1
|
Liu C, Song Q, Peng YT, Cheng W, Lin L, Li T, Li XS, Zeng YQ, Zhou AY, Chen Y, Cai S, Chen P. Clinical characteristics and outcomes of chronic obstructive pulmonary disease patients with family history of chronic airway disease. Ann Med 2025; 57:2477299. [PMID: 40074698 PMCID: PMC11905302 DOI: 10.1080/07853890.2025.2477299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 02/17/2025] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Chronic Obstructive Pulmonary Disease (COPD) is a heterogeneous condition with different risk factors, including family history. This study aimed to explore association between a family history of chronic airway disease and features and outcomes of COPD. METHODS Participants were obtained from the RealDTC study between December 2016 and December 2022. Data on demographics, pulmonary function, history of exacerbation at baseline, acute exacerbation during 1-year follow-up and survival status during 3-years follow-up were collected. RESULTS 5020 patients were enrolled, with 1307 patients (26.0%) having a family history of chronic airway diseases. Compared with patients without a family history of chronic airway diseases, patients with a family history had a lower forced expiratory Volume in one second (FEV1), higher Modified Medical Research Council (mMRC) score and COPD Assessment Test (CAT) score, higher rate of acute exacerbation and hospitalization in the past year (p < 0.05) and rate of acute exacerbation and hospitalization during 1 year follow-up period (p < 0.05). It was an independent risk factor for acute exacerbation (OR = 2.196; 95% CI =1.873-2.576) and hospitalization (OR = 2.199; 95% CI =1.812-2.670). Over 3 years of follow-up, there were no significant differences in mortality rates and annual changes in FEV1 between two groups. CONCLUSION COPD patients with a family history of chronic airway disease are not rare, and they tend to have more severe symptoms and a higher risk of future deterioration. In the management of COPD, special attention should be paid to patients with a family history of chronic airway disease.
Collapse
Affiliation(s)
- Cong Liu
- Department of Pulmonary and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Research Unit of Respiratory Disease, Central South University, Changsha, Hunan, China
- Clinical Medical Research Center for Pulmonary and Critical Care Medicine in Hunan Province, Changsha, Hunan, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan, China
| | - Qing Song
- Department of Pulmonary and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Research Unit of Respiratory Disease, Central South University, Changsha, Hunan, China
- Clinical Medical Research Center for Pulmonary and Critical Care Medicine in Hunan Province, Changsha, Hunan, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan, China
| | - Ya-Ting Peng
- Department of Pulmonary and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Research Unit of Respiratory Disease, Central South University, Changsha, Hunan, China
- Clinical Medical Research Center for Pulmonary and Critical Care Medicine in Hunan Province, Changsha, Hunan, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan, China
| | - Wei Cheng
- Department of Pulmonary and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Research Unit of Respiratory Disease, Central South University, Changsha, Hunan, China
- Clinical Medical Research Center for Pulmonary and Critical Care Medicine in Hunan Province, Changsha, Hunan, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan, China
| | - Ling Lin
- Department of Pulmonary and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Research Unit of Respiratory Disease, Central South University, Changsha, Hunan, China
- Clinical Medical Research Center for Pulmonary and Critical Care Medicine in Hunan Province, Changsha, Hunan, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan, China
| | - Tao Li
- Department of Pulmonary and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Research Unit of Respiratory Disease, Central South University, Changsha, Hunan, China
- Clinical Medical Research Center for Pulmonary and Critical Care Medicine in Hunan Province, Changsha, Hunan, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan, China
| | - Xue-Shan Li
- Department of Pulmonary and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Research Unit of Respiratory Disease, Central South University, Changsha, Hunan, China
- Clinical Medical Research Center for Pulmonary and Critical Care Medicine in Hunan Province, Changsha, Hunan, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan, China
| | - Yu-Qin Zeng
- Department of Pulmonary and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Research Unit of Respiratory Disease, Central South University, Changsha, Hunan, China
- Clinical Medical Research Center for Pulmonary and Critical Care Medicine in Hunan Province, Changsha, Hunan, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan, China
| | - Ai-Yuan Zhou
- Department of Respiratory and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Yan Chen
- Department of Pulmonary and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Research Unit of Respiratory Disease, Central South University, Changsha, Hunan, China
- Clinical Medical Research Center for Pulmonary and Critical Care Medicine in Hunan Province, Changsha, Hunan, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan, China
| | - Shan Cai
- Department of Pulmonary and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Research Unit of Respiratory Disease, Central South University, Changsha, Hunan, China
- Clinical Medical Research Center for Pulmonary and Critical Care Medicine in Hunan Province, Changsha, Hunan, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan, China
| | - Ping Chen
- Department of Pulmonary and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Research Unit of Respiratory Disease, Central South University, Changsha, Hunan, China
- Clinical Medical Research Center for Pulmonary and Critical Care Medicine in Hunan Province, Changsha, Hunan, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan, China
| |
Collapse
|
2
|
Debban CL, Ambalavanan A, Ghosh A, Li Z, Buschur KL, Ma Y, George E, Pistenmaa C, Bertoni AG, Oelsner EC, Michos ED, Moraes TJ, Jacobs DR, Christenson S, Bhatt SP, Kaner RJ, Simons E, Turvey SE, Vameghestahbanati M, Engert JC, Kirby M, Bourbeau J, Tan WC, Gabriel SB, Gupta N, Woodruff PG, Subbarao P, Ortega VE, Bleecker ER, Meyers DA, Rich SS, Hoffman EA, Barr RG, Cho MH, Bossé Y, Duan Q, Manichaikul A, Smith BM. Dysanapsis Genetic Risk Predicts Lung Function Across the Lifespan. Am J Respir Crit Care Med 2024; 210:1421-1431. [PMID: 38935874 PMCID: PMC11716030 DOI: 10.1164/rccm.202401-0011oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 06/27/2024] [Indexed: 06/29/2024] Open
Abstract
Rationale: Dysanapsis refers to a mismatch between airway tree caliber and lung size arising early in life. Dysanapsis assessed by computed tomography (CT) is evident by early adulthood and associated with chronic obstructive pulmonary disease (COPD) risk later in life. Objectives: By examining the genetic factors associated with CT-assessed dysanapsis, we aimed to elucidate its molecular underpinnings and physiological significance across the lifespan. Methods: We performed a genome-wide association study of CT-assessed dysanapsis in 11,951 adults, including individuals from two population-based and two COPD-enriched studies. We applied colocalization analysis to integrate genome-wide association study and gene expression data from whole blood and lung. Genetic variants associated with dysanapsis were combined into a genetic risk score that was applied to examine association with lung function in children from a population-based birth cohort (n = 1,278) and adults from the UKBiobank (n = 369,157). Measurements and Main Results: CT-assessed dysanapsis was associated with genetic variants from 21 independent signals in 19 gene regions, implicating HHIP (hedgehog interacting protein), DSP, and NPNT as potential molecular targets based on colocalization of their expression. A higher dysanapsis genetic risk score was associated with obstructive spirometry among 5-year-old children and among adults in the fifth, sixth, and seventh decades of life. Conclusions: CT-assessed dysanapsis is associated with variation in genes previously implicated in lung development, and dysanapsis genetic risk is associated with obstructive lung function from early life through older adulthood. Dysanapsis may represent an endophenotype link between the genetic variations associated with lung function and COPD.
Collapse
Affiliation(s)
- Catherine L. Debban
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia
| | - Amirthagowri Ambalavanan
- Department of Biomedical and Molecular Sciences, School of Computing, Queen’s University, Kingston, Ontario, Canada
| | - Auyon Ghosh
- Division of Pulmonary, Critical Care, and Sleep Medicine, SUNY Upstate Medical University, Syracuse, New York
| | - Zhonglin Li
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec City, Québec, Canada
| | | | - Yanlin Ma
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia
| | - Elizabeth George
- Department of Biomedical and Molecular Sciences, School of Computing, Queen’s University, Kingston, Ontario, Canada
| | | | - Alain G. Bertoni
- Department of Epidemiology and Prevention, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | | | - Erin D. Michos
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Theo J. Moraes
- Program in Translational Medicine and
- Department of Pediatrics and
| | - David R. Jacobs
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, Minnesota
| | - Stephanie Christenson
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, University of California, San Francisco, San Francisco, California
| | - Surya P. Bhatt
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Robert J. Kaner
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
- Department of Genetic Medicine, Weill Cornell Medicine, New York, New York
| | - Elinor Simons
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Stuart E. Turvey
- Department of Pediatrics, British Columbia Children’s Hospital, and
| | - Motahareh Vameghestahbanati
- Department of Medicine, McGill University and McGill University Health Centre Research Institute, Montreal, Quebec, Canada
| | - James C. Engert
- Department of Medicine, McGill University and McGill University Health Centre Research Institute, Montreal, Quebec, Canada
| | - Miranda Kirby
- Department of Physics, Toronto Metropolitan University, Ottawa, Ontario, Canada
| | - Jean Bourbeau
- Department of Medicine, McGill University and McGill University Health Centre Research Institute, Montreal, Quebec, Canada
| | - Wan C. Tan
- Center for Heart Lung Innovation, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Stacey B. Gabriel
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts
| | - Namrata Gupta
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts
| | - Prescott G. Woodruff
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, University of California, San Francisco, San Francisco, California
| | - Padmaja Subbarao
- Department of Pediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Faculty of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Victor E. Ortega
- Division of Respiratory Medicine, Department of Medicine, Mayo Clinic, Scottsdale, Arizona; and
| | - Eugene R. Bleecker
- Division of Respiratory Medicine, Department of Medicine, Mayo Clinic, Scottsdale, Arizona; and
| | - Deborah A. Meyers
- Division of Respiratory Medicine, Department of Medicine, Mayo Clinic, Scottsdale, Arizona; and
| | - Stephen S. Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia
| | - Eric A. Hoffman
- Department of Radiology
- Department of Internal Medicine, and
- Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa
| | - R. Graham Barr
- Division of General Medicine and
- Department of Epidemiology, Columbia University Irving Medical Center, New York, New York
| | - Michael H. Cho
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Yohan Bossé
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec City, Québec, Canada
| | - Qingling Duan
- Department of Biomedical and Molecular Sciences, School of Computing, Queen’s University, Kingston, Ontario, Canada
| | - Ani Manichaikul
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia
| | - Benjamin M. Smith
- Division of General Medicine and
- Department of Medicine, McGill University and McGill University Health Centre Research Institute, Montreal, Quebec, Canada
| |
Collapse
|
3
|
Millen JL, Luyten LJ, Dieu M, Bové H, Ameloot M, Bongaerts E, Demazy C, Fransolet M, Martens DS, Renard P, Reimann B, Plusquin M, Nawrot TS, Debacq-Chainiaux F. Alterations in the placental proteome in association with the presence of black carbon particles: A discovery study. ENVIRONMENTAL RESEARCH 2024; 263:120214. [PMID: 39442658 DOI: 10.1016/j.envres.2024.120214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND Exposure to ambient air pollution is known to cause direct and indirect molecular expression changes in the placenta, on the DNA, mRNA, and protein levels. Ambient black carbon (BC) particles can be found in the human placenta already very early in gestation. However, the effect of in utero BC exposure on the entire placental proteome has never been studied to date. OBJECTIVES We explored whether placental proteome differs between mothers exposed to either high or low BC levels throughout the entire pregnancy. METHODS We used placental tissue samples from the ENVIRONAGE birth cohort, of 20 non-smoking, maternal- and neonate characteristic-matched women exposed to high (n = 10) or low (n = 10) levels of ambient BC throughout pregnancy. We modeled prenatal BC exposure levels based on the mother's home address and measured BC levels in the fetal side of the placenta. The placental proteome was analyzed by nano-liquid chromatography Q-TOF mass spectrometry. PEAKS software was used for protein identification and label-free quantification. Protein-protein interaction and functional pathway enrichment analyses were performed with the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) software. RESULTS The accumulation of BC particles in placenta was 2.19 times higher in the high versus low exposure group (20943.4 vs 9542.7 particles/mm³; p = 0.007). Thirteen proteins showed a ≥2-fold expression difference between the two exposure groups, all overexpressed in the placentas of women prenatally exposed to high BC levels. Three protein-protein interactions were enriched within this group, namely between TIMP3 and COL4A2, SERPINE2 and COL4A2, and SERPINE2 and GP1BB. Functional pathway enrichment analysis put forward pathways involved in extracellular matrix-receptor interaction, fibrin clot formation, and sodium ion transport regulation. DISCUSSION Prenatal BC exposure affects the placental proteome. Future research should focus on the potential consequences of these alterations on placental functioning, and health and disease during early childhood development.
Collapse
Affiliation(s)
- Joline L Millen
- Unité de Recherche en Biologie Cellulaire (URBC) - Namur Research Institute for Life Sciences (Narilis), University of Namur (UNamur), Namur, Belgium; Centre for Environmental Sciences, Hasselt University (UHasselt), Diepenbeek, Belgium
| | - Leen J Luyten
- Unité de Recherche en Biologie Cellulaire (URBC) - Namur Research Institute for Life Sciences (Narilis), University of Namur (UNamur), Namur, Belgium; Centre for Environmental Sciences, Hasselt University (UHasselt), Diepenbeek, Belgium
| | - Marc Dieu
- Unité de Recherche en Biologie Cellulaire (URBC) - Namur Research Institute for Life Sciences (Narilis), University of Namur (UNamur), Namur, Belgium; MaSUN, Mass Spectrometry Facility, University of Namur (UNamur), Namur, Belgium
| | - Hannelore Bové
- Centre for Environmental Sciences, Hasselt University (UHasselt), Diepenbeek, Belgium
| | - Marcel Ameloot
- Biomedical Research Institute, Hasselt University (UHasselt), Diepenbeek, Belgium
| | - Eva Bongaerts
- Centre for Environmental Sciences, Hasselt University (UHasselt), Diepenbeek, Belgium
| | - Catherine Demazy
- Unité de Recherche en Biologie Cellulaire (URBC) - Namur Research Institute for Life Sciences (Narilis), University of Namur (UNamur), Namur, Belgium; MaSUN, Mass Spectrometry Facility, University of Namur (UNamur), Namur, Belgium
| | - Maude Fransolet
- Unité de Recherche en Biologie Cellulaire (URBC) - Namur Research Institute for Life Sciences (Narilis), University of Namur (UNamur), Namur, Belgium; MaSUN, Mass Spectrometry Facility, University of Namur (UNamur), Namur, Belgium
| | - Dries S Martens
- Centre for Environmental Sciences, Hasselt University (UHasselt), Diepenbeek, Belgium
| | - Patricia Renard
- Unité de Recherche en Biologie Cellulaire (URBC) - Namur Research Institute for Life Sciences (Narilis), University of Namur (UNamur), Namur, Belgium; MaSUN, Mass Spectrometry Facility, University of Namur (UNamur), Namur, Belgium
| | - Brigitte Reimann
- Centre for Environmental Sciences, Hasselt University (UHasselt), Diepenbeek, Belgium
| | - Michelle Plusquin
- Centre for Environmental Sciences, Hasselt University (UHasselt), Diepenbeek, Belgium
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University (UHasselt), Diepenbeek, Belgium; Department of Public Health & Primary Care, Occupational and Environmental Medicine, Leuven University (KULeuven), Leuven, Belgium.
| | - Florence Debacq-Chainiaux
- Unité de Recherche en Biologie Cellulaire (URBC) - Namur Research Institute for Life Sciences (Narilis), University of Namur (UNamur), Namur, Belgium
| |
Collapse
|
4
|
Petat H, Marguet C. Three-year outcome of a very young severe uncontrolled preschool wheezers cohort, a real-life study. Respir Med 2024; 235:107875. [PMID: 39577748 DOI: 10.1016/j.rmed.2024.107875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/21/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
Preschool wheeze is a public health issue. Disease control can be difficult to obtain in this population, in which no biologic therapy is indicated. We studied the evolution of severe preschool wheezers in real-life and identified the factors leading to no-control. We conducted a retrospective study at our tertiary asthma center. Each child under 3 years of age with severe, uncontrolled preschool wheeze was admitted to a pediatric day hospital for further investigations. We collected the results of clinical, biological and radiological exams, and follow-up data at 1 (Y+1), 2 (Y+2) and 3 years (Y+3). We included 135 patients; 63 (47 %) were still being followed at Y+3; 53 % were discontinued due to disease control. The median age at inclusion was 12 months. 29 % of patients followed up still had severe uncontrolled wheezing at Y+3. Eosinophils greater than 0.23G/L (p = 0.03) and a first case of bronchiolitis before the age of 2 months (p = 0.01) were factors in uncontrolled wheezing at Y1. Tobacco exposure was a factor associated with uncontrolled wheezing at Y+2 (p < 0.001). A first case of bronchiolitis before the age of 2 months (p = 0.007), male sex (p < 0.001) and a familial history of atopy (p = 0.05) were factors in uncontrolled disease at Y+3. We report a real-life study, with a very young population and very severe wheezing. Our therapeutic approach is original, enabling us to study the evolution of "therapeutic pressure" in the early years of this frequent disease, the pathophysiology of which is still poorly understood.
