1
|
Hollinger MK, Grayson EM, Ferreira CM, Sperling AI. Harnessing the Farm Effect: Microbial Products for the Treatment and Prevention of Asthma Throughout Life. Immunol Rev 2025; 330:e70012. [PMID: 40035333 PMCID: PMC11877632 DOI: 10.1111/imr.70012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 02/10/2025] [Indexed: 03/05/2025]
Abstract
It has long been appreciated that farm exposure early in life protects individuals from allergic asthma. Understanding what component(s) of this exposure is responsible for this protection is crucial to understanding allergic asthma pathogenesis and developing strategies to prevent or treat allergic asthma. In this review, we introduce the concept of Farm-Friends, or specific microbes associated with both a farm environment and protection from allergic asthma. We review the mechanism(s) by which these Farm-Friends suppress allergic inflammation, with a focus on the molecule(s) produced by these Farm-Friends. Finally, we discuss the relevance of Farm-Friend administration (oral vs. inhaled) for preventing the development and severity of allergic asthma throughout childhood and adulthood. By developing a fuller understanding of which Farm-Friends modulate host immunity, a greater wealth of prophylactic and therapeutic options becomes available to counter the current allergy epidemic.
Collapse
Affiliation(s)
- Maile K. Hollinger
- Beirne B. Carter Center for Immunology ResearchUniversity of VirginiaCharlottesvilleVirginiaUSA
- Department of Medicine, Pulmonary and Critical CareUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Emily M. Grayson
- Beirne B. Carter Center for Immunology ResearchUniversity of VirginiaCharlottesvilleVirginiaUSA
- Department of Medicine, Pulmonary and Critical CareUniversity of VirginiaCharlottesvilleVirginiaUSA
- Department of Microbiology, Immunology, and Cancer BiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Caroline M. Ferreira
- Department of Medicine, Pulmonary and Critical CareUniversity of VirginiaCharlottesvilleVirginiaUSA
- Institute of Environmental, Chemistry and Pharmaceutics Sciences, Department of Pharmaceutics SciencesFederal University of São PauloSão PauloBrazil
| | - Anne I. Sperling
- Beirne B. Carter Center for Immunology ResearchUniversity of VirginiaCharlottesvilleVirginiaUSA
- Department of Medicine, Pulmonary and Critical CareUniversity of VirginiaCharlottesvilleVirginiaUSA
- Department of Microbiology, Immunology, and Cancer BiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| |
Collapse
|
2
|
Dalton KR, Lee M, Wang Z, Zhao S, Parks CG, Beane-Freeman LE, Motsinger-Reif AA, London SJ. Occupational farm work activities influence workers' indoor home microbiome. ENVIRONMENTAL RESEARCH 2024; 243:117819. [PMID: 38052359 PMCID: PMC10872285 DOI: 10.1016/j.envres.2023.117819] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/10/2023] [Accepted: 11/27/2023] [Indexed: 12/07/2023]
Abstract
BACKGROUND Farm work entails a heterogeneous mixture of exposures that vary considerably across farms and farmers. Farm work is associated with various health outcomes, both adverse and beneficial. One mechanism by which farming exposures can impact health is through the microbiome, including the indoor home environment microbiome. It is unknown how individual occupational exposures shape the microbial composition in workers' homes. OBJECTIVES We investigated associations between farm work activities, including specific tasks and pesticide use, and the indoor microbiome in the homes of 468 male farmers. METHODS Participants were licensed pesticide applicators, mostly farmers, enrolled in the Agricultural Lung Health Study from 2008 to 2011. Vacuumed dust from participants' bedrooms underwent whole-genome shotgun sequencing for indoor microbiome assessment. Using questionnaire data, we evaluated 6 farm work tasks (processing of either hay, silage, animal feed, fertilizer, or soy/grains, and cleaning grain bins) and 19 pesticide ingredients currently used in the past year, plus 7 banned persistent pesticide ingredients ever used. RESULTS All 6 work tasks were associated with increased microbial diversity levels, with a positive dose-response for the total number of tasks performed (P = 0.001). All tasks were associated with altered microbial compositions (weighted UniFrac P = 0.001) and with higher abundance of specific microbes, including soil-based commensal microbes such as Haloterrigena. Among the 19 pesticides, current use of glyphosate and past use of lindane were associated with increased microbial diversity (P = 0.02-0.04). Ten currently used pesticides and all 7 banned pesticides were associated with altered microbial composition (P = 0.001-0.04). Six pesticides were associated with differential abundance of certain microbes. DISCUSSION Different farm activities and exposures can uniquely impact the dust microbiome inside homes. Our work suggests that changes to the home microbiome could serve as one pathway for how occupational exposures impact the health of workers and their cohabitating family members, offering possible future intervention targets.
