1
|
Wright SW, Ekchariyawat P, Sengyee S, Phunpang R, Dulsuk A, Saiprom N, Thiansukhon E, Pattanapanyasat K, Korbsrisate S, West TE, Chantratita N. Dysfunctional host cellular immune responses are associated with mortality in melioidosis. Emerg Microbes Infect 2024; 13:2380822. [PMID: 39008280 PMCID: PMC11293272 DOI: 10.1080/22221751.2024.2380822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/04/2024] [Accepted: 07/12/2024] [Indexed: 07/16/2024]
Abstract
Melioidosis is a tropical infection caused by the intracellular pathogen Burkholderia pseudomallei, an underreported and emerging global threat. As melioidosis-associated mortality is frequently high despite antibiotics, novel management strategies are critically needed. Therefore, we sought to determine whether functional changes in the host innate and adaptive immune responses are induced during acute melioidosis and are associated with outcome. Using a unique whole blood stimulation assay developed for use in resource-limited settings, we examined induced cellular functional and phenotypic changes in a cohort of patients with bacteremic melioidosis prospectively enrolled within 24 h of positive blood culture and followed for 28 days. Compared to healthy controls, melioidosis survivors generated an IL-17 response mediated by Th17 cells and terminally-differentiated effector memory CD8+ T cells (P < .05, both), persisting to 28 days after enrolment. Furthermore, melioidosis survivors developed polyfunctional cytokine production in CD8+ T cells (P < .01). Conversely, a reduction in CCR6+ CD4+ T cells was associated with higher mortality, even after adjustments for severity of illness (P = 0.004). Acute melioidosis was also associated with a profound acute impairment in monocyte function as stimulated cytokine responses were reduced in classical, intermediate and non-classical monocytes. Impaired monocyte cytokine function improved by 28-days after enrolment. These data suggest that IL-17 mediated cellular responses may be contributors to host defense during acute melioidosis, and that innate immune function may be impaired. These insights could provide novel targets for the development of therapies and vaccine targets in this frequently lethal disease.
Collapse
Affiliation(s)
- Shelton W. Wright
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Peeraya Ekchariyawat
- Department of Microbiology, Faculty of Public Health, Mahidol University, Bangkok, Thailand
| | - Sineenart Sengyee
- Department of Microbiology and Immunology, Reno School of Medicine, University of Nevada, Reno, NV, USA
| | - Rungnapa Phunpang
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Adul Dulsuk
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Natnaree Saiprom
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | - Kovit Pattanapanyasat
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Center of Excellence for Microparticle and Exosome in Diseases, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sunee Korbsrisate
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - T. Eoin West
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Global Health, University of Washington, Seattle, WA, USA
| | - Narisara Chantratita
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
2
|
Maphossa V, Guiliche O, Babetine T, Castiano C, Inlamea O, Marengue M, Capitine I, Chambal L, Tivane A, Sacarlal J, Terra-Granado E, Chissumba RM. COVID-19 inflammatory signature in a Mozambican cohort: unchanged red blood series and reduced levels of IL-6 and other proinflammatory cytokines. BMC Infect Dis 2024; 24:1279. [PMID: 39528988 PMCID: PMC11555969 DOI: 10.1186/s12879-024-10132-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Alterations in haematological, biochemical parameters and cytokine levels, were reported in patients with COVID-19, however, there is an underrepresentation of the African population, which could provide evidence for understanding SARS-CoV-2 pathogenesis and useful tools for clinical management of cases. In this study, we aimed to determine the haematological, biochemical and cytokine profile in Mozambican individuals with SARS-CoV-2. METHODS A cohort of 85 Mozambican individuals with RT-PCR SARS-CoV-2 results, was stratified into negative, asymptomatic, mild, moderate, and severe categories. Haematological, biochemical and cytokines measurement were performed on samples from the study participants. Principal component analysis (PCA) was performed to identify similar patterns among the study cases. Comparisons between groups were performed using the Kruskal-Wallis test. Receiver operating characteristic (ROC) and area under the curve (AUC) analysis were conducted to evaluate the ability of these parameters to distinguish severe from non-severe cases of SARS-CoV-2 infection. RESULTS SARS-CoV-2 infection was associated with a significant (p < 0.05) decrease in peripheral blood absolute counts of total lymphocytes and eosinophils, below the reference values along with no abnormal change (p > 0.05) in red blood cell count, haemoglobin, platelets and other red series parameters. At the serum level, SARS-CoV-2 infection was associated with an increase in serum levels of C-reactive protein (C-RP) and glucose above the reference values and to a significant reduction a significant (p < 0.05) reduction in levels of interferon-gamma (INF-γ), Tumour Necrosis Factor alfa (TNF-α) and the interleukin 1 beta (IL-1β) and IL-6 in severe cases, when compared to negative cases. Haematological, biochemical and cytokine profiles segregate severe from non-severe cases of COVID-19 with an excellent performance of C-RP (AUC = 0.95; p < 0.001) and good performance of lymphocytes (AUC = 0.88; p < 0.001) and IL-15 (AUC = 0.86; p < 0.001). CONCLUSION The lack of variation in red and platelet series, coupled with a decrease in the levels of classical pro-inflammatory in severe cases, deviates from what has been reported in other contexts suggesting, that there may be peculiarities in COVID-19 manifestation within the context of this study population. Furthermore, these results identify parameters with potential for clinical management of COVID-19 and therefore good resource allocation, particularly for severe cases.
Collapse
Affiliation(s)
- Vânia Maphossa
- Instituto Nacional de Saúde, Maputo, Mozambique.
- Faculdade de Medicina, Universidade Eduardo Mondlane, Maputo, Mozambique.
| | | | | | | | | | | | | | - Lúcia Chambal
- Faculdade de Medicina, Universidade Eduardo Mondlane, Maputo, Mozambique
- Hospital Central de Maputo, Maputo, Mozambique
| | | | - Jahit Sacarlal
- Faculdade de Medicina, Universidade Eduardo Mondlane, Maputo, Mozambique
| | - Eugênia Terra-Granado
- Centro de Pesquisas, Instituto Nacional de Câncer (INCA), Rio de Janeiro, Brazil
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Bahia, Brazil
| | - Raquel Matavele Chissumba
- Instituto Nacional de Saúde, Maputo, Mozambique.
- Centro de Investigação e Desenvolvimento em Etnobotânica, Namaacha, Mozambique.
| |
Collapse
|
3
|
Pyuza JJ, van Dorst MM, Stam K, Wammes L, König M, Kullaya VI, Kruize Y, Huisman W, Andongolile N, Ngowi A, Shao ER, Mremi A, Hogendoorn PC, Msuya SE, Jochems SP, de Steenhuijsen Piters WA, Yazdanbakhsh M. Lifestyle score is associated with cellular immune profiles in healthy Tanzanian adults. Brain Behav Immun Health 2024; 41:100863. [PMID: 39398291 PMCID: PMC11470418 DOI: 10.1016/j.bbih.2024.100863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/31/2024] [Accepted: 09/16/2024] [Indexed: 10/15/2024] Open
Abstract
Immune system and vaccine responses vary across geographical locations worldwide, not only between high and low-middle income countries (LMICs), but also between rural and urban populations within the same country. Lifestyle factors such as housing conditions, exposure to microorganisms and parasites and diet are associated with rural-and urban-living. However, the relationships between these lifestyle factors and immune profiles have not been mapped in detail. Here, we profiled the immune system of 100 healthy Tanzanians living across four rural/urban areas using mass cytometry. We developed a lifestyle score based on an individual's household assets, housing condition and recent dietary history and studied the association with cellular immune profiles. Seventeen out of 80 immune cell clusters were associated with living location or lifestyle score, with eight identifiable only using lifestyle score. Individuals with low lifestyle score, most of whom live in rural settings, showed higher frequencies of NK cells, plasmablasts, atypical memory B cells, T helper 2 cells, regulatory T cells and activated CD4+ T effector memory cells expressing CD38, HLA-DR and CTLA-4. In contrast, those with high lifestyle score, most of whom live in urban areas, showed a less activated state of the immune system illustrated by higher frequencies of naïve CD8+ T cells. Using an elastic net machine learning model, we identified cellular immune signatures most associated with lifestyle score. Assuming a link between these immune profiles and vaccine responses, these signatures may inform us on the cellular mechanisms underlying poor responses to vaccines, but also reduced autoimmunity and allergies in low- and middle-income countries.
Collapse
Affiliation(s)
- Jeremia J. Pyuza
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center, ZA, Leiden, Netherlands
- Department of Pathology, Kilimanjaro Christian Medical Centre, Moshi, Tanzania
- Institute of Public Health, Kilimanjaro Christian University Medical College (KCMUCo), Moshi, Tanzania
- Kilimanjaro Clinical Research Institute (KCRI), Kilimanjaro Christian Medical Centre, Moshi, Tanzania
| | - Marloes M.A.R. van Dorst
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center, ZA, Leiden, Netherlands
| | - Koen Stam
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center, ZA, Leiden, Netherlands
| | - Linda Wammes
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center, ZA, Leiden, Netherlands
| | - Marion König
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center, ZA, Leiden, Netherlands
| | - Vesla I. Kullaya
- Kilimanjaro Clinical Research Institute (KCRI), Kilimanjaro Christian Medical Centre, Moshi, Tanzania
- Department of Medical Biochemistry and Molecular Biology, Kilimanjaro Christian Medical College (KCMUCo), Moshi, Tanzania
| | - Yvonne Kruize
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center, ZA, Leiden, Netherlands
| | - Wesley Huisman
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center, ZA, Leiden, Netherlands
| | - Nikuntufya Andongolile
- Department of Community Medicine, Kilimanjaro Christian Medical Centre (KCMC), Moshi, Tanzania
| | - Anastazia Ngowi
- Department of Community Medicine, Kilimanjaro Christian Medical Centre (KCMC), Moshi, Tanzania
| | - Elichilia R. Shao
- Department of Internal Medicine, Kilimanjaro Christian Medical University College (KCMUCo), Moshi, Tanzania
- Department of Internal Medicine, Kilimanjaro Christian Medical Centre (KCMC), Moshi, Tanzania
| | - Alex Mremi
- Department of Pathology, Kilimanjaro Christian Medical Centre, Moshi, Tanzania
| | | | - Sia E. Msuya
- Institute of Public Health, Kilimanjaro Christian University Medical College (KCMUCo), Moshi, Tanzania
- Department of Community Medicine, Kilimanjaro Christian Medical Centre (KCMC), Moshi, Tanzania
| | - Simon P. Jochems
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center, ZA, Leiden, Netherlands
| | | | - Maria Yazdanbakhsh
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center, ZA, Leiden, Netherlands
| |
Collapse
|
4
|
Kouyate TS, Nguyen AN, Plotkin AL, Ford R, Idoko OT, Odumade OA, Masiria G, Jude J, Diray-Arce J, McEnaney K, Ozonoff A, Steen H, Kollmann TR, Richmond PC, van den Biggelaar AHJ, Kampmann B, Pomat W, Levy O, Smolen KK. Plasma adenosine deaminase-1 and -2 activities are lower at birth in Papua New Guinea than in The Gambia but converge over the first weeks of life. Front Immunol 2024; 15:1425349. [PMID: 39386208 PMCID: PMC11461337 DOI: 10.3389/fimmu.2024.1425349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/20/2024] [Indexed: 10/12/2024] Open
Abstract
Introduction Dynamic cellular and molecular adaptations in early life significantly impact health and disease. Upon birth, newborns are immediately challenged by their environment, placing urgent demands on the infant immune system. Adenosine deaminases (ADAs) are enzymatic immune modulators present in two isoforms - ADA-1 and ADA-2. Infants exhibit low ADA activity, resulting in high plasma adenosine concentrations and a consequent anti-inflammatory/anti-Th1 bias. While longitudinal studies of plasma ADA have been conducted in infants in The Gambia (GAM), little is known regarding ADA trajectories in other parts of the world. Methods Herein, we characterized plasma ADA activity in an infant cohort in Papua New Guinea (PNG; n=83) and compared to ontogeny of ADA activity in a larger cohort in GAM (n=646). Heparinized peripheral blood samples were collected at day of life (DOL) 0, DOL7, DOL30, and DOL128. Plasma ADA-1, ADA-2, and total ADA activities were measured by chromogenic assay. Results Compared to GAM infants, PNG infants had significantly lower ADA-1 (0.9-fold), ADA-2 (0.42-fold), and total ADA (0.84-fold) activities at birth which converged by DOL30. Discussion Overall, discovery of a distinct baseline and a consistent pattern of increasing plasma ADA activity in early life in two genetically and geographically distinct populations validates and extends previous findings on the robustness of early life immune ontogeny.
Collapse
Affiliation(s)
- Thomas S Kouyate
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States
| | - Athena N Nguyen
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States
| | - Alec L Plotkin
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States
| | - Rebeca Ford
- Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea
| | - Olubukola T Idoko
- Vaccines & Immunity Theme, Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, Gambia
- The Vaccine Centre, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Oludare A Odumade
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Division of Medicine Critical Care, Boston Children's Hospital, Boston, MA, United States
| | - Geraldine Masiria
- Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea
| | - Joe Jude
- Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea
| | - Joann Diray-Arce
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Kerry McEnaney
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States
| | - Al Ozonoff
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Broad Institute of Massachusetts Institute of Technology & Harvard, Cambridge, MA, United States
| | - Hanno Steen
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Department of Pathology, Boston Children's Hospital, Boston, MA, United States
| | | | - Peter C Richmond
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
- Division of Pediatrics, School of Medicine, University of Western Australia, Perth Children's Hospital, Perth, WA, Australia
| | - Anita H J van den Biggelaar
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| | - Beate Kampmann
- Vaccines & Immunity Theme, Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, Gambia
- Charité Centre for Global Health and Institute for International Health, Charité - Universitätsmedizin, Berlin, Germany
| | - William Pomat
- Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea
| | - Ofer Levy
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Broad Institute of Massachusetts Institute of Technology & Harvard, Cambridge, MA, United States
| | - Kinga K Smolen
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| |
Collapse
|
5
|
Adiga V, Bindhu H, Ahmed A, Chetan Kumar N, Tripathi H, D’Souza G, Dias M, Shivalingaiah S, Rao S, K N S, Hawrylowicz C, Dwarkanath P, Vyakarnam A. Immune profiling reveals umbilical cord blood mononuclear cells from South India display an IL-8 dominant, CXCL-10 deficient polyfunctional monocyte response to pathogen-associated molecular patterns that is distinct from adult blood cells. Clin Exp Immunol 2024; 217:263-278. [PMID: 38695079 PMCID: PMC11310697 DOI: 10.1093/cei/uxae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/28/2024] [Accepted: 05/14/2024] [Indexed: 08/10/2024] Open
Abstract
Neonate responses to pathogen-associated molecular patterns (PAMPS) differ from adults; such understanding is poor in Indian neonates, despite recognized significant infectious risk. Immune profiling analysis was undertaken of 10 secreted mediators contextualized with cellular source induced by six PAMPs in umbilical cord (CB; n = 21) and adult-blood (PBMC; n = 14) from a tertiary care hospital in South India. Differential cytokine expression analysis (minimum log2-fold difference; adj P-value < 0.05) identified bacterial PAMPs induced higher concentrations of IL-1β, IL-10, TNF-α in adults versus IL-8, GM-CSF, IFN-γ, and IL-2 in CB. CB responded to poly I:C and SARS-CoV-2 lysate with a dominant IL-8 response, whereas in PBMC, CXCL-10 dominated poly I:C, but not SARS-CoV-2, responses, highlighting potential IL-8 importance, in the absence of Type I Interferons, in antiviral CB immunity. Candida albicans was the only PAMP to uniformly induce higher secretion of effectors in CB. The predominant source of IL-8/IL-6/TNF-α/IL-1β in both CB and PBMC was polyfunctional monocytes and IFN-γ/IL-2/IL-17 from innate lymphocytes. Correlation matrix analyses revealed IL-8 to be the most differentially regulated, correlating positively in CB versus negatively in PBMC with IL-6, GM-CSF, IFN-γ, IL-2, consistent with more negatively regulated cytokine modules in adults, potentially linked to higher anti-inflammatory IL-10. Cord and adult blood from India respond robustly to PAMPs with unique effector combinations. These data provide a strong foundation to monitor, explore, mechanisms that regulate such immunity during the life course, an area of significant global health importance given infection-related infant mortality incidence.
