1
|
Goleij P, Amini A, Tabari MAK, Hadipour M, Sanaye PM, Alsharif KF, Daglia M, Larsen DS, Khan H. The role of interleukin (IL)-2 cytokine family in Parkinson's disease. Cytokine 2025; 191:156954. [PMID: 40318236 DOI: 10.1016/j.cyto.2025.156954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 04/03/2025] [Accepted: 04/24/2025] [Indexed: 05/07/2025]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder, which primarily impacts the nervous system, marked by its immune and inflammatory characteristics. The interleukin-2 (IL-2) cytokine family has a crucial role in regulating both neuroinflammation and immune activity, positioning it as one of the critical immune pathways in PD. Balancing pro-inflammatory and anti-inflammatory signals in PD heavily depends on the IL-2 cytokine family, that includes IL-2, IL-4, IL-7, IL-9, IL-15 and IL-21. This balance is vital for neuron survival and resistance to degeneration. Disruptions in IL-2 signaling can upset the equilibrium among regulatory T cells (Tregs) and pro-inflammatory T cells, such as Th1 and Th17, further aggravating the chronic neuroinflammation typical of PD. In PD, a decline in IL-2 or receptor dysfunction can hinder Treg activity, leading to increased inflammation and neurodegeneration. Similarly, IL-15 and IL-21 supports cytotoxic immune cell function, including natural killer (NK) cells and CD8+ T cells, which may exacerbate neuronal damage by sustaining pro-inflammatory processes. Moreover, IL-4 and IL-7 have anti-inflammatory roles in maintaining T cell homeostasis, and their dysregulation can contribute to interruption of the blood-brain barrier and increased infiltration of immune cells into the central nervous system. Targeting the IL-2 cytokine family in Parkinson's disease has shown therapeutic potential by expanding Tregs, which reduce neuroinflammation and promote dopaminergic neuron survival. Recombinant IL-2 and IL-2/anti-IL-2 complexes have demonstrated efficacy in animal models, enhancing Treg function and leading to improved neuroprotection. Additionally, IL-4-based therapies have been explored for their ability to shift microglia toward a neuroprotective phenotype, further enhancing neuronal survival by modulating inflammatory responses and cellular metabolism. Current research is exploring how to optimize cytokine delivery while minimizing immune side effects, with the goal of developing more targeted therapies for PD.
Collapse
Affiliation(s)
- Pouya Goleij
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran; Department of Genetics, Faculty of Biology, Sana Institute of Higher Education, Sari 4816118761, Iran.
| | - Alireza Amini
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Mazandaran 4815733971, Iran
| | - Mohammad Amin Khazeei Tabari
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Mazandaran 4815733971, Iran
| | - Mahboube Hadipour
- Department of Biochemistry, School of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas 7919693116, Iran
| | - Pantea Majma Sanaye
- School of Pharmacy, Zanjan University of Medical Sciences, Zanjan 4513956184, Iran
| | - Khalaf F Alsharif
- Department of Clinical Laboratory Science, College of Applied Medical Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| | - Maria Daglia
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131 Naples, Italy; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China.
| | - Danaé S Larsen
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand.
| | - Haroon Khan
- Department of Pharmacy, Faculty of Chemical and Life Sciences, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan; Department of Pharmacy, Korea University, Sejong, 20019, South Korea.
| |
Collapse
|
2
|
Jiang S, Guo F, Li L. Biological mechanisms and immunotherapy of brain metastases in non-small cell lung cancer. Biochim Biophys Acta Rev Cancer 2025; 1880:189320. [PMID: 40220878 DOI: 10.1016/j.bbcan.2025.189320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 04/07/2025] [Accepted: 04/07/2025] [Indexed: 04/14/2025]
Abstract
Non-small cell lung cancer (NSCLC) is a leading cause of cancer-related mortality worldwide, with Brain Metastases serving as a significant adverse prognostic factor. The blood-brain barrier poses a substantial challenge in the treatment of brain metastases, as it restricts the penetration of many anticancer agents. Novel immunotherapy, such as immune checkpoint inhibitors (ICIs) have emerged as promising treatment for NSCLC and its associated brain metastases. This review summarizes the biological mechanism underlying NSCLC brain metastases and provides an overview of the current landscape of immunotherapy, exploring the mechanism of action and clinical applications of these advanced treatments.
Collapse
Affiliation(s)
- Sitong Jiang
- Department of Medical Oncology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Fengzhu Guo
- Department of Medical Oncology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Lin Li
- Department of Medical Oncology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China.
| |
Collapse
|
3
|
Wang M, Wang Z, Zhang G, Fan J. Interleukin-enhanced CAR-engineered immune cells in tumor immunotherapy: current insights and future perspectives. Cytokine 2025; 192:156973. [PMID: 40449036 DOI: 10.1016/j.cyto.2025.156973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Revised: 05/15/2025] [Accepted: 05/27/2025] [Indexed: 06/02/2025]
Abstract
Despite the remarkable clinical success of chimeric antigen receptor (CAR)-T cell therapy in hematologic malignancies, the therapeutic efficacy of conventional second-generation CAR-T cells in treating solid tumors remains suboptimal, primarily due to three major biological barriers: (1) the immunosuppressive tumor microenvironment (TME), (2) inadequate tumor infiltration capacity, and (3) T cell exhaustion mechanisms. To overcome these limitations, innovative fourth-generation "armored" CAR-T cell platforms have been engineered with integrated cytokine-secreting modules designed to potentiate anti-tumor responses through localized immunomodulation. These advanced cellular therapeutics achieve targeted delivery of various immunostimulatory cytokines directly within the TME, thereby orchestrating three critical therapeutic effects: (I) remodeling of the immunosuppressive niche, (II) enhancement of immune cell persistence, and (III) neutralization of immunosuppressive signaling networks. This comprehensive review systematically examines the translational applications of cytokine-secreting CAR-engineered immune cells, including CAR-T, CAR-NK, and CAR-iNKT cell platforms, in solid tumor immunotherapy, with particular emphasis on multiple classes of immunomodulatory cytokines that enhance cytotoxic potential, promote immune cell survival, and counteract TME-mediated immunosuppression. We critically evaluate preclinical and clinical evidence demonstrating the therapeutic efficacy of cytokine-armed CAR-engineered cells across various tumor models, including hematological malignancies, glioblastoma, and neuroblastoma. Furthermore, this review addresses current translational challenges, particularly cytokine-associated toxicity profiles and innovative strategies for achieving spatiotemporal control of cytokine release, while discussing their potential implications for advancing clinical outcomes in solid tumor immunotherapy.
Collapse
Affiliation(s)
- Min Wang
- Department of Neurology, The Second Hospital of Jilin University, Changchun 130022, China
| | - Zixuan Wang
- Beijing Institute of Biological Products Co., Ltd, Beijing 101149, China
| | - Guangji Zhang
- Chinese Institutes for Medical Research, Beijing, China.
| | - Jia Fan
- Department of Neurology, The Second Hospital of Jilin University, Changchun 130022, China.
| |
Collapse
|
4
|
Shen Z, Meng X, Rautela J, Chopin M, Huntington ND. Adjusting the scope of natural killer cells in cancer therapy. Cell Mol Immunol 2025:10.1038/s41423-025-01297-4. [PMID: 40410571 DOI: 10.1038/s41423-025-01297-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 05/06/2025] [Indexed: 05/25/2025] Open
Abstract
Natural killer (NK) cells have evolved to detect abnormalities in tissues arising from infection with pathogens, genomic damage, or transformation and respond rapidly to the production of potent proinflammatory and cytolytic mediators. While this acute proinflammatory response is highly efficient at orchestrating sterilizing immunity to pathogens in a matter of days, cellular transformation often avoids the innate detection mechanisms of NK cells. When cellular transformation results in malignancy, tumor cells and/or the tumor microenvironment can evolve additional mechanisms to circumvent NK cell responses, and cancer is now a dominant disease burden worldwide. Here, we review recent advances in our understanding of the combined relationship between malignancies and natural killer (NK) cells, learn from recent clinical efforts in therapeutically targeting natural killer (NK) cells in cancer and outline some emerging therapeutic concepts that aim to improve the innate immune response against cancer.
Collapse
Affiliation(s)
- Zihen Shen
- Biomedicine Discovery Institute and the Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Xiangpeng Meng
- Biomedicine Discovery Institute and the Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Jai Rautela
- oNKo-Innate Pty Ltd., Moonee Ponds, VIC, Australia
| | - Michael Chopin
- Biomedicine Discovery Institute and the Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Nicholas D Huntington
- Biomedicine Discovery Institute and the Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia.
- oNKo-Innate Pty Ltd., Moonee Ponds, VIC, Australia.
| |
Collapse
|
5
|
Mei Y, Zhu J, Shao J, Li L, Liu F, Sha X, Yang Y, Shen J, Li R, Liu B. Engineered Mycobacterium smegmatis expressing anti-PD-L1/IL-15 immunocytokine induces and activates specific antitumor immunity. J Immunother Cancer 2025; 13:e010118. [PMID: 40404207 PMCID: PMC12097051 DOI: 10.1136/jitc-2024-010118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 05/03/2025] [Indexed: 05/24/2025] Open
Abstract
BACKGROUND Immune checkpoint inhibitors and cytokines have revolutionized tumor treatment but are still limited by dose-dependent toxicity and efficacy. In situ vaccine platforms based on intelligent microbes are promising therapeutic strategies that sustainably deliver drugs locally without causing severe systemic risks. METHODS In this study, we have innovatively engineered a non-pathogenic, adjuvant-acting Mycobacterium smegmatis (M. smegmatis) that co-expresses a programmed cell death-ligand 1 (PD-L1) inhibitor and an interleukin-15 (IL-15) cytokine complex containing the interleukin-15 receptor alpha (IL-15Rα) sushi domain (Ms-PDL1scfv-IL15). RESULTS We demonstrate that the fusion protein of PD-L1 inhibitor and IL-15 cytokine systemically binds mouse or human PD-L1 and maintains IL-15 stimulatory activity. The bifunctional Ms-PDL1scfv-IL15 overcomes resistance to PD-L1 blockade, recruits numerous immune cells in situ, induces dendritic cells (DCs) maturation, initiates the M1 antitumor polarization of macrophages, increases the proliferation and activation of natural killer cells and tumor-infiltrating CD8+ T cells, inhibits regulatory T cells, elicits abscopal effects, stimulates rapid tumor regression, prevents metastasis, and leads to long-term survival in several syngeneic tumor mouse models. We also found that the combination of Ms-PDL1scfv-IL15 with granulocyte-macrophage colony-stimulating factor (GM-CSF) synergistically stunted the tumor progress and stasis. Moreover, intratumoral administration of Ms-PDL1scfv-IL15 can capture tumor antigen fragments, and boost DCs presentation of antigens, which remarkably initiates tumor antigen-specific immune response, leading to durable tumor regression and specific antitumor immunity. CONCLUSION In summary, the engineered M. smegmatis can recruit and activate innate and adaptive antitumor immune responses, offering a potent cancer immunotherapy strategy to treat patients with cold tumors or resistance to checkpoint blockade.
Collapse
Affiliation(s)
- Yi Mei
- Department of Oncology, Nanjing Drum Tower Hospital, Affliated Hospital of Medical School, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Junmeng Zhu
- Department of Oncology, Nanjing Drum Tower Hospital, Affliated Hospital of Medical School, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Jie Shao
- Department of Oncology, Nanjing Drum Tower Hospital, Affliated Hospital of Medical School, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
- Nanjing University of Chinese Medicine Drum Tower Clinical College, Nanjing, Jiangsu, China
| | - Lin Li
- Department of Oncology, Nanjing Drum Tower Hospital, Affliated Hospital of Medical School, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Fangcen Liu
- Department of Oncology, Nanjing Drum Tower Hospital, Affliated Hospital of Medical School, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Xiaoxuan Sha
- Department of Oncology, Nanjing Drum Tower Hospital, Affliated Hospital of Medical School, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Yang Yang
- Department of Oncology, Nanjing Drum Tower Hospital, Affliated Hospital of Medical School, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Jie Shen
- Department of Oncology, Nanjing Drum Tower Hospital, Affliated Hospital of Medical School, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Rutian Li
- Department of Oncology, Nanjing Drum Tower Hospital, Affliated Hospital of Medical School, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Baorui Liu
- Department of Oncology, Nanjing Drum Tower Hospital, Affliated Hospital of Medical School, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| |
Collapse
|
6
|
Akhkand SS, Soleimani M, Zomorrod MS, Kiani J. Genetically engineered K562 cells augment NK cell cytotoxicity against acute myeloid leukemia and reduce dependency on IL-15. Med Oncol 2025; 42:211. [PMID: 40372524 DOI: 10.1007/s12032-025-02769-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 04/29/2025] [Indexed: 05/16/2025]
Abstract
Acute myeloid leukemia (AML) is an aggressive malignancy with limited treatment options. Enhancing natural killer (NK) cell functionality through artificial antigen-presenting cells (aAPCs) represents a promising immunotherapeutic strategy. This study evaluates the potential of genetically modified K562 cells, expressing CD137L and CD86, to enhance NK cell-mediated cytotoxicity against AML cell lines (HL-60, KG-1, and THP-1). Lentiviral transduction was used to generate aAPCs, confirmed by PCR, RT-PCR, and flow cytometry. Cord NK cells and the NK-92 cell line were co-cultured with aAPCs, and their cytotoxicity against cell lines was assessed using 7-AAD staining. The ability of transduced K562 cells to substitute for interleukin-15 (IL-15) was also evaluated. These cells significantly enhanced NK cell-mediated cytotoxicity, with greater effects observed at higher effector-to-target (E:T) ratios. The aAPCs partially replaced IL-15 in activating cord blood NK cells but were ineffective for NK-92 cells. The aAPCs effectively enhance NK cell cytotoxicity and may reduce cytokine dependence in therapeutic applications. These findings highlight the potential of aAPCs to improve NK cell-based immunotherapies.
Collapse
Affiliation(s)
- Saman Sohrabi Akhkand
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Masoud Soleimani
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mina Soufi Zomorrod
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Jafar Kiani
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Wang M, Krueger JB, Gilkey AK, Stelljes EM, Kluesner MG, Pomeroy EJ, Skeate JG, Slipek NJ, Lahr WS, Claudio Vázquez PN, Zhao Y, Bell JB, Clement K, Eaton EJ, Laoharawee K, Chang JW, Webber BR, Moriarity BS. Precision enhancement of CAR-NK cells through non-viral engineering and highly multiplexed base editing. J Immunother Cancer 2025; 13:e009560. [PMID: 40341025 PMCID: PMC12067936 DOI: 10.1136/jitc-2024-009560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 03/20/2025] [Indexed: 05/10/2025] Open
Abstract
BACKGROUND Natural killer (NK) cells' unique ability to kill transformed cells expressing stress ligands or lacking major histocompatibility complexes (MHC) has prompted their development for immunotherapy. However, NK cells have demonstrated only moderate responses against cancer in clinical trials. METHODS Advanced genome engineering may thus be used to unlock their full potential. Multiplex genome editing with CRISPR/Cas9 base editors (BEs) has been used to enhance T cell function and has already entered clinical trials but has not been reported in human NK cells. Here, we report the first application of BE in primary NK cells to achieve both loss-of-function and gain-of-function mutations. RESULTS We observed highly efficient single and multiplex base editing, resulting in significantly enhanced NK cell function in vitro and in vivo. Next, we combined multiplex BE with non-viral TcBuster transposon-based integration to generate interleukin-15 armored CD19 chimeric antigen receptor (CAR)-NK cells with significantly improved functionality in a highly suppressive model of Burkitt's lymphoma both in vitro and in vivo. CONCLUSIONS The use of concomitant non-viral transposon engineering with multiplex base editing thus represents a highly versatile and efficient platform to generate CAR-NK products for cell-based immunotherapy and affords the flexibility to tailor multiple gene edits to maximize the effectiveness of the therapy for the cancer type being treated.