Collapse
Affiliation(s)
- Kathryn R Dalton
- Genomics and the Environment in Respiratory and Allergic Health Group, Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, USA
| | - Mikyeong Lee
- Genomics and the Environment in Respiratory and Allergic Health Group, Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, USA
| | - Ziyue Wang
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, USA
| | - Shanshan Zhao
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, USA
| | - Christine G Parks
- Genomics and the Environment in Respiratory and Allergic Health Group, Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, USA
| | - Laura E Beane-Freeman
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alison A Motsinger-Reif
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, USA
| | - Stephanie J London
- Genomics and the Environment in Respiratory and Allergic Health Group, Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, USA.
| |
Collapse
|
3
|
Hoang TT, Lee Y, McCartney DL, Kersten ETG, Page CM, Hulls PM, Lee M, Walker RM, Breeze CE, Bennett BD, Burkholder AB, Ward J, Brantsæter AL, Caspersen IH, Motsinger-Reif AA, Richards M, White JD, Zhao S, Richmond RC, Magnus MC, Koppelman GH, Evans KL, Marioni RE, Håberg SE, London SJ. Comprehensive evaluation of smoking exposures and their interactions on DNA methylation. EBioMedicine 2024; 100:104956. [PMID: 38199042 PMCID: PMC10825325 DOI: 10.1016/j.ebiom.2023.104956] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Smoking impacts DNA methylation, but data are lacking on smoking-related differential methylation by sex or dietary intake, recent smoking cessation (<1 year), persistence of differential methylation from in utero smoking exposure, and effects of environmental tobacco smoke (ETS). METHODS We meta-analysed data from up to 15,014 adults across 5 cohorts with DNA methylation measured in blood using Illumina's EPIC array for current smoking (2560 exposed), quit < 1 year (500 exposed), in utero (286 exposed), and ETS exposure (676 exposed). We also evaluated the interaction of current smoking with sex or diet (fibre, folate, and vitamin C). FINDINGS Using false discovery rate (FDR < 0.05), 65,857 CpGs were differentially methylated in relation to current smoking, 4025 with recent quitting, 594 with in utero exposure, and 6 with ETS. Most current smoking CpGs attenuated within a year of quitting. CpGs related to in utero exposure in adults were enriched for those previously observed in newborns. Differential methylation by current smoking at 4-71 CpGs may be modified by sex or dietary intake. Nearly half (35-50%) of differentially methylated CpGs on the 450 K array were associated with blood gene expression. Current smoking and in utero smoking CpGs implicated 3049 and 1067 druggable targets, including chemotherapy drugs. INTERPRETATION Many smoking-related methylation sites were identified with Illumina's EPIC array. Most signals revert to levels observed in never smokers within a year of cessation. Many in utero smoking CpGs persist into adulthood. Smoking-related druggable targets may provide insights into cancer treatment response and shared mechanisms across smoking-related diseases. FUNDING Intramural Research Program of the National Institutes of Health, Norwegian Ministry of Health and Care Services and the Ministry of Education and Research, Chief Scientist Office of the Scottish Government Health Directorates and the Scottish Funding Council, Medical Research Council UK and the Wellcome Trust.
