1
|
Qian Z, Huang Y, Yang N, Fang Z, Zhang Y, Huang Y, Luo M, Ji T, Chen Z, Gao S, Li Y, Yan J, Jiang D, Ruan L, Liu A, Zhang C, Zhang L. miR-34a-5p/MARCHF8/ADAM10 axis in the regulation of vascular endothelial cell dysfunction and senescence. Mech Ageing Dev 2025; 225:112060. [PMID: 40222711 DOI: 10.1016/j.mad.2025.112060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 04/06/2025] [Accepted: 04/10/2025] [Indexed: 04/15/2025]
Abstract
Vascular aging is a key driver of age-related cardiovascular and metabolic diseases, with endothelial dysfunction and senescence as a central mechanism. In our recent study, we observed elevated ADAM10 protein levels in senescent endothelial cells, which worsened endothelial dysfunction and senescence. However, the regulatory mechanisms controlling ADAM10 expression are poorly understood. In this study, we show that ADAM10 undergoes post-transcriptional modification in senescent human umbilical vein endothelial cells (HUVECs), with the E3 ubiquitin ligase MARCHF8 predicted to facilitate its ubiquitination-dependent degradation. We also found that MARCHF8 expression was significantly reduced in senescent HUVECs. Knockdown of MARCHF8 in young HUVECs induced endothelial senescence and impaired key endothelial functions, including migration, proliferation, angiogenesis, and nitric oxide production. Conversely, overexpression of MARCHF8 in senescent HUVECs ameliorated senescence-associated dysfunctions. RNA sequencing analysis revealed that MARCHF8 knockdown disrupted pathways linked to cell senescence and atherosclerosis. In vivo, MARCHF8 overexpression in high-fat diet-fed apoE-/- mice reduced plasma interleukin-6 levels and attenuated atherosclerosis progression. Additionally, miR-34a-5p upregulation in senescence inhibited MARCHF8 expression, compromising its protective effects in delaying endothelial senescence. Collectively, these findings reveal a novel miR-34a-5p/MARCHF8/ADAM10 axis in vascular endothelial senescence, positioning MARCHF8 as a potential biomarker and therapeutic target for vascular aging and related diseases.
Collapse
Affiliation(s)
- Zonghao Qian
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Yuzhen Huang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Ni Yang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Ziwei Fang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Yucong Zhang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Yi Huang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Mandi Luo
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Tianyi Ji
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Zuoguan Chen
- Department of Vascular Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, No. 1 DaHua Road, Beijing 100730, China
| | - Shang Gao
- Department of Vascular Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, No. 1 DaHua Road, Beijing 100730, China
| | - Yongjun Li
- Department of Vascular Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, No. 1 DaHua Road, Beijing 100730, China
| | - Jinhua Yan
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Dingsheng Jiang
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Lei Ruan
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Anding Liu
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China; Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan 430100, China
| | - Cuntai Zhang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China.
| | - Le Zhang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China.
| |
Collapse
|
2
|
Aryal A, Harmon AC, Noël A, Yu Q, Varner KJ, Dugas TR. AhR Activation at the Air-Blood Barrier Alters Systemic microRNA Release After Inhalation of Particulate Matter Containing Environmentally Persistent Free Radicals. Cardiovasc Toxicol 2025; 25:651-665. [PMID: 40214911 PMCID: PMC12018632 DOI: 10.1007/s12012-025-09989-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 03/25/2025] [Indexed: 04/24/2025]
Abstract
Particulate matter containing environmentally persistent free radicals (EPFRs) is formed when organic pollutants are incompletely burned and adsorb to the surface of particles containing redox-active metals. Our prior studies showed that in mice, EPFR inhalation impaired vascular relaxation in a dose- and endothelium-dependent manner. We also observed that activation of the aryl hydrocarbon receptor (AhR) in the alveolar type-II (AT-II) cells that form the air-blood interface stimulates the release of systemic factors that promote endothelial dysfunction in vessels peripheral to the lung. AhR is a recognized regulator of microRNA (miRNA) biogenesis, and miRNA control diverse signaling pathways. We thus hypothesized that systemic EPFR-induced vascular endothelial dysfunction is initiated via AhR activation in AT-II cells, resulting in a systemic release of miRNA. Using a combustion reactor, we generated EPFR of two free radical concentrations-EPFRlo (1016-17 radicals/g particles) and EPFR (1018-19 radicals/g)-and exposed mice by inhalation. EFPR inhalation resulted in changes in a distinct array of miRNA in the plasma, and these miRNAs are linked to multiple systemic effects, including cardiovascular diseases and dysregulation of cellular and molecular pathways associated with cardiovascular dysfunction. We identified 17 miRNA in plasma that were altered dependent upon both AhR activation in AT-II cells and ~ 280 ug/m3 EPFR exposure. Using Ingenuity Pathway Analysis, we found that 5 of these miRNAs have roles in modulating endothelin-1 and endothelial nitric oxide signaling, known regulators of endothelial function. Furthermore, EPFR exposure reduced the expression of lung adherens and gap junction proteins in control mice but not AT-II-AhR deficient mice, and reductions in barrier function may facilitate miRNA release from the lungs. In summary, our findings support that miRNA may be systemic mediators promoting endothelial dysfunction mediated via EPFR-induced AhR activation at the air-blood interface.
Collapse
Affiliation(s)
- Ankit Aryal
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Ashlyn C Harmon
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Alexandra Noël
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Qingzhao Yu
- Biostatistics, School of Public Health, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Kurt J Varner
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Tammy R Dugas
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA.
| |
Collapse
|
3
|
Bellver‐Sanchis A, Ribalta‐Vilella M, Irisarri A, Gehlot P, Choudhary BS, Jana A, Vyas VK, Banerjee DR, Pallàs M, Guerrero A, Griñán‐Ferré C. G9a an Epigenetic Therapeutic Strategy for Neurodegenerative Conditions: From Target Discovery to Clinical Trials. Med Res Rev 2025; 45:985-1015. [PMID: 39763018 PMCID: PMC11976383 DOI: 10.1002/med.22096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 11/29/2024] [Accepted: 12/04/2024] [Indexed: 04/09/2025]
Abstract
This review provides a comprehensive overview of the role of G9a/EHMT2, focusing on its structure and exploring the impact of its pharmacological and/or gene inhibition in various neurological diseases. In addition, we delve into the advancements in the design and synthesis of G9a/EHMT2 inhibitors, which hold promise not only as a treatment for neurodegeneration diseases but also for other conditions, such as cancer and malaria. Besides, we presented the discovery of dual therapeutic approaches based on G9a inhibition and different epigenetic enzymes like histone deacetylases, DNA methyltransferases, and other lysine methyltransferases. Hence, findings offer valuable insights into developing novel and promising therapeutic strategies targeting G9a/EHMT2 for managing these neurological conditions.
Collapse
Affiliation(s)
- Aina Bellver‐Sanchis
- Department of Pharmacology and Therapeutic ChemistryInstitut de Neurociències‐Universitat de BarcelonaBarcelonaSpain
| | - Marta Ribalta‐Vilella
- Department of Pharmacology and Therapeutic ChemistryInstitut de Neurociències‐Universitat de BarcelonaBarcelonaSpain
| | - Alba Irisarri
- Department of Pharmacology and Therapeutic ChemistryInstitut de Neurociències‐Universitat de BarcelonaBarcelonaSpain
| | - Pinky Gehlot
- Department of Pharmaceutical ChemistryInstitute of PharmacyNirma UniversityAhmedabadIndia
| | - Bhanwar Singh Choudhary
- Department of PharmacyCentral University of RajasthanAjmerIndia
- Drug Discovery and Development Centre (H3D)University of Cape TownRondeboschSouth Africa
| | - Abhisek Jana
- Department of ChemistryNational Institute of Technology DurgapurDurgapurIndia
| | - Vivek Kumar Vyas
- Department of Pharmaceutical ChemistryInstitute of PharmacyNirma UniversityAhmedabadIndia
| | - Deb Ranjan Banerjee
- Department of ChemistryNational Institute of Technology DurgapurDurgapurIndia
| | - Mercè Pallàs
- Department of Pharmacology and Therapeutic ChemistryInstitut de Neurociències‐Universitat de BarcelonaBarcelonaSpain
- Instituto de Salud Carlos III, Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| | - Ana Guerrero
- Department of Pharmacology and Therapeutic ChemistryInstitut de Neurociències‐Universitat de BarcelonaBarcelonaSpain
| | - Christian Griñán‐Ferré
- Department of Pharmacology and Therapeutic ChemistryInstitut de Neurociències‐Universitat de BarcelonaBarcelonaSpain
- Instituto de Salud Carlos III, Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| |
Collapse
|
4
|
Yang SH, Zhang SN, Li XZ. Advances in Therapeutic Targets and Traditional Chinese Medicine for Cardiomyopathy. Phytother Res 2025. [PMID: 40219655 DOI: 10.1002/ptr.8494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/21/2025] [Accepted: 03/15/2025] [Indexed: 04/14/2025]
Abstract
Cardiomyopathy is a kind of heart disease caused by multiple factors of myocardial structure and function disorders. In this paper, we summarized and found the targets and mechanisms with therapeutic potential by querying the relevant literature on cardiomyopathy in the past 10 years from databases. Numerous pieces of literature have proven the significant efficacy of traditional Chinese medicine (TCM) in the treatment of cardiomyopathy. Through effective screening methods, we quickly identified a variety of commonly used Chinese herbs such as Astragalus, Danggui, Danshen, Pueraria Root, and ginseng, and further analyzed the active ingredients that play key roles in the treatment of cardiomyopathy. Specifically, our study revealed significant interaction activity at the molecular level of active ingredients such as calycosin, formononetin, and beta-sitosterol, which were strongly validated by sophisticated molecular docking experiments. These active ingredients can be precisely combined with 14 core targets (such as AKT1, TP53, IL6, and other key proteins), which not only reveals their potential therapeutic mechanisms but also provides direct and solid scientific support for the application of TCM in the treatment of cardiomyopathy. It is helpful to develop new TCM preparations further and provide more treatment options for patients with cardiomyopathy.
Collapse
Affiliation(s)
- Si-Hui Yang
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guian New Area, People's Republic of China
| | - Shuai-Nan Zhang
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guian New Area, People's Republic of China
| | - Xu-Zhao Li
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guian New Area, People's Republic of China
| |
Collapse
|
5
|
Xue B, Qiao B, Jia L, Chi J, Su M, Song Y, Du J. A Sensitive and Fast microRNA Detection Platform Based on CRlSPR-Cas12a Coupled with Hybridization Chain Reaction and Photonic Crystal Microarray. BIOSENSORS 2025; 15:233. [PMID: 40277547 PMCID: PMC12024684 DOI: 10.3390/bios15040233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/25/2025] [Accepted: 03/31/2025] [Indexed: 04/26/2025]
Abstract
Changes in microRNA (miRNA) levels are closely associated with the pathological processes of many diseases. The sensitive and fast detection of miRNAs is critical for diagnosis and prognosis. Here, we report a platform employing CRISPR/Cas12a to recognize and report changes in miRNA levels while avoiding complex multi-thermal cycling procedures. A non-enzyme-dependent hybridization chain reaction (HCR) was used to convert the miRNA signal into double-stranded DNA, which contained a Cas12a activation sequence. The target sequence was amplified simply and isothermally, enabling the test to be executed at a constant temperature of 37 °C. The detection platform had the capacity to measure concentrations down to the picomolar level, and the target miRNA could be distinguished at the nanomolar level. By using photonic crystal microarrays with a stopband-matched emission spectrum of the fluorescent-quencher modified reporter, the fluorescence signal was moderately enhanced to increase the sensitivity. With this enhancement, analyzable fluorescence results were obtained in 15 min. The HCR and Cas12a cleavage processes could be conducted in a single tube by separating the two procedures into the bottom and the cap. We verified the sensitivity and specificity of this one-pot system, and both were comparable to those of the two-step method. Overall, our study produced a fast and sensitive miRNA detection platform based on a CRISPR/Cas12a system and enzyme-free HCR amplification. This platform may serve as a potential solution for miRNA detection in clinical practice.
Collapse
Affiliation(s)
- Bingjie Xue
- Beijing Anzhen Hospital, Capital Medical University, Key Laboratory of Remodeling-Related Cardio-Vascular Diseases, Ministry of Education, Beijing Collaborative Innovation Centre for Cardiovascular Disorders, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Disease, No. 2 Anzhen Road, Chaoyang District, Beijing 100029, China; (B.X.); (B.Q.); (L.J.)
| | - Bokang Qiao
- Beijing Anzhen Hospital, Capital Medical University, Key Laboratory of Remodeling-Related Cardio-Vascular Diseases, Ministry of Education, Beijing Collaborative Innovation Centre for Cardiovascular Disorders, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Disease, No. 2 Anzhen Road, Chaoyang District, Beijing 100029, China; (B.X.); (B.Q.); (L.J.)
| | - Lixin Jia
- Beijing Anzhen Hospital, Capital Medical University, Key Laboratory of Remodeling-Related Cardio-Vascular Diseases, Ministry of Education, Beijing Collaborative Innovation Centre for Cardiovascular Disorders, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Disease, No. 2 Anzhen Road, Chaoyang District, Beijing 100029, China; (B.X.); (B.Q.); (L.J.)
- Institute for Biological Therapy, Henan Academy of Innovations in Medical Science, Zhengzhou, 451163, China
| | - Jimei Chi
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS)/Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing 100190, China; (J.C.); (M.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meng Su
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS)/Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing 100190, China; (J.C.); (M.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanlin Song
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS)/Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing 100190, China; (J.C.); (M.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Du
- Beijing Anzhen Hospital, Capital Medical University, Key Laboratory of Remodeling-Related Cardio-Vascular Diseases, Ministry of Education, Beijing Collaborative Innovation Centre for Cardiovascular Disorders, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Disease, No. 2 Anzhen Road, Chaoyang District, Beijing 100029, China; (B.X.); (B.Q.); (L.J.)
| |
Collapse
|
6
|
Wu H, Hui Y, Qian X, Wang X, Xu J, Wang F, Pan S, Chen K, Liu Z, Gao W, Bai J, Liang G. Exosomes derived from mesenchymal stem cells ameliorate impaired glucose metabolism in myocardial Ischemia/reperfusion injury through miR-132-3p/PTEN/AKT pathway. Cell Cycle 2025:1-20. [PMID: 40181235 DOI: 10.1080/15384101.2025.2485834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 02/08/2025] [Accepted: 02/10/2025] [Indexed: 04/05/2025] Open
Abstract
Exosomes secreted by mesenchymal stem cells (MSCs) have been considered as a novel biological therapy for myocardial ischemia/reperfusion injury (MIRI). However, the underlying mechanism of exosomes has not been completely established, especially in the early stage of MIRI. In this study, we primarily investigated the protective effect of exosomes on MIRI from both in vitro and ex vivo perspectives. Bioinformatic analysis was conducted to identify exosomal miRNA associated with myocardial protection, Genes and proteins related to functional studies and myocardial energy metabolism were analyzed and evaluated using techniques such as Polymerase Chain Re-action (PCR), Western blotting, double luciferase biochemical techniques, flow cytometry assay, etc. It was discovered that exosomes ameliorated cardiomyocyte injury t by delivery of miR-132-3p.This process reduced the expression of Phosphatase and tensin homolog (PTEN) mRNA and protein, enhanced the expression of phosphorylated protein kinase (pAKT), regulated the insulin signaling pathway, facilitated intracellular Glucose transporter 4 (GLUT4) protein membrane translocation, and enhanced glucose uptake and Adenosine Triphosphate (ATP) production. This study confirmed, for the first time, that MSC-EXO can provide myocardial protection in the early stages of MIRI through miR-132/PTEN/AKT pathway. This research establishes a theoretical and experimental foundation for the clinical application of MSC-derived exosomes.