Collapse
Affiliation(s)
- Hortense Petat
- Univ Rouen Normandie, Dynamicure INSERM UMR 1311, CHU Rouen, Department of Paediatrics and Adolescent Medicine, F-76000, Rouen, France.
| | - Christophe Marguet
- Univ Rouen Normandie, Dynamicure INSERM UMR 1311, CHU Rouen, Department of Paediatrics and Adolescent Medicine, F-76000, Rouen, France
| |
Collapse
|
5
|
Poluzioroviene E, Chorostowska-Wynimko J, Petraitiene S, Strumila A, Rozy A, Zdral A, Valiulis A. Prevalence of Alpha-1 Antitrypsin Deficiency Alleles in a Lithuanian Cohort of Wheezing Small Children. Adv Respir Med 2024; 92:291-299. [PMID: 39194420 DOI: 10.3390/arm92040028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/21/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024]
Abstract
Severe inherited alpha-1 antitrypsin deficiency (AATD) is an autosomal genetic condition linked to chronic obstructive pulmonary disease (COPD). The significance of heterozygous, milder deficiency variants (PiSZ, PiMZ, PiMS) is less clear. We studied AATD genotypes in 145 children (up to 72 months old) with assessed wheezing severity using the Pediatric Respiratory Assessment Measure (BCCH PRAM score). A control group of 74 children without airway obstruction was included. AAT concentration and Pi phenotype were determined from dry blood spot samples using nephelometry and real-time PCR; PiS and PiZ alleles were identified by isoelectrofocusing. Among the wheezers, the Pi*S allele incidence was 2.07% (3 cases) and the Pi*Z allele was 6.9% (10 cases). The Pi*Z allele frequency was higher in wheezers compared to controls (44.8% vs. 20.27%) and the general Lithuanian population (44.8% vs. 13.6%) and was similar to adult COPD patients in Lithuania: Pi*S 10.3% vs. 15.8% and Pi*Z 44.8% vs. 46.1%. No association was found between AAT genotypes and wheezing severity. Finding that wheezer children exhibit a frequency of Z* and S* alleles like that found in adults with COPD suggests a potential genetic predisposition that links early wheezing in children to the development of COPD in adulthood. Larger cohort studies are needed to confirm this finding.
Collapse
Affiliation(s)
- Edita Poluzioroviene
- Clinic of Children's Diseases, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Santariskiu Str. 7, LT-08410 Vilnius, Lithuania
| | - Joanna Chorostowska-Wynimko
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland
| | - Sigita Petraitiene
- Clinic of Children's Diseases, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Santariskiu Str. 7, LT-08410 Vilnius, Lithuania
| | - Arunas Strumila
- Vilnius University Hospital Santaros Klinikos, LT-08406 Vilnius, Lithuania
| | - Adriana Rozy
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland
| | - Aneta Zdral
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland
| | - Arunas Valiulis
- Clinic of Children's Diseases, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Santariskiu Str. 7, LT-08410 Vilnius, Lithuania
- Department of Public Health, Institute of Health Sciences, Faculty of Medicine, Vilnius University, LT-08410 Vilnius, Lithuania
| |
Collapse
|
6
|
Werder RB, Zhou X, Cho MH, Wilson AA. Breathing new life into the study of COPD with genes identified from genome-wide association studies. Eur Respir Rev 2024; 33:240019. [PMID: 38811034 PMCID: PMC11134200 DOI: 10.1183/16000617.0019-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 02/23/2024] [Indexed: 05/31/2024] Open
Abstract
COPD is a major cause of morbidity and mortality globally. While the significance of environmental exposures in disease pathogenesis is well established, the functional contribution of genetic factors has only in recent years drawn attention. Notably, many genes associated with COPD risk are also linked with lung function. Because reduced lung function precedes COPD onset, this association is consistent with the possibility that derangements leading to COPD could arise during lung development. In this review, we summarise the role of leading genes (HHIP, FAM13A, DSP, AGER and TGFB2) identified by genome-wide association studies in lung development and COPD. Because many COPD genome-wide association study genes are enriched in lung epithelial cells, we focus on the role of these genes in the lung epithelium in development, homeostasis and injury.
Collapse
Affiliation(s)
- Rhiannon B Werder
- Murdoch Children's Research Institute, Melbourne, Australia
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, USA
| | - Xiaobo Zhou
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael H Cho
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Andrew A Wilson
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, USA
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
7
|
Margaritte-Jeannin P, Vernet R, Budu-Aggrey A, Ege M, Madore AM, Linhard C, Mohamdi H, von Mutius E, Granell R, Demenais F, Laprise C, Bouzigon E, Dizier MH. TNS1 and NRXN1 Genes Interacting With Early-Life Smoking Exposure in Asthma-Plus-Eczema Susceptibility. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2023; 15:779-794. [PMID: 37957795 PMCID: PMC10643854 DOI: 10.4168/aair.2023.15.6.779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 05/15/2023] [Accepted: 06/13/2023] [Indexed: 11/15/2023]
Abstract
PURPOSE Numerous genes have been associated with allergic diseases (asthma, allergic rhinitis, and eczema), but they explain only part of their heritability. This is partly because most previous studies ignored complex mechanisms such as gene-environment (G-E) interactions and complex phenotypes such as co-morbidity. However, it was recently evidenced that the co-morbidity of asthma-plus-eczema appears as a sub-entity depending on specific genetic factors. Besides, evidence also suggest that gene-by-early life environmental tobacco smoke (ETS) exposure interactions play a role in asthma, but were never investigated for asthma-plus-eczema. To identify genetic variants interacting with ETS exposure that influence asthma-plus-eczema susceptibility. METHODS To conduct a genome-wide interaction study (GWIS) of asthma-plus-eczema according to ETS exposure, we applied a 2-stage strategy with a first selection of single nucleotide polymorphisms (SNPs) from genome-wide association meta-analysis to be tested at a second stage by interaction meta-analysis. All meta-analyses were conducted across 4 studies including a total of 5,516 European-ancestry individuals, of whom 1,164 had both asthma and eczema. RESULTS Two SNPs showed significant interactions with ETS exposure. They were located in 2 genes, NRXN1 (2p16) and TNS1 (2q35), never reported associated and/or interacting with ETS exposure for asthma, eczema or more generally for allergic diseases. TNS1 is a promising candidate gene because of its link to lung and skin diseases with possible interactive effect with tobacco smoke exposure. CONCLUSIONS This first GWIS of asthma-plus-eczema with ETS exposure underlines the importance of studying sub-phenotypes such as co-morbidities as well as G-E interactions to detect new susceptibility genes.
Collapse
Affiliation(s)
- Patricia Margaritte-Jeannin
- Université Paris Cité, UMRS 1124, INSERM, Genomic Epidemiology and Multifactorial Diseases Group, Paris, France
| | - Raphaël Vernet
- Université Paris Cité, UMRS 1124, INSERM, Genomic Epidemiology and Multifactorial Diseases Group, Paris, France
| | - Ashley Budu-Aggrey
- Medical Research Council (MRC) Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Markus Ege
- Dr von Hauner Children's Hospital, Ludwig Maximilian University; Institute of Asthma and Allergy prevention, Helmholtz Centre Munich; Comprehensive Pneumology Center Munich (CPC-M), German Center for Lung Research, Munich, Germany
| | - Anne-Marie Madore
- Département des sciences fondamentales, Centre intersectoriel en santé durable (CISD), Université du Québec à Chicoutimi, Saguenay, QC, Canada
| | - Christophe Linhard
- Université Paris Cité, UMRS 1124, INSERM, Genomic Epidemiology and Multifactorial Diseases Group, Paris, France
| | - Hamida Mohamdi
- Université Paris Cité, UMRS 1124, INSERM, Genomic Epidemiology and Multifactorial Diseases Group, Paris, France
| | - Erika von Mutius
- Dr von Hauner Children's Hospital, Ludwig Maximilian University; Institute of Asthma and Allergy prevention, Helmholtz Centre Munich; Comprehensive Pneumology Center Munich (CPC-M), German Center for Lung Research, Munich, Germany
| | - Raquell Granell
- Medical Research Council (MRC) Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Florence Demenais
- Université Paris Cité, UMRS 1124, INSERM, Genomic Epidemiology and Multifactorial Diseases Group, Paris, France
| | - Cathrine Laprise
- Département des sciences fondamentales, Centre intersectoriel en santé durable (CISD), Université du Québec à Chicoutimi, Saguenay, QC, Canada
| | - Emmanuelle Bouzigon
- Université Paris Cité, UMRS 1124, INSERM, Genomic Epidemiology and Multifactorial Diseases Group, Paris, France
| | - Marie-Hélène Dizier
- Université Paris Cité, UMRS 1124, INSERM, Genomic Epidemiology and Multifactorial Diseases Group, Paris, France.
| |
Collapse
|
8
|
Chen Q, Vasse GF, Nwozor KO, Bekker NJ, van den Berge M, Brandsma CA, de Vries M, Heijink IH. FAM13A regulates cellular senescence marker p21 and mitochondrial reactive oxygen species production in airway epithelial cells. Am J Physiol Lung Cell Mol Physiol 2023; 325:L460-L466. [PMID: 37605846 DOI: 10.1152/ajplung.00141.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/23/2023] Open
Abstract
Inhalation of noxious gasses induces oxidative stress in airway epithelial cells (AECs), which may lead to cellular senescence and contribute to the development of chronic obstructive pulmonary disease (COPD). FAM13A, a well-known COPD susceptibility gene, is highly expressed in airway epithelium. We studied whether its expression is associated with aging and cellular senescence and affects airway epithelial responses to paraquat, a cellular senescence inducer. The association between age and FAM13A expression was investigated in two datasets of human lung tissue and bronchial brushings from current/ex-smokers with/without COPD. Protein levels of FAM13A and cellular senescence marker p21 were investigated using immunohistochemistry in lung tissue from patients with COPD. In vitro, FAM13A and P21 expression was assessed using qPCR in air-liquid-interface (ALI)-differentiated AECs in absence/presence of paraquat. In addition, FAM13A was overexpressed in human bronchial epithelial 16HBE cells and the effect on P21 expression (qPCR) and mitochondrial reactive oxygen species (ROS) production (MitoSOX staining) was assessed. Lower FAM13A expression was significantly associated with increasing age in lung tissue and bronchial epithelium. In airway epithelium of patients with COPD, we found a negative correlation between FAM13A and p21 protein levels. In ALI-differentiated AECs, the paraquat-induced decrease in FAM13A expression was accompanied by increased P21 expression. In 16HBE cells, the overexpression of FAM13A significantly reduced paraquat-induced P21 expression and mitochondrial ROS production. Our data suggest that FAM13A expression decreases with aging, resulting in higher P21 expression and mitochondrial ROS production in the airway epithelium, thus facilitating cellular senescence and as such potentially contributing to accelerated lung aging in COPD.NEW & NOTEWORTHY To our knowledge, this is the first study investigating the role of the COPD susceptibility gene FAM13A in aging and cellular senescence. We found that FAM13A negatively regulates the expression of the cellular senescence marker P21 and mitochondrial ROS production in the airway epithelium. In this way, the lower expression of FAM13A observed upon aging may facilitate cellular senescence and potentially contribute to accelerated lung aging in COPD.
Collapse
Affiliation(s)
- Qing Chen
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
| | - Gwenda F Vasse
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
| | - Kingsley Okechukwu Nwozor
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
| | - Nicolaas J Bekker
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
| | - Maarten van den Berge
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Department of Pulmonology, Groningen, The Netherlands
| | - Corry-Anke Brandsma
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
| | - Maaike de Vries
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Department of Epidemiology, Groningen, The Netherlands
| | - Irene H Heijink
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Department of Pulmonology, Groningen, The Netherlands
| |
Collapse
|
9
|
Debley JS. Preschool wheeze phenotypes from birth cohorts, where do we go from here? J Allergy Clin Immunol 2022; 149:1946-1948. [PMID: 35341878 DOI: 10.1016/j.jaci.2022.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/11/2022] [Accepted: 03/18/2022] [Indexed: 10/18/2022]
Affiliation(s)
- Jason S Debley
- Center for Immunity and Immunotherapies. Seattle Children's Research Institute, Seattle, WA., USA; Department of Pediatrics, Division of Pulmonary and Sleep Medicine, Seattle Children's Hospital, University of Washington, Seattle, WA., USA.
| |
Collapse
|
10
|
Tiwari A, Li J, Kho AT, Sun M, Lu Q, Weiss ST, Tantisira KG, McGeachie MJ. COPD-associated miR-145-5p is downregulated in early-decline FEV 1 trajectories in childhood asthma. J Allergy Clin Immunol 2021; 147:2181-2190. [PMID: 33385444 PMCID: PMC8184594 DOI: 10.1016/j.jaci.2020.11.048] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 11/09/2020] [Accepted: 11/12/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Many microRNAs (miRNAs) have been associated with asthma and chronic obstructive pulmonary disease (COPD). Longitudinal lung function growth trajectories of children with asthma-normal growth, reduced growth (RG), early decline (ED), and RG with an ED (RGED)-have been observed, with RG and RGED associated with adverse outcomes, including COPD. OBJECTIVE Our aim was to determine whether circulating miRNAs from an early age in children with asthma would be prognostic of reduced lung function growth patterns over the next 16 years. METHODS We performed small RNA sequencing on sera from 492 children aged 5 to 12 years with mild-to-moderate asthma from the CAMP clinical trial, who were subsequently followed for 12 to 16 years. miRNAs were assessed for differential expression between previously assigned lung function growth patterns. RESULTS We had 448 samples and 259 miRNAs for differential analysis. In a comparison of the normal and the most severe group (ie, normal growth compared with RGED), we found 1 strongly dysregulated miRNA, hsa-miR-145-5p (P < 8.01E-05). This miR was downregulated in both ED groups (ie, ED and RGED). We verified that miR-145-5p was strongly associated with airway smooth muscle cell growth in vitro. CONCLUSION Our results showed that miR-145-5p is associated with the ED patterns of lung function growth leading to COPD in children with asthma and additionally increases airway smooth muscle cell proliferation. This represents a significant extension of our understanding of the role of miR-145-5p in COPD and suggests that reduced expression of miR-145-5p is a risk factor for ED of long-term lung function.
