1
|
Yang XY, Li F, Zhang G, Foster PS, Yang M. The role of macrophages in asthma-related fibrosis and remodelling. Pharmacol Ther 2025; 269:108820. [PMID: 39983844 DOI: 10.1016/j.pharmthera.2025.108820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/06/2024] [Accepted: 02/12/2025] [Indexed: 02/23/2025]
Abstract
Airway remodelling significantly contributes to the progressive loss of lung function and heightened symptom severity in chronic asthma. Additionally, it often persists and demonstrates reduced responsiveness to the mainstay treatments. The excessive deposition of collagen and extracellular matrix proteins leads to subepithelial fibrosis and airway remodelling, resulting in increased stiffness and decreased elasticity in the airway. Studies have emphasized the crucial role of subepithelial fibrosis in the pathogenesis of asthma. Fibrotic processes eventually cause airway narrowing, reduced lung function, and exacerbation of asthma symptoms. Macrophages play a crucial role in this process by producing pro-fibrotic cytokines, growth factors, and enzymes such as matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs). Additionally, identification of novel genetic markers has provided evidence for a strong genetic component in fibrosis within macrophage regulated fibrosis. Although macrophages contribute to the progression of airway remodelling and subepithelial fibrosis, interventions targeting macrophage-driven fibrotic changes have not yet been developed. This review synthesizes research on the intricate pathways through which macrophages contribute to subepithelial fibrosis in chronic asthma and its' pathological features. Understanding the interplay between macrophages, fibrosis, and asthma pathogenesis is essential for developing effective therapeutic strategies to manage severe asthma and improve patient outcomes.
Collapse
Affiliation(s)
- Xin Yuan Yang
- The School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Fuguang Li
- Department of Immunology & Microbiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Guojun Zhang
- Department of Respiratory Medicine, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan 450052, PR China
| | - Paul S Foster
- Woolcock Institute of Medical Research, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2113, Australia
| | - Ming Yang
- Department of Immunology & Microbiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, PR China; Department of Respiratory Medicine, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan 450052, PR China; Deparment of Respiratory Medicine and Intensive Care Unit, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan 471009, PR China; School of Biomedical Sciences & Pharmacy, Faculty of Health. Medicine and Wellbeing & Hunter Medical Research Institute, University of Newcastle, Lot 1 Kookaburra Circuit, New Lambton Heights, NSW 2305, Australia.
| |
Collapse
|
2
|
Matera MG, Cazzola M, Rogliani P, Patella V. An update on long-acting muscarinic agents for asthma therapy. Expert Rev Respir Med 2025; 19:407-421. [PMID: 40126053 DOI: 10.1080/17476348.2025.2484289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/12/2025] [Accepted: 03/21/2025] [Indexed: 03/25/2025]
Abstract
INTRODUCTION The manifestations of asthma are influenced by the dysfunction of the autonomic nervous system, which results in elevated vagal tone within the airways. Acetylcholine (ACh) plays a pivotal role in the pathophysiology of asthma through its interaction with muscarinic acetylcholine receptors (mAChRs). Consequently, using mAChR antagonists to counteract the actions of ACh is scientifically sound. AREAS COVERED This narrative review methodically examines the latest information on the mechanisms and evidence supporting the use of long-acting muscarinic antagonists (LAMAs) in asthma. EXPERT OPINION Adding a LAMA to existing asthma treatments involving an ICS and a LABA, within a single inhaler triple therapy (SITT), improves lung function regulating airflow limitation, reduces exacerbations, and eosinophilic inflammation and offers a more comprehensive approach to managing inflammation and tissue remodeling, which are linked to ACh. Additionally, it disrupts the vicious cycle of ACh release that contributes to neuronal plasticity and dysfunction of small airways. Identifying treatable traits is key to using SITT in a customized way that aligns with patients' needs. The 5T (Triple Therapy Targeting Treatable Traits) approach proposes the utilization of SITT for all asthma cases, not solely severe ones, and involves using LAMAs in ICS/LABA combinations earlier than current guidelines recommend.
Collapse
Affiliation(s)
- Maria Gabriella Matera
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Mario Cazzola
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome 'Tor Vergata', Rome, Italy
| | - Paola Rogliani
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome 'Tor Vergata', Rome, Italy
| | - Vincenzo Patella
- Department of Internal Medicine ASL Salerno, 'Santa Maria della Speranza' Hospital, Italy
- Postgraduate Program in Allergy and Clinical Immunology, University of Naples 'Federico II', Naples, Italy
| |
Collapse
|
3
|
Abushahin A, Abu‐Hasan M, Shailesh H, Antonisamy B, Hani Y, Muhayimana A, Al Theyab M, Janahi I. Inhomogeneity of lung ventilation in children with obesity and its potential role in worsening asthma. Physiol Rep 2025; 13:e70257. [PMID: 40243130 PMCID: PMC12004273 DOI: 10.14814/phy2.70257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 01/24/2025] [Accepted: 02/12/2025] [Indexed: 04/18/2025] Open
Abstract
Asthma is more frequent and severe in individuals with obesity compared to those with normal weight. While inhomogeneity of lung ventilation due to distal airway obstruction is a key feature in asthma, the effect of obesity on ventilation homogeneity is unclear. We conducted a cross-sectional study comparing lung clearance index (LCI) using multiple breath nitrogen washout technique between children with normal weight and asthma (n = 97), overweight/obesity and asthma (n = 100), overweight/obesity and no asthma (n = 100), and children with normal weight and no asthma (n = 67). Spirometry, lung volumes, and fractional exhaled nitric oxide (FeNO) were obtained for comparison. Results showed no significant difference in LCI between overweight/obesity groups and normal weight groups and no significant correlation between LCI and body mass index (BMI). However, LCI was higher in the asthma groups compared to non-asthma groups (p = 0.017, p = 0.003). There was a significant negative correlation between LCI and FEV1% predicted, FEV1/FVC, and FEF25-75% predicted (r = -0.24, p < 0.001; r = -0.26, p < 0.001; r = -0.23, p < 0.001), and a positive correlation with RV/TLC (r = 0.17, p = 0.003) and FeNO (r = 0.29, p < 0.001). These findings indicate that obesity does not affect the homogeneity of lung ventilation. Therefore, alternative mechanisms should be considered to explain the association between asthma and obesity.
Collapse
Affiliation(s)
- Ahmed Abushahin
- Department of Pediatric Medicine, Division of PulmonologySidra MedicineDohaQatar
- Clinical PediatricsWeill Cornel Medicine‐Qatar (WCM‐Q)DohaQatar
| | - Mutasim Abu‐Hasan
- Department of Pediatric Medicine, Division of PulmonologySidra MedicineDohaQatar
| | - Harshita Shailesh
- Department of Pediatric Medicine, Division of PulmonologySidra MedicineDohaQatar
| | | | - Yahya Hani
- Department of Pediatric Medicine, Division of PulmonologySidra MedicineDohaQatar
| | - Abidan Muhayimana
- Department of Pediatric Medicine, Division of PulmonologySidra MedicineDohaQatar
| | | | - Ibrahim Janahi
- Department of Pediatric Medicine, Division of PulmonologySidra MedicineDohaQatar
- Clinical PediatricsWeill Cornel Medicine‐Qatar (WCM‐Q)DohaQatar
| |
Collapse
|
4
|
Varricchi G, Poto R, Lommatzsch M, Brusselle G, Braido F, Virchow JC, Canonica GW. Biologics and airway remodeling in asthma: early, late, and potential preventive effects. Allergy 2025; 80:408-422. [PMID: 39520155 PMCID: PMC11804314 DOI: 10.1111/all.16382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/02/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
Although airway remodeling in severe and/or fatal asthma is still considered irreversible, its individual components as a cause of clinical symptoms and/or lung function changes remain largely unknown. While inhaled glucocorticoids have not consistently been shown to affect airway remodeling, biologics targeting specific pathways of airway inflammation have been shown to improve lung function, mucus plugging, and airway structural changes that can exceed those seen with glucocorticoids. This superiority of biologic treatment, which cannot be solely explained by insufficient doses or limited durations of glucocorticoid therapies, needs to be further explored. For this field of research, we propose a novel classification of the potential effects of biologics on airway remodeling into three temporal effects: early effects (days to weeks, primarily modulating inflammatory processes), late effects (months to years, predominantly affecting structural changes), and potential preventive effects (outcomes of early treatment with biologics). For the identification of potential preventive effects of biologics, we call for studies exploring the impact of early biological treatment on airway remodeling in patients with moderate-to-severe asthma, which should be accompanied by a long-term evaluation of clinical parameters, biomarkers, treatment burden, and socioeconomic implications.
Collapse
Affiliation(s)
- G. Varricchi
- Department of Translational Medical SciencesUniversity of Naples Federico IINaplesItaly
- Center for Basic and Clinical Immunology Research (CISI)University of Naples Federico IINaplesItaly
- World Allergy Organization (WAO) Center of ExcellenceNaplesItaly
- Institute of Experimental Endocrinology and Oncology (IEOS)National Research CouncilNaplesItaly
| | - R. Poto
- Department of Translational Medical SciencesUniversity of Naples Federico IINaplesItaly
- Center for Basic and Clinical Immunology Research (CISI)University of Naples Federico IINaplesItaly
- World Allergy Organization (WAO) Center of ExcellenceNaplesItaly
| | - M. Lommatzsch
- Department of Pneumology and Critical Care MedicineUniversity of RostockRostockGermany
| | - G. Brusselle
- Department of Respiratory MedicineGhent University HospitalGhentBelgium
| | - F. Braido
- Respiratory Diseases and Allergy DepartmentIRCCS Polyclinic Hospital San MartinoGenoaItaly
| | - J. C. Virchow
- Department of Pneumology and Critical Care MedicineUniversity of RostockRostockGermany
| | - G. W. Canonica
- Respiratory Diseases and Allergy DepartmentIRCCS Polyclinic Hospital San MartinoGenoaItaly
- Department of Biomedical SciencesHumanitas UniversityMilanItaly
- Asthma & Allergy Unit‐IRCCS Humanitas Research HospitalMilanItaly
| |
Collapse
|
5
|
Stenberg H, Chan R, Abd-Elaziz K, Pelgröm A, Lammering K, Kuijper-De Haan G, Weersink E, Lutter R, Zwinderman AH, de Jongh F, Diamant Z. Changes in Small Airway Physiology Measured by Impulse Oscillometry in Subjects with Allergic Asthma Following Methacholine and Inhaled Allergen Challenge. J Clin Med 2025; 14:906. [PMID: 39941577 PMCID: PMC11818261 DOI: 10.3390/jcm14030906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/16/2025] [Accepted: 01/26/2025] [Indexed: 02/16/2025] Open
Abstract
Background: Small airway dysfunction (SAD) is associated with impaired asthma control, but small airway physiology is not routinely assessed in clinical practice. Previously, we demonstrated impulse oscillometry (IOS)-defined small airway dysfunction (SAD) in dual responders (DRs) upon bronchoprovocation with various allergens. Aim: To compare lung physiology using spirometry and IOS following bronchoprovocation with methacholine (M) and inhaled house dust mite (HDM) extract in corticosteroid-naïve asthmatic subjects. Methods: Non-smoking, clinically stable HDM-allergic asthmatic subjects (18-55 years, FEV1 > 70% of pred.) underwent an M and inhaled HDM challenge on two separate days. Airway response was measured by IOS and spirometry, until a drop in FEV1 ≥ 20% (PC20) from post-diluent baseline (M), and up to 8 h post-allergen (HDM). Early (EAR) and late asthmatic response (LAR) to HDM were defined as ≥20% and ≥15% fall in FEV1 from post-diluent baseline during 0-3 h and 3-8 h post-challenge, respectively. IOS parameters (Rrs5, Rrs20, Rrs5-20, Xrs5, AX, Fres) were compared between mono-responders (MRs: EAR only) and dual responders (EAR + LAR). Correlations between maximal % change from baseline after the two airway challenges were calculated for both FEV1 and IOS parameters. Results: A total of 47 subjects were included (11 MRs; 36 DRs). FEV1 % predicted did not differ between MR and DR at baseline, but DR had lower median PC20M (0.84 (range 0.07-7.51) vs. MR (2.15 (0.53-11.29)); p = 0.036). During the LAR, DRs had higher IOS values than MRs. For IOS parameters (but not for FEV1), the maximal % change from baseline following M and HDM challenge were correlated. PC20M was inversely correlated with the % change in FEV1 and the % change in Xrs5 during the LAR (r= -0.443; p = 0.0018 and r= -0.389; p = 0.0075, respectively). Conclusions: During HDM-induced LAR, changes in small airway physiology can be non-invasively detected with IOS and are associated with increased airway hyperresponsiveness and changes in small airway physiology during methacholine challenge. DRs have a small airways phenotype, which reflects a more advanced airway disease.
Collapse
Affiliation(s)
- Henning Stenberg
- Center for Primary Health Care Research, Department of Clinical Sciences, Malmö, Lund University, 21428 Malmö, Sweden;
- University Clinic Primary Care Skåne, 29189 Kristianstad, Region Skåne, Sweden
| | - Rory Chan
- School of Medicine, University of Dundee, Dundee DD1 9SY, UK;
| | - Khalid Abd-Elaziz
- Department of Clinical Pharmacy and Pharmacology, University Medical Centre Groningen, 9700 RB Groningen, The Netherlands;
| | - Arjen Pelgröm
- Department of Pulmonary Medicine, Amsterdam University Medical Centre, 1007 MB Amsterdam, The Netherlands; (A.P.); (E.W.); (R.L.); (F.d.J.)
| | - Karin Lammering
- Lung Function Centre O2CO2, 2582 EZ The Hague, The Netherlands;
| | | | - Els Weersink
- Department of Pulmonary Medicine, Amsterdam University Medical Centre, 1007 MB Amsterdam, The Netherlands; (A.P.); (E.W.); (R.L.); (F.d.J.)
| | - René Lutter
- Department of Pulmonary Medicine, Amsterdam University Medical Centre, 1007 MB Amsterdam, The Netherlands; (A.P.); (E.W.); (R.L.); (F.d.J.)
| | - Aeilko H. Zwinderman
- Department of Epidemiology and Data Sciences, Amsterdam University Medical Centre, 1105 AZ Amsterdam, The Netherlands;
| | - Frans de Jongh
- Department of Pulmonary Medicine, Amsterdam University Medical Centre, 1007 MB Amsterdam, The Netherlands; (A.P.); (E.W.); (R.L.); (F.d.J.)
| | - Zuzana Diamant
- Department of Clinical Pharmacy and Pharmacology, University Medical Centre Groningen, 9700 RB Groningen, The Netherlands;
- Department of Microbiology Immunology & Transplantation, Catholic University of Leuven, 3000 Leuven, Belgium
- Department of Respiratory Medicine, First Faculty of Medicine, Thomayer Hospital, Charles University, 12108 Prague, Czech Republic
| |
Collapse
|
6
|
Singh S, Kularia S, Shukla S, Singh M, Kumar M, Sharma AK. A current review on animal models of anti-asthmatic drugs screening. Front Pharmacol 2025; 16:1508460. [PMID: 39981184 PMCID: PMC11841448 DOI: 10.3389/fphar.2025.1508460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 01/10/2025] [Indexed: 02/22/2025] Open
Abstract
Asthma is a chronic inflammatory respiratory condition characterised by airway constriction, smooth muscle spasm, and severe morbidity. It affects around 300 million people globally, with children being especially vulnerable. Despite its worldwide effect, the invention of innovative asthma medicines has been slow over the last 5 decades, leaving significant unmet requirements in asthma care. Although intriguing medicines have demonstrated efficacy in animal models, many fail to fulfil safety and effectiveness requirements in human trials, highlighting the critical need for more predictive models that better transfer to human results. This comprehensive review investigates the mechanisms and efficacy of anti-asthmatic drugs using both genetic and conventional animal models. Both genetic and traditional models of anti-asthmatic agents, their characteristics, and their significance are summarized as: In-Vitro Animal Models: Histamine receptor assay, Cell Culture Method, WST Assay, Spasmolytic Activity of the Lungs of Guinea Pigs, Airway and Vascular Responses to an Isolated Lung, The Isolated Perfused Guinea Pig Trachea's Reactivity. In-Vivo Models: In vivo small animal models, Broncho Spasmolytic Activity in anaesthetized Guinea Pigs, Guinea Pigs Respiratory and Vascular Dysfunction Caused by Arachidonic Acid or platelet-activated factor (PAF), Guinea Pig Asphyxia Induced by Serotonin Aerosol and Anaphylactic Microshock, Guinea Pigs Under Anaesthesia: Histamine-Induced Bronchoconstriction, Microshock in Rabbits and Pneumotachography in Guinea Pigs, Guinea Pig Bronchial Hyperactivity, Guinea Pig Airway Microvascular Leakage, Mice With Inflammatory Airways. Conclusion: This review focusses on the benefits and limitations of current animal models in asthma research, emphasising the need for more sophisticated, predictive models to decrease translational failures. By critically evaluating these models, the review emphasises their importance in directing anti-asthmatic drug development and highlights the urgent need for innovation to bridge the gap between preclinical success and clinical efficacy.