Collapse
Affiliation(s)
- Hongkun Wu
- School of basic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
- Center for Translational Medicine, Guizhou Medical University, Guiyang, Guizhou, China
- Department of Cardiac Surgery, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Yongpeng Hui
- Center for Translational Medicine, Guizhou Medical University, Guiyang, Guizhou, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Xingkai Qian
- Center for Translational Medicine, Guizhou Medical University, Guiyang, Guizhou, China
- Department of Cardiac Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Xueting Wang
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, University Town, Guiyang, China
| | - Jianwei Xu
- National Guizhou Joint Engineering Laboratory for Cell Engineering and Biomedicine Technique, Center for Tissue Engineering and Stem Cell Research, Guizhou Province Key Laboratory of Regenerative Medicine, Guizhou Medical University, Guiyang, China
| | - Feng Wang
- Center for Translational Medicine, Guizhou Medical University, Guiyang, Guizhou, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Sisi Pan
- Department of Cardiac Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Kaiyuan Chen
- Center for Translational Medicine, Guizhou Medical University, Guiyang, Guizhou, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Zhou Liu
- School of basic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
- Center for Translational Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Weilong Gao
- School of basic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
- Center for Translational Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Jue Bai
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, China
- Department of Cardiac Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Guiyou Liang
- Department of Cardiac Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| |
Collapse
|
7
|
Chansaenroj J, Kornsuthisopon C, Chansaenroj A, Samaranayake LP, Fan Y, Osathanon T. Potential of Dental Pulp Stem Cell Exosomes: Unveiling miRNA-Driven Regenerative Mechanisms. Int Dent J 2025; 75:415-425. [PMID: 39368923 PMCID: PMC11976581 DOI: 10.1016/j.identj.2024.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/21/2024] [Accepted: 08/24/2024] [Indexed: 10/07/2024] Open
Abstract
Human dental pulp stem cells (hDPSCs) have emerged as a promising resource in regenerative medicine due to their unique ability to secrete exosomes containing a diverse array of bioactive molecules, particularly microRNAs (miRNAs). These exosomes appear to be essential for stimulating regenerative mechanisms, especially those associated with stem cell pluripotency and tissue repair. However, several challenges such as cargo specificity and delivery efficiency need to be addressed to maximise the therapeutic potential of hDPSC-derived exosomes and miRNA-based therapies. This narrative review explores hDPSCs' potential in regenerative medicine by examining their role in tissue engineering, secretome composition, exosome function, exosomal miRNA in diverse models, and miRNA profiling. Therefore, it is imperative to sustain ongoing research on miRNA to advance clinical applications in the field of regenerative medicine and dentistry. A comprehensive understanding of the specific miRNA composition within hDPSC-derived exosomes is essential to elucidate their mechanistic roles in diverse disease states and to inform the development of innovative therapeutic strategies. These findings hold significant potential for the development of innovative regenerative therapies and emphasises the importance of establishing a strong connection between translational research discoveries and clinical applications. hDPSC-derived exosomes and miRNA-based therapies play a crucial role in immune modulation, regenerative dentistry, and tissue repair.
Collapse
Affiliation(s)
- Jira Chansaenroj
- Center of Excellence for Dental Stem Cell Biology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Chatvadee Kornsuthisopon
- Center of Excellence for Dental Stem Cell Biology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand; Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.
| | - Ajjima Chansaenroj
- Department of Animal Husbandry, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Lakshman P Samaranayake
- Office of Research Affairs, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Yi Fan
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Thanaphum Osathanon
- Center of Excellence for Dental Stem Cell Biology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand; Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
8
|
Liu MX, Zhang HF, Liu T, Liu JH, Zhang LQ, Zhu JZ. Abnormal expression of miR-454-3p in type 2 diabetes mellitus induces dysfunction of pancreatic β cells by regulating Yy1. Diab Vasc Dis Res 2025; 22:14791641251335923. [PMID: 40245279 PMCID: PMC12033466 DOI: 10.1177/14791641251335923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/25/2025] [Accepted: 04/03/2025] [Indexed: 04/19/2025] Open
Abstract
ObjectiveImpairment of pancreatic β cells is a pathophysiological feature of type 2 diabetes mellitus (T2DM). However, whether abnormally dysregulated miR-454-3p in T2DM is related to the dysfunction of pancreatic β cell remains to be further investigated.MethodsFirst, T2DM patients and healthy subjects were recruited to measure miR-454-3p. Subsequently, pancreatic β cells were cultured with high glucose. The role of miR-454-3p in insulin synthesis, secretion, cell proliferation, and apoptosis were investigated by RT-qPCR, Glucose-stimulated insulin secretion determination, cell counting kit-8, and flow cytometry assays. The target mRNA of miR-454-3p was predicted using bioinformatics software. Then, the targeted binding relationships between the above two factors were verified through RNA Immunoprecipitation and Dual-Luciferase Reporter assays.ResultsThe expression of miR-454-3p was increased in T2DM patients and pancreatic β cells cultured with high glucose. Moreover, miR-454-3p was positively correlated with FPG and HbA1c levels in patients. In cell experiments, miR-454-3p inhibitors significantly improved the function of pancreatic β cells, including increased insulin synthesis and secretion, and promoted proliferation. Moreover, silencing Yy1 reversed the protective effect of miR-454-3p inhibitors on pancreatic β cells.ConclusionmiR-454-3p, which is dysregulated in T2DM, promotes the damage of pancreatic β cells by regulating Yy1, thus aggravating T2DM.
Collapse
Affiliation(s)
- Mei-xiao Liu
- Department of Basic Medicine, Cangzhou Medical College, China
| | - Hai-feng Zhang
- Department of Basic Medicine, Cangzhou Medical College, China
| | - Ting Liu
- Department of Diabetes, Cangzhou Hospital of Integrated TCM-WM, China
| | - Jian-hui Liu
- Department of Basic Medicine, Cangzhou Medical College, China
| | - Lin-qi Zhang
- Department of Chinese Medicine, Xingtai Medical College, Cangzhou, China
| | - Jian-zhong Zhu
- Department of Basic Medicine, Cangzhou Medical College, China
| |
Collapse
|
9
|
Mäntylä T, Wang C, Hänninen M, Immonen K, Jäntti T, Lassus J, Tikkanen I, Pulkki K, Devaux Y, Harjola VP, Lakkisto P, CardShock Study Investigators 1. Circulating levels of miR-20b-5p are associated with survival in cardiogenic shock. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY PLUS 2025; 11:100284. [PMID: 39927096 PMCID: PMC11804825 DOI: 10.1016/j.jmccpl.2025.100284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 01/16/2025] [Accepted: 01/16/2025] [Indexed: 02/11/2025]
Abstract
Cardiogenic shock (CS) is a medical emergency with high in-hospital mortality. New biomarkers are needed to identify patients at a greater risk of adverse outcomes. This study aimed to investigate the prognostic potential of microRNAs (miRNAs) in assessment of the outcome of cardiogenic shock. Circulating miRNA levels were measured by quantitative PCR in plasma samples collected at baseline from 165 patients of the multicenter, prospective, observational CardShock study and compared between in-hospital and 90-day survivors and non-survivors. Of the 10 studied miRNAs, median levels of miR-20b-5p at baseline were significantly higher in in-hospital and 90-day survivors compared to non-survivors [median 0.014 arbitrary units (AU) (interquartile range (IQR) 0.003-0.024) vs. 0.008 AU (IQR 0.001-0.015), p = 0.013] and [0.015 AU (IQR 0.003-0.025) vs. 0.010 AU (IQR 0.001-0.015), p = 0.012], respectively. In Cox regression analysis, miR-20b-5p levels in the highest quartile were significantly associated with 90-day survival (adjusted hazard ratio 2.47 (95 % confidence interval 1.16-5.28), p = 0.019) when adjusted for CardShock Risk Score variables (age, confusion at presentation, previous myocardial infarction or coronary artery bypass grafting, acute coronary syndrome (ACS) etiology, left ventricular ejection fraction, lactate, and estimated glomerular filtration rate). A similar association of highest quartile miR-20b-5p levels with 90-day survival was also confirmed in ACS patient subcohort (79 % of CS patients). The results of this study indicate that circulating levels of miR-20b-5p at baseline could help in assessing in-hospital and 90-day survival in CS patients.
Collapse
Affiliation(s)
- Tuomas Mäntylä
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
- Department of Clinical Chemistry and Hematology, University of Helsinki and Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Chunguang Wang
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Mikko Hänninen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Katariina Immonen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Toni Jäntti
- Department of Cardiology, University of Helsinki and Heart and Lung Center, Helsinki University Hospital, Helsinki, Finland
| | - Johan Lassus
- Department of Cardiology, University of Helsinki and Heart and Lung Center, Helsinki University Hospital, Helsinki, Finland
| | - Ilkka Tikkanen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
- Abdominal Center, Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Kari Pulkki
- Department of Clinical Chemistry and Hematology, University of Helsinki and Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Yvan Devaux
- Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Veli-Pekka Harjola
- Division of Emergency Medicine, University of Helsinki, Department of Emergency Services and Medicine, Helsinki University Hospital, Helsinki, Finland
| | - Päivi Lakkisto
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
- Department of Clinical Chemistry and Hematology, University of Helsinki and Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - CardShock Study Investigators1
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
- Department of Clinical Chemistry and Hematology, University of Helsinki and Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
- Department of Cardiology, University of Helsinki and Heart and Lung Center, Helsinki University Hospital, Helsinki, Finland
- Abdominal Center, Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, Strassen, Luxembourg
- Division of Emergency Medicine, University of Helsinki, Department of Emergency Services and Medicine, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
10
|
Zhang RL, Wang WM, Li JQ, Li RW, Zhang J, Wu Y, Liu Y. The role of miR-155 in cardiovascular diseases: Potential diagnostic and therapeutic targets. INTERNATIONAL JOURNAL OF CARDIOLOGY. CARDIOVASCULAR RISK AND PREVENTION 2025; 24:200355. [PMID: 39760132 PMCID: PMC11699627 DOI: 10.1016/j.ijcrp.2024.200355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/21/2024] [Accepted: 12/05/2024] [Indexed: 01/07/2025]
Abstract
Cardiovascular diseases (CVDs), such as atherosclerotic cardiovascular diseases, heart failure (HF), and acute coronary syndrome, represent a significant threat to global health and impose considerable socioeconomic burdens. The intricate pathogenesis of CVD involves various regulatory mechanisms, among which microRNAs (miRNAs) have emerged as critical posttranscriptional regulators. In particular, miR-155 has demonstrated differential expression patterns across a spectrum of CVD and is implicated in the etiology and progression of arterial disorders. This systematic review synthesizes current evidence on the multifaceted roles of miR-155 in the modulation of genes and pathological processes associated with CVD. We delineate the potential of miR-155 as a diagnostic biomarker and therapeutic target, highlighting its significant regulatory influence on conditions such as atherosclerosis, aneurysm, hypertension, HF, myocardial hypertrophy, and oxidative stress. Our analysis underscores the transformative potential of miR-155 as a target for intervention in cardiovascular medicine, warranting further investigation into its clinical applicability.
Collapse
Affiliation(s)
- Rui-Lin Zhang
- Department of Vascular Surgery, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Wei-Ming Wang
- Department of Vascular Surgery, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital, Southwest Medical University, 646000, Luzhou, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases) Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China
- Department of General Surgery, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Ji-Qiang Li
- Department of Vascular Surgery, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Run-Wen Li
- Department of Vascular Surgery, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Jie Zhang
- Department of Vascular Surgery, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Ya Wu
- Department of Vascular Surgery, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital, Southwest Medical University, 646000, Luzhou, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases) Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China
- Department of General Surgery, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Yong Liu
- Department of Vascular Surgery, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital, Southwest Medical University, 646000, Luzhou, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases) Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China
- Department of General Surgery, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
| |
Collapse
|
11
|
Lei W, Yiming S, Qiang P, Xin C, Peng G, Baofeng Z. Unleashing the Neurotherapeutic Potential: The Crucial Role of miR-206-3p in Facilitating Hsp90aa1-Mediated Central Nervous System Injuries During Heat Stroke. Mol Neurobiol 2025; 62:1433-1450. [PMID: 38995443 DOI: 10.1007/s12035-024-04342-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 07/01/2024] [Indexed: 07/13/2024]
Abstract
This study aims to explore the molecular mechanisms of miR-206-3p in regulating Hsp90aa1 and its involvement in the central nervous system (CNS) injury in heat stroke. Weighted gene co-expression network analysis (WGCNA) was performed on the GSE64778 dataset of heat stroke to identify module genes most closely associated with disease characteristics. Through the selection of key genes and predicting upstream miRNAs using RNAInter and miRWalk databases, the regulatory relationship between miR-206-3p and Hsp90aa1 was determined. Through in vitro experiments, various methods, including bioinformatics analysis, dual-luciferase reporter gene assay, RIP experiment, and RNA pull-down experiment, were utilized to validate this regulatory relationship. Furthermore, functional experiments, including CCK-8 assay to test neuron cell viability and flow cytometry to assess neuron apoptosis levels, confirmed the role of miR-206-3p. Transmission electron microscopy, real-time quantitative PCR, DCFH-DA staining, and ATP assay were employed to verify neuronal mitochondrial damage. Heat stroke rat models were constructed, and mNSS scoring and cresyl violet staining were utilized to assess neural functional impairment. Biochemical experiments were conducted to evaluate inflammation, brain water content, and histopathological changes in brain tissue using H&E staining. TUNEL staining was applied to detect neuronal apoptosis in brain tissue. RT-qPCR and Western blot were performed to measure gene and protein expression levels, further validating the regulatory relationship in vivo. Bioinformatics analysis indicated that miR-206-3p regulation of Hsp90aa1 may be involved in CNS injury in heat stroke. In vivo, animal experiments demonstrated that miR-206-3p and Hsp90aa1 co-localized in neurons of the rat hippocampal CA3 region, and with prolonged heat stress, the expression of miR-206-3p gradually increased while the expression of Hsp90aa1 gradually decreased. Further in vitro cellular mechanism validation and functional experiments confirmed that miR-206-3p could inhibit neuronal cell viability and promote apoptosis and mitochondrial damage by targeting Hsp90aa1. In vivo, experiments confirmed that miR-206-3p promotes CNS injury in heat stroke. This study revealed the regulatory relationship between miR-206-3p and Hsp90aa1, suggesting that miR-206-3p could regulate the expression of Hsp90aa1, inhibit neuronal cell viability, and promote apoptosis, thereby contributing to CNS injury in heat stroke.
Collapse
Affiliation(s)
- Wang Lei
- Department of Emergency Medicine, Nantong First People's Hospital, Nantong, 226001, Jiangsu, China
| | - Shen Yiming
- Department of Emergency Medicine, Nantong First People's Hospital, Nantong, 226001, Jiangsu, China
| | - Peng Qiang
- Department of Emergency Medicine, Nantong First People's Hospital, Nantong, 226001, Jiangsu, China
| | - Chu Xin
- Department of Emergency Medicine, Nantong First People's Hospital, Nantong, 226001, Jiangsu, China
| | - Gu Peng
- Department of Emergency Medicine, Nantong First People's Hospital, Nantong, 226001, Jiangsu, China
| | - Zhu Baofeng
- Department of Emergency Medicine, Nantong First People's Hospital, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
12
|
Emerson JI, Shi W, Paredes-Larios J, Walker WG, Hutton JE, Cristea IM, Marzluff WF, Conlon FL. X-Chromosome-Linked miRNAs Regulate Sex Differences in Cardiac Physiology. Circ Res 2025; 136:258-275. [PMID: 39772608 PMCID: PMC11781965 DOI: 10.1161/circresaha.124.325447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/04/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025]
Abstract
BACKGROUND Males and females exhibit distinct anatomic and functional characteristics of the heart, predisposing them to specific disease states. METHODS We identified microRNAs (miRNAs/miR) with sex-differential expression in mouse hearts. RESULTS Four conserved miRNAs are present in a single locus on the X-chromosome and are expressed at higher levels in females than males. We show miRNA, miR-871, is responsible for decreased expression of the protein SRL (sarcalumenin) in females. SRL is involved in calcium signaling, and we show it contributes to differences in electrophysiology between males and females. miR-871 overexpression mimics the effects of the cardiac physiology of conditional cardiomyocyte-specific Srl-null mice. Inhibiting miR-871 with an antagomir in females shortened ventricular repolarization. The human orthologue of miR-871, miR-888, coevolved with the SRL 3' untranslated region and regulates human SRL. CONCLUSIONS These data highlight the importance of sex-differential miRNA mechanisms in mediating sex-specific functions and their potential relevance to human cardiac diseases.
Collapse
Affiliation(s)
- James I. Emerson
- Department of Biochemistry & Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Wei Shi
- Department of Biology and Genetics, McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jose Paredes-Larios
- Department of Biology and Genetics, McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - William G. Walker
- Department of Biology and Genetics, McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Josiah E. Hutton
- Department of Molecular Biology, Princeton University, Lew Thomas Laboratory, Princeton, NJ 08544, USA
| | - Ileana M. Cristea
- Department of Molecular Biology, Princeton University, Lew Thomas Laboratory, Princeton, NJ 08544, USA
| | - William F. Marzluff
- Department of Biochemistry & Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Biology and Genetics, McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
- Integrative Program for Biological and Genome Science, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Frank L. Conlon
- Department of Biology and Genetics, McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
- Integrative Program for Biological and Genome Science, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
13
|
Zare N, Dana N, Mosayebi A, Vaseghi G, Javanmard SH. Evaluation of miR-146a as a potential biomarker for diagnosis of cardiotoxicity induced by chemotherapy in patients with breast cancer. JOURNAL OF RESEARCH IN MEDICAL SCIENCES : THE OFFICIAL JOURNAL OF ISFAHAN UNIVERSITY OF MEDICAL SCIENCES 2025; 30:4. [PMID: 40200966 PMCID: PMC11974593 DOI: 10.4103/jrms.jrms_840_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 07/01/2023] [Accepted: 10/25/2023] [Indexed: 04/10/2025]
Abstract
Background Cardiotoxicity from chemotherapy may result in cardiomyopathy and heart failure. Clinicians can use the evaluation of cardiotoxicity-specific biomarkers, such as microRNA, as a tool for the early detection of cardiotoxicity. The study's objective was to assess miR-146a levels as a potential biomarker for the detection of cardiotoxicity brought on by chemotherapy in patients with breast cancer. Materials and Methods Using quantitative reverse transcription-polymerase chain reaction, the levels of miR-146a were assessed in the blood of 37 breast cancer patients receiving anthracyclines without cardiotoxicity and 33 breast cancer patients experiencing cardiotoxicity brought on by chemotherapy after chemotherapy. Left ventricular ejection fraction (LVEF) ≥50% was used to define heart failure by echocardiography. Results MiR-146a did not show any significant difference in expression between these two study groups (P = 0.48, t-test). The expression level of miR-146a was not significantly associated with LVEF, age, and body mass index (P > 0.05), according to Pearson correlation. Conclusion MiR-146a may be a diagnostic or prognostic biomarker for cardiotoxicity brought on by chemotherapy, even though there was no discernible difference in the expression level of miR-146a between the control group and the breast cancer patients who were experiencing this side effect of chemotherapy. Therefore, miR-146a expression needs to be examined in a sizable cohort of breast cancer patients who are experiencing cardiotoxicity brought on by chemotherapy.