Collapse
Affiliation(s)
- Thanh T Hoang
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA; Department of Pediatrics, Division of Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA; Cancer and Hematology Center, Texas Children's Hospital, Houston, TX, USA
| | - Yunsung Lee
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Daniel L McCartney
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XU, UK
| | - Elin T G Kersten
- University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital, Dept. of Pediatric Pulmonology and Pediatric Allergy, Groningen, the Netherlands; University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Groningen, the Netherlands
| | - Christian M Page
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway; Department of Physical Health and Ageing, Division for Physical and Mental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Paige M Hulls
- Population Health Sciences, Bristol Medical School, University of Bristol, BS8 2BN, UK; MRC Integrative Epidemiology Unit at University of Bristol, BS8 2BN, UK
| | - Mikyeong Lee
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Rosie M Walker
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XU, UK; Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK; School of Psychology, University of Exeter, Perry Road, Exeter, UK
| | - Charles E Breeze
- UCL Cancer Institute, University College London, Paul O'Gorman Building, London, UK; Altius Institute for Biomedical Sciences, Seattle, WA, USA
| | - Brian D Bennett
- Department of Health and Human Services, Integrative Bioinformatics Support Group, National Institutes of Health, Research Triangle Park, NC, USA
| | - Adam B Burkholder
- Department of Health and Human Services, Office of Environmental Science Cyberinfrastructure, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - James Ward
- Department of Health and Human Services, Integrative Bioinformatics Support Group, National Institutes of Health, Research Triangle Park, NC, USA
| | - Anne Lise Brantsæter
- Department of Food Safety, Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Ida H Caspersen
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Alison A Motsinger-Reif
- Department of Health and Human Services, Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | | | - Julie D White
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA; GenOmics and Translational Research Center, Analytics Practice Area, RTI International, Research Triangle Park, NC, USA
| | - Shanshan Zhao
- Department of Health and Human Services, Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Rebecca C Richmond
- Population Health Sciences, Bristol Medical School, University of Bristol, BS8 2BN, UK; MRC Integrative Epidemiology Unit at University of Bristol, BS8 2BN, UK
| | - Maria C Magnus
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Gerard H Koppelman
- University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital, Dept. of Pediatric Pulmonology and Pediatric Allergy, Groningen, the Netherlands; University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Groningen, the Netherlands
| | - Kathryn L Evans
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XU, UK
| | - Riccardo E Marioni
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XU, UK
| | - Siri E Håberg
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Stephanie J London
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA.
| |
Collapse
|
4
|
Galeana-Cadena D, Gómez-García IA, Lopez-Salinas KG, Irineo-Moreno V, Jiménez-Juárez F, Tapia-García AR, Boyzo-Cortes CA, Matías-Martínez MB, Jiménez-Alvarez L, Zúñiga J, Camarena A. Winds of change a tale of: asthma and microbiome. Front Microbiol 2023; 14:1295215. [PMID: 38146448 PMCID: PMC10749662 DOI: 10.3389/fmicb.2023.1295215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/15/2023] [Indexed: 12/27/2023] Open
Abstract
The role of the microbiome in asthma is highlighted, considering its influence on immune responses and its connection to alterations in asthmatic patients. In this context, we review the variables influencing asthma phenotypes from a microbiome perspective and provide insights into the microbiome's role in asthma pathogenesis. Previous cohort studies in patients with asthma have shown that the presence of genera such as Bifidobacterium, Lactobacillus, Faecalibacterium, and Bacteroides in the gut microbiome has been associated with protection against the disease. While, the presence of other genera such as Haemophilus, Streptococcus, Staphylococcus, and Moraxella in the respiratory microbiome has been implicated in asthma pathogenesis, indicating a potential link between microbial dysbiosis and the development of asthma. Furthermore, respiratory infections have been demonstrated to impact the composition of the upper respiratory tract microbiota, increasing susceptibility to bacterial diseases and potentially triggering asthma exacerbations. By understanding the interplay between the microbiome and asthma, valuable insights into disease mechanisms can be gained, potentially leading to the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- David Galeana-Cadena
- Laboratorio de Inmunobiología y Genética, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Mexico City, Mexico
| | - Itzel Alejandra Gómez-García
- Laboratorio de Inmunobiología y Genética, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Mexico City, Mexico
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Mexico City, Mexico
| | - Karen Gabriel Lopez-Salinas
- Laboratorio de Inmunobiología y Genética, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Mexico City, Mexico
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Mexico City, Mexico
| | - Valeria Irineo-Moreno
- Laboratorio de Inmunobiología y Genética, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Mexico City, Mexico
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Mexico City, Mexico
| | - Fabiola Jiménez-Juárez
- Laboratorio de Inmunobiología y Genética, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Mexico City, Mexico
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Mexico City, Mexico
| | - Alan Rodrigo Tapia-García