Collapse
Affiliation(s)
- Anshul Tiwari
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass
| | - Jiang Li
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass
| | - Alvin T Kho
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass; Computational Health Informatics Program, Boston Children's Hospital, Boston, Mass
| | - Maoyun Sun
- Molecular and Integrative Physiological Sciences, Harvard T.H. Chan School of Public Health, Boston, Mass
| | - Quan Lu
- Molecular and Integrative Physiological Sciences, Harvard T.H. Chan School of Public Health, Boston, Mass
| | - Scott T Weiss
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass
| | - Kelan G Tantisira
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass
| | - Michael J McGeachie
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass.
| |
Collapse
|
11
|
Perkins TN, Donnell ML, Oury TD. The axis of the receptor for advanced glycation endproducts in asthma and allergic airway disease. Allergy 2021; 76:1350-1366. [PMID: 32976640 DOI: 10.1111/all.14600] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/31/2020] [Accepted: 09/14/2020] [Indexed: 12/11/2022]
Abstract
Asthma is a generalized term that describes a scope of distinct pathologic phenotypes of variable severity, which share a common complication of reversible airflow obstruction. Asthma is estimated to affect almost 400 million people worldwide, and nearly ten percent of asthmatics have what is considered "severe" disease. The majority of moderate to severe asthmatics present with a "type 2-high" (T2-hi) phenotypic signature, which pathologically is driven by the type 2 cytokines Interleukin-(IL)-4, IL-5, and IL-13. However, "type 2-low" (T2-lo) phenotypic signatures are often associated with more severe, steroid-refractory neutrophilic asthma. A wide range of clinical and experimental studies have found that the receptor for advanced glycation endproducts (RAGE) plays a significant role in the pathogenesis of asthma and allergic airway disease (AAD). Current experimental data indicates that RAGE is a critical mediator of the type 2 inflammatory reactions which drive the development of T2-hi AAD. However, clinical studies demonstrate that increased RAGE ligands and signaling strongly correlate with asthma severity, especially in severe neutrophilic asthma. This review presents an overview of the current understandings of RAGE in asthma pathogenesis, its role as a biomarker of disease, and future implications for mechanistic studies, and potential therapeutic intervention strategies.
Collapse
Affiliation(s)
- Timothy N. Perkins
- Department of Pathology University of Pittsburgh School of Medicine Pittsburgh PA USA
| | - Mason L. Donnell
- Department of Pathology University of Pittsburgh School of Medicine Pittsburgh PA USA
| | - Tim D. Oury
- Department of Pathology University of Pittsburgh School of Medicine Pittsburgh PA USA
| |
Collapse
|
12
|
Identification and seasonality of rhinovirus and respiratory syncytial virus in asthmatic children in tropical climate. Biosci Rep 2021; 40:226399. [PMID: 32914848 PMCID: PMC7517263 DOI: 10.1042/bsr20200634] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 01/13/2023] Open
Abstract
INTRODUCTION Asthma is a disease that has been associated with the presence of different genetic and socio-environmental factors. OBJECTIVE To identify and evaluate the seasonality of respiratory syncytial virus (RSV) and human rhinovirus (RV) in asthmatic children and adolescents in tropical climate, as well as to assess the socioeconomic and environmental factors involved. METHODS The study was conducted in a referral hospital, where a total of 151 children were recruited with a respiratory infection. The International Study of Asthma and Allergies in Childhood (ISAAC) protocol and a questionnaire were applied, and a skin prick test was performed. The nasal swab was collected to detect RV and RSV through molecular assay. National Meteorological Institute (INMET) database was the source of climatic information. RESULTS The socio-environmental characterization of asthmatic children showed the family history of allergy, disturbed sleep at night, dry cough, allergic rhinitis, individuals sensitized to at least one mite. We identified RV in 75% of children with asthma and 66.7% of RSV in children with asthma. There was an association between the presence of RV and the dry season whereas the presence of the RSV was associated with the rainy season. Contributing to these results, a negative correlation was observed between the RSV and the wind speed and the maximum temperature (T. Max) and a positive correlation with precipitation. CONCLUSIONS The results suggest a high prevalence of RV and RSV in asthmatic children and the seasonality of these viruses were present in different climatic periods. This has significant implications for understanding short- and long-term clinical complications in asthmatic patients.
Collapse
|
13
|
Yousuf A, McAuley H, Elneima O, Brightling CE. The different phenotypes of COPD. Br Med Bull 2021; 137:82-97. [PMID: 33693527 DOI: 10.1093/bmb/ldaa043] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 11/11/2020] [Accepted: 11/23/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is associated with significant morbidity and mortality. To improve the health status and reduce symptom burden, it is important to identify a group of patients with similar characteristics and prognosis, called clinical phenotypes. Herein we shall review the different phenotypes of COPD. SOURCES OF DATA Keywords (COPD, phenotype, acute exacerbation) search was conducted in PubMed, Google Scholar. AREAS OF AGREEMENT Those with raised blood eosinophil counts respond better to steroid therapy at stable state and exacerbation. AREAS OF CONTROVERSY There is no universally accepted blood eosinophil cut-off value that will indicate favourable response to corticosteroids and potentially for future biologic therapy. GROWING POINTS There is an urgent need for further therapeutic options for COPD patients with non-eosinophilic inflammation. AREAS TIMELY FOR DEVELOPING RESEARCH Well-designed COPD trials with identification of phenotypes for more personalization of the treatment of COPD.
Collapse
Affiliation(s)
- Ahmed Yousuf
- NIHR Leicester Biomedical Research Centre, Institute for Lung Health, Department of Respiratory Sciences, University of Leicester, University Road, Leicester, United Kingdom
| | - Hamish McAuley
- NIHR Leicester Biomedical Research Centre, Institute for Lung Health, Department of Respiratory Sciences, University of Leicester, University Road, Leicester, United Kingdom
| | - Omer Elneima
- NIHR Leicester Biomedical Research Centre, Institute for Lung Health, Department of Respiratory Sciences, University of Leicester, University Road, Leicester, United Kingdom
| | - Christopher E Brightling
- NIHR Leicester Biomedical Research Centre, Institute for Lung Health, Department of Respiratory Sciences, University of Leicester, University Road, Leicester, United Kingdom
| |
Collapse
|
14
|
Hu Y, Ciminieri C, Hu Q, Lehmann M, Königshoff M, Gosens R. WNT Signalling in Lung Physiology and Pathology. Handb Exp Pharmacol 2021; 269:305-336. [PMID: 34463851 DOI: 10.1007/164_2021_521] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The main physiological function of the lung is gas exchange, mediated at the interface between the alveoli and the pulmonary microcapillary network and facilitated by conducting airway structures that regulate the transport of these gases from and to the alveoli. Exposure to microbial and environmental factors such as allergens, viruses, air pollution, and smoke contributes to the development of chronic lung diseases such as asthma, chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), and lung cancer. Respiratory diseases as a cluster are the commonest cause of chronic disease and of hospitalization in children and are among the three most common causes of morbidity and mortality in the adult population worldwide. Many of these chronic respiratory diseases are associated with inflammation and structural remodelling of the airways and/or alveolar tissues. They can often only be treated symptomatically with no disease-modifying therapies that normalize the pathological tissue destruction driven by inflammation and remodelling. In search for novel therapeutic strategies for these diseases, several lines of evidence revealed the WNT pathway as an emerging target for regenerative strategies in the lung. WNT proteins, their receptors, and signalling effectors have central regulatory roles under (patho)physiological conditions underpinning lung function and (chronic) lung diseases and we summarize these roles and discuss how pharmacological targeting of the WNT pathway may be utilized for the treatment of chronic lung diseases.
Collapse
Affiliation(s)
- Yan Hu
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado, Aurora, CO, USA
| | - Chiara Ciminieri
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado, Aurora, CO, USA.,Department of Molecular Pharmacology, Groningen Research Institute for Asthma and COPD, University of Groningen, Groningen, The Netherlands
| | - Qianjiang Hu
- Lung Repair and Regeneration Unit, Helmholtz-Zentrum Munich, Ludwig-Maximilians-University, University Hospital Grosshadern, Munich, Germany
| | - Mareike Lehmann
- Lung Repair and Regeneration Unit, Helmholtz-Zentrum Munich, Ludwig-Maximilians-University, University Hospital Grosshadern, Munich, Germany
| | - Melanie Königshoff
- Lung Repair and Regeneration Unit, Helmholtz-Zentrum Munich, Ludwig-Maximilians-University, University Hospital Grosshadern, Munich, Germany. .,Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Reinoud Gosens
- Department of Molecular Pharmacology, Groningen Research Institute for Asthma and COPD, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
15
|
Ortega-Martínez A, Pérez-Rubio G, Ambrocio-Ortiz E, Nava-Quiroz KJ, Hernández-Zenteno RDJ, Abarca-Rojano E, Rodríguez-Llamazares S, Hernández-Pérez A, García-Gómez L, Ramírez-Venegas A, Falfán-Valencia R. The SNP rs13147758 in the HHIP Gene Is Associated With COPD Susceptibility, Serum, and Sputum Protein Levels in Smokers. Front Genet 2020; 11:882. [PMID: 33193570 PMCID: PMC7541950 DOI: 10.3389/fgene.2020.00882] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 07/17/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Genetic association studies have identified single nucleotide polymorphisms (SNPs) related to chronic obstructive pulmonary disease (COPD) susceptibility. The aim of this study was to identify HHIP genetic variants associated with COPD, pulmonary function, and serum and sputum HHIP protein levels in Mexican mestizo smokers. MATERIALS AND METHODS Association analysis was performed by carrying out a case-control study in Mexican mestizo smokers comprised of two groups: tobacco-smoking subjects with COPD (COPD-TS, n = 222) and smokers without COPD (SWOC, n = 333). We evaluated three SNPs (rs13147758, rs1828591, and rs13118928) in the HHIP gene. Allele discrimination was accomplished by qPCR using TaqMan probes, and determination of protein levels in the serum and sputum supernatants (SS) was performed using ELISA. RESULTS Statistically significant differences were observed in the rs13147758 GG genotype (adjusted p = 0.014, OR = 1.95) and the rs13147758-rs1828591 GA haplotype (p = 6.6E-06, OR = 2.65) in the case-control comparison. HHIP protein levels were elevated in SS samples from the COPD-TS group compared to those from the SWOC group (p = 0.03). Based on genotype analysis, HHIP protein levels were lower in the serum samples of rs13147758 GG genotype carriers in the COPD-TS group than in the serum samples of rs13147758 GG genotype carriers from the SWOC group (p < 0.05), but there were no differences in the sputum samples. CONCLUSION The rs13147758 GG genotype and the rs13147758-rs1828591 GA haplotype are associated with susceptibility to COPD. Furthermore, an association in protein levels was observed between the HHIP rs13147758 genotype and COPD in Mexican mestizo smokers.
Collapse
Affiliation(s)
- Alejandro Ortega-Martínez
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Gloria Pérez-Rubio
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Enrique Ambrocio-Ortiz
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Karol J. Nava-Quiroz
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Rafael de Jesus Hernández-Zenteno
- Tobacco Smoking and COPD Research Department, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Edgar Abarca-Rojano
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Sebastián Rodríguez-Llamazares
- Tobacco Smoking and COPD Research Department, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Andrea Hernández-Pérez
- Tobacco Smoking and COPD Research Department, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Leonor García-Gómez
- Tobacco Smoking and COPD Research Department, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Alejandra Ramírez-Venegas
- Tobacco Smoking and COPD Research Department, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Ramcés Falfán-Valencia
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| |
Collapse
|
16
|
Shigemasa R, Masuko H, Hyodo K, Kitazawa H, Kanazawa J, Yatagai Y, Iijima H, Naito T, Saito T, Hirota T, Tamari M, Sakamoto T, Hizawa N. Genetic impact of CDHR3 on the adult onset of asthma and COPD. Clin Exp Allergy 2020; 50:1223-1229. [PMID: 32615023 DOI: 10.1111/cea.13699] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/11/2020] [Accepted: 06/14/2020] [Indexed: 01/09/2023]
Abstract
BACKGROUND Adult-onset asthma and chronic obstructive pulmonary disease (COPD) are heterogeneous diseases caused by complex gene-environment interactions. A functional single nucleotide polymorphism of cadherin-related family member 3 (CDHR3), known as a receptor of rhinovirus-C, is associated with childhood-onset asthma especially in atopic individuals. OBJECTIVE Here, we identified risk factors for adult-onset asthma and COPD, focusing on the impact of the CDHR3 variant in atopic individuals. METHODS We conducted a longitudinal, retrospective, observational cohort study of 1523 healthy adults with baseline examinations at Tsukuba Medical Center Hospital in 2008 and retrospectively identified new-onset, physician-diagnosed asthma or COPD from 2009 to 2018. We assessed risk factors by the Cox regression analysis. The impact of CDHR3 variant rs6967330 was also examined in individuals with pre-existing atopy. RESULTS Over 10 study years, 103 people developed airway diseases (79 asthma and 24 COPD; 52 females, average onset-age 55 years old, range 38-80). Higher body mass index (BMI) and lower forced expiratory volume in one second/forced vital capacity (FEV1 /FVC) ratio were significant risk factors (BMI: HR 1.072 [95% CI 1.005-1.14], P = .034; FEV1 /FVC ratio: HR 1.091 [1.044-1.14], P = .00011). Restriction to atopic individuals saw the A allele at rs6967330 and lower FEV1 /FVC ratio to associate with adult-onset disease (A allele: HR 2.89 [1.57-5.20], P = .00062; FEV1 /FVC ratio: HR 1.10 [1.04-1.17], P = .0010). CONCLUSION AND CLINICAL RELEVANCE Genetic susceptibility to rhinovirus-C infection in atopic individuals is a risk factor for chronic airway diseases even in later life.