Collapse
Affiliation(s)
- Vasista Adiga
- Human Immunology Laboratory, Division of Infectious Diseases, St. John’s Research Institute, Bangalore, Karnataka, India
- Department of Biotechnology, PES University, Bangalore, Karnataka, India
| | - Hima Bindhu
- Human Immunology Laboratory, Division of Infectious Diseases, St. John’s Research Institute, Bangalore, Karnataka, India
| | - Asma Ahmed
- Human Immunology Laboratory, Division of Infectious Diseases, St. John’s Research Institute, Bangalore, Karnataka, India
| | - Nirutha Chetan Kumar
- Human Immunology Laboratory, Division of Infectious Diseases, St. John’s Research Institute, Bangalore, Karnataka, India
| | - Himanshu Tripathi
- Human Immunology Laboratory, Division of Infectious Diseases, St. John’s Research Institute, Bangalore, Karnataka, India
| | - George D’Souza
- Department of Pulmonary Medicine, St. John’s Medical College, Bangalore, India
| | - Mary Dias
- Division of Infectious Diseases, St. John’s Research Institute, Bangalore, Karnataka, India
| | | | - Srishti Rao
- Division of Infectious Diseases, St. John’s Research Institute, Bangalore, Karnataka, India
| | - Shanti K N
- Department of Biotechnology, PES University, Bangalore, Karnataka, India
| | - Catherine Hawrylowicz
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, Faculty of Life Science & Medicine, King’s College, London, UK
| | - Pratibha Dwarkanath
- Division of Nutrition, St. John’s Research Institute, Bangalore, Karnataka, India
| | - Annapurna Vyakarnam
- Human Immunology Laboratory, Division of Infectious Diseases, St. John’s Research Institute, Bangalore, Karnataka, India
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, Faculty of Life Science & Medicine, King’s College, London, UK
| |
Collapse
|
6
|
Morrocchi E, van Haren S, Palma P, Levy O. Modeling human immune responses to vaccination in vitro. Trends Immunol 2024; 45:32-47. [PMID: 38135599 PMCID: PMC11688643 DOI: 10.1016/j.it.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023]
Abstract
The human immune system is a complex network of coordinated components that are crucial for health and disease. Animal models, commonly used to study immunomodulatory agents, are limited by species-specific differences, low throughput, and ethical concerns. In contrast, in vitro modeling of human immune responses can enable species- and population-specific mechanistic studies and translational development within the same study participant. Translational accuracy of in vitro models is enhanced by accounting for genetic, epigenetic, and demographic features such as age, sex, and comorbidity. This review explores various human in vitro immune models, considers evidence that they may resemble human in vivo responses, and assesses their potential to accelerate and de-risk vaccine discovery and development.
Collapse
Affiliation(s)
- Elena Morrocchi
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, Rome, Italy; Precision Vaccines Program, Boston Children's Hospital, Boston, MA, USA
| | - Simon van Haren
- Precision Vaccines Program, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Paolo Palma
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, Rome, Italy; Chair of Pediatrics, Department of Systems Medicine, University of Rome 'Tor Vergata', Rome, Italy.
| | - Ofer Levy
- Precision Vaccines Program, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; The Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
7
|
Prospective multicentre study of host response signatures in neonatal sepsis in Sub Saharan Africa. Sci Rep 2022; 12:21458. [PMID: 36509812 PMCID: PMC9743113 DOI: 10.1038/s41598-022-25892-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Few biomarkers for sepsis diagnosis are commonly used in neonatal sepsis. While the role of host response is increasingly recognized in sepsis pathogenesis and prognosis, there is a need for evaluating new biomarkers targeting host response in regions where sepsis burden is high and medico-economic resources are scarce. The objective of the study is to evaluate diagnostic and prognostic accuracy of biomarkers of neonatal sepsis in Sub Saharan Africa. This prospective multicentre study included newborn infants delivered in the Abomey-Calavi region in South Benin and their follow-up from birth to 3 months of age. Accuracy of transcriptional (CD74, CX3CR1), proteic (PCT, IL-6, IL-10, IP-10) biomarkers and clinical characteristics to diagnose and prognose neonatal sepsis were measured. At delivery, cord blood from all consecutive newborns were sampled and analysed, and infants were followed for a 12 weeks' period. Five hundred and eighty-one newborns were enrolled. One hundred and seventy-two newborns developed neonatal sepsis (29.6%) and death occurred in forty-nine infants (8.4%). Although PCT, IL-6 and IP-10 levels were independently associated with sepsis diagnosis, diagnostic accuracy of clinical variables combinations was similar to combinations with biomarkers and superior to biomarkers alone. Nonetheless, CD74, being the only biomarkers independently associated with mortality, showed elevated prognosis accuracy (AUC > 0.9) either alone or in combination with other biomarkers (eg. CD74/IP-10) or clinical criterion (eg. Apgar 1, birth weight). These results suggest that cord blood PCT had a low accuracy for diagnosing early onset neonatal sepsis in Sub Saharan African neonates, while association of clinical criterion showed to be more accurate than any biomarkers taken independently. At birth, CD74, either associated with IP-10 or clinical criterion, had the best accuracy in prognosing sepsis mortality.Trial registration Clinicaltrial.gov registration number: NCT03780712. Registered 19 December 2018. Retrospectively registered.
Collapse
|
8
|
Chapman TJ, Pham M, Bajorski P, Pichichero ME. Antibiotic Use and Vaccine Antibody Levels. Pediatrics 2022; 149:186888. [PMID: 35474546 PMCID: PMC9648114 DOI: 10.1542/peds.2021-052061] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/05/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The majority of children are prescribed antibiotics in the first 2 years of life while vaccine-induced immunity develops. Researchers have suggested a negative association of antibiotic use with vaccine-induced immunity in adults, but data are lacking in children. METHODS From 2006 to 2016, children aged 6 to 24 months were observed in a cohort study. A retrospective, unplanned secondary analysis of the medical record regarding antibiotic prescriptions and vaccine antibody measurements was undertaken concurrently. Antibody measurements relative to diphtheria-tetanus-acellular pertussis (DTaP), inactivated polio (IPV), Haemophilus influenzae type b (Hib), and pneumococcal conjugate (PCV) vaccines were made. RESULTS In total, 560 children were compared (342 with and 218 without antibiotic prescriptions). Vaccine-induced antibody levels to several DTaP and PCV antigens were lower (P < .05) in children given antibiotics. A higher frequency of vaccine-induced antibodies below protective levels in children given antibiotics occurred at 9 and 12 months of age (P < .05). Antibiotic courses over time was negatively associated with vaccine-induced antibody levels. For each antibiotic course the child received, prebooster antibody levels to DTaP antigens were reduced by 5.8%, Hib by 6.8%, IPV by 11.3%, and PCV by 10.4% (all P ≤ .05), and postbooster antibody levels to DTaP antigens were reduced by 18.1%, Hib by 21.3%, IPV by 18.9%, and PCV by 12.2% (all P < .05). CONCLUSIONS Antibiotic use in children <2 years of age is associated with lower vaccine-induced antibody levels to several vaccines.
Collapse
Affiliation(s)
- Timothy J. Chapman
- Center for Infectious Diseases and Immunology, Rochester
General Hospital Research Institute, Rochester, New York
| | - Minh Pham
- School of Mathematical Sciences, College of Science,
Rochester Institute of Technology, Rochester, New York
| | - Peter Bajorski
- School of Mathematical Sciences, College of Science,
Rochester Institute of Technology, Rochester, New York
| | - Michael E. Pichichero
- Center for Infectious Diseases and Immunology, Rochester
General Hospital Research Institute, Rochester, New York,Address correspondence to Michael E. Pichichero, MD, Rochester
General Hospital Research Institute, Center for Infectious Diseases and
Immunology, 1425 Portland Ave, Rochester, NY 14621. E-mail:
| |
Collapse
|
9
|
Miko E, Csaszar A, Bodis J, Kovacs K. The Maternal-Fetal Gut Microbiota Axis: Physiological Changes, Dietary Influence, and Modulation Possibilities. Life (Basel) 2022; 12:424. [PMID: 35330175 PMCID: PMC8955030 DOI: 10.3390/life12030424] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 02/07/2023] Open
Abstract
The prenatal period and the first years of life have a significant impact on the health issues and life quality of an individual. The appropriate development of the immune system and the central nervous system are thought to be major critical determining events. In parallel to these, establishing an early intestinal microbiota community is another important factor for future well-being interfering with prenatal and postnatal developmental processes. This review aims at summarizing the main characteristics of maternal gut microbiota and its possible transmission to the offspring, thereby affecting fetal and/or neonatal development and health. Since maternal dietary factors are potential modulators of the maternal-fetal microbiota axis, we will outline current knowledge on the impact of certain diets, nutritional factors, and nutritional modulators during pregnancy on offspring's microbiota and health.
Collapse
Affiliation(s)
- Eva Miko
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, 12 Szigeti Street, 7624 Pécs, Hungary
- National Laboratory for Human Reproduction, University of Pécs, 7624 Pécs, Hungary; (A.C.); (J.B.); (K.K.)
- Janos Szentagothai Research Centre, 20 Ifjusag Street, 7624 Pécs, Hungary
| | - Andras Csaszar
- National Laboratory for Human Reproduction, University of Pécs, 7624 Pécs, Hungary; (A.C.); (J.B.); (K.K.)
- Department of Obstetrics and Gynaecology, Medical School, University of Pécs, 17 Edesanyak Street, 7624 Pécs, Hungary
| | - Jozsef Bodis
- National Laboratory for Human Reproduction, University of Pécs, 7624 Pécs, Hungary; (A.C.); (J.B.); (K.K.)
- Department of Obstetrics and Gynaecology, Medical School, University of Pécs, 17 Edesanyak Street, 7624 Pécs, Hungary
| | - Kalman Kovacs
- National Laboratory for Human Reproduction, University of Pécs, 7624 Pécs, Hungary; (A.C.); (J.B.); (K.K.)
- Department of Obstetrics and Gynaecology, Medical School, University of Pécs, 17 Edesanyak Street, 7624 Pécs, Hungary
| |
Collapse
|
10
|
Vaccine-Induced, High-Magnitude HIV Env-Specific Antibodies with Fc-Mediated Effector Functions Are Insufficient to Protect Infant Rhesus Macaques against Oral SHIV Infection. mSphere 2022; 7:e0083921. [PMID: 35196125 PMCID: PMC8865927 DOI: 10.1128/msphere.00839-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Improved access to antiretroviral therapy (ART) and antenatal care has significantly reduced in utero and peripartum mother-to-child human immunodeficiency virus (HIV) transmission. However, as breast milk transmission of HIV still occurs at an unacceptable rate, there remains a need to develop an effective vaccine for the pediatric population. Previously, we compared different HIV vaccine strategies, intervals, and adjuvants in infant rhesus macaques to optimize the induction of HIV envelope (Env)-specific antibodies with Fc-mediated effector function. In this study, we tested the efficacy of an optimized vaccine regimen against oral simian-human immunodeficiency virus (SHIV) acquisition in infant macaques. Twelve animals were immunized with 1086.c gp120 protein adjuvanted with 3M-052 in stable emulsion and modified vaccinia Ankara (MVA) virus expressing 1086.c HIV Env. Twelve control animals were immunized with empty MVA. The vaccine prime was given within 10 days of birth, with booster doses being administered at weeks 6 and 12. The vaccine regimen induced Env-specific plasma IgG antibodies capable of antibody-dependent cellular cytotoxicity (ADCC) and phagocytosis (ADCP). Beginning at week 15, infants were exposed orally to escalating doses of heterologous SHIV-1157(QNE)Y173H once a week until infected. Despite the induction of strong Fc-mediated antibody responses, the vaccine regimen did not reduce the risk of infection or time to acquisition compared to controls. However, among vaccinated animals, ADCC postvaccination and postinfection was associated with reduced peak viremia. Thus, nonneutralizing Env-specific antibodies with Fc effector function elicited by this vaccine regimen were insufficient for protection against heterologous oral SHIV infection shortly after the final immunization but may have contributed to control of viremia. IMPORTANCE Women of childbearing age are three times more likely to contract HIV infection than their male counterparts. Poor HIV testing rates coupled with low adherence to antiretroviral therapy (ART) result in a high risk of mother-to-infant HIV transmission, especially during the breastfeeding period. A preventative vaccine could curb pediatric HIV infections, reduce potential health sequalae, and prevent the need for lifelong ART in this population. The results of the current study imply that the HIV Env-specific IgG antibodies elicited by this candidate vaccine regimen, despite a high magnitude of Fc-mediated effector function but a lack of neutralizing antibodies and polyfunctional T cell responses, were insufficient to protect infant rhesus macaques against oral virus acquisition.
Collapse
|
11
|
Georgountzou A, Kokkinou D, Taka S, Maggina P, Lakoumentas J, Papaevangelou V, Tsolia M, Xepapadaki P, Andreakos E, Papadopoulos NG. Differential maturation trajectories of innate antiviral immunity in health and atopy. Pediatr Allergy Immunol 2021; 32:1843-1856. [PMID: 34288122 DOI: 10.1111/pai.13601] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 12/23/2022]
Abstract
BACKGROUND The maturation of innate immune responses in health and atopy is still incompletely understood. METHODS We aimed to evaluate age-related trajectories of the TLR3 and TLR7/8 pathways from birth to adulthood and whether these differ between healthy and atopic individuals. Peripheral blood mononuclear cells (PBMCs) were isolated from 39 otherwise healthy, atopic and 39 non-atopic subjects, aged 0-45 years. Selected cytokines involved in antiviral responses were measured by Luminex in culture supernatants of poly(I:C)- and R848-stimulated PBMCs. The non-parametric correlation between age and cytokine expression and differences in developmental trajectories between healthy and atopic subjects were estimated. Patterns of cytokine development were identified with principal component analysis. RESULTS Normal innate immune maturation entails significant and progressive age-related changes in the production of IL-1β, TNF-α, MIP-1β, MCP-3, IP-10, IL-10, IL-12p70, and IFN-γ upon TLR3 and/or TLR7/8 stimulation. Individual cytokines made small contributions to the observed variability; chemokines MCP-3 and IP-10 were key contributors. The development of these pathways deviated in atopic subjects with significant differences observed in the trajectories of IL-1β, MIP-1β, and IL-10 syntheses. CONCLUSION TLR3 and TLR7/8 pathways mature during childhood, while atopy is associated with an abnormal maturation pattern. Suboptimal responses in Th1, inflammatory cytokine, and chemokine production may be implicated in poor antiviral immunity in atopics. Moreover, the deficient maturation of IL-10 synthesis may be implicated in the breaking of tolerance, characterizing the onset of atopic disease.
