1
|
Mohammed A, Wang W, Arreola M, Solomon BD, Slepicka PF, Hubka KM, Nguyen HD, Zheng Z, Chavez MG, Yeh CY, Kim DK, Ma MR, Martin E, Li L, Pasca AM, Winn VD, Gifford CA, Kedlian VR, Park JE, Khatri P, Hollander GA, Roncarolo MG, Sebastiano V, Teichmann SA, Gentles AJ, Weinacht KG. Distinct type I and II interferon responses direct cortical and medullary thymic epithelial cell development. Sci Immunol 2025; 10:eado4720. [PMID: 40315299 DOI: 10.1126/sciimmunol.ado4720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 12/05/2024] [Accepted: 04/10/2025] [Indexed: 05/04/2025]
Abstract
Advances in genomics have redefined our understanding of thymic epithelial heterogeneity and architecture, yet signals driving thymic epithelial differentiation remain incompletely understood. Here, we elucidated pathways instructing human thymic epithelial cell development in the context of other anterior foregut-derived organs. Activation of interferon response gene regulatory networks distinguished epithelial cells of the thymus from those of other anterior foregut-derived organs. Thymic cortex and medulla epithelia displayed distinctive interferon-responsive signatures defined by lineage-specific chromatin accessibility. We explored the effects of type I and II interferons on thymic epithelial progenitor differentiation from induced pluripotent stem cells. Type II interferon was essential for expressing proteasome and antigen-presenting molecules, whereas type I or II interferons were essential for inducing different cytokines in thymic epithelial progenitor cells. Our findings suggest that interferons are critical to cortical and medullary thymic epithelial cell differentiation.
Collapse
Affiliation(s)
- Abdulvasey Mohammed
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation, and Regenerative Medicine, Stanford School of Medicine, Stanford, CA 94304, USA
| | - Wenqing Wang
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation, and Regenerative Medicine, Stanford School of Medicine, Stanford, CA 94304, USA
| | - Martin Arreola
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation, and Regenerative Medicine, Stanford School of Medicine, Stanford, CA 94304, USA
| | - Benjamin D Solomon
- Department of Pediatrics, Division of Allergy and Immunology, Stanford School of Medicine, Stanford, CA 94304, USA
| | - Priscila F Slepicka
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation, and Regenerative Medicine, Stanford School of Medicine, Stanford, CA 94304, USA
| | - Kelsea M Hubka
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation, and Regenerative Medicine, Stanford School of Medicine, Stanford, CA 94304, USA
| | - Hanh Dan Nguyen
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation, and Regenerative Medicine, Stanford School of Medicine, Stanford, CA 94304, USA
| | - Zihao Zheng
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation, and Regenerative Medicine, Stanford School of Medicine, Stanford, CA 94304, USA
| | - Michael G Chavez
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Christine Y Yeh
- Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA
- Department of Medicine, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Doo Kyung Kim
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Michael R Ma
- Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA
- Department of Cardiothoracic Surgery, Division of Pediatric Cardiac Surgery, Stanford University, Stanford, CA 94304, USA
| | - Elisabeth Martin
- Department of Cardiothoracic Surgery, Division of Pediatric Cardiac Surgery, Stanford University, Stanford, CA 94304, USA
| | - Li Li
- Department of Pediatrics, Division of Neonatology, Stanford School of Medicine, Stanford, CA 94304, USA
| | - Anca M Pasca
- Department of Pediatrics, Division of Neonatology, Stanford School of Medicine, Stanford, CA 94304, USA
| | - Virginia D Winn
- Department of Obstetrics and Gynecology, Stanford School of Medicine, Stanford, CA, USA
| | - Casey A Gifford
- Department of Pediatrics, Division of Cardiology, Stanford School of Medicine, Stanford, CA 94305, USA
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Veronika R Kedlian
- Wellcome Sanger Institute, Cambridge, UK
- Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | | | - Purvesh Khatri
- Institute for Immunity, Transplantation, and Infection, Stanford University, Stanford, CA 94304, USA
- Center for Biomedical Informatics Research, Department of Medicine, School of Medicine, Stanford University, CA 94305, USA
| | - Georg A Hollander
- Department of Pediatrics and Institute of Developmental and Regenerative Medicine, University of Oxford, Oxford, UK
- Department of Biosystems and Engineering, ETH Zurich, Zurich, Switzerland
- Botnar Institute of Immune Engineering, Basel, Switzerland
| | - Maria Grazia Roncarolo
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation, and Regenerative Medicine, Stanford School of Medicine, Stanford, CA 94304, USA
| | - Vittorio Sebastiano
- Department of Obstetrics and Gynecology, Stanford School of Medicine, Stanford, CA, USA
| | - Sarah A Teichmann
- Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
- CIFAR Macmillan Multi-scale Human Programme, CIFAR, Toronto, Canada
| | - Andrew J Gentles
- Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA
- Department of Pathology, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Katja G Weinacht
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation, and Regenerative Medicine, Stanford School of Medicine, Stanford, CA 94304, USA
| |
Collapse
|
2
|
Karaaslan BG, Demirkale ZH, Turan I, Aydemir S, Meric Z, Taskin Z, Kilinc OC, Burtecene N, Topcu B, Yucel E, Aydogmus C, Cokugras H, Kiykim A. Evaluation of T-cell repertoire by flow cytometric analysis in primary immunodeficiencies with DNA repair defects. Scand J Immunol 2025; 101:e70003. [PMID: 39967281 PMCID: PMC11836546 DOI: 10.1111/sji.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 01/07/2025] [Accepted: 01/13/2025] [Indexed: 02/20/2025]
Abstract
The group of patients with DNA-repair-defects increases susceptibility to infections due to impaired repertoire diversity. In this context, we aimed to investigate the TCRvβ-repertoire by flow cytometric analysis and its correlation with clinical entities in a group of IEI patients with DNA repair defects. Peripheral lymphocyte subset and TCRvβ-repertoire analyses were performed by flow cytometric analysis. The aim was to explore the changing TCR-Vβ-repertoire that can predict some clinical entities by investigating the repertoire using flow-cytometric-analysis-based TCR-Vβ and its interaction with clinical entities in a group of IEI patients with DNA repair defects. TCR-repertoire of the patients with DNA-repair-defects and healthy controls was analysed with flow-cytometer. The potential of flow-cytometric analysis of the TCR repertoire as a practical and easily accessible clinical prediction method was investigated. Thirty-nine-IEI patients with DNA-repair-defects and 15 age-matched healthy-controls were included in this study. Peripheral lymphocyte subset and TCR-Vβ repertoire analyses were performed by flow cytometry. Compared to the control group, 9 out of 24 clones (37.5%) exhibited a statistically significant reduction, while only 3 clones showed a statistically significant increase (p < 0.05). Preferential use of vβ-genes was associated with some clinical entities. Lower TCR-vβ-9 and TCR-vβ23, higher TCR-vβ7.2 were found in the patients with pneumonia (n = 13) (p = 0.018, p = 0.044 p = 0.032). AT patients with pneumonia had lower TCR-vβ-9 clone than patients without pneumonia (p = 0.008). Skewed proliferation of most TCR-vβ clones was seen DNA-repair-defects, especially AT. In addition, this study showed that preferential use of TCR-vβ genes could be predictive for some clinical entities.
Collapse
Affiliation(s)
- Betul Gemici Karaaslan
- Cerrahpasa School of Medicine, Department of Pediatric Immunology and AllergyIstanbul University‐CerrahpasaIstanbulTürkiye
| | - Zeynep Hizli Demirkale
- Istanbul Medical Faculty, Department of Pediatric Immunology and AllergyIstanbul UniversityIstanbulTürkiye
| | - Isilay Turan
- Department of Pediatric Immunology and AllergyBasaksehir Cam and Sakura City HospitalIstanbulTürkiye
| | - Sezin Aydemir
- Cerrahpasa School of Medicine, Department of Pediatric Immunology and AllergyIstanbul University‐CerrahpasaIstanbulTürkiye
| | - Zeynep Meric
- Cerrahpasa School of Medicine, Department of Pediatric Immunology and AllergyIstanbul University‐CerrahpasaIstanbulTürkiye
| | - Zuleyha Taskin
- Cerrahpasa School of MedicineIstanbul University‐CerrahpasaIstanbulTürkiye
| | - Ozgur Can Kilinc
- Cerrahpasa School of MedicineIstanbul University‐CerrahpasaIstanbulTürkiye
| | - Nihan Burtecene
- Cerrahpasa School of Medicine, Department of Pediatric Immunology and AllergyIstanbul University‐CerrahpasaIstanbulTürkiye
| | - Birol Topcu
- Department of BiostatisticsTekirdag Namik Kemal UniversityTekirdagTürkiye
| | - Esra Yucel
- Istanbul Medical Faculty, Department of Pediatric Immunology and AllergyIstanbul UniversityIstanbulTürkiye
| | - Cigdem Aydogmus
- Department of Pediatric Immunology and AllergyBasaksehir Cam and Sakura City HospitalIstanbulTürkiye
| | - Haluk Cokugras
- Cerrahpasa School of Medicine, Department of Pediatric Immunology and AllergyIstanbul University‐CerrahpasaIstanbulTürkiye
| | - Ayca Kiykim
- Cerrahpasa School of Medicine, Department of Pediatric Immunology and AllergyIstanbul University‐CerrahpasaIstanbulTürkiye
| |
Collapse
|
3
|
Xu Y, Yan X, Wei T, Chen M, Zhu J, Gao J, Liu B, Zhu W, Liu Z. Transmucosal Delivery of Nasal Nanovaccines Enhancing Mucosal and Systemic Immunity. NANO LETTERS 2023; 23:10522-10531. [PMID: 37943583 DOI: 10.1021/acs.nanolett.3c03419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Intranasal vaccines can induce protective immune responses at the mucosa surface entrance, preventing the invasion of respiratory pathogens. However, the nasal barrier remains a major challenge in the development of intranasal vaccines. Herein, a transmucosal nanovaccine based on cationic fluorocarbon modified chitosan (FCS) is developed to induce mucosal immunity. In our system, FCS can self-assemble with the model antigen ovalbumin and TLR9 agonist CpG, effectively promoting the maturation and cross-presentation of dendritic cells. More importantly, it can enhance the production of secretory immunoglobin A (sIgA) at mucosal surfaces for those intranasally vaccinated mice, which in the meantime showed effective production of immunoglobulin G (IgG) systemically. As a proof-of-concept study, such a mucosal vaccine inhibits ovalbumin-expressing B16-OVA melanoma, especially its lung metastases. Our work presents a unique intranasal delivery system to deliver antigen across mucosal epithelia and promote mucosal and systemic immunity.