Collapse
Affiliation(s)
- Minjing Wang
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, USA
| | - Joshua B Krueger
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Alexandria K Gilkey
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Erin M Stelljes
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Mitchell G Kluesner
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Emily J Pomeroy
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Joseph G Skeate
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Nicholas J Slipek
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Walker S Lahr
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Patricia N Claudio Vázquez
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, USA
| | - Yueting Zhao
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jason B Bell
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Kendell Clement
- Department of Biomedical Informatics, The University of Utah, Salt Lake City, Utah, USA
| | - Ella J Eaton
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, USA
| | - Kanut Laoharawee
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jae-Woong Chang
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Beau R Webber
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Branden S Moriarity
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
8
|
Jiang Q, Yu W, Ma J, Zhao M, Zou J, Mir S, Zhang J, Germain RN, Hassan R. Robust differentiation of NK cells from MSLN.CAR-IL-15-engineered human iPSCs with enhanced antitumor efficacy against solid tumors. SCIENCE ADVANCES 2025; 11:eadt9932. [PMID: 40315330 PMCID: PMC12047432 DOI: 10.1126/sciadv.adt9932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 03/28/2025] [Indexed: 05/04/2025]
Abstract
Human induced pluripotent stem cells (iPSCs) offer a promising source for chimeric antigen receptor (CAR)-engineered natural killer (NK) products. However, complex iPSC-NK (iNK) manufacturing challenges clinical use. Here, we identified LiPSC-GR1.1 as a superior iPSC line for iNK production. By engineering LiPSC-GR1.1 with a mesothelin (MSLN)-targeting CAR and interleukin-15 (IL-15), we achieved robust differentiation of iPSCs into mature activated iNK cells with enhanced tumor killing efficacy, superior tumor homing, and vigorous proliferation. Single-cell transcriptomic analysis revealed that transforming growth factor-β (TGF-β)-producing tumor cells up-regulated major histocompatibility complex molecules and down-regulated MSLN post-CAR-IL-15 iNK treatment. Tumor-infiltrating CAR-IL-15 iNK cells exhibited high levels of CAR, IL-15, and NK-activating receptors, negligible checkpoint exhaustion markers, and extremely low levels of NK suppressive factors CISH, TGFBR2, and BATF, enabling them to sustain activation, metabolic fitness, and effective tumor killing within TGF-β-rich hypoxic tumor microenvironment. Overall, we developed MSLN.CAR-IL-15-engineered GR1.1-iNK therapy with enhanced antitumor efficacy for solid tumor treatment.
Collapse
Affiliation(s)
- Qun Jiang
- Thoracic and GI Malignancies Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Weiming Yu
- Lymphocyte Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, USA
- Center for Advanced Tissue Imaging, NIAID and NCI, NIH, Bethesda, MD, USA
| | - James Ma
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mingming Zhao
- Thoracic and GI Malignancies Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Jizhong Zou
- iPSC Core, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Sameer Mir
- Thoracic and GI Malignancies Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Jingli Zhang
- Thoracic and GI Malignancies Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Ronald N. Germain
- Lymphocyte Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, USA
- Center for Advanced Tissue Imaging, NIAID and NCI, NIH, Bethesda, MD, USA
| | - Raffit Hassan
- Thoracic and GI Malignancies Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
9
|
Wang K, Ni B, Xie Y, Li Z, Yuan L, Meng C, Zhao T, Gao S, Huang C, Wang H, Ma Y, Zhou T, Feng Y, Chang A, Yang C, Yu J, Yu W, Zang F, Zhang Y, Ji RR, Wang X, Hao J. Nociceptor neurons promote PDAC progression and cancer pain by interaction with cancer-associated fibroblasts and suppression of natural killer cells. Cell Res 2025; 35:362-380. [PMID: 40122998 PMCID: PMC12012126 DOI: 10.1038/s41422-025-01098-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 03/05/2025] [Indexed: 03/25/2025] Open
Abstract
The emerging field of cancer neuroscience has demonstrated great progress in revealing the crucial role of the nervous system in cancer initiation and progression. Pancreatic ductal adenocarcinoma (PDAC) is characterized by perineural invasion and modulated by autonomic (sympathetic and parasympathetic) and sensory innervations. Here, we further demonstrated that within the tumor microenvironment of PDAC, nociceptor neurons interacted with cancer-associated fibroblasts (CAFs) through calcitonin gene-related peptide (CGRP) and nerve growth factor (NGF). This interaction led to the inhibition of interleukin-15 expression in CAFs, suppressing the infiltration and cytotoxic function of natural killer (NK) cells and thereby promoting PDAC progression and cancer pain. In PDAC patients, nociceptive innervation of tumor tissue is negatively correlated with the infiltration of NK cells while positively correlated with pain intensity. This association serves as an independent prognostic factor for both overall survival and relapse-free survival for PDAC patients. Our findings highlight the crucial regulation of NK cells by nociceptor neurons through interaction with CAFs in the development of PDAC. We also propose that targeting nociceptor neurons or CGRP signaling may offer a promising therapy for PDAC and cancer pain.
Collapse
Affiliation(s)
- Kaiyuan Wang
- Department of Anesthesiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China.
| | - Bo Ni
- Pancreas Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yongjie Xie
- Pancreas Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Zekun Li
- Pancreas Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Limei Yuan
- Department of Anesthesiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Chenyang Meng
- Pancreas Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Tiansuo Zhao
- Pancreas Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Song Gao
- Pancreas Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Chongbiao Huang
- Pancreas Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Hongwei Wang
- Pancreas Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Ying Ma
- Pancreas Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Tianxing Zhou
- Pancreas Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yukuan Feng
- Pancreas Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Antao Chang
- Pancreas Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Chao Yang
- Pancreas Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Jun Yu
- Pancreas Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Wenwen Yu
- Pancreas Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Fenglin Zang
- Pancreas Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yanhui Zhang
- Pancreas Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Ru-Rong Ji
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA.
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA.
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA.
| | - Xiuchao Wang
- Pancreas Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China.
| | - Jihui Hao
- Pancreas Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China.
| |
Collapse
|
10
|
Kong WY, Soderholm A, Brooks AJ, Gonzalez Cruz JL, Wells JW. Harnessing cytokine immunocomplexes and cytokine fusion proteins for cancer Therapy: Mechanisms and clinical potential. Cancer Treat Rev 2025; 136:102937. [PMID: 40233680 DOI: 10.1016/j.ctrv.2025.102937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/04/2025] [Accepted: 04/06/2025] [Indexed: 04/17/2025]
Abstract
Cytokines are pivotal regulators of cellular functions and immune responses, making them highly promising targets for cancer immunotherapy. Despite their widespread clinical application, the effectiveness of cytokine immunotherapy is often hampered by their pleiotropic effects, short half-lives, uneven biodistribution, and severe side effects at high dosages. Recent advancements in cytokine biology have led to the development of cytokine-antibody immunocomplexes and cytokine fusion proteins, offering a new paradigm in cancer treatments. These innovations foster the ability of cytokines to selectively activate specific cancer-targeting immune cell populations, such as CD8 T cells and NK cells, effectively inhibiting tumour progression. Furthermore, both therapeutic approaches can mitigate systemic toxicities and prolong the biological activity of cytokines in the body. This review delves into the recent advancements of cytokine immunocomplexes and cytokine fusion proteins, with a particular focus on interleukin-2 (IL-2), IL-7 and IL-15, which are in clinical/preclinical development. Moreover, we discuss the therapeutic benefits of these approaches observed in recent preclinical and clinical studies, along with the challenges that must be addressed to fully unlock their potential in cancer immunotherapy.
Collapse
Affiliation(s)
- Wei Yang Kong
- Frazer Institute, Faculty of Health, Medicine and Behavioural Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Amelia Soderholm
- Frazer Institute, Faculty of Health, Medicine and Behavioural Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Andrew J Brooks
- Frazer Institute, Faculty of Health, Medicine and Behavioural Sciences, The University of Queensland, Brisbane, Queensland, Australia; School of Science & Technology, University of New England, Armidale, New South Wales, Australia
| | - Jazmina L Gonzalez Cruz
- Frazer Institute, Faculty of Health, Medicine and Behavioural Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - James W Wells
- Frazer Institute, Faculty of Health, Medicine and Behavioural Sciences, The University of Queensland, Brisbane, Queensland, Australia; Dermatology Research Centre, Faculty of Health, Medicine and Behavioural Sciences, The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
11
|
Jiang Q, Chen Z, Jiang J, Chen Q, Lan H, Zhu J, Mao W. The role of cGAS-STING in remodeling the tumor immune microenvironment induced by radiotherapy. Crit Rev Oncol Hematol 2025; 209:104658. [PMID: 39956501 DOI: 10.1016/j.critrevonc.2025.104658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/06/2025] [Accepted: 02/11/2025] [Indexed: 02/18/2025] Open
Abstract
The activation of the cGAS-STING pathway occurs when tumor cell DNA is damaged by ionizing radiation. Once triggered, this pathway reshapes the tumor immune microenvironment by promoting the maturation, activation, polarization, and immune-killing capacity of immune cells, as well as by inducing the release of interferons and the expression of immune-related genes. In addition, the gut microbiota and various mechanisms of programmed cell death interact with the cGAS-STING pathway, further influencing its function in remodeling the immune microenvironment after radiotherapy. Therefore, investigating the mechanisms of the cGAS-STING pathway in reshaping the tumor immune microenvironment post-radiotherapy can not only optimize the efficacy of combined radiotherapy and immunotherapy but also provide new research directions and potential targets for cancer treatment.
Collapse
Affiliation(s)
- Qingyu Jiang
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310000, China; Zhejiang Chinese Medical University, Hangzhou 310053, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310000, China; Zhejiang Key Laboratory of Radiation Oncology, Hangzhou 310000, China
| | - Zhiheng Chen
- Department of Oncology, Affiliated Hospital of Jiaxing University, The First Hospital of Jiaxing, Jiaxing 31400, China
| | - Jin Jiang
- Department of Oncology, Affiliated Hospital of Jiaxing University, The First Hospital of Jiaxing, Jiaxing 31400, China
| | - Qianping Chen
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310000, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310000, China; Zhejiang Key Laboratory of Radiation Oncology, Hangzhou 310000, China
| | - Huiyin Lan
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310000, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310000, China; Zhejiang Key Laboratory of Radiation Oncology, Hangzhou 310000, China
| | - Ji Zhu
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310000, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310000, China; Zhejiang Key Laboratory of Radiation Oncology, Hangzhou 310000, China.
| | - Wei Mao
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310000, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310000, China; Zhejiang Key Laboratory of Radiation Oncology, Hangzhou 310000, China.
| |
Collapse
|
12
|
Matsumoto H, Gu T, Yo S, Sasahira M, Monden S, Ninomiya T, Osawa M, Handa O, Umegaki E, Shiotani A. Fecal Microbiota Transplantation Using Donor Stool Obtained from Exercised Mice Suppresses Colonic Tumor Development Induced by Azoxymethane in High-Fat Diet-Induced Obese Mice. Microorganisms 2025; 13:1009. [PMID: 40431182 PMCID: PMC12114393 DOI: 10.3390/microorganisms13051009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/01/2025] [Accepted: 04/23/2025] [Indexed: 05/29/2025] Open
Abstract
The gut microbiota plays an important role in the development of colorectal tumors. However, the underlying mechanisms remain unclear. In this study, we examined the effects of fecal microbiota transplantation (FMT) on azoxymethane (AOM)-induced colorectal tumors in obese mice. We divided the study subjects into the following five groups: high-fat diet (HFD), normal diet (ND), ND+exercise (Ex), HFD+FMT from ND-alone donor (HFD+FMT(ND alone)), and HFD+FMT from ND+Ex donor (HFD+FMT(ND+Ex)). The Ex group performed treadmill exercise for 15 weeks. Thereafter, fecal and colonic mucus samples were extracted for microbiome analysis. The deoxyribonucleic acid sample was collected from the feces and colonic mucosa, and V3-V4 amplicon sequencing analysis of the 16S rRNA gene was performed using MiSeq. The number of polyps was significantly lower in the ND (6.0 ± 1.6) and ND+Ex (1.8 ± 1.3) groups than in the HFD group (11.4 ± 1.5). The ND+Ex group had significantly fewer polyps than the ND group. The HFD+FMT(ND alone) (5.2 ± 0.8) and HFD+FMT(ND+Ex) (2.8 ± 2.6) groups also had significantly fewer polyps than the HFD group. The IL-15 mRNA levels in the colonic tissues were significantly higher in the HFD+FMT(ND alone) group than in the ND group. Fecal ω-muricholic acid concentrations were significantly higher in the HFD+FMT(ND alone) group than in the ND group and in the HFD+FMT(ND+Ex) group than in the ND+Ex group. The ND, ND+Ex, HFD+FMT(ND alone), and HFD+FMT(ND+Ex) groups had a significantly higher abundance of Lacyobacillaceae than the HFD group. In the FMT group, Erysipelotrichaceae and Tannerellaceae were significantly less abundant. Compared with the HFD group, the ND, ND+Ex, HFD+FMT(ND alone), and HFD+FMT(ND+Ex) groups had a significantly higher abundance of Muribaculaceae and a significantly higher abundance of Lactobacillaceae and Rikenellaceae in common among the ND and ND+Ex groups. The common and significantly less common species were Bacteroidaceae in the FMT group and Lactobacillaceae and Rikenellaceae in the ND alone and ND+Ex groups. Bacteroidaceae and Lachnospiraceae were significantly less common in the FMT group. We found that FMT inhibited AOM-induced colorectal tumorigenesis in obese mice. Furthermore, the fecal concentrations of short-chain fatty acids, bile acids, microbiota, and mucosa-associated microbiota differed between the FMT and diet/EX groups, suggesting that the inhibitory effect of FMT on colorectal tumorigenesis may be due to mechanisms different from those of ND alone and ND+Ex.
Collapse
Affiliation(s)
- Hiroshi Matsumoto
- Department of Gastroenterology, Kawasaki Medical School, Kurashiki 701-0192, Japan; (T.G.); (S.Y.); (M.S.); (S.M.); (T.N.); (M.O.); (O.H.); (E.U.); (A.S.)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Ma S, Yu J, Caligiuri MA. Natural killer cell-based immunotherapy for cancer. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025:vkaf036. [PMID: 40246292 DOI: 10.1093/jimmun/vkaf036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 02/18/2025] [Indexed: 04/19/2025]
Abstract
Natural killer (NK) cells are emerging as a promising tool for cancer immunotherapy due to their innate ability to selectively recognize and eliminate cancer cells. Over the past 3 decades, strategies to harness NK cells have included cytokines, small molecules, antibodies, and the adoptive transfer of autologous or allogeneic NK cells, both unmodified and genetically engineered. Despite favorable safety profiles in clinical trials, challenges such as limited in vivo persistence, exhaustion, and the suppressive tumor microenvironment continue to hinder their efficacy and durability. This review categorizes NK cell-based therapies into 3 major approaches: (i) cellular therapies, including unmodified and chimeric antigen receptor-engineered NK cells; (ii) cytokine-based strategies such as interleukin-2 and interleukin-15 derivatives; and (iii) antibody-based therapies, including immune checkpoint inhibitors and NK cell engagers. We highlight these advancements, discuss current limitations, and propose strategies to optimize NK cell-based therapies for improved cancer treatment outcomes.
Collapse
Affiliation(s)
- Shoubao Ma
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, United States
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA, United States
- City of Hope Comprehensive Cancer Center, Los Angeles, CA, United States
| | - Jianhua Yu
- Division of Hematology and Oncology, Department of Medicine, School of Medicine, University of California, Irvine, CA, United States
- Institute for Precision Cancer Therapeutics and Immuno-Oncology, Chao Family Comprehensive Cancer Center, University of California, Irvine, CA, United States
- Clemons Family Center for Transformative Cancer Research, University of California, Irvine, Irvine, CA, United States
| | - Michael A Caligiuri
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, United States
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA, United States
- City of Hope Comprehensive Cancer Center, Los Angeles, CA, United States
| |
Collapse
|
14
|
Liu X, Alimujiang A, Wei W, Xu D, Wufuer T, Abuduwayiti J, Huo S, Li Z. Serum untargeted metabolomics combined with mouse models reveals potential mechanisms of ChengShu QingChu decoction for the treatment of vitiligo. J Chromatogr B Analyt Technol Biomed Life Sci 2025; 1256:124538. [PMID: 40043428 DOI: 10.1016/j.jchromb.2025.124538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 11/28/2024] [Accepted: 02/20/2025] [Indexed: 04/07/2025]
Abstract
To illustrate the potential immunological mechanisms of ChengShu QingChu Decoction (CSQC) in vitiligo treatment. An untargeted metabolomic approach was used to detect serum metabolites in 30 patients with progressive vitiligo. Annotation of the differential metabolites were performed using MetaboAnalyst 5.0 and the KEGG database. In addition, 58 Hub genes associated with metabolic pathways were obtained from the GSEA and KEGG databases, and functional enrichment for Hub genes. Finally, it was validated by a mouse model. 102 down-regulated and 86 up-regulated metabolites were detected in serum. The main metabolic pathways enriched for differential metabolites were sphingolipid metabolism and glycerophospholipid metabolism, and the signaling pathways included PI3K-Akt and JAK-STAT signaling pathways, and immune cells included CD56 bright natural killer cell and Central memry CD8 T cell. In the mouse model, a significant decrease in the number of CD8+T cells as well as a decrease in the mRNA expression of JAK1, JAK2, and STAT1 was observed in addition to a trend toward increased melanocytes after drug treatment. This study utilizes metabolomics and bioinformatics analyses, combined with in vivo experimental validation, to elucidate the potential mechanism of CSQC in the treatment of vitiligo.
