1
|
Yu D, Gao X, Shao F, Liu Z, Liu A, Zhao M, Tang Z, Guan Y, Wang S. Antigen-presenting innate lymphoid cells induced by BCG vaccination promote a respiratory antiviral immune response through the skin‒lung axis. Cell Mol Immunol 2025; 22:390-402. [PMID: 39962263 PMCID: PMC11955553 DOI: 10.1038/s41423-025-01267-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 01/30/2025] [Indexed: 04/01/2025] Open
Abstract
The route of vaccine administration is associated with various immune outcomes, and the relationship between the route of administration and broad protection against heterologous pathogens remains unclear. Here, we found that subcutaneous vaccination with Bacillus Calmette-Guérin (BCG) promotes respiratory influenza clearance and T-cell responses. Group 1 innate lymphoid cells (ILC1s) express MHCII molecules and engage in antigen processing and presentation after BCG vaccination. During influenza virus infection, ILC1s in the lungs of BCG-vaccinated mice can present influenza virus antigens and prime Th1 cells. After subcutaneous vaccination with BCG, MHCII+ ILC1s migrate from the skin to the lungs and play an antigen-presenting role in influenza infection. Both the BCG and the BCG component lipomannan can induce MHCII expression and skin-to-lung migration of ILC1s via TLR2 signaling. Our study revealed an important regulatory mechanism by which subcutaneous vaccination with BCG promotes respiratory antiviral immune responses via the skin‒lung axis.
Collapse
Affiliation(s)
- Dou Yu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xintong Gao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Fei Shao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Zhen Liu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Aoyi Liu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Min Zhao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Zhuozhou Tang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yude Guan
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Shuo Wang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
2
|
Shey RA, Nchanji GT, Stong TYA, Yaah NE, Shintouo CM, Yengo BN, Nebangwa DN, Efeti MT, Chick JA, Ayuk AB, Gwei KY, Lemoge AA, Vanhamme L, Ghogomu SM, Souopgui J. One Health Approach to the Computational Design of a Lipoprotein-Based Multi-Epitope Vaccine Against Human and Livestock Tuberculosis. Int J Mol Sci 2025; 26:1587. [PMID: 40004053 PMCID: PMC11855821 DOI: 10.3390/ijms26041587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 01/29/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Tuberculosis (TB) remains a major cause of ill health and one of the leading causes of death worldwide, with about 1.25 million deaths estimated in 2023. Control measures have focused principally on early diagnosis, the treatment of active TB, and vaccination. However, the widespread emergence of anti-tuberculosis drug resistance remains the major public health threat to progress made in global TB care and control. Moreover, the Bacillus Calmette-Guérin (BCG) vaccine, the only licensed vaccine against TB in children, has been in use for over a century, and there have been considerable debates concerning its effectiveness in TB control. A multi-epitope vaccine against TB would be an invaluable tool to attain the Global Plan to End TB 2023-2030 target. A rational approach that combines several B-cell and T-cell epitopes from key lipoproteins was adopted to design a novel multi-epitope vaccine candidate. In addition, interactions with TLR4 were implemented to assess its ability to elicit an innate immune response. The conservation of the selected proteins suggests the possibility of cross-protection in line with the One Health approach to disease control. The vaccine candidate was predicted to be both antigenic and immunogenic, and immune simulation analyses demonstrated its ability to elicit both humoral and cellular immune responses. Protein-protein docking and normal-mode analyses of the vaccine candidate with TLR4 predicted efficient binding and stable interaction. This study provides a promising One Health approach for the design of multi-epitope vaccines against human and livestock tuberculosis. Overall, the designed vaccine candidate demonstrated immunogenicity and safety features that warrant further experimental validation in vitro and in vivo.
Collapse
Affiliation(s)
- Robert Adamu Shey
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, Buea P.O. Box 63, Cameroon; (T.Y.A.S.); (N.E.Y.); (D.N.N.); (M.T.E.); (A.B.A.); (K.Y.G.); (S.M.G.)
- Tropical Disease Interventions, Diagnostics, Vaccines and Therapeutics (TroDDIVaT) Initiative, Buea P.O. Box 1022, Cameroon;
| | - Gordon Takop Nchanji
- Tropical Disease Interventions, Diagnostics, Vaccines and Therapeutics (TroDDIVaT) Initiative, Buea P.O. Box 1022, Cameroon;
- Department of Microbiology and Parasitology, Faculty of Science, University of Buea, Buea P.O. Box 63, Cameroon
| | - Tangan Yanick Aqua Stong
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, Buea P.O. Box 63, Cameroon; (T.Y.A.S.); (N.E.Y.); (D.N.N.); (M.T.E.); (A.B.A.); (K.Y.G.); (S.M.G.)
| | - Ntang Emmaculate Yaah
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, Buea P.O. Box 63, Cameroon; (T.Y.A.S.); (N.E.Y.); (D.N.N.); (M.T.E.); (A.B.A.); (K.Y.G.); (S.M.G.)
| | - Cabirou Mounchili Shintouo
- Department of Microbiology and Immunology, College of Medicine, Drexel University, 2900 W Queen Ln, Philadelphia, PA 19129, USA; (C.M.S.); (B.N.Y.)
| | - Bernis Neneyoh Yengo
- Department of Microbiology and Immunology, College of Medicine, Drexel University, 2900 W Queen Ln, Philadelphia, PA 19129, USA; (C.M.S.); (B.N.Y.)
| | - Derrick Neba Nebangwa
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, Buea P.O. Box 63, Cameroon; (T.Y.A.S.); (N.E.Y.); (D.N.N.); (M.T.E.); (A.B.A.); (K.Y.G.); (S.M.G.)
| | - Mary Teke Efeti
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, Buea P.O. Box 63, Cameroon; (T.Y.A.S.); (N.E.Y.); (D.N.N.); (M.T.E.); (A.B.A.); (K.Y.G.); (S.M.G.)
- Frailty in Ageing Research Group, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium
- Department of Gerontology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium
| | - Joan Amban Chick
- Department of Computer and Information Sciences, College of Science and Technology, Covenant University, PMB 1023, Ota 112233, Ogun State, Nigeria;
| | - Abey Blessings Ayuk
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, Buea P.O. Box 63, Cameroon; (T.Y.A.S.); (N.E.Y.); (D.N.N.); (M.T.E.); (A.B.A.); (K.Y.G.); (S.M.G.)
| | - Ketura Yaje Gwei
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, Buea P.O. Box 63, Cameroon; (T.Y.A.S.); (N.E.Y.); (D.N.N.); (M.T.E.); (A.B.A.); (K.Y.G.); (S.M.G.)
| | | | - Luc Vanhamme
- Department of Molecular Biology, Institute of Biology and Molecular Medicine, IBMM, Gosselies, Université Libre de Bruxelles, Rue des Professeurs Jeener et Brachet 12, B-6041 Charleroi, Belgium; (L.V.); (J.S.)
| | - Stephen Mbigha Ghogomu
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, Buea P.O. Box 63, Cameroon; (T.Y.A.S.); (N.E.Y.); (D.N.N.); (M.T.E.); (A.B.A.); (K.Y.G.); (S.M.G.)
| | - Jacob Souopgui
- Department of Molecular Biology, Institute of Biology and Molecular Medicine, IBMM, Gosselies, Université Libre de Bruxelles, Rue des Professeurs Jeener et Brachet 12, B-6041 Charleroi, Belgium; (L.V.); (J.S.)
| |
Collapse
|
3
|
Xu Z, Peng Q, Xu J, Zhang H, Song J, Wei D, Zeng Q. Dynamic modeling of antibody repertoire reshaping in response to viral infections. Comput Biol Med 2025; 184:109475. [PMID: 39616881 DOI: 10.1016/j.compbiomed.2024.109475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/09/2024] [Accepted: 11/24/2024] [Indexed: 12/22/2024]
Abstract
For decades, research has largely focused on the generation of high-affinity, antigen-specific antibodies during viral infections. This emphasis has made it challenging for immunologists to systematically evaluate the mechanisms initiating humoral immunity in specific immune responses. In this study, we employ ordinary differential equations (ODE) to investigate the dynamic reshaping of the entire antibody repertoire in response to viral infections. Our findings demonstrate that the host's antibody atlas undergoes significant restructuring during these infections by the selective expansion of antibody pools with strong binding activity. The simulation results indicate that the ELISA (Enzyme-Linked Immunosorbent Assay) outcomes do not directly reflect the levels of specific neutralizing antibodies, but rather represent a quantitative response of the reshaped antibody repertoire following infection. Our model transcends traditional theories of immune memory, providing an explanation for the sustained presence of specific antibodies in the human body in long term. Additionally, our model extends to explore the mechanistic basis of the original antigenic sin, providing practical applications of our framework. One important application of this model is that it indicates that antibodies with a faster forward binding rate are more effective in preventing and treating associated viral infections compared to those with higher binding affinity.
