspects of microphysiological systems to represent radiotherapy-induced gastrointestinal toxicity and how to include the gut microbiota to study its role in treatment failure and success. This review ultimately highlights the main challenges and future pathways in translational research for pelvic radiotherapy-induced toxicity. This is achieved by developing a humanized in vitro model that mimics radiotherapy treatment conditions. An in vitro model should provide in-depth analyses of host-gut microbiota interactions and a deeper understanding of the underlying biological mechanisms of radioprotective food supplements. Additionally, it would be of great value if these models could produce high-throughput data using patient-derived samples to address the lack of human representability to complete clinical trials and improve patients' quality of life.
Collapse
Affiliation(s)
- Eloïse Bouges
- RadioPharma Research, Nuclear Medical Applications, Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, 2400 Mol, Belgium; (E.B.); (C.S.); (N.L.)
- Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium;
- Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands;
| | - Charlotte Segers
- RadioPharma Research, Nuclear Medical Applications, Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, 2400 Mol, Belgium; (E.B.); (C.S.); (N.L.)
| | - Natalie Leys
- RadioPharma Research, Nuclear Medical Applications, Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, 2400 Mol, Belgium; (E.B.); (C.S.); (N.L.)
| | - Sarah Lebeer
- Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium;
| | - Jianbo Zhang
- Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands;
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam UMC, Location Academic Medical Center, 1105 BK Amsterdam, The Netherlands
| | - Felice Mastroleo
- RadioPharma Research, Nuclear Medical Applications, Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, 2400 Mol, Belgium; (E.B.); (C.S.); (N.L.)
| |
Collapse
|
46
|
Liu Y, Huang Y, He Q, Dou Z, Zeng M, Wang X, Li S. From heart to gut: Exploring the gut microbiome in congenital heart disease. IMETA 2023; 2:e144. [PMID: 38868221 PMCID: PMC10989834 DOI: 10.1002/imt2.144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/14/2023] [Accepted: 09/26/2023] [Indexed: 06/14/2024]
Abstract
Congenital heart disease (CHD) is a prevalent birth defect and a significant contributor to childhood mortality. The major characteristics of CHD include cardiovascular malformations and hemodynamical disorders. However, the impact of CHD extends beyond the circulatory system. Evidence has identified dysbiosis of the gut microbiome in patients with CHD. Chronic hypoxia and inflammation associated with CHD affect the gut microbiome, leading to alterations in its number, abundance, and composition. The gut microbiome, aside from providing essential nutrients, engages in direct interactions with the host immune system and indirect interactions via metabolites. The abnormal gut microbiome or its products can translocate into the bloodstream through an impaired gut barrier, leading to an inflammatory state. Metabolites of the gut microbiome, such as short-chain fatty acids and trimethylamine N-oxide, also play important roles in the development, treatment, and prognosis of CHD. This review discusses the role of the gut microbiome in immunity, gut barrier, neurodevelopment, and perioperative period in CHD. By fostering a better understanding of the cross-talk between CHD and the gut microbiome, this review aims to contribute to improve clinical management and outcomes for CHD patients.