Collapse
Affiliation(s)
- Rie Shigemasa
- Department of Pulmonary Medicine, University of Tsukuba, Tsukuba, Japan
| | - Hironori Masuko
- Department of Pulmonary Medicine, University of Tsukuba, Tsukuba, Japan
| | - Kentaro Hyodo
- Department of Pulmonary Medicine, University of Tsukuba, Tsukuba, Japan
| | - Haruna Kitazawa
- Department of Pulmonary Medicine, University of Tsukuba, Tsukuba, Japan
| | - Jun Kanazawa
- Department of Pulmonary Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yohei Yatagai
- Department of Pulmonary Medicine, University of Tsukuba, Tsukuba, Japan
| | | | | | - Takefumi Saito
- National Hospital Organization Ibaraki Higashi National Hospital, Tokai, Japan
| | - Tomomitsu Hirota
- Research Center for Medical Science, The Jikei University School of Medicine, Tokyo, Japan
| | - Mayumi Tamari
- Research Center for Medical Science, The Jikei University School of Medicine, Tokyo, Japan
| | - Tohru Sakamoto
- Department of Pulmonary Medicine, University of Tsukuba, Tsukuba, Japan
| | - Nobuyuki Hizawa
- Department of Pulmonary Medicine, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
17
|
Tensin1 expression and function in chronic obstructive pulmonary disease. Sci Rep 2019; 9:18942. [PMID: 31831813 PMCID: PMC6908681 DOI: 10.1038/s41598-019-55405-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 11/25/2019] [Indexed: 11/18/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) constitutes a major cause of morbidity and mortality. Genome wide association studies have shown significant associations between airflow obstruction or COPD with a non-synonymous SNP in the TNS1 gene, which encodes tensin1. However, the expression, cellular distribution and function of tensin1 in human airway tissue and cells are unknown. We therefore examined these characteristics in tissue and cells from controls and people with COPD or asthma. Airway tissue was immunostained for tensin1. Tensin1 expression in cultured human airway smooth muscle cells (HASMCs) was evaluated using qRT-PCR, western blotting and immunofluorescent staining. siRNAs were used to downregulate tensin1 expression. Tensin1 expression was increased in the airway smooth muscle and lamina propria in COPD tissue, but not asthma, when compared to controls. Tensin1 was expressed in HASMCs and upregulated by TGFβ1. TGFβ1 and fibronectin increased the localisation of tensin1 to fibrillar adhesions. Tensin1 and α-smooth muscle actin (αSMA) were strongly co-localised, and tensin1 depletion in HASMCs attenuated both αSMA expression and contraction of collagen gels. In summary, tensin1 expression is increased in COPD airways, and may promote airway obstruction by enhancing the expression of contractile proteins and their localisation to stress fibres in HASMCs.
Collapse
|
18
|
DeLuca DS, Poluzioroviene E, Taminskiene V, Wrenger S, Utkus A, Valiulis A, Alasevičius T, Henderson J, Bush A, Welte T, Janciauskiene S, Valiulis A. SERPINA1 gene polymorphisms in a population-based ALSPAC cohort. Pediatr Pulmonol 2019; 54:1474-1478. [PMID: 31298815 DOI: 10.1002/ppul.24422] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 06/07/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUND There is an association between persistent preschool wheezing phenotypes and school-age asthma. These wheezing/asthma phenotypes likely represent clinical entities having specific genetic risk factors. The SERPINA1 gene encodes α 1 -antitrypsin (AAT), and mutations in the gene are important in the pathophysiology of pulmonary diseases. We hypothesized that there might be an association between SERPINA1 gene polymorphisms and the risk of developing wheezing/school age asthma. OBJECTIVE To examine 10 single nucleotide polymorphisms (SNPs) of SERPINA1 (rs6647, rs11832, rs17580, rs709932, rs1243160, rs2854254, rs8004738, rs17751769, rs28929470, and rs28929474) and relate them to childhood wheezing phenotypes and doctor-diagnosed asthma in the population-based Avon Longitudinal Study of Parents and Children (ALSPAC) cohort. METHODS Wheeze data, reports of physician-diagnosed asthma and data on the SERPINA1 gene SNPs, were available for 7964 children. Binary logistic regression was used to assess the associations between allele prevalence and wheezing and asthma phenotypes. P values were adjusted to account for multiple hypotheses using the Benjamini-Hochberg false discovery rate. RESULTS Only within a subgroup of children with asthma who had no prior diagnosis of preschool wheeze was there a trend for association between rs28929474 (Glu342Lys, Pi*Z causing AAT deficiency; P = .0058, adjusted P = .058). No SNP was associated with wheezing and asthma in those with preschool wheeze. CONCLUSION Analyzed SNPs in SERPINA1 are not associated with wheezing/asthma phenotypes. Only rs28929474, the most common pathologic SNP (Pi*Z) in the SERPINA1 gene, might be associated with a risk of developing school-age asthma without exhibiting preschool wheeze.
Collapse
Affiliation(s)
- David S DeLuca
- Department of Respiratory Medicine, German Center for Lung Research, Hannover Medical School, Hannover, Germany
| | - Edita Poluzioroviene
- Department of Paediatric Pulmonology, Clinic of Children's Diseases, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Vaida Taminskiene
- Department of Public Health, Institute of Health Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Sabine Wrenger
- Department of Respiratory Medicine, German Center for Lung Research, Hannover Medical School, Hannover, Germany
| | - Algirdas Utkus
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Algirdas Valiulis
- Department of Rehabilitation, Physical and Sports Medicine, Institute of Health Sciences, Faculty of Medicine, Vilnius, Lithuania
| | - Tomas Alasevičius
- Department of Paediatric Pulmonology, Clinic of Children's Diseases, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - John Henderson
- Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Andrew Bush
- Department of Paediatrics, Imperial College, Royal Brompton Harefield NHS Foundation Trust, London, UK
| | - Tobias Welte
- Department of Respiratory Medicine, German Center for Lung Research, Hannover Medical School, Hannover, Germany
| | - Sabina Janciauskiene
- Department of Respiratory Medicine, German Center for Lung Research, Hannover Medical School, Hannover, Germany
| | - Arunas Valiulis
- Department of Paediatric Pulmonology, Clinic of Children's Diseases, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania.,Department of Public Health, Institute of Health Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
19
|
Magnus MC, Henderson J, Tilling K, Howe LD, Fraser A. Independent and combined associations of maternal and own smoking with adult lung function and COPD. Int J Epidemiol 2019; 47:1855-1864. [PMID: 30339246 PMCID: PMC6280943 DOI: 10.1093/ije/dyy221] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2018] [Indexed: 02/07/2023] Open
Abstract
Background Limited evidence suggests that exposure to maternal smoking in utero or early life might be associated with chronic obstructive pulmonary disease (COPD), but whether this is independent of later own smoking remains unclear. Our objective was to examine the independent and combined association of maternal and own smoking with adult lung function and COPD. Methods We used UK Biobank to examine associations of maternal smoking around delivery, and pack-years of own smoking, with lung function (n = 502 626) and hospitalization/death from COPD (n = 433 863). We calculated the additive interaction between maternal and own smoking on the outcomes of interest, and estimated the association with maternal smoking within categories of own smoking. Results There was no strong evidence that maternal smoking influenced adult lung health among never smokers. Exposure to both maternal and own smoking was associated with lower Forced expiratory volume (FEV1)/ forced vital capacity (FVC) and greater risk of hospitalization/death from COPD than expected from their independent associations. For FEV1/FVC, the mean difference according to maternal smoking was –0.02 (–0.06, 0.02), –0.01 (–0.05, 0.03), –0.11 (–0.16, –0.05) and –0.11 (–0.19, –0.04) among women who smoked ≤10, 11–20, 21–30 and >30 pack-years, respectively. The association between maternal smoking and COPD also varied by pack-years of own smoking, with a hazard ratio of 2.25 (1.30, 3.89) for ≤10 years, 1.23 (0.80, 1.89) for 11–20 years, 1.30 (0.85, 2.01) for 21–30 years and 1.14 (0.91, 1.43) for >30 years. Conclusions Our findings indicate an excess reduction in FEV1/FVC and risk of COPD due to maternal smoking that is heterogeneous across levels of own smoking.
Collapse
Affiliation(s)
- Maria C Magnus
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK.,Department of Population Health Sciences, Bristol Medical School, Bristol, UK.,Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - John Henderson
- Department of Population Health Sciences, Bristol Medical School, Bristol, UK
| | - Kate Tilling
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK.,Department of Population Health Sciences, Bristol Medical School, Bristol, UK
| | - Laura D Howe
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK.,Department of Population Health Sciences, Bristol Medical School, Bristol, UK
| | - Abigail Fraser
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK.,Department of Population Health Sciences, Bristol Medical School, Bristol, UK.,NIHR Bristol Biomedical Research Centre at the University Hospitals Bristol NHS Foundation Trust and the University of Bristol, Bristol, UK
| |
Collapse
|
20
|
Huang X, Mu X, Deng L, Fu A, Pu E, Tang T, Kong X. The etiologic origins for chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis 2019; 14:1139-1158. [PMID: 31213794 PMCID: PMC6549659 DOI: 10.2147/copd.s203215] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/18/2019] [Indexed: 12/27/2022] Open
Abstract
COPD, characterized by long-term poorly irreversible airway limitation and persistent respiratory symptoms, has resulted in enormous challenges to human health worldwide, with increasing rates of prevalence, death, and disability. Although its origin was thought to be in the interactions of genetic with environmental factors, the effects of environmental factors on the disease during different life stages remain little known. Without clear mechanisms and radical cure for it, early screening and prevention of COPD seem to be important. In this review, we will discuss the etiologic origins for poor lung function and COPD caused by specific adverse effects during corresponding life stages, as well as try to find new insights and potential prevention strategies for this disease.
Collapse
Affiliation(s)
- Xinwei Huang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming City, Yunnan Province, People's Republic of China.,Medical School, Kunming University of Science and Technology, Kunming City, Yunnan Province, People's Republic of China
| | - Xi Mu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming City, Yunnan Province, People's Republic of China
| | - Li Deng
- The Pathology Department, First People's Hospital of Yunnan Province, Kunming City, Yunnan Province, People's Republic of China
| | - Aili Fu
- Department of Oncology, Yunfeng Hospital, Xuanwei City, Yunnan Province, People's Republic of China
| | - Endong Pu
- Department of Thoracic Surgery, Yunfeng Hospital, Xuanwei City, Yunnan Province, People's Republic of China
| | - Tao Tang
- Medical School, Kunming University of Science and Technology, Kunming City, Yunnan Province, People's Republic of China
| | - Xiangyang Kong
- Medical School, Kunming University of Science and Technology, Kunming City, Yunnan Province, People's Republic of China
| |
Collapse
|
21
|
Pathological Implications of Receptor for Advanced Glycation End-Product ( AGER) Gene Polymorphism. DISEASE MARKERS 2019; 2019:2067353. [PMID: 30863465 PMCID: PMC6378764 DOI: 10.1155/2019/2067353] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 01/01/2019] [Accepted: 01/15/2019] [Indexed: 12/12/2022]
Abstract
The receptor for advanced glycation end-products (RAGE) is a cell surface transmembrane multiligand receptor, encoded by the AGER gene. RAGE presents many transcripts, is expressed mainly in the lung, and involves multiple pathways (such as NFκB, Akt, p38, and MAP kinases) that initiate and perpetuate an unfavorable proinflammatory state. Due to these numerous functional activities, RAGE is implicated in multiple diseases. AGER is a highly polymorphic gene, with polymorphisms or SNP (single-nucleotide polymorphism) that could be responsible or co-responsible for disease development. This review was designed to shed light on the pathological implications of AGER polymorphisms. Five polymorphisms are described: rs2070600, rs1800624, rs1800625, rs184003, and a 63 bp deletion. The rs2070600 SNP may be associated with the development of human autoimmune disease, diabetes complications, cancer, and lung diseases such as chronic obstructive pulmonary disease and acute respiratory distress syndrome. The rs1800624 SNP involves AGER gene regulation and may be related to reduced risk of heart disease, cancer, Crohn's disease, and type 1 diabetes complications. The rs1800625 SNP may be associated with the development of diabetic retinopathy, cancer, and lupus but may be protective against cardiovascular risk. The rs184003 SNP seems related to coronary artery disease, breast cancer, and diabetes. The 63 bp deletion may be associated with reduced survival from heart diseases during diabetic nephropathy. Here, these potential associations between AGER polymorphisms and the development of diseases are discussed, as there have been conflicting findings on the pathological impact of AGER SNPs in the literature. These contradictory results might be explained by distinct AGER SNP frequencies depending on ethnicity.
Collapse
|
22
|
Savran O, Ulrik CS. Early life insults as determinants of chronic obstructive pulmonary disease in adult life. Int J Chron Obstruct Pulmon Dis 2018. [PMID: 29520136 PMCID: PMC5834168 DOI: 10.2147/copd.s153555] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Early life events may predispose to the development of chronic lung disease in adulthood. Aim To provide an update on current knowledge of early nongenetic origins of COPD. Materials and methods Systematic literature review was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Results A total of 16 studies, comprising 69,365 individuals, met the predefined criteria and were included in the present review. Studies have shown that in utero tobacco exposure, low birth weight, preterm birth, and respiratory diseases, primarily asthma and pneumonia, in early childhood are associated with lung function impairment later in childhood, and by that predispose to subsequent development of COPD, although the causal association between childhood respiratory diseases and COPD has been questioned in one study. Environmental tobacco exposure has also been shown to have negative impact on lung function in childhood possibly leading to COPD in adulthood, although it is at present not possible to clearly distinguish between the impact of active and the environmental tobacco exposure on subsequent development of COPD. Conclusion Tobacco exposure in utero and early life is a risk factor for subsequent development of COPD. Furthermore, low birth weight, lower respiratory tract infections and asthma, including wheezy bronchitis, in childhood also seem to be important determinants for later development of COPD. Early life insults may, therefore, be crucial to COPD development.