Collapse
Affiliation(s)
- Shivam Singh
- Department of Pharmacology, Nims Institute of Pharmacy, Nims University Rajasthan, Jaipur, Rajasthan, India
| | - Sunita Kularia
- Department of Pharmacology, Nims Institute of Pharmacy, Nims University Rajasthan, Jaipur, Rajasthan, India
| | - Shivakshi Shukla
- Department of Pharmacology, Nims Institute of Pharmacy, Nims University Rajasthan, Jaipur, Rajasthan, India
| | - Mithilesh Singh
- Department of Pharmaceutical Chemistry, Nims Institute of Pharmacy, Nims University Rajasthan, Jaipur, India
| | - Manish Kumar
- Department of Pharmacology, Nims Institute of Pharmacy, Nims University Rajasthan, Jaipur, Rajasthan, India
| | - Ashish Kumar Sharma
- Department of Pharmacology, Nims Institute of Pharmacy, Nims University Rajasthan, Jaipur, Rajasthan, India
| |
Collapse
|
7
|
Tagé BSS, Gonzatti MB, Vieira RP, Keller AC, Bortoluci KR, Aimbire F. Three Main SCFAs Mitigate Lung Inflammation and Tissue Remodeling Nlrp3-Dependent in Murine HDM-Induced Neutrophilic Asthma. Inflammation 2024; 47:1386-1402. [PMID: 38329636 DOI: 10.1007/s10753-024-01983-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/09/2024]
Abstract
Neutrophilic asthma is generally defined by poorly controlled symptoms and high levels of neutrophils in the lungs. Short-chain fatty acids (SCFAs) are proposed as nonpharmacological therapy for allergic asthma, but their impact on the neutrophilic asthma lacks evidence. SCFAs regulate immune cell responses and impact the inflammasome NLRP3, a potential pharmacological target for neutrophilic asthma. Here, we explored the capacity of SCFAs to mitigate murine-induced neutrophilic asthma and the contribution of NLRP3 to this asthma. The objective of this study is to analyze whether SCFAs can attenuate lung inflammation and tissue remodeling in murine neutrophilic asthma and NLRP3 contribution to this endotype. Wild-type (WT) C57BL6 mice orotracheally received 10 μg of HDM (house dust mite) in 80 μL of saline on days 0, 6-10. To explore SCFAs, each HDM group received 200 mM acetate, propionate, or butyrate. To explore NLRP3, Nlrp3 KO mice received the same protocol of HDM. On the 14th day, after euthanasia, bronchoalveolar lavage fluid (BALF) and lungs were collected to evaluate cellularity, inflammatory cytokines, and tissue remodeling. HDM group had increased BALF neutrophil influx, TNF-α, IFN-γ, IL-17A, collagen deposition, and mucus secretion compared to control. SCFAs distinctively attenuate lung inflammation. Only features of tissue remodeling were Nlrp3-dependent such as collagen deposition, mucus secretion, active TGF-β cytokine, and IMs CD206+. SCFAs greatly decreased inflammatory cytokines and tissue remodeling. Only tissue remodeling was dependent on NLRP3. It reveals the potential of SCFAs to act as an additional therapy to mitigate neutrophilic asthma and the NLRP3 contribution to asthma.
Collapse
Affiliation(s)
- Barbara S S Tagé
- Department of Science and Technology, Federal University of São Paulo (UNIFESP), São José dos Campos, SP, 12247-014, Brazil.
| | - Michelangelo B Gonzatti
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP), São Paulo, SP, 05468-901, Brazil
| | - Rodolfo P Vieira
- Postgraduate Program in Human Movement and Rehabilitation and in Pharmaceutical Sciences, Evangelical University of Goiás (UniEvangélica), Anápolis, GO, 75083-515, Brazil
- Postgraduate Program in Bioengineering, University Brasil, São Paulo, SP, 08230-030, Brazil
- Postgraduate Program in Sciences of Human Movement and Rehabilitation, Federal University of São Paulo (UNIFESP), Santos, SP, 11010-150, Brazil
| | - Alexandre C Keller
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP), São Paulo, SP, 05468-901, Brazil
| | - Karina R Bortoluci
- Department of Pharmacology, Federal University of São Paulo (UNIFESP), São Paulo, SP, 04023-062, Brazil
| | - Flávio Aimbire
- Department of Science and Technology, Federal University of São Paulo (UNIFESP), São José dos Campos, SP, 12247-014, Brazil
| |
Collapse
|
8
|
Conaway S, Huang W, Hernandez-Lara MA, Kane MA, Penn RB, Deshpande DA. Molecular mechanism of bitter taste receptor agonist-mediated relaxation of airway smooth muscle. FASEB J 2024; 38:e23842. [PMID: 39037554 PMCID: PMC11299423 DOI: 10.1096/fj.202400452r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/24/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024]
Abstract
G-protein-coupled receptors (GPCRs) belonging to the type 2 taste receptors (TAS2Rs) family are predominantly present in taste cells to allow the perception of bitter-tasting compounds. TAS2Rs have also been shown to be expressed in human airway smooth muscle (ASM), and TAS2R agonists relax ASM cells and bronchodilate airways despite elevating intracellular calcium. This calcium "paradox" (calcium mediates contraction by pro-contractile Gq-coupled GPCRs) and the mechanisms by which TAS2R agonists relax ASM remain poorly understood. To gain insight into pro-relaxant mechanisms effected by TAS2Rs, we employed an unbiased phosphoproteomic approach involving dual-mass spectrometry to determine differences in the phosphorylation of contractile-related proteins in ASM following the stimulation of cells with TAS2R agonists, histamine (an agonist of the Gq-coupled H1 histamine receptor) or isoproterenol (an agonist of the Gs-coupled β2-adrenoceptor) alone or in combination. Our study identified differential phosphorylation of proteins regulating contraction, including A-kinase anchoring protein (AKAP)2, AKAP12, and RhoA guanine nucleotide exchange factor (ARHGEF)12. Subsequent signaling analyses revealed RhoA and the T853 residue on myosin light chain phosphatase (MYPT)1 as points of mechanistic divergence between TAS2R and Gs-coupled GPCR pathways. Unlike Gs-coupled receptor signaling, which inhibits histamine-induced myosin light chain (MLC)20 phosphorylation via protein kinase A (PKA)-dependent inhibition of intracellular calcium mobilization, HSP20 and ERK1/2 activity, TAS2Rs are shown to inhibit histamine-induced pMLC20 via inhibition of RhoA activity and MYPT1 phosphorylation at the T853 residue. These findings provide insight into the TAS2R signaling in ASM by defining a distinct signaling mechanism modulating inhibition of pMLC20 to relax contracted ASM.
Collapse
Affiliation(s)
- Stanley Conaway
- Center for Translational Medicine, Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, PA, U.S.A., 19107
| | - Weiliang Huang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, U.S.A., 21201
| | - Miguel A. Hernandez-Lara
- Center for Translational Medicine, Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, PA, U.S.A., 19107
| | - Maureen A. Kane
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, U.S.A., 21201
| | - Raymond B. Penn
- Center for Translational Medicine, Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, PA, U.S.A., 19107
| | - Deepak A. Deshpande
- Center for Translational Medicine, Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, PA, U.S.A., 19107
| |
Collapse
|
9
|
Vianello A, Guarnieri G, Achille A, Lionello F, Lococo S, Zaninotto M, Caminati M, Senna G. Serum biomarkers of remodeling in severe asthma with fixed airway obstruction and the potential role of KL-6. Clin Chem Lab Med 2023; 61:1679-1687. [PMID: 36989607 DOI: 10.1515/cclm-2022-1323] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/10/2023] [Indexed: 03/31/2023]
Abstract
Over 3% of asthmatic patients are affected by a particularly severe form of the disease ("severe asthma", SA) which is often refractory to standard treatment. Airway remodeling (AR), which can be considered a critical characteristic of approximately half of all patients with SA and currently thought to be the main mechanism triggering fixed airway obstruction (FAO), seems to be a key factor affecting a patient's outcome. Despite the collective efforts of internationally renowned experts, to date only a few biomarkers indicative of AR and no recognizable biomarkers of lung parenchymal remodeling have been identified. This work examines the pathogenesis of airway and lung parenchymal remodeling and the serum biomarkers that may be able to identify the severe asthmatic patients who may develop FAO. The study also aims to examine if Krebs von den Lungen-6 (KL-6) could be considered a diagnostic biomarker of lung structural damage in SA.
Collapse
Affiliation(s)
- Andrea Vianello
- Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Gabriella Guarnieri
- Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Alessia Achille
- Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Federico Lionello
- Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Sara Lococo
- Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Martina Zaninotto
- Department of Laboratory Medicine, University-Hospital of Padova, Padova, Italy
| | - Marco Caminati
- Asthma Center and Allergy Unit, University of Verona, Verona, Italy
| | - Gianenrico Senna
- Asthma Center and Allergy Unit, University of Verona, Verona, Italy
| |
Collapse
|
10
|
Toumpanakis D, Usmani OS. Small airways in asthma: Pathophysiology, identification and management. CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2023; 1:171-180. [PMID: 39171124 PMCID: PMC11332871 DOI: 10.1016/j.pccm.2023.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Indexed: 08/23/2024]
Abstract
Background The aim of this review is to summarize the current evidence regarding small airway disease in asthma, focusing on recent advances in small airway pathophysiology, assessment and therapeutic implications. Methods A search in Medline was performed, using the keywords "small airways", "asthma", "oscillometry", "nitrogen washout" and "imaging". Our review was based on studies from adult asthmatic patients, although evidence from pediatric populations is also discussed. Results In asthma, inflammation in small airways, increased mucus production and airway wall remodelling are the main pathogenetic mechanisms of small airway disease. Small airway dysfunction is a key component of asthma pathophysiology, leading to increased small airway resistance and airway closure, with subsequent ventilation inhomogeneities, hyperresponsiveness and airflow limitation. Classic tests of lung function, such as spirometry and body plethysmography are insensitive to detect small airway disease, providing only indirect measurements. As discussed in our review, both functional and imaging techniques that are more specific for small airways, such as oscillometry and the multiple breath nitrogen washout have delineated the role of small airways in asthma. Small airways disease is prevalent across all asthma disease stages and especially in severe disease, correlating with important clinical outcomes, such as asthma control and exacerbation frequency. Moreover, markers of small airways dysfunction have been used to guide asthma treatment and monitor response to therapy. Conclusions Assessment of small airway disease provides unique information for asthma diagnosis and monitoring, with potential therapeutic implications.
Collapse
Affiliation(s)
- Dimitrios Toumpanakis
- National Heart and Lung Institute, Imperial College London, London, SW3 6LY, United Kingdom
- General State Hospital for Thoracic Diseases of Athens “Sotiria”, Athens, 11527, Greece
| | - Omar S. Usmani
- National Heart and Lung Institute, Imperial College London, London, SW3 6LY, United Kingdom
| |
Collapse
|
11
|
Yi L, Zhao Y, Guo Z, Li Q, Zhang G, Tian X, Xu X, Luo Z. The role of small airway function parameters in preschool asthmatic children. BMC Pulm Med 2023; 23:219. [PMID: 37340433 DOI: 10.1186/s12890-023-02515-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/08/2023] [Indexed: 06/22/2023] Open
Abstract
BACKGROUND Small airways are the major sites of inflammation and airway remodeling in all severities of asthma patients. However, whether small airway function parameters could reflect the airway dysfunction feature in preschool asthmatic children remain unclear. We aim to investigate the role of small airway function parameters in evaluating airway dysfunction, airflow limitation and airway hyperresponsiveness (AHR). METHODS Eight hundred and fifty-one preschool children diagnosed with asthma were enrolled retrospectively to investigate the characteristics of small airway function parameters. Curve estimation analysis was applied to clarify the correlation between small and large airway dysfunction. Spearman's correlation and receiver-operating characteristic (ROC) curves were employed to evaluate the relationship between small airway dysfunction (SAD) and AHR. RESULTS The prevalence of SAD was 19.5% (166 of 851) in this cross-sectional cohort study. Small airway function parameters (FEF25-75%, FEF50%, FEF75%) showed strong correlations with FEV1% (r = 0.670, 0.658, 0.609, p<0.001, respectively), FEV1/FVC% (r = 0.812, 0.751, 0.871, p<0.001, respectively) and PEF% (r = 0.626, 0.635, 0.530, p<0.01, respectively). Moreover, small airway function parameters and large airway function parameters (FEV1%, FEV1/FVC%, PEF%) were curve-associated rather than linear-related (p<0.001). FEF25-75%, FEF50%, FEF75% and FEV1% demonstrated a positive correlation with PC20 (r = 0.282, 0.291, 0.251, 0.224, p<0.001, respectively). Interestingly, FEF25-75% and FEF50% exhibited a higher correlation coefficient with PC20 than FEV1% (0.282 vs. 0.224, p = 0.031 and 0.291 vs. 0.224, p = 0.014, respectively). ROC curve analysis for predicting moderate to severe AHR showed that the area under the curve (AUC) was 0.796, 0.783, 0.738, and 0.802 for FEF25-75%, FEF50%, FEF75%, and the combination of FEF25-75% and FEF75%, respectively. When Compared to children with normal lung function, patients with SAD were slightly older, more likely to have a family history of asthma and airflow obstruction with lower FEV1% and FEV1/FVC%, lower PEF% and more severe AHR with lower PC20 ( all p<0.05). CONCLUSION Small airway dysfunction is highly correlated with large airway function impairment, severe airflow obstruction and AHR in preschool asthmatic children. Small airway function parameters should be utilized in the management of preschool asthma.