Collapse
Affiliation(s)
- Nasrin Zare
- Clinical Research Development Centre, Islamic Azad University, Najafabad Branch, Najafabad, Iran
| | - Nasim Dana
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Azam Mosayebi
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Golnaz Vaseghi
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
- Metabolomics and Genomics Research Center, Cellular and Molecular Institute, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Cao Q, Dong Z, Xi Y, Zhong J, Huang J, Yang Q. Construction of a potentially functional long noncoding RNA-microRNA-mRNA network in diabetic cardiomyopathy. JOURNAL OF RESEARCH IN MEDICAL SCIENCES : THE OFFICIAL JOURNAL OF ISFAHAN UNIVERSITY OF MEDICAL SCIENCES 2024; 29:74. [PMID: 39871870 PMCID: PMC11771823 DOI: 10.4103/jrms.jrms_205_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/02/2024] [Accepted: 09/20/2024] [Indexed: 01/29/2025]
Abstract
Background Diabetic cardiomyopathy (DCM) is a severe complication among patients with Type 2 diabetes, significantly increasing heart failure risk and mortality. Despite various implicated mechanisms, effective DCM treatments remain elusive. This study aimed to construct a comprehensive competing endogenous RNA (ceRNA) network in DCM using bioinformatics analysis. Materials and Methods Three expression profiles datasets (GSE161827, GSE161931, and GSE241166) were collected from gene expression omnibus database and then integrated for the identification of differentially expressed genes (DEGs). Gene Ontology, Kyoto Encyclopedia of Gene and Genome pathway analysis, and Gene set enrichment analysis (GSEA) were employed for functional analysis. Protein-protein interaction (PPI) network and hub genes were also identified. The ceRNA regulatory networks were constructed based on interaction between long noncoding RNA (lncRNA) and DEGs, microRNA (miRNA) and DEGs, as predicted by public available databases. Results A total of 105 DEGs, including 44 upregulated and 61 downregulated genes were identified to be associated with DCM. Functional enrichment analysis showed that fatty acid metabolism pathway and inflammatory responses were significantly enriched in DCM. A total of 56 interactions between miRNA with DEGs, and 27 interactions between lncRNA with miRNA was predicted. Besides, a ceRNA network includes 9 mRNA, 17 miRNA and 10 lncRNA was constructed, among which Cdh20 and Cacna2d2 were hub genes in PPI network. Conclusion The identified hub genes and ceRNA network components provide valuable insights into DCM biology and offer potential diagnostic biomarkers and therapeutic targets for further investigation. Further experimental validation and clinical studies are warranted to translate these findings into clinical applications.
Collapse
Affiliation(s)
- Qiwen Cao
- Department of Endocrinology, Bin Hai Wan Central Hospital of Dongguan, Dongguan, China
| | - Zhihui Dong
- Department of Cardiology, Bin Hai Wan Central Hospital of Dongguan, Dongguan, China
| | - Yangbo Xi
- Department of Cardiology, Bin Hai Wan Central Hospital of Dongguan, Dongguan, China
| | - Jiana Zhong
- Department of Endocrinology, Bin Hai Wan Central Hospital of Dongguan, Dongguan, China
| | - Jianzhong Huang
- Central Laboratory, Bin Hai Wan Central Hospital of Dongguan, Dongguan, China
| | - Qunfeng Yang
- Department of Endocrinology, Bin Hai Wan Central Hospital of Dongguan, Dongguan, China
| |
Collapse
|
15
|
Chen X, Wang S, Hou W, Zhang Y, Hou Y, Tong H, Zhang X, Liu Y, Yang R, Li X, Fang Q, Fan J. Decellularized adipose matrix hydrogel-based in situ delivery of antagomiR-150-5p for rat abdominal aortic aneurysm therapy. Mater Today Bio 2024; 29:101350. [PMID: 39677522 PMCID: PMC11638622 DOI: 10.1016/j.mtbio.2024.101350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/11/2024] [Accepted: 11/17/2024] [Indexed: 12/17/2024] Open
Abstract
Abdominal aortic aneurysm (AAA) is a progressive aortic disease featured by inflammation, vascular smooth muscle cells (VSMCs) depletion, and elastin degradation. MicroRNAs were related to AAA formation, which bring the approach for precise and targeted drug therapy for AAA. We developed a new strategy based on decellularized adipose matrix (DAM) hydrogel immobilized on the adventitia to release antagomiR-150-5p for preventing the AAA development. In this study, Cacl2-induced and elastase-induced rat AAA models were established. We found that miR-150-5p was upregulated while Notch3 was downregulated in two rat AAA models. Then a mold was designed for shaping hydrogel for miR-150-5p delivery around the abdominal aorta. Interestingly, inhibition of miR-150-5p in AAA by local release of antagomiR-150-5p with DAM hydrogel significantly prevented aortic dilation and elastin degradation. Moreover, inflammatory cell infiltration, the expression of inflammatory cytokines (MCP-1, TNF-α, and NF-κB (p65)), and matrix metalloproteinases (MMP-2, MMP-9) were increased while Notch3 and α-SMA were decreased in rat AAA, which can be attenuated by antagomiR-150-5p treatment. In VSMCs with TNF-α stimulation, we further demonstrated that inhibition of miR-150-5p downregulated NF-κB (p65), MMP-2, and MMP-9 and upregulated elastin via Notch3. This work presents a translational potential strategy for AAA repair via DAM hydrogel sustained release of antagomiR-150-5p, and highlights the mechanism of miR-150-5p during AAA progression by regulating Notch3.
Collapse
Affiliation(s)
- Xin Chen
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, PR China
| | - Shoushuai Wang
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, PR China
- Department of Radiology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, 570311, PR China
| | - Weijian Hou
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, PR China
| | - Yanhui Zhang
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, PR China
| | - Yapeng Hou
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, PR China
| | - Hao Tong
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, PR China
| | - Xiaoxin Zhang
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, PR China
| | - Yue Liu
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, PR China
| | - Ruoxuan Yang
- Department of Dental Implantology, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, Liaoning Province, PR China
| | - Xiang Li
- Department of Cell Biology, School of Life Sciences, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, PR China
| | - Qin Fang
- Cardiac Surgery, First Hospital of China Medical University, Shenyang, Liaoning Province, 110001, PR China
| | - Jun Fan
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, PR China
| |
Collapse
|
16
|
Yue L, Xu H. MicroRNA-200c promotes trophoblast cell dysfunction via inhibition of PI3K/Akt signaling in unexplained recurrent spontaneous abortion. Reprod Biol 2024; 24:100951. [PMID: 39243437 DOI: 10.1016/j.repbio.2024.100951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 07/24/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024]
Abstract
Dysfunction in trophoblast cells is closely associated with the development of recurrent spontaneous abortion (RSA). Previous reports have indicated that microRNA (miR)-200c was upregulated in the serum of patients who have had abortions. This study aimed to investigate the regulatory effects and mechanisms of miR-200c in trophoblast cells. The human extravillous trophoblast cell line HTR-8/SVneo was either subjected to knockdown or overexpression of miR-200c, and its levels were measured using RT-qPCR. The cell behaviors of HTR-8/SVneo were assessed using CCK-8, Transwell, wound healing assays, and flow cytometry. Western blotting was used to detect the protein levels of Ki67, Bcl-2, Bax, MMP2/9, and PI3K/Akt-related markers. The findings revealed that miR-200c levels were higher in the villous tissues of URSA patients. Depletion of miR-200c impeded HTR-8/SVneo cell apoptosis and enhanced cell migration, invasiveness, and proliferation, while overexpression of miR-200c exhibited the opposite effects. The data suggested that mechanistically, miR-200c inactivated PI3K/Akt signaling in trophoblast cells. Furthermore, rescue experiments demonstrated that blocking PI3K/Akt signaling reversed the effects of miR-200c depletion on HTR-8/SVneo cell behavior. Therefore, miR-200c depletion can potentially improve trophoblast cell function by activating PI3K/Akt signaling.
Collapse
Affiliation(s)
- Lei Yue
- Department of Obstetrics and Gynecology, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China.
| | - Hui Xu
- Department of Obstetrics and Gynecology, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| |
Collapse
|
17
|
Alissa M, Aldurayhim M, Abdulaziz O, Alsalmi O, Awad A, Algopishi UB, Alharbi S, Safhi AY, Khan KH, Uffar C. From molecules to heart regeneration: Understanding the complex and profound role of non-coding RNAs in stimulating cardiomyocyte proliferation for cardiac repair. Curr Probl Cardiol 2024; 49:102857. [PMID: 39306148 DOI: 10.1016/j.cpcardiol.2024.102857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 09/16/2024] [Indexed: 09/29/2024]
Abstract
Recent studies of noncoding genomes have shown important implications for regulating gene expression and genetic programs during development and their association with health, including cardiovascular disease. There are nearly 2,500 microRNAs (miRNAs), 12,000 long-chain non-coding RNAs (lncRNA), and nearly 4,000 circular RNAs (circles). Even though they do not code for proteins, they make up nearly 99% of the human genome. Non-coding RNA families (ncRNAs) have recently been discovered and established as novel and necessary controllers of cardiovascular risk factors and cellular processes and, therefore, have the potential to improve the diagnosis and prediction of cardiovascular disease. The increase in the prevalence of cardiovascular disease can be explained by the shortcomings of existing therapies, which focus only on the non-coding RNAs that protein codes for. On the other hand, recent studies point to the possibility of using ncRNAs in the early detection and intervention of CVD. These findings suggest that developing diagnostic tools and therapies based on miRNAs, lncRNAs, and circRNAs will potentially enhance the clinical management of patients with cardiovascular disease. Cardiovascular diseases include CH, HF, RHD, ACS, MI, AS, MF, ARR, and PAH, of which CH is the most common cardiovascular disease, followed by HF and RHD. This paper aims to elucidate the biological and clinical significance of miRNAs, increase, and circles, as well as their expression profiles and the possibility of regulating non-coding transcripts in cardiovascular diseases to improve the application of ncRNAs in diagnosis and treatment.
Collapse
Affiliation(s)
- Mohammed Alissa
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | - Mohammed Aldurayhim
- Department of Medical Laboratory, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Osama Abdulaziz
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21974, Saudi Arabia
| | - Ohud Alsalmi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21974, Saudi Arabia
| | - Alsamghan Awad
- King Khalid University, College of Medicine, Family Medicine department, Saudi Arabia
| | | | - Sarah Alharbi
- Department of Medical Laboratory, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Awaji Y Safhi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Khadijah Hassan Khan
- Department of Laboratory, King Faisal Medical Complex, Ministry of Health, Taif 26514, Saudi Arabia
| | - Christin Uffar
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA.
| |
Collapse
|
18
|
Schoettler FI, Fatehi Hassanabad A, Jadli AS, Patel VB, Fedak PWM. Exploring the role of pericardial miRNAs and exosomes in modulating cardiac fibrosis. Cardiovasc Pathol 2024; 73:107671. [PMID: 38906439 DOI: 10.1016/j.carpath.2024.107671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/26/2024] [Accepted: 06/15/2024] [Indexed: 06/23/2024] Open
Abstract
The potential of the pericardial space as a therapeutic delivery tool for cardiac fibrosis and heart failure (HF) treatment has yet to be elucidated. Recently, miRNAs and exosomes have been discovered to be present in human pericardial fluid (PF). Novel studies have shown characteristic human PF miRNA compositions associated with cardiac diseases and higher miRNA expressions in PF compared to peripheral blood. Five key studies found differentially expressed miRNAs in HF, angina pectoris, aortic stenosis, ventricular tachycardia, and congenital heart diseases with either atrial fibrillation or sinus rhythm. As miRNA-based therapeutics for cardiac fibrosis and HF showed promising results in several in vivo studies for multiple miRNAs, we hypothesize a potential role of miRNA-based therapeutics delivered through the pericardial cavity. This is underlined by the favorable results of the first phase 1b clinical trial in this emerging field. Presenting the first human miRNA antisense drug trial, inhibition of miR-132 by intravenous administration of a novel antisense oligonucleotide, CDR132L, established efficacy in reducing miR-132 in plasma samples in a dose-dependent manner. We screened the literature, provided an overview of the miRNAs and exosomes present in PF, and drew a connection to those miRNAs previously elucidated in cardiac fibrosis and HF. Further, we speculate about clinical implications and potential delivery methods.
Collapse
Affiliation(s)
- Friederike I Schoettler
- Department of Cardiac Sciences, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada; Department of Cardiac Surgery, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Ali Fatehi Hassanabad
- Department of Cardiac Sciences, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada; Department of Cardiac Sciences, Section of Cardiac Surgery, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Anshul S Jadli
- Department of Cardiac Sciences, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Vaibhav B Patel
- Department of Cardiac Sciences, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Paul W M Fedak
- Department of Cardiac Sciences, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada; Department of Cardiac Sciences, Section of Cardiac Surgery, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
19
|
Ge T, Ning B, Wu Y, Chen X, Qi H, Wang H, Zhao M. MicroRNA-specific therapeutic targets and biomarkers of apoptosis following myocardial ischemia-reperfusion injury. Mol Cell Biochem 2024; 479:2499-2521. [PMID: 37878166 DOI: 10.1007/s11010-023-04876-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/05/2023] [Indexed: 10/26/2023]
Abstract
MicroRNAs are single-stranded non-coding RNAs that participate in post-transcriptional regulation of gene expression, it is involved in the regulation of apoptosis after myocardial ischemia-reperfusion injury. For example, the alteration of mitochondrial structure is facilitated by MicroRNA-1 through the regulation of apoptosis-related proteins, such as Bax and Bcl-2, thereby mitigating cardiomyocyte apoptosis. MicroRNA-21 not only modulates the expression of NF-κB to suppress inflammatory signals but also activates the PI3K/AKT pathway to mitigate ischemia-reperfusion injury. Overexpression of MicroRNA-133 attenuates reactive oxygen species (ROS) production and suppressed the oxidative stress response, thereby mitigating cellular apoptosis. MicroRNA-139 modulates the extrinsic death signal of Fas, while MicroRNA-145 regulates endoplasmic reticulum calcium overload, both of which exert regulatory effects on cardiomyocyte apoptosis. Therefore, the article categorizes the molecular mechanisms based on the three classical pathways and multiple signaling pathways of apoptosis. It summarizes the targets and pathways of MicroRNA therapy for ischemia-reperfusion injury and analyzes future research directions.
Collapse
Affiliation(s)
- Teng Ge
- School of Graduate, Shaanxi University of Chinese Medicine, No. 1 Middle Section of Shiji Avenue, Xianyang, 712046, China
| | - Bo Ning
- School of Graduate, Shaanxi University of Chinese Medicine, No. 1 Middle Section of Shiji Avenue, Xianyang, 712046, China
| | - Yongqing Wu
- School of Graduate, Shaanxi University of Chinese Medicine, No. 1 Middle Section of Shiji Avenue, Xianyang, 712046, China
| | - Xiaolin Chen
- School of Pharmacy, Shaanxi University of Chinese Medicine, No. 1 Middle Section of Shiji Avenue, Xianyang, 712046, China
| | - Hongfei Qi
- Shaanxi Key Laboratory of Integrated Traditional and Western Medicine for Prevention and Treatment of Cardiovascular Diseases, Institute of Integrative Medicine, Shaanxi University of Chinese Medicine, No. 1 Middle Section of Shiji Avenue, Xianyang, 712046, China
| | - Haifang Wang
- Shaanxi Key Laboratory of Integrated Traditional and Western Medicine for Prevention and Treatment of Cardiovascular Diseases, Institute of Integrative Medicine, Shaanxi University of Chinese Medicine, No. 1 Middle Section of Shiji Avenue, Xianyang, 712046, China
| | - Mingjun Zhao
- Department of Cardiology, Affiliated Hospital of Shaanxi University of Chinese Medicine, Deputy 2, Weiyang West Road, Weicheng District, Xianyang, 712000, China.
| |
Collapse
|
20
|
He B, Xu HM, Li SW, Zhang YF, Tian JW. Emerging regulatory roles of noncoding RNAs induced by bisphenol a (BPA) and its alternatives in human diseases. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 357:124447. [PMID: 38942269 DOI: 10.1016/j.envpol.2024.124447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/07/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
Bisphenols (BPs), including BPA, BPF, BPS, and BPAF, are synthetic phenolic organic compounds and endocrine-disrupting chemicals. These organics have been broadly utilized to produce epoxy resins, polycarbonate plastics, and other products. Mounting evidence has shown that BPs, especially BPA, may enter into the human body and participate in the development of human diseases mediated by nuclear hormone receptors. Moreover, BPA may negatively affect human health at the epigenetic level through processes such as DNA methylation and histone acetylation. Recent studies have demonstrated that, as part of epigenetics, noncoding RNAs (ncRNAs), including microRNAs (miRNAs), long noncoding RNAs (lncRNAs), circular RNAs (circRNAs), and small nucleolar RNAs (snoRNAs), have vital impacts on BP-related diseases, such as reproductive system diseases, nervous system diseases, digestive system diseases, endocrine system diseases, and other diseases. Moreover, based on the bioinformatic analysis, changes in ncRNAs may be relevant to normal activities and functions and BP-induced diseases. Thus, we conducted a meta-analysis to identify more promising ncRNAs as biomarkers and therapeutic targets for BP exposure and relevant human diseases. In this review, we summarize the regulatory functions of ncRNAs induced by BPs in human diseases and latent molecular mechanisms, as well as identify prospective biomarkers and therapeutic targets for BP exposure and upper diseases.