Collapse
Affiliation(s)
- Zhaobin Xu
- Department of Life Science, Dezhou University, Dezhou 253023, China.
| | - Qingzhi Peng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Junxiao Xu
- Department of Life Science, Dezhou University, Dezhou 253023, China
| | - Hongmei Zhang
- Department of Life Science, Dezhou University, Dezhou 253023, China
| | - Jian Song
- Department of Life Science, Dezhou University, Dezhou 253023, China
| | - Dongqing Wei
- State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint International Research Laboratory of Metabolic & Developmental Sciences and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China; Zhongjing Research and Industrialization Institute of Chinese Medicine, Zhongguancun Scientific Park, Meixi, Nanyang, Henan, 473006, China; Peng Cheng National Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nashan District, Shenzhen, Guangdong, 518055, China
| | - Qiangcheng Zeng
- Department of Life Science, Dezhou University, Dezhou 253023, China
| |
Collapse
|
4
|
Gupta N, Yadav AK, Verma PK, Srivastava M, Sahasrabuddhe AA, Dube A. Differential Immune Responses of Th1 Stimulatory Chimeric Antigens of Leishmania donovani in BALB/c Mice. ACS Infect Dis 2024; 10:4246-4257. [PMID: 39575598 DOI: 10.1021/acsinfecdis.4c00608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Visceral leishmaniasis (VL) is the third most severe infectious parasitic disease and is caused by the protozoan parasite Leishmania. To control the spread of the disease in endemic areas where the asymptomatic patients act as reservoirs as well as in nonendemic areas, an effective vaccine is indispensable. In this direction, we have developed three chimeric proteins by the combination of three already known Th1 stimulatory leishmanial antigens, i.e., enolase, aldolase, and triose phosphate isomerase (TPI). The newly developed chimeric proteins, i.e., enolase-aldolase, TPI-enolase, and aldolase-TPI along with BCG as an adjuvant were assessed and compared, examining humoral and cellular adaptive immune responses elicited in BALB/c mice. The three chimeric antigens exhibited differential immune responses shown by differences in Th1 and Th2 cytokine production in ex vivo stimulated splenocytes of immunized mice. It was observed that all three chimeric proteins are more immunogenic than their component proteins. However, while comparing the immune response of the three chimeric proteins, aldolase-TPI exhibited a better immunogenic (Th1-type) response, as evidenced by the highest IFN-γ production, a high IgG2a antibody isotype switching, a high % population of CD8+ and CD4+ T-cells, and a significantly high expression of iNOS2. Thus, the results suggest the potential of these chimeric antigens as strong immunogens that can be harnessed in vaccine development against VL.
Collapse
Affiliation(s)
- Niharika Gupta
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Jankipuram Extension, Sector 10, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Alok Kumar Yadav
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Jankipuram Extension, Sector 10, Lucknow 226031, India
| | - Pramod Kumar Verma
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Jankipuram Extension, Sector 10, Lucknow 226031, India
| | - Mrigank Srivastava
- Molecular Immunology and Parasitology Division, CSIR-Central Drug Research Institute, Jankipuram Extension, Sector 10, Lucknow 226031, India
| | - Amogh Anant Sahasrabuddhe
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Jankipuram Extension, Sector 10, Lucknow 226031, India
| | - Anuradha Dube
- Molecular Immunology and Parasitology Division, CSIR-Central Drug Research Institute, Jankipuram Extension, Sector 10, Lucknow 226031, India
| |
Collapse
|
5
|
Mora VP, Quero FB, Troncoso-Bravo T, Orellana C, Pereira P, Mackern-Oberti JP, Funes SC, Soto JA, Bohmwald K, Bueno SM, Kalergis AM. Partial long-term clinical improvement after a BCG challenge in systemic lupus erythematosus-prone mice. Autoimmunity 2024; 57:2380465. [PMID: 39034498 DOI: 10.1080/08916934.2024.2380465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 07/07/2024] [Indexed: 07/23/2024]
Abstract
Systemic Lupus Erythematosus (SLE) is an autoimmune disorder that causes a breakdown of immune tolerance. Current treatments mainly involve general immunosuppression, increasing the risk of infections. On the other hand, Bacillus Calmette-Guérin (BCG) has been investigated as a potential therapy for autoimmune diseases in recent years, prompting an ongoing investigation. This study aimed to evaluate the effect of BCG vaccination on early and late clinical presentation of SLE in a murine disease model. MRL/MPJ-Faslpr mice were immunized with BCG or treated with PBS as a control. The progress of the disease was evaluated at 27 days post-immunization (dpi) (early) and 56 dpi (late). Clinical parameters and proteinuria were monitored. Blood samples were collected for measurement of antinuclear antibodies (ANAs), anti-double-stranded DNA (anti-dsDNA), and cytokine determination was performed using ELISA. Samples collected from mice were analyzed by flow cytometry and histopathology. We observed a clinical improvement in BCG-treated mice, reduced proteinuria in the latter stages of the disease, and decreased TNF-α. However, BCG did not elicit significant changes in ANAs, anti-dsDNA, histopathological scores, or immune cell infiltration. BCG was only partially beneficial in an SLE mouse model, and further research is needed to determine whether the immunity induced by this vaccine can counteract lupus's autoimmune response.
Collapse
Affiliation(s)
- Valentina P Mora
- Millennium Institute of Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Francisco B Quero
- Millennium Institute of Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Tays Troncoso-Bravo
- Millennium Institute of Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Ingeniería Química y Bioprocesos, Facultad de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia Orellana
- Millennium Institute of Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Patricia Pereira
- Millennium Institute of Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan P Mackern-Oberti
- Instituto de Medicina y Biología Experimental de Cuyo, CONICET, Mendoza, Argentina
- Instituto de Fisiología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Samanta C Funes
- Instituto Multidisciplinario de Investigaciones Biológicas-San Luis (IMIBIO-SL), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad Nacional de San Luis (UNSL), San Luis, Argentina
| | - Jorge A Soto
- Millennium Institute of Immunology and Immunotherapy. Departamento de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | - Karen Bohmwald
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Susan M Bueno
- Millennium Institute of Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M Kalergis
- Millennium Institute of Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
6
|
Zhu C, Song Q, Li X, He X, Li J. Enhanced Immune Responses Against Mycobacterium tuberculosis Through Heat-Killed BCG with Squalene-in-water Emulsion Adjuvant. Indian J Microbiol 2024; 64:1929-1937. [PMID: 39678980 PMCID: PMC11645453 DOI: 10.1007/s12088-024-01278-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 04/04/2024] [Indexed: 12/17/2024] Open
Abstract
The increasing challenge of drug-resistant tuberculosis (TB) calls for the development of innovative therapeutic strategies, highlighting the potential of adjunctive immunotherapies that are both cost-effective and safe. Host-directed therapy (HDT) using immunomodulators shows promise in enhancing treatment efficacy by modulating immune responses, thereby shortening the duration of therapy and reducing drug resistance risks. This study investigated the immunomodulatory potential of combining Heat-killed Bacillus Calmette-Guérin (hBCG) with a Squalene-based oil-in-Water Emulsion (SWE) adjuvant against TB. The therapeutic efficacy of the hBCG-SWE regimen was assessed in a guinea pig model infected with Mycobacterium tuberculosis (M. tb). Furthermore, the impact of hBCG-SWE on TNF-α and MCP-1 production was evaluated in RAW264.7 macrophages, examining the role of TLR2/4 and MyD88 signaling pathways using ELISA, both with and without specific inhibitors. Our findings revealed that hBCG-SWE significantly enhanced TNF-α and MCP-1 production compared to hBCG alone, indicating activation through TLR2/4 and MyD88-dependent pathways. In guinea pigs, hBCG-SWE administration led to notable reductions in lung pathology and spleen bacterial loads versus control groups. These results highlight the capacity of hBCG-SWE to boost innate immunity and provide robust protection against M. tb. Future research should focus on evaluating the ability of hBCG-SWE to shorten conventional chemotherapy and exploring ways to amplify its immunomodulatory efficacy through advanced formulation techniques.
Collapse
Affiliation(s)
- Chuanzhi Zhu
- Laboratory of Molecular Biology, Beijing Key Laboratory for Drug Resistance Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149 China
| | - Qingde Song
- Beijing Key Laboratory of Organ Transplantation and Immunology Regulation, The Eighth Medical Centre, Chinese PLA General Hospital, Beijing, 100091 China
| | - Xinrong Li
- Beijing Key Laboratory of Organ Transplantation and Immunology Regulation, The Eighth Medical Centre, Chinese PLA General Hospital, Beijing, 100091 China
- Clinical Laboratory, Guangzhou Development District Hospital, Chinese Association of Medicinal Biotechnology Southern Center of Biology Diagnosis and Therapy, Guangzhou, 510730 China
| | - Xiuyun He
- Beijing Key Laboratory of Organ Transplantation and Immunology Regulation, The Eighth Medical Centre, Chinese PLA General Hospital, Beijing, 100091 China
| | - Junli Li
- Beijing Key Laboratory of Organ Transplantation and Immunology Regulation, The Eighth Medical Centre, Chinese PLA General Hospital, Beijing, 100091 China
- Division of Tuberculosis Vaccine and Allergen Products, Institute of Biological Product Control, National Institutes for Food and Drug Control, Beijing, 102629 China
| |
Collapse
|
7
|
Ramírez MA, Loaiza RA, Martínez-Balboa Y, Bruneau N, Ramírez E, González PA, Bueno SM, Kalergis AM. Co-administration of recombinant BCG and SARS-CoV-2 proteins leads to robust antiviral immunity. Vaccine 2024; 42:126203. [PMID: 39178767 DOI: 10.1016/j.vaccine.2024.126203] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/15/2024] [Accepted: 07/31/2024] [Indexed: 08/26/2024]
Abstract
SARS-CoV-2 is the causative virus of COVID-19, which has been responsible for millions of deaths worldwide since its discovery. After its emergence, several variants have been identified that challenge the efficacy of the available vaccines. Previously, we generated and evaluated a vaccine based on a recombinant Bacillus Calmette-Guérin (rBCG) expressing the nucleoprotein (N) of SARS-CoV-2 (rBCG-N-SARS-CoV-2). This protein is a highly immunogenic antigen and well conserved among variants. Here, we tested the administration of this vaccine with recombinant N and viral Spike proteins (S), or Receptor Binding Domain (RBD-Omicron variant), plus a booster with the recombinant proteins only, as a novel and effective strategy to protect against SARS-CoV-2 variants. METHODS BALB/c mice were immunized with rBCG-N-SARS-CoV-2 and recombinant SARS-CoV-2 proteins in Alum adjuvant, followed by a booster with recombinant proteins to assess the safety and virus-specific cellular and humoral immune responses against SARS-CoV-2 antigens. RESULTS Immunization with rBCG-N-SARS-CoV-2 + recombinant proteins as a vaccine was safe and promoted the activation of CD4+ and CD8+ T cells that recognize SARS-CoV-2 N, S, and RBD antigens. These cells were able to secrete cytokines with an antiviral profile. This immunization strategy also induced robust titers of specific antibodies against N, S, and RBD and neutralizing antibodies of SARS-CoV-2. CONCLUSIONS Co-administration of the rBCG-N-SARS-CoV-2 vaccine with recombinant SARS-CoV-2 proteins could be an effective alternative to control particular SARS-CoV-2 variants. Due to its safety and capacity to induce virus-specific immune responses, we believe the rBCG-N-SARS-CoV-2 + Proteins vaccine could be an attractive candidate to protect against this virus, especially in newborns.