Collapse
Affiliation(s)
- Yuchun Xu
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Xiaoying Yan
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Ting Wei
- Suzhou InnoBM Pharmaceutics Co. Ltd., Suzhou, Jiangsu 215213, China
| | - Minming Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Jiafei Zhu
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Juxin Gao
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Bo Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Wenjun Zhu
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou 215123, China
- Suzhou InnoBM Pharmaceutics Co. Ltd., Suzhou, Jiangsu 215213, China
| |
Collapse
|
4
|
Staudacher O, Klein J, Thee S, Ullrich J, Wahn V, Unterwalder N, Kölsch U, Lankes E, Stittrich A, Dedieu C, Dinges S, Völler M, Schuetz C, Schulte J, Boztug K, Meisel C, Kuehl JS, Krüger R, Blankenstein O, von Bernuth H. Screening Newborns for Low T Cell Receptor Excision Circles (TRECs) Fails to Detect Immunodeficiency, Centromeric Instability, and Facial Anomalies Syndrome. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:2872-2883. [PMID: 37302792 DOI: 10.1016/j.jaip.2023.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/13/2023]
Abstract
BACKGROUND Assessment of T-cell receptor excision circles (TRECs) in dried blood spots of newborns allows the detection of severe combined immunodeficiency (SCID) (T cells <300/μL at birth) with a presumed sensitivity of 100%. TREC screening also identifies patients with selected combined immunodeficiency (CID) (T cells >300/μL, yet <1500/μL at birth). Nevertheless, relevant CIDs that would benefit from early recognition and curative treatment pass undetected. OBJECTIVE We hypothesized that TREC screening at birth cannot identify CIDs that develop with age. METHODS We analyzed the number of TRECs in dried blood spots in archived Guthrie cards of 22 children who had been born in the Berlin-Brandenburg area between January 2006 and November 2018 and who had undergone hematopoietic stem-cell transplantation (HSCT) for inborn errors of immunity. RESULTS All patients with SCID would have been identified by TREC screening, but only 4 of 6 with CID. One of these patients had immunodeficiency, centromeric instability, and facial anomalies syndrome type 2 (ICF2). Two of 3 patients with ICF whom we have been following up at our institution had TREC numbers above the cutoff value suggestive of SCID at birth. Yet all patients with ICF had a severe clinical course that would have justified earlier HSCT. CONCLUSIONS In ICF, naïve T cells may be present at birth, yet they decline with age. Therefore, TREC screening cannot identify these patients. Early recognition is nevertheless crucial, as patients with ICF benefit from HSCT early in life.
Collapse
Affiliation(s)
- Olga Staudacher
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Department of Immunology, Labor Berlin Charité-Vivantes, Berlin, Germany
| | - Jeanette Klein
- Newborn Screening Laboratory, Charité Universitätsmedizin, Berlin, Germany
| | - Stephanie Thee
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jan Ullrich
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Volker Wahn
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Nadine Unterwalder
- Department of Immunology, Labor Berlin Charité-Vivantes, Berlin, Germany
| | - Uwe Kölsch
- Department of Immunology, Labor Berlin Charité-Vivantes, Berlin, Germany
| | - Erwin Lankes
- Newborn Screening Laboratory, Charité Universitätsmedizin, Berlin, Germany; Department of Pediatric Endocrinology, Charité-Uninrsitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Anna Stittrich
- Department of Human Genetics, Labor Berlin Charité-Vivantes, Berlin, Germany
| | - Cinzia Dedieu
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Sarah Dinges
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Mirjam Völler
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Catharina Schuetz
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Johannes Schulte
- Department of Pediatric Hematology and Oncology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Kaan Boztug
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria; St. Anna Children's Cancer Research Institute, Vienna, Austria; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria; Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria; Department of Pediatrics and Adolescent Medicine, St. Anna Children's Hospital, Medical University of Vienna, Vienna, Austria
| | - Christian Meisel
- Department of Immunology, Labor Berlin Charité-Vivantes, Berlin, Germany; Institute of Medical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Jörn-Sven Kuehl
- Department of Pediatric Hematology and Oncology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Department of Pediatric Oncology, Hematology and Hemostaseology, University of Leipzig, Leipzig, Germany
| | - Renate Krüger
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | | | - Horst von Bernuth
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Department of Immunology, Labor Berlin Charité-Vivantes, Berlin, Germany; Berlin Institute of Health (BIH), Charité-Universitätsmedizin Berlin, Berlin, Germany; Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany.
| |
Collapse
|
5
|
Lev A, Sharir I, Simon AJ, Levy S, Lee YN, Frizinsky S, Daas S, Saraf-Levy T, Broides A, Nahum A, Hanna S, Stepensky P, Toker O, Dalal I, Etzioni A, Stein J, Adam E, Hendel A, Marcus N, Almashanu S, Somech R. Lessons Learned From Five Years of Newborn Screening for Severe Combined Immunodeficiency in Israel. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:2722-2731.e9. [PMID: 35487367 DOI: 10.1016/j.jaip.2022.04.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/03/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Implementation of newborn screening (NBS) programs for severe combined immunodeficiency (SCID) have advanced the diagnosis and management of affected infants and undoubtedly improved their outcomes. Reporting long-term follow-up of such programs is of great importance. OBJECTIVE We report a 5-year summary of the NBS program for SCID in Israel. METHODS Immunologic and genetic assessments, clinical analyses, and outcome data from all infants who screened positive were evaluated and summarized. RESULTS A total of 937,953 Guthrie cards were screened for SCID. A second Guthrie card was requested on 1,169 occasions (0.12%), which resulted in 142 referrals (0.015%) for further validation tests. Flow cytometry immune-phenotyping, T cell receptor excision circle measurement in peripheral blood, and expression of TCRVβ repertoire for the validation of positive cases revealed a specificity and sensitivity of 93.7% and 75.9%, respectively, in detecting true cases of SCID. Altogether, 32 SCID and 110 non-SCID newborns were diagnosed, making the incidence of SCID in Israel as high as 1:29,000 births. The most common genetic defects in this group were associated with mutations in DNA cross-link repair protein 1C and IL-7 receptor α (IL-7Rα) genes. No infant with SCID was missed during the study time. Twenty-two SCID patients underwent hematopoietic stem cell transplantation, which resulted in a 91% survival rate. CONCLUSIONS Newborn screening for SCID should ultimately be applied globally, specifically to areas with high rates of consanguineous marriages. Accumulating data from follow-up studies on NBS for SCID will improve diagnosis and treatment and enrich our understanding of immune development in health and disease.
Collapse
Affiliation(s)
- Atar Lev
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, affiliated to the Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; Mina and Everard Goodman Faculty of Life Sciences, Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan, Israel
| | - Idan Sharir
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, affiliated to the Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Amos J Simon
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, affiliated to the Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; Hemato-Immunology Unit, Hematology Lab, Sheba Medical Center, Tel HaShomer, Israel
| | - Shiran Levy
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, affiliated to the Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Yu Nee Lee
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, affiliated to the Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Shirly Frizinsky
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, affiliated to the Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Suha Daas
- National Newborn Screening Program, Ministry of Health, Tel-HaShomer, Israel
| | - Talia Saraf-Levy
- National Newborn Screening Program, Ministry of Health, Tel-HaShomer, Israel
| | - Arnon Broides
- Pediatric Immunology, Soroka University Medical Center, Beer-Sheva, Israel; Jeffrey Modell Foundation Israeli Network for Primary Immunodeficiency, New York, NY
| | - Amit Nahum
- Pediatric Immunology, Soroka University Medical Center, Beer-Sheva, Israel; Jeffrey Modell Foundation Israeli Network for Primary Immunodeficiency, New York, NY; Primary Immunodeficiency Research Laboratory, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Suhair Hanna
- Jeffrey Modell Foundation Israeli Network for Primary Immunodeficiency, New York, NY; Ruth Children Hospital, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Polina Stepensky
- Jeffrey Modell Foundation Israeli Network for Primary Immunodeficiency, New York, NY; Department of Bone Marrow Transplantation, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ori Toker
- Jeffrey Modell Foundation Israeli Network for Primary Immunodeficiency, New York, NY; Faculty of Medicine, Hebrew University of Jerusalem, Israel; Allergy and Immunology Unit, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Ilan Dalal
- Jeffrey Modell Foundation Israeli Network for Primary Immunodeficiency, New York, NY; Department of Pediatrics, Pediatric Allergy Unit, E. Wolfson Medical Center, Holon, Israel, affiliated to the Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Amos Etzioni
- Jeffrey Modell Foundation Israeli Network for Primary Immunodeficiency, New York, NY; Ruth Children Hospital, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Jerry Stein
- Department for Hemato-Oncology, Schneider Children's Medical Center of Israel, Petach Tikva, Israel, affiliated to the Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Etai Adam
- Division of Pediatric Hematology and Oncology, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat-Gan, Israel
| | - Ayal Hendel
- Mina and Everard Goodman Faculty of Life Sciences, Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan, Israel
| | - Nufar Marcus
- Jeffrey Modell Foundation Israeli Network for Primary Immunodeficiency, New York, NY; Allergy and Immunology Unit, Schneider Children's Medical Center of Israel, Felsenstein Medical Research Center, Kipper Institute of Immunology, Petach Tikva, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
| | - Shlomo Almashanu
- National Newborn Screening Program, Ministry of Health, Tel-HaShomer, Israel.
| | - Raz Somech
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, affiliated to the Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; Jeffrey Modell Foundation Israeli Network for Primary Immunodeficiency, New York, NY; National Lab for Confirming Primary Immunodeficiency in Newborn Screening Center for Newborn Screening, Ministry of Health, Tel HaShomer, Israel.
| |
Collapse
|
6
|
Göngrich C, Ekwall O, Sundin M, Brodszki N, Fasth A, Marits P, Dysting S, Jonsson S, Barbaro M, Wedell A, von Döbeln U, Zetterström RH. First Year of TREC-Based National SCID Screening in Sweden. Int J Neonatal Screen 2021; 7:ijns7030059. [PMID: 34449549 PMCID: PMC8395826 DOI: 10.3390/ijns7030059] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/11/2021] [Accepted: 08/16/2021] [Indexed: 11/16/2022] Open
Abstract
Screening for severe combined immunodeficiency (SCID) was introduced into the Swedish newborn screening program in August 2019 and here we report the results of the first year. T cell receptor excision circles (TRECs), kappa-deleting element excision circles (KRECs), and actin beta (ACTB) levels were quantitated by multiplex qPCR from dried blood spots (DBS) of 115,786 newborns and children up to two years of age, as an approximation of the number of recently formed T and B cells and sample quality, respectively. Based on low TREC levels, 73 children were referred for clinical assessment which led to the diagnosis of T cell lymphopenia in 21 children. Of these, three were diagnosed with SCID. The screening performance for SCID as the outcome was sensitivity 100%, specificity 99.94%, positive predictive value (PPV) 4.11%, and negative predictive value (NPV) 100%. For the outcome T cell lymphopenia, PPV was 28.77%, and specificity was 99.95%. Based on the first year of screening, the incidence of SCID in the Swedish population was estimated to be 1:38,500 newborns.
Collapse
Affiliation(s)
- Christina Göngrich
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, 17176 Stockholm, Sweden; (S.D.); (S.J.); (M.B.); (A.W.); (U.v.D.)
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 17176 Stockholm, Sweden
- Correspondence: (C.G.); (R.H.Z.)
| | - Olov Ekwall
- Department of Pediatrics, Institute of Clinical Sciences, The Sahlgrenska Academy at University of Gothenburg, 40530 Gothenburg, Sweden; (O.E.); (A.F.)
- Department of Rheumatology and Inflammation Research, The Sahlgrenska Academy at University of Gothenburg, 40530 Gothenburg, Sweden
| | - Mikael Sundin
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, 17177 Stockholm, Sweden; (M.S.); (P.M.)
- Section of Pediatric Hematology, Immunology and HCT, Astrid Lindgren Children’s Hospital, Karolinska University Hospital, 14186 Stockholm, Sweden
| | - Nicholas Brodszki
- Department of Pediatric Immunology, Children’s Hospital, Lund University Hospital, 22242 Lund, Sweden;
| | - Anders Fasth
- Department of Pediatrics, Institute of Clinical Sciences, The Sahlgrenska Academy at University of Gothenburg, 40530 Gothenburg, Sweden; (O.E.); (A.F.)
| | - Per Marits
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, 17177 Stockholm, Sweden; (M.S.); (P.M.)
- Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, 14186 Stockholm, Sweden
| | - Sam Dysting
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, 17176 Stockholm, Sweden; (S.D.); (S.J.); (M.B.); (A.W.); (U.v.D.)
| | - Susanne Jonsson
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, 17176 Stockholm, Sweden; (S.D.); (S.J.); (M.B.); (A.W.); (U.v.D.)
| | - Michela Barbaro
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, 17176 Stockholm, Sweden; (S.D.); (S.J.); (M.B.); (A.W.); (U.v.D.)
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Anna Wedell
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, 17176 Stockholm, Sweden; (S.D.); (S.J.); (M.B.); (A.W.); (U.v.D.)
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Ulrika von Döbeln
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, 17176 Stockholm, Sweden; (S.D.); (S.J.); (M.B.); (A.W.); (U.v.D.)
- Department of Medical Biochemistry and Biophysics, Division of Molecular Metabolism, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Rolf H. Zetterström
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, 17176 Stockholm, Sweden; (S.D.); (S.J.); (M.B.); (A.W.); (U.v.D.)
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 17176 Stockholm, Sweden
- Correspondence: (C.G.); (R.H.Z.)
| |
Collapse
|
7
|
Ferrua F, Bortolomai I, Fontana E, Di Silvestre D, Rigoni R, Marcovecchio GE, Draghici E, Brambilla F, Castiello MC, Delfanti G, Moshous D, Picard C, Taghon T, Bordon V, Schulz AS, Schuetz C, Giliani S, Soresina A, Gennery AR, Signa S, Dávila Saldaña BJ, Delmonte OM, Notarangelo LD, Roifman CM, Poliani PL, Uva P, Mauri PL, Villa A, Bosticardo M. Thymic Epithelial Cell Alterations and Defective Thymopoiesis Lead to Central and Peripheral Tolerance Perturbation in MHCII Deficiency. Front Immunol 2021; 12:669943. [PMID: 34211466 PMCID: PMC8239840 DOI: 10.3389/fimmu.2021.669943] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/07/2021] [Indexed: 11/13/2022] Open
Abstract
Major Histocompatibility Complex (MHC) class II (MHCII) deficiency (MHCII-D), also known as Bare Lymphocyte Syndrome (BLS), is a rare combined immunodeficiency due to mutations in genes regulating expression of MHCII molecules. MHCII deficiency results in impaired cellular and humoral immune responses, leading to severe infections and autoimmunity. Abnormal cross-talk with developing T cells due to the absence of MHCII expression likely leads to defects in thymic epithelial cells (TEC). However, the contribution of TEC alterations to the pathogenesis of this primary immunodeficiency has not been well characterized to date, in particular in regard to immune dysregulation. To this aim, we have performed an in-depth cellular and molecular characterization of TEC in this disease. We observed an overall perturbation of thymic structure and function in both MHCII-/- mice and patients. Transcriptomic and proteomic profiling of murine TEC revealed several alterations. In particular, we demonstrated that impairment of lymphostromal cross-talk in the thymus of MHCII-/- mice affects mTEC maturation and promiscuous gene expression and causes defects of central tolerance. Furthermore, we observed peripheral tolerance impairment, likely due to defective Treg cell generation and/or function and B cell tolerance breakdown. Overall, our findings reveal disease-specific TEC defects resulting in perturbation of central tolerance and limiting the potential benefits of hematopoietic stem cell transplantation in MHCII deficiency.
Collapse
Affiliation(s)
- Francesca Ferrua
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Ileana Bortolomai
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elena Fontana
- Human Genome Department, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
- Milan Unit, Institute of Genetic and Biomedical Research, National Research Council (CNR), Milan, Italy
| | - Dario Di Silvestre
- Department of Biomedical Sciences, Institute for Biomedical Technologies-National Research Council (CNR), Milan, Italy
| | - Rosita Rigoni
- Human Genome Department, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
- Milan Unit, Institute of Genetic and Biomedical Research, National Research Council (CNR), Milan, Italy
| | - Genni Enza Marcovecchio
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elena Draghici
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesca Brambilla
- Department of Biomedical Sciences, Institute for Biomedical Technologies-National Research Council (CNR), Milan, Italy
| | - Maria Carmina Castiello
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Milan Unit, Institute of Genetic and Biomedical Research, National Research Council (CNR), Milan, Italy
| | - Gloria Delfanti
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Despina Moshous
- Department of Pediatric Immunology, Hematology and Rheumatology, Necker Children’s Hospital, AP-HP, Paris, France
- Laboratory “Genome Dynamics in the Immune System”, INSERM UMR1163, Université de Paris, Institut Imagine, Paris, France
| | - Capucine Picard
- Department of Pediatric Immunology, Hematology and Rheumatology, Necker Children’s Hospital, AP-HP, Paris, France
- Centre d’Etude des Déficits Immunitaires, Necker-Enfants Malades Hospital, AP-HP, Paris, France
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, Inserm UMR 1163, University Paris Descartes Sorbonne Paris Cité, Imagine Institute, Paris, France
| | - Tom Taghon
- Department of Diagnostic Sciences, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Victoria Bordon
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium
| | - Ansgar S. Schulz
- Department of Pediatrics, University Medical Center Ulm, Ulm, Germany
| | - Catharina Schuetz
- Department of Pediatrics, University Medical Center Ulm, Ulm, Germany
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Silvia Giliani
- Cytogenetics and Medical Genetics Unit and “A. Nocivelli” Institute for Molecular Medicine, Spedali Civili Hospital, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Annarosa Soresina
- Unit of Pediatric Immunology, Pediatrics Clinic, University of Brescia, ASST-Spedali Civili Brescia, Brescia, Italy
| | - Andrew R. Gennery
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Department of Pediatric Immunology and HSCT, Great North Children's Hospital, Newcastle upon Tyne, United Kingdom
| | - Sara Signa
- Department of Pediatric Immunology and HSCT, Great North Children's Hospital, Newcastle upon Tyne, United Kingdom
- Autoinflammatory Diseases and Immunodeficiencies Center, IRCCS Istituto G. Gaslini, and Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, and Maternal and Children's Sciences, University of Genoa, Genoa, Italy
| | - Blachy J. Dávila Saldaña
- Division of Blood and Marrow Transplantation, Children's National Hospital, Washington, DC, United States
| | - Ottavia M. Delmonte
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, United States
| | - Luigi D. Notarangelo
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, United States
| | - Chaim M. Roifman
- Division of Immunology & Allergy, Department of Pediatrics, The Hospital for Sick Children, the Canadian Centre for Primary Immunodeficiency and the University of Toronto, Toronto, ON, Canada
| | - Pietro Luigi Poliani
- Department of Molecular and Translational Medicine, Pathology Unit, University of Brescia, Brescia, Italy
| | - Paolo Uva
- CRS4, Science and Technology Park Polaris, Pula, Cagliari, Italy
| | - Pier Luigi Mauri
- Department of Biomedical Sciences, Institute for Biomedical Technologies-National Research Council (CNR), Milan, Italy
| | - Anna Villa
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Milan Unit, Institute of Genetic and Biomedical Research, National Research Council (CNR), Milan, Italy
| | - Marita Bosticardo
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, United States
| |
Collapse
|
8
|
Exploring genetic defects in adults who were clinically diagnosed as severe combined immune deficiency during infancy. Immunol Res 2021; 69:145-152. [PMID: 33599911 DOI: 10.1007/s12026-021-09179-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 02/03/2021] [Indexed: 12/16/2022]
Abstract
Genetic diagnostic tools including whole-exome sequencing (WES) have advanced our understanding in human diseases and become common practice in diagnosing patients with suspected primary immune deficiencies. Establishing a genetic diagnosis is of paramount importance for tailoring adequate therapeutic regimens, including identifying the need for hematopoietic stem cell transplantation (HSCT) and genetic-based therapies. Here, we genetically studied two adult patients who were clinically diagnosed during infancy with severe combined immune deficiency (SCID). Two unrelated patients, both of consanguineous kindred, underwent WES in adulthood, 2 decades after their initial clinical manifestations. Upon clinical presentation, immunological workup was performed, which led to a diagnosis of SCID. The patients presented during infancy with failure to thrive, generalized erythematous rash, and recurrent gastrointestinal and respiratory tract infections, including episodes of Pneumocystis pneumonia infection and Candida albicans fungemia. Hypogammaglobulinemia and T-cell lymphopenia were detected. Both patients were treated with a 10/10 HLA matched sibling donor unconditioned HSCT. Retrospective genetic workup revealed homozygous bi-allelic mutations in IL7RA in one patient and in RAG2 in the other. Our study exemplifies the impact of retrospectively establishing a genetic diagnosis. Pinpointing the genetic cause raises several issues including optimized surveillance and treatment, understanding disease mechanisms and outcomes, future family planning, and social and psychological considerations.
Collapse
|
9
|
Giżewska M, Durda K, Winter T, Ostrowska I, Ołtarzewski M, Klein J, Blankenstein O, Romanowska H, Krzywińska-Zdeb E, Patalan MF, Bartkowiak E, Szczerba N, Seiberling S, Birkenfeld B, Nauck M, von Bernuth H, Meisel C, Bernatowska EA, Walczak M, Pac M. Newborn Screening for SCID and Other Severe Primary Immunodeficiency in the Polish-German Transborder Area: Experience From the First 14 Months of Collaboration. Front Immunol 2020; 11:1948. [PMID: 33178177 PMCID: PMC7596351 DOI: 10.3389/fimmu.2020.01948] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/20/2020] [Indexed: 12/22/2022] Open
Abstract
In 2017, in the Polish-German transborder area of West Pomerania, Mecklenburg-Western Pomerania, and Brandenburg, in collaboration with two centers in Warsaw, a partnership in the field of newborn screening (NBS) for severe primary immunodeficiency diseases (PID), mainly severe combined immunodeficiency (SCID), was initiated. SCID, but also some other severe PID, is a group of disorders characterized by the absence of T and/or B and NK cells. Affected infants are susceptible to life-threatening infections, but early detection gives a chance for effective treatment. The prevalence of SCID in the Polish and German populations is unknown but can be comparable to other countries (1:50,000–100,000). SCID NBS tests are based on real-time polymerase chain reaction (qPCR) and the measurement of a number of T cell receptor excision circles (TREC), kappa-deleting recombination excision circles (KREC), and beta-actin (ACTB) as a quality marker of DNA. This method can also be effective in NBS for other severe PID with T- and/or B-cell lymphopenia, including combined immunodeficiency (CID) or agammaglobulinemia. During the 14 months of collaboration, 44,287 newborns were screened according to the ImmunoIVD protocol. Within 65 positive samples, seven were classified to immediate recall and 58 requested a second sample. Examination of the 58 second samples resulted in recalling one newborn. Confirmatory tests included immunophenotyping of lymphocyte subsets with extension to TCR repertoire, lymphoproliferation tests, radiosensitivity tests, maternal engraftment assays, and molecular tests. Final diagnosis included: one case of T-BlowNK+ SCID, one case of atypical Tlow BlowNK+ CID, one case of autosomal recessive agammaglobulinemia, and one case of Nijmegen breakage syndrome. Among four other positive results, three infants presented with T- and/or B-cell lymphopenia due to either the mother's immunosuppression, prematurity, or unknown reasons, which resolved or almost normalized in the first months of life. One newborn was classified as truly false positive. The overall positive predictive value (PPV) for the diagnosis of severe PID was 50.0%. This is the first population screening study that allowed identification of newborns with T and/or B immunodeficiency in Central and Eastern Europe.