Collapse
Affiliation(s)
- Bo He
- Department of Emergency Internal Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong, China; Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China
| | - Hai-Ming Xu
- Department of Occupational and Environmental Medicine, School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Shu-Wei Li
- Department of Neurology, Qingdao Huangdao District Central Hospital, Qingdao 266555, China
| | - Yin-Feng Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China.
| | - Jia-Wei Tian
- Department of Emergency Internal Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong, China.
| |
Collapse
|
21
|
Wang T, Yu Y, Ding Y, Yang Z, Jiang S, Gao F, Liu S, Shao L, Shen Z. miR-3529-3p/ABCA1 axis regulates smooth muscle cell homeostasis by enhancing inflammation via JAK2/STAT3 pathway. Front Cardiovasc Med 2024; 11:1441123. [PMID: 39257845 PMCID: PMC11384995 DOI: 10.3389/fcvm.2024.1441123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/12/2024] [Indexed: 09/12/2024] Open
Abstract
Background Thoracic Aortic Dissection (TAD) is a life-threatening disease without effective drug treatments. The disruption of HASMCs homeostasis is one direct histopathologic alteration in TAD pathological process. Several miRNAs have been shown abnormally expressed in TAD and to regulate HASMCs homeostasis. The primary goal of this study is to identify the miRNAs and the specific mechanisms that lead to HASMCs homeostasis disruption. Methods Bulk miRNA sequencing was performed to explore the aberrantly expressed miRNA profile in TAD, and differentially expressed miRNAs were verified with qRT-PCR. To explore the role of the key miRNAs (miR-3529) in HASMCs homeostasis, we overexpressed this miRNA with lentivirus in HASMCs. Integrative transcriptomics and metabolomics analysis were used to uncover the functional roles of this miRNA in regulating HASMCs homeostasis. Further, the target gene of miR-3529 was predicted by bioinformatics and verified through a dual-luciferase reporter assay. Results Bulk miRNA sequencing showed miR-3529 was elevated in TAD tissues and confirmed by qRT-PCR. Further experimental assay revealed miR-3529 upregulation induced HASMCs homeostasis disruption, accompanied by reducing contractile markers and increasing pro-inflammatory cytokines. Integrative transcriptomics and metabolomics analysis showed that miR-3529 overexpression altered the metabolic profile of HASMC, particularly lipid metabolism. ABCA1 was found to be a direct target of miR-3529. Mechanistically, the miR-3529/ABCA1 axis disrupted HASMCs homeostasis through the JAK2/STAT3 signaling pathway. Conclusions miR-3529 is elevated in TAD patients and disrupts HASMCs homeostasis by reprogramming metabolism through the JAK2/STAT3 signaling pathway. These findings favor a role for miR-3529 as a novel target for TAD therapy.
Collapse
Affiliation(s)
- Tingyu Wang
- Department of Cardiovascular Surgery of the First Affiliated Hospital of Soochow University & Institute for Cardiovascular Science, Soochow University, Suzhou, China
| | - You Yu
- Department of Cardiovascular Surgery of the First Affiliated Hospital of Soochow University & Institute for Cardiovascular Science, Soochow University, Suzhou, China
| | - Yinglong Ding
- Department of Cardiovascular Surgery of the First Affiliated Hospital of Soochow University & Institute for Cardiovascular Science, Soochow University, Suzhou, China
| | - Ziying Yang
- Department of Cardiovascular Surgery of the First Affiliated Hospital of Soochow University & Institute for Cardiovascular Science, Soochow University, Suzhou, China
| | - Shumin Jiang
- Department of Cardiovascular Surgery of the First Affiliated Hospital of Soochow University & Institute for Cardiovascular Science, Soochow University, Suzhou, China
| | - Faxiong Gao
- Department of Cardiovascular Surgery of the First Affiliated Hospital of Soochow University & Institute for Cardiovascular Science, Soochow University, Suzhou, China
| | - Shan Liu
- Department of Cardiovascular Surgery of the First Affiliated Hospital of Soochow University & Institute for Cardiovascular Science, Soochow University, Suzhou, China
| | - Lianbo Shao
- Department of Cardiovascular Surgery of the First Affiliated Hospital of Soochow University & Institute for Cardiovascular Science, Soochow University, Suzhou, China
| | - Zhenya Shen
- Department of Cardiovascular Surgery of the First Affiliated Hospital of Soochow University & Institute for Cardiovascular Science, Soochow University, Suzhou, China
| |
Collapse
|
22
|
Røsand Ø, Wang J, Scrimgeour N, Marwarha G, Høydal MA. Exosomal Preconditioning of Human iPSC-Derived Cardiomyocytes Beneficially Alters Cardiac Electrophysiology and Micro RNA Expression. Int J Mol Sci 2024; 25:8460. [PMID: 39126028 PMCID: PMC11313350 DOI: 10.3390/ijms25158460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Experimental evidence, both in vitro and in vivo, has indicated cardioprotective effects of extracellular vesicles (EVs) derived from various cell types, including induced pluripotent stem cell-derived cardiomyocytes. The biological effects of EV secretion, particularly in the context of ischemia and cardiac electrophysiology, remain to be fully explored. Therefore, the goal of this study was to unveil the effects of exosome (EXO)-mediated cell-cell signaling during hypoxia by employing a simulated preconditioning approach on human-induced pluripotent stem cell-derived cardiomyocytes (hIPSC-CMs). Electrophysiological activity of hIPSC-CMs was measured using a multielectrode array (MEA) system. A total of 16 h of hypoxic stress drastically increased the beat period. Moreover, hIPSC-CMs preconditioned with EXOs displayed significantly longer beat periods compared with non-treated cells after 16 h of hypoxia (+15.7%, p < 0.05). Furthermore, preconditioning with hypoxic EXOs resulted in faster excitation-contraction (EC) coupling compared with non-treated hIPSC-CMs after 16 h of hypoxia (-25.3%, p < 0.05). Additionally, microRNA (miR) sequencing and gene target prediction analysis of the non-treated and pre-conditioned hIPSC-CMs identified 10 differentially regulated miRs and 44 gene targets. These results shed light on the intricate involvement of miRs, emphasizing gene targets associated with cell survival, contraction, apoptosis, reactive oxygen species (ROS) regulation, and ion channel modulation. Overall, this study demonstrates that EXOs secreted by hIPSC-CM during hypoxia beneficially alter electrophysiological properties in recipient cells exposed to hypoxic stress, which could play a crucial role in the development of targeted interventions to improve outcomes in ischemic heart conditions.
Collapse
Affiliation(s)
| | | | | | | | - Morten Andre Høydal
- Group of Molecular and Cellular Cardiology, Department of Circulation and Medical Imaging, Faculty of Medicine and Health, Norwegian University of Science and Technology (NTNU), 7030 Trondheim, Norway; (Ø.R.); (J.W.); (N.S.); (G.M.)
| |
Collapse
|
23
|
Lou Y, Xu B, Huang K, Li X, Jin H, Ding L, Ning S, Chen X. Knockdown of miR-1293 attenuates lung adenocarcinoma angiogenesis via Spry4 upregulation-mediated ERK1/2 signaling inhibition. Biochem Pharmacol 2024; 226:116414. [PMID: 38972427 DOI: 10.1016/j.bcp.2024.116414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/21/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
Lung adenocarcinoma (LUAD) is the most common histologic subtype of lung cancer. Angiogenesis plays a pivotal role in LUAD progression via supplying oxygen and nutrients for cancer cells. Non-coding miR-1293, a significantly up-regulated miRNA in LUAD tissues, can be potentially used as a novel biomarker for predicting the prognosis of LUAD patients. However, little information is available about the function of miR-1293 in LUAD progression especially cancer-induced angiogenesis. Herein, we found that miR-1293 knockdown could obviously attenuate LUAD-induced angiogenesis in vitro and down-regulate two most important pro-angiogenic cytokines VEGF-A and bFGF expression and secretion. Indeed, miR-1293 abrogation inactivated the angiogenesis-promoting ERK1/2 signaling characterized by decreased ERK1/2 phosphorylation and translocation from nucleus to cytoplasm. Next we found that miR-1293 knockdown reactivated the endogenous ERK1/2 pathway inhibitor Spry4 expression and Spry4 perturbance with specific siRNA transfection abolished the inhibition of ERK1/2 pathway and LUAD-induced angiogenesis by miR-1293 knockdown. Finally, with in vivo assay, we found obvious Spry4 up-regulation and VEGF-A, bFGF, ERK1/2 phosphorylation, micro-vessel density marker CD31 expression down-regulation in vivo, respectively. Collectively, these results indicated that miR-1293 knockdown could significantly attenuate LUAD angiogenesis via Spry4-mediated ERK1/2 signaling inhibition, which might be helpful for uncovering more functions of miR-1293 in LUAD and providing experimental basis for possible LUAD therapeutic strategy targeting miR-1293.
Collapse
Affiliation(s)
- Yang Lou
- Department of Cardiothoracic Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, Zhejiang Province, China
| | - Bo Xu
- Department of Cardiothoracic Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, Zhejiang Province, China
| | - Kan Huang
- Department of Cardiothoracic Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, Zhejiang Province, China
| | - Xianshuai Li
- Department of Cardiothoracic Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, Zhejiang Province, China
| | - Huixian Jin
- Department of Clinical Nutrition, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, Zhejiang Province, China
| | - Linchao Ding
- Department of Scientific Research, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, Zhejiang Province, China
| | - Shilong Ning
- Department of Clinical Nutrition, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, Zhejiang Province, China.
| | - Xianguo Chen
- Department of Cardiothoracic Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, Zhejiang Province, China.
| |
Collapse
|
24
|
Jia M, Wang Z, Liu X, Zhang H, Fan Y, Cai D, Li Y, Shen L, Wang Z, Wang Q, Qi Z. Serum miR-192-5p is a promising biomarker for lethal radiation injury. Toxicol Lett 2024; 399:43-51. [PMID: 39032790 DOI: 10.1016/j.toxlet.2024.07.911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/19/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
In the event of a nuclear or radiation accident, rapid identification is required for those who exposed to potentially lethal dose irradiation. However, existing techniques are not adequate for the classification of lethal injury. Several studies have explored the potential of miRNAs as biomarkers for ionizing radiation injury, however, there are few miRNAs with specific expression for lethal radiation injury. Therefore, the aim of this study was to screen and validate the possibility of serum miRNAs as biomarkers of lethal radiation injury. We found the specific expression of mmu-miR-374c-5p / mmu-miR-194-5p on first day and mmu-miR-192-5p / mmu-miR-223-3p on third day in the mouse serum only under 10 Gy irradiation by miRNA sequencing and all significantly correlated with lymphocyte counts by Pearson's correlation analysis. In addition, it was found that among the 4 candidate serum miRNAs, only highly-expressed mmu-miR-192-5p in mouse serum irradiated at lethal doses was returned to sham-like expression levels at 3 days post-irradiation with amifostine pretreatment and closely correlated with survival rate. We demonstrated for the first time that mmu-miR-192-5p screened from lethally irradiated mice sera can be used as a potential biomarker for lethal irradiation injury, which will be helpful to improve efficiency of medical treatment to minimize casualties after a large-scale nuclear accident.
Collapse
Affiliation(s)
- Meng Jia
- Beijing Key Laboratory for Radiobiology, Department of Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China.
| | - Zhanyu Wang
- Beijing Key Laboratory for Radiobiology, Department of Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China.
| | - Xin Liu
- Beijing Key Laboratory for Radiobiology, Department of Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China.
| | - Hong Zhang
- Beijing Key Laboratory for Radiobiology, Department of Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China.
| | - Ying Fan
- Beijing Key Laboratory for Radiobiology, Department of Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China.
| | - Dan Cai
- Beijing Key Laboratory for Radiobiology, Department of Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China; Graduate Collaborative Training Base of Academy of Military Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China.
| | - Yaqiong Li
- Beijing Key Laboratory for Radiobiology, Department of Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China.
| | - Liping Shen
- Beijing Key Laboratory for Radiobiology, Department of Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China.
| | - Zhidong Wang
- Beijing Key Laboratory for Radiobiology, Department of Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China.
| | - Qi Wang
- Beijing Key Laboratory for Radiobiology, Department of Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China.
| | - Zhenhua Qi
- Beijing Key Laboratory for Radiobiology, Department of Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China.
| |
Collapse
|
25
|
Zhong H, Tang H, Wang Y, Tang S, Zhu H. MiR-29c alleviates hyperglycemia-induced inflammation via targeting TGF-β in cardiomyocytes. Mol Cell Biochem 2024; 479:2047-2054. [PMID: 37589861 DOI: 10.1007/s11010-023-04813-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/14/2023] [Indexed: 08/18/2023]
Abstract
This study aims to investigate whether miR-29c is involved in regulating transforming growth factor-β (TGF-β) mediated inflammation in diabetic cardiomyopathy (DCM). Our data showed increased inflammation and oxidative stress in diabetic myocardium together with decrease of miR-29c and elevation of TGF-β expression. In vitro experiments, we transfected miR-29c mimic and antagomir into HL-1 cells to explore the effect of miR-29c on inflammation in hyperglycemic conditions. Overexpression of miR-29c down-regulated the elevated TNF-α level, ROS production and NADPH oxidase activity which caused by high glucose. However, above changes were reversed by miR-29c antagomir. Interestingly, TGF-β protein rather than mRNA expression was changed significantly after transfection with miR-29c mimic, indicating that the modulation of TGF-β mediated by miR-29c was at the posttranslational level. Meanwhile, we found that 3'-UTR of TGF-β was the direct target of miR-29c confirmed by dual-luciferase assay. In conclusion, our study revealed that miR-29c could alleviate hyperglycemic-induced inflammation and ROS production via targeting TGF-β in cardiomyocytes, which provides a potential target for the treatment of DCM.
Collapse
Affiliation(s)
- Hongli Zhong
- General Department of Hyperbaric Oxygen, Hefei Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Haitao Tang
- Anhui International Travel Healthcare Center (Hefei Customs Port Clinic), Hefei, China
| | - Yi Wang
- Laboratory of Molecular Biology, Department of Biochemistry, Anhui Medical University, Hefei, China
| | - Songtao Tang
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - Huaqing Zhu
- Laboratory of Molecular Biology, Department of Biochemistry, Anhui Medical University, Hefei, China.
| |
Collapse
|
26
|
Liu C, Pan X, Hao Z, Wang X, Wang C, Song G. Resveratrol suppresses hepatic fatty acid synthesis and increases fatty acid β-oxidation via the microRNA-33/SIRT6 signaling pathway. Exp Ther Med 2024; 28:326. [PMID: 38979023 PMCID: PMC11229395 DOI: 10.3892/etm.2024.12615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 02/23/2024] [Indexed: 07/10/2024] Open
Abstract
Hyperlipidemia is a strong risk factor for numerous diseases. Resveratrol (Res) is a non-flavonoid polyphenol organic compound with multiple biological functions. However, the specific molecular mechanism and its role in hepatic lipid metabolism remain unclear. Therefore, the aim of the present study was to elucidate the mechanism underlying how Res improves hepatic lipid metabolism by decreasing microRNA-33 (miR-33) levels. First, blood miR-33 expression in participants with hyperlipidemia was detected by reverse transcription-quantitative PCR, and the results revealed significant upregulation of miR-33 expression in hyperlipidemia. Additionally, after transfection of HepG2 cells with miR-33 mimics or inhibitor, western blot analysis indicated downregulation and upregulation, respectively, of the mRNA and protein expression levels of sirtuin 6 (SIRT6). Luciferase reporter analysis provided further evidence for binding of miR-33 with the SIRT6 3'-untranslated region. Furthermore, the levels of peroxisome proliferator-activated receptor-γ (PPARγ), PPARγ-coactivator 1α and carnitine palmitoyl transferase 1 were increased, while the concentration levels of acetyl-CoA carboxylase, fatty acid synthase and sterol regulatory element-binding protein 1 were decreased when SIRT6 was overexpressed. Notably, Res improved the basic metabolic parameters of mice fed a high-fat diet by regulating the miR-33/SIRT6 signaling pathway. Thus, it was demonstrated that the dysregulation of miR-33 could lead to lipid metabolism disorders, while Res improved lipid metabolism by regulating the expression of miR-33 and its target gene, SIRT6. Thus, Res can be used to prevent or treat hyperlipidemia and associated diseases clinically by suppressing hepatic fatty acid synthesis and increasing fatty acid β-oxidation.