Collapse
MESH Headings
- Animals
- Mice, Inbred BALB C
- Mice
- SARS-CoV-2/immunology
- SARS-CoV-2/genetics
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/genetics
- COVID-19/prevention & control
- COVID-19/immunology
- COVID-19 Vaccines/immunology
- COVID-19 Vaccines/administration & dosage
- BCG Vaccine/immunology
- BCG Vaccine/administration & dosage
- BCG Vaccine/genetics
- Female
- Antibodies, Neutralizing/blood
- Antibodies, Neutralizing/immunology
- Immunization, Secondary
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/administration & dosage
- Immunity, Humoral
- Recombinant Proteins/immunology
- Recombinant Proteins/genetics
- Coronavirus Nucleocapsid Proteins/immunology
- Coronavirus Nucleocapsid Proteins/genetics
- CD8-Positive T-Lymphocytes/immunology
- Phosphoproteins/immunology
- Phosphoproteins/genetics
- Adjuvants, Immunologic/administration & dosage
- Immunity, Cellular
Collapse
Affiliation(s)
- Mario A Ramírez
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8330025, Chile
| | - Ricardo A Loaiza
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8330025, Chile
| | - Yohana Martínez-Balboa
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8330025, Chile
| | - Nicole Bruneau
- Sección Virus Oncogénicos y Sub-Departamento Enfermedades Virales, Instituto de Salud Pública de Chile, Ñuñoa, Chile
| | - Eugenio Ramírez
- Sección Virus Oncogénicos y Sub-Departamento Enfermedades Virales, Instituto de Salud Pública de Chile, Ñuñoa, Chile
| | - Pablo A González
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8330025, Chile
| | - Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8330025, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8330025, Chile; Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
8
|
Kumar R, Kolloli A, Singh P, Shi L, Kupz A, Subbian S. The innate memory response of macrophages to Mycobacterium tuberculosis is shaped by the nature of the antigenic stimuli. Microbiol Spectr 2024; 12:e0047324. [PMID: 38980014 PMCID: PMC11302266 DOI: 10.1128/spectrum.00473-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/07/2024] [Indexed: 07/10/2024] Open
Abstract
Innate immune cells, such as macrophages, mount an immune response upon exposure to antigens and pathogens. Emerging evidence shows that macrophages exposed to an antigen can generate a "memory-like" response (a.k.a. trained immunity), which confers a non-specific and enhanced response upon subsequent stimulation with a second antigen/microbe. This trained immunity has been implicated in the enhanced response of macrophages against several invading pathogens. However, the association between the nature of the antigen and the corresponding immune correlate of elicited trained immunity is not fully understood. Similarly, the response of macrophages trained and restimulated with homologous stimulants to subsequent infection by pathogenic Mycobacterium tuberculosis (Mtb) remains unexplored. Here, we report the immune and metabolic profiles of trained immunity in human THP-1-derived macrophages after homologous training and restimulation with BCG, LPS, purified protein Derivative (PPD), heat-killed Mtb strains HN878 (hk-HN), and CDC1551 (hk-CDC). Furthermore, the impact of training on the autophagic and antimicrobial responses of macrophages with or without subsequent infection by clinical Mtb isolates HN878 and CDC1551 was evaluated. Results show that repeated stimulation of macrophages with different antigens displays distinct pro-inflammatory, metabolic, antimicrobial, and autophagy induction profiles. These macrophages also induce a differential antimicrobial response upon infection with clinical Mtb HN878 and CDC1551 isolates. A significantly reduced intracellular bacterial load was noted in the stimulated macrophages, which was augmented by the addition of rapamycin, an autophagy inducer. These observations suggest that the nature of the antigen and the mode of stimulation shape the magnitude and breadth of macrophage innate memory response, which impacts subsequent response to Mtb infection. IMPORTANCE Trained immunity (a.k.a. innate memory response) is a novel concept that has been rapidly emerging as a mechanism underpinning the non-specific immunity of innate immune cells, such as macrophages. However, the association between the nature of the stimuli and the corresponding immune correlate of trained immunity is not fully understood. Similarly, the kinetics of immunological and metabolic characteristics of macrophages upon "training" by the same antigen as primary and secondary stimuli (homologous stimulation) are not fully characterized. Furthermore, the ability of antigens such as purified protein derivative (PPD) and heat-killed-Mtb to induce trained immunity remains unknown. Similarly, the response of macrophages primed and trained by homologous stimulants to subsequent infection by pathogenic Mtb is yet to be reported. In this study, we evaluated the hypothesis that the nature of the stimuli impacts the depth and breadth of trained immunity in macrophages, which differentially affects their response to Mtb infection.
Collapse
Affiliation(s)
- Ranjeet Kumar
- Public Health Research Institute, Rutgers-New Jersey Medical School, Newark, New Jersey, USA
| | - Afsal Kolloli
- Public Health Research Institute, Rutgers-New Jersey Medical School, Newark, New Jersey, USA
| | - Pooja Singh
- Public Health Research Institute, Rutgers-New Jersey Medical School, Newark, New Jersey, USA
| | - Lanbo Shi
- Public Health Research Institute, Rutgers-New Jersey Medical School, Newark, New Jersey, USA
| | - Andreas Kupz
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine (AITHM), James Cook University, Cairns & Townsville, Queensland, Australia
| | - Selvakumar Subbian
- Public Health Research Institute, Rutgers-New Jersey Medical School, Newark, New Jersey, USA
| |
Collapse
|
9
|
Zhan Y, Zhang Q, Wang W, Liang W, Wang C. Single-cell RNA sequencing in tuberculosis: Application and future perspectives. Chin Med J (Engl) 2024:00029330-990000000-01167. [PMID: 39111829 DOI: 10.1097/cm9.0000000000003095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Indexed: 03/17/2025] Open
Abstract
Tuberculosis (TB) has one of the highest mortality rates among infectious diseases worldwide. The immune response in the host after infection is proposed to contribute significantly to the progression of TB, but the specific mechanisms involved remain to be elucidated. Single-cell RNA sequencing (scRNA-seq) provides unbiased transcriptome sequencing of large quantities of individual cells, thereby defining biological comprehension of cellular heterogeneity and dynamic transcriptome state of cell populations in the field of immunology and is therefore increasingly applied to lung disease research. Here, we first briefly introduce the concept of scRNA-seq, followed by a summarization on the application of scRNA-seq to TB. Furthermore, we underscore the potential of scRNA-seq for clinical biomarker exploration, host-directed therapy, and precision therapy research in TB and discuss the bottlenecks that need to be overcome for the broad application of scRNA-seq to TB-related research.
Collapse
Affiliation(s)
- Yuejuan Zhan
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, State Key Laboratory of Respiratory Health and Multimorbidity, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qiran Zhang
- West China School of Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Wenyang Wang
- Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Wenyi Liang
- West China School of Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Chengdi Wang
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, State Key Laboratory of Respiratory Health and Multimorbidity, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
10
|
Xu W, Yuan Y, Shu Z, Guo T, Liu B, Xiao J, Li L, Yin Y, Zhang X. Streptococcus pneumoniae endopeptidase O induces trained immunity and confers protection against various pathogenic infections. Clin Immunol 2024; 263:110226. [PMID: 38663493 DOI: 10.1016/j.clim.2024.110226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/30/2024] [Accepted: 04/16/2024] [Indexed: 05/12/2024]
Abstract
Antibiotic resistance and the surge of infectious diseases during the pandemic present significant threats to human health. Trained immunity emerges as a promising and innovative approach to address these infections. Synthetic or natural fungal, parasitic and viral components have been reported to induce trained immunity. However, it is not clear whether bacterial virulence proteins can induce protective trained immunity. Our research demonstrates Streptococcus pneumoniae virulence protein PepO, is a highly potent trained immunity inducer for combating broad-spectrum infection. Our findings showcase that rPepO training confers robust protection to mice against various pathogenic infections by enhancing macrophage functionality. rPepO effectively re-programs macrophages, re-configures their epigenetic modifications and bolsters their immunological responses, which is independent of T or B lymphocytes. In vivo and in vitro experiments confirm that trained macrophage-secreted complement C3 activates peritoneal B lymphocyte and enhances its bactericidal capacity. In addition, we provide the first evidence that granulocyte colony-stimulating factor (G-CSF) derived from trained macrophages plays a pivotal role in shaping central-trained immunity. In summation, our research demonstrates the capability of rPepO to induce both peripheral and central trained immunity in mice, underscoring its potential application in broad-spectrum anti-infection therapy. Our research provides a new molecule and some new target options for infectious disease prevention.