Collapse
Affiliation(s)
- Xiangran Liu
- Uygur Medicine Hospital of Xinjiang Uygur Autonomous Region, No.776 Yanan Road, Urumqi 830049, Xinjiang Uygur Autonomous Region, China; Xinjiang Key Laboratory of Evidence-Based and Translation, Hospital Preparation of Traditional Chinese Medicine, No.776 Yanan Road, Urumqi 830049, Xinjiang Uygur Autonomous Region, China
| | - Abudureyimu Alimujiang
- Uygur Medicine Hospital of Xinjiang Uygur Autonomous Region, No.776 Yanan Road, Urumqi 830049, Xinjiang Uygur Autonomous Region, China; Xinjiang Key Laboratory of Evidence-Based and Translation, Hospital Preparation of Traditional Chinese Medicine, No.776 Yanan Road, Urumqi 830049, Xinjiang Uygur Autonomous Region, China
| | - Wenjing Wei
- Uygur Medicine Hospital of Xinjiang Uygur Autonomous Region, No.776 Yanan Road, Urumqi 830049, Xinjiang Uygur Autonomous Region, China; Xinjiang Key Laboratory of Evidence-Based and Translation, Hospital Preparation of Traditional Chinese Medicine, No.776 Yanan Road, Urumqi 830049, Xinjiang Uygur Autonomous Region, China
| | - Dengqiu Xu
- Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, No.120 Wanshui Road, Hefei 230031, Anhui, China
| | - Tuerxun Wufuer
- Uygur Medicine Hospital of Xinjiang Uygur Autonomous Region, No.776 Yanan Road, Urumqi 830049, Xinjiang Uygur Autonomous Region, China; Xinjiang Key Laboratory of Evidence-Based and Translation, Hospital Preparation of Traditional Chinese Medicine, No.776 Yanan Road, Urumqi 830049, Xinjiang Uygur Autonomous Region, China
| | - Julaiti Abuduwayiti
- Uygur Medicine Hospital of Xinjiang Uygur Autonomous Region, No.776 Yanan Road, Urumqi 830049, Xinjiang Uygur Autonomous Region, China; Xinjiang Key Laboratory of Evidence-Based and Translation, Hospital Preparation of Traditional Chinese Medicine, No.776 Yanan Road, Urumqi 830049, Xinjiang Uygur Autonomous Region, China
| | - Shixia Huo
- Uygur Medicine Hospital of Xinjiang Uygur Autonomous Region, No.776 Yanan Road, Urumqi 830049, Xinjiang Uygur Autonomous Region, China; Xinjiang Key Laboratory of Evidence-Based and Translation, Hospital Preparation of Traditional Chinese Medicine, No.776 Yanan Road, Urumqi 830049, Xinjiang Uygur Autonomous Region, China.
| | - Zhijian Li
- Uygur Medicine Hospital of Xinjiang Uygur Autonomous Region, No.776 Yanan Road, Urumqi 830049, Xinjiang Uygur Autonomous Region, China; Xinjiang Key Laboratory of Evidence-Based and Translation, Hospital Preparation of Traditional Chinese Medicine, No.776 Yanan Road, Urumqi 830049, Xinjiang Uygur Autonomous Region, China.
| |
Collapse
|
15
|
Notaro M, Borghetti M, Bresesti C, Giacca G, Kerzel T, Mercado CM, Beretta S, Monti M, Merelli I, Iaia S, Genua M, Annoni A, Canu T, Cristofori P, Degl'Innocenti S, Sanvito F, Rancoita PMV, Ostuni R, Gregori S, Naldini L, Squadrito ML. In vivo armed macrophages curb liver metastasis through tumor-reactive T-cell rejuvenation. Nat Commun 2025; 16:3471. [PMID: 40216735 PMCID: PMC11992024 DOI: 10.1038/s41467-025-58369-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 03/18/2025] [Indexed: 04/14/2025] Open
Abstract
Despite recent progress in cancer treatment, liver metastases persist as an unmet clinical need. Here, we show that arming liver and tumor-associated macrophages in vivo to co-express tumor antigens (TAs), IFNα, and IL-12 unleashes robust anti-tumor immune responses, leading to the regression of liver metastases. Mechanistically, in vivo armed macrophages expand tumor reactive CD8+ T cells, which acquire features of progenitor exhausted T cells and kill cancer cells independently of CD4+ T cell help. IFNα and IL-12 produced by armed macrophages reprogram antigen presenting cells and rewire cellular interactions, rescuing tumor reactive T cell functions. In vivo armed macrophages trigger anti-tumor immunity in distinct liver metastasis mouse models of colorectal cancer and melanoma, expressing either surrogate tumor antigens, naturally occurring neoantigens or tumor-associated antigens. Altogether, our findings support the translational potential of in vivo armed liver macrophages to expand and rejuvenate tumor reactive T cells for the treatment of liver metastases.
Collapse
Affiliation(s)
- Marco Notaro
- Vector Engineering and In vivo Tumor Targeting Unit, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Maristella Borghetti
- Vector Engineering and In vivo Tumor Targeting Unit, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Chiara Bresesti
- Vector Engineering and In vivo Tumor Targeting Unit, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giovanna Giacca
- Vector Engineering and In vivo Tumor Targeting Unit, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Thomas Kerzel
- Vector Engineering and In vivo Tumor Targeting Unit, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Carl Mirko Mercado
- Vector Engineering and In vivo Tumor Targeting Unit, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Stefano Beretta
- BioInformatics Core, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marco Monti
- BioInformatics Core, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ivan Merelli
- BioInformatics Core, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Iaia
- Mechanisms of Peripheral Tolerance Unit and Immune Core, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marco Genua
- Genomics of the Innate Immune System Unit, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Annoni
- Mechanisms of Peripheral Tolerance Unit and Immune Core, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Tamara Canu
- Preclinical Imaging Facility, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Patrizia Cristofori
- GLP Test Facility, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sara Degl'Innocenti
- GLP Test Facility, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesca Sanvito
- GLP Test Facility, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Pathology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Renato Ostuni
- Vita-Salute San Raffaele University, Milan, Italy
- Genomics of the Innate Immune System Unit, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Gregori
- Mechanisms of Peripheral Tolerance Unit and Immune Core, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luigi Naldini
- Vita-Salute San Raffaele University, Milan, Italy
- Targeted Cancer Gene Therapy Unit, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Mario Leonardo Squadrito
- Vector Engineering and In vivo Tumor Targeting Unit, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
16
|
Chen YC, Bazewicz CG, Dinavahi SS, Huntington ND, Schell TD, Robertson GP. Emerging Role of the p53 Pathway in Modulating NK Cell-Mediated Immunity. Mol Cancer Ther 2025; 24:523-535. [PMID: 39470047 DOI: 10.1158/1535-7163.mct-24-0325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/03/2024] [Accepted: 10/25/2024] [Indexed: 10/30/2024]
Abstract
The p53 pathway plays an important role in role in cancer immunity. Mutation or downregulation of the proteins in the p53 pathway are prevalent in many cancers, contributing to tumor progression and immune dysregulation. Recent findings suggest that the activity of p53 within tumor cells, immune cells, and the tumor microenvironment can play an important role in modulating NK cell-mediated immunity. Consequently, efforts to restore p53 pathway activity are being actively pursued to modulate this form of immunity. This review focuses on p53 activity regulating the infiltration and activation of NK cells in the tumor immune microenvironment. Furthermore, the impact of p53 and its regulation of NK cells on immunogenic cell death within solid tumors and the abscopal effect are reviewed. Finally, future avenues for therapeutically restoring p53 activity to improve NK cell-mediated antitumor immunity and optimize the effectiveness of cancer therapies are discussed.
Collapse
Affiliation(s)
- Yu-Chi Chen
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
- The Melanoma and Skin Cancer Center, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Christopher G Bazewicz
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
- The Melanoma and Skin Cancer Center, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Saketh S Dinavahi
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
- The Melanoma and Skin Cancer Center, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Nicholas D Huntington
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Victoria, Australia
- oNKo-Innate Pty Ltd. Moonee Ponds, Victoria, Australia
| | - Todd D Schell
- The Melanoma and Skin Cancer Center, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Gavin P Robertson
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
- The Melanoma and Skin Cancer Center, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
- Department of Pathology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
- Department of Dermatology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
- Department of Surgery, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
- Penn State Melanoma Therapeutics Program, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| |
Collapse
|
17
|
He B, Chen H, Wu J, Qiu S, Mai Q, Zeng Q, Wang C, Deng S, Cai Z, Liu X, Xuan L, Li C, Zhou H, Liu Q, Xu N. Interleukin-21 engineering enhances CD19-specific CAR-NK cell activity against B-cell lymphoma via enriched metabolic pathways. Exp Hematol Oncol 2025; 14:51. [PMID: 40176196 PMCID: PMC11967061 DOI: 10.1186/s40164-025-00639-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 03/10/2025] [Indexed: 04/04/2025] Open
Abstract
BACKGROUND NK cells engineered to express interleukin-15 (IL-15) and a CD19-targeted chimeric antigen receptor (CAR) have been used to treat patients with relapsed and/or refractory B cell malignances, demonstrating encouraging outcomes and favorable safety profile. However, the effect of IL-21 in CAR-NK cell therapy remains unknown. METHODS CD19-specific CAR with 4-1BB costimulatory domain and cytokine IL-21 or IL-15 was constructed and transduced into peripheral blood (PB)-derived NK cells to produce CD19-CAR-IL21 NK cells (CAR-21) or CD19-CAR-IL15 NK cells (CAR-15), respectively. The phenotypic profile, transcriptomic characteristics, functionality and anti-tumor activity of CAR-21 NK cells and CAR-15 NK cells were compared. RESULTS Compared with CAR-NK cells co-expressing IL-15, CAR-NK cells co-expressing IL-21 exhibited significantly increased IFN-γ, TNF-α and Granzyme B production, as well as degranulation, in response to CD19+ Raji lymphoma cells, resulting in enhanced cytotoxic activity upon repetitive tumor stimulation. Furthermore, IL-21 co-expression improved the in vivo persistence of CAR-NK cells and significantly suppressed tumor growth in a xenograft Raji lymphoma murine model, leading to prolonged survival of CD19+ tumor-bearing mice. RNA sequencing revealed that CAR-21 NK cells have a distinct transcriptomic signature characterized by enriched in cytokine, cytotoxicity, and metabolic related signaling, when compared with CAR-15 NK or CAR NK cells. CONCLUSIONS This study demonstrated that CD19-specific CAR-NK cells engineered to express IL-21 exhibit superior persistence and anti-tumor activity against CD19+ tumor compared to CAR-NK cells co-expressing IL-15, which might be a promising therapeutic strategy for treating patients with relapse or refractory B cell malignances.
Collapse
Affiliation(s)
- Bailin He
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Hematologic Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hong Chen
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Hematologic Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiaxu Wu
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Shiqiu Qiu
- Department of Hematology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Qiusui Mai
- Department of Blood and Transfusion, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Qing Zeng
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Cong Wang
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Shikai Deng
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Zihong Cai
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Hematologic Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoli Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Hematologic Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Li Xuan
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Hematologic Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chengyao Li
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China.
| | - Hongsheng Zhou
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
- Guangdong Provincial Clinical Research Center for Hematologic Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Qifa Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
- Guangdong Provincial Clinical Research Center for Hematologic Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Na Xu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
- Guangdong Provincial Clinical Research Center for Hematologic Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
18
|
Tarannum M, Ding X, Barisa M, Hu S, Anderson J, Romee R, Zhang J. Engineering innate immune cells for cancer immunotherapy. Nat Biotechnol 2025; 43:516-533. [PMID: 40229380 DOI: 10.1038/s41587-025-02629-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/05/2025] [Indexed: 04/16/2025]
Abstract
Innate immune cells, including natural killer cells, macrophages and γδ T cells, are gaining prominence as promising candidates for cancer immunotherapy. Unlike conventional T cells, these cells possess attributes such as inherent antitumor activity, rapid immune responses, favorable safety profiles and the ability to target diverse malignancies without requiring prior antigen sensitization. In this Review, we examine the engineering strategies used to enhance their anticancer potential. We discuss challenges associated with each cell type and summarize insights from preclinical and clinical work. We propose strategies to address existing barriers, providing a perspective on the advancement of innate immune engineering as a powerful modality in anticancer treatment.
Collapse
Affiliation(s)
- Mubin Tarannum
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Xizhong Ding
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| | - Marta Barisa
- Cancer Section, Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Sabrina Hu
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - John Anderson
- Cancer Section, Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, University College London, London, UK.
| | - Rizwan Romee
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA.
| | - Jin Zhang
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
19
|
Jørgensen LV, Christensen EB, Barnkob MB, Barington T. The clinical landscape of CAR NK cells. Exp Hematol Oncol 2025; 14:46. [PMID: 40149002 PMCID: PMC11951618 DOI: 10.1186/s40164-025-00633-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 03/04/2025] [Indexed: 03/29/2025] Open
Abstract
Chimeric antigen receptor (CAR) NK cell therapy has emerged as a promising alternative to CAR T cell therapy, offering significant advantages in terms of safety and versatility. Here we explore the current clinical landscape of CAR NK cells, and their application in hematologic malignancies and solid cancers, as well as their potential for treating autoimmune disorders. Our analysis draws from data collected from 120 clinical trials focused on CAR NK cells, and presents insights into the demographics and characteristics of these studies. We further outline the specific targets and diseases under investigation, along with the major cell sources, genetic modifications, combination strategies, preconditioning- and dosing regimens, and manufacturing strategies being utilized. Initial results from 16 of these clinical trials demonstrate promising efficacy of CAR NK cells, particularly in B cell malignancies, where response rates are comparable to those seen with CAR T cells but with lower rates of severe adverse effects, such as cytokine release syndrome (CRS), immune effector cell-associated neurotoxicity syndrome (ICANS), and graft-versus-host disease (GvHD). However, challenges remain in solid tumor applications, where only modest efficacy has been observed to date. Our analysis reveals that research is increasingly focused on enhancing CAR NK cell persistence, broadening their therapeutic targets, and refining manufacturing processes to improve accessibility and scalability. With recent advancements in NK cell engineering and their increased clinical applications, CAR NK cells are predicted to become an integral component of next-generation immunotherapies, not only for cancer but potentially for immune-mediated diseases as well.
Collapse
Affiliation(s)
- Lasse Vedel Jørgensen
- Department of Clinical Immunology, Odense University Hospital, Odense, Denmark
- Centre for Cellular Immunotherapy of Haematological Cancer Odense (CITCO), Odense, Denmark
| | - Emil Birch Christensen
- Department of Clinical Immunology, Odense University Hospital, Odense, Denmark
- Centre for Cellular Immunotherapy of Haematological Cancer Odense (CITCO), Odense, Denmark
| | - Mike Bogetofte Barnkob
- Department of Clinical Immunology, Odense University Hospital, Odense, Denmark
- Centre for Cellular Immunotherapy of Haematological Cancer Odense (CITCO), Odense, Denmark
| | - Torben Barington
- Department of Clinical Immunology, Odense University Hospital, Odense, Denmark.
- Centre for Cellular Immunotherapy of Haematological Cancer Odense (CITCO), Odense, Denmark.
| |
Collapse
|
20
|
Yang Y, Meng Y, Xu Z, Zhang Q, Li M, Kong F, Zhang S, Li X, Zhu Y. Leveraging microbiome signatures to predict tumor immune microenvironment and prognosis of patients with endometrial carcinoma. Discov Oncol 2025; 16:299. [PMID: 40069468 PMCID: PMC11896907 DOI: 10.1007/s12672-025-02038-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 03/03/2025] [Indexed: 03/15/2025] Open
Abstract
Recent studies suggest that the human microbiome influence tumor development. Endometrial carcinoma (EC) is the sixth most common malignancy in women. Recent research has demonstrated the microbes play a critical role in the development and metastasis of EC. However, it remains unclear whether intratumoral microbes are associated with tumor microenvironment (TME) and prognosis of EC. In this study, we collected the EC microbiome data from cBioPortal and constructed a prognostic model based on Resident Microbiome of Endometrium (RME). We then examined the relationship between the RME score, immune cell infiltration, immunotherapy-related signature, and prognosis. The findings demonstrated the independent prognostic value of the RME score for EC. The group with low RME scores had higher enrichment of immune cells. Drug sensitivity analysis revealed that the RME score may serve as a potential predictor of chemotherapy efficacy. In conclusion, our research offers new perspectives on the relationships between tumor immunity and microbes.