- Laboratorio de Inmunobiología y Genética, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Mexico City, Mexico
- Red de Medicina para la Educación, el Desarrollo y la Investigación Científica de Iztacala, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Carlos Alberto Boyzo-Cortes
- Laboratorio de Inmunobiología y Genética, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Mexico City, Mexico
| | - Melvin Barish Matías-Martínez
- Laboratorio de Inmunobiología y Genética, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Mexico City, Mexico
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Mexico City, Mexico
| | - Luis Jiménez-Alvarez
- Laboratorio de Inmunobiología y Genética, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Mexico City, Mexico
| | - Joaquín Zúñiga
- Laboratorio de Inmunobiología y Genética, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Mexico City, Mexico
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Mexico City, Mexico
| | - Angel Camarena
- Laboratorio de Inmunobiología y Genética, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Mexico City, Mexico
| |
Collapse
|
5
|
Losol P, Sokolowska M, Hwang YK, Ogulur I, Mitamura Y, Yazici D, Pat Y, Radzikowska U, Ardicli S, Yoon JE, Choi JP, Kim SH, van de Veen W, Akdis M, Chang YS, Akdis CA. Epithelial Barrier Theory: The Role of Exposome, Microbiome, and Barrier Function in Allergic Diseases. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2023; 15:705-724. [PMID: 37957791 PMCID: PMC10643858 DOI: 10.4168/aair.2023.15.6.705] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/18/2023] [Accepted: 10/07/2023] [Indexed: 11/15/2023]
Abstract
Allergic diseases are a major public health problem with increasing prevalence. These immune-mediated diseases are characterized by defective epithelial barriers, which are explained by the epithelial barrier theory and continuously emerging evidence. Environmental exposures (exposome) including global warming, changes and loss of biodiversity, pollution, pathogens, allergens and mites, laundry and dishwasher detergents, surfactants, shampoos, body cleaners and household cleaners, microplastics, nanoparticles, toothpaste, enzymes and emulsifiers in processed foods, and dietary habits are responsible for the mucosal and skin barrier disruption. Exposure to barrier-damaging agents causes epithelial cell injury and barrier damage, colonization of opportunistic pathogens, loss of commensal bacteria, decreased microbiota diversity, bacterial translocation, allergic sensitization, and inflammation in the periepithelial area. Here, we review scientific evidence on the environmental components that impact epithelial barriers and microbiome composition and their influence on asthma and allergic diseases. We also discuss the historical overview of allergic diseases and the evolution of the hygiene hypothesis with theoretical evidence.
Collapse
Affiliation(s)
- Purevsuren Losol
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
- Medical Research Center, Seoul National University, Seoul, Korea
- Department of Molecular Biology and Genetics, School of Biomedicine, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Yu-Kyoung Hwang
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Ismail Ogulur
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Yasutaka Mitamura
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Duygu Yazici
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Yagiz Pat
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Urszula Radzikowska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Sena Ardicli
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Jeong-Eun Yoon
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Jun-Pyo Choi
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Sae-Hoon Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
- Medical Research Center, Seoul National University, Seoul, Korea
| | - Willem van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Yoon-Seok Chang
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
- Medical Research Center, Seoul National University, Seoul, Korea.
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| |
Collapse
|
6
|
Chu LM, Rennie DC, Kirychuk S, Cockcroft D, Gordon JR, Pickett W, Dosman J, Lawson JA. Farm Exposures and Allergic Disease Among Children Living in a Rural Setting. J Agromedicine 2023; 28:676-688. [PMID: 37038656 DOI: 10.1080/1059924x.2023.2200427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
OBJECTIVES The purpose of this study was to examine the association between farm exposures and asthma and allergic disease in children while also highlighting the experiences of non-farm rural children. METHODS This was a cross-sectional analysis of data collected from across the province of Saskatchewan, Canada in 2014. Surveys were completed by parents of 2275 rural dwelling children (farm and non-farm) aged 0 to 17 years within 46 rural schools. Questionnaires were distributed through schools for parents to complete. RESULTS Asthma prevalence was 7.6%, of which 29.5% of cases were allergic. After adjustment for potential confounders, home location (farm vs non-farm) and other farm exposures were not associated with asthma and asthma phenotypes. Those who completed farm safety education were more likely to have asthma (11.7% vs. 6.7%; p = .001) compared to children without asthma. In sub-analyses among 6-12-year-old children, boys were more likely to have asthma (non-allergic) and use short-acting beta-agonists compared to girls. Doing farm work in the summer was associated with an increased risk of asthma [adjusted OR (aOR) = 1.71 (1.02-2.88); p = .041]. Doing routine chores with large animals was associated with an increased risk of asthma [aOR = 1.83 (1.07-3.15); p = .027] and allergic asthma [aOR = 2.37 (95%CI = 1.04-5.40); p = .04]. CONCLUSION The present study showed that the prevalence of asthma and asthma phenotypes were similar between farm and non-farm rural children. There did not appear to be differential involvement in farming activities between those with and without asthma although those with asthma had more training suggesting possible attempts to mitigate harm from farm exposures.