Collapse
Affiliation(s)
- Chunqiao Liu
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
- Hebei Key Laboratory of Metabolic Diseases, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Xinyan Pan
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
- Hebei Key Laboratory of Metabolic Diseases, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Zhihua Hao
- Department of Health Care, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Xing Wang
- Hebei Key Laboratory of Metabolic Diseases, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Chao Wang
- Hebei Key Laboratory of Metabolic Diseases, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Guangyao Song
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
- Hebei Key Laboratory of Metabolic Diseases, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| |
Collapse
|
27
|
Talevi V, Melas K, Pehlivan G, Imtiaz MA, Krüger DM, Centeno TP, Aziz NA, Fischer A, Breteler MMB. Peripheral whole blood microRNA expression in relation to vascular function: a population-based study. J Transl Med 2024; 22:670. [PMID: 39030538 PMCID: PMC11264787 DOI: 10.1186/s12967-024-05407-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/15/2024] [Indexed: 07/21/2024] Open
Abstract
BACKGROUND As key regulators of gene expression, microRNAs affect many cardiovascular mechanisms and have been associated with several cardiovascular diseases. In this study, we aimed to investigate the relation of whole blood microRNAs with several quantitative measurements of vascular function, and explore their biological role through an integrative microRNA-gene expression analysis. METHODS Peripheral whole blood microRNA expression was assessed through RNA-Seq in 2606 participants (45.8% men, mean age: 53.93, age range: 30 to 95 years) from the Rhineland Study, an ongoing population-based cohort study in Bonn, Germany. Weighted gene co-expression network analysis was used to cluster microRNAs with highly correlated expression levels into 14 modules. Through linear regression models, we investigated the association between each module's expression and quantitative markers of vascular health, including pulse wave velocity, total arterial compliance index, cardiac index, stroke index, systemic vascular resistance index, reactive skin hyperemia and white matter hyperintensity burden. For each module associated with at least one trait, one or more hub-microRNAs driving the association were defined. Hub-microRNAs were further characterized through mapping to putative target genes followed by gene ontology pathway analysis. RESULTS Four modules, represented by hub-microRNAs miR-320 family, miR-378 family, miR-3605-3p, miR-6747-3p, miR-6786-3p, and miR-330-5p, were associated with total arterial compliance index. Importantly, the miR-320 family module was also associated with white matter hyperintensity burden, an effect partially mediated through arterial compliance. Furthermore, hub-microRNA miR-192-5p was related to cardiac index. Functional analysis corroborated the relevance of the identified microRNAs for vascular function by revealing, among others, enrichment for pathways involved in blood vessel morphogenesis and development, angiogenesis, telomere organization and maintenance, and insulin secretion. CONCLUSIONS We identified several microRNAs robustly associated with cardiovascular function, especially arterial compliance and cardiac output. Moreover, our results highlight miR-320 as a regulator of cerebrovascular damage, partly through modulation of vascular function. As many of these microRNAs were involved in biological processes related to vasculature development and aging, our results contribute to the understanding of vascular physiology and provide putative targets for cardiovascular disease prevention.
Collapse
Affiliation(s)
- Valentina Talevi
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Building 99, 53127, Bonn, Germany
| | - Konstantinos Melas
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Building 99, 53127, Bonn, Germany
| | - Gökhan Pehlivan
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Building 99, 53127, Bonn, Germany
| | - Mohammed A Imtiaz
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Building 99, 53127, Bonn, Germany
| | - Dennis Manfred Krüger
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases, Göttingen, Germany
- Bioinformatics Unit, German Center for Neurodegenerative Diseases, Göttingen, Germany
| | - Tonatiuh Pena Centeno
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases, Göttingen, Germany
- Bioinformatics Unit, German Center for Neurodegenerative Diseases, Göttingen, Germany
| | - N Ahmad Aziz
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Building 99, 53127, Bonn, Germany
- Department of Neurology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Andre Fischer
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases, Göttingen, Germany
- Bioinformatics Unit, German Center for Neurodegenerative Diseases, Göttingen, Germany
- Department for Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Monique M B Breteler
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Building 99, 53127, Bonn, Germany.
- Institute for Medical Biometry, Informatics and Epidemiology (IMBIE), Faculty of Medicine, University of Bonn, Bonn, Germany.
| |
Collapse
|
28
|
Liu D, Guan Y. Mechanism of action of miR-15a-5p and miR-152-3p in paraquat-induced pulmonary fibrosis through Wnt/β-catenin signaling mediation. PeerJ 2024; 12:e17662. [PMID: 38993979 PMCID: PMC11238725 DOI: 10.7717/peerj.17662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/09/2024] [Indexed: 07/13/2024] Open
Abstract
Background miRNAs are small, conserved, single-stranded non-coding RNA that are typically transported by exosomes for their functional roles. The therapeutic potential of exosomal miRNAs has been explored in various diseases including breast cancer, pancreatic cancer, cholangiocarcinoma, skin diseases, Alzheimer's disease, stroke, and glioma. Pathophysiological processes such as cellular inflammation, apoptosis, necrosis, immune dysfunction, and oxidative stress are closely associated with miRNAs. Internal and external factors such as tissue ischemia, hypoxia, pathogen infection, and endotoxin exposure can trigger these reactions and are linked to miRNAs. Paraquat-induced fibrosis is a protracted process that may not manifest immediately after injury but develops during bodily recovery, providing insights into potential miRNA intervention treatments. Rationale These findings could potentially be applied for further pharmaceutical research and clinical therapy of paraquat-induced pulmonary fibrosis, and are likely to be of great interest to clinicians involved in lung fibrosis research. Methodology Through a literature review, we identified an association between miR-15a-5p and miR-152-3p and their involvement in the Wnt signaling pathway. This allowed us to deduce the molecular mechanisms underlying regulatory interactions involved in paraquat-induced lung fibrosis. Results miR-15a-5p and miR-152-3p play roles in body repair processes, and pulmonary fibrosis can be considered a form of reparative response by the body. Although the initial purpose of fibrotic repair is to restore normal body function, excessive tissue fibrosis, unlike scar formation following external skin trauma, can significantly and adversely affect the body. Modulating the Wnt/β-catenin signaling pathway is beneficial in alleviating tissue fibrosis in various diseases. Conclusions In this study, we delineate the association between miR-15a-5p and miR-152-3p and the Wnt/β-catenin signaling pathway, presenting a novel concept for addressing paraquat-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Dong Liu
- Weifang Medical University, Weifang, Shandong, China
| | - Yan Guan
- Weifang Medical University, Weifang, Shandong, China
| |
Collapse
|
29
|
Wang J, Zhang H, Wan W, Yang H, Zhao J. Advances in nanotechnological approaches for the detection of early markers associated with severe cardiac ailments. Nanomedicine (Lond) 2024; 19:1487-1506. [PMID: 39121377 PMCID: PMC11318751 DOI: 10.1080/17435889.2024.2364581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/31/2024] [Indexed: 08/11/2024] Open
Abstract
Mortality from cardiovascular disease (CVD) accounts for over 30% of all deaths globally, necessitating reliable diagnostic tools. Prompt identification and precise diagnosis are critical for effective personalized treatment. Nanotechnology offers promising applications in diagnostics, biosensing and drug delivery for prevalent cardiovascular diseases. Its integration into cardiovascular care enhances diagnostic accuracy, enabling early intervention and tailored treatment plans. By leveraging nanoscale innovations, healthcare professionals can address the complexities of CVD progression and customize interventions based on individual patient needs. Ongoing advancements in nanotechnology continue to shape the landscape of cardiovascular medicine, offering potential for improved patient outcomes and reduced mortality rates from these pervasive diseases.
Collapse
Affiliation(s)
- Jie Wang
- Department of Cardiac Care Unit, Yantaishan Hospital, Yantai, Shandong, 264003, China
| | - Haifeng Zhang
- Department of Cardiology, Yantai Yeda Hospital, Yantai, Shangdong, 264006, China
| | - Weiping Wan
- Department of Ultrasound, Yantaishan Hospital, Yantai, Shandong, 264003, China
| | - Haijiao Yang
- Department of Cardiac Care Unit, Yantaishan Hospital, Yantai, Shandong, 264003, China
| | - Jing Zhao
- Department of Critical Care Medicine, Yantaishan Hospital, Yantai, Shandong, 264003, China
| |
Collapse
|
30
|
Niu L, Wang H, Luo G, Zhou J, Hu Z, Yan B. Advances in understanding immune homeostasis in latent tuberculosis infection. WIREs Mech Dis 2024; 16:e1643. [PMID: 38351551 DOI: 10.1002/wsbm.1643] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/19/2024] [Accepted: 01/19/2024] [Indexed: 07/13/2024]
Abstract
Nearly one-fourth of the global population is infected by Mycobacterium tuberculosis (Mtb), and approximately 90%-95% remain asymptomatic as latent tuberculosis infection (LTBI), an estimated 5%-10% of those with latent infections will eventually progress to active tuberculosis (ATB). Although it is widely accepted that LTBI transitioning to ATB results from a disruption of host immune balance and a weakening of protective immune responses, the exact underlying immunological mechanisms that promote this conversion are not well characterized. Thus, it is difficult to accurately predict tuberculosis (TB) progression in advance, leaving the LTBI population as a significant threat to TB prevention and control. This article systematically explores three aspects related to the immunoregulatory mechanisms and translational research about LTBI: (1) the distinct immunocytological characteristics of LTBI and ATB, (2) LTBI diagnostic markers discovery related to host anti-TB immunity and metabolic pathways, and (3) vaccine development focus on LTBI. This article is categorized under: Infectious Diseases > Molecular and Cellular Physiology Infectious Diseases > Genetics/Genomics/Epigenetics Immune System Diseases > Genetics/Genomics/Epigenetics.
Collapse
Affiliation(s)
- Liangfei Niu
- Center for Tuberculosis Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, People's Republic of China
| | - Hao Wang
- Center for Tuberculosis Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, People's Republic of China
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Geyang Luo
- Center for Tuberculosis Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, People's Republic of China
| | - Jing Zhou
- Department of Pathology, Center for Tuberculosis Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, People's Republic of China
| | - Zhidong Hu
- Center for Tuberculosis Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, People's Republic of China
| | - Bo Yan
- Center for Tuberculosis Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
31
|
Ye Z, Zhu S, Li G, Lu J, Huang S, Du J, Shao Y, Ji Z, Li P. Early matrix softening contributes to vascular smooth muscle cell phenotype switching and aortic dissection through down-regulation of microRNA-143/145. J Mol Cell Cardiol 2024; 192:1-12. [PMID: 38718921 DOI: 10.1016/j.yjmcc.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 05/04/2024] [Accepted: 05/04/2024] [Indexed: 05/14/2024]
Abstract
Thoracic aortic dissection (TAD) is characterized by extracellular matrix (ECM) dysregulation. Aberrations in the ECM stiffness can lead to changes in cellular functions. However, the mechanism by which ECM softening regulates vascular smooth muscle cell (VSMCs) phenotype switching remains unclear. To understand this mechanism, we cultured VSMCs in a soft extracellular matrix and discovered that the expression of microRNA (miR)-143/145, mediated by activation of the AKT signalling pathway, decreased significantly. Furthermore, overexpression of miR-143/145 reduced BAPN-induced aortic softening, switching the VSMC synthetic phenotype and the incidence of TAD in mice. Additionally, high-throughput sequencing of immunoprecipitated RNA indicated that the TEA domain transcription factor 1 (TEAD1) is a common target gene of miR-143/145, which was subsequently verified using a luciferase reporter assay. TEAD1 is upregulated in soft ECM hydrogels in vitro, whereas the switch to a synthetic phenotype in VSMCs decreases after TEAD1 knockdown. Finally, we verified that miR-143/145 levels are associated with disease severity and prognosis in patients with thoracic aortic dissection. ECM softening, as a result of promoting the VSMCs switch to a synthetic phenotype by downregulating miR-143/145, is an early trigger of TAD and provides a therapeutic target for this fatal disease. miR-143/145 plays a role in the early detection of aortic dissection and its severity and prognosis, which can offer information for future risk stratification of patients with dissection.
Collapse
Affiliation(s)
- Zhaofei Ye
- Beijing Anzhen Hospital of Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, China
| | - Shuolin Zhu
- Beijing Anzhen Hospital of Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, China
| | - Guoqi Li
- Beijing Anzhen Hospital of Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, China
| | - Jie Lu
- Beijing Anzhen Hospital of Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, China
| | - Shan Huang
- Beijing Anzhen Hospital of Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, China
| | - Jie Du
- Beijing Anzhen Hospital of Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, China
| | - Yihui Shao
- Beijing Anzhen Hospital of Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, China.
| | - Zhili Ji
- Beijing Chaoyang Hospital of Capital Medical University, China.
| | - Ping Li
- Beijing Anzhen Hospital of Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, China.
| |
Collapse
|
32
|
Lin JJ, Chen R, Yang LY, Gong M, Du MY, Mu SQ, Jiang ZA, Li HH, Yang Y, Wang XH, Wang SF, Liu KX, Cao SH, Wang ZY, Zhao AQ, Yang SY, Li C, Sun SG. Hsa_circ_0001402 alleviates vascular neointimal hyperplasia through a miR-183-5p-dependent regulation of vascular smooth muscle cell proliferation, migration, and autophagy. J Adv Res 2024; 60:93-110. [PMID: 37499939 PMCID: PMC11156604 DOI: 10.1016/j.jare.2023.07.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 07/14/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023] Open
Abstract
INTRODUCTION Vascular neointimal hyperplasia, a pathological process observed in cardiovascular diseases such as atherosclerosis and pulmonary hypertension, involves the abundant presence of vascular smooth muscle cells (VSMCs). The proliferation, migration, and autophagy of VSMCs are associated with the development of neointimal lesions. Circular RNAs (circRNAs) play critical roles in regulating VSMC proliferation and migration, thereby participating in neointimal hyperplasia. However, the regulatory roles of circRNAs in VSMC autophagy remain unclear. OBJECTIVES We aimed to identify circRNAs that are involved in VSMC autophagy-mediated neointimal hyperplasia, as well as elucidate the underlying mechanisms. METHODS Dual-luciferase reporter gene assay was performed to validate two competing endogenous RNA axes, hsa_circ_0001402/miR-183-5p/FKBP prolyl isomerase like (FKBPL) and hsa_circ_0001402/miR-183-5p/beclin 1 (BECN1). Cell proliferation and migration analyses were employed to investigate the effects of hsa_circ_0001402, miR-183-5p, or FKBPL on VSMC proliferation and migration. Cell autophagy analysis was conducted to reveal the role of hsa_circ_0001402 or miR-183-5p on VSMC autophagy. The role of hsa_circ_0001402 or miR-183-5p on neointimal hyperplasia was evaluated using a mouse model of common carotid artery ligation. RESULTS Hsa_circ_0001402 acted as a sponge for miR-183-5p, leading to the suppression of miR-183-5p expression. Through direct interaction with the coding sequence (CDS) of FKBPL, miR-183-5p promoted VSMC proliferation and migration by decreasing FKBPL levels. Besides, miR-183-5p reduced BECN1 levels by targeting the 3'-untranslated region (UTR) of BECN1, thus inhibiting VSMC autophagy. By acting as a miR-183-5p sponge, overexpression of hsa_circ_0001402 increased FKBPL levels to inhibit VSMC proliferation and migration, while simultaneously elevating BECN1 levels to activate VSMC autophagy, thereby alleviating neointimal hyperplasia. CONCLUSION Hsa_circ_0001402, acting as a miR-183-5p sponge, increases FKBPL levels to inhibit VSMC proliferation and migration, while enhancing BECN1 levels to activate VSMC autophagy, thus alleviating neointimal hyperplasia. The hsa_circ_0001402/miR-183-5p/FKBPL axis and hsa_circ_0001402/miR-183-5p/BECN1 axis may offer potential therapeutic targets for neointimal hyperplasia.