Collapse
Affiliation(s)
- Liangqin Yi
- Chongqing Key Laboratory of Pediatrics, International Science and Technology Cooperation base of Child Development and Critical Disorders, Department of Children's Hospital of Chongqing Medical, Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Department of Clinical Laboratory center, University of Education, 400014, Chongqing, China
| | - Yan Zhao
- Chongqing Key Laboratory of Pediatrics, International Science and Technology Cooperation base of Child Development and Critical Disorders, Department of Children's Hospital of Chongqing Medical, Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Department of Clinical Laboratory center, University of Education, 400014, Chongqing, China
| | - Ziyao Guo
- Chongqing Key Laboratory of Pediatrics, International Science and Technology Cooperation base of Child Development and Critical Disorders, Department of Children's Hospital of Chongqing Medical, Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Department of Clinical Laboratory center, University of Education, 400014, Chongqing, China
| | - Qinyuan Li
- Chongqing Key Laboratory of Pediatrics, International Science and Technology Cooperation base of Child Development and Critical Disorders, Department of Children's Hospital of Chongqing Medical, Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Department of Clinical Laboratory center, University of Education, 400014, Chongqing, China
| | - Guangli Zhang
- National Clinical Research Center for Child Health and Disorders, Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoyin Tian
- National Clinical Research Center for Child Health and Disorders, Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Ximing Xu
- Big Data Center for Children's Medical Care, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Zhengxiu Luo
- National Clinical Research Center for Child Health and Disorders, Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
12
|
Tatler AL, Philp CJ, Hill MR, Cox S, Bullock AM, Habgood A, John A, Middlewick R, Stephenson KE, Goodwin AT, Billington CK, O'Dea RD, Johnson SR, Brook BS. Differential remodeling in small and large murine airways revealed by novel whole lung airway analysis. Am J Physiol Lung Cell Mol Physiol 2023; 324:L271-L284. [PMID: 36594851 PMCID: PMC9970660 DOI: 10.1152/ajplung.00034.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 12/12/2022] [Accepted: 12/23/2022] [Indexed: 01/04/2023] Open
Abstract
Airway remodeling occurs in chronic asthma leading to increased airway smooth muscle (ASM) mass and extracellular matrix (ECM) deposition. Although extensively studied in murine airways, studies report only selected larger airways at one time-point meaning the spatial distribution and resolution of remodeling are poorly understood. Here we use a new method allowing comprehensive assessment of the spatial and temporal changes in ASM, ECM, and epithelium in large numbers of murine airways after allergen challenge. Using image processing to analyze 20-50 airways per mouse from a whole lung section revealed increases in ASM and ECM after allergen challenge were greater in small and large rather than intermediate airways. ASM predominantly accumulated adjacent to the basement membrane, whereas ECM was distributed across the airway wall. Epithelial hyperplasia was most marked in small and intermediate airways. After challenge, ASM changes resolved over 7 days, whereas ECM and epithelial changes persisted. The new method suggests large and small airways remodel differently, and the long-term consequences of airway inflammation may depend more on ECM and epithelial changes than ASM. The improved quantity and quality of unbiased data provided by the method reveals important spatial differences in remodeling and could set new analysis standards for murine asthma models.
Collapse
Affiliation(s)
- Amanda L Tatler
- Centre for Respiratory Research, NIHR Biomedical Research Centre and Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Christopher J Philp
- Centre for Respiratory Research, NIHR Biomedical Research Centre and Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Michael R Hill
- School of Mathematical Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Sam Cox
- Digital Research Service, University of Nottingham, Nottingham, United Kingdom
| | - Andrew M Bullock
- School of Mathematical Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Anthony Habgood
- Centre for Respiratory Research, NIHR Biomedical Research Centre and Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Alison John
- Centre for Respiratory Research, NIHR Biomedical Research Centre and Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Robert Middlewick
- Centre for Respiratory Research, NIHR Biomedical Research Centre and Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Katherine E Stephenson
- Centre for Respiratory Research, NIHR Biomedical Research Centre and Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Amanda T Goodwin
- Centre for Respiratory Research, NIHR Biomedical Research Centre and Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Charlotte K Billington
- Centre for Respiratory Research, NIHR Biomedical Research Centre and Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Reuben D O'Dea
- School of Mathematical Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Simon R Johnson
- Centre for Respiratory Research, NIHR Biomedical Research Centre and Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Bindi S Brook
- School of Mathematical Sciences, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
13
|
Varricchi G, Ferri S, Pepys J, Poto R, Spadaro G, Nappi E, Paoletti G, Virchow JC, Heffler E, Canonica WG. Biologics and airway remodeling in severe asthma. Allergy 2022; 77:3538-3552. [PMID: 35950646 PMCID: PMC10087445 DOI: 10.1111/all.15473] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 01/28/2023]
Abstract
Asthma is a chronic inflammatory airway disease resulting in airflow obstruction, which in part can become irreversible to conventional therapies, defining the concept of airway remodeling. The introduction of biologics in severe asthma has led in some patients to the complete normalization of previously considered irreversible airflow obstruction. This highlights the need to distinguish a "fixed" airflow obstruction due to structural changes unresponsive to current therapies, from a "reversible" one as demonstrated by lung function normalization during biological therapies not previously obtained even with high-dose systemic glucocorticoids. The mechanisms by which exposure to environmental factors initiates the inflammatory responses that trigger airway remodeling are still incompletely understood. Alarmins represent epithelial-derived cytokines that initiate immunologic events leading to inflammatory airway remodeling. Biological therapies can improve airflow obstruction by addressing these airway inflammatory changes. In addition, biologics might prevent and possibly even revert "fixed" remodeling due to structural changes. Hence, it appears clinically important to separate the therapeutic effects (early and late) of biologics as a new paradigm to evaluate the effects of these drugs and future treatments on airway remodeling in severe asthma.
Collapse
Affiliation(s)
- Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,World Allergy Organization (WAO) Center of Excellence, Naples, Italy.,Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples, Italy
| | - Sebastian Ferri
- Personalized Medicine Asthma and Allergy Unit - IRCCS Humanitas Research Hospital, Milan, Italy
| | - Jack Pepys
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,World Allergy Organization (WAO) Center of Excellence, Naples, Italy
| | - Giuseppe Spadaro
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,World Allergy Organization (WAO) Center of Excellence, Naples, Italy
| | - Emanuele Nappi
- Personalized Medicine Asthma and Allergy Unit - IRCCS Humanitas Research Hospital, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Giovanni Paoletti
- Personalized Medicine Asthma and Allergy Unit - IRCCS Humanitas Research Hospital, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | | | - Enrico Heffler
- Personalized Medicine Asthma and Allergy Unit - IRCCS Humanitas Research Hospital, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Walter G Canonica
- Personalized Medicine Asthma and Allergy Unit - IRCCS Humanitas Research Hospital, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| |
Collapse
|
14
|
Joglekar MM, Nizamoglu M, Fan Y, Nemani SSP, Weckmann M, Pouwels SD, Heijink IH, Melgert BN, Pillay J, Burgess JK. Highway to heal: Influence of altered extracellular matrix on infiltrating immune cells during acute and chronic lung diseases. Front Pharmacol 2022; 13:995051. [PMID: 36408219 PMCID: PMC9669433 DOI: 10.3389/fphar.2022.995051] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/19/2022] [Indexed: 10/31/2023] Open
Abstract
Environmental insults including respiratory infections, in combination with genetic predisposition, may lead to lung diseases such as chronic obstructive pulmonary disease, lung fibrosis, asthma, and acute respiratory distress syndrome. Common characteristics of these diseases are infiltration and activation of inflammatory cells and abnormal extracellular matrix (ECM) turnover, leading to tissue damage and impairments in lung function. The ECM provides three-dimensional (3D) architectural support to the lung and crucial biochemical and biophysical cues to the cells, directing cellular processes. As immune cells travel to reach any site of injury, they encounter the composition and various mechanical features of the ECM. Emerging evidence demonstrates the crucial role played by the local environment in recruiting immune cells and their function in lung diseases. Moreover, recent developments in the field have elucidated considerable differences in responses of immune cells in two-dimensional versus 3D modeling systems. Examining the effect of individual parameters of the ECM to study their effect independently and collectively in a 3D microenvironment will help in better understanding disease pathobiology. In this article, we discuss the importance of investigating cellular migration and recent advances in this field. Moreover, we summarize changes in the ECM in lung diseases and the potential impacts on infiltrating immune cell migration in these diseases. There has been compelling progress in this field that encourages further developments, such as advanced in vitro 3D modeling using native ECM-based models, patient-derived materials, and bioprinting. We conclude with an overview of these state-of-the-art methodologies, followed by a discussion on developing novel and innovative models and the practical challenges envisaged in implementing and utilizing these systems.
Collapse
Affiliation(s)
- Mugdha M. Joglekar
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, Netherlands
| | - Mehmet Nizamoglu
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, Netherlands
| | - YiWen Fan
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, Netherlands
| | - Sai Sneha Priya Nemani
- Department of Paediatric Pneumology &Allergology, University Children’s Hospital, Schleswig-Holstein, Campus Lübeck, Germany
- Epigenetics of Chronic Lung Disease, Priority Research Area Chronic Lung Diseases; Leibniz Lung Research Center Borstel; Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Germany
| | - Markus Weckmann
- Department of Paediatric Pneumology &Allergology, University Children’s Hospital, Schleswig-Holstein, Campus Lübeck, Germany
- Epigenetics of Chronic Lung Disease, Priority Research Area Chronic Lung Diseases; Leibniz Lung Research Center Borstel; Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Germany
| | - Simon D. Pouwels
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Department of Pulmonology, Groningen, Netherlands
| | - Irene H. Heijink
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Department of Pulmonology, Groningen, Netherlands
| | - Barbro N. Melgert
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, Netherlands
- University of Groningen, Department of Molecular Pharmacology, Groningen Research Institute for Pharmacy, Groningen, Netherlands
| | - Janesh Pillay
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Department of Critical Care, Groningen, Netherlands
| | - Janette K. Burgess
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, W.J. Kolff Institute for Biomedical Engineering and Materials Science-FB41, Groningen, Netherlands
| |
Collapse
|
15
|
Rutting S, Thamrin C, Cross TJ, King GG, Tonga KO. Fixed Airflow Obstruction in Asthma: A Problem of the Whole Lung Not of Just the Airways. Front Physiol 2022; 13:898208. [PMID: 35677089 PMCID: PMC9169051 DOI: 10.3389/fphys.2022.898208] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract Asthma with irreversible or fixed airflow obstruction (FAO) is a severe clinical phenotype that is difficult to treat and is associated with an accelerated decline in lung function and excess morbidity. There are no current treatments to reverse or prevent this excessive decline in lung function in these patients, due to a lack of understanding of the underlying pathophysiology. The current paradigm is that FAO in asthma is due to airway remodeling driven by chronic inflammation. However, emerging evidence indicates significant and critical structural and functional changes to the lung parenchyma and its lung elastic properties in asthma with FAO, suggesting that FAO is a ‘whole lung’ problem and not just of the airways. In this Perspective we draw upon what is known thus far on the pathophysiological mechanisms contributing to FAO in asthma, and focus on recent advances and future directions. We propose the view that structural and functional changes in parenchymal tissue, are just as (if not more) important than airway remodeling in causing persistent lung function decline in asthma. We believe this paradigm of FAO should be considered when developing novel treatments.
Collapse
Affiliation(s)
- Sandra Rutting
- Airway Physiology and Imaging Group, The Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW, Australia
- The Department of Respiratory Medicine, Royal North Shore Hospital, Sydney, NSW, Australia
| | - Cindy Thamrin
- Airway Physiology and Imaging Group, The Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Troy J. Cross
- Airway Physiology and Imaging Group, The Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Gregory G. King
- Airway Physiology and Imaging Group, The Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW, Australia
- The Department of Respiratory Medicine, Royal North Shore Hospital, Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Katrina O. Tonga
- Airway Physiology and Imaging Group, The Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- The Department of Thoracic and Transplant Medicine, St Vincent’s Hospital, Sydney, NSW, Australia
- St Vincent’s Healthcare Clinical Campus, School of Clinical Medicine, UNSW Medicine and Health, University of New South Wales Sydney, Sydney, NSW, Australia
- *Correspondence: Katrina O. Tonga,
| |
Collapse
|
16
|
Janulaityte I, Januskevicius A, Rimkunas A, Palacionyte J, Vitkauskiene A, Malakauskas K. Asthmatic Eosinophils Alter the Gene Expression of Extracellular Matrix Proteins in Airway Smooth Muscle Cells and Pulmonary Fibroblasts. Int J Mol Sci 2022; 23:4086. [PMID: 35456903 PMCID: PMC9031271 DOI: 10.3390/ijms23084086] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 11/26/2022] Open
Abstract
The impaired production of extracellular matrix (ECM) proteins by airway smooth muscle cells (ASMC) and pulmonary fibroblasts (PF) is a part of airway remodeling in asthma. This process might be influenced by eosinophils that migrate to the airway and abundantly secrete various cytokines, including TGF-β. We aimed to investigate the effect of asthmatic eosinophils on the gene expression of ECM proteins in ASMC and PF. A total of 34 study subjects were recruited: 14 with allergic asthma (AA), 9 with severe non-allergic eosinophilic asthma (SNEA), and 11 healthy subjects (HS). All AA patients underwent bronchial allergen challenge with D. pteronyssinus. The peripheral blood eosinophils were isolated using high-density centrifugation and magnetic separation. The individual cell cultures were made using hTERT ASMC and MRC-5 cell lines and the subjects' eosinophils. The gene expression of ECM and the TGF-β signaling pathway was analyzed using qRT-PCR. We found that asthmatic eosinophils significantly promoted collagen I, fibronectin, versican, tenascin C, decorin, vitronectin, periostin, vimentin, MMP-9, ADAM33, TIMP-1, and TIMP-2 gene expression in ASMC and collagen I, collagen III, fibronectin, elastin, decorin, MMP-2, and TIMP-2 gene expression in PF compared with the HS eosinophil effect. The asthmatic eosinophils significantly increased the gene expression of several canonical and non-canonical TGF-β signaling pathway components in ASMC and PF compared with the HS eosinophil effect. The allergen-activated AA and SNEA eosinophils had a greater effect on these changes. In conclusion, asthmatic eosinophils, especially SNEA and allergen-activated eosinophils, imbalanced the gene expression of ECM proteins and their degradation-regulating proteins. These changes were associated with increased gene expression of TGF-β signaling pathway molecules in ASMC and PF.
Collapse
Affiliation(s)
- Ieva Janulaityte
- Laboratory of Pulmonology, Department of Pulmonology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania; (A.J.); (A.R.); (K.M.)
| | - Andrius Januskevicius
- Laboratory of Pulmonology, Department of Pulmonology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania; (A.J.); (A.R.); (K.M.)
| | - Airidas Rimkunas
- Laboratory of Pulmonology, Department of Pulmonology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania; (A.J.); (A.R.); (K.M.)
| | - Jolita Palacionyte
- Department of Pulmonology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania;
| | - Astra Vitkauskiene
- Department of Laboratory Medicine, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania;
| | - Kestutis Malakauskas
- Laboratory of Pulmonology, Department of Pulmonology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania; (A.J.); (A.R.); (K.M.)