Collapse
Affiliation(s)
- Osman Savran
- Department of Respiratory Medicine, Hvidovre Hospital, Hvidovre, Denmark
| | - Charlotte Suppli Ulrik
- Department of Respiratory Medicine, Hvidovre Hospital, Hvidovre, Denmark.,Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
23
|
Pavord ID, Beasley R, Agusti A, Anderson GP, Bel E, Brusselle G, Cullinan P, Custovic A, Ducharme FM, Fahy JV, Frey U, Gibson P, Heaney LG, Holt PG, Humbert M, Lloyd CM, Marks G, Martinez FD, Sly PD, von Mutius E, Wenzel S, Zar HJ, Bush A. After asthma: redefining airways diseases. Lancet 2018; 391:350-400. [PMID: 28911920 DOI: 10.1016/s0140-6736(17)30879-6] [Citation(s) in RCA: 722] [Impact Index Per Article: 103.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 02/26/2017] [Accepted: 03/07/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Ian D Pavord
- Respiratory Medicine Unit, Nuffield Department of Medicine and NIHR Oxford Biomedical Research Centre, University of Oxford, UK.
| | - Richard Beasley
- Medical Research Institute of New Zealand, Wellington, New Zealand
| | - Alvar Agusti
- Respiratory Institute, Hospital Clinic, IDIBAPS, University of Barcelona, Barcelona, Spain; CIBER Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Gary P Anderson
- Lung Health Research Centre, University of Melbourne, Melbourne, VIC, Australia
| | - Elisabeth Bel
- Department of Respiratory Medicine, Academic Medical Center, University of Amsterdam, Netherlands
| | - Guy Brusselle
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium; Departments of Epidemiology and Respiratory Medicine, Erasmus Medical Center, Rotterdam, Netherlands
| | - Paul Cullinan
- National Heart and Lung Institute, Imperial College, London, UK
| | | | - Francine M Ducharme
- Departments of Paediatrics and Social and Preventive Medicine, University of Montreal, Montreal, QC, Canada
| | - John V Fahy
- Cardiovascular Research Institute, and Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Urs Frey
- University Children's Hospital Basel, University of Basel, Basel, Switzerland
| | - Peter Gibson
- Department of Respiratory and Sleep Medicine, John Hunter Hospital, Hunter Medical Research Institute, Newcastle, NSW, Australia; Priority Research Centre for Asthma and Respiratory Disease, The University of Newcastle, Newcastle, NSW, Australia
| | - Liam G Heaney
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Patrick G Holt
- Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| | - Marc Humbert
- L'Université Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Paris, France; Service de Pneumologie, Hôpital Bicêtre, Paris, France; INSERM UMR-S 999, Hôpital Marie Lannelongue, Paris, France
| | - Clare M Lloyd
- National Heart and Lung Institute, Imperial College, London, UK
| | - Guy Marks
- Department of Respiratory Medicine, South Western Sydney Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Fernando D Martinez
- Asthma and Airway Disease Research Center, The University of Arizona, Tuscon, AZ, USA
| | - Peter D Sly
- Department of Children's Health and Environment, Children's Health Queensland, Brisbane, QLD, Australia; Centre for Children's Health Research, Brisbane, QLD, Australia
| | - Erika von Mutius
- Dr. von Haunersches Kinderspital, Ludwig Maximilians Universität, Munich, Germany
| | - Sally Wenzel
- University of Pittsburgh Asthma Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Heather J Zar
- Department of Paediatrics and Child Health, Red Cross Children's Hospital and Medical Research Council Unit on Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Andy Bush
- Department of Paediatrics, Imperial College, London, UK; Department of Paediatric Respiratory Medicine, Imperial College, London, UK
| |
Collapse
|
24
|
Abstract
The onset of chronic obstructive pulmonary disease (COPD) can arise either from failure to attain the normal spirometric plateau or from an accelerated decline in lung function. Despite reports from numerous big cohorts, no single adult life factor, including smoking, accounts for this accelerated decline. By contrast, five childhood risk factors (maternal and paternal asthma, maternal smoking, childhood asthma and respiratory infections) are strongly associated with an accelerated rate of lung function decline and COPD. Among adverse effects on lung development are transgenerational (grandmaternal smoking), antenatal (exposure to tobacco and pollution), and early childhood (exposure to tobacco and pollution including pesticides) factors. Antenatal adverse events can operate by causing structural changes in the developing lung, causing low birth weight and prematurity and altered immunological responses. Also important are mode of delivery, early microbiological exposures, and multiple early atopic sensitizations. Early bronchial hyperresponsiveness, before any evidence of airway inflammation, is associated with adverse respiratory outcomes. Overlapping cohort studies established that spirometry tracks from the preschool years to late middle age, and those with COPD in the sixth decade already had the worst spirometry at age 10 years. Alveolar development is now believed to continue throughout somatic growth and is adversely impacted by early tobacco smoke exposure. Genetic factors are also important, with genes important in lung development and early wheezing also being implicated in COPD. The inescapable conclusion is that the roots of COPD are in early life, and COPD is a disease of childhood adverse factors interacting with genetic factors.
Collapse
|
25
|
Hellings PW, Borrelli D, Pietikainen S, Agache I, Akdis C, Bachert C, Bewick M, Botjes E, Constantinidis J, Fokkens W, Haahtela T, Hopkins C, Illario M, Joos G, Lund V, Muraro A, Pugin B, Seys S, Somekh D, Stjärne P, Valiulis A, Valovirta E, Bousquet J. European Summit on the Prevention and Self-Management of Chronic Respiratory Diseases: report of the European Union Parliament Summit (29 March 2017). Clin Transl Allergy 2017; 7:49. [PMID: 29299230 PMCID: PMC5745781 DOI: 10.1186/s13601-017-0186-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 12/15/2017] [Indexed: 01/19/2023] Open
Abstract
On March 29, 2017, a European Summit on the Prevention and Self-Management of Chronic Respiratory Diseases (CRD) was organized by the European Forum for Research and Education in Allergy and Airway Diseases. The event took place in the European Parliament of Brussels and was hosted by MEP David Borrelli and MEP Sirpa Pietikainen. The aim of the Summit was to correspond to the needs of the European Commission and of patients suffering from CRD to join forces in Europe for the prevention and self-management. Delegates of the European Rhinologic Society, European Respiratory Society, European Academy of Allergy and Clinical Immunology, European Academy of Paediatrics, and European Patients Organization EFA all lectured on their vision and action plan to join forces in achieving adequate prevention and self-management of CRD in the context of Precision Medicine. Recent data highlight the preventive capacity of education on optimal care pathways for CRD. Self-management and patient empowerment can be achieved by novel educational on-line materials and by novel mobile health tools enabling patients and doctors to monitor and optimally treat CRDs based on the level of control. This report summarizes the contributions of the representatives of different European academic stakeholders in the field of CRD.
Collapse
Affiliation(s)
- Peter W. Hellings
- Department of Otorhinolaryngology, University Hospitals Leuven, KU Leuven, Louvain, Belgium
- Department of Otorhinolaryngology, Academic Medical Center, Amsterdam, The Netherlands
| | - David Borrelli
- Italian Member of the European Parliament, EFDD Group, Brussels, Belgium
| | | | - Ioana Agache
- Faculty of Medicine, Transylvania University, Brasov, Romania
| | - Cezmi Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Christine Kühne - Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| | - Claus Bachert
- Upper Airways Research Laboratory, ENT Department, Ghent University Hospital, Ghent, Belgium
| | | | - Erna Botjes
- EFA - European Federation of Allergy and Airways Diseases Patients’ Associations, Brussels, Belgium
| | - Jannis Constantinidis
- 1st Department of ORL, Head and Neck Surgery, Aristotle University, Thessaloníki, Greece
| | - Wytske Fokkens
- Department of Otorhinolaryngology, Academic Medical Center, Amsterdam, The Netherlands
| | - Tari Haahtela
- Skin and Allergy Hospital, Helsinki University Hospital, Helsinki, Finland
| | - Claire Hopkins
- ENT Department, Guy’s and St Thomas’ Hospitals, London, UK
| | - Maddalena Illario
- Division for Health Innovation, Campania Region and Federico II University Hospital Naples (R&D and DISMET), Naples, Italy
| | - Guy Joos
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Valerie Lund
- Royal National Throat, Nose and Ear Hospital, University College London Hospitals, London, UK
| | - Antonella Muraro
- Food Allergy Referral Centre Veneto Region, Department of Women and Child Health, Padua General University Hospital, Padua, Italy
| | - Benoit Pugin
- European Forum for Research and Education in Allergy and Airway Diseases (EUFOREA), Brussels, Belgium
| | - Sven Seys
- European Forum for Research and Education in Allergy and Airway Diseases (EUFOREA), Brussels, Belgium
- Lab of Clinical Immunology, Department of Immunology and Microbiology, KU Leuven, Brussels, Belgium
| | - David Somekh
- European Health Futures Forum (EHFF), Isle of Wright, UK
| | - Pär Stjärne
- Rhinology Department of Otorhinolaryngology, Karolinska University Hospital, Stockholm, Sweden
| | - Arunas Valiulis
- Vilnius University Clinic of Children’s Diseases and Public Health Institute, Vilnius, Lithuania
- European Academy of Paediatrics (EAP/UEMS-SP), Brussels, Belgium
| | - Erkka Valovirta
- Department of Lung Diseases and Clinical Allergology, Univ. of Turku, and Allergy Clinic, Terveystalo, Turku, Finland
| | - Jean Bousquet
- MACVIA-France, Contre les MAladies Chroniques pour un VIeillissement Actif en France European Innovation Partnership on Active and Healthy Ageing Reference Site, Montpellier, France
- INSERM U 1168, VIMA: Ageing and Chronic Diseases Epidemiological and Public Health Approaches, UMR-S 1168, Université Versailles St-Quentin-en-Yvelines, Villejuif, Montigny le Bretonneux, France
- EUFOREA aisbl, 132, Ave. Brand Whitlock, 1200 Brussels, Belgium
| |
Collapse
|
26
|
Hizawa N. Clinical approaches towards asthma and chronic obstructive pulmonary disease based on the heterogeneity of disease pathogenesis. Clin Exp Allergy 2017; 46:678-87. [PMID: 27009427 DOI: 10.1111/cea.12731] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Asthma and chronic obstructive pulmonary disease (COPD) are each heterogeneous disease classifications that include several clinical and pathophysiological phenotypes. This heterogeneity complicates characterization of each disease and, in some cases, hinders the selection of appropriate treatment. Therefore, in recent years, emphasis has been placed on improving our understanding of the various phenotypes of asthma and of COPD and identifying biomarkers for each phenotype. Likewise, the concept of the endotype has been gaining acceptance; an endotype is a disease subtype that is defined by unique or distinctive functional or pathophysiological mechanisms. Endotypes of asthma or COPD may be primarily characterized by increased susceptibility to type 2 inflammation, increased susceptibility to viral infections, bacterial colonization or impaired lung development. The 'Dutch hypothesis' is as follows: gene variants underlying particular endotypes interact with detrimental environmental stimuli (e.g. smoking, viral infection and air pollution) and contribute to the ultimate development of asthma, COPD or both. Novel approaches that involve multidimensional assessment should facilitate identification and management of the components that generate this heterogeneity. Ultimately, patients with chronic inflammatory lung diseases may be treated based on these endotypes as determined by the respective biomarkers that correspond to individual endotypes instead of on disease labels such as asthma, COPD or even asthma-COPD overlap syndrome (ACOS).
Collapse
Affiliation(s)
- N Hizawa
- Faculty of Medicine, Department of Pulmonary Medicine, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
27
|
Yuksel H, Turkeli A. Airway epithelial barrier dysfunction in the pathogenesis and prognosis of respiratory tract diseases in childhood and adulthood. Tissue Barriers 2017; 5:e1367458. [PMID: 28886270 DOI: 10.1080/21688370.2017.1367458] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The lungs are in direct contact with the environment through the tubular structure that constitutes the airway. Starting from the nasal orifice, the airway is exposed to foreign particles including infectious agents, allergens, and other substances that can damage the airways. Therefore, the airway must have a functional epithelial barrier both in the upper and lower airways to protect against these threats. As with the skin, it is likely that the pathogenesis of respiratory diseases is a consequence of epithelial barrier defects in these airways. The characteristics of this system, starting from the beginning of life and extending into maturing and aging, determine the prognosis of respiratory diseases. In this article, we discuss the pathogenesis, clinical phenotype, and prognosis of respiratory diseases from newborns to adulthood in the context of epithelial barrier function and dysfunction.
Collapse
Affiliation(s)
- Hasan Yuksel
- a Department of Pediatric Allergy and Pulmonology , Celal Bayar University Medical Faculty , Manisa , Turkey
| | - Ahmet Turkeli
- a Department of Pediatric Allergy and Pulmonology , Celal Bayar University Medical Faculty , Manisa , Turkey
| |
Collapse
|
28
|
Koopmans T, Gosens R. Revisiting asthma therapeutics: focus on WNT signal transduction. Drug Discov Today 2017; 23:49-62. [PMID: 28890197 DOI: 10.1016/j.drudis.2017.09.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 07/20/2017] [Accepted: 09/01/2017] [Indexed: 12/16/2022]
Abstract
Asthma is a complex disease of the airways that develops as a consequence of both genetic and environmental factors. This interaction has highlighted genes important in early life, particularly those that control lung development, such as the Wingless/Integrase-1 (WNT) signalling pathway. Although aberrant WNT signalling is involved with an array of human conditions, it has received little attention within the context of asthma. Yet it is highly relevant, driving events involved with inflammation, airway remodelling, and airway hyper-responsiveness (AHR). In this review, we revisit asthma therapeutics by examining whether WNT signalling is a valid therapeutic target for asthma.
Collapse
Affiliation(s)
- Tim Koopmans
- Department of Molecular Pharmacology, University of Groningen, The Netherlands; Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, The Netherlands
| | - Reinoud Gosens
- Department of Molecular Pharmacology, University of Groningen, The Netherlands; Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, The Netherlands.
| |
Collapse
|
29
|
Vanker A, Gie R, Zar H. The association between environmental tobacco smoke exposure and childhood respiratory disease: a review. Expert Rev Respir Med 2017; 11:661-673. [PMID: 28580865 PMCID: PMC6176766 DOI: 10.1080/17476348.2017.1338949] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 06/02/2017] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Childhood respiratory illness is a major cause of morbidity and mortality particularly in low and middle-income countries. Environmental tobacco smoke (ETS) exposure is a recognised risk factor for both acute and chronic respiratory illness. Areas covered: The aim of this paper was to review the epidemiology of ETS exposure and impact on respiratory health in children. We conducted a search of 3 electronic databases of publications on ETS and childhood respiratory illness from 1990-2015. Key findings were that up to 70% of children are exposed to ETS globally, but under-reporting may mask the true prevalence. Maternal smoking and ETS exposure influence infant lung development and are associated with childhood upper and lower respiratory tract infection, wheezing or asthma. Further, exposure to ETS is associated with more severe respiratory disease. ETS exposure reduces lung function early in life, establishing an increased lifelong risk of poor lung health. Expert commentary: Urgent and effective strategies are needed to decrease ETS exposure in young children to improve child and long-term lung health in adults especially in low and middle income countries where ETS exposure is increasing.
Collapse
Affiliation(s)
- A. Vanker
- Department of Paediatrics and Child Health, Red Cross War Memorial Children’s Hospital, and MRC Unit on Child & Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - R.P. Gie
- Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - H.J. Zar
- Department of Paediatrics and Child Health, Red Cross War Memorial Children’s Hospital, and MRC Unit on Child & Adolescent Health, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
30
|
Belgrave D, Henderson J, Simpson A, Buchan I, Bishop C, Custovic A. Disaggregating asthma: Big investigation versus big data. J Allergy Clin Immunol 2017; 139:400-407. [PMID: 27871876 PMCID: PMC5292995 DOI: 10.1016/j.jaci.2016.11.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/07/2016] [Accepted: 11/09/2016] [Indexed: 12/21/2022]
Abstract
We are facing a major challenge in bridging the gap between identifying subtypes of asthma to understand causal mechanisms and translating this knowledge into personalized prevention and management strategies. In recent years, "big data" has been sold as a panacea for generating hypotheses and driving new frontiers of health care; the idea that the data must and will speak for themselves is fast becoming a new dogma. One of the dangers of ready accessibility of health care data and computational tools for data analysis is that the process of data mining can become uncoupled from the scientific process of clinical interpretation, understanding the provenance of the data, and external validation. Although advances in computational methods can be valuable for using unexpected structure in data to generate hypotheses, there remains a need for testing hypotheses and interpreting results with scientific rigor. We argue for combining data- and hypothesis-driven methods in a careful synergy, and the importance of carefully characterized birth and patient cohorts with genetic, phenotypic, biological, and molecular data in this process cannot be overemphasized. The main challenge on the road ahead is to harness bigger health care data in ways that produce meaningful clinical interpretation and to translate this into better diagnoses and properly personalized prevention and treatment plans. There is a pressing need for cross-disciplinary research with an integrative approach to data science, whereby basic scientists, clinicians, data analysts, and epidemiologists work together to understand the heterogeneity of asthma.