Collapse
Affiliation(s)
- Anastasia Georgountzou
- Allergy and Clinical Immunology Unit, Second Department of Pediatrics, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitra Kokkinou
- Allergy and Clinical Immunology Unit, Second Department of Pediatrics, National and Kapodistrian University of Athens, Athens, Greece
| | - Stella Taka
- Allergy and Clinical Immunology Unit, Second Department of Pediatrics, National and Kapodistrian University of Athens, Athens, Greece
| | - Paraskevi Maggina
- Allergy and Clinical Immunology Unit, Second Department of Pediatrics, National and Kapodistrian University of Athens, Athens, Greece
| | - John Lakoumentas
- Allergy and Clinical Immunology Unit, Second Department of Pediatrics, National and Kapodistrian University of Athens, Athens, Greece
| | - Vassiliki Papaevangelou
- Third Department of Pediatrics, National and Kapodistrian University of Athens, "Attikon" General University Hospital, Athens, Greece
| | - Maria Tsolia
- Second Department of Pediatrics, National and Kapodistrian University of Athens, "P. & A. Kyriakou" Children's Hospital, Athens, Greece
| | - Paraskevi Xepapadaki
- Second Department of Pediatrics, National and Kapodistrian University of Athens, "P. & A. Kyriakou" Children's Hospital, Athens, Greece
| | - Evangelos Andreakos
- Department of Immunology, Center for Translational and Clinical Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Nikolaos G Papadopoulos
- Allergy and Clinical Immunology Unit, Second Department of Pediatrics, National and Kapodistrian University of Athens, Athens, Greece
- Division of Infection, Inflammation and Respiratory Medicine, University of Manchester, Manchester, UK
| |
Collapse
|
12
|
Kircheis R, Schuster M, Planz O. COVID-19: Mechanistic Model of the African Paradox Supports the Central Role of the NF-κB Pathway. Viruses 2021; 13:1887. [PMID: 34578468 PMCID: PMC8473087 DOI: 10.3390/v13091887] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 12/24/2022] Open
Abstract
The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has expanded into a global pandemic, with more than 220 million affected persons and almost 4.6 million deaths by 8 September 2021. In particular, Europe and the Americas have been heavily affected by high infection and death rates. In contrast, much lower infection rates and mortality have been reported generally in Africa, particularly in the sub-Saharan region (with the exception of the Southern Africa region). There are different hypotheses for this African paradox, including less testing, the young age of the population, genetic disposition, and behavioral and epidemiological factors. In the present review, we address different immunological factors and their correlation with genetic factors, pre-existing immune status, and differences in cytokine induction patterns. We also focus on epidemiological factors, such as specific medication coverage, helminth distribution, and malaria endemics in the sub-Saharan region. An analysis combining different factors is presented that highlights the central role of the NF-κB signaling pathway in the African paradox. Importantly, insights into the interplay of different factors with the underlying immune pathological mechanisms for COVID-19 can provide a better understanding of the disease and the development of new targets for more efficient treatment strategies.
Collapse
Affiliation(s)
| | | | - Oliver Planz
- Institute of Cell Biology and Immunology, Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany
| |
Collapse
|
13
|
Messina NL, Pittet LF, Gardiner K, Freyne B, Francis KL, Zufferey C, Abruzzo V, Morrison C, Allen KJ, Flanagan KL, Ponsonby AL, Robins-Browne R, Shann F, South M, Vuillermin P, Donath S, Casalaz D, Curtis N. Neonatal BCG vaccination and infections in the first year of life: the MIS BAIR randomised controlled trial. J Infect Dis 2021; 224:1115-1127. [PMID: 34146093 DOI: 10.1093/infdis/jiab306] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/06/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Bacille Calmette-Guérin (BCG) vaccination has beneficial off-target effects that may include protecting against non-mycobacterial infectious diseases. We aimed to determine whether neonatal BCG vaccination reduces lower respiratory tract infections (LRTI) in infants in the MIS BAIR trial. METHODS In this investigator-blinded trial, neonates in Australia were randomised to receive BCG-Denmark vaccination or no BCG at birth. Episodes of LRTI were determined by symptoms reported in parent-completed 3-monthly questionnaires over the first year of life. Data were analysed by intention-to-treat using binary regression. Clinicaltrials.gov (NCT01906853). RESULTS From August 2013 to September 2016, 1272 neonates were randomised to the BCG vaccination (n=637) or control (n=635) group. The proportion of participants with an episode of LRTI in the first year of life among BCG-vaccinated infants was 54.8% compared to 58.0% in the control group, resulting in a risk difference of -3.2 (95% CI -9.0 to 2.6) after multiple imputation. There was no interaction observed between the primary outcome and sex, maternal BCG or the other pre-specified effect modifiers. CONCLUSIONS Based on the findings of this trial, there is insufficient evidence to support the use of neonatal BCG vaccination to prevent LRTI in the first year of life in high-income settings.
Collapse
Affiliation(s)
- Nicole L Messina
- Infectious Diseases; Clinical Epidemiology & Biostatistics Unit; Population Allergy, Murdoch Children's Research Institute, Parkville, Victoria, Australia.,Departments of Paediatrics; Microbiology & Immunology, The University of Melbourne, Parkville, Victoria, Australia
| | - Laure F Pittet
- Infectious Diseases; Clinical Epidemiology & Biostatistics Unit; Population Allergy, Murdoch Children's Research Institute, Parkville, Victoria, Australia.,Infection Diseases Unit; Department of General Medicine; Department of Research Operations, The Royal Children's Hospital, Parkville, Victoria, Australia
| | - Kaya Gardiner
- Infectious Diseases; Clinical Epidemiology & Biostatistics Unit; Population Allergy, Murdoch Children's Research Institute, Parkville, Victoria, Australia.,Infection Diseases Unit; Department of General Medicine; Department of Research Operations, The Royal Children's Hospital, Parkville, Victoria, Australia
| | - Bridget Freyne
- Infectious Diseases; Clinical Epidemiology & Biostatistics Unit; Population Allergy, Murdoch Children's Research Institute, Parkville, Victoria, Australia.,Departments of Paediatrics; Microbiology & Immunology, The University of Melbourne, Parkville, Victoria, Australia.,Institute of Infection & Global Health University of Liverpool & Malawi-Liverpool Wellcome Trust Research Programme, Liverpool, UK
| | - Kate L Francis
- Infectious Diseases; Clinical Epidemiology & Biostatistics Unit; Population Allergy, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Christel Zufferey
- Infectious Diseases; Clinical Epidemiology & Biostatistics Unit; Population Allergy, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Veronica Abruzzo
- Infectious Diseases; Clinical Epidemiology & Biostatistics Unit; Population Allergy, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Clare Morrison
- Infectious Diseases; Clinical Epidemiology & Biostatistics Unit; Population Allergy, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Katrina J Allen
- Formerly of Centre for Food and Allergy Research, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Katie L Flanagan
- School of Health Sciences, University of Tasmania, Launceston, Tasmania, Australia.,School of Health and Biomedical Science, RMIT University, Melbourne, Victoria, Australia.,Department of Immunology and Pathology, Monash University, Melbourne, Victoria, Australia
| | - Anne-Louise Ponsonby
- Infectious Diseases; Clinical Epidemiology & Biostatistics Unit; Population Allergy, Murdoch Children's Research Institute, Parkville, Victoria, Australia.,Departments of Paediatrics; Microbiology & Immunology, The University of Melbourne, Parkville, Victoria, Australia
| | - Roy Robins-Browne
- Infectious Diseases; Clinical Epidemiology & Biostatistics Unit; Population Allergy, Murdoch Children's Research Institute, Parkville, Victoria, Australia.,Departments of Paediatrics; Microbiology & Immunology, The University of Melbourne, Parkville, Victoria, Australia
| | - Frank Shann
- Departments of Paediatrics; Microbiology & Immunology, The University of Melbourne, Parkville, Victoria, Australia
| | - Mike South
- Infectious Diseases; Clinical Epidemiology & Biostatistics Unit; Population Allergy, Murdoch Children's Research Institute, Parkville, Victoria, Australia.,Departments of Paediatrics; Microbiology & Immunology, The University of Melbourne, Parkville, Victoria, Australia.,Infection Diseases Unit; Department of General Medicine; Department of Research Operations, The Royal Children's Hospital, Parkville, Victoria, Australia
| | - Peter Vuillermin
- Infectious Diseases; Clinical Epidemiology & Biostatistics Unit; Population Allergy, Murdoch Children's Research Institute, Parkville, Victoria, Australia.,School of Medicine, Deakin University, Geelong, Victoria, Australia.,Child health research unit, Barwon Health, Geelong, Victoria, Australia
| | - Susan Donath
- Infectious Diseases; Clinical Epidemiology & Biostatistics Unit; Population Allergy, Murdoch Children's Research Institute, Parkville, Victoria, Australia.,Departments of Paediatrics; Microbiology & Immunology, The University of Melbourne, Parkville, Victoria, Australia
| | - Dan Casalaz
- Neonatal Intensive Care Unit, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Nigel Curtis
- Infectious Diseases; Clinical Epidemiology & Biostatistics Unit; Population Allergy, Murdoch Children's Research Institute, Parkville, Victoria, Australia.,Departments of Paediatrics; Microbiology & Immunology, The University of Melbourne, Parkville, Victoria, Australia.,Infection Diseases Unit; Department of General Medicine; Department of Research Operations, The Royal Children's Hospital, Parkville, Victoria, Australia
| |
Collapse
|
14
|
Fülöp V, Demeter J, Cseh Á. [Significance and effects of prenatal and postnatal microbiome in the period of early individual development and options for interventional treatment]. Orv Hetil 2021; 162:731-740. [PMID: 33965906 DOI: 10.1556/650.2021.32082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 11/24/2020] [Indexed: 11/19/2022]
Abstract
Összefoglaló. A humán mikrobiom az emberi szervezetben és az emberi testfelszínen élő mikrobaközösségek összessége, amelyek többsége a gyomor-bél rendszerben él. Ezek a mikrobaközösségek számos és sokféle baktériumot tartalmaznak, gombákat, vírusokat, archeákat és protozoonokat. Ez a mikrobiális közösség, vagy mikrobiota, a gazdaszervezetben nagyrészt egymással kölcsönösségi viszonyban tenyészik, és gondoskodik a bélben a tápanyagok anyagcseréjéről, kalibrálja az anyagcsere-működést, tanítja az immunrendszert, fenntartja a közösség integritását, és véd a kórokozók ellen. A majdan megszületendő magzat a megfelelő tápanyagellátását az anyai véráramból kapja, és így az anyai szervezetben a mikrobiota indukálta baktériumkomponensek vagy metabolitok hatékonyan átvihetők a magzatba. Az anyai mikrobiális közösségek - ideértve a praenatalis bélrendszeri, hüvelyi, száj- és bőrmikrobiomot - a terhesség alatt valójában kifejezett változásokon mennek keresztül, amelyek befolyásolhatják az egészség megőrzését, és hozzájárulhatnak a közismert betegségek kialakulásához. A magzat nem steril, és immunológiai szempontból sem naiv, hanem az anya révén környezeti ingerek hatásaitól befolyásolva kölcsönhatásba lép az anyai immunrendszerrel. Számos anyai tényező - beleértve a hormonokat, a citokineket és a mikrobiomot - módosíthatja az intrauterin környezetet, ezáltal befolyásolva a magzati immunrendszer fejlődését. A fokozott stresszben élő anyák csecsemőinél nagyobb az allergia és a gyomor-bél rendszeri rendellenességek aránya. A várandós étrendje is befolyásolja a magzati mikrobiomot a méh közvetítésével. A bélflóránk, vagyis a mikrobiom, a belünkben élő mikrobák összessége és szimbiózisa, amelynek kényes egyensúlya már csecsemőkorban kialakul, és döntően meghatározza az intestinalis barrier és a bélasszociált immunrendszer működését. A probiotikumok szaporodásához szükséges prebiotikummal is befolyásolható a bélflóra. A pre- és a probiotikum kombinációja a szimbiotikum. Az anyatej a patogénekkel szemben protektív hatású, részben azáltal, hogy emeli a Bifidobacterium-számot az újszülött bélflórájában. A dysbiosis a kommenzális, egészséges bélflóra megváltozása. Ennek szerepét feltételezik funkcionális gastrointestinalis kórképekben, egyre több pszichiátriai és neurológiai kórképben is, mint az autizmus-spektrumzavar. Orv Hetil. 2021; 162(19): 731-740. Summary. The human microbiome is the totality of microbe communities living in the human body and on the human body surface, most of which live in the gastrointestinal tract. These microbe communities contain many and varied bacteria, fungi, viruses, archaea and protozoa. This microbial community or microbiota in the host is largely reciprocal and takes care of nutrient metabolism in the gut, calibrates metabolism, teaches the immune system, maintains community integrity, and protects against pathogens. The fetus to be born is adequately supplied with nutrients from the maternal bloodstream, and thus microbial-induced bacterial components or metabolites can be efficiently transferred to the fetus in the maternal body. Maternal microbial communities, including prenatal intestinal, vaginal, oral, and dermal microbiomes, actually undergo pronounced changes during pregnancy that can affect health maintenance and contribute to the development of well-known diseases. The fetus is not sterile or immunologically naïve, but interacts with the maternal immune system through the effects of environmental stimuli through the mother. Many maternal factors, including hormones, cytokines, and the microbiome, can modify the intrauterine environment, thereby affecting the development of the fetal immune system. Infants of mothers under increased stress have higher rates of allergies and gastrointestinal disorders. The diet of the gravida also affects the fetal microbiome through the uterus. Our intestinal flora, or microbiome, is the totality and symbiosis of the microbes living in them, the delicate balance of which is established in infancy and decisively determines the functioning of the intestinal barrier and the intestinal associated immune system. The prebiotic required for the proliferation of probiotics can also affect the intestinal flora. The combination of pre- and probiotic is symbiotic. Breast milk has a protective effect against pathogens, in part by raising the number of Bifidobacteria in the intestinal flora of the newborn. Dysbiosis is a change in the commensal, healthy gut flora. Its role is hypothesized in functional gastrointestinal disorders, as well as in more and more psychiatric and neurological disorders such as the autism spectrum disorder. Orv Hetil. 2021; 162(19): 731-740.
Collapse
Affiliation(s)
- Vilmos Fülöp
- 1 Magyar Honvédség Egészségügyi Központ, Szülészet-nőgyógyászati Osztály, Semmelweis Egyetem Gyakorló Kórház, Budapest, Podmaniczky u. 111., 1062
- 2 Miskolci Egyetem, Egészségügyi Kar, Miskolc
| | - János Demeter
- 1 Magyar Honvédség Egészségügyi Központ, Szülészet-nőgyógyászati Osztály, Semmelweis Egyetem Gyakorló Kórház, Budapest, Podmaniczky u. 111., 1062
| | - Áron Cseh
- 3 Semmelweis Egyetem, Általános Orvostudományi Kar, I. Gyermekgyógyászati Klinika, Budapest
| |
Collapse
|
15
|
Martynova E, Davidyuk Y, Kabwe E, Garanina EE, Shakirova V, Pavelkina V, Uskova Y, Stott RJ, Foster TL, Markelova M, Goyal M, Gupta A, Bhola M, Kumar V, Baranwal M, Rizvanov AA, Khaiboullina SF. Cytokine, Chemokine, and Metalloprotease Activation in the Serum of Patients with Nephropathia Epidemica from the Republic of Tatarstan and the Republic of Mordovia, Russia. Pathogens 2021; 10:pathogens10050527. [PMID: 33925451 PMCID: PMC8145562 DOI: 10.3390/pathogens10050527] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/18/2021] [Accepted: 04/24/2021] [Indexed: 12/31/2022] Open
Abstract
Nephropathia Epidemica (NE), endemic to several Volga regions of Russia, including the Republic of Tatarstan (RT) and the Republic of Mordovia (RM), is a mild form of hemorrhagic fever with renal syndrome caused by infection with rodent-borne orthohantaviruses. Although NE cases have been reported for decades, little is known about the hantavirus strains associated with human infection in these regions. There is also limited understanding of the pathogenesis of NE in the RT and the RM. To address these knowledge gaps, we conducted comparative analyses of patients with NE in the RT and the RM. Clinical symptoms were more severe in patients with NE from the RM with longer observed duration of fever symptoms and hospitalization. Analysis of patient sera showed changes in the levels of numerous cytokines, chemokines, and matrix metalloproteases (MMPs) in patients with NE from both the RT and the RM, suggesting leukocyte activation, extracellular matrix degradation, and leukocyte chemotaxis. Interestingly, levels of several cytokines were distinctly different between patients NE from the RT when compared with those from the RM. These differences were not related to the genetic variation of orthohantaviruses circulating in those regions, as sequence analysis showed that Puumala virus (PUUV) was the causative agent of NE in these regions. Additionally, only the “Russia” (RUS) genetic lineage of PUUV was detected in the serum samples of patients with NE from both the RT and the RM. We therefore conclude that differences in serum cytokine, chemokine, and MMP levels between the RT and the RM are related to environmental factors and lifestyle differences that influence individual immune responses to orthohantavirus infection.