- Department of Pulmonology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania;
| |
Collapse
|
17
|
Ramis J, Middlewick R, Pappalardo F, Cairns JT, Stewart ID, John AE, Naveed SUN, Krishnan R, Miller S, Shaw DE, Brightling CE, Buttery L, Rose F, Jenkins G, Johnson SR, Tatler AL. Lysyl oxidase-like 2 is increased in asthma and contributes to asthmatic airway remodelling. Eur Respir J 2022; 60:13993003.04361-2020. [PMID: 34996828 PMCID: PMC9260127 DOI: 10.1183/13993003.04361-2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 11/08/2021] [Indexed: 12/04/2022]
Abstract
Background Airway smooth muscle (ASM) cells are fundamental to asthma pathogenesis, influencing bronchoconstriction, airway hyperresponsiveness and airway remodelling. The extracellular matrix (ECM) can influence tissue remodelling pathways; however, to date no study has investigated the effect of ASM ECM stiffness and cross-linking on the development of asthmatic airway remodelling. We hypothesised that transforming growth factor-β (TGF-β) activation by ASM cells is influenced by ECM in asthma and sought to investigate the mechanisms involved. Methods This study combines in vitro and in vivo approaches: human ASM cells were used in vitro to investigate basal TGF-β activation and expression of ECM cross-linking enzymes. Human bronchial biopsies from asthmatic and nonasthmatic donors were used to confirm lysyl oxidase like 2 (LOXL2) expression in ASM. A chronic ovalbumin (OVA) model of asthma was used to study the effect of LOXL2 inhibition on airway remodelling. Results We found that asthmatic ASM cells activated more TGF-β basally than nonasthmatic controls and that diseased cell-derived ECM influences levels of TGF-β activated. Our data demonstrate that the ECM cross-linking enzyme LOXL2 is increased in asthmatic ASM cells and in bronchial biopsies. Crucially, we show that LOXL2 inhibition reduces ECM stiffness and TGF-β activation in vitro, and can reduce subepithelial collagen deposition and ASM thickness, two features of airway remodelling, in an OVA mouse model of asthma. Conclusion These data are the first to highlight a role for LOXL2 in the development of asthmatic airway remodelling and suggest that LOXL2 inhibition warrants further investigation as a potential therapy to reduce remodelling of the airways in severe asthma. Novel role for matrix cross-linking enzyme LOXL2 in asthmatic airway remodelling: LOXL2 is increased in #asthma but LOXL2 inhibition reduces matrix stiffness in airway smooth muscle cells and reduces remodelling in vivohttps://bit.ly/3FnzGb3
Collapse
Affiliation(s)
- Jopeth Ramis
- Biodiscovery Institute, University of Nottingham, UK.,Department of Chemical Engineering, Technological Institute of the Philippines, Philippines
| | - Robert Middlewick
- Centre for Respiratory Research/ NIHR Biomedical Research Centre, School of Medicine, University of Nottingham, UK
| | | | - Jennifer T Cairns
- Centre for Respiratory Research/ NIHR Biomedical Research Centre, School of Medicine, University of Nottingham, UK
| | - Iain D Stewart
- Centre for Respiratory Research/ NIHR Biomedical Research Centre, School of Medicine, University of Nottingham, UK.,Margaret Turner Warwick Centre for Fibrosing Lung Disease, National Heart and Lung Institute, Imperial College London, UK
| | - Alison E John
- Centre for Respiratory Research/ NIHR Biomedical Research Centre, School of Medicine, University of Nottingham, UK.,Margaret Turner Warwick Centre for Fibrosing Lung Disease, National Heart and Lung Institute, Imperial College London, UK
| | - Shams-Un-Nisa Naveed
- Centre for Respiratory Research/ NIHR Biomedical Research Centre, School of Medicine, University of Nottingham, UK.,Institute for Lung Health, Leicester NIHR Biomedical Research Centre, University of Leicester, UK
| | - Ramaswamy Krishnan
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, USA
| | - Suzanne Miller
- Biodiscovery Institute, University of Nottingham, UK.,Centre for Respiratory Research/ NIHR Biomedical Research Centre, School of Medicine, University of Nottingham, UK
| | - Dominick E Shaw
- Centre for Respiratory Research/ NIHR Biomedical Research Centre, School of Medicine, University of Nottingham, UK
| | - Christopher E Brightling
- Institute for Lung Health, Leicester NIHR Biomedical Research Centre, University of Leicester, UK
| | - Lee Buttery
- Biodiscovery Institute, University of Nottingham, UK
| | - Felicity Rose
- Biodiscovery Institute, University of Nottingham, UK
| | - Gisli Jenkins
- Centre for Respiratory Research/ NIHR Biomedical Research Centre, School of Medicine, University of Nottingham, UK.,Margaret Turner Warwick Centre for Fibrosing Lung Disease, National Heart and Lung Institute, Imperial College London, UK
| | - Simon R Johnson
- Biodiscovery Institute, University of Nottingham, UK.,Centre for Respiratory Research/ NIHR Biomedical Research Centre, School of Medicine, University of Nottingham, UK
| | - Amanda L Tatler
- Centre for Respiratory Research/ NIHR Biomedical Research Centre, School of Medicine, University of Nottingham, UK
| |
Collapse
|
18
|
Jakwerth CA, Chaker AM, Guerth F, Oelsner M, Pechtold L, Zur Bonsen LS, Ullmann JT, Krauss-Etschmann S, Erb A, Kau J, Plaschke M, Winkler M, Kurz A, Kloss A, Esser-von Bieren J, Schmidt-Weber CB, Zissler UM. Sputum microRNA-screening reveals Prostaglandin EP3 receptor as selective target in allergen-specific immunotherapy. Clin Exp Allergy 2021; 51:1577-1591. [PMID: 34514658 DOI: 10.1111/cea.14013] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 09/08/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND Several microRNAs (miRs) have been described as potential biomarkers in liquid biopsies and in the context of allergic asthma, while therapeutic effects on the airway expression of miRs remain elusive. In this study, we investigated epigenetic miR-associated mechanisms in the sputum of grass pollen-allergic patients with and without allergen-specific immunotherapy (AIT). METHODS Induced sputum samples of healthy controls (HC), AIT-treated and -untreated grass pollen-allergic rhinitis patients with (AA) and without asthma (AR) were profiled using miR microarray and whole-transcriptome microarray analysis of the same samples. miR targets were predicted in silico and used to identify inverse regulation. Local PGE2 levels were measured using ELISA. RESULTS Two hundred and fifty nine miRs were upregulated in the sputum of AA patients compared with HC, while only one was downregulated. The inverse picture was observed in induced sputum of AIT-treated patients: while 21 miRs were downregulated, only 4 miRs were upregulated in asthmatics upon AIT. Of these 4 miRs, miR-3935 stood out, as its predicted target PTGER3, the prostaglandin EP3 receptor, was downregulated in treated AA patients compared with untreated. The levels of its ligand PGE2 in the sputum supernatants of these samples were increased in allergic patients, especially asthmatics, and downregulated after AIT. Finally, local PGE2 levels correlated with ILC2 frequencies, secreted sputum IL-13 levels, inflammatory cell load, sputum eosinophils and symptom burden. CONCLUSIONS While profiling the sputum of allergic patients for novel miR expression patterns, we uncovered an association between miR-3935 and its predicted target gene, the prostaglandin E3 receptor, which might mediate AIT effects through suppression of the PGE2 -PTGER3 axis.
Collapse
Affiliation(s)
- Constanze A Jakwerth
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM), Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center for Lung Research (DZL), CPC-M, Munich, Germany
| | - Adam M Chaker
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM), Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center for Lung Research (DZL), CPC-M, Munich, Germany.,Department of Otorhinolaryngology, TUM School of Medicine, Technical University Munich, Klinikum rechts der Isar, Munich, Germany
| | - Ferdinand Guerth
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM), Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center for Lung Research (DZL), CPC-M, Munich, Germany
| | - Madlen Oelsner
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM), Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center for Lung Research (DZL), CPC-M, Munich, Germany
| | - Lisa Pechtold
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM), Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center for Lung Research (DZL), CPC-M, Munich, Germany.,Department of Otorhinolaryngology, TUM School of Medicine, Technical University Munich, Klinikum rechts der Isar, Munich, Germany
| | - Lynn S Zur Bonsen
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM), Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center for Lung Research (DZL), CPC-M, Munich, Germany.,Department of Otorhinolaryngology, TUM School of Medicine, Technical University Munich, Klinikum rechts der Isar, Munich, Germany
| | - Julia T Ullmann
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM), Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center for Lung Research (DZL), CPC-M, Munich, Germany
| | - Susanne Krauss-Etschmann
- Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany.,Institute of Experimental Medicine, Christian-Albrechts University Kiel, Kiel, Germany
| | - Anna Erb
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM), Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center for Lung Research (DZL), CPC-M, Munich, Germany
| | - Josephine Kau
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM), Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center for Lung Research (DZL), CPC-M, Munich, Germany.,Department of Otorhinolaryngology, TUM School of Medicine, Technical University Munich, Klinikum rechts der Isar, Munich, Germany
| | - Mirjam Plaschke
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM), Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center for Lung Research (DZL), CPC-M, Munich, Germany.,Department of Otorhinolaryngology, TUM School of Medicine, Technical University Munich, Klinikum rechts der Isar, Munich, Germany
| | - Marlene Winkler
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM), Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center for Lung Research (DZL), CPC-M, Munich, Germany.,Department of Otorhinolaryngology, TUM School of Medicine, Technical University Munich, Klinikum rechts der Isar, Munich, Germany
| | - Alexandra Kurz
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM), Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center for Lung Research (DZL), CPC-M, Munich, Germany.,Department of Otorhinolaryngology, TUM School of Medicine, Technical University Munich, Klinikum rechts der Isar, Munich, Germany
| | - Antonia Kloss
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM), Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center for Lung Research (DZL), CPC-M, Munich, Germany.,Department of Otorhinolaryngology, TUM School of Medicine, Technical University Munich, Klinikum rechts der Isar, Munich, Germany
| | - Julia Esser-von Bieren
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM), Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center for Lung Research (DZL), CPC-M, Munich, Germany
| | - Carsten B Schmidt-Weber
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM), Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center for Lung Research (DZL), CPC-M, Munich, Germany
| | - Ulrich M Zissler
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM), Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center for Lung Research (DZL), CPC-M, Munich, Germany
| |
Collapse
|
19
|
Liu T, Yang D, Liu C. Extrafine HFA-beclomethasone-formoterol vs. nonextrafine combination of an inhaled corticosteroid and a long acting β2-agonist in patients with persistent asthma: A systematic review and meta-analysis. PLoS One 2021; 16:e0257075. [PMID: 34478483 PMCID: PMC8415610 DOI: 10.1371/journal.pone.0257075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 08/23/2021] [Indexed: 02/05/2023] Open
Abstract
Objective Airway inflammation in asthma involves not only the central airways but extends to peripheral airways. Lung deposition may be key for an appropriate treatment of asthma. We compared the clinical effects of extrafine hydrofluoroalkane (HFA)-beclomethasone-formoterol (BDP-F) versus equipotent doses of nonextrafine combination of an inhaled corticosteroid and a long acting β2-agonist (ICS-LABA) in asthma. Methods We identified eligible studies by a comprehensive literature search of PubMed, EMBASE and the Cochrane Central Register of Controlled Trials (CENTRAL). Data analysis was performed with the Review Manager 5.3.5 software (Cochrane IMS, 2014). Results A total of 2326 patients with asthma from ten published randomized controlled trials (RCTs) were enrolled for analysis. Change from baseline in morning pre-dose peak expiratory flow (PEF), evening pre-dose PEF and forced expiratory volume in one second (FEV1) were detected no significant differences between extrafine HFA-BDP-F and nonextrafine ICS-LABAs (p = 0.23, p = 0.99 and p = 0.23, respectively). Extrafine HFA-BDP-F did not show any greater benefit in forced expiratory flow between 25% and 75% of forced vital capacity (FEF25-75%), the parameter concerning peripheral airways (MD 0.03L/s, p = 0.65; n = 877). There were no substantial differences between interventions in fractional exhaled nitric oxide (FeNO) levels or in its alveolar fraction. The overall analysis showed no significant benefit of extrafine HFA-BDP-F over nonextrafine ICS-LABA in improving Asthma Control Test (ACT) score (p = 0.30) or decreasing the number of puffs of rescue medication use (p = 0.16). Extrafine HFA-BDP-F did not lead to less exacerbations than nonextrafine ICS-LABA (RR 0.61, 95% CI: 0.31 to 1.20; I2 = 0; p = 0.15). Conclusion Enrolled RCTs of extrafine HFA-BDP-F have demonstrated no significant advantages over the equivalent combination of nonextrafine ICS-LABA in improving pulmonary function concerning central airways or peripheral airways, improving asthma symptom control or reducing exacerbation rate.
Collapse
Affiliation(s)
- Ting Liu
- Department of Respiratory and Critical Care Medicine, West China School of Medicine and West China Hospital, Sichuan University, Chengdu Province, China
| | - Dan Yang
- Department of Respiratory and Critical Care Medicine, West China School of Medicine and West China Hospital, Sichuan University, Chengdu Province, China
| | - Chuntao Liu
- Department of Respiratory and Critical Care Medicine, West China School of Medicine and West China Hospital, Sichuan University, Chengdu Province, China
- * E-mail:
| |
Collapse
|
20
|
|
21
|
Bourdin A, Charriot J, Boissin C, Ahmed E, Suehs C, De Sevin A, Volpato M, Pahus L, Gras D, Vachier I, Halimi L, Hamerlijnck D, Chanez P. Will the asthma revolution fostered by biologics also benefit adult ICU patients? Allergy 2021; 76:2395-2406. [PMID: 33283296 DOI: 10.1111/all.14688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/26/2020] [Accepted: 11/29/2020] [Indexed: 12/01/2022]
Abstract
PURPOSE Asthma exacerbations are inflammatory events that rarely result in full hospitalization following an ER visit. Unfortunately, certain patients require prolonged support, including occasional external lung support through ECMO or ECCOR (with subsequent further exposure to other life-threatening issues), and some die. In parallel, biologics are revolutionizing severe asthma management, mostly in T2 high patients. METHODS We extensively reviewed the current unmet needs surrounding ICU-admitted asthma exacerbations, with a focus on currently available drugs and the underlying biological processes involved. We explored whether currently available T2-targeting drugs can reasonably be seen as potential players not only for relapse prevention but also as candidate drugs for a faster resolution of such episodes. The patient's perspective was also sought. RESULTS About 30% of asthma exacerbations admitted to the ICU do not resolve within five days. Persistent severe airway obstruction despite massive doses of corticosteroids and maximal pharmacologically induced bronchodilation is the main cause of treatment failure. Previous ICU admission is the main risk factor for such episodes and may eventually be considered as a T2 surrogate marker. Fatal asthma cases are hallmarked by poorly steroid-sensitive T2-inflammation associated with severe mucus plugging. New, fast-acting T2-targeting biologics (already used for preventing asthma exacerbations) have the potential to circumvent steroid sensitivity pathways and decrease mucus plugging. This unmet need was confirmed by patients who reported highly negative, traumatizing experiences. CONCLUSIONS There is room for improvement in the management of ICU-admitted severe asthma episodes. Clinical trials assessing how biologics might improve ICU outcomes are direly needed.
Collapse
Affiliation(s)
- Arnaud Bourdin
- Department of Respiratory Diseases Univ Montpellier, CHU Montpellier Montpellier France
- PhyMedExp Univ MontpellierCNRSINSERM, CHU Montpellier Montpellier France
| | - Jérémy Charriot
- Department of Respiratory Diseases Univ Montpellier, CHU Montpellier Montpellier France
- PhyMedExp Univ MontpellierCNRSINSERM, CHU Montpellier Montpellier France
| | - Clément Boissin
- Department of Respiratory Diseases Univ Montpellier, CHU Montpellier Montpellier France
| | - Engi Ahmed
- Department of Respiratory Diseases Univ Montpellier, CHU Montpellier Montpellier France
| | - Carey Suehs
- Department of Respiratory Diseases Univ Montpellier, CHU Montpellier Montpellier France
- Department of Medical Information Univ Montpellier, CHU Montpellier Montpellier France
| | - Arthur De Sevin
- Department of Respiratory Diseases Univ Montpellier, CHU Montpellier Montpellier France
| | - Mathilde Volpato
- Department of Respiratory Diseases Univ Montpellier, CHU Montpellier Montpellier France
| | - Laurie Pahus
- Aix Marseille UnivAPHM, Hôpital NORDCIC 9502Clinique des bronches allergies et sommeil, Chemin des Bourrely, 13015 Marseille France
- Aix Marseille UnivCNRSEFS, ADES Marseille France
- Aix Marseille UnivINSERM U1263INRA 1260 (C2VN) Marseille France
| | - Delphine Gras
- Aix Marseille UnivINSERM U1263INRA 1260 (C2VN) Marseille France
| | - Isabelle Vachier
- Department of Respiratory Diseases Univ Montpellier, CHU Montpellier Montpellier France
| | - Laurence Halimi
- Department of Respiratory Diseases Univ Montpellier, CHU Montpellier Montpellier France
| | | | - Pascal Chanez
- Aix Marseille UnivAPHM, Hôpital NORDCIC 9502Clinique des bronches allergies et sommeil, Chemin des Bourrely, 13015 Marseille France
- Aix Marseille UnivINSERM U1263INRA 1260 (C2VN) Marseille France
| |
Collapse
|
22
|
Cazzola M, Calzetta L, Matera MG. Long-acting muscarinic antagonists and small airways in asthma: Which link? Allergy 2021; 76:1990-2001. [PMID: 33559139 DOI: 10.1111/all.14766] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/29/2021] [Accepted: 02/03/2021] [Indexed: 12/14/2022]
Abstract
Involvement of small airways, those of <2 mm in internal diameter, is present in all stages of asthma and contributes substantially to its pathophysiologic expression. Therefore, small airways are a potential target to achieve optimal asthma control. Airway tone, which is increased in asthma, is mainly controlled by the vagus nerve that releases acetylcholine (ACh) and activates muscarinic ACh receptors (mAChRs) post-synaptically on airway smooth muscle (ASM). In small airways, M3 mAChRs are expressed, but there is no vagal innervation. Non-neuronal ACh released from the epithelial cells that may express choline acetyltransferase in response to inflammatory stimuli, as well as from other structural cells in the airways, including fibroblasts and mast cells, can activate mAChRs. By antagonizing M3 mAChR, the contraction of the ASM is prevented and, potentially, local inflammation can be reduced and the progression of remodeling may be averted. In fact, ACh also contributes to inflammation and remodeling of the airways and regulates the growth of ASM. Several experimental studies have demonstrated the potential benefit derived from the use of mAChR antagonists, mainly long-acting mAChR antagonists (LAMAs), on small airways in asthma. However, there are several confounding factors that may cause a wrong estimation of the relationship between LAMAs and small airways in asthma. Further studies are needed to differentiate broncholytic and anti-inflammatory effects of LAMAs and to better understand the interaction between LAMAs and corticosteroids, also in the context of a triple therapy that includes a β2 -AR agonist, at different levels of the bronchial tree.