Collapse
Affiliation(s)
- Yuting Yang
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - Yuchen Meng
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - Ziyang Xu
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - Qin Zhang
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - Miaomiao Li
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - Fanbing Kong
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - Suping Zhang
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - Xinling Li
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China.
| | - Yihua Zhu
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
21
|
Su X, Deng Z, Lan Y, Liu B, Liu C. Helper ILCs in the human hematopoietic system. Trends Immunol 2025; 46:244-257. [PMID: 40011157 DOI: 10.1016/j.it.2025.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/28/2025] [Accepted: 01/29/2025] [Indexed: 02/28/2025]
Abstract
Helper innate lymphoid cells (ILCs), comprising groups ILC1, ILC2, and ILC3, possess unique advantages in eliciting rapid immune responses and were recently found to exhibit direct tumor-killing capacities comparable with those of cytotoxic ILCs [natural killer (NK) cells] in humans and mice. Although ILCs are primarily tissue-resident cells, their role in the hematopoietic system is increasingly being recognized. This review provides an overview of ILC ontogeny, as well as the physiological and pathological roles of these cells within the human and murine hematopoietic systems. We recapitulate recent advancements regarding ILC embryonic hematopoietic origin and the dynamic interactions between ILCs and leukemic cells or other immune cell populations, highlighting the dual roles ILCs can play in carcinogenesis. Exploring the functional potential of ILCs can inform the design of rational immunotherapeutic strategies against hematological malignancies.
Collapse
Affiliation(s)
- Xiaoyu Su
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang 212013, China
| | - Zhaoqun Deng
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang 212013, China; Department of Oncology, The Second Affiliated Hospital of Jiaxing University, No. 397, Huangcheng North Road, Jiaxing 314000, China.
| | - Yu Lan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China.
| | - Bing Liu
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Senior Department of Hematology, Fifth Medical Center, Medical Innovation Research Department, Chinese PLA General Hospital, Beijing 100071, China; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China.
| | - Chen Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China.
| |
Collapse
|
22
|
Cheng Y, Lin S, Cao Z, Yu R, Fan Y, Chen J. The role of chronic low-grade inflammation in the development of sarcopenia: Advances in molecular mechanisms. Int Immunopharmacol 2025; 147:114056. [PMID: 39799736 DOI: 10.1016/j.intimp.2025.114056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 12/16/2024] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
With the exacerbation of global population aging, sarcopenia has become an increasingly recognized public health issue. Sarcopenia, characterized by a progressive decline in skeletal muscle mass, strength, and function, significantly impacts the quality of life in the elderly. Herein, we explore the role of chroniclow-gradeinflammation in the development of sarcopenia and its underlying molecular mechanisms, including chronic inflammation-associated signaling pathways, immunosenescence, obesity and lipid infiltration, gut microbiota dysbiosis and intestinal barrier disruption, and the decline of satellite cells. The interplay and interaction of these molecular mechanisms provide new perspectives on the complexity of the pathogenesis of sarcopenia and offer a theoretical foundation for the development of future therapeutic strategies.
Collapse
Affiliation(s)
- Ying Cheng
- Department of Gastroenterology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040 China; Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai 200040 China
| | - Shangjin Lin
- Department of Orthopedics, Huadong Hospital Affiliated to Fudan University, Shanghai 200040 China; Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai 200040 China
| | - Ziyi Cao
- Department of Gastroenterology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040 China; Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai 200040 China
| | - Runzhi Yu
- Department of Gastroenterology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040 China; Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai 200040 China
| | - Yongqian Fan
- Department of Orthopedics, Huadong Hospital Affiliated to Fudan University, Shanghai 200040 China.
| | - Jie Chen
- Department of Gastroenterology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040 China.
| |
Collapse
|
23
|
Guo P, Zhong L, Wang T, Luo W, Zhou A, Cao D. NK cell-based immunotherapy for hepatocellular carcinoma: Challenges and opportunities. Scand J Immunol 2025; 101:e13433. [PMID: 39934640 DOI: 10.1111/sji.13433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 12/22/2024] [Accepted: 01/01/2025] [Indexed: 02/13/2025]
Abstract
Hepatocellular carcinoma (HCC) remains one of the most challenging malignancies globally, characterized by significant heterogeneity, late-stage diagnosis, and resistance to treatment. In recent years, the advent of immune-checkpoint blockades (ICBs) and targeted immune cell therapies has marked a substantial advancement in HCC treatment. However, the clinical efficacy of these existing therapies is still limited, highlighting the urgent need for new breakthroughs. Natural killer (NK) cells, a subset of the innate lymphoid cell family, have shown unique advantages in the anti-tumour response. With increasing evidence suggesting the crucial role of dysfunctional NK cells in the pathogenesis and progression of HCC, considerable efforts have been directed toward exploring NK cells as a potential therapeutic target for HCC. In this review, we will provide an overview of the role of NK cells in normal liver immunity and in HCC, followed by a detailed discussion of various NK cell-based immunotherapies and their potential applications in HCC treatment.
Collapse
Affiliation(s)
- Pei Guo
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Liyuan Zhong
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Tao Wang
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Weijia Luo
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Aiqiang Zhou
- Guangzhou Hospital of Integrated Chinese and Western Medicine, Guangzhou, Guangdong, P.R China
| | - Deliang Cao
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
24
|
Miller JC, Cao B, Shen J. Head-to-head: IL-21 triumphs over IL-15 in NK cell therapy for glioblastoma. Acta Biochim Biophys Sin (Shanghai) 2025; 57:676-678. [PMID: 39844642 PMCID: PMC12040740 DOI: 10.3724/abbs.2025009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 12/25/2024] [Indexed: 01/24/2025] Open
Affiliation(s)
- Jake C. Miller
- GenomeCell and Developmental Biology Graduate ProgramIndiana UniversityBloomingtonIN47405-7000USA
| | - Bihui Cao
- Medical Sciences ProgramIndiana University School of MedicineBloomingtonIN47405USA
| | - Jia Shen
- Medical Sciences ProgramIndiana University School of MedicineBloomingtonIN47405USA
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIN46202-3082USA
- Indiana University Melvin and Bren Simon Comprehensive Cancer CenterIndianapolisIN46202-3082USA
| |
Collapse
|
25
|
Wang L, Wang Y, He X, Mo Z, Zhao M, Liang X, Hu K, Wang K, Yue Y, Mo G, Zhou Y, Hong R, Zhou L, Feng Y, Chen N, Shen L, Song X, Zeng W, Jia X, Shao Y, Zhang P, Xu M, Wang D, Hu Y, Yang L, Huang H. CD70-targeted iPSC-derived CAR-NK cells display potent function against tumors and alloreactive T cells. Cell Rep Med 2025; 6:101889. [PMID: 39793572 PMCID: PMC11866492 DOI: 10.1016/j.xcrm.2024.101889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 06/15/2024] [Accepted: 12/06/2024] [Indexed: 01/13/2025]
Abstract
Clinical application of autologous chimeric antigen receptor (CAR)-T cells is complicated by limited targeting of cancer types, as well as the time-consuming and costly manufacturing process. We develop CD70-targeted, induced pluripotent stem cell-derived CAR-natural killer (NK) (70CAR-iNK) cells as an approach for universal immune cell therapy. Besides the CD70-targeted CAR molecule, 70CAR-iNK cells are modified with CD70 gene knockout, a high-affinity non-cleavable CD16 (hnCD16), and an interleukin (IL)-15 receptor α/IL-15 fusion protein (IL15RF). Multi-gene-edited 70CAR-iNK cells exhibit robust cytotoxicity against a wide range of tumors. In vivo xenograft models further demonstrate their potency in effectively targeting lymphoma and renal cancers. Furthermore, we find that recipient alloreactive T cells express high levels of CD70 and can be eliminated by 70CAR-iNK cells, leading to improved survival and persistence of iNK cells. With the capability of tumor targeting and the potential to eliminate alloreactive T cells, 70CAR-iNK cells are potent candidates for next-generation universal immune cell therapy.
Collapse
Affiliation(s)
- Linqin Wang
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 311121, China; Institute of Hematology, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou 310058, China
| | - Yiyun Wang
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 311121, China; Institute of Hematology, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou 310058, China
| | | | - Zhuomao Mo
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 311121, China; Institute of Hematology, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou 310058, China
| | - Mengyu Zhao
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 311121, China; Institute of Hematology, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou 310058, China
| | - Xinghua Liang
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 311121, China; Institute of Hematology, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou 310058, China
| | - Kejia Hu
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 311121, China; Institute of Hematology, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou 310058, China
| | - Kexin Wang
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 311121, China; Institute of Hematology, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou 310058, China
| | - Yanan Yue
- Qihan Biotech Inc., Hangzhou 311200, China
| | - Guolong Mo
- Qihan Biotech Inc., Hangzhou 311200, China
| | | | - Ruimin Hong
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 311121, China; Institute of Hematology, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou 310058, China
| | - Linghui Zhou
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 311121, China; Institute of Hematology, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou 310058, China
| | - Youqin Feng
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 311121, China; Institute of Hematology, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou 310058, China
| | - Nian Chen
- Qihan Biotech Inc., Hangzhou 311200, China
| | | | | | | | | | | | - Peng Zhang
- Qihan Biotech Inc., Hangzhou 311200, China
| | - Mengqi Xu
- Qihan Biotech Inc., Hangzhou 311200, China
| | - Dongrui Wang
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 311121, China; Institute of Hematology, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou 310058, China.
| | - Yongxian Hu
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 311121, China; Institute of Hematology, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou 310058, China.
| | - Luhan Yang
- Qihan Biotech Inc., Hangzhou 311200, China.
| | - He Huang
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 311121, China; Institute of Hematology, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou 310058, China.
| |
Collapse
|
26
|
Rattanapisit K, Suwanchaikasem P, Bulaon CJI, Guo S, Phoolcharoen W. Plant-derived Pembrolizumab in conjugation with IL-15Rα-IL-15 complex shows effective anti-tumor activity. PLoS One 2025; 20:e0316790. [PMID: 39808627 PMCID: PMC11731737 DOI: 10.1371/journal.pone.0316790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025] Open
Abstract
Anti-programmed cell death 1 (PD-1) monoclonal antibodies (mAbs) have proven to be effective in treating various cancers, including colorectal, lung, and melanoma. Despite their clinical success, some patients develop resistance to mAbs, requiring co-treatments with radio- or chemotherapy. Interleukin-15 (IL-15) is an immunostimulatory cytokine that promotes immune cell production and proliferation. It has been combined with mAbs and other immunotherapies to improve efficacy and reduce side effects. Fusion of anti-PD-1 mAb and IL-15 streamlines drug administration and management. In this study, we developed a prototype by conjugating the IL-15 receptor subunit alpha (IL-15Rα) and IL-15 complex to the C-terminus of anti-PD-1 Pembrolizumab (Pembrolizumab-IL-15Rα-IL15) using plant molecular farming for production. LC-MS revealed the presence of plant N-glycans (GnGnXF, GnXF and Man9GlcNAc2) on the molecule, which may affect receptor-binding avidity. However, ELISA demonstrated comparable binding efficacy of Pembrolizumab-IL-15Rα-IL15 to human PD-1 protein as commercial Pembrolizumab. In a mouse anti-cancer study, Pembrolizumab-IL-15Rα-IL15 (3 mg kg-1) exhibited slightly improved tumor-growth inhibition, reducing tumor size by 94% compared to commercial Pembrolizumab (5 mg kg-1) with an 83% reduction, regardless of statistically significant difference. In conclusion, Pembrolizumab-IL-15Rα-IL-15 was successfully produced using plant molecular farming and shows promise in addressing mAb drug resistance and enhancing the immunomodulatory effects of IL-15 payload.
Collapse
Affiliation(s)
| | | | | | | | - Waranyoo Phoolcharoen
- Center of Excellence in Plant-produced Pharmaceuticals, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
27
|
Flego M, Andreotti M, Mauro FR, Arasi MB, Zamboni S, Michelini Z, Pepe S, Galluzzo CM, Amici R, Moricoli D, Mazzei C, Ascione A, Mallano A. A New Antibody-Cytokine Construct Targeting Natural Killer Cells: An Immunotherapeutic Approach to Chronic Lymphocytic Leukemia. Biomolecules 2025; 15:117. [PMID: 39858511 PMCID: PMC11764099 DOI: 10.3390/biom15010117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
In chronic lymphocytic leukemia (CLL), natural killer (NK) cells show a dysfunctional phenotype that correlates with disease progression. Our aim was to restore NK cell functionality in CLL through a specifically targeted IL15-stimulating activity; IL15 targeting could, in fact, potentiate the activity of NK cells and reduce off-target effects. We designed and developed a cis-acting immunocytokine composed of an anti-CD56 single-chain Fragment variable (scFv) and IL15, labeled scFvB1IL15. scFvB1IL15 was tested in vitro on peripheral blood mononuclear cells (PBMCs) obtained from both different healthy donors (HDs) and CLL patients in order to evaluate its ability to target NK cells and enhance their activation and NK-mediated directed cytotoxicity. scFvB1IL15 specifically induced strong degranulation and cytokine and chemokine production in NK cells in both HD- and CLL patient-derived PBMC samples. Furthermore, compared to IL15 alone, it was able to induce higher levels of NKG2D- and NKp30-activating receptors and restore NK-mediated direct killing in the CLL patient-derived samples. The preliminary data presented in this work suggest that IL15's targeting of NK cells via scFvB1 potentiates the effects of IL15 and that scFvB1IL15 can be a useful agent for overcoming NK functional gaps and contribute to NK-cell-based immunotherapies.
Collapse
MESH Headings
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Killer Cells, Natural/immunology
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/metabolism
- Interleukin-15/immunology
- Single-Chain Antibodies/immunology
- Single-Chain Antibodies/pharmacology
- Immunotherapy/methods
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/drug effects
- CD56 Antigen/immunology
- Cytokines
- Natural Cytotoxicity Triggering Receptor 3/metabolism
- NK Cell Lectin-Like Receptor Subfamily K/metabolism
Collapse
Affiliation(s)
- Michela Flego
- National Center for Global Health, Italian Institute of Health, 00161 Rome, Italy; (M.F.); (M.A.); (Z.M.); (C.M.G.); (R.A.); (C.M.); (A.A.)
| | - Mauro Andreotti
- National Center for Global Health, Italian Institute of Health, 00161 Rome, Italy; (M.F.); (M.A.); (Z.M.); (C.M.G.); (R.A.); (C.M.); (A.A.)
| | - Francesca Romana Mauro
- Hematology, Department of Translational and Precision Medicine, ‘Sapienza’ University, 00161 Rome, Italy; (F.R.M.); (S.P.)
| | - Maria Beatrice Arasi
- Department of Oncology and Molecular Medicine, Italian Institute of Health, 00161 Rome, Italy;
| | - Silvia Zamboni
- Department of Neuroscience, Italian Institute of Health, 00161 Rome, Italy;
| | - Zuleika Michelini
- National Center for Global Health, Italian Institute of Health, 00161 Rome, Italy; (M.F.); (M.A.); (Z.M.); (C.M.G.); (R.A.); (C.M.); (A.A.)
| | - Sara Pepe
- Hematology, Department of Translational and Precision Medicine, ‘Sapienza’ University, 00161 Rome, Italy; (F.R.M.); (S.P.)
| | - Clementina Maria Galluzzo
- National Center for Global Health, Italian Institute of Health, 00161 Rome, Italy; (M.F.); (M.A.); (Z.M.); (C.M.G.); (R.A.); (C.M.); (A.A.)
| | - Roberta Amici
- National Center for Global Health, Italian Institute of Health, 00161 Rome, Italy; (M.F.); (M.A.); (Z.M.); (C.M.G.); (R.A.); (C.M.); (A.A.)
| | - Diego Moricoli
- Diatheva s.r.l., Via Sant’Anna 131/135, 61030 Cartoceto, Italy;
| | - Chiara Mazzei
- National Center for Global Health, Italian Institute of Health, 00161 Rome, Italy; (M.F.); (M.A.); (Z.M.); (C.M.G.); (R.A.); (C.M.); (A.A.)
| | - Alessandro Ascione
- National Center for Global Health, Italian Institute of Health, 00161 Rome, Italy; (M.F.); (M.A.); (Z.M.); (C.M.G.); (R.A.); (C.M.); (A.A.)
| | - Alessandra Mallano
- National Center for Global Health, Italian Institute of Health, 00161 Rome, Italy; (M.F.); (M.A.); (Z.M.); (C.M.G.); (R.A.); (C.M.); (A.A.)
| |
Collapse
|
28
|
Lee J, Song J, Yoo W, Choi H, Jung D, Choi E, Jo SG, Gong EY, Jeoung YH, Park YS, Son WC, Lee H, Lee H, Kim JJ, Kim T, Lee S, Park JJ, Kim TD, Kim SH. Therapeutic potential of anti-ErbB3 chimeric antigen receptor natural killer cells against breast cancer. Cancer Immunol Immunother 2025; 74:73. [PMID: 39751931 PMCID: PMC11698710 DOI: 10.1007/s00262-024-03923-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/13/2024] [Indexed: 01/04/2025]
Abstract
ErbB3 is markedly overexpressed in breast cancer cells and is associated with resistance and metastasis. Additionally, ErbB3 expression levels are positively correlated with low densities of tumor-infiltrating lymphocytes, a marker of poor prognosis. Consequently, ErbB3 is a promising therapeutic target for cancer immunotherapy. Here, we report the generation of ErbB3-targeted chimeric antigen receptor (CAR)-modified natural killer (NK) cells by transducing cord blood-derived primary NK cells using vsv-g envelope-pseudotyped lentiviral vectors. Transduced cells displayed stable CAR-expressing activity and increased cytotoxicity against ErbB3-positive breast cancer cell lines. Furthermore, anti-ErbB3 (aErbB3) CAR-NK cells strongly reduced the tumor burden in the SK-BR-3 xenograft mouse model without observable side effects. These findings underscore the potential of aErbB3 CAR-NK cells as targeted immunotherapy for ErbB3-positive breast cancer, suggesting a promising alternative to conventional treatments.