Collapse
Affiliation(s)
- L M Chu
- Canadian Center for Health and Safety in Agriculture, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - D C Rennie
- Canadian Center for Health and Safety in Agriculture, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- College of Nursing, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - S Kirychuk
- Canadian Center for Health and Safety in Agriculture, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - D Cockcroft
- Department of Medicine, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - J R Gordon
- Department of Medicine, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - W Pickett
- Department of Public Health Sciences, Queen's University, Kingston, Ontario, Canada
| | - J Dosman
- Canadian Center for Health and Safety in Agriculture, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - J A Lawson
- Canadian Center for Health and Safety in Agriculture, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Medicine, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
7
|
Dydak P, Sozańska B. Exposure to farm environment and its correlations with total IgE, IL-13, and IL-33 serum levels in patients with atopy and asthma. Allergol Immunopathol (Madr) 2023; 51:33-40. [PMID: 37695228 DOI: 10.15586/aei.v51i5.823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/17/2023] [Indexed: 09/12/2023]
Abstract
BACKGROUND The aim of the study was to evaluate total immunoglobulin E (IgE), IL-13, and IL-33 serum level in people with bronchial asthma and atopy, and in healthy control group depending on their exposure to farm animals currently and in the first year of life. METHODS The study included 174 individuals living in rural areas and in a small town. Standardized questions from the International Study of Asthma and Allergy in Childhood and The European Community Respiratory Health Survey (ECRHS) questionnaires were used to define asthma. Atopic status was verified by skin prick tests. Rural exposure including contact with livestock was verified by adequate questionnaire. Total serum IgE, IL-13, and IL-33 levels were assessed by ELISA (enzyme-linked immunosorbent assay) tests. RESULTS Participants with atopy and bronchial asthma were characterized by high level of immunoglobulin E. Tendency to lower serum IgE level was observed among people reporting present contact with farm animals. Also, among those having contact with livestock in their first year of life, the analogous tendency was noticed. No difference in serum IL-13 levels in participants with asthma and atopy, and controls was observed, and there was no effect of exposure on farm animals on the concentration of IL-13. The highest IL-33 level was found in the atopic group, and the lowest in the control group. Participants currently exposed to farm animals were predisposed to have lower IL-33 serum level. CONCLUSION Exposure of farm animals currently and in first year of life may result in a lower level of total IgE. Correlation between IL-13 and IL-33 serum levels and contact with livestock was not confirmed.
Collapse
Affiliation(s)
- Paulina Dydak
- 1st Department of Pediatrics, Allergology and Cardiology, Wrocław Medical University, Wrocław, Poland;
| | - Barbara Sozańska
- 1st Department of Pediatrics, Allergology and Cardiology, Wrocław Medical University, Wrocław, Poland
| |
Collapse
|
8
|
Dalton KR, Lee M, Wang Z, Zhao S, Parks CG, Beane-Freeman LE, Motsinger-Reif AA, London SJ. Occupational Farm Work Activities Influence Workers' Indoor Home Microbiome. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.08.17.23293194. [PMID: 37662364 PMCID: PMC10473816 DOI: 10.1101/2023.08.17.23293194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Background Farm work entails a heterogeneous mixture of exposures that vary considerably across farms and farmers. Farm work is associated with various health outcomes, both adverse and beneficial. One mechanism by which farming exposures can impact health is through the microbiome, including the indoor built environment microbiome. It is unknown how individual occupational exposures shape the microbial composition in workers' homes. Objectives We investigated associations between farm work activities, including specific tasks and pesticide use, and the indoor microbiome in the homes of 468 male farmers. Methods Participants were licensed pesticide applicators, mostly farmers, enrolled in the Agricultural Lung Health Study from 2008-2011. Vacuumed dust from participants' bedrooms underwent whole-genome shotgun sequencing for indoor microbiome assessment. Using questionnaire data, we evaluated 6 farm work tasks (processing of either hay, silage, animal feed, fertilizer, or soy/grains, and cleaning grain bins) and 19 pesticide ingredients currently used in the past year, plus 7 persistent banned pesticide ingredients ever used. Results All 6 work tasks were associated with increased within-sample microbial diversity, with a positive dose-response for the sum of tasks (p=0.001). All tasks were associated with altered overall microbial compositions (weighted UniFrac p=0.001) and with higher abundance of specific microbes, including soil-based microbes such as Haloterrigena. Among the 19 pesticides, only current use of glyphosate and past use of lindane were associated with increased within-sample diversity (p=0.02-0.04). Ten currently used pesticides and all 7 banned pesticides were associated with altered microbial composition (p=0.001-0.04). Six pesticides were associated with differential abundance of certain microbes. Discussion Specific farm activities and exposures can impact the dust microbiome inside homes. Our work suggests that occupational farm exposures could impact the health of workers and their families through modifying the indoor environment, specifically the microbial composition of house dust, offering possible future intervention targets.