Collapse
Affiliation(s)
| | - John Henderson
- School of Social and Community Medicine, Faculty of Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Angela Simpson
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Iain Buchan
- Health Informatics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | | | - Adnan Custovic
- Department of Paediatrics, Imperial College, London, United Kingdom.
| |
Collapse
|
31
|
Kouzouna A, Gilchrist FJ, Ball V, Kyriacou T, Henderson J, Pandyan AD, Lenney W. A systematic review of early life factors which adversely affect subsequent lung function. Paediatr Respir Rev 2016; 20:67-75. [PMID: 27197758 DOI: 10.1016/j.prrv.2016.03.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 03/08/2016] [Indexed: 01/15/2023]
Abstract
It has been known for many years that multiple early life factors can adversely affect lung function and future respiratory health. This is the first systematic review to attempt to analyse all these factors simultaneously. We adhered to strict a priori criteria for inclusion and exclusion of studies. The initial search yielded 29,351 citations of which 208 articles were reviewed in full and 25 were included in the review. This included 6 birth cohorts and 19 longitudinal population studies. The 25 studies reported the effect of 74 childhood factors (on their own or in combinations with other factors) on subsequent lung function reported as percent predicted forced expiration in one second (FEV1). The childhood factors that were associated with a significant reduction in future FEV1 could be grouped as: early infection, bronchial hyper-reactivity (BHR) / airway lability, a diagnosis of asthma, wheeze, family history of atopy or asthma, respiratory symptoms and prematurity / low birth weight. A complete mathematical model will only be possible if the raw data from all previous studies is made available. This highlights the need for increased cooperation between researchers and the need for international consensus about the outcome measures for future longitudinal studies.
Collapse
Affiliation(s)
- A Kouzouna
- Institute of Science and Technology in Medicine, Keele University, Staffordshire, ST5 5BG, UK; School of Health Rehabilitation, Keele University, Staffordshire, ST5 5BG, UK
| | - F J Gilchrist
- Institute of Science and Technology in Medicine, Keele University, Staffordshire, ST5 5BG, UK; Royal Stoke University Hospital, Stoke on Trent, Newcastle Road, ST4 6QG
| | - V Ball
- School of Health Rehabilitation, Keele University, Staffordshire, ST5 5BG, UK
| | - T Kyriacou
- School of Computing, Keele University, Staffordshire, ST5 5BG, UK
| | - J Henderson
- School of Social and Community Medicine, University of Bristol, Bristol, BS8 2BN, UK
| | - A D Pandyan
- Institute of Science and Technology in Medicine, Keele University, Staffordshire, ST5 5BG, UK; School of Health Rehabilitation, Keele University, Staffordshire, ST5 5BG, UK
| | - W Lenney
- Institute of Science and Technology in Medicine, Keele University, Staffordshire, ST5 5BG, UK; Royal Stoke University Hospital, Stoke on Trent, Newcastle Road, ST4 6QG.
| |
Collapse
|
32
|
Pathogenesis and prevention strategies of severe asthma exacerbations in children. Curr Opin Pulm Med 2016; 22:25-31. [PMID: 26574720 DOI: 10.1097/mcp.0000000000000223] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW Exacerbations of asthma in children are most frequently precipitated by respiratory infections with a seasonal pattern. However, management takes little account of the underlying infective or other precipitant abnormality. RECENT FINDINGS Interactions between environmental triggers, the airway microbiome and innate immune responses are key determinants of exacerbations. Elevated innate cytokines interleukin (IL)-33 and IL-25, and abnormal molecular responses in the interferon pathway are associated with rhinoviral infections. Exacerbations caused by fungal allergens also induce IL-33, highlighting this as an attractive therapeutic target. An equal contribution of bacterial and viral infection during exacerbations, particularly in preschool children, has become increasingly apparent, but some organisms may be protective. Investigation of mechanisms underlying infection-related exacerbations especially in preschool children is needed.Progressive loss of lung function from exacerbations is most pronounced in children aged 6-11 years, and low FEV1 is now recognized as a key predictor for the development of chronic obstructive pulmonary disease and premature death. Although prevention of exacerbations is critical, suboptimal patient education, prescription and adherence to maintenance therapy, and a lack of predictive biomarkers, remain key unaddressed issues in children. SUMMARY Precipitants and predictors of exacerbations, together with the child's age and clinical phenotype, need to be used to achieve individualized management in preference to the current uniform approach for all.
Collapse
|
33
|
Sayão LB, de Britto MCA, Burity E, Rattes C, Reinaux CMA, Fink J, Dornelas de Andrade A. Exhaled nitric oxide as a diagnostic tool for wheezing in preschool children: A diagnostic accuracy study. Respir Med 2016; 113:15-21. [PMID: 27021575 DOI: 10.1016/j.rmed.2016.02.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 02/16/2016] [Accepted: 02/18/2016] [Indexed: 10/22/2022]
Abstract
BACKGROUND Airways inflammation may precede pulmonary dysfunction in wheezing individuals. The fraction of exhaled nitric oxide (FENO) has been described as a useful method for wheezing diagnosis in children, however, its application requires evidence. This study aimed to determine the accuracy of FENO in identifying wheezing in preschoolers. METHODS A cross-sectional study was carried out with children from 3 to 5 years old, from Brazilian day care centers and public schools. They were evaluated by FENO measurement through the single breath method, and by ATS-DLD-78-C questionnaire that is used as a gold standard to phenotype wheezing patterns. RESULTS The sample consisted of 243 non-wheezing children, 118 non-recurrent wheezing and 62 recurrent wheezing. The means of FENO and confidence intervals of 95%, were 5.4 (CI 95%, 5.2-5.6); 7.5 (CI 95%, 6.9-8.2) and 11.2 (CI 95%, 9.6-12.7), respectively. The sensitivity, specificity, positive and negative predictive FENO values in the 6 parts per billion (ppb) cut-off point that best diagnosed wheezing of non-wheezing children, were: 65.5%, 84.3%, 75.6% and 76.7%, respectively, with an area under the curve (AUC) = 0.77. At 10 ppb, the best cut-off points for differentiating recurrent wheezing of non-recurrent wheezing were: 56.4%, 81.3%, 61.4%, 78.0%, respectively, with an AUC = 0.69. The post-test probability for each FENO cut-off points was increased by 33% for wheezing and 20% for recurrent wheezing diagnosis when associated with clinical examination. CONCLUSION FENO can provide a reliable and accurate method to discriminate the presence and type of wheezing in preschoolers with 92% of acceptable in this study population.
Collapse
Affiliation(s)
| | | | - Edjane Burity
- Department of Pediatric Pneumology, Instituto de Medicina Integral Fernando Figueira - IMIP, Recife, Brazil
| | - Catarina Rattes
- Department of Physiotherapy, Universidade Federal de Pernambuco, Recife, Brazil
| | | | - James Fink
- Rush University Medical Center, Georgia State University, USA
| | | |
Collapse
|
34
|
Childhood asthma and chronic obstructive pulmonary disease: outcomes until the age of 50. Curr Opin Allergy Clin Immunol 2016; 15:169-74. [PMID: 25961391 DOI: 10.1097/aci.0000000000000146] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
PURPOSE OF REVIEW There has been recent interest in understanding the origins of chronic obstructive pulmonary disease. Epidemiological studies suggest that chronic obstructive pulmonary disease clearly has other causes apart from tobacco smoke. RECENT FINDINGS Cross-sectional studies of adult cohorts with chronic obstructive pulmonary disease highlight that childhood asthma is a risk factor. A recent longitudinal childhood cohort study of children from childhood to the age of 50 years describes that children with severe asthma are at increased risk of chronic obstructive pulmonary disease and that the deficit in lung function can be tracked back to early years. SUMMARY Children with severe asthma are at increased risk of developing chronic obstructive pulmonary disease.
Collapse
|
35
|
Minelli C, Dean CH, Hind M, Alves AC, Amaral AFS, Siroux V, Huikari V, Soler Artigas M, Evans DM, Loth DW, Bossé Y, Postma DS, Sin D, Thompson J, Demenais F, Henderson J, Bouzigon E, Jarvis D, Järvelin MR, Burney P. Association of Forced Vital Capacity with the Developmental Gene NCOR2. PLoS One 2016; 11:e0147388. [PMID: 26836265 PMCID: PMC4737618 DOI: 10.1371/journal.pone.0147388] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 01/04/2016] [Indexed: 12/31/2022] Open
Abstract
Background Forced Vital Capacity (FVC) is an important predictor of all-cause mortality in the absence of chronic respiratory conditions. Epidemiological evidence highlights the role of early life factors on adult FVC, pointing to environmental exposures and genes affecting lung development as risk factors for low FVC later in life. Although highly heritable, a small number of genes have been found associated with FVC, and we aimed at identifying further genetic variants by focusing on lung development genes. Methods Per-allele effects of 24,728 SNPs in 403 genes involved in lung development were tested in 7,749 adults from three studies (NFBC1966, ECRHS, EGEA). The most significant SNP for the top 25 genes was followed-up in 46,103 adults (CHARGE and SpiroMeta consortia) and 5,062 children (ALSPAC). Associations were considered replicated if the replication p-value survived Bonferroni correction (p<0.002; 0.05/25), with a nominal p-value considered as suggestive evidence. For SNPs with evidence of replication, effects on the expression levels of nearby genes in lung tissue were tested in 1,111 lung samples (Lung eQTL consortium), with further functional investigation performed using public epigenomic profiling data (ENCODE). Results NCOR2-rs12708369 showed strong replication in children (p = 0.0002), with replication unavailable in adults due to low imputation quality. This intronic variant is in a strong transcriptional enhancer element in lung fibroblasts, but its eQTL effects could not be tested due to low imputation quality in the eQTL dataset. SERPINE2-rs6754561 replicated at nominal level in both adults (p = 0.036) and children (p = 0.045), while WNT16-rs2707469 replicated at nominal level only in adults (p = 0.026). The eQTL analyses showed association of WNT16-rs2707469 with expression levels of the nearby gene CPED1. We found no statistically significant eQTL effects for SERPINE2-rs6754561. Conclusions We have identified a new gene, NCOR2, in the retinoic acid signalling pathway pointing to a role of vitamin A metabolism in the regulation of FVC. Our findings also support SERPINE2, a COPD gene with weak previous evidence of association with FVC, and suggest WNT16 as a further promising candidate.
Collapse
Affiliation(s)
- Cosetta Minelli
- Respiratory Epidemiology, Occupational Medicine and Public Health, National Heart and Lung Institute, Imperial College, London, United Kingdom
- * E-mail:
| | - Charlotte H. Dean
- Leukocyte Biology, National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Mammalian Genetics Unit, MRC Harwell, Oxon, United Kingdom
| | - Matthew Hind
- Respiratory Department, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom
| | - Alexessander Couto Alves
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - André F. S. Amaral
- Respiratory Epidemiology, Occupational Medicine and Public Health, National Heart and Lung Institute, Imperial College, London, United Kingdom
- MRC-PHE Centre for Environment & Health, London, United Kingdom
| | - Valerie Siroux
- Univ. Grenoble Alpes, IAB, Team of Environmental Epidemiology applied to Reproduction and Respiratory Health, F-38000, Grenoble, France
- INSERM, IAB, Team of Environmental Epidemiology applied to Reproduction and Respiratory Health, F-38000, Grenoble, France
- CHU de Grenoble, IAB, Team of Environmental Epidemiology applied to Reproduction and Respiratory Health, F-38000, Grenoble, France
| | | | - María Soler Artigas
- Genetic Epidemiology Group, Department of Health Sciences, University of Leicester, Leicester, United Kingdom
| | - David M. Evans
- University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Australia
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
| | - Daan W. Loth
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Yohan Bossé
- Institut universitaire de cardiologie et de pneumologie de Québec, Department of Molecular Medicine, Laval University, Québec, Canada
| | - Dirkje S. Postma
- Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Don Sin
- The University of British Columbia Center for Heart Lung Innovation, St-Paul’s Hospital, Vancouver, Canada
| | - John Thompson
- Department of Health Sciences, University of Leicester, Leicester, United Kingdom
| | - Florence Demenais
- INSERM, UMRS-946, Genetic Variation of Human Diseases Unit, Paris, France
- Univ. Paris Diderot, Sorbonne Paris Cité, Institut Universitaire d’Hématologie, F-75007, Paris, France
| | - John Henderson
- School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom
| | - SpiroMeta consortium
- SpiroMeta consortium, Genetic Epidemiology Group, Department of Health Sciences, University of Leicester, Leicester, United Kingdom
| | - CHARGE consortium
- CHARGE consortium, Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, United States of America
| | - Emmanuelle Bouzigon
- INSERM, UMRS-946, Genetic Variation of Human Diseases Unit, Paris, France
- Univ. Paris Diderot, Sorbonne Paris Cité, Institut Universitaire d’Hématologie, F-75007, Paris, France
| | - Deborah Jarvis
- Respiratory Epidemiology, Occupational Medicine and Public Health, National Heart and Lung Institute, Imperial College, London, United Kingdom
- MRC-PHE Centre for Environment & Health, London, United Kingdom
| | - Marjo-Riitta Järvelin
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
- MRC-PHE Centre for Environment & Health, London, United Kingdom
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Center for Life Course Epidemiology, Faculty of Medicine, P.O. Box 5000, FI-90014 University of Oulu, Oulu, Finland
- Unit of Primary Care, Oulu University Hospital, Kajaanintie 50, P.O. Box 20, FI-90220, Oulu, 90029 OYS, Finland
| | - Peter Burney
- Respiratory Epidemiology, Occupational Medicine and Public Health, National Heart and Lung Institute, Imperial College, London, United Kingdom
- MRC-PHE Centre for Environment & Health, London, United Kingdom
| |
Collapse
|
36
|
Sears MR. Predicting asthma outcomes. J Allergy Clin Immunol 2016; 136:829-36; quiz 837. [PMID: 26449797 DOI: 10.1016/j.jaci.2015.04.048] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 04/14/2015] [Accepted: 04/17/2015] [Indexed: 12/31/2022]
Abstract
This review addresses predictors of remission or persistence of wheezing and asthma from early childhood through adulthood. Early childhood wheezing is common, but predicting who will remit or have persistent childhood asthma remains difficult. By adding parental history of asthma and selected infant biomarkers to the history of recurrent wheezing, the Asthma Predictive Index and its subsequent modifications provide better predictions of persistence than simply the observation of recurrent wheeze. Sensitization, especially to multiple allergens, increases the likelihood of development of classic childhood asthma. Remission is more likely in male subjects and those with milder disease (less frequent and less severe symptoms), less atopic sensitization, a lesser degree of airway hyperresponsiveness, and no concomitant allergic disease. Conversely, persistence is linked strongly to allergic sensitization, greater frequency and severity of symptoms, abnormal lung function, and a greater degree of airway hyperresponsiveness. A genetic risk score might predict persistence more accurately than family history. Remission of established adult asthma is substantially less common than remission during childhood and adolescence. Loss of lung function can begin early in life and tracks through childhood and adolescence. Despite therapy which controls symptoms and exacerbations, the outcomes of asthma appear largely resistant to pharmacologic therapy.