Collapse
Affiliation(s)
- Maria Giżewska
- Department of Pediatrics, Endocrinology, Diabetology, Metabolic Diseases and Cardiology, Pomeranian Medical University, Szczecin, Poland.,Independent Public Clinical Hospital nr 1 PUM, Szczecin, Poland
| | - Katarzyna Durda
- Independent Public Clinical Hospital nr 1 PUM, Szczecin, Poland
| | - Theresa Winter
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany.,Integrated Research Biobank (IRB), University Medicine Greifswald, Greifswald, Germany
| | - Iwona Ostrowska
- Independent Public Clinical Hospital nr 1 PUM, Szczecin, Poland
| | - Mariusz Ołtarzewski
- Department of Screening and Metabolic Diagnostics, Institute of Mother and Child, Warsaw, Poland
| | - Jeannette Klein
- Newbornscreening Laboratory, Charité Universitaetsmedizin, Berlin, Germany
| | | | - Hanna Romanowska
- Department of Pediatrics, Endocrinology, Diabetology, Metabolic Diseases and Cardiology, Pomeranian Medical University, Szczecin, Poland.,Independent Public Clinical Hospital nr 1 PUM, Szczecin, Poland
| | - Elżbieta Krzywińska-Zdeb
- Department of Pediatrics, Endocrinology, Diabetology, Metabolic Diseases and Cardiology, Pomeranian Medical University, Szczecin, Poland.,Independent Public Clinical Hospital nr 1 PUM, Szczecin, Poland
| | - Michał Filip Patalan
- Department of Pediatrics, Endocrinology, Diabetology, Metabolic Diseases and Cardiology, Pomeranian Medical University, Szczecin, Poland.,Independent Public Clinical Hospital nr 1 PUM, Szczecin, Poland
| | | | | | - Stefan Seiberling
- Research Support Center, University of Greifswald, Greifswald, Germany
| | - Bożena Birkenfeld
- Independent Public Clinical Hospital nr 1 PUM, Szczecin, Poland.,Department of Nuclear Medicine, Pomeranian Medical University, Szczecin, Poland
| | - Matthias Nauck
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, University Medicine Greifswald, Greifswald, Germany
| | - Horst von Bernuth
- Department of Pediatric Pulmonology, Immunology and Intensive Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Labor Berlin - Charité Vivantes Services GmbH, Berlin, Germany.,BIH Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Christian Meisel
- Labor Berlin - Charité Vivantes Services GmbH, Berlin, Germany.,Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ewa Anna Bernatowska
- Department of Immunology, The Children's Memorial Health Institute, Warsaw, Poland
| | - Mieczysław Walczak
- Department of Pediatrics, Endocrinology, Diabetology, Metabolic Diseases and Cardiology, Pomeranian Medical University, Szczecin, Poland.,Independent Public Clinical Hospital nr 1 PUM, Szczecin, Poland
| | - Małgorzata Pac
- Department of Immunology, The Children's Memorial Health Institute, Warsaw, Poland
| |
Collapse
|
10
|
Immune dysregulation in patients with RAG deficiency and other forms of combined immune deficiency. Blood 2020; 135:610-619. [PMID: 31942628 DOI: 10.1182/blood.2019000923] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 09/25/2019] [Indexed: 12/12/2022] Open
Abstract
Traditionally, primary immune deficiencies have been defined based on increased susceptibility to recurrent and/or severe infections. However, immune dysregulation, manifesting with autoimmunity or hyperinflammatory disease, has emerged as a common feature. This is especially true in patients affected by combined immune deficiency (CID), a group of disorders caused by genetic defects that impair, but do not completely abolish, T-cell function. Hypomorphic mutations in the recombination activating genes RAG1 and RAG2 represent the prototype of the broad spectrum of clinical and immunological phenotypes associated with CID. The study of patients with RAG deficiency and with other forms of CID has revealed distinct abnormalities in central and peripheral T- and B-cell tolerance as the key mechanisms involved in immune dysregulation. Understanding the pathophysiology of autoimmunity and hyperinflammation in these disorders may also permit more targeted therapeutic interventions.
Collapse
|
11
|
Abolnezhadian F, Dehghani R, Dehnavi S, Khodadadi A, Shohan M. A novel mutation in RFXANK gene and low B cell count in a patient with MHC class II deficiency: a case report. Immunol Res 2020; 68:225-231. [PMID: 32578129 DOI: 10.1007/s12026-020-09141-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Recurrence of severe microbial infections results from a primary immunodeficiency disorder known as major histocompatibility complex class II deficiency or bare lymphocyte syndrome type II. Immunologic function is severely impaired due to the absence of MHC class II molecules on the surface of immune cells. Here, we report a 5-year-old boy with a novel homozygous mutation in RFXANK gene that negatively affects the proper expression of MHC class II molecules by antigen presenting cells. The frame shift mutations in RFXANK gene and negative HLA-DR proteins expression on peripheral blood mononuclear cells were identified and confirmed by whole exome sequencing, Sanger sequencing, and flow cytometry. The patient was referred with long-term severe prolonged diarrhea, fever, coughing, and vomiting. Also, antibiotic resistance, normal T cell, and NK cell counts with low B cell count and reduced serum immunoglobulin level were observed. The patient did not give a dramatic response to intravenous immunoglobulin infusion. The significancy of this report is the novelty of mutation and low B cell count which is not commonly expected in such patients. The final diagnosis of BLS type II is based on WES, Sanger sequencing, and flow cytometric evaluation. Moreover, it seems that the only therapeutic choice is hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
- Farhad Abolnezhadian
- Department of Pediatrics, Abuzar Children's Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Razieh Dehghani
- Department of Pediatrics, Abuzar Children's Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sajad Dehnavi
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Khodadadi
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mojtaba Shohan
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran. .,Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
12
|
Marcus N, Stauber T, Lev A, Simon AJ, Stein J, Broides A, Somekh I, Almashanu S, Somech R. MHC II deficient infant identified by newborn screening program for SCID. Immunol Res 2019; 66:537-542. [PMID: 30084052 DOI: 10.1007/s12026-018-9019-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Newborn screening (NBS) programs for severe combined immunodeficiency (SCID), using the TREC-based assay, have enabled early diagnosis, prompt treatment, and eventually changed the natural history of affected infants. Nevertheless, it was believed that some affected infants with residual T cell, such as patients with MHC II deficiency, will be misdiagnosed by this assay. A full immune workup and genetic analysis using direct Sanger sequencing and whole exome sequencing have been performed to a patient that was identified by the Israeli NBS program for SCID. The patient was found to have severe CD4 lymphopenia with an inverted CD4/CD8 ratio, low TREC levels in peripheral blood, abnormal response to mitogen stimulation, and a skewed T cell receptor repertoire. HLA-DR expression on peripheral blood lymphocytes was undetectable suggesting a diagnosis of MHC II deficiency. Direct sequencing of the RFX5 gene revealed a stop codon change (p. R239X, c. C715T), which could cause the patient's immune phenotype. His parents were found to be heterozygote carriers for the mutation. Whole exome sequencing could not identify other potential mutations to explain his immunodeficiency. The patient underwent successful conditioned hematopoietic stem cell transplantation from healthy matched unrelated donor and is currently well and alive with full chimerism. Infants with MHC class II deficiency can potentially be identified by the TREC-based assay NBS for SCID. Therefore, MHC II molecules (e.g., HLA-DR) measurement should be part of the confirmatory immune-phenotyping for patients with positive screening results. This will make the diagnosis of such patients straightforward.
Collapse
Affiliation(s)
- Nufar Marcus
- Allergy and Immunology Unit, Felsenstein Medical Research Center, Kipper Institute of Immunology, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tali Stauber
- Pediatric Department A, Pediatric Immunology Service, Jeffrey Modell Foundation Center, 52621, Tel Hashomer, Israel
- Edmond and Lily Safra Children's Hospital, Sheba Medical Center, 52621, Tel Hashomer, Israel
| | - Atar Lev
- Pediatric Department A, Pediatric Immunology Service, Jeffrey Modell Foundation Center, 52621, Tel Hashomer, Israel
- Edmond and Lily Safra Children's Hospital, Sheba Medical Center, 52621, Tel Hashomer, Israel
| | - Amos J Simon
- Pediatric Department A, Pediatric Immunology Service, Jeffrey Modell Foundation Center, 52621, Tel Hashomer, Israel
- Edmond and Lily Safra Children's Hospital, Sheba Medical Center, 52621, Tel Hashomer, Israel
| | - Jerry Stein
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department for Hemato-Oncology, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | - Arnon Broides
- Pediatric Immunology Clinic, Faculty of Health Sciences, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Ido Somekh
- Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
| | - Shlomo Almashanu
- The National Center for Newborn Screening, Ministry of Health, 52621, Tel HaShomer, Israel
| | - Raz Somech
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
- Pediatric Department A, Pediatric Immunology Service, Jeffrey Modell Foundation Center, 52621, Tel Hashomer, Israel.
- Edmond and Lily Safra Children's Hospital, Sheba Medical Center, 52621, Tel Hashomer, Israel.
- The National Lab for Confirming Primary Immunodeficiency in Newborn Screening Center for Newborn Screening, Ministry of Health, Tel HaShomer, Israel.
| |
Collapse
|
13
|
Lum SH, Neven B, Slatter MA, Gennery AR. Hematopoietic Cell Transplantation for MHC Class II Deficiency. Front Pediatr 2019; 7:516. [PMID: 31921728 PMCID: PMC6917634 DOI: 10.3389/fped.2019.00516] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 11/27/2019] [Indexed: 11/13/2022] Open
Abstract
Major histocompatibility complex (MHC) class II deficiency is a rare and fatal primary combined immunodeficiency. It affects both marrow-derived cells and thymic epithelium, leading to impaired antigen presentation by antigen presenting cells and delayed and incomplete maturation of CD4+ lymphocyte populations. Affected children are susceptible to multiple infections by viruses, Pneumocystis jirovecii, bacteria and fungi. Immunological assessment usually shows severe CD4+ T-lymphocytopenia, hypogammaglobulinemia, and lack of antigen-specific antibody responses. The diagnosis is confirmed by absence of constitutive and inducible expression of MHC class II molecules on affected cell types which is the immunologic hallmark of the disease. Hematopoietic cell transplantation (HCT) is the only established curative therapy for MHC class II deficiency but it is difficult as affected children have significant comorbidities at the time of HCT. Optimization organ function, implementing a reduced toxicity conditioning regimen, improved T-cell depletion techniques using serotherapy and graft manipulation, vigilant infection surveillance, pre-emptive and aggressive therapy for infection and newer treatments for graft-versus-host disease have improved the transplant survival for children with MHC class II deficiency. Despite persistent low CD4+ T-lymphopenia reported in post-HCT patients, transplanted patients show normalization of antigen-specific T-lymphocyte stimulation and antibody production in response to immunization antigens. There is a need for a multi-center collaborative study to look at transplant survival of HCT and long-term disease outcome in children with MHC class II deficiency in the modern era of HCT.