Collapse
Affiliation(s)
- Ekaterina Martynova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.D.); (E.K.); (E.E.G.); (M.M.); (A.A.R.); (S.F.K.)
- Correspondence:
| | - Yuriy Davidyuk
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.D.); (E.K.); (E.E.G.); (M.M.); (A.A.R.); (S.F.K.)
| | - Emmanuel Kabwe
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.D.); (E.K.); (E.E.G.); (M.M.); (A.A.R.); (S.F.K.)
| | - Ekaterina E. Garanina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.D.); (E.K.); (E.E.G.); (M.M.); (A.A.R.); (S.F.K.)
| | - Venera Shakirova
- Infectious Diseases Department, Kazan State Medical Academy, 420012 Kazan, Russia;
| | - Vera Pavelkina
- Infectious Diseases Department, National Research Ogarev Mordovia State University, 430005 Saransk, Russia; (V.P.); (Y.U.)
| | - Yulia Uskova
- Infectious Diseases Department, National Research Ogarev Mordovia State University, 430005 Saransk, Russia; (V.P.); (Y.U.)
| | - Robert J. Stott
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, Sutton Bonington Campus, The University of Nottingham, Loughborough LE12 5RD, UK; (R.J.S.); (T.L.F.)
| | - Toshana L. Foster
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, Sutton Bonington Campus, The University of Nottingham, Loughborough LE12 5RD, UK; (R.J.S.); (T.L.F.)
| | - Maria Markelova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.D.); (E.K.); (E.E.G.); (M.M.); (A.A.R.); (S.F.K.)
| | - Mehendi Goyal
- Doconvid.ai, Bestech Business Tower, Mohali 160055, India;
| | - Abhimat Gupta
- Department of Computer Science and Engineering, Thapar Institute of Engineering and Technology, Patiala 147004, India;
| | - Mannan Bhola
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147004, India; (M.B.); (M.B.)
| | - Vinay Kumar
- Department of Electronics and Communication Engineering, Thapar Institute of Engineering and Technology, Patiala 147004, India;
| | - Manoj Baranwal
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147004, India; (M.B.); (M.B.)
| | - Albert A. Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.D.); (E.K.); (E.E.G.); (M.M.); (A.A.R.); (S.F.K.)
| | - Svetlana F. Khaiboullina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.D.); (E.K.); (E.E.G.); (M.M.); (A.A.R.); (S.F.K.)
| |
Collapse
|
16
|
Nkurunungi G, Zirimenya L, Natukunda A, Nassuuna J, Oduru G, Ninsiima C, Zziwa C, Akello F, Kizindo R, Akello M, Kaleebu P, Wajja A, Luzze H, Cose S, Webb E, Elliott AM. Population differences in vaccine responses (POPVAC): scientific rationale and cross-cutting analyses for three linked, randomised controlled trials assessing the role, reversibility and mediators of immunomodulation by chronic infections in the tropics. BMJ Open 2021; 11:e040425. [PMID: 33593767 PMCID: PMC7893603 DOI: 10.1136/bmjopen-2020-040425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 10/01/2020] [Accepted: 11/14/2020] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Vaccine-specific immune responses vary between populations and are often impaired in low income, rural settings. Drivers of these differences are not fully elucidated, hampering identification of strategies for optimising vaccine effectiveness. We hypothesise that urban-rural (and regional and international) differences in vaccine responses are mediated to an important extent by differential exposure to chronic infections, particularly parasitic infections. METHODS AND ANALYSIS Three related trials sharing core elements of study design and procedures (allowing comparison of outcomes across the trials) will test the effects of (1) individually randomised intervention against schistosomiasis (trial A) and malaria (trial B), and (2) Bacillus Calmette-Guérin (BCG) revaccination (trial C), on a common set of vaccine responses. We will enrol adolescents from Ugandan schools in rural high-schistosomiasis (trial A) and rural high-malaria (trial B) settings and from an established urban birth cohort (trial C). All participants will receive BCG on day '0'; yellow fever, oral typhoid and human papilloma virus (HPV) vaccines at week 4; and HPV and tetanus/diphtheria booster vaccine at week 28. Primary outcomes are BCG-specific IFN-γ responses (8 weeks after BCG) and for other vaccines, antibody responses to key vaccine antigens at 4 weeks after immunisation. Secondary analyses will determine effects of interventions on correlates of protective immunity, vaccine response waning, priming versus boosting immunisations, and parasite infection status and intensity. Overarching analyses will compare outcomes between the three trial settings. Sample archives will offer opportunities for exploratory evaluation of the role of immunological and 'trans-kingdom' mediators in parasite modulation of vaccine-specific responses. ETHICS AND DISSEMINATION Ethics approval has been obtained from relevant Ugandan and UK ethics committees. Results will be shared with Uganda Ministry of Health, relevant district councils, community leaders and study participants. Further dissemination will be done through conference proceedings and publications. TRIAL REGISTRATION NUMBERS ISRCTN60517191, ISRCTN62041885, ISRCTN10482904.
Collapse
Affiliation(s)
- Gyaviira Nkurunungi
- Immunomodulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine (MRC/UVRI and LSHTM) Uganda Research Unit, Entebbe, Uganda
| | - Ludoviko Zirimenya
- Immunomodulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine (MRC/UVRI and LSHTM) Uganda Research Unit, Entebbe, Uganda
| | - Agnes Natukunda
- Immunomodulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine (MRC/UVRI and LSHTM) Uganda Research Unit, Entebbe, Uganda
| | - Jacent Nassuuna
- Immunomodulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine (MRC/UVRI and LSHTM) Uganda Research Unit, Entebbe, Uganda
| | - Gloria Oduru
- Immunomodulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine (MRC/UVRI and LSHTM) Uganda Research Unit, Entebbe, Uganda
| | - Caroline Ninsiima
- Immunomodulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine (MRC/UVRI and LSHTM) Uganda Research Unit, Entebbe, Uganda
| | - Christopher Zziwa
- Immunomodulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine (MRC/UVRI and LSHTM) Uganda Research Unit, Entebbe, Uganda
| | - Florence Akello
- Immunomodulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine (MRC/UVRI and LSHTM) Uganda Research Unit, Entebbe, Uganda
| | - Robert Kizindo
- Immunomodulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine (MRC/UVRI and LSHTM) Uganda Research Unit, Entebbe, Uganda
| | - Mirriam Akello
- Immunomodulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine (MRC/UVRI and LSHTM) Uganda Research Unit, Entebbe, Uganda
| | - Pontiano Kaleebu
- Immunomodulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine (MRC/UVRI and LSHTM) Uganda Research Unit, Entebbe, Uganda
| | - Anne Wajja
- Immunomodulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine (MRC/UVRI and LSHTM) Uganda Research Unit, Entebbe, Uganda
| | - Henry Luzze
- Uganda National Expanded Program on Immunisation, Ministry of Health, Kampala, Uganda
| | - Stephen Cose
- Immunomodulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine (MRC/UVRI and LSHTM) Uganda Research Unit, Entebbe, Uganda
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, London
| | - Emily Webb
- MRC Tropical Epidemiology Group, Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK
| | - Alison M Elliott
- Immunomodulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine (MRC/UVRI and LSHTM) Uganda Research Unit, Entebbe, Uganda
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, London
| |
Collapse
|
17
|
Abstract
Both the gut microbiome and innate immunity are known to differ across biogeographically diverse human populations. The gut microbiome has been shown to directly influence systemic immunity in animal models. The gut microbiome is a well-recognized modulator of host immunity, and its compositions differ between geographically separated human populations. Systemic innate immune responses to microbial derivatives also differ between geographically distinct human populations. However, the potential role of the microbiome in mediating geographically varied immune responses is unexplored. We here applied 16S amplicon sequencing to profile the stool microbiome and, in parallel, measured whole-blood innate immune cytokine responses to several pattern recognition receptor (PRR) agonists among 2-year-old children across biogeographically diverse settings. Microbiomes differed mainly between high- and low-resource environments and were not strongly associated with other demographic factors. We found strong correlations between responses to Toll-like receptor 2 (TLR2) and relative abundances of Bacteroides and Prevotella populations, shared among Canadian and Ecuadorean children. Additional correlations between responses to TLR2 and bacterial populations were specific to individual geographic cohorts. As a proof of concept, we gavaged germfree mice with human donor stools and found murine splenocyte responses to TLR stimulation were consistent with responses of the corresponding human donor populations. This study identified differences in immune responses correlating to gut microbiomes across biogeographically diverse settings and evaluated biological plausibility using a mouse model. This insight paves the way to guide optimization of population-specific interventions aimed to improve child health outcomes.
Collapse
|
18
|
Bosco N, Noti M. The aging gut microbiome and its impact on host immunity. Genes Immun 2021; 22:289-303. [PMID: 33875817 PMCID: PMC8054695 DOI: 10.1038/s41435-021-00126-8] [Citation(s) in RCA: 201] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/11/2021] [Accepted: 03/25/2021] [Indexed: 02/01/2023]
Abstract
The microbiome plays a fundamental role in the maturation, function, and regulation of the host-immune system from birth to old age. In return, the immune system has co-evolved a mutualistic relationship with trillions of beneficial microbes residing our bodies while mounting efficient responses to fight invading pathogens. As we age, both the immune system and the gut microbiome undergo significant changes in composition and function that correlate with increased susceptibility to infectious diseases and reduced vaccination responses. Emerging studies suggest that targeting age-related dysbiosis can improve health- and lifespan, in part through reducing systemic low-grade inflammation and immunosenescence-two hallmarks of the aging process. However-a cause and effect relationship of age-related dysbiosis and associated functional declines in immune cell functioning have yet to be demonstrated in clinical settings. This review aims to (i) give an overview on hallmarks of the aging immune system and gut microbiome, (ii) discuss the impact of age-related changes in the gut commensal community structure (introduced as microb-aging) on host-immune fitness and health, and (iii) summarize prebiotic- and probiotic clinical intervention trials aiming to reinforce age-related declines in immune cell functioning through microbiome modulation or rejuvenation.
Collapse
Affiliation(s)
- Nabil Bosco
- grid.419905.00000 0001 0066 4948Nestlé Research, Nestlé Institute of Health Sciences, Department of Cell Biology, Cellular Metabolism, EPFL Innovation Park, Nestlé SA, Lausanne, Switzerland
| | - Mario Noti
- grid.419905.00000 0001 0066 4948Nestlé Research, Nestlé Institute of Health Sciences, Department of Gastrointestinal Health, Immunology, Vers-Chez-les-Blancs, Nestlé SA, Lausanne, Switzerland
| |
Collapse
|
19
|
Amenyogbe N, Dimitriu P, Cho P, Ruck C, Fortuno ES, Cai B, Alimenti A, Côté HCF, Maan EJ, Slogrove AL, Esser M, Marchant A, Goetghebuer T, Shannon CP, Tebbutt SJ, Kollmann TR, Mohn WW, Smolen KK. Innate Immune Responses and Gut Microbiomes Distinguish HIV-Exposed from HIV-Unexposed Children in a Population-Specific Manner. THE JOURNAL OF IMMUNOLOGY 2020; 205:2618-2628. [PMID: 33067377 DOI: 10.4049/jimmunol.2000040] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 09/15/2020] [Indexed: 12/21/2022]
Abstract
In both high- and low-income countries, HIV-negative children born to HIV-positive mothers (HIV exposed, uninfected [HEU]) are more susceptible to severe infection than HIV-unexposed, uninfected (HUU) children, with altered innate immunity hypothesized to be a cause. Both the gut microbiome and systemic innate immunity differ across biogeographically distinct settings, and the two are known to influence each other. And although the gut microbiome is influenced by HIV infection and may contribute to altered immunity, the biogeography of immune-microbiome correlations among HEU children have not been investigated. To address this, we compared the innate response and the stool microbiome of 2-y-old HEU and HUU children from Belgium, Canada, and South Africa to test the hypothesis that region-specific immune alterations directly correlate to differences in their stool microbiomes. We did not detect a universal immune or microbiome signature underlying differences between HEU versus HUU that was applicable to all children. But as hypothesized, population-specific differences in stool microbiomes were readily detected and included reduced abundances of short-chain fatty acid-producing bacteria in Canadian HEU children. Furthermore, we did not identify innate immune-microbiome associations that distinguished HEU from HUU children in any population. These findings suggest that maternal HIV infection is independently associated with differences in both innate immunity and the stool microbiome in a biogeographical population-specific way.