Collapse
Affiliation(s)
- Juheon Lee
- Department of Health Sciences, The Graduate School of Dong-A University, Busan, 49315, Republic of Korea
| | - Jinhoo Song
- Department of Health Sciences, The Graduate School of Dong-A University, Busan, 49315, Republic of Korea
| | - Wonbeak Yoo
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Hyunji Choi
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Dana Jung
- Department of Health Sciences, The Graduate School of Dong-A University, Busan, 49315, Republic of Korea
| | - Eunjeong Choi
- Department of Health Sciences, The Graduate School of Dong-A University, Busan, 49315, Republic of Korea
| | - Seo-Gyeong Jo
- Department of Health Sciences, The Graduate School of Dong-A University, Busan, 49315, Republic of Korea
| | - Eun-Yeung Gong
- Department of Medicinal Biotechnology, College of Health Science, Dong-A University, Busan, 49315, Republic of Korea
| | - Young-Hee Jeoung
- Department of Medicinal Biotechnology, College of Health Science, Dong-A University, Busan, 49315, Republic of Korea
| | - You-Soo Park
- Department of Research Center, Dongnam Institute of Radiological and Medical Sciences Busan, Busan, 46033, Republic of Korea
| | - Woo-Chang Son
- Department of Research Center, Dongnam Institute of Radiological and Medical Sciences Busan, Busan, 46033, Republic of Korea
| | - Hosuk Lee
- ISU Abxis, Drug Discovery Division, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Hayoung Lee
- ISU Abxis, Drug Discovery Division, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Jeom Ji Kim
- ISU Abxis, Drug Discovery Division, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - TaeEun Kim
- ISU Abxis, Drug Discovery Division, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Sooyun Lee
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Jang-June Park
- ISU Abxis, Drug Discovery Division, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea.
| | - Tae-Don Kim
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea.
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea.
| | - Seok-Ho Kim
- Department of Health Sciences, The Graduate School of Dong-A University, Busan, 49315, Republic of Korea.
- Department of Medicinal Biotechnology, College of Health Science, Dong-A University, Busan, 49315, Republic of Korea.
| |
Collapse
|
29
|
Chen L, Hu P, Fang W, Wu T, Shi J. Nebulized Immunotherapy of Orthotopic Lung Cancer by Mild Magnetothermal-Based Innate Immunity Activations. Angew Chem Int Ed Engl 2025; 64:e202413127. [PMID: 39343740 DOI: 10.1002/anie.202413127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/08/2024] [Accepted: 09/27/2024] [Indexed: 10/01/2024]
Abstract
Advances in adaptive immunity have greatly contributed to the development of cancer immunotherapy. However, its over-low efficacy and insufficient invasion of immune cells in the tumor tissue, and safety problems caused by cytokine storm, have seriously impeded further clinical application for solid tumor immunotherapy. Notably, the immune microenvironment of the lungs is naturally enriched with alveolar macrophages (AMs). Herein, we introduce a novel nebulized magnetothermal immunotherapy strategy to treat orthotopic lung cancer by using magnetothermal nanomaterial (Zn-CoFe2O4@Zn-MnFe2O4-PEG, named ZCMP), which can release iron ions via an acid/thermal-catalytic reaction to maximize the use of lung's immune environment through the cascade activations of AMs and natural killer (NK) cells. Nebulized administration greatly enhance drug bioavailability by localized drug accumulation at the lesion site. Upon mild magnetic hyperthermia, the released iron ions catalyze endogenous H2O2 decomposition to produce reactive oxygen species (ROS), which triggers the M1 polarization of AMs, and the resultant inflammatory cytokine IFN-β, IL-1β and IL-15 releases to activate c-Jun, STAT5 and GZMB related signaling pathways, promoting NK cells proliferation and activation. This innovative strategy optimally utilizes the lung's immune environment and shows excellent immunotherapeutic outcomes against orthotopic lung cancer.
Collapse
Affiliation(s)
- Lizhu Chen
- School of Chemical Science and Engineering, Institute of Advanced Study, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 200092, Shanghai, P.R. China
| | - Ping Hu
- School of Chemical Science and Engineering, Institute of Advanced Study, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 200092, Shanghai, P.R. China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 200050, Shanghai, P.R. China
| | - Wenming Fang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 200050, Shanghai, P.R. China
| | - Tong Wu
- School of Chemical Science and Engineering, Institute of Advanced Study, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 200092, Shanghai, P.R. China
| | - Jianlin Shi
- School of Chemical Science and Engineering, Institute of Advanced Study, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 200092, Shanghai, P.R. China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 200050, Shanghai, P.R. China
| |
Collapse
|
30
|
Zhai Y, Zhang W, Wang J, Kong Y, Rong R, Lang T, Zheng C, Wang Y, Yu Y, Zhu HH, Cai Y, Zhang P, Li Y. Interleukin 15-Presenting Nanovesicles with Doxorubicin-Loaded Ferritin Cores for Cancer Immunochemotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409194. [PMID: 39625860 PMCID: PMC11789581 DOI: 10.1002/advs.202409194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/13/2024] [Indexed: 01/30/2025]
Abstract
Interleukin 15 (IL15) is crucial for fostering the survival and proliferation of nature killer (NK) cells and cytotoxic T lymphocytes (CTLs), playing a pivotal role in tumor control. However, IL15 supplementary therapy encounters challenges such as systemic inflammation and non-specific stimulation of cancer cells. Herein, a nanovesicle termed DoxFILN, comprising a membrane presenting IL15/IL15 receptor α complexes (IL15c) and a core of doxorubicin-loaded ferritin (Dox-Fn) are reported. The DoxFILN significantly enhances the densities and activities of intratumoral CTLs and NK cells. Mechanistically, DoxFILN undergoes deshelling in the acidic tumor microenvironment, releasing Dox-Fn and membrane-bound IL15c. Dox-Fn selectively target transferrin receptors on cancerous cells, facilitating intracellular Dox release and inducing immunogenic cell death. Concurrently, membrane-bound IL15c recognizes and activates IL15 receptor β/γc heterodimers, leading to a remarkable increase in the proliferation and activation of CTLs (16-fold and 28-fold) and NK cells (37-fold and 50-fold). The IL15-displaying nanovesicle introduced here holds promise as a potential platform for immunochemotherapy in the treatment of cancer.
Collapse
Affiliation(s)
- Yihui Zhai
- State Key Laboratory of Drug Research & Center of PharmaceuticsShanghai Institute of Materia MedicaChinese Academy of Sciences501 Haike RoadShanghai201203China
- University of Chinese Academy of SciencesBeijing100049China
| | - Wen Zhang
- State Key Laboratory of Drug Research & Center of PharmaceuticsShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
- China State Institute of Pharmaceutical IndustryShanghai201203China
| | - Jinming Wang
- State Key Laboratory of Oncogenes and Related GenesRenji‐Med‐X Stem Cell Research CenterDepartment of UrologyRen Ji HospitalSchool of Medicine and School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200127China
| | - Ying Kong
- Yantai Institute of Materia MedicaShandong264000China
| | - Rong Rong
- Yantai Institute of Materia MedicaShandong264000China
| | - Tianqun Lang
- State Key Laboratory of Drug Research & Center of PharmaceuticsShanghai Institute of Materia MedicaChinese Academy of Sciences501 Haike RoadShanghai201203China
- University of Chinese Academy of SciencesBeijing100049China
| | - Chao Zheng
- State Key Laboratory of Drug Research & Center of PharmaceuticsShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
- China State Institute of Pharmaceutical IndustryShanghai201203China
| | - Yanke Wang
- National Facility for Protein Science in ShanghaiZhangjiang LabShanghai201210China
| | - Yang Yu
- National Facility for Protein Science in ShanghaiZhangjiang LabShanghai201210China
| | - Helen He Zhu
- State Key Laboratory of Oncogenes and Related GenesRenji‐Med‐X Stem Cell Research CenterDepartment of UrologyRen Ji HospitalSchool of Medicine and School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200127China
| | - Ying Cai
- State Key Laboratory of Drug Research & Center of PharmaceuticsShanghai Institute of Materia MedicaChinese Academy of Sciences501 Haike RoadShanghai201203China
- University of Chinese Academy of SciencesBeijing100049China
- Yantai Key Laboratory of Nanomedicine & Advanced PreparationsYantai Institute of Materia MedicaShandong264000China
| | - Pengcheng Zhang
- School of Biomedical Engineering & State Key Laboratory of Advanced Medical Materials and DevicesShanghaiTech UniversityShanghai201210China
- Shanghai Clinical Research and Trial CenterShanghai201203China
| | - Yaping Li
- State Key Laboratory of Drug Research & Center of PharmaceuticsShanghai Institute of Materia MedicaChinese Academy of Sciences501 Haike RoadShanghai201203China
- University of Chinese Academy of SciencesBeijing100049China
- Yantai Key Laboratory of Nanomedicine & Advanced PreparationsYantai Institute of Materia MedicaShandong264000China
| |
Collapse
|
31
|
Ghasempour A, Mohseni R, Sharif PM, Hamidieh AA. Natural killer cell-based therapies in neuroblastoma. Cell Immunol 2025; 407:104898. [PMID: 39631142 DOI: 10.1016/j.cellimm.2024.104898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/21/2024] [Accepted: 11/23/2024] [Indexed: 12/07/2024]
Abstract
Neuroblastoma (NB) is the most common extracranial solid tumor of childhood forming around 15 % of all pediatric tumors. Despite advances in the treatment of NB, high-risk patients still face a grave prognosis. Adoptive cell therapies based on NK cells are becoming an assistive treatment for such cases. Moreover, there is also evidence that NKT-based therapies have promising results in the management of NB. Lower complications in comparison with adoptive T cell therapies, various cell sources, and miscellaneous tumor recognition mechanisms are some of the advantages of NK- and NKT-based therapies. This review is dedicated to searching for recent advances in this field.
Collapse
Affiliation(s)
- Abtin Ghasempour
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Rashin Mohseni
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Pouya Mahdavi Sharif
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Ali Hamidieh
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
32
|
Qu Y, Zeng A, Cheng Y, Li S. Natural killer cell memory: challenges and opportunities for cancer immunotherapy. Cancer Biol Ther 2024; 25:2376410. [PMID: 38987282 PMCID: PMC11238922 DOI: 10.1080/15384047.2024.2376410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 07/01/2024] [Indexed: 07/12/2024] Open
Abstract
Substantial advancements have been made in recent years in comprehending immune memory, which enhances the secondary response through prior infections. The ability of vertebrate T and B lymphocytes to exhibit classic recall responses has long been regarded as a distinguishing characteristic. However, natural killer (NK) cells have been found to acquire immunological memory in a manner akin to T and B cells. The fundamental principles derived from the investigation of NK cell memory offer novel insights into innate immunity and have the potential to pave the way for innovative strategies to enhance therapeutic interventions against multiple diseases including cancer. Here, we reviewed the fundamental characteristics, memory development and regulatory mechanism of NK cell memory. Moreover, we will conduct a comprehensive evaluation of the accomplishments, obstacles, and future direction pertaining to the utilization of NK cell memory in the field of cancer immunotherapy.
Collapse
Affiliation(s)
- Yuhua Qu
- Department of Anorectal Surgery, Hospital of Chengdu University of Traditional Chinese Medicine and Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Anhui Zeng
- Department of Anorectal Surgery, Hospital of Chengdu University of Traditional Chinese Medicine and Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yulu Cheng
- Department of Disinfection Supply Center, Hospital of Chengdu University of Traditional Chinese Medicine and Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shengchun Li
- Department of Anorectal Surgery, Hospital of Chengdu University of Traditional Chinese Medicine and Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
33
|
Wang Y, Fei Y. Causal relationship between 731 immune cells and the risk of myeloproliferative neoplasms: A 2-sample bidirectional Mendelian randomization study. Medicine (Baltimore) 2024; 103:e40945. [PMID: 39705412 PMCID: PMC11666147 DOI: 10.1097/md.0000000000040945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 11/03/2024] [Accepted: 11/25/2024] [Indexed: 12/22/2024] Open
Abstract
Myeloproliferative neoplasms (MPN) are chronic hematological disorders marked by the abnormal proliferation of bone marrow cells. The most commonly encountered forms are polycythemia vera (PV), primary myelofibrosis (PMF), and essential thrombocythemia (ET). These disorders are generally associated with increases in blood components, which can lead to conditions like splenomegaly, thrombosis, bleeding tendencies, and a heightened risk of progressing to acute leukemia. Previous research has indicated a possible link between immune cells and MPN, yet this association is still poorly understood. This study seeks to elucidate the causal relationship between immune cell characteristics and the development of MPN. In this study, we employed Mendelian randomization (MR) to investigate potential causal links between 731 immune cell traits and the risk of developing MPN, leveraging data from genome-wide association studies (GWAS). To ensure the robustness of our findings, we conducted extensive sensitivity analyses to assess heterogeneity and detect any pleiotropic effects. Moreover, we implemented a false discovery rate (FDR) correction to mitigate the risk of false positives that may result from the multiple hypothesis testing, thereby adjusting for any statistical biases due to multiple comparisons. The immune phenotype IgD on IgD+ CD24- B cells demonstrated a statistically significant protective effect against MPN (PFDR = 0.047). Upon adjusting the significance threshold to PFDR < 0.20, 16 immune cell phenotypes were significantly associated with MPN. Among these, 11 were found to exert a protective effect against MPN, 5 phenotypes were associated with an elevated risk of MPN. This research highlights a significant association between various immune cell phenotypes and the risk of developing MPN, thereby advancing our understanding of the intricate interplay between immune cell traits and the progression of MPN.
Collapse
Affiliation(s)
- Yao Wang
- Department of Trauma and Orthopaedic, Ningbo No.2 Hospital, Ningbo, Zhejiang, China
| | - Yang Fei
- Department of Hematology and Oncology, Ningbo No.2 Hospital, Ningbo, Zhejiang, China
| |
Collapse
|
34
|
Yao P, Liu YG, Huang G, Hao L, Wang R. The development and application of chimeric antigen receptor natural killer (CAR-NK) cells for cancer therapy: current state, challenges and emerging therapeutic advances. Exp Hematol Oncol 2024; 13:118. [PMID: 39633491 PMCID: PMC11616395 DOI: 10.1186/s40164-024-00583-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 11/18/2024] [Indexed: 12/07/2024] Open
Abstract
Immunotherapy has transformed the landscape of cancer treatment, with chimeric antigen receptor (CAR)-engineered T (CAR-T) cell therapy emerging as a front runner in addressing some hematological malignancies. Despite its considerable efficacy, the occurrence of severe adverse effects associated with CAR-T cell therapy has limited their scope and prompted the exploration of alternative therapeutic strategies. Natural killer (NK) cells, characterized by both their innate cytotoxicity and ability to lyse target cells without the constraint of peptide specificity conferred by a major histocompatibility complex (MHC), have similarly garnered attention as a viable immunotherapy. As such, another therapeutic approach has recently emerged that seeks to combine the continued success of CAR-T cell therapy with the flexibility of NK cells. Clinical trials involving CAR-engineered NK (CAR-NK) cell therapy have exhibited promising efficacy with fewer deleterious side effects. This review aims to provide a concise overview of the cellular and molecular basis of NK cell biology, facilitating a better understanding of advancements in CAR design and manufacturing. The focus is on current approaches and strategies employed in CAR-NK cell development, exploring at both preclinical and clinical settings. We will reflect upon the achievements, advantages, and challenges intrinsic to CAR-NK cell therapy. Anticipating the maturation of CAR-NK cell therapy technology, we foresee its encouraging prospects for a broader range of cancer patients and other conditions. It is our belief that this CAR-NK progress will bring us closer to making significant strides in the treatment of refractory and recurrent cancers, as well as other immune-mediated disorders.