Collapse
Affiliation(s)
- Wenlong Xu
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Yuan Yuan
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Zhaoche Shu
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Ting Guo
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Bichen Liu
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Jiangming Xiao
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Lian Li
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Yibin Yin
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Xuemei Zhang
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
11
|
Peng X, Zhou Y, Zhang B, Liang X, Feng J, Huang Y, Weng S, Xu Y, Su H. Mucosal recombinant BCG vaccine induces lung-resident memory macrophages and enhances trained immunity via mTORC2/HK1-mediated metabolic rewiring. J Biol Chem 2024; 300:105518. [PMID: 38042489 PMCID: PMC10788536 DOI: 10.1016/j.jbc.2023.105518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 12/04/2023] Open
Abstract
Bacillus Calmette-Guérin (BCG) vaccination induces a type of immune memory known as "trained immunity", characterized by the immunometabolic and epigenetic changes in innate immune cells. However, the molecular mechanism underlying the strategies for inducing and/or boosting trained immunity in alveolar macrophages remains unknown. Here, we found that mucosal vaccination with the recombinant strain rBCGPPE27 significantly augmented the trained immune response in mice, facilitating a superior protective response against Mycobacterium tuberculosis and non-related bacterial reinfection in mice when compared to BCG. Mucosal immunization with rBCGPPE27 enhanced innate cytokine production by alveolar macrophages associated with promoted glycolytic metabolism, typical of trained immunity. Deficiency of the mammalian target of rapamycin complex 2 and hexokinase 1 abolished the immunometabolic and epigenetic rewiring in mouse alveolar macrophages after mucosal rBCGPPE27 vaccination. Most noteworthy, utilizing rBCGPPE27's higher-up trained effects: The single mucosal immunization with rBCGPPE27-adjuvanted coronavirus disease (CoV-2) vaccine raised the rapid development of virus-specific immunoglobulin G antibodies, boosted pseudovirus neutralizing antibodies, and augmented T helper type 1-biased cytokine release by vaccine-specific T cells, compared to BCG/CoV-2 vaccine. These findings revealed that mucosal recombinant BCG vaccine induces lung-resident memory macrophages and enhances trained immunity via reprogramming mTORC2- and HK-1-mediated aerobic glycolysis, providing new vaccine strategies for improving tuberculosis (TB) or coronavirus variant vaccinations, and targeting innate immunity via mucosal surfaces.
Collapse
Affiliation(s)
- Xiaofei Peng
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, State Key Laboratory of Respiratory Disease, Guangdong-HongKong-Macao Joint Laboratory of Respiratory Infectious Disease, GMU-GIBH Joint School of Life Science, The Guangdong-HongKong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, China
| | - Yuting Zhou
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, State Key Laboratory of Respiratory Disease, Guangdong-HongKong-Macao Joint Laboratory of Respiratory Infectious Disease, GMU-GIBH Joint School of Life Science, The Guangdong-HongKong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, China
| | - Baoying Zhang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, State Key Laboratory of Respiratory Disease, Guangdong-HongKong-Macao Joint Laboratory of Respiratory Infectious Disease, GMU-GIBH Joint School of Life Science, The Guangdong-HongKong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, China
| | - Xiaotong Liang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, State Key Laboratory of Respiratory Disease, Guangdong-HongKong-Macao Joint Laboratory of Respiratory Infectious Disease, GMU-GIBH Joint School of Life Science, The Guangdong-HongKong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, China
| | - Jingyu Feng
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, State Key Laboratory of Respiratory Disease, Guangdong-HongKong-Macao Joint Laboratory of Respiratory Infectious Disease, GMU-GIBH Joint School of Life Science, The Guangdong-HongKong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, China
| | - Yuejun Huang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, State Key Laboratory of Respiratory Disease, Guangdong-HongKong-Macao Joint Laboratory of Respiratory Infectious Disease, GMU-GIBH Joint School of Life Science, The Guangdong-HongKong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, China
| | - Shufeng Weng
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China
| | - Ying Xu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China.
| | - Haibo Su
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, State Key Laboratory of Respiratory Disease, Guangdong-HongKong-Macao Joint Laboratory of Respiratory Infectious Disease, GMU-GIBH Joint School of Life Science, The Guangdong-HongKong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
12
|
Liang Y, Wang D. TLR9 gene polymorphism confers risk to Helicobacter pylori infection in Jiangsu, China and its inspiration for precision nursing car. Technol Health Care 2024; 32:3073-3082. [PMID: 38788101 DOI: 10.3233/thc-231677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
BACKGROUND The number of studies which investigate the association between TLR9 gene polymorphism and Helicobacter pylori (H.pylori) infection is low and their results are not consistent. OBJECTIVE To get a better understanding of the association between TLR9 gene polymorphism and H.pylori infection, providing basis and risk assessment for precision nursing for hospital nurses. METHODS A total of 630 normal physical examination subjects were collected including 240 H.pylori (+) and 390 H.pylori (-) subjects. PCR-RFLP was applied to investigate the present polymorphism. At the same time, the meta-analysis was performed between TLR9 gene polymorphism and H.pylori infection risk. RESULTS Three genotypes (TT, TC, and CC) were observed for TLR9 gene rs187084 polymorphism. CC genotype and C allele were responsible for the significant associations (all P< 0.05). Meta-analysis found no significant associations were found by any genetic models (all P> 0.05). CONCLUSION TLR9 polymorphism has a crucial role in H.pylori infection risk and CC genotype confers increased risk to H.pylori infection in the Southern Chinese population. After understanding the influence of TLR9 gene polymorphism on H.pylori infection, nurses can improve the risk assessment of Helicobacter pylori infection and provide health education more personally.
Collapse
|
13
|
Mai D, Jahn A, Murray T, Morikubo M, Lim PN, Cervantes MM, Pham LK, Nemeth J, Urdahl K, Diercks AH, Aderem A, Rothchild AC. Exposure to Mycobacterium remodels alveolar macrophages and the early innate response to Mycobacterium tuberculosis infection. PLoS Pathog 2024; 20:e1011871. [PMID: 38236787 PMCID: PMC10796046 DOI: 10.1371/journal.ppat.1011871] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/27/2023] [Indexed: 01/22/2024] Open
Abstract
Alveolar macrophages (AMs) play a critical role during Mycobacterium tuberculosis (Mtb) infection as the first cells in the lung to encounter bacteria. We previously showed that AMs initially respond to Mtb in vivo by mounting a cell-protective, rather than pro-inflammatory response. However, the plasticity of the initial AM response was unknown. Here, we characterize how previous exposure to Mycobacterium, either through subcutaneous vaccination with Mycobacterium bovis (scBCG) or through a contained Mtb infection (coMtb) that mimics aspects of concomitant immunity, impacts the initial response by AMs. We find that both scBCG and coMtb accelerate early innate cell activation and recruitment and generate a stronger pro-inflammatory response to Mtb in vivo by AMs. Within the lung environment, AMs from scBCG vaccinated mice mount a robust interferon-associated response, while AMs from coMtb mice produce a broader inflammatory response that is not dominated by Interferon Stimulated Genes. Using scRNAseq, we identify changes to the frequency and phenotype of airway-resident macrophages following Mycobacterium exposure, with enrichment for both interferon-associated and pro-inflammatory populations of AMs. In contrast, minimal changes were found for airway-resident T cells and dendritic cells after exposures. Ex vivo stimulation of AMs with Pam3Cys, LPS and Mtb reveal that scBCG and coMtb exposures generate stronger interferon-associated responses to LPS and Mtb that are cell-intrinsic changes. However, AM profiles that were unique to each exposure modality following Mtb infection in vivo are dependent on the lung environment and do not emerge following ex vivo stimulation. Overall, our studies reveal significant and durable remodeling of AMs following exposure to Mycobacterium, with evidence for both AM-intrinsic changes and contributions from the altered lung microenvironments. Comparisons between the scBCG and coMtb models highlight the plasticity of AMs in the airway and opportunities to target their function through vaccination or host-directed therapies.
Collapse
Affiliation(s)
- Dat Mai
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Ana Jahn
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Tara Murray
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Michael Morikubo
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Pamelia N. Lim
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
| | - Maritza M. Cervantes
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
| | - Linh K. Pham
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
- Animal Biotechnology and Biomedical Sciences Graduate Program, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
| | - Johannes Nemeth
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Kevin Urdahl
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Alan H. Diercks
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Alan Aderem
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Alissa C. Rothchild
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
| |
Collapse
|
14
|
Ziogas A, Bruno M, van der Meel R, Mulder WJM, Netea MG. Trained immunity: Target for prophylaxis and therapy. Cell Host Microbe 2023; 31:1776-1791. [PMID: 37944491 DOI: 10.1016/j.chom.2023.10.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 07/27/2023] [Accepted: 10/15/2023] [Indexed: 11/12/2023]
Abstract
Trained immunity is a de facto memory for innate immune responses, leading to long-term functional reprogramming of innate immune cells. In physiological conditions, trained immunity leads to adaptive states that enhance resistance against pathogens and contributes to immunosurveillance. Dysregulated trained immunity can however lead either to defective innate immune responses in severe infections or cancer or to inflammatory and autoimmune diseases if trained immunity is inappropriately activated. Here, we review the immunological and molecular mechanisms that mediate trained immunity induction and propose that trained immunity represents an important target for prophylactic and therapeutic approaches in human diseases. On the one hand, we argue that novel approaches that induce trained immunity may enhance vaccine efficacy. On the other hand, induction of trained immunity in cancer, and inhibition of exaggerated induction of trained immunity in inflammatory disorders, are viable targets amenable for new therapeutic approaches.