Collapse
Affiliation(s)
- Jia-Jie Lin
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang 050017, China
| | - Rui Chen
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Li-Yun Yang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang 050017, China
| | - Miao Gong
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang 050017, China
| | - Mei-Yang Du
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang 050017, China
| | - Shi-Qing Mu
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang 050017, China
| | - Ze-An Jiang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang 050017, China
| | - Huan-Huan Li
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang 050017, China
| | - Yang Yang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang 050017, China
| | - Xing-Hui Wang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang 050017, China
| | - Si-Fan Wang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang 050017, China
| | - Ke-Xin Liu
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang 050017, China
| | - Shan-Hu Cao
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang 050017, China
| | - Zhao-Yi Wang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang 050017, China
| | - An-Qi Zhao
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang 050017, China
| | - Shu-Yan Yang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing 100020, China.
| | - Cheng Li
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, Guangdong Second Provincial General Hospital, Guangzhou 510317, China.
| | - Shao-Guang Sun
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang 050017, China.
| |
Collapse
|
33
|
Antequera-González B, Collell-Hernández R, Martínez-Micaelo N, Marimon-Blanch C, Carbonell-Prat B, Escribano J, Alegret JM. miR-130a expression is related to aortic dilation in bicuspid aortic valve children. Pediatr Res 2024; 95:1741-1748. [PMID: 38273119 DOI: 10.1038/s41390-024-03018-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 10/03/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024]
Abstract
BACKGROUND Bicuspid aortic valve disease (BAV) is present in 0.5-2% of the population and can promote aortic dilation, eventually leading to fatal consequences. Although some biomarkers have been proposed in adults, no studies have tested these candidates in children. We aimed to evaluate four miRNAs previously described to be related to BAV disease and aortic dilation in adults in a paediatric cohort. METHODS Eighty participants ≤17 years old (4-17; mean 12) were included. From the BAV group, 40% had a dilated aorta (z score >2). RT‒qPCR were performed in plasma samples to quantify miR-122, miR-130a, miR-486, and miR-718 using the delta-delta Ct method. Functional and enrichment analyses of miR-130a were also performed. RESULTS miR-130a expression in plasma was found to be significantly lower in BAV patients with a dilated aorta versus nondilated patients (p = 0.008) and healthy TAV controls (p = 0.004). Furthermore, miR-130a expression in plasma was inversely correlated with ascending aorta (r = 0.318, p = 0.004) and aortic root z scores (r = 0.322; p = 0.004). Enrichment analysis showed that miR-130a target genes are related to the TGFβ signalling pathway. CONCLUSIONS miR-130a expression in plasma is decreased in aortic-dilated BAV children compared to nondilated BAV children, helping differentiate low- to high-risk patients. IMPACT miR-130a expression in plasma is related to aortic dilation in bicuspid aortic valve (BAV) children. To our knowledge, this is the first study that analyses miRNA patterns in bicuspid aortic valve children with aortic dilation. miR-130a expression in plasma could be a biomarker in order to help differentiate low-to high-risk BAV children, which is vitally important for advanced care planning.
Collapse
Affiliation(s)
- Borja Antequera-González
- Group of Cardiovascular Research, Pere Virgili Health Research Institute (IISPV), Universitat Rovira i Virgili, 43204, Reus, Spain
| | - Rosa Collell-Hernández
- Pediatric Department, Hospital Universitari Sant Joan de Reus, Universitat Rovira i Virgili, 43204, Reus, Spain
| | - Neus Martínez-Micaelo
- Group of Cardiovascular Research, Pere Virgili Health Research Institute (IISPV), Universitat Rovira i Virgili, 43204, Reus, Spain
| | - Cristina Marimon-Blanch
- Pediatric Department, Hospital Universitari Sant Joan de Reus, Universitat Rovira i Virgili, 43204, Reus, Spain
| | - Bàrbara Carbonell-Prat
- Group of Cardiovascular Research, Pere Virgili Health Research Institute (IISPV), Universitat Rovira i Virgili, 43204, Reus, Spain
- Cardiology Department, Hospital Universitari Sant Joan de Reus, Universitat Rovira i Virgili, 43204, Reus, Spain
| | - Joaquín Escribano
- Pediatric Department, Hospital Universitari Sant Joan de Reus, Universitat Rovira i Virgili, 43204, Reus, Spain
| | - Josep M Alegret
- Group of Cardiovascular Research, Pere Virgili Health Research Institute (IISPV), Universitat Rovira i Virgili, 43204, Reus, Spain.
- Cardiology Department, Hospital Universitari Sant Joan de Reus, Universitat Rovira i Virgili, 43204, Reus, Spain.
| |
Collapse
|
34
|
Tao T, Chen L, Lin X, Fan Z, Zhu C, Mao L. Deregulated miR-146a-3p alleviates disease progression in atherosclerosis through inactivating NF-κB: An experimental study. Medicine (Baltimore) 2024; 103:e38061. [PMID: 38758895 PMCID: PMC11098229 DOI: 10.1097/md.0000000000038061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/08/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Atherosclerosis (AS), as a complex chronic inflammatory disease, is 1 of the main causes of cardiovascular and cerebrovascular diseases. This study aimed to confirm the direct interaction between miR-146a-3p and NF-κB, and explore the role of miR-146a-3p/NF-κB in the regulation of inflammation in AS. METHODS Bioinformatic prediction and dual-luciferase reporter assay were used to confirm the interaction between miR-146a-3p and NF-κB. Lipopolysaccharides stimulation was performed to establish AS inflammatory cell model, and the levels of pro-inflammatory cytokines were estimated using an enzyme-linked immunosorbent assay. miR-146a-3p and NF-κB expression were evaluated using reverse transcription quantitative PCR, and their clinical value was examined using a receiver operating characteristic curve. RESULTS Inflammatory cell model showed increased IL-1β, IL-6, and TNF-α. NF-κB was a target gene of miR-146a-3p, and mediated the inhibitory effects of miR-146a-3p on inflammatory responses in the cell model. In patients with AS, miR-146a-3p/NF-κB was associated with patients' clinical data and inflammatory cytokine levels, and aberrant miR-146a-3p and NF-κB showed diagnostic accuracy to distinguish AS patients from healthy populations. CONCLUSION miR-146a-3p might inhibit inflammation by targeting NF-κB in AS progression, and miR-146a-3p/ NF-κB might provide novel biomarkers and therapeutic targets for the prevention of AS and related vascular events.
Collapse
Affiliation(s)
- Taotao Tao
- Department of Neurology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Linkao Chen
- Department of Neurology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Xia Lin
- Department of Neurology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Zijian Fan
- Department of Neurology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Chengfei Zhu
- Department of Neurology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Lingqun Mao
- Department of Neurology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| |
Collapse
|
35
|
Lozano-Velasco E, Garcia-Padilla C, Carmona-Garcia M, Gonzalez-Diaz A, Arequipa-Rendon A, Aranega AE, Franco D. MEF2C Directly Interacts with Pre-miRNAs and Distinct RNPs to Post-Transcriptionally Regulate miR-23a-miR-27a-miR-24-2 microRNA Cluster Member Expression. Noncoding RNA 2024; 10:32. [PMID: 38804364 PMCID: PMC11130849 DOI: 10.3390/ncrna10030032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 05/11/2024] [Accepted: 05/15/2024] [Indexed: 05/29/2024] Open
Abstract
Transcriptional regulation constitutes a key step in gene expression regulation. Myocyte enhancer factor 2C (MEF2C) is a transcription factor of the MADS box family involved in the early development of several cell types, including muscle cells. Over the last decade, a novel layer of complexity modulating gene regulation has emerged as non-coding RNAs have been identified, impacting both transcriptional and post-transcriptional regulation. microRNAs represent the most studied and abundantly expressed subtype of small non-coding RNAs, and their functional roles have been widely documented. On the other hand, our knowledge of the transcriptional and post-transcriptional regulatory mechanisms that drive microRNA expression is still incipient. We recently demonstrated that MEF2C is able to transactivate the long, but not short, regulatory element upstream of the miR-23a-miR-27a-miR-24-2 transcriptional start site. However, MEF2C over-expression and silencing, respectively, displayed distinct effects on each of the miR-23a-miR-27a-miR-24-2 mature cluster members without affecting pri-miRNA expression levels, thus supporting additional MEF2C-driven regulatory mechanisms. Within this study, we demonstrated a complex post-transcriptional regulatory mechanism directed by MEF2C in the regulation of miR-23a-miR-27a-miR-24-2 cluster members, distinctly involving different domains of the MEF2C transcription factor and the physical interaction with pre-miRNAs and Ksrp, HnRNPa3 and Ddx17 transcripts.
Collapse
Affiliation(s)
- Estefanía Lozano-Velasco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.C.-G.); (A.G.-D.); (A.A.-R.); (A.E.A.)
- Fundación Medina, 18016 Granada, Spain
| | - Carlos Garcia-Padilla
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.C.-G.); (A.G.-D.); (A.A.-R.); (A.E.A.)
- Department of Anatomy, Embryology and Zoology, School of Medicine, University of Extremadura, 06006 Badajoz, Spain
| | - Miguel Carmona-Garcia
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.C.-G.); (A.G.-D.); (A.A.-R.); (A.E.A.)
| | - Alba Gonzalez-Diaz
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.C.-G.); (A.G.-D.); (A.A.-R.); (A.E.A.)
| | - Angela Arequipa-Rendon
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.C.-G.); (A.G.-D.); (A.A.-R.); (A.E.A.)
| | - Amelia E. Aranega
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.C.-G.); (A.G.-D.); (A.A.-R.); (A.E.A.)
- Fundación Medina, 18016 Granada, Spain
| | - Diego Franco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.C.-G.); (A.G.-D.); (A.A.-R.); (A.E.A.)
- Fundación Medina, 18016 Granada, Spain
| |
Collapse
|
36
|
Qi F, Ju Y, Xiong Y, Lu J, Zhang Y. Ultrasensitive fluorescence microRNA biosensor by coupling hybridization-initiated exonuclease I protection and tyramine signal amplification. Talanta 2024; 272:125777. [PMID: 38364565 DOI: 10.1016/j.talanta.2024.125777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/13/2024] [Accepted: 02/08/2024] [Indexed: 02/18/2024]
Abstract
Tyramine signal amplification (TSA) has made its mark in immunoassay due to its excellent signal amplification ability and short reaction time, but its application in nucleic acid detection is still very limited. Herein, an ultrasensitive microRNA (miRNA) biosensor by coupling hybridization-initiated exonuclease I (Exo I) protection and TSA strategy was established. Target miRNA is complementarily hybridized to the biotin-modified DNA probe to form a double strand, which protects the DNA probe from Exo I hydrolysis. Subsequently, horseradish peroxidase (HRP) is attached to the duplex via the biotin-streptavidin reaction and catalyzes the deposition of large amounts of biotin-tyramine in the presence of hydrogen peroxide (H2O2), followed by the conjugation of signal molecule streptavidin-phycoerythrin (SA-PE), which generates an intense fluorescence signal upon laser excitation. This method gave broad linearity in the range of 0.1 fM - 10 pM, yielding a detection limit as low as 74 aM. An increase in sensitivity of 4 orders of magnitude was observed compared to the miRNA detection without TSA amplification. This biosensor was successfully applied to the determination of miR-21 in breast cancer cells and human serum. By further design of specific DNA probes and coupling with the Luminex xMAP technology, it could be easily extended to multiplex miRNA assay, which possesses great application potential in clinical diagnosis.
Collapse
Affiliation(s)
- Fenghui Qi
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, China
| | - Yong Ju
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, China
| | - Yanian Xiong
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, China
| | - Jianzhong Lu
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, China.
| | - Yuhao Zhang
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China; Shanghai Clinical Research Center for Interventional Medicine, Shanghai, 200032, China.
| |
Collapse
|
37
|
Lv B, He S, Li P, Jiang S, Li D, Lin J, Feinberg MW. MicroRNA-181 in cardiovascular disease: Emerging biomarkers and therapeutic targets. FASEB J 2024; 38:e23635. [PMID: 38690685 PMCID: PMC11068116 DOI: 10.1096/fj.202400306r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/02/2024] [Accepted: 04/16/2024] [Indexed: 05/02/2024]
Abstract
Cardiovascular disease (CVD) is the leading cause of death worldwide. MicroRNAs (MiRNAs) have attracted considerable attention for their roles in several cardiovascular disease states, including both the physiological and pathological processes. In this review, we will briefly describe microRNA-181 (miR-181) transcription and regulation and summarize recent findings on the roles of miR-181 family members as biomarkers or therapeutic targets in different cardiovascular-related conditions, including atherosclerosis, myocardial infarction, hypertension, and heart failure. Lessons learned from these studies may provide new theoretical foundations for CVD.
Collapse
Affiliation(s)
- Bingjie Lv
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shaolin He
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Peixin Li
- Second Clinical School, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shijiu Jiang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Department of Cardiology, The First Affiliated Hospital, Shihezi University, Shihezi, 832000, China
| | - Dazhu Li
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jibin Lin
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Mark W. Feinberg
- Department of Medicine, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
38
|
Wang X, Ma J, Lin D, Bai Y, Zhang D, Jia X, Gao J. MiR-145-5p reduced ANG II-induced ACE2 shedding and the inflammatory response in alveolar epithelial cells by targeting ADAM17 and inhibiting the AT1R/ADAM17 pathway. Eur J Pharmacol 2024; 971:176392. [PMID: 38365107 DOI: 10.1016/j.ejphar.2024.176392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/29/2024] [Accepted: 02/04/2024] [Indexed: 02/18/2024]
Abstract
The excessive elevation of angiotensin II (ANG II) is closely associated with the occurrence and development of aortic dissection (AD)-related acute lung injury (ALI), through its binding to angiotensin II receptor type I (AT1R). MiR-145-5p is a noncoding RNA that can be involved in a variety of cellular physiopathological processes. Transfection with miR-145-5p was found to downregulated the expression of A disintegrin and metalloprotease 17 (ADAM17) and reduced the levels of angiotensin-converting enzyme 2 (ACE2) in lung tissue, while concurrently increasing plasma ACE2 levels in the AD combined with ALI mice. ADAM17 was proved to be a target of miR-145-5p. Transfection with miR-145-5p decreased the shedding of ACE2 and alleviated the inflammatory response induced by ANG II through targeting ADAM17 and inhibiting the AT1R/ADAM17 pathway in A549 cells. In conclusion, our present study demonstrates the role and mechanism of miR-145-5p in alleviating ANG II-induced acute lung injury, providing a new insight into miRNA therapy for reducing lung injury in patients with aortic dissection.
Collapse
Affiliation(s)
- Xu'an Wang
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University-Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China; Department of Anesthesiology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Jun Ma
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University-Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China.
| | - Duomao Lin
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University-Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Yang Bai
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University-Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China; Department of Anesthesiology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Dongni Zhang
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University-Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Xiaotong Jia
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University-Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Junwei Gao
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University-Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| |
Collapse
|
39
|
Tahmasebi F, Asl ER, Vahidinia Z, Barati S. Stem Cell-Derived Exosomal MicroRNAs as Novel Potential Approach for Multiple Sclerosis Treatment. Cell Mol Neurobiol 2024; 44:44. [PMID: 38713302 PMCID: PMC11076329 DOI: 10.1007/s10571-024-01478-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 04/09/2024] [Indexed: 05/08/2024]
Abstract
Multiple Sclerosis (MS) is an autoimmune disease of the central nervous system (CNS) characterized by inflammation and demyelination of CNS neurons. Up to now, there are many therapeutic strategies for MS but they are only being able to reduce progression of diseases and have not got any effect on repair and remyelination. Stem cell therapy is an appropriate method for regeneration but has limitations and problems. So recently, researches were used of exosomes that facilitate intercellular communication and transfer cell-to-cell biological information. MicroRNAs (miRNAs) are a class of short non-coding RNAs that we can used to their dysregulation in order to diseases diagnosis. The miRNAs of microvesicles obtained stem cells may change the fate of transplanted cells based on received signals of injured regions. The miRNAs existing in MSCs may be displayed the cell type and their biological activities. Current studies show also that the miRNAs create communication between stem cells and tissue-injured cells. In the present review, firstly we discuss the role of miRNAs dysregulation in MS patients and miRNAs expression by stem cells. Finally, in this study was confirmed the relationship of microRNAs involved in MS and miRNAs expressed by stem cells and interaction between them in order to find appropriate treatment methods in future for limit to disability progression.
Collapse
Affiliation(s)
- Fatemeh Tahmasebi
- Department of Anatomy, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elmira Roshani Asl
- Department of Biochemistry, Saveh University of Medical Sciences, Saveh, Iran
| | - Zeinab Vahidinia
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Shirin Barati
- Department of Anatomy, Saveh University of Medical Sciences, Saveh, Iran.
| |
Collapse
|
40
|
Zhao M, Wang T, Cai X, Li G, Li N, Zhou H. LncRNA and mRNA expression characteristic and bioinformatic analysis in myocardium of diabetic cardiomyopathy mice. BMC Genomics 2024; 25:312. [PMID: 38532337 DOI: 10.1186/s12864-024-10235-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 03/18/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND Diabetic cardiomyopathy (DCM) is becoming a very well-known clinical entity and leads to increased heart failure in diabetic patients. Long non-coding RNAs (LncRNAs) play an important role in the pathogenesis of DCM. In the present study, the expression profiles of lncRNAs and mRNAs were illuminated in myocardium from DCM mice, with purpose of exploring probable pathological processes of DCM involved by differentially expressed genes in order to provide a new direction for the future researches of DCM. RESULTS The results showed that a total of 93 differentially expressed lncRNA transcripts and 881 mRNA transcripts were aberrantly expressed in db/db mice compared with the controls. The top 6 differentially expressed lncRNAs like up-regulated Hmga1b, Gm8909, Gm50252 and down-regulated Msantd4, 4933413J09Rik, Gm41414 have not yet been reported in DCM. The lncRNAs-mRNAs co-expression network analysis showed that LncRNA 2610507I01Rik, 2310015A16Rik, Gm10503, A930015D03Rik and Gm48483 were the most relevant to differentially expressed mRNAs. CONCLUSION Our results showed that db/db DCM mice exist differentially expressed lncRNAs and mRNAs in hearts. These differentially expressed lncRNAs may be involved in the pathological process of cardiomyocyte apoptosis and fibrosis in DCM.