Collapse
Affiliation(s)
- Pin Yao
- Department of Health Management, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China
| | - Ya-Guang Liu
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Gang Huang
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Liangchun Hao
- Department of Pediatrics, Shengjing Hospital of China Medical University, No.36, Sanhao Street, Shenyang, 110004, Liaoning, China
| | - Runan Wang
- Department of Pediatrics, Shengjing Hospital of China Medical University, No.36, Sanhao Street, Shenyang, 110004, Liaoning, China.
| |
Collapse
|
35
|
Chen P, Li S, Nagaoka K, Kakimi K, Kataoka K, Cabral H. Nanoenabled IL-15 Superagonist via Conditionally Stabilized Protein-Protein Interactions Eradicates Solid Tumors by Precise Immunomodulation. J Am Chem Soc 2024; 146:32431-32444. [PMID: 39356776 PMCID: PMC11613988 DOI: 10.1021/jacs.4c08327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024]
Abstract
Protein complexes are crucial structures that control many biological processes. Harnessing these structures could be valuable for therapeutic therapy. However, their instability and short lifespans need to be addressed for effective use. Here, we propose an innovative approach based on a functional polymeric cloak that coordinately anchors different domains of protein complexes and assembles them into a stabilized nanoformulation. As the polymer-protein association in the cloak is pH sensitive, the nanoformulation also allows targeting the release of the protein complexes to the acidic microenvironment of tumors for aiding their therapeutic performance. Building on this strategy, we developed an IL-15 nanosuperagonist (Nano-SA) by encapsulating the interleukin-15 (IL-15)/IL-15 Receptor α (IL-15Rα) complex (IL-15cx) for fostering synergistic transpresentation in tumors. Upon intravenous administration, Nano-SA stably circulated in the bloodstream, safeguarding the integrity of IL-15cx until reaching the tumor site, where it selectively released the active complex. Thus, Nano-SA significantly amplified the antitumor immune signals while diminishing systemic off-target effects. In murine colon cancer models, Nano-SA achieved potent immunotherapeutic effects, eradicating tumors without adverse side effects. These findings highlight the transformative potential of nanotechnology for advancing protein complex-based therapies.
Collapse
Affiliation(s)
- Pengwen Chen
- Department
of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Shangwei Li
- Department
of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Koji Nagaoka
- Department
of Immunotherapeutics, The University of
Tokyo Hospital, 7-3-1
Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Kazuhiro Kakimi
- Department
of Immunotherapeutics, The University of
Tokyo Hospital, 7-3-1
Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Kazunori Kataoka
- Innovation
Center of NanoMedicine (iCONM), Kawasaki
Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Horacio Cabral
- Department
of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
36
|
Cochrane S, Saib O, Sheffield D. Use of serum-free media for peripheral blood mononuclear cell culture and the impact on T and B cell readouts. FRONTIERS IN TOXICOLOGY 2024; 6:1462688. [PMID: 39563982 PMCID: PMC11573784 DOI: 10.3389/ftox.2024.1462688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/23/2024] [Indexed: 11/21/2024] Open
Abstract
Introduction As part of a wider programme of work developing next-generation risk assessment approaches (NGRA) using non-animal methods (NAMs) for safety assessment of materials, Unilever SEAC is exploring the use of a peripheral blood mononuclear cell (PBMC) system to investigate how cells from different arms of the human immune system are impacted by different treatments. To maximise human relevance, the cell cultures are supported by human serum, but this came with some challenges, including an inability to measure induced levels of immunoglobulins due to high background levels. Therefore, a study comparing use of human sera containing media with three different chemically defined serum-free media was undertaken. Materials and Methods PBMC were isolated from healthy donors and cultured in the absence (media alone) or presence of stimulation reagents (CpG-ODN plus IL-15, Pokeweed Mitogen (PWM) or Cytostim (CS)), in RPMI plus human serum, AIM-V, CTS OpTmizer T cell expansion SFM or X-VIVO 15 media. T cell (CD4+ and CD8+) and B cell proliferation and viability were measured after 6 days, along with levels of total IgG in the cell culture supernatants. Results Each of the serum-free media tested supported good levels of viable and proliferating T cells and B cells over the 6 days of culture, with only a few, small differences across the media, when there was no stimulation. They also enabled detection of a stimulation-evoked increase in IgG levels. There were however some differences in the viability and proliferation responses of T and B cells, to different stimuli, across the different media. Discussion The serum-free media formulations tested in this study offer defined systems for. measuring B cell IgG responses, in vitro, in either a 'T cell-independent' (CpG + IL-15) or "T cell-dependent" (PWM or CS) manner and for assessing B cell proliferation, particularly in response to a "T cell-independent" stimulus. However, there are some characteristics and features endowed by human serum that appear to be missing. Therefore, further work is required to optimise animal-free, chemically defined culture conditions for PBMC based assays for inclusion in tiered safety assessments.
Collapse
Affiliation(s)
- Stella Cochrane
- Safety and Environmental Assurance Centre (SEAC), Unilever, Colworth Science Park, Sharnbrook, United Kingdom
| | - Ouarda Saib
- Safety and Environmental Assurance Centre (SEAC), Unilever, Colworth Science Park, Sharnbrook, United Kingdom
| | - David Sheffield
- Safety and Environmental Assurance Centre (SEAC), Unilever, Colworth Science Park, Sharnbrook, United Kingdom
| |
Collapse
|
37
|
Shi W, Liu N, Lu H. Advancements and challenges in immunocytokines: A new arsenal against cancer. Acta Pharm Sin B 2024; 14:4649-4664. [PMID: 39664443 PMCID: PMC11628837 DOI: 10.1016/j.apsb.2024.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/20/2024] [Accepted: 07/27/2024] [Indexed: 12/13/2024] Open
Abstract
Immunocytokines, employing targeted antibodies to concentrate cytokines at tumor sites, have shown potential advantages such as prolonged cytokine half-lives, mitigated adverse effects, and synergistic antitumor efficacy from both antibody and cytokine components. First, we present an in-depth analysis of the advancements of immunocytokines evaluated in preclinical and clinical applications. Notably, anti-PD-1-based immunocytokines can redirect cytokines to intratumoral CD8+ T cells and reinvigorate them to elicit robust antitumor immune responses. Then, we focus on their molecular structures and action mechanisms, striving to elucidate the correlations between diverse molecular structures and their antitumor efficacy. Moreover, our exploration extends to the realm of novel cytokines, including IL-10, IL-18, and IL-24, unraveling their potential in the construction of immunocytokines. However, safety concerns remain substantial barriers to immunocytokines' development. To address this challenge, we explore potential strategies, such as cytokine engineering and prodrug design, which can foster next-generation immunocytokines development. Overall, this review concentrates on the design of molecular structures in immunocytokines, underscoring the direction and focus of ongoing efforts to improve safety profiles while maximizing therapeutic efficacy.
Collapse
Affiliation(s)
- Wenqiang Shi
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, National Key Laboratory of Innovative Immunotherapy, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Nan Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Huili Lu
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, National Key Laboratory of Innovative Immunotherapy, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
38
|
Lao Y, Cui X, Xu Z, Yan H, Zhang Z, Zhang Z, Geng L, Li B, Lu Y, Guan Q, Pu X, Zhao S, Zhu J, Qin X, Sun B. Glutaryl-CoA dehydrogenase suppresses tumor progression and shapes an anti-tumor microenvironment in hepatocellular carcinoma. J Hepatol 2024; 81:847-861. [PMID: 38825017 DOI: 10.1016/j.jhep.2024.05.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 05/12/2024] [Accepted: 05/23/2024] [Indexed: 06/04/2024]
Abstract
BACKGROUND & AIMS Crotonylation, a crotonyl-CoA-based non-enzymatic protein translational modification, affects diverse biological processes, such as spermatogenesis, tissue injury, inflammation, and neuropsychiatric diseases. Crotonylation is decreased in hepatocellular carcinomas (HCCs), but the mechanism remains unknown. In this study, we aim to describe the role of glutaryl-CoA dehydrogenase (GCDH) in tumor suppression. METHODS Three cohorts containing 40, 248 and 17 pairs of samples were used to evaluate the link between GCDH expression levels and clinical characteristics of HCC, as well as responses to anti-programmed cell death protein 1 (PD-1) treatment. Subcutaneous xenograft, orthotopic xenograft, Trp53Δhep/Δhep; MYC- and Ctnnboe; METoe-driven mouse models were adopted to validate the effects of GCDH on HCC suppression. RESULTS GCDH depletion promoted HCC growth and metastasis, whereas its overexpression reversed these processes. As GCDH converts glutaryl-CoA to crotonyl-CoA to increase crotonylation levels, we performed lysine crotonylome analysis and identified the pentose phosphate pathway (PPP) and glycolysis-related proteins PGD, TKT, and ALDOC as GCDH-induced crotonylation targets. Crotonyl-bound targets showed allosteric effects that controlled their enzymatic activities, leading to decreases in ribose 5-phosphate and lactate production, further limiting the Warburg effect. PPP blockade also stimulated peroxidation, synergizing with senescent modulators to induce senescence in GCDHhigh cells. These cells induced the infiltration of immune cells by the SASP (senescence-associated secretory cell phenotype) to shape an anti-tumor immune microenvironment. Meanwhile, the GCDHlow population was sensitized to anti-PD-1 therapy. CONCLUSION GCDH inhibits HCC progression via crotonylation-induced suppression of the PPP and glycolysis, resulting in HCC cell senescence. The senescent cell further shapes an anti-tumor microenvironment via the SASP. The GCDHlow population is responsive to anti-PD-1 therapy because of the increased presence of PD-1+CD8+ T cells. IMPACT AND IMPLICATIONS Glutaryl-CoA dehydrogenase (GCDH) is a favorable prognostic indicator in liver, lung, and renal cancers. In addition, most GCDH depletion-induced toxic metabolites originate from the liver, accumulate locally, and cannot cross the blood-brain barrier. Herein, we show that GCDH inhibits hepatocellular carcinoma (HCC) progression via crotonylation-induced suppression of the pentose phosphate pathway and glycolysis, resulting in HCC cell senescence. We also found that more PD-1+CD8+ T cells are present in the GCDHlow population, who are thus more responsive to anti-PD-1 therapy. Given that the GCDHlow and GCDHhigh HCC population can be distinguished based on serum glucose and ammonia levels, it will be worthwhile to evaluate the curative effects of pro-senescent and immune-therapeutic strategies based on the expression levels of GCDH.
Collapse
Affiliation(s)
- Yuanxiang Lao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University & Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, China; Innovative Institute of Tumor Immunity and Medicine (ITIM); Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei, Anhui, China
| | - Xiaohan Cui
- Department of Gastrointestinal Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zhu Xu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University & Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, China; Innovative Institute of Tumor Immunity and Medicine (ITIM); Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei, Anhui, China
| | - Hongyao Yan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University & Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, China; Innovative Institute of Tumor Immunity and Medicine (ITIM); Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei, Anhui, China
| | - Zechuan Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University & Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, China; Innovative Institute of Tumor Immunity and Medicine (ITIM); Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei, Anhui, China
| | - Zhenwei Zhang
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Longpo Geng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University & Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, China; Innovative Institute of Tumor Immunity and Medicine (ITIM); Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei, Anhui, China
| | - Binghua Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University & Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, China; Innovative Institute of Tumor Immunity and Medicine (ITIM); Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei, Anhui, China
| | - Yijun Lu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University & Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, China; Innovative Institute of Tumor Immunity and Medicine (ITIM); Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei, Anhui, China
| | - Qifei Guan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University & Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, China; Innovative Institute of Tumor Immunity and Medicine (ITIM); Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei, Anhui, China
| | - Xiaohong Pu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University & Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, China; Department of Pathology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing Jiangsu, China
| | - Suwen Zhao
- The iHuman Institute, Shanghai Tech University, Shanghai, China
| | - Jiapeng Zhu
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing Jiangsu, China
| | - Xihu Qin
- Department of Hepato-Biliary-Pancreatic Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou Jiangsu, China
| | - Beicheng Sun
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University & Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, China; Innovative Institute of Tumor Immunity and Medicine (ITIM); Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei, Anhui, China.
| |
Collapse
|
39
|
Qu R, Zhao Y, Zhang Y. The mechanism of cytokine regulation of cancer occurrence and development in the tumor microenvironment and its application in cancer treatment: a narrative review. Transl Cancer Res 2024; 13:5649-5663. [PMID: 39525000 PMCID: PMC11543031 DOI: 10.21037/tcr-24-679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/06/2024] [Indexed: 11/16/2024]
Abstract
Background and Objective The occurrence and development of tumors in human tissues widely depend on their surrounding environment, known as the tumor microenvironment (TME), which comprises various cells, molecules, and blood vessels. Through modifications, organization, and integration, these elements serve as potential therapeutic targets in anti-cancer therapy, supporting and promoting the proliferation, invasion, and metabolism of tumor cells. Cytokines within TME are responsible for immune cell activation, proliferation, and differentiation, thereby influencing the tumor's behavior. This article reviews the use of cytokines in tumor immunotherapy and combs the network signals that cytokines mediate in the development of malignancies. Methods A literature search of international sources was carried out on the PubMed and Web of Science databases, using main keywords such as "tumor immunotherapy", "cytokines", "chemokines", "tumor microenvironment", "recombinant cytokine engineering", and "tumor necrosis factor superfamily". Key Content and Findings The review provides a thorough summary of the functions of tumor necrosis factor superfamilies, chemokines, and interleukins within the TME as well as their therapeutic uses. Their potential as novel targets for tumor treatment is also evaluated. Furthermore, this paper focuses on various feasible strategies for recombinant cytokines reported in recent years, especially the cytokine engineering methods for targeting tumors. Ultimately, this paper contributes to an enhanced understanding among researchers of the mechanisms underlying the impact of the TME on disease development, thereby laying a solid foundation for the future development of new tumor therapies based on cytokines within the TME. Conclusions Cytokine immunotherapy holds promise on antitumor therapy. It is anticipated that the effectiveness of tumor treatment and the quality of life for tumor patients will continue to improve with ongoing research and development in this field.
Collapse
Affiliation(s)
- Run Qu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dali University, Dali, China
| | - Yanhong Zhao
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dali University, Dali, China
| | - Yuzhe Zhang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dali University, Dali, China
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, China
| |
Collapse
|
40
|
Miao N, Cao D, Jin J, Ma G, Yu H, Qu J, Li G, Gao C, Dong D, Xia F, Li W. Tumor cell-intrinsic Piezo2 drives radioresistance by impairing CD8+ T cell stemness maintenance. J Exp Med 2024; 221:e20231486. [PMID: 39167075 PMCID: PMC11338319 DOI: 10.1084/jem.20231486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 05/20/2024] [Accepted: 07/24/2024] [Indexed: 08/23/2024] Open
Abstract
Changes in mechanosensitive ion channels following radiation have seldom been linked to therapeutic sensitivity or specific factors involved in antitumor immunity. Here, in this study, we found that the mechanical force sensor, Piezo2, was significantly upregulated in tumor cells after radiation, and Piezo2 knockout in tumor cells enhanced tumor growth suppression by radiotherapy. Specifically, loss of Piezo2 in tumor cells induced their IL-15 expression via unleashing JAK2/STAT1/IRF-1 axis after radiation. This increase in IL-15 activates IL-15Rα on tumor-infiltrating CD8+ T cells, thereby leading to their augmented effector and stem cell-like properties, along with reduced terminal exhausted feature. Importantly, Piezo2 expression was negatively correlated with CD8 infiltration, as well as with radiosensitivity of patients with rectum adenocarcinoma receiving radiotherapy treatment. Together, our findings reveal that tumor cell-intrinsic Piezo2 induces radioresistance by dampening the IRF-1/IL-15 axis, thus leading to impaired CD8+ T cell-dependent antitumor responses, providing insights into the further development of combination strategies to treat radioresistant cancers.