Collapse
Affiliation(s)
- Athanasios Ziogas
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Centre, Nijmegen, the Netherlands.
| | - Mariolina Bruno
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Roy van der Meel
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Willem J M Mulder
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Centre, Nijmegen, the Netherlands; Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Centre, Nijmegen, the Netherlands; Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands; Department of Immunology and Metabolism, Life & Medical Sciences Institute, University of Bonn, Bonn, Germany
| |
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW Although the concept of systemic autoinflammatory diseases (SAIDs) is still very young, our knowledge about them is exponentially growing. In the current review, we aim to discuss novel SAIDs and autoinflammatory pathways discovered in the last couple of years. RECENT FINDINGS Advances in immunology and genetics have led to the discovery of new pathways involved in autoinflammation, as well as several new SAIDs, including retinal dystrophy, optic nerve edema, splenomegaly, anhidrosis, and migraine headache (ROSAH syndrome), vacuoles, E1 enzyme, X-linked autoinflammatory somatic (VEXAS) syndrome, TBK1 deficiency, NEMO deleted exon 5 autoinflammatory syndrome (NDAS), and disabling pansclerotic morphea. Progress in immunobiology and genetics has also brought forth novel treatments for SAIDs. Personalized medicine has made significant progress in areas such as cytokine-targeted therapies and gene therapies. However, much work remains, especially in measuring and improving the quality of life in patients with SAIDs. SUMMARY In the current review, we discuss the novelties in the world of SAIDs, including mechanistic pathways of autoinflammation, pathogenesis, and treatment. We hope this review helps rheumatologists to gain an updated understanding of SAIDs.
Collapse
Affiliation(s)
- Kosar Asna Ashari
- Children's Medical Center, Pediatrics Center of Excellence
- Department of Pediatrics, Tehran University of Medical Sciences
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Jonathan S Hausmann
- Division of Immunology, Rheumatology Program, Department of Medicine, Boston Children's Hospital, Pediatrics, Harvard Medical School
- Division of Rheumatology, Dermatology, Allergy, and Immunology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Fatma Dedeoglu
- Division of Immunology, Rheumatology Program, Department of Medicine, Boston Children's Hospital, Pediatrics, Harvard Medical School
| |
Collapse
|
16
|
Pacheco GA, Andrade CA, Gálvez NM, Vázquez Y, Rodríguez-Guilarte L, Abarca K, González PA, Bueno SM, Kalergis AM. Characterization of the humoral and cellular immunity induced by a recombinant BCG vaccine for the respiratory syncytial virus in healthy adults. Front Immunol 2023; 14:1215893. [PMID: 37533867 PMCID: PMC10390696 DOI: 10.3389/fimmu.2023.1215893] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/27/2023] [Indexed: 08/04/2023] Open
Abstract
Introduction The human respiratory syncytial virus (hRSV) is responsible for most respiratory tract infections in infants. Even though currently there are no approved hRSV vaccines for newborns or infants, several candidates are being developed. rBCG-N-hRSV is a vaccine candidate previously shown to be safe in a phase I clinical trial in adults (clinicaltrials.gov identifier #NCT03213405). Here, secondary immunogenicity analyses were performed on these samples. Methods PBMCs isolated from immunized volunteers were stimulated with hRSV or mycobacterial antigens to evaluate cytokines and cytotoxic T cell-derived molecules and the expansion of memory T cell subsets. Complement C1q binding and IgG subclass composition of serum antibodies were assessed. Results Compared to levels detected prior to vaccination, perforin-, granzyme B-, and IFN-γ-producing PBMCs responding to stimulus increased after immunization, along with their effector memory response. N-hRSV- and mycobacterial-specific antibodies from rBCG-N-hRSV-immunized subjects bound C1q. Conclusion Immunization with rBCG-N-hRSV induces cellular and humoral immune responses, supporting that rBCG-N-hRSV is immunogenic and safe in healthy individuals. Clinical trial registration https://classic.clinicaltrials.gov/ct2/show/, identifier NCT03213405.
Collapse
Affiliation(s)
- Gaspar A. Pacheco
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Catalina A. Andrade
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nicolás M.S. Gálvez
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Yaneisi Vázquez
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Linmar Rodríguez-Guilarte
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Katia Abarca
- Millennium Institute on Immunology and Immunotherapy, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Enfermedades Infecciosas e Inmunología Pediá trica, División de Pediatría, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo A. González
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M. Bueno
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
17
|
Kang A, Ye G, Singh R, Afkhami S, Bavananthasivam J, Luo X, Vaseghi‐Shanjani M, Aleithan F, Zganiacz A, Jeyanathan M, Xing Z. Subcutaneous BCG vaccination protects against streptococcal pneumonia via regulating innate immune responses in the lung. EMBO Mol Med 2023; 15:e17084. [PMID: 37158369 PMCID: PMC10331578 DOI: 10.15252/emmm.202217084] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/10/2023] Open
Abstract
Bacillus Calmette-Guérin (BCG) still remains the only licensed vaccine for TB and has been shown to provide nonspecific protection against unrelated pathogens. This has been attributed to the ability of BCG to modulate the innate immune system, known as trained innate immunity (TII). Trained innate immunity is associated with innate immune cells being in a hyperresponsive state leading to enhanced host defense against heterologous infections. Both epidemiological evidence and prospective studies demonstrate cutaneous BCG vaccine-induced TII provides enhanced innate protection against heterologous pathogens. Regardless of the extensive progress made thus far, the effect of cutaneous BCG vaccination against heterologous respiratory bacterial infections and the underlying mechanisms still remain unknown. Here, we show that s.c. BCG vaccine-induced TII provides enhanced heterologous innate protection against pulmonary Streptococcus pneumoniae infection. We further demonstrate that this enhanced innate protection is mediated by enhanced neutrophilia in the lung and is independent of centrally trained circulating monocytes. New insight from this study will help design novel effective vaccination strategies against unrelated respiratory bacterial pathogens.
Collapse
Affiliation(s)
- Alisha Kang
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease ResearchMcMaster UniversityHamiltonONCanada
- Department of MedicineMcMaster UniversityHamiltonONCanada
| | - Gluke Ye
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease ResearchMcMaster UniversityHamiltonONCanada
- Department of MedicineMcMaster UniversityHamiltonONCanada
| | - Ramandeep Singh
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease ResearchMcMaster UniversityHamiltonONCanada
- Department of MedicineMcMaster UniversityHamiltonONCanada
| | - Sam Afkhami
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease ResearchMcMaster UniversityHamiltonONCanada
- Department of MedicineMcMaster UniversityHamiltonONCanada
| | - Jegarubee Bavananthasivam
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease ResearchMcMaster UniversityHamiltonONCanada
- Department of MedicineMcMaster UniversityHamiltonONCanada
| | - Xiangqian Luo
- Department of Pediatric Otolaryngology, Shenzhen HospitalSouthern Medical UniversityShenzhenChina
| | - Maryam Vaseghi‐Shanjani
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease ResearchMcMaster UniversityHamiltonONCanada
- Department of MedicineMcMaster UniversityHamiltonONCanada
| | - Fatemah Aleithan
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease ResearchMcMaster UniversityHamiltonONCanada
- Department of MedicineMcMaster UniversityHamiltonONCanada
| | - Anna Zganiacz
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease ResearchMcMaster UniversityHamiltonONCanada
- Department of MedicineMcMaster UniversityHamiltonONCanada
| | - Mangalakumari Jeyanathan
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease ResearchMcMaster UniversityHamiltonONCanada
- Department of MedicineMcMaster UniversityHamiltonONCanada
| | - Zhou Xing
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease ResearchMcMaster UniversityHamiltonONCanada
- Department of MedicineMcMaster UniversityHamiltonONCanada
| |
Collapse
|
18
|
Goudouris E, Aranda CS, Solé D. Implications of the non-specific effect induced by Bacillus Calmette-Guerin (BCG) vaccine on vaccine recommendations. J Pediatr (Rio J) 2023; 99 Suppl 1:S22-S27. [PMID: 36309066 PMCID: PMC10066422 DOI: 10.1016/j.jped.2022.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVES Since the beginning of its use for the prevention of tuberculosis (TB) in 1921, other uses of BCG (Bacillus Calmette-Guérin) have been proposed, particularly in the treatment of malignant solid tumors, multiple sclerosis, and other autoimmune diseases. Its beneficial impact on other infections, by nontuberculous mycobacteria, and by viruses, has been more often studied in recent years, especially after the introduction of the concept of trained immunity. The present study's objective was to review the possible indications of BCG and the immunological rationale for these indications. DATA SOURCE Non-systematic review carried out in the PubMed, SciELO and Google Scholar databases, using the following search terms: "BCG" and "history", "efficacy", "use", "cancer", "trained immunity", "other infections", "autoimmune diseases". DATA SYNTHESIS There is epidemiological evidence that BCG can reduce overall child morbidity/mortality beyond what would be expected from TB control. BCG is able to promote cross-immunity with nontuberculous mycobacteria and other bacteria. BCG promotes in vitro changes that increase innate immune response to other infections, mainly viral ones, through mechanisms known as trained immunity. Effects on cancer, except bladder cancer, and on autoimmune and allergic diseases are debatable. CONCLUSIONS Despite evidence obtained from in vitro studies, and some epidemiological and clinical evidence, more robust evidence of in vivo efficacy is still needed to justify the use of BCG in clinical practice, in addition to what is recommended by the National Immunization Program for TB prevention and bladder cancer treatment.