Collapse
Affiliation(s)
- Nelly Amenyogbe
- Department of Experimental Medicine, The University of British Columbia, Vancouver, British Columbia V5Z 1M9, Canada; .,Telethon Kids Institute, Perth, Western Australia 6009, Australia
| | - Pedro Dimitriu
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Patricia Cho
- Department of Experimental Medicine, The University of British Columbia, Vancouver, British Columbia V5Z 1M9, Canada
| | - Candice Ruck
- Department of Experimental Medicine, The University of British Columbia, Vancouver, British Columbia V5Z 1M9, Canada
| | - Edgardo S Fortuno
- Division of Infectious Diseases, Department of Pediatrics, The University of British Columbia, Vancouver, British Columbia V6H 3V4, Canada.,Division of Palliative, Rehabilitation, and Integrative Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Bing Cai
- Division of Infectious Diseases, Department of Pediatrics, The University of British Columbia, Vancouver, British Columbia V6H 3V4, Canada
| | - Ariane Alimenti
- Department of Pediatrics, BC Women's Hospital and Health Centre, The University of British Columbia, Vancouver, British Columbia V6H 3V4, Canada
| | - Hélène C F Côté
- Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, British Columbia V6T 1Z7, Canada
| | - Evelyn J Maan
- Oak Tree Clinic, BC Women's Hospital, Vancouver, British Columbia V5Z 0A7, Canada
| | - Amy L Slogrove
- Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Worcester 6849, South Africa
| | - Monika Esser
- The Immunology Unit, Division of Medical Microbiology, Department of Pathology, National Health Laboratory Service, Stellenbosch University, Cape Town 7505, South Africa
| | - Arnaud Marchant
- Institut d'Immunologie Médicale, Université Libre de Bruxelles, Charleroi B-6041, Belgium
| | - Tessa Goetghebuer
- Département de Pédiatrie, Centre Hospitalier Universitaire St Pierre, Université Libre de Bruxelles, B-1000, Belgium
| | - Casey P Shannon
- Prevention of Organ Failure Centre of Excellence, Centre for Heart Lung Innovation, St. Paul's Hospital, The University of British Columbia, Vancouver, British Columbia V6Z 2K5, Canada.,Centre for Heart Lung Innovation, St. Paul's Hospital, The University of British Columbia, Vancouver, British Columbia V6Z 1Y6, Canada
| | - Scott J Tebbutt
- Prevention of Organ Failure Centre of Excellence, Centre for Heart Lung Innovation, St. Paul's Hospital, The University of British Columbia, Vancouver, British Columbia V6Z 2K5, Canada.,Department of Medicine, Division of Respiratory Medicine, The University of British Columbia, Vancouver, British Columbia V5Z 1M9, Canada
| | - Tobias R Kollmann
- Telethon Kids Institute, Perth, Western Australia 6009, Australia.,Division of Infectious Diseases, Department of Pediatrics, The University of British Columbia, Vancouver, British Columbia V6H 3V4, Canada
| | - William W Mohn
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada;
| | - Kinga K Smolen
- Department of Experimental Medicine, The University of British Columbia, Vancouver, British Columbia V5Z 1M9, Canada.,Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA 02115; and.,Harvard Medical School, Boston, MA 02115
| |
Collapse
|
20
|
Moncunill G, Dobaño C, González R, Smolen KK, Manaca MN, Balcells R, Jairoce C, Cisteró P, Vala A, Sevene E, Rupérez M, Aponte JJ, Macete E, Menéndez C, Kollmann TR, Mayor A. Association of Maternal Factors and HIV Infection With Innate Cytokine Responses of Delivering Mothers and Newborns in Mozambique. Front Microbiol 2020; 11:1452. [PMID: 32765436 PMCID: PMC7381182 DOI: 10.3389/fmicb.2020.01452] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 06/04/2020] [Indexed: 12/24/2022] Open
Abstract
Maternal factors and exposure to pathogens have an impact on infant health. For instance, HIV exposed but uninfected infants have higher morbidity and mortality than HIV unexposed infants. Innate responses are the first line of defense and orchestrate the subsequent adaptive immune response and are especially relevant in newborns. To determine the association of maternal HIV infection with maternal and newborn innate immunity we analyzed the cytokine responses upon pattern recognition receptor (PRR) stimulations in the triad of maternal peripheral and placental blood as well as in cord blood in a cohort of mother-infant pairs from southern Mozambique. A total of 48 women (35 HIV-uninfected and 13 HIV-infected) were included. Women and infant innate responses positively correlated with each other. Age, gravidity and sex of the fetus had some associations with spontaneous production of cytokines in the maternal peripheral blood. HIV-infected women not receiving antiretroviral therapy (ART) before pregnancy showed decreased IL-8 and IL-6 PRR responses in peripheral blood compared to those HIV-uninfected, and PRR hyporesponsiveness for IL-8 was also found in the corresponding infant’s cord blood. HIV infection had a greater impact on placental blood responses, with significantly increased pro-inflammatory, TH1 and TH17 PRR responses in HIV-infected women not receiving ART before pregnancy compared to HIV-uninfected women. In conclusion, innate response of the mother and her newborn was altered by HIV infection in the women who did not receive ART before pregnancy. As these responses could be related to birth outcomes, targeted innate immune modulation could improve maternal and newborn health.
Collapse
Affiliation(s)
- Gemma Moncunill
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.,Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique.,Department of Pediatrics, BC Children's Hospital, The University of British Columbia, Vancouver, BC, Canada.,Department of Experimental Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Carlota Dobaño
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.,Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique.,Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - Raquel González
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.,Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique.,Department of Experimental Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Kinga K Smolen
- Department of Pediatrics, BC Children's Hospital, The University of British Columbia, Vancouver, BC, Canada.,Department of Experimental Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Maria N Manaca
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Reyes Balcells
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.,Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Chenjerai Jairoce
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Pau Cisteró
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Anifa Vala
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Esperança Sevene
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique.,Department of Physiological Science, Clinical Pharmacology, Faculty of Medicine, Eduardo Mondlane University, Maputo, Mozambique
| | - María Rupérez
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.,Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - John J Aponte
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.,Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Eusébio Macete
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Clara Menéndez
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.,Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique.,Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - Tobias R Kollmann
- Department of Pediatrics, BC Children's Hospital, The University of British Columbia, Vancouver, BC, Canada.,Department of Experimental Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Alfredo Mayor
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.,Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique.,Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
21
|
Yi Y, Fang Y, Wu K, Liu Y, Zhang W. Comprehensive gene and pathway analysis of cervical cancer progression. Oncol Lett 2020; 19:3316-3332. [PMID: 32256826 PMCID: PMC7074609 DOI: 10.3892/ol.2020.11439] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 01/15/2020] [Indexed: 12/15/2022] Open
Abstract
Cervical Cancer is one of the leading causes of cancer-associated mortality in women. The present study aimed to identify key genes and pathways involved in cervical cancer (CC) progression, via a comprehensive bioinformatics analysis. The GSE63514 dataset from the Gene Expression Omnibus database was analyzed for hub genes and cancer progression was divided into four phases (phases I-IV). Pathway enrichment, protein-protein interaction (PPI) and pathway crosstalk analyses were performed, to identify key genes and pathways using a criterion nodal degree ≥5. Gene pathway analysis was determined by mapping the key genes into the key pathways. Co-expression between key genes and their effect on overall survival (OS) time was assessed using The Cancer Genome Atlas database. A total of 3,446 differentially expressed genes with 107 hub genes were identified within the four phases. A total of 14 key genes with 11 key pathways were obtained, following extraction of ≥5 degree nodes from the PPI and pathway crosstalk networks. Gene pathway analysis revealed that CDK1 and CCNB1 regulated the cell cycle and were activated in phase I. Notably, the following terms, 'pathways in cancer', 'focal adhesion' and the 'PI3K-Akt signaling pathway' ranked the highest in phases II-IV. Furthermore, FN1, ITGB1 and MMP9 may be associated with metastasis of tumor cells. STAT1 was indicated to predominantly function at the phase IV via cancer-associated signaling pathways, including 'pathways in cancer' and 'Toll-like receptor signaling pathway'. Survival analysis revealed that high ITGB1 and FN1 expression levels resulted in significantly worse OS. CDK1 and CCNB1 were revealed to regulate proliferation and differentiation through the cell cycle and viral tumorigenesis, while FN1 and ITGB1, which may be developed as novel prognostic factors, were co-expressed to induce metastasis via cancer-associated signaling pathways, including PI3K-Art signaling pathway, and focal adhesion in CC; however, the underlying molecular mechanisms require further research.
Collapse
Affiliation(s)
- Yuexiong Yi
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Yan Fang
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Kejia Wu
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Yanyan Liu
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Wei Zhang
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
- Correspondence to: Professor Wei Zhang, Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, Hubei 430071, P.R. China, E-mail:
| |
Collapse
|
22
|
Stinson LF, Payne MS, Keelan JA. Placental and intra-amniotic inflammation are associated with altered fetal immune responses at birth. Placenta 2019; 85:15-23. [PMID: 31421529 DOI: 10.1016/j.placenta.2019.08.079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 07/22/2019] [Accepted: 08/07/2019] [Indexed: 02/08/2023]
Abstract
INTRODUCTION High-grade placental inflammation is associated with preterm birth and poor neonatal outcomes. Recent reports suggest that low-grade placental inflammation is common in uncomplicated pregnancies. The relationship between placental inflammation and innate immune anti-microbial responses is unknown. In this study we sought to identify any association between placental inflammation and fetal immune responses. METHODS Cord blood samples collected from late preterm and full-term Caesarean section deliveries (n = 44) were exposed to various immune challenges (resiquimod, LPS, PGN, poly (I:C), cGAMP, and 5'ppp-dsRNA) and production of inflammatory mediators (G-CSF, IFN-γ, IL-1β, IL-6, IL-8, IL-10, and TNF-α) was measured by multiplex assay. Hospital histology reports were used to assess the extent of inflammation in the placenta. RESULTS Almost half (47.7%) of placentae examined here showed histological evidence of inflammation. Resiquimod, LPS, and PGN elicited strong inflammatory responses in neonatal cord blood, while poly (I:C), cGAMP, and 5'ppp-dsRNA elicited weaker responses. Fetuses with evidence of chorioamnionitis and fetal inflammatory reaction in their placentae had significantly increased immune responses to cGAMP and 5'ppp-dsRNA (ligands for STING and RIG-I, respectively) and significantly decreased immune responses to poly (I:C) (a TLR3 agonist). Interestingly, STING, RIG-I, and TLR3 are all involved in viral response pathways, suggesting that fetuses exposed to chorioamnionitis or fetal inflammatory reaction might respond differently to viruses postnatally. CONCLUSION Our data suggest that low-level placental inflammation is associated with altered innate cytokine responses at birth.
Collapse
Affiliation(s)
- Lisa F Stinson
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, WA, Australia.
| | - Matthew S Payne
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, WA, Australia
| | - Jeffrey A Keelan
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
23
|
D'Argenio V. The Prenatal Microbiome: A New Player for Human Health. High Throughput 2018; 7:ht7040038. [PMID: 30544936 PMCID: PMC6306741 DOI: 10.3390/ht7040038] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/05/2018] [Accepted: 12/07/2018] [Indexed: 02/06/2023] Open
Abstract
The last few years have featured an increasing interest in the study of the human microbiome and its correlations with health status. Indeed, technological advances have allowed the study of microbial communities to reach a previously unthinkable sensitivity, showing the presence of microbes also in environments usually considered as sterile. In this scenario, microbial communities have been described in the amniotic fluid, the umbilical blood cord, and the placenta, denying a dogma of reproductive medicine that considers the uterus like a sterile womb. This prenatal microbiome may play a role not only in fetal development but also in the predisposition to diseases that may develop later in life, and also in adulthood. Thus, the aim of this review is to report the current knowledge regarding the prenatal microbiome composition, its association with pathological processes, and the future perspectives regarding its manipulation for healthy status promotion and maintenance.
Collapse
Affiliation(s)
- Valeria D'Argenio
- CEINGE-BiotecnologieAvanzate, via G. Salvatore via G. Salvatore 486, 80145 Naples, Italy.
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, via Pansini 5, 80131 Naples, Italy.
- Task Force on Microbiome Studies, University of Naples Federico II, via Pansini 5, 80131 Naples, Italy.
| |
Collapse
|
24
|
Natama HM, Moncunill G, Rovira-Vallbona E, Sanz H, Sorgho H, Aguilar R, Coulibaly-Traoré M, Somé MA, Scott S, Valéa I, Mens PF, Schallig HDFH, Kestens L, Tinto H, Dobaño C, Rosanas-Urgell A. Modulation of innate immune responses at birth by prenatal malaria exposure and association with malaria risk during the first year of life. BMC Med 2018; 16:198. [PMID: 30384846 PMCID: PMC6214168 DOI: 10.1186/s12916-018-1187-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 10/05/2018] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Factors driving inter-individual differences in immune responses upon different types of prenatal malaria exposure (PME) and subsequent risk of malaria in infancy remain poorly understood. In this study, we examined the impact of four types of PME (i.e., maternal peripheral infection and placental acute, chronic, and past infections) on both spontaneous and toll-like receptors (TLRs)-mediated cytokine production in cord blood and how these innate immune responses modulate the risk of malaria during the first year of life. METHODS We conducted a birth cohort study of 313 mother-child pairs nested within the COSMIC clinical trial (NCT01941264), which was assessing malaria preventive interventions during pregnancy in Burkina Faso. Malaria infections during pregnancy and infants' clinical malaria episodes detected during the first year of life were recorded. Supernatant concentrations of 30 cytokines, chemokines, and growth factors induced by stimulation of cord blood with agonists of TLRs 3, 7/8, and 9 were measured by quantitative suspension array technology. Crude concentrations and ratios of TLR-mediated cytokine responses relative to background control were analyzed. RESULTS Spontaneous production of innate immune biomarkers was significantly reduced in cord blood of infants exposed to malaria, with variation among PME groups, as compared to those from the non-exposed control group. However, following TLR7/8 stimulation, which showed higher induction of cytokines/chemokines/growth factors than TLRs 3 and 9, cord blood cells of infants with evidence of past placental malaria were hyper-responsive in comparison to those of infants not-exposed. In addition, certain biomarkers, which levels were significantly modified depending on the PME category, were independent predictors of either malaria risk (GM-CSF TLR7/8 crude) or protection (IL-12 TLR7/8 ratio and IP-10 TLR3 crude, IL-1RA TLR7/8 ratio) during the first year of life. CONCLUSIONS These findings indicate that past placental malaria has a profound effect on fetal immune system and that the differential alterations of innate immune responses by PME categories might drive heterogeneity between individuals to clinical malaria susceptibility during the first year of life.
Collapse
Affiliation(s)
- Hamtandi Magloire Natama
- Department of Biomedical Sciences, Institute of Tropical Medicine, B 2000, Antwerp, Belgium.,Unité de Recherche Clinique de Nanoro, Institut de Recherche en Sciences de la Santé, BP218, Nanoro, Burkina Faso.,Department of Biomedical Sciences, University of Antwerp, B 2610, Antwerp, Belgium
| | - Gemma Moncunill
- Barcelona Institute for Global Health (ISGlobal), Hospital Clinic - Universitat de Barcelona, Carrer Rossello 132, E-08036, Barcelona, Catalonia, Spain
| | - Eduard Rovira-Vallbona
- Department of Biomedical Sciences, Institute of Tropical Medicine, B 2000, Antwerp, Belgium
| | - Héctor Sanz
- Barcelona Institute for Global Health (ISGlobal), Hospital Clinic - Universitat de Barcelona, Carrer Rossello 132, E-08036, Barcelona, Catalonia, Spain
| | - Hermann Sorgho
- Unité de Recherche Clinique de Nanoro, Institut de Recherche en Sciences de la Santé, BP218, Nanoro, Burkina Faso
| | - Ruth Aguilar
- Barcelona Institute for Global Health (ISGlobal), Hospital Clinic - Universitat de Barcelona, Carrer Rossello 132, E-08036, Barcelona, Catalonia, Spain
| | - Maminata Coulibaly-Traoré
- Unité de Recherche Clinique de Nanoro, Institut de Recherche en Sciences de la Santé, BP218, Nanoro, Burkina Faso
| | - M Athanase Somé
- Unité de Recherche Clinique de Nanoro, Institut de Recherche en Sciences de la Santé, BP218, Nanoro, Burkina Faso
| | - Susana Scott
- Department of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, WC1E7HT, UK
| | - Innocent Valéa
- Unité de Recherche Clinique de Nanoro, Institut de Recherche en Sciences de la Santé, BP218, Nanoro, Burkina Faso
| | - Petra F Mens
- Department of Medical Microbiology - Parasitology Unit, Academic Medical Centre, Amsterdam, 1105, AZ, The Netherlands
| | - Henk D F H Schallig
- Department of Medical Microbiology - Parasitology Unit, Academic Medical Centre, Amsterdam, 1105, AZ, The Netherlands
| | - Luc Kestens
- Department of Biomedical Sciences, Institute of Tropical Medicine, B 2000, Antwerp, Belgium.,Department of Biomedical Sciences, University of Antwerp, B 2610, Antwerp, Belgium
| | - Halidou Tinto
- Unité de Recherche Clinique de Nanoro, Institut de Recherche en Sciences de la Santé, BP218, Nanoro, Burkina Faso.,Centre Muraz, BP390, Bobo Dioulasso, Burkina Faso
| | - Carlota Dobaño
- Barcelona Institute for Global Health (ISGlobal), Hospital Clinic - Universitat de Barcelona, Carrer Rossello 132, E-08036, Barcelona, Catalonia, Spain
| | - Anna Rosanas-Urgell
- Department of Biomedical Sciences, Institute of Tropical Medicine, B 2000, Antwerp, Belgium.
| |
Collapse
|
25
|
Age-related waning of immune responses to BCG in healthy children supports the need for a booster dose of BCG in TB endemic countries. Sci Rep 2018; 8:15309. [PMID: 30333506 PMCID: PMC6193026 DOI: 10.1038/s41598-018-33499-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 09/28/2018] [Indexed: 02/07/2023] Open
Abstract
In the absence of a more effective vaccine against TB and in the interest of developing one, it is essential to understand immune responses associated with BCG protection. We comprehensively characterized T cell populations in BCG-vaccinated children over time. Blood from 78 healthy, BCG-vaccinated children representing four age groups (<1 yr, ≥1 yr <2 yr, ≥2 yr <5 yr, ≥5 yr), was stimulated in vitro for 24 hours and 6 days with live BCG to induce effector and central memory responses. Antigen-specific CD4, CD8, γδ and regulatory T cell populations were phenotyped and intracellular and secreted cytokines measured by flow cytometry and multiplex ELISA respectively. Our results demonstrated that populations of naïve T cells predominated in infants, compared to older children. However, BCG-specific effector CD4 T cell responses were equivalent and antigen-specific CD4 T cell proliferative capacity was increased in infants compared to older children. Increases in innate immune responses including γδ T cell responses and secreted pro-inflammatory cytokines were noted with increasing age. In conclusion, we identified that the capacity to expand and differentiate effector T cells in response to BCG stimulation wanes with increasing age, which may indicate waning central memory immunity. Booster vaccination could be considered to maintain the antigen-specific central memory pool and possibly enhance the duration of protection.