Collapse
Affiliation(s)
- Naijun Miao
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dongqing Cao
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingsi Jin
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guizhi Ma
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haihui Yu
- School of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junwen Qu
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guiping Li
- Core Facility of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Caixia Gao
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dong Dong
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fan Xia
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Wenwen Li
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
41
|
Sandoval TA, Salvagno C, Chae CS, Awasthi D, Giovanelli P, Falco MM, Hwang SM, Teran-Cabanillas E, Suominen L, Yamazaki T, Kuo HH, Moyer JE, Martin ML, Manohar J, Kim K, Sierra MA, Ramos Y, Tan C, Emmanuelli A, Song M, Morales DK, Zamarin D, Frey MK, Cantillo E, Chapman-Davis E, Holcomb K, Mason CE, Galluzzi L, Zhou ZN, Vähärautio A, Cloonan SM, Cubillos-Ruiz JR. Iron Chelation Therapy Elicits Innate Immune Control of Metastatic Ovarian Cancer. Cancer Discov 2024; 14:1901-1921. [PMID: 39073085 PMCID: PMC11452292 DOI: 10.1158/2159-8290.cd-23-1451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/28/2024] [Accepted: 07/01/2024] [Indexed: 07/30/2024]
Abstract
Iron accumulation in tumors contributes to disease progression and chemoresistance. Although targeting this process can influence various hallmarks of cancer, the immunomodulatory effects of iron chelation in the tumor microenvironment are unknown. Here, we report that treatment with deferiprone, an FDA-approved iron chelator, unleashes innate immune responses that restrain ovarian cancer. Deferiprone reprogrammed ovarian cancer cells toward an immunostimulatory state characterized by the production of type-I IFN and overexpression of molecules that activate NK cells. Mechanistically, these effects were driven by innate sensing of mitochondrial DNA in the cytosol and concomitant activation of nuclear DNA damage responses triggered upon iron chelation. Deferiprone synergized with chemotherapy and prolonged the survival of mice with ovarian cancer by bolstering type-I IFN responses that drove NK cell-dependent control of metastatic disease. Hence, iron chelation may represent an alternative immunotherapeutic strategy for malignancies that are refractory to current T-cell-centric modalities. Significance: This study uncovers that targeting dysregulated iron accumulation in ovarian tumors represents a major therapeutic opportunity. Iron chelation therapy using an FDA-approved agent causes immunogenic stress responses in ovarian cancer cells that delay metastatic disease progression and enhance the effects of first-line chemotherapy. See related commentary by Bell and Zou, p. 1771.
Collapse
Affiliation(s)
- Tito A. Sandoval
- Department of Obstetrics and Gynecology, Weill Cornell Medicine. New York, NY 10065, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine. New York, NY 10065, USA
| | - Camilla Salvagno
- Department of Obstetrics and Gynecology, Weill Cornell Medicine. New York, NY 10065, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine. New York, NY 10065, USA
| | - Chang-Suk Chae
- Department of Obstetrics and Gynecology, Weill Cornell Medicine. New York, NY 10065, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine. New York, NY 10065, USA
| | - Deepika Awasthi
- Department of Obstetrics and Gynecology, Weill Cornell Medicine. New York, NY 10065, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine. New York, NY 10065, USA
| | - Paolo Giovanelli
- Weill Cornell Graduate School of Medical Sciences. New York, NY 10065. USA
| | - Matias Marin Falco
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Sung-Min Hwang
- Department of Obstetrics and Gynecology, Weill Cornell Medicine. New York, NY 10065, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine. New York, NY 10065, USA
| | - Eli Teran-Cabanillas
- Department of Obstetrics and Gynecology, Weill Cornell Medicine. New York, NY 10065, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine. New York, NY 10065, USA
| | - Lasse Suominen
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Takahiro Yamazaki
- Department of Radiation Oncology, Weill Cornell Medicine. New York, NY 10065, USA
| | - Hui-Hsuan Kuo
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10065. USA
| | - Jenna E. Moyer
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10065. USA
| | - M Laura Martin
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10065. USA
| | - Jyothi Manohar
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10065. USA
| | - Kihwan Kim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Weill Cornell Medicine. New York, NY 10065, USA
| | - Maria A. Sierra
- Weill Cornell Graduate School of Medical Sciences. New York, NY 10065. USA
| | - Yusibeska Ramos
- Department of Obstetrics and Gynecology, Weill Cornell Medicine. New York, NY 10065, USA
| | - Chen Tan
- Department of Obstetrics and Gynecology, Weill Cornell Medicine. New York, NY 10065, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine. New York, NY 10065, USA
| | - Alexander Emmanuelli
- Department of Obstetrics and Gynecology, Weill Cornell Medicine. New York, NY 10065, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine. New York, NY 10065, USA
- Weill Cornell Graduate School of Medical Sciences. New York, NY 10065. USA
| | - Minkyung Song
- Departments of Integrative Biotechnology and of Biopharmaceutical Convergence, Sungkyunkwan University. Suwon, Gyeonggi-do, Korea
| | - Diana K. Morales
- Department of Obstetrics and Gynecology, Weill Cornell Medicine. New York, NY 10065, USA
| | - Dmitriy Zamarin
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Melissa K. Frey
- Department of Obstetrics and Gynecology, Weill Cornell Medicine. New York, NY 10065, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine. New York, NY 10065, USA
| | - Evelyn Cantillo
- Department of Obstetrics and Gynecology, Weill Cornell Medicine. New York, NY 10065, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine. New York, NY 10065, USA
| | - Eloise Chapman-Davis
- Department of Obstetrics and Gynecology, Weill Cornell Medicine. New York, NY 10065, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine. New York, NY 10065, USA
| | - Kevin Holcomb
- Department of Obstetrics and Gynecology, Weill Cornell Medicine. New York, NY 10065, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine. New York, NY 10065, USA
| | - Christopher E. Mason
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine. New York, NY, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine. New York, USA
- The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine. New York, NY, USA
| | - Lorenzo Galluzzi
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine. New York, NY 10065, USA
- Department of Radiation Oncology, Weill Cornell Medicine. New York, NY 10065, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10065. USA
| | - Zhen Ni Zhou
- Department of Obstetrics and Gynecology, Weill Cornell Medicine. New York, NY 10065, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine. New York, NY 10065, USA
| | - Anna Vähärautio
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Foundation for the Finnish Cancer Institute, Helsinki, Finland
| | - Suzanne M. Cloonan
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Weill Cornell Medicine. New York, NY 10065, USA
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College. Dublin, Ireland
| | - Juan R. Cubillos-Ruiz
- Department of Obstetrics and Gynecology, Weill Cornell Medicine. New York, NY 10065, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine. New York, NY 10065, USA
- Weill Cornell Graduate School of Medical Sciences. New York, NY 10065. USA
| |
Collapse
|
42
|
Andrea AE, Chiron A, Sarrabayrouse G, Bessoles S, Hacein-Bey-Abina S. A structural, genetic and clinical comparison of CAR-T cells and CAR-NK cells: companions or competitors? Front Immunol 2024; 15:1459818. [PMID: 39430751 PMCID: PMC11486669 DOI: 10.3389/fimmu.2024.1459818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/16/2024] [Indexed: 10/22/2024] Open
Abstract
In recent years, following the groundbreaking achievements of chimeric antigen receptor (CAR) T cell therapy in hematological cancers, and advancements in cell engineering technologies, the exploration of other immune cells has garnered significant attention. CAR-Therapy extended beyond T cells to include CAR natural killer (NK) cells and CAR-macrophages, which are firmly established in the clinical trial landscape. Less conventional immune cells are also making their way into the scene, such as CAR mucosal-associated invariant T (MAIT) cells. This progress is advancing precision medicine and facilitating the development of ready-to-use biological treatments. However, in view of the unique features of natural killer cells, adoptive NK cell immunotherapy has emerged as a universal, allogenic, "off-the shelf" therapeutic strategy. CAR-NK cytotoxic cells present targeted tumor specificity but seem to be devoid of the side effects associated with CAR-T cells. CAR-NK cells appear to be potentially promising candidates for cancer immunotherapy. However, their application is hindered by significant challenges, particularly the limited persistence of CAR-NK cells in the body, which poses a hurdle to their sustained effectiveness in treating cancer. Based upon the foregoing, this review discusses the current status and applications of both CAR-T cells and CAR-NK cells in hematological cancers, and provides a comparative analysis of the structure, genetics, and clinical outcomes between these two types of genetically modified immune cells.
Collapse
Affiliation(s)
- Alain E. Andrea
- Department of Biology, Faculty of Arts and Sciences, Saint George University of Beirut, Beirut, Lebanon
| | - Andrada Chiron
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Unité des Technologies Chimiques et Biologiques pour la Santé (UTCBS), Paris, France
- Clinical Immunology Laboratory, Groupe Hospitalier Universitaire Paris Saclay, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris, Le-Kremlin-Bicêtre, France
| | - Guillaume Sarrabayrouse
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Unité des Technologies Chimiques et Biologiques pour la Santé (UTCBS), Paris, France
| | - Stéphanie Bessoles
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Unité des Technologies Chimiques et Biologiques pour la Santé (UTCBS), Paris, France
| | - Salima Hacein-Bey-Abina
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Unité des Technologies Chimiques et Biologiques pour la Santé (UTCBS), Paris, France
- Clinical Immunology Laboratory, Groupe Hospitalier Universitaire Paris Saclay, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris, Le-Kremlin-Bicêtre, France
| |
Collapse
|
43
|
Kumar S, Zoodsma M, Nguyen N, Pedroso R, Trittel S, Riese P, Botey-Bataller J, Zhou L, Alaswad A, Arshad H, Netea MG, Xu CJ, Pessler F, Guzmán CA, Graca L, Li Y. Systemic dysregulation and molecular insights into poor influenza vaccine response in the aging population. SCIENCE ADVANCES 2024; 10:eadq7006. [PMID: 39331702 PMCID: PMC11430404 DOI: 10.1126/sciadv.adq7006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/22/2024] [Indexed: 09/29/2024]
Abstract
Vaccination-induced protection against influenza is greatly diminished and increasingly heterogeneous with age. We investigated longitudinally (up to five time points) a cohort of 234 vaccinated >65-year-old vaccinees with adjuvanted vaccine FluAd across two independent seasons. System-level analyses of multiomics datasets measuring six modalities and serological data revealed that poor responders lacked time-dependent changes in response to vaccination as observed in responders, suggestive of systemic dysregulation in poor responders. Multiomics integration revealed key molecules and their likely role in vaccination response. High prevaccination plasma interleukin-15 (IL-15) concentrations negatively associated with antibody production, further supported by experimental validation in mice revealing an IL-15-driven natural killer cell axis explaining the suppressive role in vaccine-induced antibody production as observed in poor responders. We propose a subset of long-chain fatty acids as modulators of persistent inflammation in poor responders. Our findings provide a potential link between low-grade chronic inflammation and poor vaccination response and open avenues for possible pharmacological interventions to enhance vaccine responses.
Collapse
Affiliation(s)
- Saumya Kumar
- Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany
- TWINCORE, a joint venture between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Martijn Zoodsma
- Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany
- TWINCORE, a joint venture between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Nhan Nguyen
- Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany
- TWINCORE, a joint venture between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Rodrigo Pedroso
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Stephanie Trittel
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Peggy Riese
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Javier Botey-Bataller
- Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany
- TWINCORE, a joint venture between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Liang Zhou
- Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany
- TWINCORE, a joint venture between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Ahmed Alaswad
- Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany
- TWINCORE, a joint venture between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Haroon Arshad
- TWINCORE, a joint venture between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Mihai G. Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Immunology and Metabolism, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Cheng-Jian Xu
- Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany
- TWINCORE, a joint venture between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Frank Pessler
- Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany
- Research Group Biomarkers for Infectious Diseases, TWINCORE, Hannover, Germany
| | - Carlos A. Guzmán
- Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Luis Graca
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Yang Li
- Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany
- TWINCORE, a joint venture between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
- Cluster of Excellence Resolving Infection Susceptibility (RESIST; EXC 2155), Hannover Medical School, Hannover, Germany
- Lower Saxony Center for Artificial Intelligence and Causal Methods in Medicine (CAIMed), Hannover, Germany
| |
Collapse
|
44
|
Reis JL, Rosa NN, Martins C, Ângelo-Dias M, Borrego LM, Lima J. The Role of NK and T Cells in Endometriosis. Int J Mol Sci 2024; 25:10141. [PMID: 39337624 PMCID: PMC11432446 DOI: 10.3390/ijms251810141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/08/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
Endometriosis, a debilitating condition, affects one in ten women of reproductive age. Its pathophysiology remains unclear, though deficiencies in immune surveillance are thought to create an environment conducive to the evasion of ectopic endometrial cells from the immune system. Our research explores the immunological impact of endometriosis both locally and systemically, emphasizing natural killer (NK) and T cell subpopulations. We incorporated 62 female patients who underwent laparoscopic surgery; of those, 47 had endometriosis, and 15 were controls. We collected peritoneal fluid (PF) and peripheral blood (PB) samples which were tagged with monoclonal antibodies and subsequently scrutinized using flow cytometry. Our findings revealed significant differences in immunological profiles based on demographic factors and symptomatology. In the endometriosis cohort, there was an increase in PB CD56HiCD16dim and PF CD8+ CD56dimCD16Hi NK cells. CD16+ CD4 T cell levels were significantly lower in the PB of endometriosis patients who smoke. Individuals with more severe disease displayed significantly higher levels of PB CD16+ CD8 T cells, which also increased in those with non-menstrual pelvic pain. Dysmenorrhea severity correlated with a progressive increase in PF CD8+ CD56dimCD16Hi NK cells. These variations in specific lymphocyte subsets, namely, within NK and T cells, suggest potential immunological mechanisms in the evolution and clinical presentation of endometriosis.
Collapse
Affiliation(s)
- José Lourenço Reis
- Department of Obstetrics and Gynecology, Hospital da Luz Lisboa, Luz Saúde, 1500-650 Lisboa, Portugal
| | | | - Catarina Martins
- CHRC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
- Immunology Department, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - Miguel Ângelo-Dias
- CHRC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
- Immunology Department, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - Luís Miguel Borrego
- CHRC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
- Immunology Department, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
- Department of Imunoallergy, Hospital da Luz Lisboa, Luz Saúde, 1500-650 Lisboa, Portugal
| | - Jorge Lima
- Department of Obstetrics and Gynecology, Hospital da Luz Lisboa, Luz Saúde, 1500-650 Lisboa, Portugal
- CHRC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
- Immunology Department, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| |
Collapse
|
45
|
Sedloev D, Chen Q, Unglaub JM, Schanda N, Hao Y, Besiridou E, Neuber B, Schmitt A, Raffel S, Liu Y, Janssen M, Müller-Tidow C, Schmitt M, Sauer T. Proteasome inhibition enhances the anti-leukemic efficacy of chimeric antigen receptor (CAR) expressing NK cells against acute myeloid leukemia. J Hematol Oncol 2024; 17:85. [PMID: 39285441 PMCID: PMC11406742 DOI: 10.1186/s13045-024-01604-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/31/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND Relapsed and refractory acute myeloid leukemia (AML) carries a dismal prognosis. CAR T cells have shown limited efficacy in AML, partially due to dysfunctional autologous T cells and the extended time for generation of patient specific CAR T cells. Allogeneic NK cell therapy is a promising alternative, but strategies to enhance efficacy and persistence may be necessary. Proteasome inhibitors (PI) induce changes in the surface proteome which may render malignant cells more vulnerable to NK mediated cytotoxicity. Here, we investigated the potential benefit of combining PIs with CAR-expressing allogeneic NK cells against AML. METHODS We established the IC50 concentrations for Bortezomib and Carfilzomib against several AML cell lines. Surface expression of class-I HLA molecules and stress-associated proteins upon treatment with proteasome inhibitors was determined by multiparameter flow cytometry. Using functional in vitro assays, we explored the therapeutic synergy between pre-treatment with PIs and the anti-leukemic efficacy of NK cells with or without expression of AML-specific CAR constructs against AML cell lines and primary patient samples. Also, we investigated the tolerability and efficacy of a single PI application strategy followed by (CAR-) NK cell infusion in two different murine xenograft models of AML. RESULTS AML cell lines and primary AML patient samples were susceptible to Bortezomib and Carfilzomib mediated cytotoxicity. Conditioned resistance to Azacitidine/Venetoclax did not confer primary resistance to PIs. Treating AML cells with PIs reduced the surface expression of class-I HLA molecules on AML cells in a time-and-dose dependent manner. Stress-associated proteins were upregulated on the transcriptional level and on the cell surface. NK cell mediated killing of AML cells was enhanced in a synergistic manner. PI pre-treatment increased effector-target cell conjugate formation and Interferon-γ secretion, resulting in enhanced NK cell activity against AML cell lines and primary samples in vitro. Expression of CD33- and CD70-specific CARs further improved the antileukemic efficacy. In vivo, Bortezomib pre-treatment followed by CAR-NK cell infusion reduced AML growth, leading to prolonged overall survival. CONCLUSIONS PIs enhance the anti-leukemic efficacy of CAR-expressing allogeneic NK cells against AML in vitro and in vivo, warranting further exploration of this combinatorial treatment within early phase clinical trials.