Collapse
Affiliation(s)
- Ekaterini Goudouris
- Universidade Federal do Rio de Janeiro (UFRJ), Faculdade de Medicina, Departamento de Pediatria, Rio de Janeiro, RJ, Brazil; Universidade Federal do Rio de Janeiro (UFRJ), Instituto de Puericultura e Pediatria Martagão Gesteira (IPPMG), Serviço de Alergia e Imunologia, Rio de Janeiro, RJ, Brazil.
| | - Carolina Sanchez Aranda
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Pediatria, Disciplina de Alergia, Imunologia Clínica e Reumatologia, São Paulo, SP, Brazil
| | - Dirceu Solé
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Pediatria, Disciplina de Alergia, Imunologia Clínica e Reumatologia, São Paulo, SP, Brazil
| |
Collapse
|
19
|
Johansson A, Lin DS, Mercier FE, Yamashita M, Divangahi M, Sieweke MH. Trained immunity and epigenetic memory in long-term self-renewing hematopoietic cells. Exp Hematol 2023; 121:6-11. [PMID: 36764598 DOI: 10.1016/j.exphem.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/11/2023]
Abstract
Immunologic memory is a feature typically ascribed to the adaptive arm of the immune system. However, recent studies have demonstrated that hematopoietic stem cells (HSCs) and innate immune cells such as monocytes and macrophages can gain epigenetic signatures to enhance their response in the context of reinfection. This suggests the presence of long-term memory, a phenomenon referred to as trained immunity. Trained immunity in HSCs can occur via changes in the epigenetic landscape and enhanced chromatin accessibility in lineage-specific genes, as well as through metabolic alterations. These changes can lead to a skewing in lineage bias, particularly enhanced myelopoiesis and the generation of epigenetically modified innate immune cells that provide better protection against pathogens on secondary infection. Here, we summarize recent advancements in trained immunity and epigenetic memory formation in HSCs and self-renewing alveolar macrophages, which was the focus of the Spring 2022 International Society for Experimental Hematology (ISEH) webinar.
Collapse
Affiliation(s)
- Alban Johansson
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Dawn S Lin
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany.
| | - Francois E Mercier
- Lady Davis Institute for Medical Research, Department of Medicine, McGill University, Montreal, Canada
| | - Masayuki Yamashita
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Maziar Divangahi
- Department of Medicine, Department of Pathology, Department of Microbiology and Immunology, Research Institute McGill University Health Centre, McGill International TB Centre, Meakins-Christie Laboratories, McGill University, Montreal, Canada
| | - Michael H Sieweke
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany; Aix Marseille University, CNRS, INSERM, CIML, Marseille, France
| |
Collapse
|
20
|
Du J, Su Y, Wang R, Dong E, Cao Y, Zhao W, Gong W. Research progress on specific and non-specific immune effects of BCG and the possibility of BCG protection against COVID-19. Front Immunol 2023; 14:1118378. [PMID: 36798128 PMCID: PMC9927227 DOI: 10.3389/fimmu.2023.1118378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/20/2023] [Indexed: 02/04/2023] Open
Abstract
Bacille Calmette-Guérin (BCG) is the only approved vaccine for tuberculosis (TB) prevention worldwide. BCG has an excellent protective effect on miliary tuberculosis and tuberculous meningitis in children or infants. Interestingly, a growing number of studies have shown that BCG vaccination can induce nonspecific and specific immunity to fight against other respiratory disease pathogens, including SARS-CoV-2. The continuous emergence of variants of SARS-CoV-2 makes the protective efficiency of COVID-19-specific vaccines an unprecedented challenge. Therefore, it has been hypothesized that BCG-induced trained immunity might protect against COVID-19 infection. This study comprehensively described BCG-induced nonspecific and specific immunity and the mechanism of trained immunity. In addition, this study also reviewed the research on BCG revaccination to prevent TB, the impact of BCG on other non-tuberculous diseases, and the clinical trials of BCG to prevent COVID-19 infection. These data will provide new evidence to confirm the hypotheses mentioned above.
Collapse
Affiliation(s)
- Jingli Du
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| | - Yue Su
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| | - Ruilan Wang
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| | - Enjun Dong
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| | - Yan Cao
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| | - Wenjuan Zhao
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| | - Wenping Gong
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
21
|
Feredj E, Audureau E, Boueilh A, Fihman V, Fourati S, Lelièvre JD, Gallien S, Grimbert P, Matignon M, Melica G. Impact of a Dedicated Pretransplant Infectious Disease Consultation on Respiratory Tract Infections in Kidney Allograft Recipients: A Retrospective Study of 516 Recipients. Pathogens 2023; 12:pathogens12010074. [PMID: 36678422 PMCID: PMC9867402 DOI: 10.3390/pathogens12010074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/19/2022] [Accepted: 12/24/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Respiratory tract infections (RTIs) are a leading cause of death after kidney transplant. Preventive strategies may be implemented during a dedicated infectious disease consultation (IDC) before transplantation. Impact of IDC on RTIs after transplant has not been determined. METHODS We conducted a monocentric retrospective cohort analysis including all kidney transplant recipients from January 2015 to December 2019. We evaluated the impact of IDC on RTIs and identified risk and protective factors associated with RTIs. RESULTS We included 516 kidney transplant recipients. Among these, 145 had an IDC before transplant. Ninety-five patients presented 123 RTIs, including 75 (61%) with pneumonia. Patient that benefited from IDC presented significantly less RTIs (p = 0.049). RTIs were an independent risk factor of mortality (HR = 3.64 (1.97-6.73)). Independent risk factors for RTIs included HIV (OR = 3.33 (1.43-7.74)) and HCV (OR = 3.76 (1.58-8.96)). IDC was identified as an independent protective factor (OR = 0.48 (0.26-0.88)). IDC prior to transplantation is associated with diminished RTIs and is an independent protective factor. RTIs after kidney transplant are an independent risk factor of death. Implementing systematic IDC may have an important impact on reducing RTIs and related morbidity and mortality.
Collapse
Affiliation(s)
- Elsa Feredj
- Infectious Disease Department, Groupe Hospitalier Henri-Mondor/Albert Chenevier, Assistance Publique-Hôpitaux de Paris (AP-HP), 94010 Créteil, France
- IMRB (Institut Mondor de Recherche Biomédicale), Université Paris-Est-Créteil (UPEC), INSERM U955, Equipe 16, 94010 Créteil, France
- Correspondence:
| | - Etienne Audureau
- Department of Public Health, Hôpitaux Universitaires Henri Mondor, Assistance Publique—Hôpitaux de Paris, 94010 Créteil, France
| | - Anna Boueilh
- Nephrology and Renal Transplantation Department, Groupe Hospitalier Henri-Mondor/Albert-Chenevier, Assistance Publique-Hôpitaux de Paris (AP-HP), 94010 Créteil, France
| | - Vincent Fihman
- Virology, Bacteriology and Infection Control Units, Clinical Microbiology Department, AP-HP (Assistance Publique-Hôpitaux de Paris, 94010 Créteil, France
- IMRB (Institut Mondor de Recherche Biomédicale), VIC (Virologie Immunité Cancer), DHU (Département Hospitalo-Universitaire), Université Paris-Est-Créteil (UPEC), INSERM U955, Equipe 18, 94010 Créteil, France
- Ecole Vétérinaire de Maison Alfort, EA Dynamyc, Université Paris Est Créteil, 94000 Créteil, France
| | - Slim Fourati
- Virology, Bacteriology and Infection Control Units, Clinical Microbiology Department, AP-HP (Assistance Publique-Hôpitaux de Paris, 94010 Créteil, France
- IMRB (Institut Mondor de Recherche Biomédicale), VIC (Virologie Immunité Cancer), DHU (Département Hospitalo-Universitaire), Université Paris-Est-Créteil (UPEC), INSERM U955, Equipe 18, 94010 Créteil, France
| | - Jean-Daniel Lelièvre
- Infectious Disease Department, Groupe Hospitalier Henri-Mondor/Albert Chenevier, Assistance Publique-Hôpitaux de Paris (AP-HP), 94010 Créteil, France
- IMRB (Institut Mondor de Recherche Biomédicale), Université Paris-Est-Créteil (UPEC), INSERM U955, Equipe 16, 94010 Créteil, France
| | - Sébastien Gallien
- Infectious Disease Department, Groupe Hospitalier Henri-Mondor/Albert Chenevier, Assistance Publique-Hôpitaux de Paris (AP-HP), 94010 Créteil, France
- Ecole Vétérinaire de Maison Alfort, EA Dynamyc, Université Paris Est Créteil, 94000 Créteil, France
| | - Philippe Grimbert
- Nephrology and Renal Transplantation Department, Groupe Hospitalier Henri-Mondor/Albert-Chenevier, Assistance Publique-Hôpitaux de Paris (AP-HP), 94010 Créteil, France
- IMRB (Institut Mondor de Recherche Biomédicale), VIC (Virus-Immunité-Cancer), DHU (Département Hospitalo-Universitaire), Université Paris-Est-Créteil (UPEC), INSERM U955, Equipe 21, 94010 Créteil, France
- Clinical Investigation Center-Biotherapies 504, Groupe Hospitalier Henri-Mondor/Albert Chenevier Assistance Publique-Hôpitaux de Paris (AP-HP), 94010 Créteil, France
| | - Marie Matignon
- Nephrology and Renal Transplantation Department, Groupe Hospitalier Henri-Mondor/Albert-Chenevier, Assistance Publique-Hôpitaux de Paris (AP-HP), 94010 Créteil, France
- IMRB (Institut Mondor de Recherche Biomédicale), VIC (Virus-Immunité-Cancer), DHU (Département Hospitalo-Universitaire), Université Paris-Est-Créteil (UPEC), INSERM U955, Equipe 21, 94010 Créteil, France
| | - Giovanna Melica
- Infectious Disease Department, Groupe Hospitalier Henri-Mondor/Albert Chenevier, Assistance Publique-Hôpitaux de Paris (AP-HP), 94010 Créteil, France
- IMRB (Institut Mondor de Recherche Biomédicale), Université Paris-Est-Créteil (UPEC), INSERM U955, Equipe 16, 94010 Créteil, France
| |
Collapse
|
22
|
Gupta MM, Gilhotra R, Deopa D, Bhat AA, Thapa R, Singla N, Kulshrestha R, Gupta G. Epigenetics of Pulmonary Tuberculosis. TARGETING EPIGENETICS IN INFLAMMATORY LUNG DISEASES 2023:127-144. [DOI: 10.1007/978-981-99-4780-5_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
23
|
|
24
|
Covarrubias CE, Rivera TA, Soto CA, Deeks T, Kalergis AM. Current GMP standards for the production of vaccines and antibodies: An overview. Front Public Health 2022; 10:1021905. [PMID: 36743162 PMCID: PMC9891391 DOI: 10.3389/fpubh.2022.1021905] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022] Open
Abstract
The manufacture of pharmaceutical products made under good manufacturing practices (GMP) must comply with the guidelines of national regulatory bodies based on international or regional compendia. The existence of this type of regulation allows pharmaceutical laboratories to count on the standardization of high-quality production processes, obtaining a safe product for human use, with a positive impact on public health. In addition, the COVID-19 pandemic highlights the importance of having more and better-distributed manufacturing plants, emphasizing regions such as Latin America. This review shows the most important GMP standards in the world and, in particular, their relevance in the production of vaccines and antibodies.