Collapse
Affiliation(s)
- Kathryn R. Dalton
- Genomics and the Environment in Respiratory and Allergic Health Group, Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, USA
| | - Mikyeong Lee
- Genomics and the Environment in Respiratory and Allergic Health Group, Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, USA
| | - Ziyue Wang
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, USA
| | - Shanshan Zhao
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, USA
| | - Christine G. Parks
- Genomics and the Environment in Respiratory and Allergic Health Group, Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, USA
| | - Laura E. Beane-Freeman
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alison A. Motsinger-Reif
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, USA
| | - Stephanie J. London
- Genomics and the Environment in Respiratory and Allergic Health Group, Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, USA
| |
Collapse
|
9
|
Wise SK, Damask C, Roland LT, Ebert C, Levy JM, Lin S, Luong A, Rodriguez K, Sedaghat AR, Toskala E, Villwock J, Abdullah B, Akdis C, Alt JA, Ansotegui IJ, Azar A, Baroody F, Benninger MS, Bernstein J, Brook C, Campbell R, Casale T, Chaaban MR, Chew FT, Chambliss J, Cianferoni A, Custovic A, Davis EM, DelGaudio JM, Ellis AK, Flanagan C, Fokkens WJ, Franzese C, Greenhawt M, Gill A, Halderman A, Hohlfeld JM, Incorvaia C, Joe SA, Joshi S, Kuruvilla ME, Kim J, Klein AM, Krouse HJ, Kuan EC, Lang D, Larenas-Linnemann D, Laury AM, Lechner M, Lee SE, Lee VS, Loftus P, Marcus S, Marzouk H, Mattos J, McCoul E, Melen E, Mims JW, Mullol J, Nayak JV, Oppenheimer J, Orlandi RR, Phillips K, Platt M, Ramanathan M, Raymond M, Rhee CS, Reitsma S, Ryan M, Sastre J, Schlosser RJ, Schuman TA, Shaker MS, Sheikh A, Smith KA, Soyka MB, Takashima M, Tang M, Tantilipikorn P, Taw MB, Tversky J, Tyler MA, Veling MC, Wallace D, Wang DY, White A, Zhang L. International consensus statement on allergy and rhinology: Allergic rhinitis - 2023. Int Forum Allergy Rhinol 2023; 13:293-859. [PMID: 36878860 DOI: 10.1002/alr.23090] [Citation(s) in RCA: 160] [Impact Index Per Article: 80.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/11/2022] [Accepted: 09/13/2022] [Indexed: 03/08/2023]
Abstract
BACKGROUND In the 5 years that have passed since the publication of the 2018 International Consensus Statement on Allergy and Rhinology: Allergic Rhinitis (ICAR-Allergic Rhinitis 2018), the literature has expanded substantially. The ICAR-Allergic Rhinitis 2023 update presents 144 individual topics on allergic rhinitis (AR), expanded by over 40 topics from the 2018 document. Originally presented topics from 2018 have also been reviewed and updated. The executive summary highlights key evidence-based findings and recommendation from the full document. METHODS ICAR-Allergic Rhinitis 2023 employed established evidence-based review with recommendation (EBRR) methodology to individually evaluate each topic. Stepwise iterative peer review and consensus was performed for each topic. The final document was then collated and includes the results of this work. RESULTS ICAR-Allergic Rhinitis 2023 includes 10 major content areas and 144 individual topics related to AR. For a substantial proportion of topics included, an aggregate grade of evidence is presented, which is determined by collating the levels of evidence for each available study identified in the literature. For topics in which a diagnostic or therapeutic intervention is considered, a recommendation summary is presented, which considers the aggregate grade of evidence, benefit, harm, and cost. CONCLUSION The ICAR-Allergic Rhinitis 2023 update provides a comprehensive evaluation of AR and the currently available evidence. It is this evidence that contributes to our current knowledge base and recommendations for patient evaluation and treatment.