Collapse
|
26
|
Duffy D. Milieu intérieur: Defining the boundaries of a healthy immune response for improved vaccination strategies. Hum Vaccin Immunother 2018; 14:2217-2221. [PMID: 29714672 PMCID: PMC6183329 DOI: 10.1080/21645515.2018.1466764] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Immune responses in human populations are highly variable, with this variability presenting challenges for vaccine design. As such a better understanding of the factors that determine this variability will help in the development of precision vaccination strategies. The Milieu Interieur consortium was established to address this challenge through a definition of the normal boundaries of a healthy immune response, and the characterization of their genetic and environmental determinants. To do this we have implemented standardized tools for monitoring functional immune responses at the proteomic and transcriptional level, which have been applied to a 1,000 healthy donor cohort. This approach has recently allowed us to quantify the extent of genetic control of cellular variability and transcriptional responses to infection. Initial findings on the influence of age, sex, and genetics may already be included in considerations for improved vaccine development, and ongoing analysis will further define the factors behind inter-individual variability in diverse immune responses. This approach will help to guide the development of the next generation of vaccines that will take into account differences in populations and eventually individuals.
Collapse
Affiliation(s)
- Darragh Duffy
- a Dendritic Cell Immunobiology Unit, Department of Immunology, Institut Pasteur , Paris , France.,b INSERM U1223, Institut Pasteur , Paris , France
| |
Collapse
|
27
|
Zimmermann P, Curtis N. The influence of the intestinal microbiome on vaccine responses. Vaccine 2018; 36:4433-4439. [DOI: 10.1016/j.vaccine.2018.04.066] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 04/11/2018] [Accepted: 04/20/2018] [Indexed: 02/06/2023]
|
28
|
Duffy D. Standardized Immunomonitoring: Separating the Signals from the Noise. Trends Biotechnol 2018; 36:1107-1115. [PMID: 30343682 DOI: 10.1016/j.tibtech.2018.06.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 06/01/2018] [Accepted: 06/04/2018] [Indexed: 12/13/2022]
Abstract
Classical immunoassays are routinely performed in the clinic for disease diagnosis and monitoring. Recent advances in phenotyping technologies offer huge potential in expanding the breadth of immune response monitoring. Challenges remain, however, in translating many of these tools to routine clinical practice. This Opinion focuses on two strategies that may advance the clinical adoption of immune-based biomarkers: protein-based assays employing digital readouts can reduce nonspecific signals that limit more classical assays; and approaches that stimulate immune responses in more standardized ways can help to reveal disease-specific immune response signatures by elevating the signal above the background. The integration of such immune response phenotypes is a critical step for the increased implementation of precision medicine-based strategies.
Collapse
Affiliation(s)
- Darragh Duffy
- Dendritic Cell Immunobiology Unit, Institut Pasteur, Paris, France; INSERM U1223, Paris, France.
| |
Collapse
|
29
|
Freyne B, Donath S, Germano S, Gardiner K, Casalaz D, Robins-Browne RM, Amenyogbe N, Messina NL, Netea MG, Flanagan KL, Kollmann T, Curtis N. Neonatal BCG Vaccination Influences Cytokine Responses to Toll-like Receptor Ligands and Heterologous Antigens. J Infect Dis 2018; 217:1798-1808. [PMID: 29415180 PMCID: PMC11491830 DOI: 10.1093/infdis/jiy069] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 02/01/2018] [Indexed: 04/13/2024] Open
Abstract
Background BCG vaccination is associated with a reduction in all-cause infant mortality in high-mortality settings. The underlying mechanisms remain uncertain, but long-term modulation of the innate immune response (trained immunity) may be involved. Methods Whole-blood specimens, collected 7 days after randomization from 212 neonates enrolled in a randomized trial of neonatal BCG vaccination, were stimulated with killed pathogens and Toll-like receptor (TLR) ligands to interrogate cytokine responses. Results BCG-vaccinated infants had increased production of interleukin 6 (IL-6) in unstimulated samples and decreased production of interleukin 1 receptor antagonist, IL-6, and IL-10 and the chemokines macrophage inflammatory protein 1α (MIP-1α), MIP-1β, and monocyte chemoattractant protein 1 (MCP-1) following stimulation with peptidoglycan (TLR2) and R848 (TLR7/8). BCG-vaccinated infants also had decreased MCP-1 responses following stimulation with heterologous pathogens. Sex and maternal BCG vaccination status interacted with neonatal BCG vaccination. Conclusions Neonatal BCG vaccination influences cytokine responses to TLR ligands and heterologous pathogens. This effect is characterized by decreased antiinflammatory cytokine and chemokine responses in the context of higher levels of IL-6 in unstimulated samples. This supports the hypothesis that BCG vaccination modulates the innate immune system. Further research is warranted to determine whether there is an association between these findings and the beneficial nonspecific (heterologous) effects of BCG vaccine on all-cause mortality.
Collapse
Affiliation(s)
- Bridget Freyne
- Infectious Diseases and Microbiology Group, Parkville, Australia
- Department of Paediatrics, Parkville, Australia
| | - Susan Donath
- Clinical Epidemiology and Biostatistics Unit, Murdoch Children’s Research Institute, Parkville, Australia
- Department of Paediatrics, Parkville, Australia
| | - Susan Germano
- Infectious Diseases and Microbiology Group, Parkville, Australia
| | - Kaya Gardiner
- Infectious Diseases and Microbiology Group, Parkville, Australia
| | - Dan Casalaz
- Department of Paediatrics, Mercy Hospital for Women, Heidelberg, Australia
| | - Roy M Robins-Browne
- Infectious Diseases and Microbiology Group, Parkville, Australia
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Australia
| | - Nelly Amenyogbe
- Department of Experimental Medicine, University of British Columbia, Vancouver, Canada
- Division of Infectious Diseases, Department of Pediatrics, University of British Columbia, Vancouver, Canada
| | - Nicole L Messina
- Infectious Diseases and Microbiology Group, Parkville, Australia
- Department of Paediatrics, Parkville, Australia
| | - Mihai G Netea
- Department of Internal Medicine, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
- Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Katie L Flanagan
- School of Medicine, University of Tasmania, Launceston Australia
- Department of Immunology and Pathology, Monash University, Clayton, Australia
| | - Tobias Kollmann
- Department of Experimental Medicine, University of British Columbia, Vancouver, Canada
- Division of Infectious Diseases, Department of Pediatrics, University of British Columbia, Vancouver, Canada
| | - Nigel Curtis
- Infectious Diseases and Microbiology Group, Parkville, Australia
- Department of Paediatrics, Parkville, Australia
- Infectious Diseases Unit, The Royal Children’s Hospital Melbourne, Parkville, Australia
| |
Collapse
|
30
|
Barlow-Anacker A, Bochkov Y, Gern J, Seroogy CM. Neonatal immune response to rhinovirus A16 has diminished dendritic cell function and increased B cell activation. PLoS One 2017; 12:e0180664. [PMID: 29045416 PMCID: PMC5646756 DOI: 10.1371/journal.pone.0180664] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 06/19/2017] [Indexed: 02/02/2023] Open
Abstract
Background Rhinovirus infections during infancy account for the majority of respiratory illness health care utilization and are an associated risk factor for subsequent development of allergic asthma. Neonatal type I interferon production is diminished compared to adults after stimulation with TLR agonists. However, broad profiling of immune cell responses to infectious rhinovirus has not been undertaken and we hypothesized that additional immune differences can be identified in neonates. In this study, we undertook a comparative analysis of neonatal and adult blood immune cell responses after in vitro incubation with infectious RV-A16 for 6 and 24 hours. Methods Intracellular proinflammatory and type I interferon cytokines along with expression of surface co-stimulatory and maturation markers were measured using multi-parameter flow cytometry. Results Both circulating myeloid dendritic cell (mDC) and plasmacytoid dendritic cell (pDC) frequency were lower in cord blood. Qualitative and quantitative plasmacytoid dendritic cell IFN-alpha + TNF- alpha responses to rhinovirus were significantly lower in cord pDCs. In cord blood samples, the majority of responsive pDCs were single-positive TNF-alpha producing cells, whereas in adult samples rhinovirus increased double-positive TNF-alpha+IFN-alpha+ pDCs. Rhinovirus upregulated activation and maturation markers on monocytes, mDCs, pDCs, and B cells, but CD40+CD86+ monocytes, mDCs, and pDCs cells were significantly higher in adult samples compared to cord samples. Surprisingly, rhinovirus increased CD40+CD86+ B cells to a significantly greater extent in cord samples compared to adults. Conclusions These findings define a number of cell-specific differences in neonatal responses to rhinovirus. This differential age-related immune response to RV may have implications for the immune correlates of protection to viral respiratory illness burden and determination of potential biomarkers for asthma risk.
Collapse
Affiliation(s)
- Amanda Barlow-Anacker
- Department of Pediatrics, Division of Allergy, Immunology, & Rheumatology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
| | - Yury Bochkov
- Department of Pediatrics, Division of Allergy, Immunology, & Rheumatology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
| | - James Gern
- Department of Pediatrics, Division of Allergy, Immunology, & Rheumatology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
| | - Christine M. Seroogy
- Department of Pediatrics, Division of Allergy, Immunology, & Rheumatology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
- * E-mail:
| |
Collapse
|
31
|
Georgountzou A, Papadopoulos NG. Postnatal Innate Immune Development: From Birth to Adulthood. Front Immunol 2017; 8:957. [PMID: 28848557 PMCID: PMC5554489 DOI: 10.3389/fimmu.2017.00957] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 07/26/2017] [Indexed: 12/20/2022] Open
Abstract
It is well established that adaptive immune responses are deficient in early life, contributing to increased mortality and morbidity. The developmental trajectories of different components of innate immunity are only recently being explored. Individual molecules, cells, or pathways of innate recognition and signaling, within different compartments/anatomical sites, demonstrate variable maturation patterns. Despite some discrepancies among published data, valuable information is emerging, showing that the developmental pattern of cytokine responses during early life is age and toll-like receptor specific, and may be modified by genetic and environmental factors. Interestingly, specific environmental exposures have been linked both to innate function modifications and the occurrence of chronic inflammatory disorders, such as respiratory allergies. As these conditions are on the rise, our knowledge on innate immune development and its modulating factors needs to be expanded. Improved understanding of the sequence of events associated with disease onset and persistence will lead toward meaningful interventions. This review describes the state-of-the-art on normal postnatal innate immune ontogeny and highlights research areas that are currently explored or should be further addressed.
Collapse
Affiliation(s)
- Anastasia Georgountzou
- Allergy and Clinical Immunology Unit, 2nd Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos G Papadopoulos
- Allergy and Clinical Immunology Unit, 2nd Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece.,Division of Infection, Inflammation and Respiratory Medicine, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
32
|
Lack of broad functional differences in immunity in fully vaccinated vs. unvaccinated children. Pediatr Res 2017; 81:601-608. [PMID: 28024144 DOI: 10.1038/pr.2016.272] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 10/22/2016] [Indexed: 11/09/2022]
Abstract
BACKGROUND Concerns have been raised that with an increase in the number of vaccines administered early in life, immune development could be altered, leading to either increased or decreased immune reactivity. METHODS We investigated the impact of vaccination on immune status, contrasting the immune response to general, nonantigen-specific stimuli in a cohort of entirely unvaccinated vs. fully vaccinated children at 3-5 y of age. Innate immunity was assessed by quantifying bulk and cell-type-specific cytokine production in response to stimulation with pathogen associated microbial patterns. Adaptive immune status was characterized by assessing lymphocyte proliferation and cytokine production in response to generic T cell stimuli. RESULTS Our investigations failed to reveal a broadly evident alteration of either innate or adaptive immunity in vaccinated children. Equivalently robust innate and adaptive responses to pathogen associated microbial patterns and generic T cell stimulants were observed in both groups. CONCLUSION Although our sample size was small, our data suggest that standard childhood vaccinations do not lead to long-lasting gross alterations of the immune system.
Collapse
|
33
|
Kim YG. Microbiota Influences Vaccine and Mucosal Adjuvant Efficacy. Immune Netw 2017; 17:20-24. [PMID: 28261017 PMCID: PMC5334119 DOI: 10.4110/in.2017.17.1.20] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 01/28/2017] [Accepted: 02/10/2017] [Indexed: 12/19/2022] Open
Abstract
A symbiotic relationship between humans and the microbiota is critical for the maintenance of our health, including development of the immune system, enhancement of the epithelial barrier, and acquisition of nutrients. Recent research has shown that the microbiota impacts immune cell development and differentiation. These findings suggest that the microbiota may also influence adjuvant and vaccine efficacy. Indeed, several factors such as malnutrition and poor sanitation, which affect gut microbiota composition, impair the efficacy of vaccines. Although there is little evidence that microbiota alters vaccine efficacy, further understanding of human immune system-microbiota interactions may lead to the effective development of adjuvants and vaccines for the treatment of diseases.
Collapse
Affiliation(s)
- Yun-Gi Kim
- Division of Biochemistry, Faculty of Pharmacy, Keio University, Tokyo 105-8512, Japan
| |
Collapse
|
34
|
Abstract
Susceptibility to infection and response to vaccination differ between populations and as a function of age. The underlying mechanisms for this age- and population-dependent variation are not known. Specifically, it is unclear if these variations are due to differences in genetically encoded host programs or driven by environmental influences or a combination of both. To address the relationship between gene and environment regarding immune ontogeny, we determined the innate cytokine responses following PRR stimulation of blood mononuclear cells at birth, 1, and 2 yr of age in infants from Caucasian vs . Asian parents and were raised in the same city. At birth, we found that innate cytokine responses were significantly elevated in Asian compared with Caucasian infants. However, these differences waned and responses became more similar over the course of 1-2 yr of living in a similar environment. Our observations that innate response differences present at birth subsequently equalized rather than diverged suggest a key role for environmental effects common to both racial groups in shaping the innate immune responses early in life. Delineating the underlying environmental factors that modulate innate immune responses early in life could provide avenues for targeted beneficial immune modulation.