Collapse
Affiliation(s)
- Consuelo E. Covarrubias
- Millenium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Thomas A. Rivera
- Millenium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Catalina A. Soto
- Millenium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Trevor Deeks
- Deeks Pharmaceutical Consulting Services, Rockville, MD, United States
| | - Alexis M. Kalergis
- Millenium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
25
|
Ning H, Kang J, Lu Y, Liang X, Zhou J, Ren R, Zhou S, Zhao Y, Xie Y, Bai L, Zhang L, Kang Y, Gao X, Xu M, Ma Y, Zhang F, Bai Y. Cyclic di-AMP as endogenous adjuvant enhanced BCG-induced trained immunity and protection against Mycobacterium tuberculosis in mice. Front Immunol 2022; 13:943667. [PMID: 36081510 PMCID: PMC9445367 DOI: 10.3389/fimmu.2022.943667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 07/13/2022] [Indexed: 11/13/2022] Open
Abstract
Bacillus Calmette-Guérin (BCG) is a licensed prophylactic vaccine against tuberculosis (TB). Current TB vaccine efforts focus on improving BCG effects through recombination or genetic attenuation and/or boost with different vaccines. Recent years, it was revealed that BCG could elicit non-specific heterogeneous protection against other pathogens such as viruses through a process termed trained immunity. Previously, we constructed a recombinant BCG (rBCG-DisA) with elevated c-di-AMP as endogenous adjuvant by overexpressing di-adenylate cyclase of Mycobacterium tuberculosis DisA, and found that rBCG-DisA induced enhanced immune responses by subcutaneous route in mice after M. tuberculosis infection. In this study, splenocytes from rBCG-DisA immunized mice by intravenous route (i.v) elicited greater proinflammatory cytokine responses to homologous and heterologous re-stimulations than BCG. After M. tuberculosis infection, rBCG-DisA immunized mice showed hallmark responses of trained immunity including potent proinflammatory cytokine responses, enhanced epigenetic changes, altered lncRNA expressions and metabolic rewiring in bone marrow cells and other tissues. Moreover, rBCG-DisA immunization induced higher levels of antibodies and T cells responses in the lung and spleen of mice after M. tuberculosis infection. It was found that rBCG-DisA resided longer than BCG in the lung of M. tuberculosis infected mice implying prolonged duration of vaccine efficacy. Then, we found that rBCG-DisA boosting could prolong survival of BCG-primed mice over 90 weeks against M. tuberculosis infection. Our findings provided in vivo experimental evidence that rBCG-DisA with c-di-AMP as endogenous adjuvant induced enhanced trained immunity and adaptive immunity. What’s more, rBCG-DisA showed promising potential in prime-boost strategy against M. tuberculosis infection in adults.
Collapse
Affiliation(s)
- Huanhuan Ning
- Department of Microbiology and Pathogen Biology, School of Preclinical Medicine, Air Force Medical University, Xi’an, China
| | - Jian Kang
- Department of Microbiology and Pathogen Biology, School of Preclinical Medicine, Air Force Medical University, Xi’an, China
| | - Yanzhi Lu
- Department of Microbiology and Pathogen Biology, School of Preclinical Medicine, Air Force Medical University, Xi’an, China
| | - Xuan Liang
- Department of Microbiology and Pathogen Biology, School of Preclinical Medicine, Air Force Medical University, Xi’an, China
- College of Life Sciences, Northwest University, Xi’an, China
| | - Jie Zhou
- Department of Endocrinology, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Rui Ren
- Department of Microbiology and Pathogen Biology, School of Preclinical Medicine, Air Force Medical University, Xi’an, China
| | - Shan Zhou
- Department of Clinical Laboratory, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Yong Zhao
- Laboratory Animal Center, Air Force Medical University, Xi’an, China
| | - Yanling Xie
- Department of Microbiology and Pathogen Biology, School of Preclinical Medicine, Air Force Medical University, Xi’an, China
- School of Life Sciences, Yan’an University, Yan’an, China
| | - Lu Bai
- Department of Microbiology and Pathogen Biology, School of Preclinical Medicine, Air Force Medical University, Xi’an, China
- School of Life Sciences, Yan’an University, Yan’an, China
| | - Linna Zhang
- Department of Physiology, Basic Medical School, Ningxia Medical University, Yinchuan, China
| | - Yali Kang
- Department of Microbiology and Pathogen Biology, School of Preclinical Medicine, Air Force Medical University, Xi’an, China
- Department of Physiology, Basic Medical School, Ningxia Medical University, Yinchuan, China
| | - Xiaojing Gao
- Department of Microbiology and Pathogen Biology, School of Preclinical Medicine, Air Force Medical University, Xi’an, China
- Department of Physiology, Basic Medical School, Ningxia Medical University, Yinchuan, China
| | - Mingze Xu
- Department of Microbiology and Pathogen Biology, School of Preclinical Medicine, Air Force Medical University, Xi’an, China
| | - Yanling Ma
- College of Life Sciences, Northwest University, Xi’an, China
| | - Fanglin Zhang
- Department of Microbiology and Pathogen Biology, School of Preclinical Medicine, Air Force Medical University, Xi’an, China
- *Correspondence: Yinlan Bai, ; Fanglin Zhang,
| | - Yinlan Bai
- Department of Microbiology and Pathogen Biology, School of Preclinical Medicine, Air Force Medical University, Xi’an, China
- *Correspondence: Yinlan Bai, ; Fanglin Zhang,
| |
Collapse
|
26
|
Increased Heme Oxygenase 1 Expression upon a Primary Exposure to the Respiratory Syncytial Virus and a Secondary Mycobacterium bovis Infection. Antioxidants (Basel) 2022; 11:antiox11081453. [PMID: 35892656 PMCID: PMC9332618 DOI: 10.3390/antiox11081453] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/21/2022] [Accepted: 07/23/2022] [Indexed: 12/05/2022] Open
Abstract
The human respiratory syncytial virus (hRSV) is the leading cause of severe lower respiratory tract infections in infants. Because recurrent epidemics based on reinfection occur in children and adults, hRSV has gained interest as a potential primary pathogen favoring secondary opportunistic infections. Several infection models have shown different mechanisms by which hRSV promotes immunopathology to prevent the development of adaptive protective immunity. However, little is known about the long-lasting effects of viral infection on pulmonary immune surveillance mechanisms. As a first approach, here we evaluated whether a primary infection by hRSV, once resolved, dampens the host immune response to a secondary infection with an attenuated strain of Mycobacterium bovis (M. Bovis) strain referred as to Bacillus Calmette-Guerin (BCG). We analyzed leukocyte dynamics and immunomodulatory molecules in the lungs after eleven- and twenty-one-days post-infection with Mycobacterium, using previous hRSV infected mice, by flow cytometry and the expression of critical genes involved in the immune response by real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR). Among the latter, we analyzed the expression of Heme Oxygenase (HO)-1 in an immunization scheme in mice. Our data suggest that a pre-infection with hRSV has a conditioning effect promoting lung pathology during a subsequent mycobacterial challenge, characterized by increased infiltration of innate immune cells, including interstitial and alveolar macrophages. Our data also suggest that hRSV impairs pulmonary immune responses, promoting secondary mycobacterial colonization and lung survival, which could be associated with an increase in the expression of HO-1. Additionally, BCG is a commonly used vaccine that can be used as a platform for the generation of new recombinant vaccines, such as a recombinant BCG strain expressing the nucleoprotein of hRSV (rBCG-N-hRSV). Therefore, we evaluated if the immunization with rBCG-N-hRSV could modulate the expression of HO-1. We found a differential expression pattern for HO-1, where a higher induction of HO-1 was detected on epithelial cells compared to dendritic cells during late infection times. This is the first study to demonstrate that infection with hRSV produces damage in the lung epithelium, promoting subsequent mycobacterial colonization, characterized by an increase in the neutrophils and alveolar macrophages recruitment. Moreover, we determined that immunization with rBCG-N-hRSV modulates differentially the expression of HO-1 on immune and epithelial cells, which could be involved in the repair of pulmonary tissue.