Collapse
Affiliation(s)
- Sarah K Wise
- Otolaryngology-HNS, Emory University, Atlanta, Georgia, USA
| | - Cecelia Damask
- Otolaryngology-HNS, Private Practice, University of Central Florida, Lake Mary, Florida, USA
| | - Lauren T Roland
- Otolaryngology-HNS, Washington University, St. Louis, Missouri, USA
| | - Charles Ebert
- Otolaryngology-HNS, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Joshua M Levy
- Otolaryngology-HNS, Emory University, Atlanta, Georgia, USA
| | - Sandra Lin
- Otolaryngology-HNS, University of Wisconsin, Madison, Wisconsin, USA
| | - Amber Luong
- Otolaryngology-HNS, McGovern Medical School of the University of Texas, Houston, Texas, USA
| | - Kenneth Rodriguez
- Otolaryngology-HNS, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Ahmad R Sedaghat
- Otolaryngology-HNS, University of Cincinnati, Cincinnati, Ohio, USA
| | - Elina Toskala
- Otolaryngology-HNS, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | - Baharudin Abdullah
- Otolaryngology-HNS, Universiti Sains Malaysia, Kubang, Kerian, Kelantan, Malaysia
| | - Cezmi Akdis
- Immunology, Infectious Diseases, Swiss Institute of Allergy and Asthma Research, Davos, Switzerland
| | - Jeremiah A Alt
- Otolaryngology-HNS, University of Utah, Salt Lake City, Utah, USA
| | | | - Antoine Azar
- Allergy/Immunology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Fuad Baroody
- Otolaryngology-HNS, University of Chicago, Chicago, Illinois, USA
| | | | | | - Christopher Brook
- Otolaryngology-HNS, Harvard University, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Raewyn Campbell
- Otolaryngology-HNS, Macquarie University, Sydney, NSW, Australia
| | - Thomas Casale
- Allergy/Immunology, University of South Florida College of Medicine, Tampa, Florida, USA
| | - Mohamad R Chaaban
- Otolaryngology-HNS, Cleveland Clinic, Case Western Reserve University, Cleveland, Ohio, USA
| | - Fook Tim Chew
- Allergy/Immunology, Genetics, National University of Singapore, Singapore, Singapore
| | - Jeffrey Chambliss
- Allergy/Immunology, University of Texas Southwestern, Dallas, Texas, USA
| | - Antonella Cianferoni
- Allergy/Immunology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | | | | | | | - Anne K Ellis
- Allergy/Immunology, Queens University, Kingston, ON, Canada
| | | | - Wytske J Fokkens
- Otorhinolaryngology, Amsterdam University Medical Centres, Amsterdam, Netherlands
| | | | - Matthew Greenhawt
- Allergy/Immunology, Pediatrics, University of Colorado, Children's Hospital Colorado, Aurora, Colorado, USA
| | - Amarbir Gill
- Otolaryngology-HNS, University of Michigan, Ann Arbor, Michigan, USA
| | - Ashleigh Halderman
- Otolaryngology-HNS, University of Texas Southwestern, Dallas, Texas, USA
| | - Jens M Hohlfeld
- Respiratory Medicine, Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Hannover Medical School, German Center for Lung Research, Hannover, Germany
| | | | - Stephanie A Joe
- Otolaryngology-HNS, University of Illinois Chicago, Chicago, Illinois, USA
| | - Shyam Joshi
- Allergy/Immunology, Oregon Health and Science University, Portland, Oregon, USA
| | | | - Jean Kim
- Otolaryngology-HNS, Johns Hopkins University, Baltimore, Maryland, USA
| | - Adam M Klein
- Otolaryngology-HNS, Emory University, Atlanta, Georgia, USA
| | - Helene J Krouse
- Otorhinolaryngology Nursing, University of Texas Rio Grande Valley, Edinburg, Texas, USA
| | - Edward C Kuan
- Otolaryngology-HNS, University of California Irvine, Orange, California, USA
| | - David Lang
- Allergy/Immunology, Cleveland Clinic, Cleveland, Ohio, USA
| | | | | | - Matt Lechner
- Otolaryngology-HNS, University College London, Barts Health NHS Trust, London, UK
| | - Stella E Lee
- Otolaryngology-HNS, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Victoria S Lee
- Otolaryngology-HNS, University of Illinois Chicago, Chicago, Illinois, USA
| | - Patricia Loftus
- Otolaryngology-HNS, University of California San Francisco, San Francisco, California, USA
| | - Sonya Marcus
- Otolaryngology-HNS, Stony Brook University, Stony Brook, New York, USA
| | - Haidy Marzouk
- Otolaryngology-HNS, State University of New York Upstate, Syracuse, New York, USA
| | - Jose Mattos
- Otolaryngology-HNS, University of Virginia, Charlottesville, Virginia, USA
| | - Edward McCoul
- Otolaryngology-HNS, Ochsner Clinic, New Orleans, Louisiana, USA
| | - Erik Melen
- Pediatric Allergy, Karolinska Institutet, Stockholm, Sweden