Collapse
Affiliation(s)
- Su Han Lum
- Children's Haematopoietic Stem Cell Transplant Unit, Great North Children's Hospital, Newcastle upon Tyne Hospital NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Benedicte Neven
- Paris Descartes-Sorbonne Paris Cité University, Paris, France.,Pediatric Hematology-Immunology and Rheumatology Unit, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France.,INSERM U1163 and Imagine Institute, Paris, France
| | - Mary A Slatter
- Children's Haematopoietic Stem Cell Transplant Unit, Great North Children's Hospital, Newcastle upon Tyne Hospital NHS Foundation Trust, Newcastle upon Tyne, United Kingdom.,Institute of Translational and Clinical Research, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Andrew R Gennery
- Children's Haematopoietic Stem Cell Transplant Unit, Great North Children's Hospital, Newcastle upon Tyne Hospital NHS Foundation Trust, Newcastle upon Tyne, United Kingdom.,Institute of Translational and Clinical Research, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
14
|
Somekh I, Marquardt B, Liu Y, Rohlfs M, Hollizeck S, Karakukcu M, Unal E, Yilmaz E, Patiroglu T, Cansever M, Frizinsky S, Vishnvenska-Dai V, Rechavi E, Stauber T, Simon AJ, Lev A, Klein C, Kotlarz D, Somech R. Novel Mutations in RASGRP1 are Associated with Immunodeficiency, Immune Dysregulation, and EBV-Induced Lymphoma. J Clin Immunol 2018; 38:699-710. [DOI: 10.1007/s10875-018-0533-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 07/09/2018] [Indexed: 12/25/2022]
|
15
|
Krauthammer A, Lahad A, Goldberg L, Sarouk I, Weiss B, Somech R, Soudack M, Pessach IM. Elevated IgM levels as a marker for a unique phenotype in patients with Ataxia telangiectasia. BMC Pediatr 2018; 18:185. [PMID: 29866155 PMCID: PMC5987459 DOI: 10.1186/s12887-018-1156-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 05/22/2018] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Ataxia telangiectasia (AT) is a rare, multi-systemic, genetic disorder. Mutations in the ATM gene cause dysfunction in cell-cycle, apoptosis and V (D) J recombination leading to neurodegeneration, cellular, humoral immunodeficiencies and predisposition to malignancies. Previous studies have suggested that a sub-group of AT patients with elevated IgM levels have a distinct and more severe phenotype. In the current study we aimed to better characterize this group of patients. METHODS We performed a retrospective review of 46 patient records, followed from January 1986 to January 2015 at the Israeli National AT Center. Demographic, clinical, radiological, laboratory data was reviewed and compared between AT patients with elevated IgM levels (EIgM) and patients with normal IgM levels (NIgM). RESULTS 15/46(32.6%) patients had significantly elevated IgM levels. This group had a unique phenotype characterized mainly by increased risk of infection and early mortality. Colonization of lower respiratory tract with Mycobacterium gordonae and Pseudomonas aeruginosa as well as viral skin infections were more frequent in EIgM patients. Patients with NIgM had a significantly longer survival as compared to patients with EIgM but had an increased incidence of fatty liver or cirrhosis. T-cell recombination excision circles and kappa-deleting element recombination circle levels were significantly lower in the EIgM group, suggesting an abnormal class switching in this group. CONCLUSIONS EIgM in AT patients are indicative of a more severe phenotype that probably results from a specific immune dysfunction. EIgM in AT should be considered a unique AT phenotype that may require different management.
Collapse
Affiliation(s)
- Alexander Krauthammer
- Department of Pediatrics, The Edmond and Lily Safra Children’s Hospital, 52625 Tel- Hashomer, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Avishay Lahad
- Department of Pediatrics, The Edmond and Lily Safra Children’s Hospital, 52625 Tel- Hashomer, Israel
- Pediatric Gastroenterology Unit, The Edmond and Lily Safra Children’s Hospital, Tel- Hashomer, Israel
| | - Lior Goldberg
- Department of Pediatrics, The Edmond and Lily Safra Children’s Hospital, 52625 Tel- Hashomer, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Ifat Sarouk
- Department of Pediatrics, The Edmond and Lily Safra Children’s Hospital, 52625 Tel- Hashomer, Israel
- Pediatric Pulmonary Unit, The Edmond and Lily Safra Children’s Hospital, Tel- Hashomer, Israel
| | - Batia Weiss
- Pediatric Gastroenterology Unit, The Edmond and Lily Safra Children’s Hospital, Tel- Hashomer, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Raz Somech
- Department of Pediatrics, The Edmond and Lily Safra Children’s Hospital, 52625 Tel- Hashomer, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Michalle Soudack
- Department of Pediatrics, The Edmond and Lily Safra Children’s Hospital, 52625 Tel- Hashomer, Israel
- Pediatric Radiology Unit, The Edmond and Lily Safra Children’s Hospital, Tel- Hashomer, Israel
| | - Itai M. Pessach
- The Claudio Cohen Department of Pediatric Intensive Care, The Edmond and Lily Safra Children’s Hospital, Tel- Hashomer, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
16
|
Aluri J, Gupta M, Dalvi A, Mhatre S, Kulkarni M, Hule G, Desai M, Shah N, Taur P, Vedam R, Madkaikar M. Clinical, Immunological, and Molecular Findings in Five Patients with Major Histocompatibility Complex Class II Deficiency from India. Front Immunol 2018. [PMID: 29527204 PMCID: PMC5829618 DOI: 10.3389/fimmu.2018.00188] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Major histocompatibility complex (MHC) class II deficiency is a rare autosomal recessive form of primary immunodeficiency disorder (PID) characterized by the deficiency of MHC class II molecules. This deficiency affects the cellular and humoral immune response by impairing the development of CD4+ T helper (Th) cells and Th cell-dependent antibody production by B cells. Affected children typically present with severe respiratory and gastrointestinal tract infections. Hematopoietic stem cell transplantation (HSCT) is the only curative therapy available for treating these patients. This is the first report from India wherein we describe the clinical, immunological, and molecular findings in five patients with MHC class II deficiency. Our patients presented with recurrent lower respiratory tract infection as the most common clinical presentation within their first year of life and had a complete absence of human leukocyte antigen-antigen D-related (HLA-DR) expression on B cells and monocytes. Molecular characterization revealed novel mutations in RFAXP, RFX5, and CIITA genes. Despite genetic heterogeneity, these patients were clinically indistinguishable. Two patients underwent HSCT but had a poor survival outcome. Detectable level of T cell receptor excision circles (TRECs) were measured in our patients, highlighting that this form of PID may be missed by TREC-based newborn screening program for severe combined immunodeficiency.
Collapse
Affiliation(s)
- Jahnavi Aluri
- Department of Pediatric Immunology and Leukocyte Biology, National Institute of Immunohaematology (ICMR), Mumbai, India
| | - Maya Gupta
- Department of Pediatric Immunology and Leukocyte Biology, National Institute of Immunohaematology (ICMR), Mumbai, India
| | - Aparna Dalvi
- Department of Pediatric Immunology and Leukocyte Biology, National Institute of Immunohaematology (ICMR), Mumbai, India
| | - Snehal Mhatre
- Department of Pediatric Immunology and Leukocyte Biology, National Institute of Immunohaematology (ICMR), Mumbai, India
| | - Manasi Kulkarni
- Department of Pediatric Immunology and Leukocyte Biology, National Institute of Immunohaematology (ICMR), Mumbai, India
| | - Gouri Hule
- Department of Pediatric Immunology and Leukocyte Biology, National Institute of Immunohaematology (ICMR), Mumbai, India
| | - Mukesh Desai
- Division of Immunology, Bai Jerbai Wadia Hospital for Children, Mumbai, India
| | - Nitin Shah
- Pediatric Hematology-Oncology, P. D. Hinduja National Hospital & Research Center, Mumbai, India
| | - Prasad Taur
- Division of Immunology, Bai Jerbai Wadia Hospital for Children, Mumbai, India
| | | | - Manisha Madkaikar
- Department of Pediatric Immunology and Leukocyte Biology, National Institute of Immunohaematology (ICMR), Mumbai, India
| |
Collapse
|
17
|
King JR, Hammarström L. Newborn Screening for Primary Immunodeficiency Diseases: History, Current and Future Practice. J Clin Immunol 2018; 38:56-66. [PMID: 29116556 PMCID: PMC5742602 DOI: 10.1007/s10875-017-0455-x] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 10/16/2017] [Indexed: 11/01/2022]
Abstract
The primary objective of population-based newborn screening is the early identification of asymptomatic infants with a range of severe diseases, for which effective treatment is available and where early diagnosis and intervention prevent serious sequelae. Primary immunodeficiency diseases (PID) are a heterogeneous group of inborn errors of immunity. Severe combined immunodeficiency (SCID) is one form of PID which is uniformly fatal without early, definitive therapy, and outcomes are significantly improved if infants are diagnosed and treated within the first few months of life. Screening for SCID using T cell receptor excision circle (TREC) analysis has been introduced in many countries worldwide. The utility of additional screening with kappa recombining excision circles (KREC) has also been described, enabling identification of infants with severe forms of PID manifested by T and B cell lymphopenia. Here, we review the early origins of newborn screening and the evolution of screening methodologies. We discuss current strategies employed in newborn screening programs for PID, including TREC and TREC/KREC-based screening, and consider the potential future role of protein-based assays, targeted sequencing, and next generation sequencing (NGS) technologies, including whole genome sequencing (WGS).
Collapse
Affiliation(s)
- Jovanka R King
- Department of Clinical Immunology, Karolinska University Hospital Huddinge, SE-141 86, Stockholm, Sweden
- Department of Immunopathology, SA Pathology, Women's and Children's Hospital Campus; Robinson Research Institute and Discipline of Paediatrics, School of Medicine, University of Adelaide, North Adelaide, South Australia, 5006, Australia
| | - Lennart Hammarström
- Department of Clinical Immunology, Karolinska University Hospital Huddinge, SE-141 86, Stockholm, Sweden.