Collapse
Affiliation(s)
- Mario Cazzola
- Department of Experimental Medicine University of Rome “Tor Vergata” Rome Italy
| | - Luigino Calzetta
- Respiratory Disease and Lung Function Unit Department of Medicine and Surgery University of Parma Parma Italy
| | - Maria Gabriella Matera
- Department of Experimental Medicine University of Campania “Luigi Vanvitelli” Naples Italy
| |
Collapse
|
23
|
van den Bosch WB, James AL, Tiddens HA. Structure and function of small airways in asthma patients revisited. Eur Respir Rev 2021; 30:200186. [PMID: 33472958 PMCID: PMC9488985 DOI: 10.1183/16000617.0186-2020] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/27/2020] [Indexed: 12/21/2022] Open
Abstract
Small airways (<2 mm in diameter) are probably involved across almost all asthma severities and they show proportionally more structural and functional abnormalities with increasing asthma severity. The structural and functional alterations of the epithelium, extracellular matrix and airway smooth muscle in small airways of people with asthma have been described over many years using in vitro studies, animal models or imaging and modelling methods. The purpose of this review was to provide an overview of these observations and to outline several potential pathophysiological mechanisms regarding the role of small airways in asthma.
Collapse
Affiliation(s)
- Wytse B. van den Bosch
- Dept of Paediatric Pulmonology and Allergology, Erasmus MC – Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Dept of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Alan L. James
- Dept of Pulmonary Physiology and Sleep Medicine, Sir Charles Gairdner Hospital, Perth, Australia
| | - Harm A.W.M. Tiddens
- Dept of Paediatric Pulmonology and Allergology, Erasmus MC – Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Dept of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
24
|
Liu G, Philp AM, Corte T, Travis MA, Schilter H, Hansbro NG, Burns CJ, Eapen MS, Sohal SS, Burgess JK, Hansbro PM. Therapeutic targets in lung tissue remodelling and fibrosis. Pharmacol Ther 2021; 225:107839. [PMID: 33774068 DOI: 10.1016/j.pharmthera.2021.107839] [Citation(s) in RCA: 147] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 03/03/2021] [Indexed: 02/07/2023]
Abstract
Structural changes involving tissue remodelling and fibrosis are major features of many pulmonary diseases, including asthma, chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF). Abnormal deposition of extracellular matrix (ECM) proteins is a key factor in the development of tissue remodelling that results in symptoms and impaired lung function in these diseases. Tissue remodelling in the lungs is complex and differs between compartments. Some pathways are common but tissue remodelling around the airways and in the parenchyma have different morphologies. Hence it is critical to evaluate both common fibrotic pathways and those that are specific to different compartments; thereby expanding the understanding of the pathogenesis of fibrosis and remodelling in the airways and parenchyma in asthma, COPD and IPF with a view to developing therapeutic strategies for each. Here we review the current understanding of remodelling features and underlying mechanisms in these major respiratory diseases. The differences and similarities of remodelling are used to highlight potential common therapeutic targets and strategies. One central pathway in remodelling processes involves transforming growth factor (TGF)-β induced fibroblast activation and myofibroblast differentiation that increases ECM production. The current treatments and clinical trials targeting remodelling are described, as well as potential future directions. These endeavours are indicative of the renewed effort and optimism for drug discovery targeting tissue remodelling and fibrosis.
Collapse
Affiliation(s)
- Gang Liu
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, NSW, Australia
| | - Ashleigh M Philp
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, NSW, Australia; St Vincent's Medical School, UNSW Medicine, UNSW, Sydney, NSW, Australia
| | - Tamera Corte
- Royal Prince Alfred Hospital, Camperdown, NSW, Australia; Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Mark A Travis
- The Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Sciences Centre and Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, United Kingdom
| | - Heidi Schilter
- Pharmaxis Ltd, 20 Rodborough Road, Frenchs Forest, Sydney, NSW, Australia
| | - Nicole G Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, NSW, Australia
| | - Chris J Burns
- Walter and Eliza Hall Institute of Medical Research, Department of Medical Biology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Mathew S Eapen
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, University of Tasmania, Launceston, TAS, Australia
| | - Sukhwinder S Sohal
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, University of Tasmania, Launceston, TAS, Australia
| | - Janette K Burgess
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Department of Pathology and Medical Biology, Groningen, The Netherlands; Woolcock Institute of Medical Research, Discipline of Pharmacology, The University of Sydney, Sydney, NSW, Australia
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, NSW, Australia.
| |
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW Asthma is a chronic inflammatory airway disorder that can involve the entire bronchial tree. Increasing evidence shows that ventilation heterogeneity and small airway dysfunction are relevant factors in the pathogenesis of asthma and represent a hallmark in adults with persistent asthma. Little is known about the contribution of peripheral airway impairment in paediatric asthma, mainly due to the inaccessibility to evaluation by noninvasive techniques, which have only been widely available in recent years. RECENT FINDINGS Emerging evidence suggests that small airways are affected from the early stages of the disease in childhood-onset asthma. Conventional lung function measurement, using spirometry, is unable to sensitively evaluate small airway function and may become abnormal only once there is a significant burden of disease. Recent studies suggest that chronic inflammation and dysfunction in the small airways, as detected with new advanced techniques, are risk factors for asthma persistence, asthma severity, worse asthma control and loss of pulmonary function with age, both in adults and children. Knowing the extent of central and peripheral airway involvement is clinically relevant to achieve asthma control, reduce bronchial hyper-responsiveness and monitor response to asthma treatment. SUMMARY This review outlines the recent evidence on the role of small airway dysfunction in paediatric asthma development and control, and addresses how the use of new diagnostic techniques available in outpatient clinical settings, namely impulse oscillometry and multiple breath washout, could help in the early detection of small airway impairment in children with preschool wheezing and school-age asthma and potentially guide asthma treatment.
Collapse
|
26
|
Wilson SJ, Ward JA, Pickett HM, Baldi S, Sousa AR, Sterk PJ, Chung KF, Djukanovic R, Dahlen B, Billing B, Shaw D, Krug N, Sandstrӧm T, Brightling C, Howarth PH. Airway Elastin is increased in severe asthma and relates to proximal wall area: histological and computed tomography findings from the U-BIOPRED severe asthma study. Clin Exp Allergy 2021; 51:296-304. [PMID: 33342006 DOI: 10.1111/cea.13813] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/08/2020] [Accepted: 12/15/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Airway remodelling, which may include goblet cell hyperplasia / hypertrophy, changes in epithelial integrity, accumulation of extracellular matrix components, smooth muscle hypertrophy and thickening of the lamina reticularis, is a feature of severe asthma and contributes to the clinical phenotype. OBJECTIVE Within the U-BIOPRED severe asthma study, we have assessed histological elements of airway remodelling and their relationship to computed tomography (CT) measures of proximal airway dimensions. METHODS Bronchial biopsies were collected from two severe asthma groups, one non-smoker (SAn, n = 28) and one current/ex-smoker (SAs/ex, n = 13), and a mild-moderate asthma group (MMA, n = 28) classified and treated according to GINA guidelines, plus a healthy control group (HC, n = 33). Movat's pentachrome technique was used to identify mucin, elastin and total collagen in these biopsies. The number of goblet cells (mucin+) was counted as a percentage of the total number of epithelial cells and the percentage mucin epithelial area measured. The percentage area of elastic fibres and total collagen within the submucosa was also measured, and the morphology of the elastic fibres classified. Participants in the asthma groups also had a CT scan to assess large airway morphometry. RESULTS The submucosal tissue elastin percentage was higher in both severe asthma groups (16.1% SAn, 18.9% SAs/ex) compared with the HC (9.7%) but did not differ between asthma groups. There was a positive relationship between elastin and airway wall area measured by CT (n = 18-20, rho=0.544, p = 0.024), which also related to an increase in elastic fibres with a thickened lamellar morphological appearance. Mucin epithelial area and total collagen were not different between the four groups. Due to small numbers of suitable CT scans, it was not feasible to compare airway morphometry between the asthma groups. CONCLUSION These findings identify a link between extent of elastin deposition and airway wall thickening in severe asthma.
Collapse
Affiliation(s)
- Susan J Wilson
- Faculty of Medicine, University of Southampton, Southampton, UK
| | - Jonathan A Ward
- Faculty of Medicine, University of Southampton, Southampton, UK
| | - Helen M Pickett
- Faculty of Medicine, University of Southampton, Southampton, UK
| | - Simonetta Baldi
- Department of Respiratory Science, University of Leicester, Leicester, UK
| | - Ana R Sousa
- Respiratory Therapy Unit, GlaxoSmithKline, Stevenage, UK
| | - Peter J Sterk
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Kian Fan Chung
- National Heart & Lung Institute, Imperial College London, London, UK
| | | | - Barbro Dahlen
- Department of Respiratory Medicine and Allergy, The Centre for Allergy Research, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Bo Billing
- Department of Respiratory Medicine and Allergy, The Centre for Allergy Research, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Dominick Shaw
- Nottingham Respiratory Research, University of Nottingham, Nottingham, UK
| | - Norbert Krug
- Fraunhofer Institute of Toxicology & Experimental Medicine, Hannover, Germany
| | - Thomas Sandstrӧm
- Department of Respiratory Medicine, Umea University, Stockholm, Sweden
| | | | - Peter H Howarth
- Faculty of Medicine, University of Southampton, Southampton, UK
| | | |
Collapse
|
27
|
Almeshari MA, Stockley J, Sapey E. The diagnosis of asthma. Can physiological tests of small airways function help? Chron Respir Dis 2021; 18:14799731211053332. [PMID: 34693751 PMCID: PMC8543738 DOI: 10.1177/14799731211053332] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Asthma is a common, chronic, and heterogeneous disease with a global impact and substantial economic costs. It is also associated with significant mortality and morbidity and the burden of undiagnosed asthma is significant. Asthma can be difficult to diagnose as there is no gold standard test and, while spirometry is central in diagnosing asthma, it may not be sufficient to confirm or exclude the diagnosis. The most commonly reported spirometric measures (forced expiratory volume in one second (FEV1) and forced vital capacity assess function in the larger airways. However, small airway dysfunction is highly prevalent in asthma and some studies suggest small airway involvement is one of the earliest disease manifestations. Moreover, there are new inhaled therapies with ultrafine particles that are specifically designed to target the small airways. Potentially, tests of small airways may more accurately diagnose early or mild asthma and assess the response to treatment than spirometry. Furthermore, some assessment techniques do not rely on forced ventilatory manoeuvres and may, therefore, be easier for certain groups to perform. This review discusses the current evidence of small airways tests in asthma and future research that may be needed to further assess their utility.
Collapse
Affiliation(s)
- Mohammed A Almeshari
- Rehabilitation Health Sciences
Department, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
- Institute of Inflammation and
Ageing, University of
Birmingham, Birmingham, UK
- Mohammed A. Almeshari, Institute of
Inflammation and Ageing, University of Birmingham, Edgbaston, Birmingham B152TT,
UK.
| | - James Stockley
- Department of Lung Function and
Sleep, University Hospitals Birmingham NHS
Foundation Trust, Birmingham, UK
| | - Elizabeth Sapey
- Institute of Inflammation and
Ageing, University of
Birmingham, Birmingham, UK
| |
Collapse
|
28
|
Gelb AF, Yamamoto A, Verbeken E, Grigorian SR, Nadel JA. Asthma and emphysema overlap in nonsmokers. Ann Allergy Asthma Immunol 2020; 125:711-713. [PMID: 32791102 DOI: 10.1016/j.anai.2020.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/27/2020] [Accepted: 08/03/2020] [Indexed: 10/23/2022]
Affiliation(s)
- Arthur F Gelb
- Pulmonary Division, Department of Medicine, Lakewood Regional Medical Center, Lakewood, California; David Geffen School of Medicine, University of California, Los Angeles Medical Center, Los Angeles, California.