Collapse
Affiliation(s)
- Yuze Liu
- Pediatric Cardiac Surgery Centre, Fuwai Hospital, National Centre for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical SciencesPeking Union Medical CollegeBeijingChina
| | - Yuan Huang
- Pediatric Cardiac Surgery Centre, Fuwai Hospital, National Centre for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical SciencesPeking Union Medical CollegeBeijingChina
| | - Qiyu He
- Pediatric Cardiac Surgery Centre, Fuwai Hospital, National Centre for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical SciencesPeking Union Medical CollegeBeijingChina
| | - Zheng Dou
- Pediatric Cardiac Surgery Centre, Fuwai Hospital, National Centre for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical SciencesPeking Union Medical CollegeBeijingChina
| | - Min Zeng
- Department of Pediatric Intensive Care Unit, Fuwai Hospital, National Centre for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical SciencesPeking Union Medical CollegeBeijingChina
| | - Xu Wang
- Department of Pediatric Intensive Care Unit, Fuwai Hospital, National Centre for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical SciencesPeking Union Medical CollegeBeijingChina
| | - Shoujun Li
- Pediatric Cardiac Surgery Centre, Fuwai Hospital, National Centre for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical SciencesPeking Union Medical CollegeBeijingChina
| |
Collapse
|
47
|
Liu W, Fan X, Jian B, Wen D, Wang H, Liu Z, Li B. The signaling pathway of hypoxia inducible factor in regulating gut homeostasis. Front Microbiol 2023; 14:1289102. [PMID: 37965556 PMCID: PMC10641782 DOI: 10.3389/fmicb.2023.1289102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/02/2023] [Indexed: 11/16/2023] Open
Abstract
Hypoxia represent a condition in which an adequate amount of oxygen supply is missing in the body, and it could be caused by a variety of diseases, including gastrointestinal disorders. This review is focused on the role of hypoxia in the maintenance of the gut homeostasis and related treatment of gastrointestinal disorders. The effects of hypoxia on the gut microbiome and its role on the intestinal barrier functionality are also covered, together with the potential role of hypoxia in the development of gastrointestinal disorders, including inflammatory bowel disease and irritable bowel syndrome. Finally, we discussed the potential of hypoxia-targeted interventions as a novel therapeutic approach for gastrointestinal disorders. In this review, we highlighted the importance of hypoxia in the maintenance of the gut homeostasis and the potential implications for the treatment of gastrointestinal disorders.
Collapse
Affiliation(s)
- Wei Liu
- Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa, China
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Xueni Fan
- Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa, China
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Boshuo Jian
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Dongxu Wen
- Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa, China
| | - Hongzhuang Wang
- Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa, China
| | - Zhenjiang Liu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Bin Li
- Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa, China
| |
Collapse
|
48
|
Tang Z, Yu S, Pan Y. The gut microbiome tango in the progression of chronic kidney disease and potential therapeutic strategies. J Transl Med 2023; 21:689. [PMID: 37789439 PMCID: PMC10546717 DOI: 10.1186/s12967-023-04455-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 08/19/2023] [Indexed: 10/05/2023] Open
Abstract
Chronic kidney disease (CKD) affects more than 10% population worldwide and becomes a huge burden to the world. Recent studies have revealed multifold interactions between CKD and gut microbiome and their pathophysiological implications. The gut microbiome disturbed by CKD results in the imbalanced composition and quantity of gut microbiota and subsequent changes in its metabolites and functions. Studies have shown that both the dysbiotic gut microbiota and its metabolites have negative impacts on the immune system and aggravate diseases in different ways. Herein, we give an overview of the currently known mechanisms of CKD progression and the alterations of the immune system. Particularly, we summarize the effects of uremic toxins on the immune system and review the roles of gut microbiota in promoting the development of different kidney diseases. Finally, we discuss the current sequencing technologies and novel therapies targeting the gut microbiome.