Collapse
|
27
|
Trained through generations. Cell Mol Immunol 2022; 19:653-654. [PMID: 35277673 PMCID: PMC8913860 DOI: 10.1038/s41423-022-00846-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 02/19/2022] [Indexed: 11/24/2022] Open
|
28
|
Soto JA, Díaz FE, Retamal-Díaz A, Gálvez NMS, Melo-González F, Piña-Iturbe A, Ramírez MA, Bohmwald K, González PA, Bueno SM, Kalergis AM. BCG-Based Vaccines Elicit Antigen-Specific Adaptive and Trained Immunity against SARS-CoV-2 and Andes orthohantavirus. Vaccines (Basel) 2022; 10:vaccines10050721. [PMID: 35632475 PMCID: PMC9143576 DOI: 10.3390/vaccines10050721] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 01/27/2023] Open
Abstract
Background:Mycobacterium bovis Bacillus Calmette-Guérin (BCG) is a live attenuated vaccine mainly administered to newborns and used for over 100 years to prevent the disease caused by Mycobacterium tuberculosis (M. tb). This vaccine can induce immune response polarization towards a Th1 profile, which is desired for counteracting M. tb, other mycobacteria, and unrelated intracellular pathogens. The vaccine BCG has been used as a vector to express recombinant proteins and has been shown to protect against several diseases, particularly respiratory viruses. Methods: BCG was used to develop recombinant vaccines expressing either the Nucleoprotein from SARS-CoV-2 or Andes orthohantavirus. Mice were immunized with these vaccines with the aim of evaluating the safety and immunogenicity parameters. Results: Immunization with two doses of 1 × 108 CFU or one dose of 1 × 105 CFU of these BCGs was safe in mice. A statistically significant cellular immune response was induced by both formulations, characterized as the activation of CD4+ and CD8+ T cells. Stimulation with unrelated antigens resulted in increased expression of activation markers by T cells and secretion of IL-2 and IFN-γ, while increased secretion of IL-6 was found for both recombinant vaccines; all of these parameters related to a trained immunity profile. The humoral immune response elicited by both vaccines was modest, but further exposure to antigens could increase this response. Conclusions: The BCG vaccine is a promising platform for developing vaccines against different pathogens, inducing a marked antigen-specific immune response.
Collapse
Affiliation(s)
- Jorge A. Soto
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Portugal 49, Santiago 8320000, Chile; (J.A.S.); (F.E.D.); (A.R.-D.); (N.M.S.G.); (F.M.-G.); (A.P.-I.); (M.A.R.); (K.B.); (P.A.G.); (S.M.B.)
- Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 7550196, Chile
| | - Fabián E. Díaz
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Portugal 49, Santiago 8320000, Chile; (J.A.S.); (F.E.D.); (A.R.-D.); (N.M.S.G.); (F.M.-G.); (A.P.-I.); (M.A.R.); (K.B.); (P.A.G.); (S.M.B.)
| | - Angello Retamal-Díaz
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Portugal 49, Santiago 8320000, Chile; (J.A.S.); (F.E.D.); (A.R.-D.); (N.M.S.G.); (F.M.-G.); (A.P.-I.); (M.A.R.); (K.B.); (P.A.G.); (S.M.B.)
| | - Nicolás M. S. Gálvez
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Portugal 49, Santiago 8320000, Chile; (J.A.S.); (F.E.D.); (A.R.-D.); (N.M.S.G.); (F.M.-G.); (A.P.-I.); (M.A.R.); (K.B.); (P.A.G.); (S.M.B.)
| | - Felipe Melo-González
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Portugal 49, Santiago 8320000, Chile; (J.A.S.); (F.E.D.); (A.R.-D.); (N.M.S.G.); (F.M.-G.); (A.P.-I.); (M.A.R.); (K.B.); (P.A.G.); (S.M.B.)
- Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 7550196, Chile
| | - Alejandro Piña-Iturbe
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Portugal 49, Santiago 8320000, Chile; (J.A.S.); (F.E.D.); (A.R.-D.); (N.M.S.G.); (F.M.-G.); (A.P.-I.); (M.A.R.); (K.B.); (P.A.G.); (S.M.B.)
| | - Mario A. Ramírez
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Portugal 49, Santiago 8320000, Chile; (J.A.S.); (F.E.D.); (A.R.-D.); (N.M.S.G.); (F.M.-G.); (A.P.-I.); (M.A.R.); (K.B.); (P.A.G.); (S.M.B.)
| | - Karen Bohmwald
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Portugal 49, Santiago 8320000, Chile; (J.A.S.); (F.E.D.); (A.R.-D.); (N.M.S.G.); (F.M.-G.); (A.P.-I.); (M.A.R.); (K.B.); (P.A.G.); (S.M.B.)
| | - Pablo A. González
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Portugal 49, Santiago 8320000, Chile; (J.A.S.); (F.E.D.); (A.R.-D.); (N.M.S.G.); (F.M.-G.); (A.P.-I.); (M.A.R.); (K.B.); (P.A.G.); (S.M.B.)
| | - Susan M. Bueno
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Portugal 49, Santiago 8320000, Chile; (J.A.S.); (F.E.D.); (A.R.-D.); (N.M.S.G.); (F.M.-G.); (A.P.-I.); (M.A.R.); (K.B.); (P.A.G.); (S.M.B.)
| | - Alexis M. Kalergis
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Portugal 49, Santiago 8320000, Chile; (J.A.S.); (F.E.D.); (A.R.-D.); (N.M.S.G.); (F.M.-G.); (A.P.-I.); (M.A.R.); (K.B.); (P.A.G.); (S.M.B.)
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile
- Correspondence: or ; Tel.: +56-2-686-2842
| |
Collapse
|
29
|
Funes SC, Rios M, Fernández-Fierro A, Di Genaro MS, Kalergis AM. Trained Immunity Contribution to Autoimmune and Inflammatory Disorders. Front Immunol 2022; 13:868343. [PMID: 35464438 PMCID: PMC9028757 DOI: 10.3389/fimmu.2022.868343] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/16/2022] [Indexed: 12/24/2022] Open
Abstract
A dysregulated immune response toward self-antigens characterizes autoimmune and autoinflammatory (AIF) disorders. Autoantibodies or autoreactive T cells contribute to autoimmune diseases, while autoinflammation results from a hyper-functional innate immune system. Aside from their differences, many studies suggest that monocytes and macrophages (Mo/Ma) significantly contribute to the development of both types of disease. Mo/Ma are innate immune cells that promote an immune-modulatory, pro-inflammatory, or repair response depending on the microenvironment. However, understanding the contribution of these cells to different immune disorders has been difficult due to their high functional and phenotypic plasticity. Several factors can influence the function of Mo/Ma under the landscape of autoimmune/autoinflammatory diseases, such as genetic predisposition, epigenetic changes, or infections. For instance, some vaccines and microorganisms can induce epigenetic changes in Mo/Ma, modifying their functional responses. This phenomenon is known as trained immunity. Trained immunity can be mediated by Mo/Ma and NK cells independently of T and B cell function. It is defined as the altered innate immune response to the same or different microorganisms during a second encounter. The improvement in cell function is related to epigenetic and metabolic changes that modify gene expression. Although the benefits of immune training have been highlighted in a vaccination context, the effects of this type of immune response on autoimmunity and chronic inflammation still remain controversial. Induction of trained immunity reprograms cellular metabolism in hematopoietic stem cells (HSCs), transmitting a memory-like phenotype to the cells. Thus, trained Mo/Ma derived from HSCs typically present a metabolic shift toward glycolysis, which leads to the modification of the chromatin architecture. During trained immunity, the epigenetic changes facilitate the specific gene expression after secondary challenge with other stimuli. Consequently, the enhanced pro-inflammatory response could contribute to developing or maintaining autoimmune/autoinflammatory diseases. However, the prediction of the outcome is not simple, and other studies propose that trained immunity can induce a beneficial response both in AIF and autoimmune conditions by inducing anti-inflammatory responses. This article describes the metabolic and epigenetic mechanisms involved in trained immunity that affect Mo/Ma, contraposing the controversial evidence on how it may impact autoimmune/autoinflammation conditions.
Collapse
Affiliation(s)
- Samanta C. Funes
- Instituto Multidisciplinario de Investigaciones Biológicas-San Luis (IMIBIO-SL), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de San Luis (UNSL), San Luis, Argentina
| | - Mariana Rios
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ayleen Fernández-Fierro
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - María S. Di Genaro
- Instituto Multidisciplinario de Investigaciones Biológicas-San Luis (IMIBIO-SL), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de San Luis (UNSL), San Luis, Argentina
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- *Correspondence: Alexis M. Kalergis,
| |
Collapse
|
30
|
Trained immunity-related vaccines: innate immune memory and heterologous protection against infections. Trends Mol Med 2022; 28:497-512. [DOI: 10.1016/j.molmed.2022.03.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 11/21/2022]
|