| | - Alfred Yamamoto
- Department of Pathology, Lakewood Regional Medical Center, Lakewood, California
| | - Eric Verbeken
- Department of Pathology, Katholieke Universitair Ziekenhuis Gasthuisberg, Leuven, Belgium
| | | | - Jay A Nadel
- The Cardiovascular Research Institute and Pulmonary Division, Departments of Medicine, Physiology, and Radiology, The University of California, San Francisco Medical Center, San Francisco, California
| |
Collapse
|
29
|
Ali MK, Kim RY, Brown AC, Donovan C, Vanka KS, Mayall JR, Liu G, Pillar AL, Jones-Freeman B, Xenaki D, Borghuis T, Karim R, Pinkerton JW, Aryal R, Heidari M, Martin KL, Burgess JK, Oliver BG, Trinder D, Johnstone DM, Milward EA, Hansbro PM, Horvat JC. Critical role for iron accumulation in the pathogenesis of fibrotic lung disease. J Pathol 2020; 251:49-62. [PMID: 32083318 DOI: 10.1002/path.5401] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 12/19/2019] [Accepted: 02/13/2020] [Indexed: 12/18/2022]
Abstract
Increased iron levels and dysregulated iron homeostasis, or both, occur in several lung diseases. Here, the effects of iron accumulation on the pathogenesis of pulmonary fibrosis and associated lung function decline was investigated using a combination of murine models of iron overload and bleomycin-induced pulmonary fibrosis, primary human lung fibroblasts treated with iron, and histological samples from patients with or without idiopathic pulmonary fibrosis (IPF). Iron levels are significantly increased in iron overloaded transferrin receptor 2 (Tfr2) mutant mice and homeostatic iron regulator (Hfe) gene-deficient mice and this is associated with increases in airway fibrosis and reduced lung function. Furthermore, fibrosis and lung function decline are associated with pulmonary iron accumulation in bleomycin-induced pulmonary fibrosis. In addition, we show that iron accumulation is increased in lung sections from patients with IPF and that human lung fibroblasts show greater proliferation and cytokine and extracellular matrix responses when exposed to increased iron levels. Significantly, we show that intranasal treatment with the iron chelator, deferoxamine (DFO), from the time when pulmonary iron levels accumulate, prevents airway fibrosis and decline in lung function in experimental pulmonary fibrosis. Pulmonary fibrosis is associated with an increase in Tfr1+ macrophages that display altered phenotype in disease, and DFO treatment modified the abundance of these cells. These experimental and clinical data demonstrate that increased accumulation of pulmonary iron plays a key role in the pathogenesis of pulmonary fibrosis and lung function decline. Furthermore, these data highlight the potential for the therapeutic targeting of increased pulmonary iron in the treatment of fibrotic lung diseases such as IPF. © 2020 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Md Khadem Ali
- Division of Pulmonary and Critical Care Medicine, School of Medicine, Stanford University, Stanford, CA, USA.,Priority Research Centre for Healthy Lungs and School of Biomedical Sciences and Pharmacy and Hunter Medical Research Institute, University of Newcastle, Newcastle, Australia
| | - Richard Y Kim
- Priority Research Centre for Healthy Lungs and School of Biomedical Sciences and Pharmacy and Hunter Medical Research Institute, University of Newcastle, Newcastle, Australia.,Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, Australia
| | - Alexandra C Brown
- Priority Research Centre for Healthy Lungs and School of Biomedical Sciences and Pharmacy and Hunter Medical Research Institute, University of Newcastle, Newcastle, Australia
| | - Chantal Donovan
- Priority Research Centre for Healthy Lungs and School of Biomedical Sciences and Pharmacy and Hunter Medical Research Institute, University of Newcastle, Newcastle, Australia.,Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, Australia
| | - Kanth S Vanka
- Priority Research Centre for Healthy Lungs and School of Biomedical Sciences and Pharmacy and Hunter Medical Research Institute, University of Newcastle, Newcastle, Australia
| | - Jemma R Mayall
- Priority Research Centre for Healthy Lungs and School of Biomedical Sciences and Pharmacy and Hunter Medical Research Institute, University of Newcastle, Newcastle, Australia
| | - Gang Liu
- Priority Research Centre for Healthy Lungs and School of Biomedical Sciences and Pharmacy and Hunter Medical Research Institute, University of Newcastle, Newcastle, Australia.,Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, Australia
| | - Amber L Pillar
- Priority Research Centre for Healthy Lungs and School of Biomedical Sciences and Pharmacy and Hunter Medical Research Institute, University of Newcastle, Newcastle, Australia
| | - Bernadette Jones-Freeman
- Priority Research Centre for Healthy Lungs and School of Biomedical Sciences and Pharmacy and Hunter Medical Research Institute, University of Newcastle, Newcastle, Australia
| | - Dikaia Xenaki
- Woolcock Institute of Medical Research, University of Sydney and School of Life Sciences, University of Technology Sydney, Sydney, Australia
| | - Theo Borghuis
- Department of Pathology and Medical Biology, Groningen Research Institute for Asthma and COPD, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Rafia Karim
- Priority Research Centre for Healthy Lungs and School of Biomedical Sciences and Pharmacy and Hunter Medical Research Institute, University of Newcastle, Newcastle, Australia
| | - James W Pinkerton
- Priority Research Centre for Healthy Lungs and School of Biomedical Sciences and Pharmacy and Hunter Medical Research Institute, University of Newcastle, Newcastle, Australia.,Respiratory Pharmacology & Toxicology Group, National Heart & Lung Institute, Imperial College London, London, UK
| | - Ritambhara Aryal
- Priority Research Centre for Healthy Lungs and School of Biomedical Sciences and Pharmacy and Hunter Medical Research Institute, University of Newcastle, Newcastle, Australia.,Priority Research Centre for Brain and Mental Health and School of Biomedical Sciences, University of Newcastle, Newcastle, Australia
| | - Moones Heidari
- Priority Research Centre for Brain and Mental Health and School of Biomedical Sciences, University of Newcastle, Newcastle, Australia
| | - Kristy L Martin
- Priority Research Centre for Healthy Lungs and School of Biomedical Sciences and Pharmacy and Hunter Medical Research Institute, University of Newcastle, Newcastle, Australia.,Priority Research Centre for Brain and Mental Health and School of Biomedical Sciences, University of Newcastle, Newcastle, Australia
| | - Janette K Burgess
- Woolcock Institute of Medical Research, University of Sydney and School of Life Sciences, University of Technology Sydney, Sydney, Australia.,Department of Pathology and Medical Biology, Groningen Research Institute for Asthma and COPD, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Brian G Oliver
- Woolcock Institute of Medical Research, University of Sydney and School of Life Sciences, University of Technology Sydney, Sydney, Australia
| | - Debbie Trinder
- Medical School and, Harry Perkins Institute of Medical Research, University of Western Australia, Perth, Australia
| | - Daniel M Johnstone
- Discipline of Physiology and Bosch Institute, University of Sydney, Sydney, Australia
| | - Elizabeth A Milward
- Priority Research Centre for Brain and Mental Health and School of Biomedical Sciences, University of Newcastle, Newcastle, Australia
| | - Philip M Hansbro
- Priority Research Centre for Healthy Lungs and School of Biomedical Sciences and Pharmacy and Hunter Medical Research Institute, University of Newcastle, Newcastle, Australia.,Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, Australia
| | - Jay C Horvat
- Priority Research Centre for Healthy Lungs and School of Biomedical Sciences and Pharmacy and Hunter Medical Research Institute, University of Newcastle, Newcastle, Australia
| |
Collapse
|
30
|
Abstract
Severe asthma is broadly defined as asthma requiring a high level of therapy, usually high doses of inhaled corticosteroids, to bring under control. Children who remain symptomatic despite such treatment are a heterogeneous population, and bear a high burden of disease and require high resource utilization. Children with severe asthma require a comprehensive evaluation, careful consideration of alternative diagnoses and comorbid conditions, assessment of medication adherence and environmental conditions, and frequent disease monitoring.
Collapse
|
31
|
Sharshar RS. Impulse oscillometry usefulness in small-airway dysfunction in asthmatics and its utility in asthma control. THE EGYPTIAN JOURNAL OF BRONCHOLOGY 2019. [DOI: 10.4103/ejb.ejb_16_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
32
|
Nuttall AGL, Velásquez W, Beardsmore CS, Gaillard EA. Lung clearance index: assessment and utility in children with asthma. Eur Respir Rev 2019; 28:28/154/190046. [PMID: 31748419 DOI: 10.1183/16000617.0046-2019] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/26/2019] [Indexed: 11/05/2022] Open
Abstract
There is increasing evidence that ventilation heterogeneity and small airway disease are significant factors in asthma, with evidence suggesting that the small airways are involved from an early stage in childhood asthma. Spirometry is commonly used to monitor lung function in asthmatics; however, it is not sensitive to small airway disease. There has been renewed interest in multibreath washout (MBW) tests, with recognition of the lung clearance index (LCI) as a global index of abnormality in gas mixing of the lungs that therefore also reflects small airway disease. This review summarises the technical and practical aspects of the MBW/LCI in children, and the differences between commercially available equipment. Children with severe asthma are more likely to have an abnormal LCI, whereas most children with mild-to-moderate asthma have an LCI within the normal range, but slightly higher than age-matched healthy controls. Monitoring children with asthma with MBW alongside standard spirometry may provide useful additional information.
Collapse
Affiliation(s)
- Amy G L Nuttall
- Institute for Lung Health, NIHR Leicester Respiratory Biomedical Research Unit and Dept of Infection Immunity and Inflammation, University of Leicester, Leicester, UK.,Children's Hospital, University Hospitals Leicester, Leicester, UK
| | - Werner Velásquez
- Hospital de Especialidades Rodolfo Robles, Quetzaltenango, Guatemala
| | - Caroline S Beardsmore
- Institute for Lung Health, NIHR Leicester Respiratory Biomedical Research Unit and Dept of Infection Immunity and Inflammation, University of Leicester, Leicester, UK.,Children's Hospital, University Hospitals Leicester, Leicester, UK
| | - Erol A Gaillard
- Institute for Lung Health, NIHR Leicester Respiratory Biomedical Research Unit and Dept of Infection Immunity and Inflammation, University of Leicester, Leicester, UK .,Children's Hospital, University Hospitals Leicester, Leicester, UK
| |
Collapse
|
33
|
Bullone M, Lavoie JP. The equine asthma model of airway remodeling: from a veterinary to a human perspective. Cell Tissue Res 2019; 380:223-236. [PMID: 31713728 DOI: 10.1007/s00441-019-03117-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 09/22/2019] [Indexed: 02/06/2023]
Abstract
Human asthma is a complex and heterogeneous disorder characterized by chronic inflammation, bronchospasm and airway remodeling. The latter is a major determinant of the structure-function relationship of the respiratory system and likely contributes to the progressive and accelerated decline in lung function observed in patients over time. Corticosteroids are the cornerstone of asthma treatment. While their action on inflammation and lung function is well characterized, their effect on remodeling remains largely unknown. An important hindrance to the study of airway remodeling as a major focus in asthma research is the lack of reliable non-invasive biomarkers. In consequence, the physiologic and clinical consequences of airway wall thickening and altered composition are not well understood. In this perspective, equine asthma provides a unique and ethical (non-terminal) preclinical model for hypothesis testing and generation. Severe equine asthma is a spontaneous disease affecting adult horses characterized by recurrent and reversible episodes of disease exacerbations. It is associated with bronchoalveolar neutrophilic inflammation, bronchospasm, and excessive mucus secretion. Severe equine asthma is also characterized by bronchial remodeling, which is only partially improved by prolonged period of disease remission induced by therapy or antigen avoidance strategies. This review will focus on the similarities and differences of airway remodeling in equine and human asthma, on the strengths and limitations of the equine model, and on the challenges the model has to face to keep up with human asthma research.
Collapse
Affiliation(s)
- Michela Bullone
- Department of Veterinary Sciences, Università degli Studi di Torino, Grugliasco, Italy
| | - Jean-Pierre Lavoie
- Faculty of Veterinary Sciences, University of Montreal, 3200 rue Sicotte, St-Hyacinthe, Quebec, Canada.
| |
Collapse
|
34
|
Lee KE, Jee HM, Hong JY, Kim MN, Oh MS, Kim YS, Kim KW, Kim KE, Sohn MH. German Cockroach Extract Induces Matrix Metalloproteinase-1 Expression, Leading to Tight Junction Disruption in Human Airway Epithelial Cells. Yonsei Med J 2018; 59:1222-1231. [PMID: 30450857 PMCID: PMC6240571 DOI: 10.3349/ymj.2018.59.10.1222] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 10/01/2018] [Accepted: 10/16/2018] [Indexed: 12/30/2022] Open
Abstract
PURPOSE Cockroach exposure is a pivotal cause of asthma. Tight junctions are intercellular structures required for maintenance of the barrier function of the airway epithelium, which is impaired in this disease. Matrix metalloproteinases (MMPs) digest extracellular matrix components and are involved in asthma pathogenesis: MMP1 is a collagenase with a direct influence on airway obstruction in asthmatics. This study aimed to investigate the mechanism by which German cockroach extract (GCE) induces MMP1 expression and whether MMP1 release alters cellular tight junctions in human airway epithelial cells (NCI-H292). MATERIALS AND METHODS mRNA and protein levels were determined using real-time PCR and ELISA. Tight junction proteins were detected using immunofluorescence staining. Epithelial barrier function was measured by transepithelial electrical resistance (TEER). The binding of a transcription factor to DNA molecules was determined by electrophoretic mobility shift assay, while the levels of tight junction proteins and phosphorylation were determined using Western blotting. RESULTS GCE was shown to increase MMP1 expression, TEER, and tight junction degradation. Both an inhibitor and small interfering RNA (siRNA) of MMP1 significantly decreased GCE-induced tight junction disruption. Furthermore, transient transfection with ETS1 and SP1 siRNA, and anti-TLR2 antibody pretreatment prevented MMP1 expression and tight junction degradation. An extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase (MAPK) inhibitor also blocked MMP1 release, ETS1/SP1 DNA binding, and tight junction alteration. CONCLUSION GCE treatment increases MMP1 expression, leading to tight junction disruption, which is transcriptionally regulated and influenced by the ERK/MAPK pathway in airway epithelial cells. These findings may contribute to developing novel therapeutic strategies for airway diseases.
Collapse
Affiliation(s)
- Kyung Eun Lee
- Department of Pediatrics, Institute of Allergy, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Hye Mi Jee
- Department of Pediatrics, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| | - Jung Yeon Hong
- Department of Pediatrics, Institute of Allergy, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Mi Na Kim
- Department of Pediatrics, Institute of Allergy, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Mi Seon Oh
- Department of Pediatrics, Institute of Allergy, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Yun Seon Kim
- Department of Pediatrics, Institute of Allergy, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Kyung Won Kim
- Department of Pediatrics, Institute of Allergy, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | | | - Myung Hyun Sohn
- Department of Pediatrics, Institute of Allergy, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
35
|
Camargo LDN, Righetti RF, Aristóteles LRDCRB, Dos Santos TM, de Souza FCR, Fukuzaki S, Cruz MM, Alonso-Vale MIC, Saraiva-Romanholo BM, Prado CM, Martins MDA, Leick EA, Tibério IDFLC. Effects of Anti-IL-17 on Inflammation, Remodeling, and Oxidative Stress in an Experimental Model of Asthma Exacerbated by LPS. Front Immunol 2018; 8:1835. [PMID: 29379497 PMCID: PMC5760512 DOI: 10.3389/fimmu.2017.01835] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 12/05/2017] [Indexed: 12/13/2022] Open
Abstract
Inflammation plays a central role in the development of asthma, which is considered an allergic disease with a classic Th2 inflammatory profile. However, cytokine IL-17 has been examined to better understand the pathophysiology of this disease. Severe asthmatic patients experience frequent exacerbations, leading to infection, and subsequently show altered levels of inflammation that are unlikely to be due to the Th2 immune response alone. This study estimates the effects of anti-IL-17 therapy in the pulmonary parenchyma in a murine asthma model exacerbated by LPS. BALB/c mice were sensitized with intraperitoneal ovalbumin and repeatedly exposed to inhalation with ovalbumin, followed by treatment with or without anti-IL-17. Twenty-four hours prior to the end of the 29-day experimental protocol, the two groups received LPS (0.1 mg/ml intratracheal OVA-LPS and OVA-LPS IL-17). We subsequently evaluated bronchoalveolar lavage fluid, performed a lung tissue morphometric analysis, and measured IL-6 gene expression. OVA-LPS-treated animals treated with anti-IL-17 showed decreased pulmonary inflammation, edema, oxidative stress, and extracellular matrix remodeling compared to the non-treated OVA and OVA-LPS groups (p < 0.05). The anti-IL-17 treatment also decreased the numbers of dendritic cells, FOXP3, NF-κB, and Rho kinase 1- and 2-positive cells compared to the non-treated OVA and OVA-LPS groups (p < 0.05). In conclusion, these data suggest that inhibition of IL-17 is a promising therapeutic avenue, even in exacerbated asthmatic patients, and significantly contributes to the control of Th1/Th2/Th17 inflammation, chemokine expression, extracellular matrix remodeling, and oxidative stress in a murine experimental asthma model exacerbated by LPS.