Collapse
Affiliation(s)
- Zijing Tang
- Department of Nephrology, Shanghai Ninth People's Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shiyan Yu
- Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yu Pan
- Department of Nephrology, Shanghai Ninth People's Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
49
|
Sinha R, LeVeque RM, Callahan SM, Chatterjee S, Stopnisek N, Kuipel M, Johnson JG, DiRita VJ. Gut metabolite L-lactate supports Campylobacter jejuni population expansion during acute infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.02.560557. [PMID: 37873437 PMCID: PMC10592923 DOI: 10.1101/2023.10.02.560557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
How the microaerobic pathogen Campylobacter jejuni establishes its niche and expands in the gut lumen during infection is poorly understood. Using six-week-old ferrets as a natural disease model, we examined this aspect of C. jejuni pathogenicity. Unlike mice, which require significant genetic or physiological manipulation to become colonized with C. jejuni , ferrets are readily infected without the need to disarm the immune system or alter the gut microbiota. Disease after C. jejuni infection in ferrets reflects closely how human C. jejuni infection proceeds. Rapid growth of C. jejuni and associated intestinal inflammation was observed within two-three days of infection. We observed pathophysiological changes that were noted by cryptic hyperplasia through the induction of tissue repair systems, accumulation of undifferentiated amplifying cells on the colon surface, and instability of HIF-1α in colonocytes, which indicated increased epithelial oxygenation. Metabolomic analysis demonstrated that lactate levels in colon content were elevated in infected animals. A C. jejuni mutant lacking lctP , which encodes an L-lactate transporter, was significantly decreased for colonization during infection. Lactate also influences adhesion and invasion by C. jejuni to a colon carcinoma cell line (HCT116). The oxygenation required for expression of lactate transporter ( lctP ) led to discovery of a putative thiol based redox switch regulator (LctR) that may repress lctP transcription under anaerobic conditions. Our work provides new insights into the pathogenicity of C. jejuni . Significance There is a gap in knowledge about the mechanisms by which C. jejuni populations expand during infection. Using an animal model which accurately reflects human infection without the need to alter the host microbiome or the immune system prior to infection, we explored pathophysiological alterations of the gut after C. jejuni infection. Our study identified the gut metabolite L-lactate as playing an important role as a growth substrate for C. jejuni during acute infection. We identified a DNA binding protein, LctR, that binds to the lctP promoter and may repress lctP expression, resulting in decreased lactate transport under low oxygen levels. This work provides new insights about C. jejuni pathogenicity.
Collapse
|
50
|
Lauterbach AL, Slezak AJ, Wang R, Cao S, Raczy MM, Watkins EA, Jimenez CJM, Hubbell JA. Mannose-Decorated Co-Polymer Facilitates Controlled Release of Butyrate to Accelerate Chronic Wound Healing. Adv Healthc Mater 2023; 12:e2300515. [PMID: 37503634 PMCID: PMC11468131 DOI: 10.1002/adhm.202300515] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/25/2023] [Indexed: 07/29/2023]
Abstract
Butyrate is a key bacterial metabolite that plays an important and complex role in modulation of immunity and maintenance of epithelial barriers. Its translation to clinic is limited by poor bioavailability, pungent smell, and the need for high doses, and effective delivery strategies have yet to realize clinical potential. Here, a novel polymeric delivery platform for tunable and sustainable release of butyrate consisting of a methacrylamide backbone with butyryl ester or phenyl ester side chains as well as mannosyl side chains, which is also applicable to other therapeutically relevant metabolites is reported. This platform's utility in the treatment of non-healing diabetic wounds is explored. This butyrate-containing material modulated immune cell activation in vitro and induced striking changes in the milieu of soluble cytokine and chemokine signals present within the diabetic wound microenvironment in vivo. This novel therapy shows efficacy in the treatment of non-healing wounds through the modulation of the soluble signals present within the wound, and importantly accommodates the critical temporal regulation associated with the wound healing process. Currently, the few therapies to address non-healing wounds demonstrate limited efficacy. This novel platform is positioned to address this large unmet clinical need and improve the closure of otherwise non-healing wounds.
Collapse
Affiliation(s)
| | - Anna J. Slezak
- Pritzker School of Molecular EngineeringUniversity of ChicagoChicagoIL60637USA
| | - Ruyi Wang
- Pritzker School of Molecular EngineeringUniversity of ChicagoChicagoIL60637USA
| | - Shijie Cao
- Pritzker School of Molecular EngineeringUniversity of ChicagoChicagoIL60637USA
| | - Michal M. Raczy
- Pritzker School of Molecular EngineeringUniversity of ChicagoChicagoIL60637USA
| | - Elyse A. Watkins
- Pritzker School of Molecular EngineeringUniversity of ChicagoChicagoIL60637USA
| | | | - Jeffrey A. Hubbell
- Pritzker School of Molecular EngineeringUniversity of ChicagoChicagoIL60637USA
| |
Collapse
|