Collapse
Affiliation(s)
- Mathieu Garand
- 1 Division of Infectious Diseases, Department of Pediatrics, University of British Columbia and BC Children's Hospital, Vancouver, BC, Canada
| | - Bing Cai
- 1 Division of Infectious Diseases, Department of Pediatrics, University of British Columbia and BC Children's Hospital, Vancouver, BC, Canada
| | - Tobias R Kollmann
- 1 Division of Infectious Diseases, Department of Pediatrics, University of British Columbia and BC Children's Hospital, Vancouver, BC, Canada.,2 Vaccine Evaluation Centre, Child and Family Research Institute, Vancouver, BC, Canada
| |
Collapse
|
35
|
Ritz N, Casalaz D, Donath S, Tebruegge M, Dutta B, Connell TG, Robins-Browne R, Britton WJ, Hanekom WA, Curtis N. Comparable CD4 and CD8 T cell responses and cytokine release after at-birth and delayed BCG immunisation in infants born in Australia. Vaccine 2016; 34:4132-4139. [PMID: 27396518 DOI: 10.1016/j.vaccine.2016.06.077] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 04/20/2016] [Accepted: 06/27/2016] [Indexed: 11/27/2022]
Abstract
BACKGROUND More than 120 million doses of BCG vaccine are administered worldwide each year. Most infants are given BCG at birth in accordance with WHO recommendations. However, the effect of the maturing neonatal immune system on the immune response and protection conferred by BCG remains uncertain. Previous studies investigating the influence of age at immunisation on the immune response induced by BCG have reported conflicting results. This study compared BCG given at birth and at two months of age in infants in Australia. METHODS Infants born in Melbourne were randomly allocated to immunisation with BCG-Denmark at birth or two months of age. Ten weeks after immunisation, anti-mycobacterial immune responses were measured in a whole blood assay using intracellular cytokine assays and xMAP multiplex cytokine analysis. RESULTS Result from 98 BCG-immunised infants were included in the final analysis. BCG immunisation at birth (n=54) and at 2months of age (n=44) induced comparable proportions of mycobacteria-specific cytokine-producing CD4 and CD8 T cells, as well as comparable proportions of polyfunctional (TNF(+) IL-2(+) IFN-γ(+)) CD4 T cells. Concentrations of cytokines in supernatants were also similar in both groups. CONCLUSIONS Cellular immunity measured 10weeks after BCG immunisation was similar in infants given BCG at birth and in those given BCG at 2months of age. Although definitive correlates of protection against TB remain uncertain, these results suggest that delaying BCG immunisation does not confer any immunological advantage in cellular immunity.
Collapse
Affiliation(s)
- Nicole Ritz
- Department of Paediatrics, The University of Melbourne, Parkville, Australia; Infectious Diseases Unit, Royal Children's Hospital Melbourne, Parkville, Australia; Infectious Diseases and Microbiology Group, Murdoch Children's Research Institute, Royal Children's Hospital, Australia; University of Basel Children's Hospital Basel, Infectious Diseases Unit and Paediatric Pharmacology, Basel, Switzerland.
| | - Dan Casalaz
- Department of Paediatrics, The Mercy Hospital for Women, Heidelberg, Australia
| | - Susan Donath
- Clinical Epidemiology and Biostatistics Unit, Murdoch Children's Research Institute, Royal Children's Hospital Melbourne, Parkville, Australia
| | - Marc Tebruegge
- Department of Paediatrics, The University of Melbourne, Parkville, Australia; Infectious Diseases Unit, Royal Children's Hospital Melbourne, Parkville, Australia; Infectious Diseases and Microbiology Group, Murdoch Children's Research Institute, Royal Children's Hospital, Australia; Academic Unit of Clinical & Experimental Sciences, Faculty of Medicine, and Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Binita Dutta
- Infectious Diseases and Microbiology Group, Murdoch Children's Research Institute, Royal Children's Hospital, Australia
| | - Tom G Connell
- Department of Paediatrics, The University of Melbourne, Parkville, Australia; Infectious Diseases Unit, Royal Children's Hospital Melbourne, Parkville, Australia; Infectious Diseases and Microbiology Group, Murdoch Children's Research Institute, Royal Children's Hospital, Australia
| | - Roy Robins-Browne
- Department of Paediatrics, The University of Melbourne, Parkville, Australia; Infectious Diseases Unit, Royal Children's Hospital Melbourne, Parkville, Australia; Infectious Diseases and Microbiology Group, Murdoch Children's Research Institute, Royal Children's Hospital, Australia; Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Australia
| | - Warwick J Britton
- Centenary Institute of Cancer Medicine and Cell Biology and Department of Medicine, University of Sydney, Camperdown, Australia
| | - Willem A Hanekom
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine & Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
| | - Nigel Curtis
- Department of Paediatrics, The University of Melbourne, Parkville, Australia; Infectious Diseases Unit, Royal Children's Hospital Melbourne, Parkville, Australia; Infectious Diseases and Microbiology Group, Murdoch Children's Research Institute, Royal Children's Hospital, Australia
| |
Collapse
|
36
|
Pichichero ME, Khan MN, Xu Q. Next generation protein based Streptococcus pneumoniae vaccines. Hum Vaccin Immunother 2016; 12:194-205. [PMID: 26539741 PMCID: PMC4962723 DOI: 10.1080/21645515.2015.1052198] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 04/27/2015] [Accepted: 05/12/2015] [Indexed: 12/22/2022] Open
Abstract
All currently available Streptococcus pneumoniae (Spn) vaccines have limitations due to their capsular serotype composition. Both the 23-valent Spn polysaccharide vaccine (PPV) and 7, 10, or 13-valent Spn conjugate vaccines (PCV-7, 10, -13) are serotype-based vaccines and therefore they elicit only serotype-specific immunity. Emergence of replacement Spn strains expressing other serotypes has consistently occurred following introduction of capsular serotype based Spn vaccines. Furthermore, capsular polysaccharide vaccines are less effective in protection against non-bacteremic pneumonia and acute otitis media (AOM) than against invasive pneumococcal disease (IPD). These shortcomings of capsular polysaccharide-based Spn vaccines have created high interest in development of non-serotype specific protein-based vaccines that could be effective in preventing both IPD and non-IPD infections. This review discusses the progress to date on development of Spn protein vaccine candidates that are highly conserved by all Spn strains, are highly conserved, exhibit maximal antigenicity and minimal reactogenicity to replace or complement the current capsule-based vaccines. Key to development of a protein based Spn vaccine is an understanding of Spn pathogenesis. Based on pathogenesis, a protein-based Spn vaccine should include one or more ingredients that reduce NP colonization below a pathogenic inoculum. Elimination of all Spn colonization may not be achievable or even advisable. The level of expression of a target protein antigen during pathogenesis is another key to the success of protein based vaccines.. As with virtually all currently licensed vaccines, production of a serum antibody response in response to protein based vaccines is anticipated to provide protection from Spn infections. A significant advantage that protein vaccine formulations can offer over capsule based vaccination is their potential benefits associated with natural priming and boosting to all strains of Spn. One of the most universal and comprehensive approaches of identifying novel vaccine candidates is the investigation of human sera from different disease stages of natural infections. Antigens that are robustly reactive in preliminary human serum screening constitute a pathogen-specific antigenome. This strategy has identified a number of Spn protein vaccine candidates that are moving forward in human clinical trials.
Collapse
Affiliation(s)
| | - M Nadeem Khan
- Research Institute; Rochester General Hospital; Rochester, NY USA
| | - Qingfu Xu
- Research Institute; Rochester General Hospital; Rochester, NY USA
| |
Collapse
|
37
|
Koleva PT, Kim JS, Scott JA, Kozyrskyj AL. Microbial programming of health and disease starts during fetal life. ACTA ACUST UNITED AC 2015; 105:265-77. [PMID: 26663884 DOI: 10.1002/bdrc.21117] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 11/18/2015] [Indexed: 12/26/2022]
Abstract
The pioneer microbiota of the neonatal gut are essential for gut maturation, and metabolic and immunologic programming. Recent research has shown that early bacterial colonization may impact the occurrence of disease later in life (microbial programming). Despite early conflicting evidence, it has long been considered that the womb is a sterile environment and human microbial colonization begins at birth. In the last few years, several findings have reiterated the presence of microbes in infant first stool (meconium) and pointed to the existence of in utero microbial colonization of the infant gut. The dominant bacterial taxa detected in meconium specimens belong to the Enterobacteriaceae family (Escherichia genus) and lactic acid bacteria (notably members of the genera Leuconostoc, Enterococcus, and Lactococcus). Maternal atopy promotes dominance of Enterobacteriaceae in newborn meconium, which in turn may lead to respiratory problems in the infant. This microbial interaction with the host immune system may in fact, originate during fetal life. Our review evaluates the evidence for an intrauterine origin of meconium microbiota, their composition and influences, and potential clinical implications on infant health.
Collapse
Affiliation(s)
- Petya T Koleva
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Ji-Sun Kim
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - James A Scott
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Anita L Kozyrskyj
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada.,School of Public Health, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
38
|
Lemoine S, Jaron B, Tabka S, Ettreiki C, Deriaud E, Zhivaki D, Le Ray C, Launay O, Majlessi L, Tissieres P, Leclerc C, Lo-Man R. Dectin-1 activation unlocks IL12A expression and reveals the TH1 potency of neonatal dendritic cells. J Allergy Clin Immunol 2015; 136:1355-68.e1-15. [PMID: 25865351 DOI: 10.1016/j.jaci.2015.02.030] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 02/04/2015] [Accepted: 02/13/2015] [Indexed: 01/17/2023]
Abstract
BACKGROUND Early life is characterized by a high susceptibility to infection and a TH2-biased CD4 T-cell response to vaccines. Toll-like receptor (TLR) agonists are currently being implemented as new vaccine adjuvants for TH1 activation, but their translation to the field of pediatric vaccines is facing the impairment of neonatal innate TLR responses. OBJECTIVE We sought to analyze C-type lectin receptor pathways as an alternative or a coactivator to TLRs for neonatal dendritic cell activation for TH1 polarization. METHODS Neonatal monocyte-derived dendritic cells (moDCs) were exposed to various combinations of TLR agonists with or without Dectin-1 agonist. IL-12 and IL-23 responses were analyzed at the transcriptional and protein levels after stimulation. The intracellular pathways triggered by combined TLR plus Dectin-1 stimulation was determined by using pharmacologic inhibitors. The capacity of neonatal moDCs to differentiate naive CD4 TH cells was evaluated in cocultures with heterologous neonatal naive T cells. Curdlan was finally tested as an adjuvant within a subunit tuberculosis vaccine in neonatal mice. RESULTS Simultaneous coactivation through Dectin-1 and TLRs induced robust secretion of IL-12p70 by neonatal moDCs by unlocking transcriptional control on the p35 subunit of IL-12. Both the spleen tyrosine kinase and Raf-1 pathways were involved in this process, allowing differentiation of neonatal naive T cells toward IFN-γ-producing TH1 cells. In vivo a Dectin-1 agonist as adjuvant was sufficient to induce TH1 responses after vaccination of neonatal mice. CONCLUSION Coactivation of neonatal moDCs through Dectin-1 allows TLR-mediated IL-12p70 secretion and TH1 polarization of neonatal T cells. Dectin-1 agonists represent a promising TH1 adjuvant for pediatric vaccination.
Collapse
Affiliation(s)
- Sébastien Lemoine
- Unité de Régulation Immunitaire et Vaccinologie, Institut Pasteur, Paris, France; INSERM U1041, Paris, France
| | - Barbara Jaron
- Unité de Régulation Immunitaire et Vaccinologie, Institut Pasteur, Paris, France; INSERM U1041, Paris, France
| | - Sabrine Tabka
- Unité de Régulation Immunitaire et Vaccinologie, Institut Pasteur, Paris, France; INSERM U1041, Paris, France
| | - Chourouk Ettreiki
- Unité de Réanimation Pédiatrique et Médecine Néonatale, AP-HP, Hôpitaux Universitaires Paris-Sud, Le Kremlin Bicêtre, France; Groupe Equipe Endotoxine, Structures et Activité, Institut de Génétique et Microbiologie, UMR 8621, Université Paris Sud, Orsay, France
| | - Edith Deriaud
- Unité de Régulation Immunitaire et Vaccinologie, Institut Pasteur, Paris, France; INSERM U1041, Paris, France
| | - Dania Zhivaki
- Unité de Régulation Immunitaire et Vaccinologie, Institut Pasteur, Paris, France; INSERM U1041, Paris, France; Université Paris Diderot, Paris, France
| | - Camille Le Ray
- APHP, Department of Obstetrics and Gynecology, Maternité Port Royal, Paris, France; Université Paris Descartes, Faculté de Médecine, Paris, France
| | - Odile Launay
- Université Paris Descartes, Faculté de Médecine, Paris, France; INSERM CIC1417, Paris, France
| | - Laleh Majlessi
- Unité de Pathogénomique Mycobactérienne Intégrée, Institut Pasteur, Paris, France
| | - Pierre Tissieres
- Unité de Réanimation Pédiatrique et Médecine Néonatale, AP-HP, Hôpitaux Universitaires Paris-Sud, Le Kremlin Bicêtre, France; Groupe Equipe Endotoxine, Structures et Activité, Institut de Génétique et Microbiologie, UMR 8621, Université Paris Sud, Orsay, France; Faculté de Médecine, Université Paris Sud, Le Kremlin Bicêtre, France
| | - Claude Leclerc
- Unité de Régulation Immunitaire et Vaccinologie, Institut Pasteur, Paris, France; INSERM U1041, Paris, France
| | - Richard Lo-Man
- Unité de Régulation Immunitaire et Vaccinologie, Institut Pasteur, Paris, France; INSERM U1041, Paris, France.
| |
Collapse
|
39
|
Ateba-Ngoa U, Adegnika AA, Zinsou JF, Kassa Kassa RF, Smits H, Massinga-Loembe M, Mordmüller B, Kremsner PG, Yazdanbakhsh M. Cytokine and chemokine profile of the innate and adaptive immune response of Schistosoma haematobium and Plasmodium falciparum single and co-infected school-aged children from an endemic area of Lambaréné, Gabon. Malar J 2015; 14:94. [PMID: 25890010 PMCID: PMC4365807 DOI: 10.1186/s12936-015-0608-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 02/09/2015] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Helminths and malaria are among the most prevalent infectious diseases in the world. They both occur in tropical area where they often affect the same populations. There are studies suggesting an effect of helminths on malariometric indices. For example, malaria attacks as well as disease severity has been shown to be influenced by a concurrent chronic helminth infection. However, there are also studies that show no effect of concurrent helminth infections on malarial outcomes. To start addressing this issue, the effect of chronic Schistosoma haematobium infection on both the innate and adaptive immune response of Plasmodium falciparum-infected subjects was assessed in an area endemic for both these infections in Gabon. METHOD Subjects infected with S. haematobium and or P. falciparum, as well as a control group with neither of these infections, were recruited. For innate immune response, heparinized blood was obtained and cultured for 24 hours with a panel of TLR ligands. For adaptive immune response, PBMC was isolated and stimulated with SEB for 72 hours. Cytokines and chemokines were measured in supernatants using a multiplex beads array immunoassay. Principal Component analysis was used to assess pattern of cytokine and chemokine responses representing the innate and adaptive components of the immune system. RESULTS Overall it was observed that the presence of P. falciparum infection was marked by an increase in innate and adaptive immune responsiveness while S. haematobium infection was characterized by an increased chemokine profile, with at the same time, lower pro inflammatory markers. When the study subjects were split into single infected and co-infected groups no effect of S. haematobium on the immune response of P. falciparum infected subjects was observed, neither for the innate nor for the adaptive component of the immune response. CONCLUSION This study provides original information on the cellular immune response of S. haematobium and/or P. falciparum in infected subjects. It rules out an effect of S. haematobium on the cytokine profile of subjects co-infected with P. falciparum.