Collapse
Affiliation(s)
| | - Renato Fraga Righetti
- Department of Medical Sciences, School of Medicine, University of São Paulo, São Paulo, Brazil.,Hospital Sírio-Libanês, São Paulo, Brazil
| | | | | | | | - Silvia Fukuzaki
- Department of Medical Sciences, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Maysa Mariana Cruz
- Department of Biological Sciences, Institute of Biomedical Sciences, Federal University of São Paulo, São Paulo, Brazil
| | | | | | - Carla Máximo Prado
- Department of Biological Sciences, Federal University of São Paulo, São Paulo, Brazil
| | | | - Edna Aparecida Leick
- Department of Medical Sciences, School of Medicine, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
36
|
Liu G, Cooley MA, Nair PM, Donovan C, Hsu AC, Jarnicki AG, Haw TJ, Hansbro NG, Ge Q, Brown AC, Tay H, Foster PS, Wark PA, Horvat JC, Bourke JE, Grainge CL, Argraves WS, Oliver BG, Knight DA, Burgess JK, Hansbro PM. Airway remodelling and inflammation in asthma are dependent on the extracellular matrix protein fibulin-1c. J Pathol 2017; 243:510-523. [PMID: 28862768 DOI: 10.1002/path.4979] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 08/28/2017] [Accepted: 08/29/2017] [Indexed: 01/08/2023]
Abstract
Asthma is a chronic inflammatory disease of the airways. It is characterized by allergic airway inflammation, airway remodelling, and airway hyperresponsiveness (AHR). Asthma patients, in particular those with chronic or severe asthma, have airway remodelling that is associated with the accumulation of extracellular matrix (ECM) proteins, such as collagens. Fibulin-1 (Fbln1) is an important ECM protein that stabilizes collagen and other ECM proteins. The level of Fbln1c, one of the four Fbln1 variants, which predominates in both humans and mice, is increased in the serum and airways fluids in asthma but its function is unclear. We show that the level of Fbln1c was increased in the lungs of mice with house dust mite (HDM)-induced chronic allergic airway disease (AAD). Genetic deletion of Fbln1c and therapeutic inhibition of Fbln1c in mice with chronic AAD reduced airway collagen deposition, and protected against AHR. Fbln1c-deficient (Fbln1c-/- ) mice had reduced mucin (MUC) 5 AC levels, but not MUC5B levels, in the airways as compared with wild-type (WT) mice. Fbln1c interacted with fibronectin and periostin that was linked to collagen deposition around the small airways. Fbln1c-/- mice with AAD also had reduced numbers of α-smooth muscle actin-positive cells around the airways and reduced airway contractility as compared with WT mice. After HDM challenge, these mice also had fewer airway inflammatory cells, reduced interleukin (IL)-5, IL-13, IL-33, tumour necrosis factor (TNF) and CXCL1 levels in the lungs, and reduced IL-5, IL-33 and TNF levels in lung-draining lymph nodes. Therapeutic targeting of Fbln1c reduced the numbers of GATA3-positive Th2 cells in the lymph nodes and lungs after chronic HDM challenge. Treatment also reduced the secretion of IL-5 and IL-13 from co-cultured dendritic cells and T cells restimulated with HDM extract. Human epithelial cells cultured with Fbln1c peptide produced more CXCL1 mRNA than medium-treated controls. Our data show that Fbln1c may be a therapeutic target in chronic asthma. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Gang Liu
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia
| | - Marion A Cooley
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Prema M Nair
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia
| | - Chantal Donovan
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia
| | - Alan C Hsu
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia
| | - Andrew G Jarnicki
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia.,Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia
| | - Tatt Jhong Haw
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia
| | - Nicole G Hansbro
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia
| | - Qi Ge
- Woolcock Institute of Medical Research, Discipline of Pharmacology, University of Sydney, Sydney, New South Wales, Australia
| | - Alexandra C Brown
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia
| | - Hock Tay
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia
| | - Paul S Foster
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia
| | - Peter A Wark
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia.,Department of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, New South Wales, Australia
| | - Jay C Horvat
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia
| | - Jane E Bourke
- Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Parkville, Victoria, Australia
| | - Chris L Grainge
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia
| | - W Scott Argraves
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Brian G Oliver
- Woolcock Institute of Medical Research, Discipline of Pharmacology, University of Sydney, Sydney, New South Wales, Australia.,School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Darryl A Knight
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia
| | - Janette K Burgess
- Woolcock Institute of Medical Research, Discipline of Pharmacology, University of Sydney, Sydney, New South Wales, Australia.,University of Groningen, University Medical Centre Groningen, Department of Pathology and Medical Biology, Groningen Research Institute of Asthma and COPD, Groningen, The Netherlands
| | - Philip M Hansbro
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia
| |
Collapse
|
37
|
Further Studies of Unsuspected Emphysema in Nonsmoking Patients With Asthma With Persistent Expiratory Airflow Obstruction. Chest 2017; 153:618-629. [PMID: 29197547 DOI: 10.1016/j.chest.2017.11.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 10/02/2017] [Accepted: 11/06/2017] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Previously, we and other investigators have described reversible loss of lung elastic recoil in patients with acute and persistent, moderate-to-severe, chronic, treated asthma who never smoked, and its adverse effect on maximal expiratory airflow. In four consecutive autopsies, we reported the pathophysiologic mechanism(s) has been unsuspected mild, diffuse, middle and upper lobe centrilobular emphysema. METHODS We performed prospective studies (5 to 22 years) in 25 patients (12 female) with chronic asthma, age 55 ± 15 years, who never smoked, with persistent moderate-to-severe expiratory obstruction. Studies included measuring blood eosinophils, IgE, total exhaled nitric oxide (NO), central airway NO flux, peripheral airway/alveolar NO concentration, impulse oscillometry, heliox curves, lung elastic recoil, and high-resolution thin-section (1 mm) lung CT imaging at full inspiration with voxel quantification. RESULTS In 25 patients with stable asthma with varying type 2 phenotype, after 270 μg of aerosolized albuterol sulfate had been administered with a metered dose inhaler with space chamber, FVC was 3.1 ± 1.0 L (83% ± 13% predicted) (mean ± SD), FEV1 was 1.8 ± 0.6 L (59% ± 11%), the FEV1/FVC ratio was 59% ± 10%, and the ratio of single-breath diffusing capacity of the lung for carbon monoxide to alveolar volume was 4.8 ± 1.1 mL/min/mm Hg/L (120% ± 26%). All 25 patients with asthma had loss of static lung elastic recoil pressure, which contributed equally to decreased intrinsic airway conductance in limiting expiratory airflow. Lung CT scanning detected none or mild emphysema. In all four autopsied asthmatic lungs previously reported and one unreported explanted lung, microscopy revealed unsuspected mild, diffuse centrilobular emphysema in the upper and middle lung fields, and asthma-related remodeling in airways. In eight cases, during asthma remission, there were increases in measured static lung elastic recoil pressure-calculated intrinsic airway conductance, and measured maximal expiratory airflow at effort-independent lung volumes. CONCLUSIONS As documented now in five cases, unsuspected microscopic mild centrilobular emphysema is the sentinel cause of loss of lung elastic recoil. This contributes significantly to expiratory airflow obstruction in never-smoking patients with asthma, with normal diffusing capacity and near-normal lung CT scan results. TRIAL REGISTRY Protocol No. 20070934 and Study No. 1090472, Western Institutional Review Board, Olympia, WA; ClinicalTrials.gov; No. NCT00576069; URL: www.clinicaltrials.gov.
Collapse
|
38
|
Boser SR, Mauad T, de Araújo-Paulino BB, Mitchell I, Shrestha G, Chiu A, Butt J, Kelly MM, Caldini E, James A, Green FHY. Myofibroblasts are increased in the lung parenchyma in asthma. PLoS One 2017; 12:e0182378. [PMID: 28787016 PMCID: PMC5546673 DOI: 10.1371/journal.pone.0182378] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 07/17/2017] [Indexed: 11/25/2022] Open
Abstract
Background Increased airway smooth muscle is observed in large and small airways in asthma. Semi-quantitative estimates suggest that cells containing alpha smooth muscle actin (α-SMA) are also increased in the lung parenchyma. This study quantified and characterized α-SMA positive cells (α-SMA+) in the lung parenchyma of non-asthmatic and asthmatic individuals. Methods Post-mortem sections of peripheral lung from cases of fatal asthma (FA), persons with asthma dying of non-respiratory causes (NFA) and non-asthma control subjects (NAC) were stained for α-SMA, quantified using point-counting and normalised to alveolar basement membrane length and interstitial area. Results α-SMA+ fractional area was increased in alveolar parenchyma in both FA (14.7 ± 2.8% of tissue area) and NFA (13.0 ± 1.2%), compared with NAC (7.4 ± 2.4%), p < 0.05 The difference was greater in upper lobes compared with lower lobes (p < 0.01) in both asthma groups. Similar changes were observed in alveolar ducts and alveolar walls. The electron microscopic features of the α-SMA+ cells were characteristic of myofibroblasts. Conclusions We conclude that in asthma there is a marked increase in α-SMA+ myofibroblasts in the lung parenchyma. The physiologic consequences of this increase are unknown.
Collapse
Affiliation(s)
- Stacey R. Boser
- Airway Inflammation Group, Snyder Institute of Chronic Diseases, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Thais Mauad
- Department of Pathology, School of Medicine, University of São Paulo, São Paulo, Brazil
| | | | - Ian Mitchell
- Airway Inflammation Group, Snyder Institute of Chronic Diseases, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Grishma Shrestha
- Airway Inflammation Group, Snyder Institute of Chronic Diseases, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Andrea Chiu
- Airway Inflammation Group, Snyder Institute of Chronic Diseases, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - John Butt
- Pathfinder Forum, Forensic Pathology, Vancouver, British Columbia, Canada
| | - Margaret M. Kelly
- Airway Inflammation Group, Snyder Institute of Chronic Diseases, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Elia Caldini
- Department of Pathology, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Alan James
- Department of Pulmonary Physiology and Sleep Medicine, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
| | - Francis H. Y. Green
- Airway Inflammation Group, Snyder Institute of Chronic Diseases, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
- * E-mail:
| |
Collapse
|
39
|
Carr TF, Altisheh R, Zitt M. Small airways disease and severe asthma. World Allergy Organ J 2017; 10:20. [PMID: 28649293 PMCID: PMC5479008 DOI: 10.1186/s40413-017-0153-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 04/20/2017] [Indexed: 11/10/2022] Open
Abstract
The small airways of the lungs are commonly affected in pediatric and adult asthma. Small airways disease has been related to asthma control, severity, and risk of exacerbation. Diagnosis of small airways disease can be best made through evaluation of surgical lung specimens. Noninvasive techniques including spirometry, plethysmography, nitrogen washout, impulse oscillometry, and cross-sectional imaging have been utilized to assess and infer the extent of small airways disease in asthma and can be used longitudinally to assess response to treatment. Patients with small airways disease seem to benefit from inhaled asthma medications that have improved capacity to reach the distal lung compartment. This is especially important for patients with severe asthma, who rely upon high doses of inhaled corticosteroid and bronchodilators for asthma control. This review will describe the techniques which may be utilized to assess small airways disease, discuss the prevalence and characteristics of small airways disease in severe asthma, and highlight how small airway disease may complicate severe asthma treatment.
Collapse
Affiliation(s)
- Tara F Carr
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Arizona, Tucson, Arizona USA
| | - Roula Altisheh
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Arizona, Tucson, Arizona USA
| | - Myron Zitt
- Division of Allergy/Immunology, Department of Medicine, State University of New York, Stonybrook, NY, USA
| |
Collapse
|
40
|
Cohort Analysis of Exacerbation Rates in Adolescent and Adult Patients Initiating Inhaled Corticosteroids for Asthma: Different Dose–Response Profile by Particle Size. Pulm Ther 2017. [DOI: 10.1007/s41030-017-0037-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
41
|
Bitter Taste Receptor Agonists Mitigate Features of Allergic Asthma in Mice. Sci Rep 2017; 7:46166. [PMID: 28397820 PMCID: PMC5387415 DOI: 10.1038/srep46166] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 03/09/2017] [Indexed: 01/25/2023] Open
Abstract
Asthma is characterized by airway inflammation, mucus secretion, remodeling and hyperresponsiveness (AHR). Recent research has established the bronchodilatory effect of bitter taste receptor (TAS2R) agonists in various models. Comprehensive pre-clinical studies aimed at establishing effectiveness of TAS2R agonists in disease models are lacking. Here we aimed to determine the effect of TAS2R agonists on features of asthma. Further, we elucidated a mechanism by which TAS2R agonists mitigate features of asthma. Asthma was induced in mice using intranasal house dust mite or aerosol ova-albumin challenge, and chloroquine or quinine were tested in both prophylactic and treatment models. Allergen challenge resulted in airway inflammation as evidenced by increased immune cells infiltration and release of cytokines and chemokines in the lungs, which were significantly attenuated in TAS2R agonists treated mice. TAS2R agonists attenuated features of airway remodeling including smooth muscle mass, extracellular matrix deposition and pro-fibrotic signaling, and also prevented mucus accumulation and development of AHR in mice. Mechanistic studies using human neutrophils demonstrated that inhibition of immune cell chemotaxis is a key mechanism by which TAS2R agonists blocked allergic airway inflammation and exerted anti-asthma effects. Our comprehensive studies establish the effectiveness of TAS2R agonists in mitigating multiple features of allergic asthma.
Collapse
|
42
|
Sun Q, Liu L, Wang H, Mandal J, Khan P, Hostettler KE, Stolz D, Tamm M, Molino A, Lardinois D, Lu S, Roth M. Constitutive high expression of protein arginine methyltransferase 1 in asthmatic airway smooth muscle cells is caused by reduced microRNA-19a expression and leads to enhanced remodeling. J Allergy Clin Immunol 2017; 140:510-524.e3. [PMID: 28081849 DOI: 10.1016/j.jaci.2016.11.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 08/30/2016] [Accepted: 11/02/2016] [Indexed: 01/28/2023]
Abstract
BACKGROUND In asthma remodeling airway smooth muscle cells (ASMCs) contribute to airway wall thickness through increased proliferation, migration, and extracellular matrix deposition. Previously, we described that protein arginine methyltransferase 1 (PRMT1) participates in airway remodeling in pulmonary inflammation in E3 rats. OBJECTIVE We sought to define the asthma-specific regulatory mechanism of PRMT1 in human ASMCs. METHODS ASMCs from healthy subjects and asthmatic patients were activated with platelet-derived growth factor (PDGF)-BB. PRMT1 was localized by means of immunohistochemistry in human lung tissue sections and by means of immunofluorescence in isolated ASMCs. PRMT1 activity was suppressed by the pan-PRMT inhibitor AMI-1, signal transducer and activator of transcription 1 (STAT1) was suppressed by small interfering RNA, and extracellular signal-regulated kinase (ERK) 1/2 mitogen-activated protein kinase (MAPK) was suppressed by PD98059. MicroRNAs (miRs) were assessed by using real-time quantitative PCR and regulated by miR mimics or inhibitors. RESULTS PRMT1 expression was significantly increased in lung tissue sections and in isolated ASMCs of patients with severe asthma. PDGF-BB significantly increased PRMT1 expression through ERK1/2 MAPK and STAT1 signaling in control ASMCs, whereas in ASMCs from asthmatic patients, these proteins were constitutively expressed. ASMCs from asthmatic patients had reduced miR-19a expression, causing upregulation of ERK1/2 MAPK, STAT1, and PRMT1. Inhibition of PRMT1 abrogated collagen type I and fibronectin deposition, cell proliferation, and migration of ASMCs from asthmatic patients. CONCLUSIONS PRMT1 is a central regulator of tissue remodeling in ASMCs from asthmatic patients through the pathway: PDGF-BB-miR-19a-ERK1/2 MAPK and STAT1. Low miR-19a expression in ASMCs from asthmatic patients is the key event that results in constitutive increased PRMT1 expression and remodeling. Therefore PRMT1 is an attractive target to limit airway wall remodeling in asthmatic patients.