Collapse
Affiliation(s)
- Mengnan Zhao
- Department of Endocrinology, The Second Hospital of Hebei Medical University, No. 215, Hepingxi Road, Xinhua District, 050000, Shijiazhuang, Hebei, China
| | - Ting Wang
- Department of Endocrinology, The Second Hospital of Hebei Medical University, No. 215, Hepingxi Road, Xinhua District, 050000, Shijiazhuang, Hebei, China
| | - Xiaoning Cai
- Department of Endocrinology, Liaocheng Traditional Chinese Medicine Hospital, No. 1, Wenhua Road, Dongchangfu District, 252000, Liaocheng, Shandong, China
| | - Guizhi Li
- Department of Endocrinology, The Second Hospital of Hebei Medical University, No. 215, Hepingxi Road, Xinhua District, 050000, Shijiazhuang, Hebei, China
| | - Na Li
- Department of Endocrinology, The Second Hospital of Hebei Medical University, No. 215, Hepingxi Road, Xinhua District, 050000, Shijiazhuang, Hebei, China
| | - Hong Zhou
- Department of Endocrinology, The Second Hospital of Hebei Medical University, No. 215, Hepingxi Road, Xinhua District, 050000, Shijiazhuang, Hebei, China.
| |
Collapse
|
41
|
Singh J, Khanna NN, Rout RK, Singh N, Laird JR, Singh IM, Kalra MK, Mantella LE, Johri AM, Isenovic ER, Fouda MM, Saba L, Fatemi M, Suri JS. GeneAI 3.0: powerful, novel, generalized hybrid and ensemble deep learning frameworks for miRNA species classification of stationary patterns from nucleotides. Sci Rep 2024; 14:7154. [PMID: 38531923 PMCID: PMC11344070 DOI: 10.1038/s41598-024-56786-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 03/11/2024] [Indexed: 03/28/2024] Open
Abstract
Due to the intricate relationship between the small non-coding ribonucleic acid (miRNA) sequences, the classification of miRNA species, namely Human, Gorilla, Rat, and Mouse is challenging. Previous methods are not robust and accurate. In this study, we present AtheroPoint's GeneAI 3.0, a powerful, novel, and generalized method for extracting features from the fixed patterns of purines and pyrimidines in each miRNA sequence in ensemble paradigms in machine learning (EML) and convolutional neural network (CNN)-based deep learning (EDL) frameworks. GeneAI 3.0 utilized five conventional (Entropy, Dissimilarity, Energy, Homogeneity, and Contrast), and three contemporary (Shannon entropy, Hurst exponent, Fractal dimension) features, to generate a composite feature set from given miRNA sequences which were then passed into our ML and DL classification framework. A set of 11 new classifiers was designed consisting of 5 EML and 6 EDL for binary/multiclass classification. It was benchmarked against 9 solo ML (SML), 6 solo DL (SDL), 12 hybrid DL (HDL) models, resulting in a total of 11 + 27 = 38 models were designed. Four hypotheses were formulated and validated using explainable AI (XAI) as well as reliability/statistical tests. The order of the mean performance using accuracy (ACC)/area-under-the-curve (AUC) of the 24 DL classifiers was: EDL > HDL > SDL. The mean performance of EDL models with CNN layers was superior to that without CNN layers by 0.73%/0.92%. Mean performance of EML models was superior to SML models with improvements of ACC/AUC by 6.24%/6.46%. EDL models performed significantly better than EML models, with a mean increase in ACC/AUC of 7.09%/6.96%. The GeneAI 3.0 tool produced expected XAI feature plots, and the statistical tests showed significant p-values. Ensemble models with composite features are highly effective and generalized models for effectively classifying miRNA sequences.
Collapse
Affiliation(s)
- Jaskaran Singh
- Department of Computer Science, Graphic Era Deemed to be University, Dehradun, Uttarakhand, India
| | - Narendra N Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi, India
| | - Ranjeet K Rout
- Department of Computer Science and Engineering, NIT Srinagar, Hazratbal, Srinagar, India
| | - Narpinder Singh
- Department of Food Science, Graphic Era Deemed to be University, Dehradun, Uttarakhand, India
| | - John R Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St Helena, CA, USA
| | - Inder M Singh
- Advanced Cardiac and Vascular Institute, Sacramento, CA, USA
| | - Mannudeep K Kalra
- Department of Radiology, Massachusetts General Hospital, Boston, MA, 02115, USA
| | - Laura E Mantella
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Amer M Johri
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Esma R Isenovic
- Laboratory for Molecular Genetics and Radiobiology, University of Belgrade, Belgrade, Serbia
| | - Mostafa M Fouda
- Department of Electrical and Computer Engineering, Idaho State University, Pocatello, ID, 83209, USA
| | - Luca Saba
- Department of Neurology, University of Cagliari, Cagliari, Italy
| | - Mostafa Fatemi
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jasjit S Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint LLC, Roseville, CA, 95661, USA.
| |
Collapse
|
42
|
Song B, Qian J, Fu J. Research progress and potential application of microRNA and other non-coding RNAs in forensic medicine. Int J Legal Med 2024; 138:329-350. [PMID: 37770641 DOI: 10.1007/s00414-023-03091-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/18/2023] [Indexed: 09/30/2023]
Abstract
At present, epigenetic markers have been extensively studied in various fields and have a high value in forensic medicine due to their unique mode of inheritance, which does not involve DNA sequence alterations. As an epigenetic phenomenon that plays an important role in gene expression, non-coding RNAs (ncRNAs) act as key factors mediating gene silencing, participating in cell division, and regulating immune response and other important biological processes. With the development of molecular biology, genetics, bioinformatics, and next-generation sequencing (NGS) technology, ncRNAs such as microRNA (miRNA), circular RNA (circRNA), long non-coding RNA (lncRNA), and P-element induced wimpy testis (PIWI)-interacting RNA (piRNA) are increasingly been shown to have potential in the practice of forensic medicine. NcRNAs, mainly miRNA, may provide new strategies and methods for the identification of tissues and body fluids, cause-of-death analysis, time-related estimation, age estimation, and the identification of monozygotic twins. In this review, we describe the research progress and application status of ncRNAs, mainly miRNA, and other ncRNAs such as circRNA, lncRNA, and piRNA, in forensic practice, including the identification of tissues and body fluids, cause-of-death analysis, time-related estimation, age estimation, and the identification of monozygotic twins. The close links between ncRNAs and forensic medicine are presented, and their research values and application prospects in forensic medicine are also discussed.
Collapse
Affiliation(s)
- Binghui Song
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Laboratory of Precision Medicine and DNA Forensic Medicine, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jie Qian
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Laboratory of Precision Medicine and DNA Forensic Medicine, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Junjiang Fu
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Laboratory of Precision Medicine and DNA Forensic Medicine, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Laboratory of Forensic DNA, the Judicial Authentication Center, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
43
|
Chen QY, Jiang YN, Guan X, Ren FF, Wu SJ, Chu MP, Wu LP, Lai TF, Li L. Aerobic Exercise Attenuates Pressure Overload-Induced Myocardial Remodeling and Myocardial Inflammation via Upregulating miR-574-3p in Mice. Circ Heart Fail 2024; 17:e010569. [PMID: 38410978 DOI: 10.1161/circheartfailure.123.010569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 12/20/2023] [Indexed: 02/28/2024]
Abstract
BACKGROUND Exercise training can promote cardiac rehabilitation, thereby reducing cardiovascular disease mortality and hospitalization rates. MicroRNAs (miRs) are closely related to heart disease, among which miR-574-3p plays an important role in myocardial remodeling, but its role in exercise-mediated cardioprotection is still unclear. METHODS A mouse myocardial hypertrophy model was established by transverse aortic coarctation, and a 4-week swimming exercise training was performed 1 week after the operation. After swimming training, echocardiography was used to evaluate cardiac function in mice, and histopathologic staining was used to detect cardiac hypertrophy, myocardial fibrosis, and cardiac inflammation. Quantitative real-time polymerase chain reaction was used to detect the expression levels of miR-574-3p and cardiac hypertrophy markers. Western blotting detected the IL-6 (interleukin-6)/JAK/STAT inflammatory signaling pathway. RESULTS Echocardiography and histochemical staining found that aerobic exercise significantly improved pressure overload-induced myocardial hypertrophy (n=6), myocardial interstitial fibrosis (n=6), and cardiac inflammation (n=6). Quantitative real-time polymerase chain reaction detection showed that aerobic exercise upregulated the expression level of miR-574-3p (n=6). After specific knockdown of miR-574-3p in mouse hearts with adeno-associated virus 9 using cardiac troponin T promoter, we found that the protective effect of exercise training on the heart was significantly reversed. Echocardiography and histopathologic staining showed that inhibiting the expression of miR-574-3p could partially block the effects of aerobic exercise on cardiac function (n=6), cardiomyocyte cross-sectional area (n=6), and myocardial fibrosis (n=6). Western blotting and immunohistochemical staining showed that the inhibitory effects of aerobic exercise on the IL-6/JAK/STAT pathway and cardiac inflammation were partially abolished after miR-574-3p knockdown. Furthermore, we also found that miR-574-3p exerts cardioprotective effects in cardiomyocytes by targeting IL-6 (n=3). CONCLUSIONS Aerobic exercise protects cardiac hypertrophy and inflammation induced by pressure overload by upregulating miR-574-3p and inhibiting the IL-6/JAK/STAT pathway.
Collapse
Affiliation(s)
- Qiao-Ying Chen
- Department of Cardiology, Key Laboratory of Panvascular Diseases of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, China (Q.-Y.C., Y.-N.J., X.G., F.-F.R., S.-J.W., M.-P.C., L.-P.W., L.L.)
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, China (Q.-Y.C., Y.-N.J., X.G., F.-F.R., S.-J.W., M.-P.C., L.-P.W., L.L.)
| | - Yi-Na Jiang
- Department of Cardiology, Key Laboratory of Panvascular Diseases of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, China (Q.-Y.C., Y.-N.J., X.G., F.-F.R., S.-J.W., M.-P.C., L.-P.W., L.L.)
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, China (Q.-Y.C., Y.-N.J., X.G., F.-F.R., S.-J.W., M.-P.C., L.-P.W., L.L.)
| | - Xuan Guan
- Department of Cardiology, Key Laboratory of Panvascular Diseases of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, China (Q.-Y.C., Y.-N.J., X.G., F.-F.R., S.-J.W., M.-P.C., L.-P.W., L.L.)
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, China (Q.-Y.C., Y.-N.J., X.G., F.-F.R., S.-J.W., M.-P.C., L.-P.W., L.L.)
| | - Fang-Fang Ren
- Department of Cardiology, Key Laboratory of Panvascular Diseases of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, China (Q.-Y.C., Y.-N.J., X.G., F.-F.R., S.-J.W., M.-P.C., L.-P.W., L.L.)
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, China (Q.-Y.C., Y.-N.J., X.G., F.-F.R., S.-J.W., M.-P.C., L.-P.W., L.L.)
| | - Shu-Jie Wu
- Department of Cardiology, Key Laboratory of Panvascular Diseases of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, China (Q.-Y.C., Y.-N.J., X.G., F.-F.R., S.-J.W., M.-P.C., L.-P.W., L.L.)
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, China (Q.-Y.C., Y.-N.J., X.G., F.-F.R., S.-J.W., M.-P.C., L.-P.W., L.L.)
| | - Mao-Ping Chu
- Department of Cardiology, Key Laboratory of Panvascular Diseases of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, China (Q.-Y.C., Y.-N.J., X.G., F.-F.R., S.-J.W., M.-P.C., L.-P.W., L.L.)
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, China (Q.-Y.C., Y.-N.J., X.G., F.-F.R., S.-J.W., M.-P.C., L.-P.W., L.L.)
| | - Lian-Pin Wu
- Department of Cardiology, Key Laboratory of Panvascular Diseases of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, China (Q.-Y.C., Y.-N.J., X.G., F.-F.R., S.-J.W., M.-P.C., L.-P.W., L.L.)
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, China (Q.-Y.C., Y.-N.J., X.G., F.-F.R., S.-J.W., M.-P.C., L.-P.W., L.L.)
| | - Teng-Fang Lai
- Department of Cardiology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Laboratory of the Atherosclerosis and Ischemic Cardiovascular Diseases, Baise, China (T.-F.L)
| | - Lei Li
- Department of Cardiology, Key Laboratory of Panvascular Diseases of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, China (Q.-Y.C., Y.-N.J., X.G., F.-F.R., S.-J.W., M.-P.C., L.-P.W., L.L.)
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, China (Q.-Y.C., Y.-N.J., X.G., F.-F.R., S.-J.W., M.-P.C., L.-P.W., L.L.)
| |
Collapse
|
44
|
Yao M, Fang C, Wang Z, Guo T, Wu D, Ma J, Wu J, Mo J. miR-328-3p targets TLR2 to ameliorate oxygen-glucose deprivation injury and neutrophil extracellular trap formation in HUVECs via inhibition of the NF-κB signaling pathway. PLoS One 2024; 19:e0299382. [PMID: 38394259 PMCID: PMC10889604 DOI: 10.1371/journal.pone.0299382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Endothelial cell injury is one of the important pathogenic mechanisms in thrombotic diseases, and also neutrophils are involved. MicroRNAs (miRNAs) have been demonstrated to act as essential players in endothelial cell injury, but the potential molecular processes are unknown. In this study, we used cellular tests to ascertain the protective effect of miR-328-3p on human umbilical vein endothelial cells (HUVECs) treated with oxygen-glucose deprivation (OGD). METHODS In our study, an OGD-induced HUVECs model was established, and we constructed lentiviral vectors to establish stable HUVECs cell lines. miR-328-3p and Toll-like receptor 2 (TLR2) interacted, as demonstrated by the dual luciferase reporter assay. We used the CCK8, LDH release, and EdU assays to evaluate the proliferative capacity of each group of cells. To investigate the expression of TLR2, p-P65 NF-κB, P65 NF-κB, NLRP3, IL-1β, and IL-18, we employed Western blot and ELISA. Following OGD, each group's cell supernatants were gathered and co-cultured with neutrophils. An immunofluorescence assay and Transwell assay have been performed to determine whether miR-328-3p/TLR2 interferes with neutrophil migration and neutrophil extracellular traps (NETs) formation. RESULTS In OGD-treated HUVECs, the expression of miR-328-3p is downregulated. miR-328-3p directly targets TLR2, inhibits the NF-κB signaling pathway, and reverses the proliferative capacity of OGD-treated HUVECs, while inhibiting neutrophil migration and neutrophil extracellular trap formation. CONCLUSIONS miR-328-3p inhibits the NF-κB signaling pathway in OGD-treated HUVECs while inhibiting neutrophil migration and NETs formation, and ameliorating endothelial cell injury, which provides new ideas for the pathogenesis of thrombotic diseases.
Collapse
Affiliation(s)
- Mengting Yao
- Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Orthopedic Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Chucun Fang
- Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Orthopedic Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Zilong Wang
- Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Orthopedic Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Tianting Guo
- Department of Orthopedics, Guangdong Provincial People’s Hospital Ganzhou Hospital, Ganzhou Municipal Hospital, Ganzhou, Jiangxi, China
| | - Dongwen Wu
- Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Orthopedic Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Jiacheng Ma
- Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Orthopedic Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Jian Wu
- Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Orthopedic Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Jianwen Mo
- Department of Orthopedic Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
45
|
Shahjahan, Dey JK, Dey SK. Translational bioinformatics approach to combat cardiovascular disease and cancers. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 139:221-261. [PMID: 38448136 DOI: 10.1016/bs.apcsb.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Bioinformatics is an interconnected subject of science dealing with diverse fields including biology, chemistry, physics, statistics, mathematics, and computer science as the key fields to answer complicated physiological problems. Key intention of bioinformatics is to store, analyze, organize, and retrieve essential information about genome, proteome, transcriptome, metabolome, as well as organisms to investigate the biological system along with its dynamics, if any. The outcome of bioinformatics depends on the type, quantity, and quality of the raw data provided and the algorithm employed to analyze the same. Despite several approved medicines available, cardiovascular disorders (CVDs) and cancers comprises of the two leading causes of human deaths. Understanding the unknown facts of both these non-communicable disorders is inevitable to discover new pathways, find new drug targets, and eventually newer drugs to combat them successfully. Since, all these goals involve complex investigation and handling of various types of macro- and small- molecules of the human body, bioinformatics plays a key role in such processes. Results from such investigation has direct human application and thus we call this filed as translational bioinformatics. Current book chapter thus deals with diverse scope and applications of this translational bioinformatics to find cure, diagnosis, and understanding the mechanisms of CVDs and cancers. Developing complex yet small or long algorithms to address such problems is very common in translational bioinformatics. Structure-based drug discovery or AI-guided invention of novel antibodies that too with super-high accuracy, speed, and involvement of considerably low amount of investment are some of the astonishing features of the translational bioinformatics and its applications in the fields of CVDs and cancers.