Collapse
Affiliation(s)
- Ulysse Ateba-Ngoa
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333, Leiden, ZA, The Netherlands. .,Institut für Tropenmedizin, Universität Tübingen, Wilhelmstraβe 27, D-72074, Tübingen, Germany. .,Centre de Recherches Médicales de Lambaréné, BP: 118, Lambaréné, Gabon.
| | - Ayola Akim Adegnika
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333, Leiden, ZA, The Netherlands. .,Institut für Tropenmedizin, Universität Tübingen, Wilhelmstraβe 27, D-72074, Tübingen, Germany. .,Centre de Recherches Médicales de Lambaréné, BP: 118, Lambaréné, Gabon.
| | - Jeannot F Zinsou
- Centre de Recherches Médicales de Lambaréné, BP: 118, Lambaréné, Gabon.
| | | | - Hermelijn Smits
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333, Leiden, ZA, The Netherlands.
| | - Marguerite Massinga-Loembe
- Institut für Tropenmedizin, Universität Tübingen, Wilhelmstraβe 27, D-72074, Tübingen, Germany. .,Centre de Recherches Médicales de Lambaréné, BP: 118, Lambaréné, Gabon.
| | - Benjamin Mordmüller
- Institut für Tropenmedizin, Universität Tübingen, Wilhelmstraβe 27, D-72074, Tübingen, Germany. .,Centre de Recherches Médicales de Lambaréné, BP: 118, Lambaréné, Gabon.
| | - Peter G Kremsner
- Institut für Tropenmedizin, Universität Tübingen, Wilhelmstraβe 27, D-72074, Tübingen, Germany. .,Centre de Recherches Médicales de Lambaréné, BP: 118, Lambaréné, Gabon.
| | - Maria Yazdanbakhsh
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333, Leiden, ZA, The Netherlands. .,Centre de Recherches Médicales de Lambaréné, BP: 118, Lambaréné, Gabon.
| |
Collapse
|
40
|
Mbow M, de Jong SE, Meurs L, Mboup S, Dieye TN, Polman K, Yazdanbakhsh M. Changes in immunological profile as a function of urbanization and lifestyle. Immunology 2015; 143:569-77. [PMID: 24924958 DOI: 10.1111/imm.12335] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 05/14/2014] [Accepted: 06/09/2014] [Indexed: 12/12/2022] Open
Abstract
Differences in lifestyle and break with natural environment appear to be associated with changes in the immune system resulting in various adverse health effects. Although genetics can have a major impact on the immune system and disease susceptibility, the contribution of environmental factors is thought to be substantial. Here, we investigated the immunological profile of healthy volunteers living in a rural and an urban area of a developing African country (Senegal), and in a European country (the Netherlands). Using flow cytometry, we investigated T helper type 1 (Th1), Th2, Th17, Th22 and regulatory T cells, as well as CD4(+) T-cell and B-cell activation markers, and subsets of memory T and B cells in the peripheral blood. Rural Senegalese had significantly higher frequencies of Th1, Th2 and Th22 cells, memory CD4(+) T and B cells, as well as activated CD4(+) T and B cells compared with urban Senegalese and urban Dutch people. Within the Senegalese population, rural paritcipants displayed significantly higher frequencies of Th2 and Th22 cells, as well as higher pro-inflammatory and T-cell activation and memory profiles compared with the urban population. The greater magnitude of immune activation and the enlarged memory pool, together with Th2 polarization, seen in rural participants from Africa, followed by urban Africans and Europeans suggest that environmental changes may define immunological footprints, which could have consequences for disease patterns in general and vaccine responses in particular.
Collapse
Affiliation(s)
- Moustapha Mbow
- Immunology Department of the Laboratory of Bacteriology and Virology of Aristide Le Dantec University Hospital, Dakar, Senegal; Leiden Immunoparasitology Group, Department of Parasitology, Leiden University Medical Centre, Leiden, the Netherlands; Department of Biomedical Sciences of the Institute of Tropical Medicine of Antwerp, Antwerp, Belgium
| | | | | | | | | | | | | |
Collapse
|
41
|
MacGillivray DM, Kollmann TR. The role of environmental factors in modulating immune responses in early life. Front Immunol 2014; 5:434. [PMID: 25309535 PMCID: PMC4161944 DOI: 10.3389/fimmu.2014.00434] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 08/26/2014] [Indexed: 12/23/2022] Open
Abstract
The concept of immunological memory stipulates that past exposures shape present immune function. These exposures include not only specific antigens impacting adaptive immune memory but also conserved pathogen or danger associated molecular patterns that mold innate immune responses for prolonged periods of time. It should thus not come as a surprise that there is a vast range of external or environmental factors that impact immunity. The importance of environmental factors modulating immunity is most readily recognized in early life, a period of rapidly changing environments. We here summarize available data on the role of environment shaping immune development and from it derive an overarching hypothesis relating the underlying molecular mechanisms and evolutionary principles involved.
Collapse
Affiliation(s)
- Duncan M. MacGillivray
- Division of Infectious and Immunological Diseases, Department of Paediatrics, Child and Family Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Tobias R. Kollmann
- Division of Infectious and Immunological Diseases, Department of Paediatrics, Child and Family Research Institute, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
42
|
Huang E, Wells CA. The ground state of innate immune responsiveness is determined at the interface of genetic, epigenetic, and environmental influences. THE JOURNAL OF IMMUNOLOGY 2014; 193:13-9. [PMID: 24951823 DOI: 10.4049/jimmunol.1303410] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Monocytes and macrophages form the major cellular component of the innate immune system, with roles in tissue development, homeostasis, and host defense against infection. Environmental factors were shown to play a significant part in determining innate immune responsiveness, and this included systemic conditions, such as circulating glucose levels, gut microflora, time of year, and even diurnal rhythm, which had a direct impact on innate immune receptor expression. Although the underlying molecular processes are just beginning to emerge, it is clear that environmental factors may alter epigenetic states of peripheral blood monocytes and resident tissue macrophages. We conclude that some measure of cellular ground state must become an essential part of the analysis of myeloid responsiveness or infectious susceptibility.
Collapse
Affiliation(s)
- Edward Huang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia; and
| | - Christine Anne Wells
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia; and Institute of Infection, Immunity, and Inflammation, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom
| |
Collapse
|
43
|
Smolen KK, Cai B, Fortuno ES, Gelinas L, Larsen M, Speert DP, Chamekh M, Cooper PJ, Esser M, Marchant A, Kollmann TR. Single-cell analysis of innate cytokine responses to pattern recognition receptor stimulation in children across four continents. THE JOURNAL OF IMMUNOLOGY 2014; 193:3003-3012. [PMID: 25135829 DOI: 10.4049/jimmunol.1400895] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Innate immunity instructs adaptive immunity, and suppression of innate immunity is associated with an increased risk for infection. We showed previously that whole-blood cellular components from a cohort of South African children secreted significantly lower levels of most cytokines following stimulation of pattern recognition receptors compared with whole blood from cohorts of Ecuadorian, Belgian, or Canadian children. To begin dissecting the responsible molecular mechanisms, we set out to identify the relevant cellular source of these differences. Across the four cohorts represented in our study, we identified significant variation in the cellular composition of whole blood; however, a significant reduction in the intracellular cytokine production on the single-cell level was only detected in South African children's monocytes, conventional dendritic cells, and plasmacytoid dendritic cells. We also uncovered a marked reduction in polyfunctionality for each of these cellular compartments in South African children compared with children from the other continents. Together, our data identify differences in cell composition, as well as profoundly lower functional responses of innate cells, in our cohort of South African children. A possible link between altered innate immunity and increased risk for infection or lower response to vaccines in South African infants needs to be explored.
Collapse
Affiliation(s)
- Kinga K Smolen
- Department of Experimental Medicine, University of British Columbia, CFRI A5-147, 950 W28th Ave, Vancouver, BC, V5Z 4H4 Canada
| | - Bing Cai
- Department of Pediatrics, University of British Columbia, CFRI A5-147, 950 W28th Ave, Vancouver, BC, V5Z 4H4 Canada
| | - Edgardo S Fortuno
- Department of Pediatrics, University of British Columbia, CFRI A5-147, 950 W28th Ave, Vancouver, BC, V5Z 4H4 Canada
| | - Laura Gelinas
- Department of Experimental Medicine, University of British Columbia, CFRI A5-147, 950 W28th Ave, Vancouver, BC, V5Z 4H4 Canada
| | - Martin Larsen
- INSERM, U1135, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), F-75013, Paris, France.,Sorbonne Universités, Université Pierre et Marie Curie, Paris 06, CR7, CIMI-Paris, F-75013, Paris, France
| | - David P Speert
- Department of Pediatrics, University of British Columbia, CFRI A5-147, 950 W28th Ave, Vancouver, BC, V5Z 4H4 Canada
| | - Mustapha Chamekh
- Institut d'Immunologie, Université Libre de Bruxelles, Charleroi, Rue Adrienne Bolland 8, Gosselies B-6041, Belgium
| | - Philip J Cooper
- Centro de Investigaciones FEPIS, Esmeraldas Quininde, Ecuador, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.,Molecular and Biochemical Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.,Centro de Investgación en Enfermedades Infecciosas, Escuela de Biología, Pontificia Universidad Católica del Ecuador, Casilla 17-22-20418, Quito, Ecuador Ecuador
| | - Monika Esser
- Immunology Unit, Division of Medical Microbiology, Department of Pathology, National Health Laboratory Services and Stellenbosch University, Private Bag X1, Matieland, 7602 South Africa
| | - Arnaud Marchant
- Institut d'Immunologie, Université Libre de Bruxelles, Charleroi, Rue Adrienne Bolland 8, Gosselies B-6041, Belgium.,Département de pédiatrie, Centre Hospitalier Universitaire Saint-Pierre, Rue Haute, 322 1000 Brussels, Belgium
| | - Tobias R Kollmann
- Department of Experimental Medicine, University of British Columbia, CFRI A5-147, 950 W28th Ave, Vancouver, BC, V5Z 4H4 Canada.,Department of Pediatrics, University of British Columbia, CFRI A5-147, 950 W28th Ave, Vancouver, BC, V5Z 4H4 Canada
| |
Collapse
|
44
|
Valdez Y, Brown EM, Finlay BB. Influence of the microbiota on vaccine effectiveness. Trends Immunol 2014; 35:526-37. [PMID: 25113637 DOI: 10.1016/j.it.2014.07.003] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 07/01/2014] [Accepted: 07/10/2014] [Indexed: 12/22/2022]
Abstract
Studies of the relationship between the microbiome and the development and function of the immune system are demonstrating novel concepts that could significantly alter the way we treat disease and promote wellness. Several diseases, including inflammatory bowel disease, allergy/asthma, and diabetes, are associated with changes in composition of the microbiome. Recent findings suggest novel complex mechanisms by which the microbiome impacts immune cell development and differentiation. A major implication of these findings is that the composition of microbiome may ultimately affect vaccine efficacy. We explore here the potential role of the microbiome in vaccine responses in the context of our growing understanding of the relationship between the gastrointestinal microbiota, resident immune cell populations, and systemic immunity.
Collapse
Affiliation(s)
- Yanet Valdez
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Eric M Brown
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada; Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - B Brett Finlay
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada; Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
45
|
Abstract
Neonates have little immunological memory and a developing immune system, which increases their vulnerability to infectious agents. Recent advances in the understanding of neonatal immunity indicate that both innate and adaptive responses are dependent on precursor frequency of lymphocytes, antigenic dose and mode of exposure. Studies in neonatal mouse models and human umbilical cord blood cells demonstrate the capability of neonatal immune cells to produce immune responses similar to adults in some aspects but not others. This review focuses mainly on the developmental and functional mechanisms of the human neonatal immune system. In particular, the mechanism of innate and adaptive immunity and the role of neutrophils, antigen presenting cells, differences in subclasses of T lymphocytes (Th1, Th2, Tregs) and B cells are discussed. In addition, we have included the recent developments in the neonatal mouse immune system. Understanding neonatal immunity is essential to development of therapeutic vaccines to combat newly emerging infectious agents.
Collapse
Affiliation(s)
- Saleem Basha
- Center for Infectious Disease and Immunology, Rochester General Hospital Research Institute, 1425 Portland Avenue, Rochester, NY 14621, USA
| | | | | |
Collapse
|
46
|
Cooper PJ, Chico ME, Platts-Mills TA, Rodrigues LC, Strachan DP, Barreto ML. Cohort Profile: The Ecuador Life (ECUAVIDA) study in Esmeraldas Province, Ecuador. Int J Epidemiol 2014; 44:1517-27. [PMID: 24990475 PMCID: PMC4681103 DOI: 10.1093/ije/dyu128] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2014] [Indexed: 12/11/2022] Open
Abstract
The ECUAVIDA birth cohort is studying the impact of exposures to soil-transmitted helminth (STH) parasites and early-life microbial exposures on the development of atopy, allergic diseases and immune responses in childhood. A total of 2404 newborns were recruited between 2006 and 2009 in a public hospital serving the rural district of Quininde, Esmeraldas Province, in a tropical region of coastal Ecuador. Detailed measurements were done around the time of the birth, at 7 and 13 months and at 2 and 3 years, and data collection is ongoing at 5 and 8 years. Data being collected include questionnaires for: sociodemographic, lifestyle, psychosocial (at 4-6 years only) and dietary (at 6-7 years only) factors; childhood morbidity and clinical outcomes; stool samples for parasites; blood samples for DNA, measurements of vaccine responses and other measures of immune function/inflammation; and anthropometrics. Allergen skin prick test reactivity is done from 2 years and measures of airway function and inflammation at 8 years.
Collapse
Affiliation(s)
- Philip J Cooper
- Laboratorio de Investigaciones FEPIS, Quinindé, Esmeraldas Province, Ecuador, Institute of Infection and Immunity Research, Institute of Population Health Research, St George's University of London, London, UK, Centro de Investigación en Enfermedades Infecciosas, Escuela de Biología, Pontificia Universidad Católica del Ecuador, Quito, Ecuador,
| | - Martha E Chico
- Laboratorio de Investigaciones FEPIS, Quinindé, Esmeraldas Province, Ecuador
| | - Thomas Ae Platts-Mills
- Division of Allergy and Clinical Immunology, University of Virginia Health System, Charlottesville, VA, USA
| | - Laura C Rodrigues
- Infectious Diseases Epidemiology, London School of Hygiene and Tropical Medicine, London, UK and
| | - David P Strachan
- Institute of Population Health Research, St George's University of London, London, UK
| | - Mauricio L Barreto
- Instituto de Saúde Coletiva, Universidade Federal da Bahia, Salvador, Brazil
| |
Collapse
|
47
|
Dowling DJ, Levy O. Ontogeny of early life immunity. Trends Immunol 2014; 35:299-310. [PMID: 24880460 DOI: 10.1016/j.it.2014.04.007] [Citation(s) in RCA: 271] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 04/29/2014] [Accepted: 04/30/2014] [Indexed: 12/18/2022]
Abstract
The human immune system comprises cellular and molecular components designed to coordinately prevent infection while avoiding potentially harmful inflammation and autoimmunity. Immunity varies with age, reflecting unique age-dependent challenges including fetal gestation, the neonatal phase, and infancy. Here, we review novel mechanistic insights into early life immunity, with an emphasis on emerging models of human immune ontogeny, which may inform age-specific translational development of novel anti-infectives, immunomodulators, and vaccines.
Collapse
Affiliation(s)
- David J Dowling
- Department of Medicine, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Ofer Levy
- Department of Medicine, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| |
Collapse
|