Collapse
Affiliation(s)
- Qingzhu Sun
- Department of Biochemistry and Molecular Biology, Key Laboratory of Environment and Genes Related to Diseases (Ministry of Education), Xi'an Jiaotong University Health Science Center, Xi'an, China; Pneumology and Pulmonary Cell Research, Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Li Liu
- Department of Biochemistry and Molecular Biology, Key Laboratory of Environment and Genes Related to Diseases (Ministry of Education), Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Hui Wang
- Stem Cells and Hematopoiesis, Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Jyotshna Mandal
- Pneumology and Pulmonary Cell Research, Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Petra Khan
- Pneumology and Pulmonary Cell Research, Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Katrin E Hostettler
- Pneumology and Pulmonary Cell Research, Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Daiana Stolz
- Pneumology and Pulmonary Cell Research, Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Michael Tamm
- Pneumology and Pulmonary Cell Research, Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Antonio Molino
- Department of Respiratory Diseases, University of Naples, Federico II, Naples, Italy
| | - Didier Lardinois
- Department of Thoracic Surgery, University Hospital Basel, Basel, Switzerland
| | - Shemin Lu
- Department of Biochemistry and Molecular Biology, Key Laboratory of Environment and Genes Related to Diseases (Ministry of Education), Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Michael Roth
- Pneumology and Pulmonary Cell Research, Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland.
| |
Collapse
|
43
|
Agache I, Rogozea L. Asthma Biomarkers: Do They Bring Precision Medicine Closer to the Clinic? ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2017; 9:466-476. [PMID: 28913985 PMCID: PMC5603474 DOI: 10.4168/aair.2017.9.6.466] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 03/03/2017] [Accepted: 03/13/2017] [Indexed: 12/11/2022]
Abstract
Measurement of biomarkers has been incorporated within clinical research of asthma to characterize the population and to associate the disease with environmental and therapeutic effects. Regrettably, at present, there are no specific biomarkers, none is validated or qualified, and endotype-driven choices overlap. Biomarkers have not yet reached clinical practice and are not included in current asthma guidelines. Last but not least, the choice of the outcome upholding the value of the biomarkers is extremely difficult, since it has to reflect the mechanistic intervention while being relevant to both the disease and the particular person. On the verge of a new age of asthma healthcare standard, we must embrace and adapt to the key drivers of change. Disease endotypes, biomarkers, and precision medicine represent an emerging model of patient care building on large-scale biologic databases, omics and diverse cellular assays, health information technology, and computational tools for analyzing sizable sets of data. A profound transformation of clinical and research pattern from population to individual risk and from investigator-imposed subjective disease clustering (hypothesis driven) to unbiased, data-driven models is facilitated by the endotype/biomarker-driven approach.
Collapse
Affiliation(s)
- Ioana Agache
- Faculty of Medicine, Department of Allergy and Clinical Immunology, Transylvania University of Brasov, Brasov, Romania.
| | - Liliana Rogozea
- Faculty of Medicine, Department of Allergy and Clinical Immunology, Transylvania University of Brasov, Brasov, Romania
| |
Collapse
|
44
|
Burgess JK, Mauad T, Tjin G, Karlsson JC, Westergren-Thorsson G. The extracellular matrix - the under-recognized element in lung disease? J Pathol 2016; 240:397-409. [PMID: 27623753 PMCID: PMC5129494 DOI: 10.1002/path.4808] [Citation(s) in RCA: 192] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 08/17/2016] [Accepted: 09/05/2016] [Indexed: 12/11/2022]
Abstract
The lung is composed of airways and lung parenchyma, and the extracellular matrix (ECM) contains the main building blocks of both components. The ECM provides physical support and stability to the lung, and as such it has in the past been regarded as an inert structure. More recent research has provided novel insights revealing that the ECM is also a bioactive environment that orchestrates the cellular responses in its environs. Changes in the ECM in the airway or parenchymal tissues are now recognized in the pathological profiles of many respiratory diseases, including asthma, chronic obstructive pulmonary disease (COPD), and idiopathic pulmonary fibrosis (IPF). Only recently have we begun to investigate whether these ECM changes result from the disease process, or whether they constitute a driving factor that orchestrates the pathological outcomes. This review summarizes our current knowledge of the alterations in the ECM in asthma, COPD, and IPF, and the contributions of these alterations to the pathologies. Emerging data suggest that alterations in the composition, folding or rigidity of ECM proteins may alter the functional responses of cells within their environs, and in so doing change the pathological outcomes. These characteristics highlight potential avenues for targeting lung pathologies in the future. This may ultimately contribute to a better understanding of chronic lung diseases, and novel approaches for finding therapeutic solutions. © 2016 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Janette K Burgess
- University of Groningen, University Medical Centre Groningen, GRIAC Research Institute, Department of Pathology and Medical Biology, Groningen, The Netherlands.,Respiratory Cellular and Molecular Biology Group, Woolcock Institute of Medical Research, The University of Sydney, Glebe, NSW, Australia.,Discipline of Pharmacology, The University of Sydney, NSW, Australia.,Central Clinical School, The University of Sydney, NSW, Australia
| | - Thais Mauad
- Department of Pathology, São Paulo University Medical School, São Paulo, Brazil
| | - Gavin Tjin
- Respiratory Cellular and Molecular Biology Group, Woolcock Institute of Medical Research, The University of Sydney, Glebe, NSW, Australia.,Central Clinical School, The University of Sydney, NSW, Australia
| | - Jenny C Karlsson
- Lung Biology, Department of Experimental Medical Sciences, Medical Faculty, Lund University, Lund, Sweden
| | | |
Collapse
|
45
|
Understanding the pathophysiology of the asthma-chronic obstructive pulmonary disease overlap syndrome. Curr Opin Pulm Med 2016; 22:100-5. [PMID: 26717511 DOI: 10.1097/mcp.0000000000000236] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW The review will provide an update on the pathophysiology and studies of inflammation associated with the asthma-chronic obstructive pulmonary disease (COPD) overlap syndrome (ACOS) and the mechanism(s) responsible for persistent expiratory airflow limitation in never-smoked asthma patients who develop loss of lung elastic recoil consistent with an asthma-COPD clinical phenotype (ACOS in nonsmokers). RECENT FINDINGS Patients with a clinical diagnosis of ACOS have more frequent respiratory exacerbations and hospitalizations than COPD patients without ACOS. ACOS patients should be treated with inhaled corticosteroids, short and long-acting β2-agonist, and long-acting muscarinic receptor antagonist. Biomarker work suggests that a molecular phenotype of ACOS (e.g., elevated markers of eosinophilic or type 2 inflammation) incompletely corresponds to clinical phenotypes. Recently, we reported sentinel observation of unsuspected mild diffuse centrilobular emphysema in never-smoked asthma patients at autopsy, despite mild changes in lung computed tomography and normal diffusing capacity. SUMMARY Recent studies have shown that subgroups of COPD and asthma patients may have overlapping immune responses. Never-smoked asthma patients may have persistent expiratory airflow limitation because of loss of lung elastic recoil. This may be because of unsuspected centrilobular emphysema detected at autopsy, and not easily diagnosed on lung computed tomography and diffusing capacity.
Collapse
|
46
|
González-Avila G, Bazan-Perkins B, Sandoval C, Sommer B, Vadillo-Gonzalez S, Ramos C, Aquino-Galvez A. Interstitial collagen turnover during airway remodeling in acute and chronic experimental asthma. Exp Ther Med 2016; 12:1419-1427. [PMID: 27602069 PMCID: PMC4998200 DOI: 10.3892/etm.2016.3509] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 05/19/2016] [Indexed: 02/06/2023] Open
Abstract
Asthma airway remodeling is characterized by the thickening of the basement membrane (BM) due to an increase in extracellular matrix (ECM) deposition, which contributes to the irreversibility of airflow obstruction. Interstitial collagens are the primary ECM components to be increased during the fibrotic process. The aim of the present study was to examine the interstitial collagen turnover during the course of acute and chronic asthma, and 1 month after the last exposure to the allergen. Guinea pigs sensitized to ovalbumin (OVA) and exposed to 3 further OVA challenges (acute model) or 12 OVA challenges (chronic model) were used as asthma experimental models. A group of animals from either model was sacrificed 1 h or 1 month after the last OVA challenge. Collagen distribution, collagen content, interstitial collagenase activity and matrix metalloproteinase (MMP)-1, MMP-13 and tissue inhibitor of metalloproteinase (TIMP)-1 protein expression levels were measured in the lung tissue samples from both experimental models. The results revealed that collagen deposit in bronchiole BM, adventitial and airway smooth muscle layers was increased in both experimental models as well as lung tissue collagen concentration. These structural changes persisted 1 month after the last OVA challenge. In the acute model, a decrease in collagenase activity and in MMP-1 concentration was observed. Collagenase activity returned to basal levels, and an increase in MMP-1 and MMP-13 expression levels along with a decrease in TIMP-1 expression levels were observed in animals sacrificed 1 month after the last OVA challenge. In the chronic model, there were no changes in collagenase activity or in MMP-13 concentration, although MMP-1 expression levels increased. One month later, an increase in collagenase activity was observed, although MMP-1 and TIMP-1 levels were not altered. The results of the present study suggest that even when the allergen challenges were discontinued, and collagenase activity and MMP-1 expression increased, fibrosis remained, contributing to the irreversibility of bronchoconstriction.
Collapse
Affiliation(s)
- Georgina González-Avila
- Biomedical Oncology Laboratory, Department of Chronic-Degenerative Diseases, National Institute of Respiratory Diseases 'Ismael Cosio Villegas', CP 14080 México City, Mexico
| | - Blanca Bazan-Perkins
- Department of Bronchial Hiperreactivity, National Institute of Respiratory Diseases 'Ismael Cosio Villegas', CP 14080 México City, Mexico
| | - Cuauhtémoc Sandoval
- Biomedical Oncology Laboratory, Department of Chronic-Degenerative Diseases, National Institute of Respiratory Diseases 'Ismael Cosio Villegas', CP 14080 México City, Mexico
| | - Bettina Sommer
- Department of Bronchial Hiperreactivity, National Institute of Respiratory Diseases 'Ismael Cosio Villegas', CP 14080 México City, Mexico
| | - Sebastian Vadillo-Gonzalez
- Biomedical Oncology Laboratory, Department of Chronic-Degenerative Diseases, National Institute of Respiratory Diseases 'Ismael Cosio Villegas', CP 14080 México City, Mexico
| | - Carlos Ramos
- Department of Lung Fibrosis, National Institute of Respiratory Diseases 'Ismael Cosio Villegas', CP 14080 México City, Mexico
| | - Arnoldo Aquino-Galvez
- Biomedical Oncology Laboratory, Department of Chronic-Degenerative Diseases, National Institute of Respiratory Diseases 'Ismael Cosio Villegas', CP 14080 México City, Mexico
| |
Collapse
|
47
|
Liu G, Cooley MA, Jarnicki AG, Hsu ACY, Nair PM, Haw TJ, Fricker M, Gellatly SL, Kim RY, Inman MD, Tjin G, Wark PAB, Walker MM, Horvat JC, Oliver BG, Argraves WS, Knight DA, Burgess JK, Hansbro PM. Fibulin-1 regulates the pathogenesis of tissue remodeling in respiratory diseases. JCI Insight 2016; 1. [PMID: 27398409 DOI: 10.1172/jci.insight.86380] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Airway and/or lung remodeling, involving exaggerated extracellular matrix (ECM) protein deposition, is a critical feature common to pulmonary diseases including chronic obstructive pulmonary disease (COPD), asthma, and idiopathic pulmonary fibrosis (IPF). Fibulin-1 (Fbln1), an important ECM protein involved in matrix organization, may be involved in the pathogenesis of these diseases. We found that Fbln1 was increased in COPD patients and in cigarette smoke-induced (CS-induced) experimental COPD in mice. Genetic or therapeutic inhibition of Fbln1c protected against CS-induced airway fibrosis and emphysema-like alveolar enlargement. In experimental COPD, this occurred through disrupted collagen organization and interactions with fibronectin, periostin, and tenascin-c. Genetic inhibition of Fbln1c also reduced levels of pulmonary inflammatory cells and proinflammatory cytokines/chemokines (TNF-α, IL-33, and CXCL1) in experimental COPD. Fbln1c-/- mice also had reduced airway remodeling in experimental chronic asthma and pulmonary fibrosis. Our data show that Fbln1c may be a therapeutic target in chronic respiratory diseases.
Collapse
Affiliation(s)
- Gang Liu
- Priority Research for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia
| | - Marion A Cooley
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Andrew G Jarnicki
- Priority Research for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia
| | - Alan C-Y Hsu
- Priority Research for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia
| | - Prema M Nair
- Priority Research for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia
| | - Tatt Jhong Haw
- Priority Research for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia
| | - Michael Fricker
- Priority Research for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia
| | - Shaan L Gellatly
- Priority Research for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia
| | - Richard Y Kim
- Priority Research for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia
| | - Mark D Inman
- Division of Respirology, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Gavin Tjin
- Woolcock Institute of Medical Research, Discipline of Pharmacology, The University of Sydney, Sydney, New South Wales, Australia
| | - Peter A B Wark
- Priority Research for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia; Department of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, New South Wales, Australia
| | - Marjorie M Walker
- Priority Research for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia
| | - Jay C Horvat
- Priority Research for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia
| | - Brian G Oliver
- Woolcock Institute of Medical Research, Discipline of Pharmacology, The University of Sydney, Sydney, New South Wales, Australia; School of Life Sciences, The University of Technology, Sydney, New South Wales, Australia
| | - W Scott Argraves
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Darryl A Knight
- Priority Research for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia; Department of Anesthesiology, Pharmacology and Therapeutics, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Janette K Burgess
- Woolcock Institute of Medical Research, Discipline of Pharmacology, The University of Sydney, Sydney, New South Wales, Australia; Discipline of Pharmacology, Sydney Medical School, The University of Sydney, New South Wales, Australia; Department of Pathology and Medical Biology, University of Groningen, University Medical Center, Groningen, Netherlands
| | - Philip M Hansbro
- Priority Research for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia
| |
Collapse
|
48
|
O'Toole J, Mikulic L, Kaminsky DA. Epidemiology and Pulmonary Physiology of Severe Asthma. Immunol Allergy Clin North Am 2016; 36:425-38. [PMID: 27401616 DOI: 10.1016/j.iac.2016.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The epidemiology and physiology of severe asthma are inherently linked because of varying phenotypes and expressions of asthma throughout the population. To understand how to better treat severe asthma, we must use both population data and physiologic principles to individualize therapies among groups with similar expressions of this disease.
Collapse
Affiliation(s)
- Jacqueline O'Toole
- Department of Medicine, University of Vermont Medical Center, 111 Colchester Avenue, Burlington, VT 05401, USA
| | - Lucas Mikulic
- Division of Pulmonary and Critical Care Medicine, University of Vermont Medical Center, Given D208, 89 Beaumont Avenue, Burlington, VT 05405, USA
| | - David A Kaminsky
- Division of Pulmonary and Critical Care Medicine, University of Vermont College of Medicine, Given D213, 89 Beaumont Avenue, Burlington, VT 05405, USA.
| |
Collapse
|
49
|
Kumar RK, Herbert C, Foster PS. Mouse models of acute exacerbations of allergic asthma. Respirology 2016; 21:842-9. [PMID: 26922049 DOI: 10.1111/resp.12760] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 11/29/2015] [Accepted: 01/23/2016] [Indexed: 12/24/2022]
Abstract
Most of the healthcare costs associated with asthma relate to emergency department visits and hospitalizations because of acute exacerbations of underlying chronic disease. Development of appropriate animal models of acute exacerbations of asthma is a necessary prerequisite for understanding pathophysiological mechanisms and assessing potential novel therapeutic approaches. Most such models have been developed using mice. Relatively few mouse models attempt to simulate the acute-on-chronic disease that characterizes human asthma exacerbations. Instead, many reported models involve relatively short-term challenge with an antigen to which animals are sensitized, followed closely by an unrelated triggering agent, so are better described as models of potentiation of acute allergic inflammation. Triggers for experimental models of asthma exacerbations include (i) challenge with high levels of the sensitizing allergen (ii) infection by viruses or fungi, or challenge with components of these microorganisms (iii) exposure to environmental pollutants. In this review, we examine the strengths and weaknesses of published mouse models, their application for investigation of novel treatments and potential future developments.
Collapse
Affiliation(s)
- Rakesh K Kumar
- Department of Pathology, School of Medical Sciences, UNSW Australia, Sydney
| | - Cristan Herbert
- Department of Pathology, School of Medical Sciences, UNSW Australia, Sydney
| | - Paul S Foster
- Centre for Asthma and Respiratory Disease, University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia
| |
Collapse
|
50
|
Rabe KF. Elastic Recoil Revisited. Chest 2015; 148:297-298. [PMID: 26238824 DOI: 10.1378/chest.15-0786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Affiliation(s)
- Klaus F Rabe
- LungenClinic Grosshansdorf, member of the German Center for Lung Research (DZL), Grosshansdorf, Germany; Department of Medicine, Christian-Albrechts-Universität zu Kiel, member of the German Center for Lung Research (DZL), Kiel, Germany.
| |
Collapse
|