Collapse
Affiliation(s)
- Malcolm R Sears
- Department of Medicine, Faculty of Health Sciences, de Groote School of Medicine, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
37
|
Probert K, Miller S, Kheirallah AK, Hall IP. Developmental genetics of the COPD lung. ACTA ACUST UNITED AC 2015. [DOI: 10.1186/s40749-015-0014-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
38
|
Abstract
COPD is a common complex disease characterized by progressive airflow limitation. Several genome-wide association studies (GWASs) have discovered genes that are associated with COPD. Recently, candidate genes for COPD identified by GWASs include CHRNA3/5 (cholinergic nicotine receptor alpha 3/5), IREB2 (iron regulatory binding protein 2), HHIP (hedgehog-interacting protein), FAM13A (family with sequence similarity 13, member A), and AGER (advanced glycosylation end product–specific receptor). Their association with COPD susceptibility has been replicated in multiple populations. Since these candidate genes have not been considered in COPD, their pathological roles are still largely unknown. Herein, we review some evidences that they can be effective drug targets or serve as biomarkers for diagnosis or subtyping. However, more study is required to understand the functional roles of these candidate genes. Future research is needed to characterize the effect of genetic variants, validate gene function in humans and model systems, and elucidate the genes’ transcriptional and posttranscriptional regulatory mechanisms.
Collapse
Affiliation(s)
- Woo Jin Kim
- Department of Internal Medicine and Environmental Health Center, Kangwon National University, Chuncheon, South Korea
| | - Sang Do Lee
- Department of Pulmonary and Critical Care Medicine, Clinical Research Center for Chronic Obstructive Airway Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| |
Collapse
|
39
|
Obeidat M, Hao K, Bossé Y, Nickle DC, Nie Y, Postma DS, Laviolette M, Sandford AJ, Daley DD, Hogg JC, Elliott WM, Fishbane N, Timens W, Hysi PG, Kaprio J, Wilson JF, Hui J, Rawal R, Schulz H, Stubbe B, Hayward C, Polasek O, Järvelin MR, Zhao JH, Jarvis D, Kähönen M, Franceschini N, North KE, Loth DW, Brusselle GG, Smith AV, Gudnason V, Bartz TM, Wilk JB, O'Connor GT, Cassano PA, Tang W, Wain LV, Soler Artigas M, Gharib SA, Strachan DP, Sin DD, Tobin MD, London SJ, Hall IP, Paré PD. Molecular mechanisms underlying variations in lung function: a systems genetics analysis. THE LANCET. RESPIRATORY MEDICINE 2015; 3:782-95. [PMID: 26404118 PMCID: PMC5021067 DOI: 10.1016/s2213-2600(15)00380-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 08/06/2015] [Accepted: 08/12/2015] [Indexed: 02/02/2023]
Abstract
BACKGROUND Lung function measures reflect the physiological state of the lung, and are essential to the diagnosis of chronic obstructive pulmonary disease (COPD). The SpiroMeta-CHARGE consortium undertook the largest genome-wide association study (GWAS) so far (n=48,201) for forced expiratory volume in 1 s (FEV1) and the ratio of FEV1 to forced vital capacity (FEV1/FVC) in the general population. The lung expression quantitative trait loci (eQTLs) study mapped the genetic architecture of gene expression in lung tissue from 1111 individuals. We used a systems genetics approach to identify single nucleotide polymorphisms (SNPs) associated with lung function that act as eQTLs and change the level of expression of their target genes in lung tissue; termed eSNPs. METHODS The SpiroMeta-CHARGE GWAS results were integrated with lung eQTLs to map eSNPs and the genes and pathways underlying the associations in lung tissue. For comparison, a similar analysis was done in peripheral blood. The lung mRNA expression levels of the eSNP-regulated genes were tested for associations with lung function measures in 727 individuals. Additional analyses identified the pleiotropic effects of eSNPs from the published GWAS catalogue, and mapped enrichment in regulatory regions from the ENCODE project. Finally, the Connectivity Map database was used to identify potential therapeutics in silico that could reverse the COPD lung tissue gene signature. FINDINGS SNPs associated with lung function measures were more likely to be eQTLs and vice versa. The integration mapped the specific genes underlying the GWAS signals in lung tissue. The eSNP-regulated genes were enriched for developmental and inflammatory pathways; by comparison, SNPs associated with lung function that were eQTLs in blood, but not in lung, were only involved in inflammatory pathways. Lung function eSNPs were enriched for regulatory elements and were over-represented among genes showing differential expression during fetal lung development. An mRNA gene expression signature for COPD was identified in lung tissue and compared with the Connectivity Map. This in-silico drug repurposing approach suggested several compounds that reverse the COPD gene expression signature, including a nicotine receptor antagonist. These findings represent novel therapeutic pathways for COPD. INTERPRETATION The system genetics approach identified lung tissue genes driving the variation in lung function and susceptibility to COPD. The identification of these genes and the pathways in which they are enriched is essential to understand the pathophysiology of airway obstruction and to identify novel therapeutic targets and biomarkers for COPD, including drugs that reverse the COPD gene signature in silico. FUNDING The research reported in this article was not specifically funded by any agency. See Acknowledgments for a full list of funders of the lung eQTL study and the Spiro-Meta CHARGE GWAS.
Collapse
Affiliation(s)
- Ma'en Obeidat
- University of British Columbia Center for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada
| | - Ke Hao
- Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yohan Bossé
- Department of Molecular Medicine, Laval University, Québec, QC, Canada; Institut Universitaire de Cardiologie et de Pneumologie de Québec, Laval University, Québec, QC, Canada
| | - David C Nickle
- Merck Research Laboratories, Genetics and Pharmacogenomics, Boston, MA, USA
| | - Yunlong Nie
- University of British Columbia Center for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada
| | - Dirkje S Postma
- University of Groningen, University Medical Center Groningen, Department of Pulmonology, GRIAC Research Institute, University of Groningen, Groningen, Netherlands
| | - Michel Laviolette
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Laval University, Québec, QC, Canada
| | - Andrew J Sandford
- University of British Columbia Center for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada; Respiratory Division, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Denise D Daley
- University of British Columbia Center for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada; Respiratory Division, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - James C Hogg
- University of British Columbia Center for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - W Mark Elliott
- University of British Columbia Center for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Nick Fishbane
- University of British Columbia Center for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada
| | - Wim Timens
- Department of Pathology and Medical Biology, GRIAC Research Institute, University of Groningen, Groningen, Netherlands
| | - Pirro G Hysi
- Department of Twin Research and Genetic Epidemiology, King's College, London, UK
| | - Jaakko Kaprio
- Department of Public Health, and Institute for Molecular Medicine (FIMM), University of Helsinki, Helsinki, Finland; National Institute for Health and Welfare, Helsinki, Finland
| | - James F Wilson
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK; MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Jennie Hui
- Busselton Population Medical Research Institute, Busselton, WA, Australia; PathWest Laboratory Medicine of Western Australia, Nedlands, WA, Australia; School of Population Health and School of Pahology and Laboratory Medicine, University of Western Australia, Nedlands, WA, Australia
| | - Rajesh Rawal
- Research Unit of Molecular Epidemiology, Helmholtz-Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; Institute of Genetic Epidemiology, Helmholtz-Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Holger Schulz
- Institute of Epidemiology I, Helmholtz-Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; Comprehensive Pneumology Center Munich (CPC-M), German Center for Lung Research, Munich, Germany
| | - Beate Stubbe
- University Hospital, Department of Internal Medicine B, Greifswald, Germany
| | - Caroline Hayward
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Ozren Polasek
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK; Faculty of Medicine, University of Split, Croatia
| | - Marjo-Riitta Järvelin
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College, London, UK; Center for Life Course Epidemiology, Faculty of Medicine, Biocenter Oulu, and Unit of Primary Care, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Jing Hua Zhao
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge UK
| | - Deborah Jarvis
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College, London, UK; Respiratory Epidemiology and Public Health Group, National Heart and Lung Institute, Imperial College, London, UK
| | - Mika Kähönen
- Department of Clinical Physiology, University of Tampere and Tampere University Hospital, Tampere, Finland
| | - Nora Franceschini
- Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Kari E North
- Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA; University of North Carolina Center for Genome Sciences, Chapel Hill, NC, USA
| | - Daan W Loth
- Departments of Epidemiology and Respiratory Medicine, Erasmus MC, Rotterdam, Netherlands
| | - Guy G Brusselle
- Departments of Epidemiology and Respiratory Medicine, Erasmus MC, Rotterdam, Netherlands; Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Albert Vernon Smith
- Icelandic Heart Association, Kopavogur, Iceland; Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Vilmundur Gudnason
- Icelandic Heart Association, Kopavogur, Iceland; Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Traci M Bartz
- Cardiovascular Health Research Unit, Departments of Medicine and Biostatistics, University of Washington, Seattle, WA, USA
| | - Jemma B Wilk
- Human Genetics & Computational Biomedicine, Pfizer Worldwide Research and Development, Cambridge, MA, USA
| | - George T O'Connor
- Pulmonary Center, Boston University School of Medicine, Boston, MA, USA; NHLBI Framingham Heart Study, Framingham, MA, USA
| | - Patricia A Cassano
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA; Division of Biostatistics and Epidemiology, Department of Healthcare Policy and Research, Weill Cornell Medical College, NY, USA
| | - Wenbo Tang
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA; Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT, USA
| | - Louise V Wain
- University of Leicester, Genetic Epidemiology Group, Department of Health Sciences, Leicester, UK; National Institute for Health Research (NIHR) Leicester Respiratory Biomedical Research Unit, Glenfield Hospital, Leicester, UK
| | - María Soler Artigas
- University of Leicester, Genetic Epidemiology Group, Department of Health Sciences, Leicester, UK; National Institute for Health Research (NIHR) Leicester Respiratory Biomedical Research Unit, Glenfield Hospital, Leicester, UK
| | - Sina A Gharib
- Computational Medicine Core, Center for Lung Biology, University of Washington, Seattle, WA, USA; Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Washington, Seattle, WA, USA
| | - David P Strachan
- Population Health Research Institute, St George's, University of London, London, UK
| | - Don D Sin
- University of British Columbia Center for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada; Respiratory Division, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Martin D Tobin
- University of Leicester, Genetic Epidemiology Group, Department of Health Sciences, Leicester, UK; National Institute for Health Research (NIHR) Leicester Respiratory Biomedical Research Unit, Glenfield Hospital, Leicester, UK
| | - Stephanie J London
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Ian P Hall
- University of Nottingham Division of Respiratory Medicine, University Hospital of Nottingham, Nottingham, UK
| | - Peter D Paré
- University of British Columbia Center for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada; Respiratory Division, Department of Medicine, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
40
|
Abstract
Chronic obstructive pulmonary disease is mainly a smoking-related disorder and affects millions of people worldwide, with a large effect on individual patients and society as a whole. Although the disease becomes clinically apparent around the age of 40-50 years, its origins can begin very early in life. Different risk factors in very early life--ie, in utero and during early childhood--drive the development of clinically apparent chronic obstructive pulmonary disease in later life. In discussions of which risk factors drive chronic obstructive pulmonary disease, it is important to realise that the disease is very heterogeneous and at present is largely diagnosed by lung function only. In this Review, we will discuss the evidence for risk factors for the various phenotypes of chronic obstructive pulmonary disease during different stages of life.
Collapse
Affiliation(s)
- Dirkje S Postma
- Department of Pulmonary Diseases, University Medical Center Groningen, University of Groningen, Groningen, Netherlands; Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.
| | - Andrew Bush
- National Heart and Lung Institute, Imperial College, London, UK
| | - Maarten van den Berge
- Department of Pulmonary Diseases, University Medical Center Groningen, University of Groningen, Groningen, Netherlands; Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
41
|
Melén E. Bridging genetics, epidemiology, and respiratory medicine. Am J Respir Crit Care Med 2015; 190:716-8. [PMID: 25271741 DOI: 10.1164/rccm.201408-1524ed] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- Erik Melén
- 1 Institute of Environmental Medicine and the Centre for Allergy Research Karolinska Institutet Stockholm, Sweden and
| |
Collapse
|
42
|
Szefler SJ. Advances in pediatric asthma in 2014: Moving toward a population health perspective. J Allergy Clin Immunol 2015; 135:644-52. [PMID: 25649079 DOI: 10.1016/j.jaci.2014.12.1921] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 12/29/2014] [Accepted: 12/29/2014] [Indexed: 01/30/2023]
Abstract
Last year's "Advances in pediatric asthma in 2013: Coordinating asthma care" concluded that, "Enhanced communication systems will be necessary among parents, clinicians, health care providers and the pharmaceutical industry so that we continue the pathway of understanding the disease and developing new treatments that address the unmet needs of patients who are at risk for severe consequences of unchecked disease persistence or progression." This year's summary will focus on further advances in pediatric asthma related to prenatal and postnatal factors altering the natural history of asthma, assessment of asthma control, and new insights regarding the management of asthma in children as indicated in Journal of Allergy and Clinical Immunology publications in 2014. A major theme of this review is how new research reports can be integrated into medical communication in a population health perspective to assist clinicians in asthma management. The asthma specialist is in a unique position to convey important messages to the medical community related to factors that influence the course of asthma, methods to assess and communicate levels of control, and new targets for intervention, as well as new immunomodulators. By enhancing communication among patients, parents, primary care physicians, and specialists within provider systems, the asthma specialist can provide timely information that can help to reduce asthma morbidity and mortality.
Collapse
Affiliation(s)
- Stanley J Szefler
- Pediatric Asthma Research Program, Section of Pediatric Pulmonary Medicine, Breathing Institute, Department of Pediatrics, Children's Hospital Colorado, and the Department of Pediatrics, University of Colorado Denver School of Medicine, Aurora, Colo.
| |
Collapse
|
43
|
Ganguly K, Martin TM, Concel VJ, Upadhyay S, Bein K, Brant KA, George L, Mitra A, Thimraj TA, Fabisiak JP, Vuga LJ, Fattman C, Kaminski N, Schulz H, Leikauf GD. Secreted phosphoprotein 1 is a determinant of lung function development in mice. Am J Respir Cell Mol Biol 2015; 51:637-51. [PMID: 24816281 DOI: 10.1165/rcmb.2013-0471oc] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Secreted phosphoprotein 1 (Spp1) is located within quantitative trait loci associated with lung function that was previously identified by contrasting C3H/HeJ and JF1/Msf mouse strains that have extremely divergent lung function. JF1/Msf mice with diminished lung function had reduced lung SPP1 transcript and protein during the peak stage of alveologenesis (postnatal day [P]14-P28) as compared with C3H/HeJ mice. In addition to a previously identified genetic variant that altered runt-related transcription factor 2 (RUNX2) binding in the Spp1 promoter, we identified another promoter variant in a putative RUNX2 binding site that increased the DNA protein binding. SPP1 induced dose-dependent mouse lung epithelial-15 cell proliferation. Spp1((-/-)) mice have decreased specific total lung capacity/body weight, higher specific compliance, and increased mean airspace chord length (Lm) compared with Spp1((+/+)) mice. Microarray analysis revealed enriched gene ontogeny categories, with numerous genes associated with lung development and/or respiratory disease. Insulin-like growth factor 1, Hedgehog-interacting protein, wingless-related mouse mammary tumor virus integration site 5A, and NOTCH1 transcripts decreased in the lung of P14 Spp1((-/-)) mice as determined by quantitative RT-PCR analysis. SPP1 promotes pneumocyte growth, and mice lacking SPP1 have smaller, more compliant lungs with enlarged airspace (i.e., increased Lm). Microarray analysis suggests a dysregulation of key lung developmental transcripts in gene-targeted Spp1((-/-)) mice, particularly during the peak phase of alveologenesis. In addition to its known roles in lung disease, this study supports SPP1 as a determinant of lung development in mice.