Collapse
Affiliation(s)
- Shahjahan
- Laboratory for Structural Biology of Membrane Proteins, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Joy Kumar Dey
- Central Council for Research in Homoeopathy, Ministry of Ayush, Govt. of India, New Delhi, Delhi, India
| | - Sanjay Kumar Dey
- Laboratory for Structural Biology of Membrane Proteins, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India.
| |
Collapse
|
46
|
Che X, Wang X, Wang L, Xu L, Zou L, Ma T, Chen B. Expression and clinical significance of miR-141-5p as a biomarker in the serum of patients with early spontaneous abortion. Clinics (Sao Paulo) 2024; 79:100327. [PMID: 38330788 PMCID: PMC10864754 DOI: 10.1016/j.clinsp.2024.100327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/18/2023] [Accepted: 12/30/2023] [Indexed: 02/10/2024] Open
Abstract
AIM miR-141-5p expression in patients with Early Spontaneous Abortion (ESA) and its correlation with hormone levels during pregnancy were investigated. METHODS A total of 70 pregnant women with ESA were selected as the research group, and 70 normal pregnant women who chose abortion for non-medical reasons were selected as the Con group. Serum β-HCG, Progesterone (P), and Estrogen (E2) were detected by enzyme-linked immunosorbent assay. Differentially expressed miRNAs were screened by miRNA microarray analysis. miR-141-5p expression was detected by RT-qPCR, and its correlation with serum β-HCG, P, and E2 levels was analyzed. The diagnostic value of miR-141-5p for ESA was evaluated by the ROC curve. RESULTS Serum β-HCG, P, and E2 were decreased and serum miR-141-5p was increased in patients with ESA. Pearson correlation analysis showed that serum β-HCG, P, and E2 levels were negatively correlated with miR-141-5p expression levels. ROC curve showed that miR-141-5p had a diagnostic value for ESA. CONCLUSIONS miR-141-5p is related to hormone levels during pregnancy and is expected to become a new candidate diagnostic marker for ESA.
Collapse
Affiliation(s)
- XiaoQun Che
- Department of Reproductive Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang City, Guangdong Province, China; Department of Reproductive Medicine, Shunde Women and Children's Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, Guangdong Province, 528300, China
| | - Xiao Wang
- Department of Reproductive Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang City, Guangdong Province, China
| | - LiLian Wang
- Department of Reproductive Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang City, Guangdong Province, China
| | - LiHua Xu
- Department of Reproductive Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang City, Guangdong Province, China
| | - Lin Zou
- Department of Reproductive Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang City, Guangdong Province, China
| | - TianZhong Ma
- Department of Reproductive Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang City, Guangdong Province, China
| | - Bi Chen
- Department of Reproductive Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang City, Guangdong Province, China.
| |
Collapse
|
47
|
Wei H, Zhao H, Cheng D, Zhu Z, Xia Z, Lu D, Yu J, Dong R, Yue J. miR-148a and miR-551b-5p regulate inflammatory responses via regulating autophagy in acute pancreatitis. Int Immunopharmacol 2024; 127:111438. [PMID: 38159552 DOI: 10.1016/j.intimp.2023.111438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/08/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
Acute pancreatitis (AP) is a common inflammatory response that occurs in the pancreas with mortality rates as high as 30 %. However, there is still no consistent and effective treatment for AP now. MicroRNA-148 was reported to be involved in AP through IL-6 signaling pathway. Therefore, we aimed to further explore the detailed mechanisms of AP, to develop more therapeutic approach for AP. Exosomes were isolated from peripheral blood mononuclear cells of 20 AP patients and 20 healthy volunteers to evaluate the abnormally expressed miRNA. Then pancreatic acinar cells (PACs) were transfected with retrovirus to overexpress miR-148a/miR-551b-5p to evaluate their function. Both miR-148a and miR-551b-5p were highly expressed in AP patients than these in healthy cases. Then overexpressing miR-551b-5p in PACs could regulate autophagy through directly binding to Baculoviral IAP Repeat Containing 6, leading to the increased secretions of interleukin-1β (IL-1β) and interleukin-18 (IL-18) through interleukin-1 (IL-1) signaling pathway. Moreover, overexpressing miR-148a in PACs could decrease the secretions of IL-1β and IL-18 to modulate autophagy. The exosomal miRNA-148a and miRNA-551b-5p derived from peripheral blood mononuclear cells of AP patients may two-way mediate autophagy damage through IL-6/STAT3 signaling pathway, which participated in the AP pathogenesis. Our findings may provide new targets for the diagnosis and treatment of AP.
Collapse
Affiliation(s)
- Huiping Wei
- Department of Emergency, Hubei Maternal and Child Health Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 745 Wuluo Road, Hongshan District, Wuhan 430070, Hubei, China
| | - Hui Zhao
- Department of Emergency, Hubei Maternal and Child Health Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 745 Wuluo Road, Hongshan District, Wuhan 430070, Hubei, China.
| | - Dongliang Cheng
- Pediatric Intensive Care Unit, Henan Provincial People's Hospital, No. 7 Weiwu Road, Jinshui District, Zhengzhou 450000, Henan Province, China
| | - Zhenni Zhu
- Pediatric Gastroenterology Department, Hubei Maternal and Child Health Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 745 Wuluo Road, Hongshan District, Wuhan 430070, Hubei, China
| | - Zhi Xia
- Pediatric Intensive Care Unit, Hubei Maternal and Child Health Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.745 Wuluo Road, Hongshan District, Wuhan 430070, Hubei, China
| | - Dan Lu
- Department of Clinical Examination, Hubei Maternal and Child Health Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 745 Wuluo Road, Hongshan District, Wuhan 430070, Hubei, China
| | - Jing Yu
- Department of General Surgery, Hubei Maternal and Child Health Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.745 Wuluo Road, Hongshan District, Wuhan 430070, Hubei, China
| | - Ran Dong
- Department of Emergency, Hubei Maternal and Child Health Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 745 Wuluo Road, Hongshan District, Wuhan 430070, Hubei, China
| | - Jing Yue
- Department of Emergency, Hubei Maternal and Child Health Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 745 Wuluo Road, Hongshan District, Wuhan 430070, Hubei, China
| |
Collapse
|
48
|
Yang M, Li T, Guo S, Song K, Gong C, Huang N, Pang D, Xiao H. CVD phenotyping in oncologic disorders: cardio-miRNAs as a potential target to improve individual outcomes in revers cardio-oncology. J Transl Med 2024; 22:50. [PMID: 38216965 PMCID: PMC10787510 DOI: 10.1186/s12967-023-04680-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 10/28/2023] [Indexed: 01/14/2024] Open
Abstract
With the increase of aging population and prevalence of obesity, the incidence of cardiovascular disease (CVD) and cancer has also presented an increasing tendency. These two different diseases, which share some common risk factors. Relevant studies in the field of reversing Cardio-Oncology have shown that the phenotype of CVD has a significant adverse effect on tumor prognosis, which is mainly manifested by a positive correlation between CVD and malignant progression of concomitant tumors. This distal crosstalk and the link between different diseases makes us aware of the importance of diagnosis, prediction, management and personalized treatment of systemic diseases. The circulatory system bridges the interaction between CVD and cancer, which suggests that we need to fully consider the systemic and holistic characteristics of these two diseases in the process of clinical treatment. The circulating exosome-miRNAs has been intrinsically associated with CVD -related regulation, which has become one of the focuses on clinical and basic research (as biomarker). The changes in the expression profiles of cardiovascular disease-associated miRNAs (Cardio-miRNAs) may adversely affect concomitant tumors. In this article, we sorted and screened CVD and tumor-related miRNA data based on literature, then summarized their commonalities and characteristics (several important pathways), and further discussed the conclusions of Cardio-Oncology related experimental studies. We take a holistic approach to considering CVD as a risk factor for tumor malignancy, which provides an in-depth analysis of the various regulatory mechanisms or pathways involved in the dual attribute miRNAs (Cardio-/Onco-miRNAs). These mechanisms will be key to revealing the systemic effects of CVD on tumors and highlight the holistic nature of different diseases. Therefore, the Cardio-miRNAs should be given great attention from researchers in the field of CVD and tumors, which might become new targets for tumor treatment. Meanwhile, based on the principles of precision medicine (such as the predictive preventive personalized medicine, 3PM) and reverse Cardio-oncology to better improve individual outcomes, we should consider developing personalized medicine and systemic therapy for cancer from the perspective of protecting cardiovascular function.
Collapse
Affiliation(s)
- Ming Yang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- The Lab of Aging Research, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Tiepeng Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shujin Guo
- Department of Health Management & Institute of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Kangping Song
- Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, China
| | - Chuhui Gong
- The Lab of Aging Research, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Ning Huang
- The Lab of Aging Research, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Dejiang Pang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China.
| | - Hengyi Xiao
- The Lab of Aging Research, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
49
|
Adamcova M, Parova H, Lencova-Popelova O, Kollarova-Brazdova P, Baranova I, Slavickova M, Stverakova T, Mikyskova PS, Mazurova Y, Sterba M. Cardiac miRNA expression during the development of chronic anthracycline-induced cardiomyopathy using an experimental rabbit model. Front Pharmacol 2024; 14:1298172. [PMID: 38235109 PMCID: PMC10791979 DOI: 10.3389/fphar.2023.1298172] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/06/2023] [Indexed: 01/19/2024] Open
Abstract
Background: Anthracycline cardiotoxicity is a well-known complication of cancer treatment, and miRNAs have emerged as a key driver in the pathogenesis of cardiovascular diseases. This study aimed to investigate the expression of miRNAs in the myocardium in early and late stages of chronic anthracycline induced cardiotoxicity to determine whether this expression is associated with the severity of cardiac damage. Method: Cardiotoxicity was induced in rabbits via daunorubicin administration (daunorubicin, 3 mg/kg/week; for five and 10 weeks), while the control group received saline solution. Myocardial miRNA expression was first screened using TaqMan Advanced miRNA microfluidic card assays, after which 32 miRNAs were selected for targeted analysis using qRT-PCR. Results: The first subclinical signs of cardiotoxicity (significant increase in plasma cardiac troponin T) were observed after 5 weeks of daunorubicin treatment. At this time point, 10 miRNAs (including members of the miRNA-34 and 21 families) showed significant upregulation relative to the control group, with the most intense change observed for miRNA-1298-5p (29-fold change, p < 0.01). After 10 weeks of daunorubicin treatment, when a further rise in cTnT was accompanied by significant left ventricle systolic dysfunction, only miR-504-5p was significantly (p < 0.01) downregulated, whereas 10 miRNAs were significantly upregulated relative to the control group; at this time-point, the most intense change was observed for miR-34a-5p (76-fold change). Strong correlations were found between the expression of multiple miRNAs (including miR-34 and mir-21 family and miR-1298-5p) and quantitative indices of toxic damage in both the early and late phases of cardiotoxicity development. Furthermore, plasma levels of miR-34a-5p were strongly correlated with the myocardial expression of this miRNA. Conclusion: To the best of our knowledge, this is the first study that describes alterations in miRNA expression in the myocardium during the transition from subclinical, ANT-induced cardiotoxicity to an overt cardiotoxic phenotype; we also revealed how these changes in miRNA expression are strongly correlated with quantitative markers of cardiotoxicity.
Collapse
Affiliation(s)
| | - Helena Parova
- Department of Clinical Biochemistry and Diagnostics, Faculty of Medicine in Hradec Kralove and University Hospital Hradec Kralove, Hradec Kralove, Czechia
| | | | | | - Ivana Baranova
- Department of Clinical Biochemistry and Diagnostics, Faculty of Medicine in Hradec Kralove and University Hospital Hradec Kralove, Hradec Kralove, Czechia
| | - Marcela Slavickova
- Department of Clinical Biochemistry and Diagnostics, Faculty of Medicine in Hradec Kralove and University Hospital Hradec Kralove, Hradec Kralove, Czechia
| | - Tereza Stverakova
- Department of Clinical Biochemistry and Diagnostics, Faculty of Medicine in Hradec Kralove and University Hospital Hradec Kralove, Hradec Kralove, Czechia
| | - Petra Sauer Mikyskova
- Department of Clinical Biochemistry and Diagnostics, Faculty of Medicine in Hradec Kralove and University Hospital Hradec Kralove, Hradec Kralove, Czechia
| | - Yvona Mazurova
- Department of Histology and Embryology, Charles University in Prague, Hradec Kralove, Czechia
| | | |
Collapse
|
50
|
Angelopoulos A, Oikonomou E, Antonopoulos A, Theofilis P, Zisimos K, Katsarou O, Gazouli M, Lazaros G, Papanikolaou P, Siasos G, Tousoulis D, Tsioufis K, Vlachopoulos C. Expression of Circulating miR-21 and -29 and their Association with Myocardial Fibrosis in Hypertrophic Cardiomyopathy. Curr Med Chem 2024; 31:3987-3996. [PMID: 38299392 DOI: 10.2174/0109298673286017240103073130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/05/2023] [Accepted: 12/12/2023] [Indexed: 02/02/2024]
Abstract
BACKGROUND Hypertrophic Cardiomyopathy (HCM) is characterized by myocardial hypertrophy, fibrosis, and sarcomeric disarray. OBJECTIVE To evaluate the expression levels of circulating miR-21 and -29 in patients with HCM and their association with clinical characteristics and myocardial fibrosis. METHODS In this case-control study, 27 subjects with HCM, 13 subjects with hypertensive cardiomyopathy, and 10 control subjects were enrolled. Evaluation of patients' functional capacity was made by the six-minute walk test. Echocardiographic measurements of left ventricle systolic and diastolic function were conducted. Cardiac magnetic resonance late gadolinium enhancement (LGE) -through a semiquantitative evaluation- was used in the assessment of myocardial fibrosis extent in HCM patients. The expression of miR-21 and -29 in peripheral blood samples of all patients was measured via the method of quantitative reverse transcription polymerase chain reaction. RESULTS Circulating levels of miR-21 were higher in both hypertensive and HCM (p<0.001) compared to controls, while expression of miR-29 did not differ between the three studied groups. In patients with HCM and LGE-detected myocardial fibrosis in more than 4 out of 17 myocardial segments, delta CT miR-21 values were lower than in patients with myocardial LGE in 3 or fewer myocardial segments (2.71 ± 1.06 deltaCT vs. 3.50 ± 0.55 deltaCT, p<0.04), indicating the higher expression of circulating miR-21 in patients with more extensive myocardial fibrosis. CONCLUSION MiR-21 was overexpressed in patients with HCM and hypertensive cardiomyopathy. Importantly, in patients with HCM, more extensive myocardial fibrosis was associated with higher levels of miR-21.
Collapse
Affiliation(s)
- Andreas Angelopoulos
- Unit for Inherited and Rare Cardiovascular Diseases, 1st Department of Cardiology, Hippokration Hospital, University of Athens Medical School, Athens, Greece
| | - Evangelos Oikonomou
- 3rd Department of Cardiology, Sotiria Chest Disease Hospital, National and Kapodistrian, University of Athens Medical School, Athens, Greece
| | - Alexios Antonopoulos
- Unit for Inherited and Rare Cardiovascular Diseases, 1st Department of Cardiology, Hippokration Hospital, University of Athens Medical School, Athens, Greece
| | - Panagiotis Theofilis
- Unit for Inherited and Rare Cardiovascular Diseases, 1st Department of Cardiology, Hippokration Hospital, University of Athens Medical School, Athens, Greece
| | - Konstantinos Zisimos
- 3rd Department of Cardiology, Sotiria Chest Disease Hospital, National and Kapodistrian, University of Athens Medical School, Athens, Greece
| | - Ourania Katsarou
- 3rd Department of Cardiology, Sotiria Chest Disease Hospital, National and Kapodistrian, University of Athens Medical School, Athens, Greece
| | - Maria Gazouli
- Unit for Inherited and Rare Cardiovascular Diseases, 1st Department of Cardiology, Hippokration Hospital, University of Athens Medical School, Athens, Greece
| | - George Lazaros
- Unit for Inherited and Rare Cardiovascular Diseases, 1st Department of Cardiology, Hippokration Hospital, University of Athens Medical School, Athens, Greece
| | - Paraskevi Papanikolaou
- Unit for Inherited and Rare Cardiovascular Diseases, 1st Department of Cardiology, Hippokration Hospital, University of Athens Medical School, Athens, Greece
| | - Gerasimos Siasos
- 3rd Department of Cardiology, Sotiria Chest Disease Hospital, National and Kapodistrian, University of Athens Medical School, Athens, Greece
| | - Dimitris Tousoulis
- Unit for Inherited and Rare Cardiovascular Diseases, 1st Department of Cardiology, Hippokration Hospital, University of Athens Medical School, Athens, Greece
| | - Konstantinos Tsioufis
- Unit for Inherited and Rare Cardiovascular Diseases, 1st Department of Cardiology, Hippokration Hospital, University of Athens Medical School, Athens, Greece
| | - Charalambos Vlachopoulos
- Unit for Inherited and Rare Cardiovascular Diseases, 1st Department of Cardiology, Hippokration Hospital, University of Athens Medical School, Athens, Greece
| |
Collapse
|