Collapse
MESH Headings
- Humans
- Killer Cells, Natural/immunology
- Killer Cells, Natural/drug effects
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/drug therapy
- Proteasome Inhibitors/pharmacology
- Proteasome Inhibitors/therapeutic use
- Receptors, Chimeric Antigen/immunology
- Animals
- Mice
- Cell Line, Tumor
- Bortezomib/pharmacology
- Bortezomib/therapeutic use
- Oligopeptides/pharmacology
- Oligopeptides/therapeutic use
- Immunotherapy, Adoptive/methods
- Xenograft Model Antitumor Assays
- Mice, Inbred NOD
- Mice, SCID
- Female
Collapse
Affiliation(s)
- David Sedloev
- Department of Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Qian Chen
- Department of Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Julia M Unglaub
- Department of Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Nicola Schanda
- Department of Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Yao Hao
- Department of Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Eleni Besiridou
- Department of Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Brigitte Neuber
- Department of Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Anita Schmitt
- Department of Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Simon Raffel
- Department of Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Yi Liu
- Department of Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Maike Janssen
- Department of Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Carsten Müller-Tidow
- Department of Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Michael Schmitt
- Department of Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Tim Sauer
- Department of Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, 69120, Heidelberg, Germany.
| |
Collapse
|
46
|
Mukantayev K, Tursunov K, Adish Z, Kanayev D, Tokhtarova L, Nurtleu M, Abirbekov B. Cytotoxic T-lymphocyte antigen 4 and programmed cell death ligand 1 blockade increases the effectiveness of interleukin-15 immunotherapy in a bovine leukemia model. Vet World 2024; 17:2096-2103. [PMID: 39507777 PMCID: PMC11536738 DOI: 10.14202/vetworld.2024.2096-2103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/21/2024] [Indexed: 11/08/2024] Open
Abstract
Background and Aim Bovine interleukin 15 (bIL15) is a potential immunotherapy that can block the spread of bovine leukemia virus (BLV). However, immune checkpoints that maintain body homeostasis may reduce their effectiveness. Thus, an analysis of the effectiveness of bIL15 while blocking negative immune regulators is necessary. We aimed to obtain recombinant bIL15 (rbIL15) and determine its percentage using monoclonal antibodies against bovine cytotoxic T-lymphocyte antigen 4 (CTLA-4) and programmed cell death ligand 1 (PD-L1). To achieve this goal, peripheral blood mononuclear cells (PBMCs) from healthy and BLV+ cattle were treated with bIL15 using a CTLA-4- and PD-L1-blocking algorithm. Materials and Methods The codon-optimized bIL15 gene was synthesized under de novo conditions using polymerase chain reaction (PCR). The synthesized gene was cloned into pET28 and transformed into electrocompetent Escherichia coli BL21 cells; rbIL15 was purified using metal affinity chromatography and analyzed using sodium dodecyl-sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and western blotting. The expression of the Bcl2, STAT3, and STAT5 genes was studied using qualitative PCR. An enzyme-linked immunosorbent assay (ELISA) was used to analyze interferon (IFN)-γ production by rbIL15-treated mononuclear cells. Results Analysis of rbIL15 using SDS-PAGE and western blotting revealed a specific product weighing 24 kDa. The optimal conditions for rbIL15 induction were 0.2 mM isopropyl-β-D-1-galactopyranoside and 37°C. When rbIL15 was added to PBMCs from healthy cattle, the Bcl2, STAT3, and STAT5 genes were expressed. ELISA of the culture medium of rbIL15-treated PBMCs revealed IFN-γ production. When PBMCs from healthy cows were treated with rbIL15, CTLA-4, and PD-L1 blockade together, they did not produce more IFN-γ than the rbIL15 group. Using PBMCs from BLV+ cattle, combination treatment increased IFN-γ production. Conclusion The biological activity of rbIL15 is characterized by the induction of transcription factors and the production of IFN-γ. Using rbIL15 with CTLA-4 and PD-L1 blockade in PBMCs from healthy and BLV+ cows led to the production of a transcription factor and cytokine. The results demonstrate the possibility of using this method to improve immunity and immunological memory in patients with chronic viral infections.
Collapse
Affiliation(s)
- Kanatbek Mukantayev
- Laboratory of Immunochemistry and Immunobiotechnology, National Center for Biotechnology, 010000, Astana, Kazakhstan
| | - Kanat Tursunov
- Laboratory of Immunochemistry and Immunobiotechnology, National Center for Biotechnology, 010000, Astana, Kazakhstan
| | - Zhansaya Adish
- Laboratory of Immunochemistry and Immunobiotechnology, National Center for Biotechnology, 010000, Astana, Kazakhstan
- Department of Natural Sciences, L.N. Gumilyov Eurasian National University, 010008, Astana, Kazakhstan
| | - Darkhan Kanayev
- Laboratory of Immunochemistry and Immunobiotechnology, National Center for Biotechnology, 010000, Astana, Kazakhstan
| | - Laura Tokhtarova
- Laboratory of Immunochemistry and Immunobiotechnology, National Center for Biotechnology, 010000, Astana, Kazakhstan
| | - Malika Nurtleu
- Laboratory of Immunochemistry and Immunobiotechnology, National Center for Biotechnology, 010000, Astana, Kazakhstan
| | - Bisultan Abirbekov
- Laboratory of Immunochemistry and Immunobiotechnology, National Center for Biotechnology, 010000, Astana, Kazakhstan
| |
Collapse
|
47
|
Wang ZB, Zhang X, Fang C, Liu XT, Liao QJ, Wu N, Wang J. Immunotherapy and the ovarian cancer microenvironment: Exploring potential strategies for enhanced treatment efficacy. Immunology 2024; 173:14-32. [PMID: 38618976 DOI: 10.1111/imm.13793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 04/05/2024] [Indexed: 04/16/2024] Open
Abstract
Despite progress in cancer immunotherapy, ovarian cancer (OC) prognosis continues to be disappointing. Recent studies have shed light on how not just tumour cells, but also the complex tumour microenvironment, contribute to this unfavourable outcome of OC immunotherapy. The complexities of the immune microenvironment categorize OC as a 'cold tumour'. Nonetheless, understanding the precise mechanisms through which the microenvironment influences the effectiveness of OC immunotherapy remains an ongoing scientific endeavour. This review primarily aims to dissect the inherent characteristics and behaviours of diverse cells within the immune microenvironment, along with an exploration into its reprogramming and metabolic changes. It is expected that these insights will elucidate the operational dynamics of the immune microenvironment in OC and lay a theoretical groundwork for improving the efficacy of immunotherapy in OC management.
Collapse
Affiliation(s)
- Zhi-Bin Wang
- Hunan Gynecological Tumor Clinical Research Center; Hunan Key Laboratory of Cancer Metabolism; Hunan Cancer Hospital, and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Public Service Platform of Tumor Organoids Technology, Changsha, China
| | - Xiu Zhang
- Hunan Gynecological Tumor Clinical Research Center; Hunan Key Laboratory of Cancer Metabolism; Hunan Cancer Hospital, and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Public Service Platform of Tumor Organoids Technology, Changsha, China
| | - Chao Fang
- Hunan Gynecological Tumor Clinical Research Center; Hunan Key Laboratory of Cancer Metabolism; Hunan Cancer Hospital, and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, China
| | - Xiao-Ting Liu
- The Second People's Hospital of Hunan Province, Changsha, China
| | - Qian-Jin Liao
- Hunan Gynecological Tumor Clinical Research Center; Hunan Key Laboratory of Cancer Metabolism; Hunan Cancer Hospital, and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Public Service Platform of Tumor Organoids Technology, Changsha, China
| | - Nayiyuan Wu
- Hunan Gynecological Tumor Clinical Research Center; Hunan Key Laboratory of Cancer Metabolism; Hunan Cancer Hospital, and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Public Service Platform of Tumor Organoids Technology, Changsha, China
| | - Jing Wang
- Hunan Gynecological Tumor Clinical Research Center; Hunan Key Laboratory of Cancer Metabolism; Hunan Cancer Hospital, and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Public Service Platform of Tumor Organoids Technology, Changsha, China
| |
Collapse
|
48
|
Mikhailova VA, Sokolov DI, Grebenkina PV, Bazhenov DO, Nikolaenkov IP, Kogan IY, Totolian AA. Apoptotic Receptors and CD107a Expression by NK Cells in an Interaction Model with Trophoblast Cells. Curr Issues Mol Biol 2024; 46:8945-8957. [PMID: 39194745 DOI: 10.3390/cimb46080528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/31/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024] Open
Abstract
Natural killer cells (NK cells) exert cytotoxicity towards target cells in several ways, including the expression of apoptosis-mediating ligands (TRAIL, FasL). In addition, NK cells themselves may be susceptible to apoptosis due to the expression of TRAIL receptors. These receptors include TRAIL-R1 (DR4), TRAIL-R2 (DR5), capable of inducing apoptosis, and TRAIL-R3 (DcR1), TRAIL-R4 (DcR2), the so-called "decoy receptors", which lack an intracellular domain initiating activation of caspases. Of particular interest is the interaction of uterine NK cells with cells of fetal origin, trophoblasts, which are potential targets for natural killer cells to carry out cytotoxicity. The aim of this work was to evaluate the expression of proapoptotic receptors and their ligands as well as CD107a expression by NK cells in a model of interaction with trophoblast cells. To evaluate NK cells, we used cells of the NK-92 line; cells of the JEG-3 line were used as target cells. The cytokines IL-1β, IL-15, IL-18, TNFα, IL-10, TGFβ and conditioned media (CM) of the first and third trimester chorionic villi explants were used as inducers. We established that cytokines changed the expression of apoptotic receptors by NK cells: in the presence of TNFα, the amount and intensity of Fas expression increased, while in the presence of TGFβ, the amount and intensity of expression of the DR5 receptor decreased. Soluble chorionic villi factors alter the expression of TRAIL and FasL by NK-92 cells, which can reflect the suppression of the TRAIL-dependent mechanism of apoptosis in the first trimester and stimulating the Fas-dependent mechanism in the third trimester. In the presence of trophoblast cells, the expression of TRAIL and DcR1 by NK cells was reduced compared to intact cells, indicating an inhibitory effect of trophoblast cells on NK cell cytotoxicity. In the presence of chorionic villi CM and trophoblast cells, a reduced number of NK-92 cells expressing DR4 and DR5 was found. Therefore, soluble factors secreted by chorionic villi cells regulate the resistance of NK cells to death by binding TRAIL, likely maintaining their activity at a certain level in case of contact with trophoblast cells.
Collapse
Affiliation(s)
- Valentina A Mikhailova
- FSBSI "The Research Institute of Obstetrics Gynecology and Reproductology Named after D.O.Ott", 199034 Saint-Petersburg, Russia
| | - Dmitry I Sokolov
- FSBSI "The Research Institute of Obstetrics Gynecology and Reproductology Named after D.O.Ott", 199034 Saint-Petersburg, Russia
- Saint-Petersburg Pasteur Institute, 197101 Saint-Petersburg, Russia
| | - Polina V Grebenkina
- FSBSI "The Research Institute of Obstetrics Gynecology and Reproductology Named after D.O.Ott", 199034 Saint-Petersburg, Russia
- Saint-Petersburg Pasteur Institute, 197101 Saint-Petersburg, Russia
| | - Dmitry O Bazhenov
- FSBSI "The Research Institute of Obstetrics Gynecology and Reproductology Named after D.O.Ott", 199034 Saint-Petersburg, Russia
| | - Igor P Nikolaenkov
- FSBSI "The Research Institute of Obstetrics Gynecology and Reproductology Named after D.O.Ott", 199034 Saint-Petersburg, Russia
| | - Igor Yu Kogan
- FSBSI "The Research Institute of Obstetrics Gynecology and Reproductology Named after D.O.Ott", 199034 Saint-Petersburg, Russia
| | - Areg A Totolian
- Saint-Petersburg Pasteur Institute, 197101 Saint-Petersburg, Russia
| |
Collapse
|
49
|
Shanley M, Daher M, Dou J, Li S, Basar R, Rafei H, Dede M, Gumin J, Pantaleόn Garcίa J, Nunez Cortes AK, He S, Jones CM, Acharya S, Fowlkes NW, Xiong D, Singh S, Shaim H, Hicks SC, Liu B, Jain A, Zaman MF, Miao Q, Li Y, Uprety N, Liu E, Muniz-Feliciano L, Deyter GM, Mohanty V, Zhang P, Evans SE, Shpall EJ, Lang FF, Chen K, Rezvani K. Interleukin-21 engineering enhances NK cell activity against glioblastoma via CEBPD. Cancer Cell 2024; 42:1450-1466.e11. [PMID: 39137729 PMCID: PMC11370652 DOI: 10.1016/j.ccell.2024.07.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/31/2024] [Accepted: 07/17/2024] [Indexed: 08/15/2024]
Abstract
Glioblastoma (GBM) is an aggressive brain cancer with limited therapeutic options. Natural killer (NK) cells are innate immune cells with strong anti-tumor activity and may offer a promising treatment strategy for GBM. We compared the anti-GBM activity of NK cells engineered to express interleukin (IL)-15 or IL-21. Using multiple in vivo models, IL-21 NK cells were superior to IL-15 NK cells both in terms of safety and long-term anti-tumor activity, with locoregionally administered IL-15 NK cells proving toxic and ineffective at tumor control. IL-21 NK cells displayed a unique chromatin accessibility signature, with CCAAT/enhancer-binding proteins (C/EBP), especially CEBPD, serving as key transcription factors regulating their enhanced function. Deletion of CEBPD resulted in loss of IL-21 NK cell potency while its overexpression increased NK cell long-term cytotoxicity and metabolic fitness. These results suggest that IL-21, through C/EBP transcription factors, drives epigenetic reprogramming of NK cells, enhancing their anti-tumor efficacy against GBM.
Collapse
Affiliation(s)
- Mayra Shanley
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009, USA
| | - May Daher
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009, USA
| | - Jinzhuang Dou
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009, USA
| | - Sufang Li
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009, USA
| | - Rafet Basar
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009, USA
| | - Hind Rafei
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009, USA
| | - Merve Dede
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009, USA
| | - Joy Gumin
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009, USA
| | - Jezreel Pantaleόn Garcίa
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009, USA
| | - Ana Karen Nunez Cortes
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009, USA
| | - Shan He
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009, USA
| | - Corry M Jones
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009, USA
| | - Sunil Acharya
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009, USA
| | - Natalie W Fowlkes
- Department of Veterinary Medicine and Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009, USA
| | - Donghai Xiong
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009, USA
| | - Sanjay Singh
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009, USA
| | - Hila Shaim
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009, USA
| | - Samantha Claire Hicks
- Department of Veterinary Medicine and Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009, USA
| | - Bin Liu
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009, USA
| | - Abhinav Jain
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009, USA
| | - Mohammad Fayyad Zaman
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009, USA
| | - Qi Miao
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009, USA
| | - Ye Li
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009, USA
| | - Nadima Uprety
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009, USA
| | - Enli Liu
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009, USA
| | - Luis Muniz-Feliciano
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009, USA
| | - Gary M Deyter
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009, USA
| | - Vakul Mohanty
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009, USA
| | - Patrick Zhang
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009, USA
| | - Scott E Evans
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009, USA
| | - Elizabeth J Shpall
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009, USA
| | - Frederick F Lang
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009, USA
| | - Ken Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009, USA
| | - Katayoun Rezvani
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009, USA.
| |
Collapse
|
50
|
Xin Q, Chen Y, Sun X, Li R, Wu Y, Huang X. CAR-T therapy for ovarian cancer: Recent advances and future directions. Biochem Pharmacol 2024; 226:116349. [PMID: 38852648 DOI: 10.1016/j.bcp.2024.116349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/21/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024]
Abstract
Ovarian cancer (OC) is a common gynecological tumor with high mortality, which is difficult to control its progression with conventional treatments and is prone to recurrence. Recent studies have identified OC as an immunogenic tumor that can be recognized by the host immune system. Immunotherapy for OC is being evaluated, but approaches such as immune checkpoint inhibitors have limited efficacy, adoptive cell therapy is an alternative therapy, in which CAR(chimeric antigen receptor)-T therapy has been applied to the clinical treatment of hematological malignancies. In addition, CAR-NK and CAR-macrophage (CAR-M) have also shown great potential in the treatment of solid tumors. Here, we discuss recent advances in preclinical and clinical studies of CAR-T for OC treatment, introduce the efforts made by researchers to modify the structure of CAR in order to achieve effective OC immunotherapy, as well as the research status of CAR-NK and CAR-M, and highlight emerging therapeutic opportunities that can be utilized to improve the survival of patients with OC using CAR-based adoptive cell therapy.
Collapse
Affiliation(s)
- Qianling Xin
- Anhui Women and Children's Medical Center, Hefei Maternal and Child Health Hospital, Hefei, China
| | - Yizhao Chen
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Ministry of Education, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Xiaojing Sun
- Anhui Women and Children's Medical Center, Hefei Maternal and Child Health Hospital, Hefei, China
| | - Ruilin Li
- Department of Pharmacy, The Third Affiliated Hospital of Anhui Medical University, Hefei First People's Hospital, Hefei, China.
| | - Yujing Wu
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Ministry of Education, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China.
| | - Xuegui Huang
- Anhui Women and Children's Medical Center, Hefei Maternal and Child Health Hospital, Hefei, China.
| |
Collapse
|