Collapse
Affiliation(s)
- Koustav Ganguly
- 1 Department of Environmental and Occupational Health, Graduate School of Public Health
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Carraro S, Scheltema N, Bont L, Baraldi E. Early-life origins of chronic respiratory diseases: understanding and promoting healthy ageing. Eur Respir J 2014; 44:1682-96. [PMID: 25323240 DOI: 10.1183/09031936.00084114] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Chronic obstructive respiratory disorders such as asthma and chronic obstructive pulmonary disease often originate early in life. In addition to a genetic predisposition, prenatal and early-life environmental exposures have a persistent impact on respiratory health. Acting during a critical phase of lung development, these factors may change lung structure and metabolism, and may induce maladaptive responses to harmful agents, which will affect the whole lifespan. Some environmental factors, such as exposure to cigarette smoke, type of childbirth and diet, may be modifiable, but it is more difficult to influence other factors, such as preterm birth and early exposure to viruses or allergens. Here, we bring together recent literature to analyse the critical aspects involved in the early stages of lung development, going back to prenatal and perinatal events, and we discuss the mechanisms by which noxious factors encountered early on may have a lifelong impact on respiratory health. We briefly comment on the need for early disease biomarkers and on the possible role of "-omic" technologies in identifying risk profiles predictive of chronic respiratory conditions. Such profiles could guide the ideation of effective preventive strategies and/or targeted early lifestyle or therapeutic interventions.
Collapse
Affiliation(s)
- Silvia Carraro
- Women's and Children's Health Dept, University of Padua, Padua, Italy
| | - Nienke Scheltema
- Dept of Pediatrics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Louis Bont
- Dept of Pediatrics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Eugenio Baraldi
- Women's and Children's Health Dept, University of Padua, Padua, Italy
| |
Collapse
|
45
|
Postma DS, Koppelman GH. The child is father of the man? Am J Respir Crit Care Med 2014; 190:358-9. [PMID: 25127301 DOI: 10.1164/rccm.201407-1237ed] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Dirkje S Postma
- 1 Department of Pulmonology University Medical Center Groningen Groningen, the Netherlands
| | | |
Collapse
|
46
|
Pugmire J, Vasquez MM, Zhou M, Sherrill DL, Halonen M, Martinez FD, Guerra S. Exposure to parental smoking in childhood is associated with persistence of respiratory symptoms into young adult life. J Allergy Clin Immunol 2014; 134:962-965.e4. [PMID: 25174871 DOI: 10.1016/j.jaci.2014.07.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 07/18/2014] [Accepted: 07/22/2014] [Indexed: 11/29/2022]
Affiliation(s)
- Juliana Pugmire
- Arizona Respiratory Center, University of Arizona, Tucson, Ariz; Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, Ariz
| | - Monica M Vasquez
- Arizona Respiratory Center, University of Arizona, Tucson, Ariz; Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, Ariz
| | - Muhan Zhou
- Arizona Respiratory Center, University of Arizona, Tucson, Ariz; Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, Ariz
| | - Duane L Sherrill
- Arizona Respiratory Center, University of Arizona, Tucson, Ariz; Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, Ariz
| | - Marilyn Halonen
- Arizona Respiratory Center, University of Arizona, Tucson, Ariz
| | | | - Stefano Guerra
- Arizona Respiratory Center, University of Arizona, Tucson, Ariz; Centre for Research in Environmental Epidemiology (CREAL), CIBERESP, Universitat Pompeu Fabra, Barcelona, Spain.
| |
Collapse
|
47
|
Corvol H, Hodges CA, Drumm ML, Guillot L. Moving beyond genetics: is FAM13A a major biological contributor in lung physiology and chronic lung diseases? J Med Genet 2014; 51:646-9. [PMID: 25163686 DOI: 10.1136/jmedgenet-2014-102525] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Variants in FAM13A have been found in genome-wide association studies (GWAS) to associate with lung function in the general population as well as in several common chronic lung diseases (CLD) such as chronic obstructive pulmonary disease (COPD), asthma, as well as in idiopathic interstitial pneumonias (IIP). The gene was cloned in 2004, yet the encoded protein has not been characterised and its function is unknown. The redundancy of its genetic contribution in CLD suggests a major function of this gene both in lung physiology and CLD. This review provides a brief summary of the current knowledge of FAM13A, and demonstrates the necessity to resolve its biological function besides its well accepted genetic contribution. Further interpretations of FAM13A variants may help in the understanding of CLD mechanisms and reveal opportunity for intervention.
Collapse
Affiliation(s)
- Harriet Corvol
- INSERM, UMR_S 938, CDR Saint-Antoine, Paris, France Sorbonne Universités, UPMC Univ Paris 06, UMR_S 938, CDR Saint-Antoine, Paris, France Pneumologie pédiatrique, APHP, Hôpital Trousseau, Paris, France
| | - Craig A Hodges
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, USA Department of Genetics and Genome Sciences, Case Western University, Cleveland, Ohio, USA
| | - Mitchell L Drumm
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, USA Department of Genetics and Genome Sciences, Case Western University, Cleveland, Ohio, USA
| | - Loïc Guillot
- INSERM, UMR_S 938, CDR Saint-Antoine, Paris, France Sorbonne Universités, UPMC Univ Paris 06, UMR_S 938, CDR Saint-Antoine, Paris, France
| |
Collapse
|
48
|
Smolonska J, Koppelman GH, Wijmenga C, Vonk JM, Zanen P, Bruinenberg M, Curjuric I, Imboden M, Thun GA, Franke L, Probst-Hensch NM, Nürnberg P, Riemersma RA, van Schayck CP, Loth DW, Brusselle GG, Stricker BH, Hofman A, Uitterlinden AG, Lahousse L, London SJ, Loehr LR, Manichaikul A, Barr RG, Donohue KM, Rich SS, Pare P, Bossé Y, Hao K, van den Berge M, Groen HJM, Lammers JWJ, Mali W, Boezen HM, Postma DS. Common genes underlying asthma and COPD? Genome-wide analysis on the Dutch hypothesis. Eur Respir J 2014; 44:860-72. [PMID: 24993907 DOI: 10.1183/09031936.00001914] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Asthma and chronic obstructive pulmonary disease (COPD) are thought to share a genetic background ("Dutch hypothesis"). We investigated whether asthma and COPD have common underlying genetic factors, performing genome-wide association studies for both asthma and COPD and combining the results in meta-analyses. Three loci showed potential involvement in both diseases: chr2p24.3, chr5q23.1 and chr13q14.2, containing DDX1, COMMD10 (both participating in the nuclear factor (NF) κβ pathway) and GNG5P5, respectively. Single nucleotide polymorphisms (SNPs) rs9534578 in GNG5P5 reached genome-wide significance after first replication phase (p=9.96×10(-9)). The second replication phase, in seven independent cohorts, provided no significant replication. Expression quantitative trait loci (eQTL) analysis in blood cells and lung tissue on the top 20 associated SNPs identified two SNPs in COMMD10 that influenced gene expression. Inflammatory processes differ in asthma and COPD and are mediated by NF-κβ, which could be driven by the same underlying genes, COMMD10 and DDX1. None of the SNPs reached genome-wide significance. Our eQTL studies support a functional role for two COMMD10 SNPs, since they influence gene expression in both blood cells and lung tissue. Our findings suggest that there is either no common genetic component in asthma and COPD or, alternatively, different environmental factors, e.g. lifestyle and occupation in different countries and continents, which may have obscured the genetic common contribution.
Collapse
Affiliation(s)
- Joanna Smolonska
- Dept of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands Dept of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands GRIAC Research Institute, Groningen University Medical Center, University of Groningen, Groningen, The Netherlands
| | - Gerard H Koppelman
- GRIAC Research Institute, Groningen University Medical Center, University of Groningen, Groningen, The Netherlands Dept of Paediatric Pulmonology and Paediatric Allergology, Beatrix Children's Hospital, University Medical Center, University of Groningen, Groningen, The Netherlands
| | - Cisca Wijmenga
- Dept of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Judith M Vonk
- Dept of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands GRIAC Research Institute, Groningen University Medical Center, University of Groningen, Groningen, The Netherlands
| | - Pieter Zanen
- Dept of Pulmonology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marcel Bruinenberg
- Dept of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ivan Curjuric
- Dept of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland University of Basel, Basel, Switzerland
| | - Medea Imboden
- Dept of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland University of Basel, Basel, Switzerland
| | - Gian-Andri Thun
- Dept of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland University of Basel, Basel, Switzerland
| | - Lude Franke
- Dept of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Nicole M Probst-Hensch
- Dept of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland University of Basel, Basel, Switzerland
| | - Peter Nürnberg
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Roland A Riemersma
- GRIAC Research Institute, Groningen University Medical Center, University of Groningen, Groningen, The Netherlands Dept of Pulmonology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | - Daan W Loth
- Dept of Epidemiology, Erasmus MC, Rotterdam, The Netherlands Netherlands Healthcare Inspectorate, The Hague, The Netherlands
| | - Guy G Brusselle
- Dept of Epidemiology, Erasmus MC, Rotterdam, The Netherlands Dept of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium Dept of Respiratory Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Bruno H Stricker
- Dept of Epidemiology, Erasmus MC, Rotterdam, The Netherlands Netherlands Healthcare Inspectorate, The Hague, The Netherlands Netherlands Consortium for Healthy Aging (NCHA), Rotterdam, The Netherlands
| | - Albert Hofman
- Dept of Epidemiology, Erasmus MC, Rotterdam, The Netherlands Netherlands Consortium for Healthy Aging (NCHA), Rotterdam, The Netherlands
| | - André G Uitterlinden
- Netherlands Consortium for Healthy Aging (NCHA), Rotterdam, The Netherlands Dept of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Lies Lahousse
- Dept of Epidemiology, Erasmus MC, Rotterdam, The Netherlands Dept of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Stephanie J London
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Dept of Health and Human Services, Research Triangle Park, NC, USA
| | | | - Ani Manichaikul
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA Dept of Public Health Sciences, Division of Biostatistics and Epidemiology, University of Virginia, Charlottesville, VA, USA
| | - R Graham Barr
- Dept of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Kathleen M Donohue
- Dept of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Peter Pare
- Respiratory Division, Dept of Medicine, University of British Columbia James Hogg Research Centre, St Paul's Hospital, Vancouver, BC, Canada
| | - Yohan Bossé
- Institut Universitaire De Cardiologie Et De Pneumologie De Québec, Dept of Molecular Medicine, Laval University, Québec, QC, Canada
| | - Ke Hao
- Dept of Genetics and Genomics Sciences, Mount Sinai School of Medicine, New York, NY, USA
| | - Maarten van den Berge
- GRIAC Research Institute, Groningen University Medical Center, University of Groningen, Groningen, The Netherlands Dept of Pulmonology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Harry J M Groen
- Dept of Pulmonology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jan-Willem J Lammers
- Dept of Pulmonology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Willem Mali
- Dept of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - H Marike Boezen
- Dept of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands GRIAC Research Institute, Groningen University Medical Center, University of Groningen, Groningen, The Netherlands
| | - Dirkje S Postma
- GRIAC Research Institute, Groningen University Medical Center, University of Groningen, Groningen, The Netherlands Dept of Pulmonology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
49
|
Kreiner-Møller E, Bisgaard H, Bønnelykke K. Prenatal and postnatal genetic influence on lung function development. J Allergy Clin Immunol 2014; 134:1036-42.e15. [PMID: 24857373 DOI: 10.1016/j.jaci.2014.04.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 02/21/2014] [Accepted: 04/04/2014] [Indexed: 11/27/2022]
Abstract
BACKGROUND It is unknown to what extent adult lung function genes affect lung function development from birth to childhood. OBJECTIVE Our aim was to study the association of candidate genetic variants with neonatal lung function and lung function development until age 7 years. METHODS Lung function measurement by means of spirometry with the raised-volume thoracoabdominal compression technique and bronchial responsiveness to methacholine challenge were assessed in 411 high-risk newborns from the Copenhagen Prospective Study on Asthma in Childhood 2000 (COPSAC2000) cohort. Measures were repeated at age 7 years. Genetic risk scores were calculated based on reported single nucleotide polymorphisms for adult lung function (FEV1/forced expiratory vital capacity [FVC] ratio and FEV1) as the number of risk alleles weighted on known effect size. These genetic risk scores were analyzed against lung function measures as z scores at birth (forced expiratory volume in 0.5 seconds [FEV0.5], forced expiratory flow at 50% of functional vital capacity [FEF50], and provocative dose of methacholine causing a 15% decrease in lung function [PD15]) and at age 7 years (FEV1, FEF50, and provocative dose of methacholine causing a 20% decrease in lung function [PD20]) and with development from birth to age 7 years (FEV0.5/1, FEF50, and PD15/20). RESULTS The genetic risk scores were not associated with lung function measures at age 1 month, but the FEV1/FVC genetic risk score was associated with reduced FEF50 values at age 7 years (P = .01) and similarly with reduced growth in FEF50 from birth to age 7 years (P = .02). This score was also associated with increased bronchial responsiveness (reduced PD20) at age 7 years (P = .02) and change in responsiveness from birth to age 7 years (P = .05). CONCLUSION Lung function genetic variants identified in adults were not associated with neonatal lung function or bronchial responsiveness but with the development of these lung function measures during early childhood, suggesting a window of opportunity for interventions targeting these genetic mechanisms.
Collapse
Affiliation(s)
- Eskil Kreiner-Møller
- COPSAC, the Copenhagen Prospective Studies on Asthma in Childhood, Faculty of Health Sciences, University of Copenhagen, and the Danish Pediatric Asthma Center, Copenhagen University Hospital, Gentofte, Copenhagen, Denmark.
| | - Hans Bisgaard
- COPSAC, the Copenhagen Prospective Studies on Asthma in Childhood, Faculty of Health Sciences, University of Copenhagen, and the Danish Pediatric Asthma Center, Copenhagen University Hospital, Gentofte, Copenhagen, Denmark
| | - Klaus Bønnelykke
- COPSAC, the Copenhagen Prospective Studies on Asthma in Childhood, Faculty of Health Sciences, University of Copenhagen, and the Danish Pediatric Asthma Center, Copenhagen University Hospital, Gentofte, Copenhagen, Denmark
| |
Collapse
|
50
|
Mattes J, Gibson PG. The early origins of COPD in severe asthma: the one thing that leads to another or the two things that come together? Thorax 2014; 69:789-90. [PMID: 24813191 DOI: 10.1136/thoraxjnl-2014-205401] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Joerg Mattes
- Experimental & Translational Respiratory Medicine, University of Newcastle, Newcastle, New South Wales, Australia Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
| | - Peter G Gibson
- Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
| |
Collapse
|