- BGI-Shenzhen, Shenzhen, 518083, China.
| |
Collapse
|
18
|
Biggs CM, Haddad E, Issekutz TB, Roifman CM, Turvey SE. Newborn screening for severe combined immunodeficiency: a primer for clinicians. CMAJ 2017; 189:E1551-E1557. [PMID: 29255099 PMCID: PMC5738248 DOI: 10.1503/cmaj.170561] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Catherine M Biggs
- Department of Pediatrics (Biggs, Turvey), British Columbia Children's Hospital, University of British Columbia, Vancouver, BC; Departments of Pediatrics, and Microbiology, Infection and Immunology (Haddad), University of Montreal, CHU Sainte-Justine, Montréal, Que.; Department of Pediatrics (Issekutz), IWK Health Centre, Dalhousie University, Halifax, NS; Division of Immunology and Allergy (Roifman), Hospital for Sick Children; Department of Pediatrics (Roifman), University of Toronto, Toronto, Ont
| | - Elie Haddad
- Department of Pediatrics (Biggs, Turvey), British Columbia Children's Hospital, University of British Columbia, Vancouver, BC; Departments of Pediatrics, and Microbiology, Infection and Immunology (Haddad), University of Montreal, CHU Sainte-Justine, Montréal, Que.; Department of Pediatrics (Issekutz), IWK Health Centre, Dalhousie University, Halifax, NS; Division of Immunology and Allergy (Roifman), Hospital for Sick Children; Department of Pediatrics (Roifman), University of Toronto, Toronto, Ont
| | - Thomas B Issekutz
- Department of Pediatrics (Biggs, Turvey), British Columbia Children's Hospital, University of British Columbia, Vancouver, BC; Departments of Pediatrics, and Microbiology, Infection and Immunology (Haddad), University of Montreal, CHU Sainte-Justine, Montréal, Que.; Department of Pediatrics (Issekutz), IWK Health Centre, Dalhousie University, Halifax, NS; Division of Immunology and Allergy (Roifman), Hospital for Sick Children; Department of Pediatrics (Roifman), University of Toronto, Toronto, Ont
| | - Chaim M Roifman
- Department of Pediatrics (Biggs, Turvey), British Columbia Children's Hospital, University of British Columbia, Vancouver, BC; Departments of Pediatrics, and Microbiology, Infection and Immunology (Haddad), University of Montreal, CHU Sainte-Justine, Montréal, Que.; Department of Pediatrics (Issekutz), IWK Health Centre, Dalhousie University, Halifax, NS; Division of Immunology and Allergy (Roifman), Hospital for Sick Children; Department of Pediatrics (Roifman), University of Toronto, Toronto, Ont
| | - Stuart E Turvey
- Department of Pediatrics (Biggs, Turvey), British Columbia Children's Hospital, University of British Columbia, Vancouver, BC; Departments of Pediatrics, and Microbiology, Infection and Immunology (Haddad), University of Montreal, CHU Sainte-Justine, Montréal, Que.; Department of Pediatrics (Issekutz), IWK Health Centre, Dalhousie University, Halifax, NS; Division of Immunology and Allergy (Roifman), Hospital for Sick Children; Department of Pediatrics (Roifman), University of Toronto, Toronto, Ont.
| |
Collapse
|
19
|
What Does Screening Newborns for T-Cell Lymphopenia Find? THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2017; 5:1461-1462. [DOI: 10.1016/j.jaip.2017.04.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 04/21/2017] [Indexed: 11/20/2022]
|
20
|
Newborn Screening for Primary Immunodeficiency Diseases: The Past, the Present and the Future. Int J Neonatal Screen 2017. [DOI: 10.3390/ijns3030019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Primary immunodeficiency diseases (PID) are a heterogeneous group of disorders caused by inborn errors of immunity, with affected children presenting with severe, recurrent or unusual infections. Over 300 distinct genetic molecular abnormalities resulting in PID have been identified, and this number continues to rise. Newborn screening for PID has been established in many countries, with the majority of centers using a PCR-based T cell receptor excision circle (TREC) assay to screen for severe combined immunodeficiency (SCID) and other forms of T cell lymphopenia. Multiplexed screening including quantitation of kappa-recombining exclusion circles (KREC) has also been described, offering advantages over TREC screening alone. Screening technologies are also expanding to include protein-based assays to identify complement deficiencies and granulocyte disorders. Given the rapid advances in genomic medicine, a potential future direction is the application of next-generation sequencing (NGS) technologies to screen infants for a panel of genetic mutations, which would enable identification of a wide range of diseases. However, several ethical and economic issues must be considered before moving towards this screening strategy.
Collapse
|
21
|
Levy-Mendelovich S, Lev A, Rechavi E, Barel O, Golan H, Bielorai B, Neumann Y, Simon AJ, Somech R. T and B cell clonal expansion in Ras-associated lymphoproliferative disease (RALD) as revealed by next-generation sequencing. Clin Exp Immunol 2017; 189:310-317. [PMID: 28500641 DOI: 10.1111/cei.12986] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2017] [Indexed: 12/29/2022] Open
Abstract
Ras-associated lymphoproliferative disease (RALD) is an autoimmune lymphoproliferative syndrome (ALPS)-like disease caused by mutations in Kirsten rat sarcoma viral oncogene homologue (KRAS) or neuroblastoma RAS viral (V-Ras) oncogene homologue (NRAS). The immunological phenotype and pathogenesis of RALD have yet to be studied extensively. Here we report a thorough immunological investigation of a RALD patient with a somatic KRAS mutation. Patient lymphocytes were analysed for phenotype, immunoglobulin levels and T cell proliferation capacity. T and B cell receptor excision circles (TREC and KREC, respectively), markers of naive T and B cell production, were measured serially for 3 years. T and B cell receptor repertoires were studied using both traditional assays as well as next-generation sequencing (NGS). TREC and KREC declined dramatically with time, as did T cell receptor diversity. NGS analysis demonstrated T and B clonal expansions and marked restriction of T and B cell receptor repertoires compared to healthy controls. Our results demonstrate, at least for our reported RALD patient, how peripheral T and B clonal expansions reciprocally limit lymphocyte production and restrict the lymphocyte receptor repertoire in this disease. Decreased naive lymphocyte production correlated with a clinical deterioration in our patient's immune status, suggesting that TREC and KREC may be used as an aid in monitoring disease progression. Both the methodologies used here and the conclusions regarding immune homeostasis may be applicable to the research of ALPS and other immune dysregulation syndromes.
Collapse
Affiliation(s)
- S Levy-Mendelovich
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, "Edmond and Lily Safra" Children's Hospital, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel.,Department of Pediatric Hematology-Oncology and BMT, "Edmond and Lily Safra" Children's Hospital, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel.,Sackler School of Medicine, Tel Aviv University, Israel, Ramat Gan, Israel.,National Hemophilia and Thrombosis institute, Sheba Medical center, Tel Hashomer, Ramat Gan, Israel
| | - A Lev
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, "Edmond and Lily Safra" Children's Hospital, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel.,Sackler School of Medicine, Tel Aviv University, Israel, Ramat Gan, Israel
| | - E Rechavi
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, "Edmond and Lily Safra" Children's Hospital, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel.,Sackler School of Medicine, Tel Aviv University, Israel, Ramat Gan, Israel
| | - O Barel
- Sackler School of Medicine, Tel Aviv University, Israel, Ramat Gan, Israel.,Cancer Research Center, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - H Golan
- Department of Pediatric Hematology-Oncology and BMT, "Edmond and Lily Safra" Children's Hospital, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel.,Sackler School of Medicine, Tel Aviv University, Israel, Ramat Gan, Israel
| | - B Bielorai
- Department of Pediatric Hematology-Oncology and BMT, "Edmond and Lily Safra" Children's Hospital, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel.,Sackler School of Medicine, Tel Aviv University, Israel, Ramat Gan, Israel
| | - Y Neumann
- Department of Pediatric Hematology-Oncology and BMT, "Edmond and Lily Safra" Children's Hospital, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel.,Sackler School of Medicine, Tel Aviv University, Israel, Ramat Gan, Israel
| | - A J Simon
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, "Edmond and Lily Safra" Children's Hospital, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel.,Sackler School of Medicine, Tel Aviv University, Israel, Ramat Gan, Israel.,Cancer Research Center, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel.,Hematology Laboratories, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - R Somech
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, "Edmond and Lily Safra" Children's Hospital, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| |
Collapse
|
22
|
Ramesh M, Hamm D, Simchoni N, Cunningham-Rundles C. Clonal and constricted T cell repertoire in Common Variable Immune Deficiency. Clin Immunol 2017; 178:1-9. [PMID: 25596453 PMCID: PMC4501913 DOI: 10.1016/j.clim.2015.01.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Revised: 12/22/2014] [Accepted: 01/04/2015] [Indexed: 01/08/2023]
Abstract
We used high throughput sequencing to examine the structure and composition of the T cell receptor β chain in Common Variable Immune Deficiency (CVID). TCRβ CDR3 regions were amplified and sequenced from genomic DNA of 44 adult CVID subjects and 22 healthy adults, using a high-throughput multiplex PCR. CVID TCRs had significantly less junctional diversity, fewer n-nucleotide insertions and deletions, and completely lacked a population of highly modified TCRs, with 13 or more V-gene nucleotide deletions, seen in healthy controls. The CVID CDR3 sequences were significantly more clonal than control DNA, and displayed unique V gene usage. Despite reduced junctional diversity, increased clonality and similar infectious exposures, DNA of CVID subjects shared fewer TCR sequences as compared to controls. These abnormalities are pervasive, found in out-of-frame sequences and thus independent of selection and were not associated with specific clinical complications. These data support an inherent T cell defect in CVID.
Collapse
Affiliation(s)
| | | | - Noa Simchoni
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | |
Collapse
|
23
|
Wong GK, Heather JM, Barmettler S, Cobbold M. Immune dysregulation in immunodeficiency disorders: The role of T-cell receptor sequencing. J Autoimmun 2017; 80:1-9. [PMID: 28400082 DOI: 10.1016/j.jaut.2017.04.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 04/01/2017] [Accepted: 04/03/2017] [Indexed: 11/28/2022]
Abstract
Immune dysregulation is a prominent feature of primary immunodeficiency disorders, which commonly manifested as autoimmunity, cytopenias and inflammatory bowel disease. In partial T-cell immunodeficiency disorders, it has been proposed that the imbalance between effector and regulatory T-cells drives the breakdown of peripheral tolerance. While there is no robust test for immune dysregulation, the T-cell receptor repertoire is used as a surrogate marker, and has been shown to be perturbed in a number of immunodeficiency disorders featuring immune dysregulation including Omenn's Syndrome, Wiskott-Aldrich Syndrome, and common variable immunodeficiency. This review discusses how recent advances in TCR next-generation sequencing and bioinformatics have led to the in-depth characterization of CDR3 sequences and an exponential growth in examinable parameters. Specifically, we highlight the use of junctional diversity as a means to differentiate intrinsic T-cell defects from secondary causes of repertoire perturbation in primary immunodeficiency disorders. However, key questions, such as the identity of antigenic targets for large, expanded T-cell clonotypes, remain unanswered despite the fact that such clones are likely to play a pathogenic role in driving immune dysregulation and autoimmunity. Finally, we discuss a number of emerging technologies such as in silico reconstruction, high-throughput pairwise αβ sequencing and single-cell RNAseq that offer the potential to define the antigenic epitope and function of a given T-cell, thereby enhancing our understanding in this field.
Collapse
Affiliation(s)
- Gabriel K Wong
- Institute of Immunology and Immunontherapy, Medical School, University of Birmingham, Edgbaston, B15 2TT, UK; UCB Pharma, Slough, Berkshire, SL1 3WE, UK
| | - James M Heather
- Massachusetts General Hospital Cancer Center and Department of Medicine Harvard Medical School, 13th Street, Charlestown, MA, 02129, USA
| | - Sara Barmettler
- Massachusetts General Hospital Cancer Center and Department of Medicine Harvard Medical School, 13th Street, Charlestown, MA, 02129, USA
| | - Mark Cobbold
- Massachusetts General Hospital Cancer Center and Department of Medicine Harvard Medical School, 13th Street, Charlestown, MA, 02129, USA.
| |
Collapse
|
24
|
Barbaro M, Ohlsson A, Borte S, Jonsson S, Zetterström RH, King J, Winiarski J, von Döbeln U, Hammarström L. Newborn Screening for Severe Primary Immunodeficiency Diseases in Sweden-a 2-Year Pilot TREC and KREC Screening Study. J Clin Immunol 2017; 37:51-60. [PMID: 27873105 PMCID: PMC5226987 DOI: 10.1007/s10875-016-0347-5] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 10/18/2016] [Indexed: 12/16/2022]
Abstract
Newborn screening for severe primary immunodeficiencies (PID), characterized by T and/or B cell lymphopenia, was carried out in a pilot program in the Stockholm County, Sweden, over a 2-year period, encompassing 58,834 children. T cell receptor excision circles (TREC) and kappa-deleting recombination excision circles (KREC) were measured simultaneously using a quantitative PCR-based method on DNA extracted from dried blood spots (DBS), with beta-actin serving as a quality control for DNA quantity. Diagnostic cutoff levels enabling identification of newborns with milder and reversible T and/or B cell lymphopenia were also evaluated. Sixty-four children were recalled for follow-up due to low TREC and/or KREC levels, and three patients with immunodeficiency (Artemis-SCID, ATM, and an as yet unclassified T cell lymphopenia/hypogammaglobulinemia) were identified. Of the positive samples, 24 were associated with prematurity. Thirteen children born to mothers treated with immunosuppressive agents during pregnancy (azathioprine (n = 9), mercaptopurine (n = 1), azathioprine and tacrolimus (n = 3)) showed low KREC levels at birth, which spontaneously normalized. Twenty-nine newborns had no apparent cause identified for their abnormal results, but normalized with time. Children with trisomy 21 (n = 43) showed a lower median number of both TREC (104 vs. 174 copies/μL blood) and KREC (45 vs. 100 copies/3.2 mm blood spot), but only one, born prematurely, fell below the cutoff level. Two children diagnosed with DiGeorge syndrome were found to have low TREC levels, but these were still above the cutoff level. This is the first large-scale screening study with a simultaneous detection of both TREC and KREC, allowing identification of newborns with both T and B cell defects.
Collapse
Affiliation(s)
- Michela Barbaro
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital Solna, SE-17176, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, SE-17176, Stockholm, Sweden
| | - Annika Ohlsson
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital Solna, SE-17176, Stockholm, Sweden
- Department of Medical Biochemistry and Biophysics, Division of Molecular Metabolism, Karolinska Institutet, SE-17177, Stockholm, Sweden
| | - Stephan Borte
- Department of Clinical Immunology, Karolinska University Hospital Huddinge, SE-14186, Stockholm, Sweden
- ImmunoDeficiencyCenter Leipzig (IDCL) at Hospital St. Georg Leipzig, Delitzscher Strasse 141, 04129, Leipzig, Germany
| | - Susanne Jonsson
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital Solna, SE-17176, Stockholm, Sweden
| | - Rolf H Zetterström
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital Solna, SE-17176, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, SE-17176, Stockholm, Sweden
| | - Jovanka King
- Department of Clinical Immunology, Karolinska University Hospital Huddinge, SE-14186, Stockholm, Sweden
- Department of Immunopathology, SA Pathology, Women's and Children's Hospital Campus, North Adelaide, South Australia, 5006, Australia
- Robinson Research Institute and Discipline of Paediatrics, School of Medicine, University of Adelaide, North Adelaide, South Australia, 5006, Australia
| | - Jacek Winiarski
- Department of Clinical Technology and Intervention, Karolinska Institutet, SE-14186, Stockholm, Sweden
- Department of Pediatrics, Karolinska University Hospital Huddinge, SE-14186, Stockholm, Sweden
| | - Ulrika von Döbeln
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital Solna, SE-17176, Stockholm, Sweden.
- Department of Medical Biochemistry and Biophysics, Division of Molecular Metabolism, Karolinska Institutet, SE-17177, Stockholm, Sweden.
| | - Lennart Hammarström
- Department of Clinical Immunology, Karolinska University Hospital Huddinge, SE-14186, Stockholm, Sweden.
| |
Collapse
|
25
|
Rechavi E, Lev A, Eyal E, Barel O, Kol N, Barhom SF, Pode-Shakked B, Anikster Y, Somech R, Simon AJ. A Novel Mutation in a Critical Region for the Methyl Donor Binding in DNMT3B Causes Immunodeficiency, Centromeric Instability, and Facial Anomalies Syndrome (ICF). J Clin Immunol 2016; 36:801-809. [PMID: 27734333 DOI: 10.1007/s10875-016-0340-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 09/21/2016] [Indexed: 10/20/2022]
Abstract
PURPOSE Immunodeficiency, centromeric instability, and facial anomalies (ICF) syndrome is an extremely rare autosomal recessive disease. The immune phenotype is characterized by hypogammaglobulinemia in the presence of B cells. T cell lymphopenia also develops in some patients. We sought to further investigate the immune defect in an ICF patient with a novel missense mutation in DNMT3B and a severe phenotype. METHODS Patient lymphocytes were examined for subset counts, immunoglobulin levels, T and B cell de novo production (via excision circles) and receptor repertoire diversity. Mutated DNMT3B protein structure was modeled to assess the effect of a mutation located outside of the catalytic region on protein function. RESULTS A novel homozygous missense mutation, Ala585Thr, was found in DNMT3B. The patient had decreased B cell counts with hypogammaglobulinemia, and normal T cell counts. CD4+ T cells decreased over time, leading to an inversion of the CD4+ to CD8+ ratio. Excision circle copy numbers were normal, signifying normal de novo lymphocyte production, but the ratio between naïve and total B cells was low, indicating decreased in vivo B cell replication. T and B cell receptor repertoires displayed normal diversity. Computerized modeling of the mutated Ala585 residue suggested reduced thermostability, possibly affecting the enzyme kinetics. CONCLUSIONS Our results highlight the existence of a T cell defect that develops over time in ICF patient, in addition to the known B cell dysfunction. With intravenous immunoglobulin (IVIG) treatment ameliorating the B cell defect, the extent of CD4+ lymphopenia may determine the severity of ICF immunodeficiency.
Collapse
Affiliation(s)
- Erez Rechavi
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel-Hashomer, Ramat Gan, Israel
- Edmond and Lily Safra Children's Hospital, affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel-Hashomer, Ramat Gan, Israel
- Sheba Medical Center, affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel-Hashomer, Ramat Gan, Israel
| | - Atar Lev
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel-Hashomer, Ramat Gan, Israel
- Sheba Medical Center, affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel-Hashomer, Ramat Gan, Israel
| | - Eran Eyal
- Cancer Research Center, affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel-Hashomer, Ramat Gan, Israel
- Sheba Medical Center, affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel-Hashomer, Ramat Gan, Israel
| | - Ortal Barel
- Cancer Research Center, affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel-Hashomer, Ramat Gan, Israel
- Sheba Medical Center, affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel-Hashomer, Ramat Gan, Israel
| | - Nitzan Kol
- Cancer Research Center, affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel-Hashomer, Ramat Gan, Israel
- Sheba Medical Center, affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel-Hashomer, Ramat Gan, Israel
| | - Sarit Farage Barhom
- Cancer Research Center, affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel-Hashomer, Ramat Gan, Israel
- Sheba Medical Center, affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel-Hashomer, Ramat Gan, Israel
| | - Ben Pode-Shakked
- Edmond and Lily Safra Children's Hospital, affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel-Hashomer, Ramat Gan, Israel
- Sheba Medical Center, affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel-Hashomer, Ramat Gan, Israel
| | - Yair Anikster
- Edmond and Lily Safra Children's Hospital, affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel-Hashomer, Ramat Gan, Israel
- Metabolic Disease Unit, affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel-Hashomer, Ramat Gan, Israel
- Sheba Medical Center, affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel-Hashomer, Ramat Gan, Israel
| | - Raz Somech
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel-Hashomer, Ramat Gan, Israel.
- Edmond and Lily Safra Children's Hospital, affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel-Hashomer, Ramat Gan, Israel.
- Sheba Medical Center, affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel-Hashomer, Ramat Gan, Israel.
| | - Amos J Simon
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel-Hashomer, Ramat Gan, Israel.
- Cancer Research Center, affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel-Hashomer, Ramat Gan, Israel.
- Institute of Hematology, affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel-Hashomer, Ramat Gan, Israel.
- Sheba Medical Center, affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel-Hashomer, Ramat Gan, Israel.
| |
Collapse
|
26
|
Abstract
Monosomy 21 is an extremely rare genetic disorder presenting with a wide array of symptoms. Recurrent infections, some life threatening, have been reported in several monosomy 21 patients and attributed to an, as of yet, undefined immunodeficiency. Here we report on a 3-year-old boy with mosaic monosomy 21 who presented with clinical and laboratory evidence of immunodeficiency. Despite suffering from infections highly suggestive of a cell-mediated immune defect, the patient's T cells displayed normal counts, subsets and proliferation capability. T cell receptor repertoire was diverse, and de novo T cell production was intact. Consistent with earlier case reports, our patient displayed mildly low B cell counts with hypogammaglobulinemia. B cell subsets demonstrated mainly naïve and marginal zone B cells that have not undergone class switch. Subsequently, IgG, IgA and IgE levels were near absent, whereas IgM level was normal. De novo B cell production and B cell receptor diversity were normal. Together, these results are indicative of a defect in immunoglobulin class switching as the principal cause of immunodeficiency in monosomy 21. A better understanding of the immunodeficiency in this syndrome will enable targeted treatment and prevention of infections in order to prevent morbidity and mortality in these patients.
Collapse
|
27
|
Abstract
INTRODUCTION Newborn screening (NBS) for Severe combined immunodeficiency (SCID)/severe T cell lymphopenia (sTCL) is being increasingly used worldwide. AREAS COVERED In this manuscript we will discuss the following: 1) The rationale for screening newborns for SCID/sTCL; 2) The scientific basis for the use of the T cell receptor excision circle (TREC) assay in screening newborns for SCID/sTCL; 3) The published outcomes of current NBS programs. Expert commentary: 4) Some of the ethical dilemmas that occur when screening newborns for SCID. Finally, we will discuss the future directions for expanding NBS to include other primary immunodeficiencies.
Collapse
Affiliation(s)
- Becky J Buelow
- a Department of Pediatrics , Medical College of Wisconsin , Milwaukee , WI , USA
| | - James W Verbsky
- a Department of Pediatrics , Medical College of Wisconsin , Milwaukee , WI , USA.,b Department of Microbiology and Molecular Genetics , Medical College of Wisconsin and the Children's Research Institute, Medical College of Wisconsin , Milwaukee , WI , USA
| | - John M Routes
- a Department of Pediatrics , Medical College of Wisconsin , Milwaukee , WI , USA.,b Department of Microbiology and Molecular Genetics , Medical College of Wisconsin and the Children's Research Institute, Medical College of Wisconsin , Milwaukee , WI , USA
| |
Collapse
|
28
|
High-throughput sequencing reveals an altered T cell repertoire in X-linked agammaglobulinemia. Clin Immunol 2015; 161:190-6. [PMID: 26360253 DOI: 10.1016/j.clim.2015.09.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 09/01/2015] [Indexed: 11/22/2022]
Abstract
To examine the T cell receptor structure in the absence of B cells, the TCR β CDR3 was sequenced from DNA of 15 X-linked agammaglobulinemia (XLA) subjects and 18 male controls, using the Illumina HiSeq platform and the ImmunoSEQ analyzer. V gene usage and the V-J combinations, derived from both productive and non-productive sequences, were significantly different between XLA samples and controls. Although the CDR3 length was similar for XLA and control samples, the CDR3 region of the XLA T cell receptor contained significantly fewer deletions and insertions in V, D, and J gene segments, differences intrinsic to the V(D)J recombination process and not due to peripheral T cell selection. XLA CDR3s demonstrated fewer charged amino acid residues, more sharing of CDR3 sequences, and almost completely lacked a population of highly modified Vβ gene segments found in control DNA, suggesting both a skewed and contracted T cell repertoire in XLA.
Collapse
|
29
|
Dar N, Gothelf D, Korn D, Frisch A, Weizman A, Michaelovsky E, Carmel M, Yeshayahu Y, Dubnov-Raz G, Pessach IM, Simon AJ, Lev A, Somech R. Thymic and bone marrow output in individuals with 22q11.2 deletion syndrome. Pediatr Res 2015; 77:579-85. [PMID: 25580739 DOI: 10.1038/pr.2015.14] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 10/27/2014] [Indexed: 12/22/2022]
Abstract
BACKGROUND The 22q11.2 deletion syndrome (22q11.2DS) is a congenital multisystem anomaly characterized by typical facial features, palatal anomalies, congenital heart defects, hypocalcemia, immunodeficiency, and cognitive and neuropsychiatric symptoms. The aim of our study was to investigate T- and B-lymphocyte characteristics associated with 22q11.2DS. METHODS Seventy-five individuals with 22q11.2DS were tested for T and B lymphocytes by examination of T-cell receptor rearrangement excision circles (TRECs) and B-cell κ-deleting recombination excision circles (KRECs), respectively. RESULTS The 22q11.2DS individuals displayed low levels of TRECs, while exhibiting normal levels of KRECs. There was a significant positive correlation between TREC and KREC in the 22q11.2DS group, but not in controls. Both TREC and KREC levels showed a significant decrease with age and only TREC was low in 22q11.2DS individuals with recurrent infections. No difference in TREC levels was found between 22q11.2DS individuals who underwent heart surgery (with or without thymectomy) and those who did not. CONCLUSION T-cell immunodeficiency in 22q11.2DS includes low TREC levels, which may contribute to recurrent infections in individuals with this syndrome. A correlation between T- and B-cell abnormalities in 22q11.2DS was identified. The B-cell abnormalities could account for part of the immunological deficiency seen in 22q11.2DS.
Collapse
Affiliation(s)
- Nina Dar
- 1] Pediatric Department B and Immunology Services, Jeffrey Modell Foundation Center, Sheba Medical Center, Tel Hashomer, Israel [2] The Behavioral Neurogenetics Center, Sheba Medical Center, Tel Hashomer, Israel [3] Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Doron Gothelf
- 1] The Behavioral Neurogenetics Center, Sheba Medical Center, Tel Hashomer, Israel [2] Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - David Korn
- Pediatric Department B and Immunology Services, Jeffrey Modell Foundation Center, Sheba Medical Center, Tel Hashomer, Israel
| | - Amos Frisch
- Felsenstein Medical Research Center, Petah Tikva, Israel
| | - Abraham Weizman
- 1] Felsenstein Medical Research Center, Petah Tikva, Israel [2] Geha Mental Health Center, Petah Tikva, Israel
| | | | - Miri Carmel
- Felsenstein Medical Research Center, Petah Tikva, Israel
| | - Yonatan Yeshayahu
- 1] Pediatric Department B and Immunology Services, Jeffrey Modell Foundation Center, Sheba Medical Center, Tel Hashomer, Israel [2] Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel [3] Pediatric Endocrinology Unit, Sheba Medical Center, Tel Hashomer, Israel
| | - Gal Dubnov-Raz
- 1] Pediatric Department B and Immunology Services, Jeffrey Modell Foundation Center, Sheba Medical Center, Tel Hashomer, Israel [2] Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Itai M Pessach
- 1] Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel [2] Department of Pediatric Critical Care, Sheba Medical Center, Tel Hashomer, Israel
| | - Amos J Simon
- Pediatric Department B and Immunology Services, Jeffrey Modell Foundation Center, Sheba Medical Center, Tel Hashomer, Israel
| | - Atar Lev
- Pediatric Department B and Immunology Services, Jeffrey Modell Foundation Center, Sheba Medical Center, Tel Hashomer, Israel
| | - Raz Somech
- 1] Pediatric Department B and Immunology Services, Jeffrey Modell Foundation Center, Sheba Medical Center, Tel Hashomer, Israel [2] Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
30
|
Rechavi E, Lev A, Lee YN, Simon AJ, Yinon Y, Lipitz S, Amariglio N, Weisz B, Notarangelo LD, Somech R. Timely and spatially regulated maturation of B and T cell repertoire during human fetal development. Sci Transl Med 2015; 7:276ra25. [DOI: 10.1126/scitranslmed.aaa0072] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
31
|
Verbsky J, Routes J. Screening for and treatments of congenital immunodeficiency diseases. Clin Perinatol 2014; 41:1001-15. [PMID: 25459787 DOI: 10.1016/j.clp.2014.08.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Although newborn screening (NBS) for inborn errors of metabolism has been successfully utilized in the US for decades, only recently has this screening program expanded to include disorders of immunity. Severe combined immunodeficiency (SCID) became the first disorder of immunity to be screened on a population wide basis in 2008. While NBS for SCID has been successful, the implementation of population-based screening programs is not without controversy, and there remain barriers to the nationwide implementation of this test. In addition, as the program has progressed we have learned of new challenges in the management of newborns that fail this screen.
Collapse
Affiliation(s)
- James Verbsky
- Division of Rheumatology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA.
| | - John Routes
- Division of Allergy/Immunology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
32
|
Abstract
Newborn screening (NBS) for severe T-cell lymphopenia/severe combined immunodeficiency using the T-cell receptor excision circle assay continues to expand in the USA and worldwide. Here, we will review why severe combined immunodeficiency is an excellent case for NBS, the outcomes of the first 6 years of screening, and dilemmas surrounding screening and management of infants detected by NBS. We will also discuss the future of NBS for primary immunodeficiencies.
Collapse
Affiliation(s)
- Becky J Buelow
- Department of Pediatrics, Medical College of Wisconsin, 9000 W Wisconsin Avenue, Suite 440, Milwaukee, WI, 53226, USA
| | | | | |
Collapse
|
33
|
MHC class I and II deficiencies. J Allergy Clin Immunol 2014; 134:269-75. [DOI: 10.1016/j.jaci.2014.06.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 06/02/2014] [Accepted: 06/02/2014] [Indexed: 02/06/2023]
|
34
|
Disturbed B and T cell homeostasis and neogenesis in patients with ataxia telangiectasia. J Clin Immunol 2014; 34:561-72. [DOI: 10.1007/s10875-014-0044-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Accepted: 04/09/2014] [Indexed: 12/11/2022]
|
35
|
Chinen J, Notarangelo LD, Shearer WT. Advances in basic and clinical immunology in 2013. J Allergy Clin Immunol 2014; 133:967-76. [PMID: 24589342 DOI: 10.1016/j.jaci.2014.01.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 01/28/2014] [Indexed: 02/07/2023]
Abstract
A significant number of contributions to our understanding of primary immunodeficiencies (PIDs) in pathogenesis, diagnosis, and treatment were published in the Journal in 2013. For example, deficiency of mast cell degranulation caused by signal transducer and activator of transcription 3 deficiency was demonstrated to contribute to the difference in the frequency of severe allergic reactions in patients with autosomal dominant hyper-IgE syndrome compared with that seen in atopic subjects with similar high IgE serum levels. High levels of nonglycosylated IgA were found in patients with Wiskott-Aldrich syndrome, and these abnormal antibodies might contribute to the nephropathy seen in these patients. New described genes causing immunodeficiency included caspase recruitment domain 11 (CARD11), mucosa-associated lymphoid tissue 1 (MALT1) for combined immunodeficiencies, and tetratricopeptide repeat domain 7A (TTC7A) for mutations associated with multiple atresia with combined immunodeficiency. Other observations expand the spectrum of clinical presentation of specific gene defects (eg, adult-onset idiopathic T-cell lymphopenia and early-onset autoimmunity might be due to hypomorphic mutations of the recombination-activating genes). Newborn screening in California established the incidence of severe combined immunodeficiency at 1 in 66,250 live births. The use of hematopoietic stem cell transplantation for PIDs was reviewed, with recommendations to give priority to research oriented to establish the best regimens to improve the safety and efficacy of bone marrow transplantation. These represent only a fraction of significant research done in patients with PIDs that has accelerated the quality of care of these patients. Genetic analysis of patients has demonstrated multiple phenotypic expressions of immune deficiency in patients with nearly identical genotypes, suggesting that additional genetic factors, possibly gene dosage, or environmental factors are responsible for this diversity.
Collapse
Affiliation(s)
- Javier Chinen
- Immunology, Allergy and Rheumatology Section, Department of Pediatrics, Baylor College of Medicine Texas Children's Hospital, Houston, Tex
| | - Luigi D Notarangelo
- Division of Immunology, Boston Children's Hospital, and the Departments of Pediatrics and Pathology, Harvard Medical School, Boston, Mass
| | - William T Shearer
- Immunology, Allergy and Rheumatology Section, Department of Pediatrics, Baylor College of Medicine Texas Children's Hospital, Houston, Tex.
| |
Collapse
|
36
|
Leung J, Siegel S, Jones JF, Schulte C, Blog D, Schmid DS, Bialek SR, Marin M. Fatal varicella due to the vaccine-strain varicella-zoster virus. Hum Vaccin Immunother 2013; 10:146-9. [PMID: 23982221 DOI: 10.4161/hv.26200] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We describe a death in a 15-mo-old girl who developed a varicella-like rash 20 d after varicella vaccination that lasted for 2 mo despite acyclovir treatment. The rash was confirmed to be due to vaccine-strain varicella-zoster virus (VZV). This is the first case of fatal varicella due to vaccine-strain VZV reported from the United States. The patient developed severe respiratory complications that worsened with each new crop of varicella lesions; vaccine-strain VZV was detected in the bronchial lavage specimen. Sepsis and multi-organ failure led to death. The patient did not have a previously diagnosed primary immune deficiency, but her failure to thrive and repeated hospitalizations early in life (starting at 5 mo) for presumed infections and respiratory compromise treated with corticosteroids were suggestive of a primary or acquired immune deficiency. Providers should monitor for adverse reactions after varicella vaccination. If severe adverse events develop, acyclovir should be administered as soon as possible. The possibility of acyclovir resistance and use of foscarnet should be considered if lesions do not improve after 10 d of treatment (or if they become atypical [e.g., verrucous]). Experience with use of varicella vaccine indicates that the vaccine has an excellent safety profile and that serious adverse events are very rare and mostly described in immunocompromised patients. The benefit of vaccination in preventing severe disease and mortality outweigh the low risk of severe events occurring after vaccination.
Collapse
Affiliation(s)
- Jessica Leung
- National Center for Immunization and Respiratory Diseases; Centers for Disease Control and Prevention; Atlanta, GA USA
| | - Subhadra Siegel
- Department of Pediatrics; New York Medical College; New York, NY USA
| | - James F Jones
- National Center for Emerging and Zoonotic Infectious Diseases; Centers for Disease Control and Prevention; Atlanta, GA USA
| | - Cynthia Schulte
- Bureau of Immunization; New York State Health Department; Albany, NY USA
| | - Debra Blog
- Bureau of Immunization; New York State Health Department; Albany, NY USA
| | - D Scott Schmid
- National Center for Immunization and Respiratory Diseases; Centers for Disease Control and Prevention; Atlanta, GA USA
| | - Stephanie R Bialek
- National Center for Immunization and Respiratory Diseases; Centers for Disease Control and Prevention; Atlanta, GA USA
| | - Mona Marin
- National Center for Immunization and Respiratory Diseases; Centers for Disease Control and Prevention; Atlanta, GA USA
| |
Collapse
|