| | - James W Mims
- Otolaryngology-HNS, Wake Forest University, Winston Salem, North Carolina, USA
| | - Joaquim Mullol
- Otorhinolaryngology, Hospital Clinic Barcelona, Barcelona, Spain
| | - Jayakar V Nayak
- Otolaryngology-HNS, Stanford University, Palo Alto, California, USA
| | - John Oppenheimer
- Allergy/Immunology, Rutgers, State University of New Jersey, Newark, New Jersey, USA
| | | | - Katie Phillips
- Otolaryngology-HNS, University of Cincinnati, Cincinnati, Ohio, USA
| | - Michael Platt
- Otolaryngology-HNS, Boston University, Boston, Massachusetts, USA
| | | | | | - Chae-Seo Rhee
- Rhinology/Allergy, Seoul National University Hospital and College of Medicine, Seoul, Korea
| | - Sietze Reitsma
- Otolaryngology-HNS, University of Amsterdam, Amsterdam, Netherlands
| | - Matthew Ryan
- Otolaryngology-HNS, University of Texas Southwestern, Dallas, Texas, USA
| | - Joaquin Sastre
- Allergy, Fundacion Jiminez Diaz, University Autonoma de Madrid, Madrid, Spain
| | - Rodney J Schlosser
- Otolaryngology-HNS, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Theodore A Schuman
- Otolaryngology-HNS, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Marcus S Shaker
- Allergy/Immunology, Dartmouth Geisel School of Medicine, Lebanon, New Hampshire, USA
| | - Aziz Sheikh
- Primary Care, University of Edinburgh, Edinburgh, Scotland
| | - Kristine A Smith
- Otolaryngology-HNS, University of Utah, Salt Lake City, Utah, USA
| | - Michael B Soyka
- Otolaryngology-HNS, University of Zurich, University Hospital of Zurich, Zurich, Switzerland
| | - Masayoshi Takashima
- Otolaryngology-HNS, Houston Methodist Academic Institute, Houston, Texas, USA
| | - Monica Tang
- Allergy/Immunology, University of California San Francisco, San Francisco, California, USA
| | | | - Malcolm B Taw
- Integrative East-West Medicine, University of California Los Angeles, Westlake Village, California, USA
| | - Jody Tversky
- Allergy/Immunology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Matthew A Tyler
- Otolaryngology-HNS, University of Minnesota, Minneapolis, Minnesota, USA
| | - Maria C Veling
- Otolaryngology-HNS, University of Texas Southwestern, Dallas, Texas, USA
| | - Dana Wallace
- Allergy/Immunology, Nova Southeastern University, Ft. Lauderdale, Florida, USA
| | - De Yun Wang
- Otolaryngology-HNS, National University of Singapore, Singapore, Singapore
| | - Andrew White
- Allergy/Immunology, Scripps Clinic, San Diego, California, USA
| | - Luo Zhang
- Otolaryngology-HNS, Beijing Tongren Hospital, Beijing, China
| |
Collapse
|
10
|
What Have Mechanistic Studies Taught Us About Childhood Asthma? THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:684-692. [PMID: 36649800 DOI: 10.1016/j.jaip.2023.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
Childhood asthma is a chronic heterogeneous syndrome consisting of different disease entities or phenotypes. The immunologic and cellular processes that occur during asthma development are still not fully understood but represent distinct endotypes. Mechanistic studies have examined the role of gene expression, protein levels, and cell types in early life development and the manifestation of asthma, many under the influence of environmental stimuli, which can be both protective and risk factors for asthma. Genetic variants can regulate gene expression, controlled partly by different epigenetic mechanisms. In addition, environmental factors, such as living space, nutrition, and smoking, can contribute to these mechanisms. All of these factors produce modifications in gene expression that can alter the development and function of immune and epithelial cells and subsequently different trajectories of childhood asthma. These early changes in a partially immature immune system can have dramatic effects (e.g., causing dysregulation), which in turn contribute to different disease endotypes and may help to explain differential responsiveness to asthma treatment. In this review, we summarize published studies that have aimed to uncover distinct mechanisms in childhood asthma, considering genetics, epigenetics, and environment. Moreover, a discussion of new, powerful tools for single-cell immunologic assays for phenotypic and functional analysis is included, which promise new mechanistic insights into childhood asthma development and therapeutic and preventive strategies.
Collapse
|
11
|
A Synopsis of Guidance for Allergic Rhinitis Diagnosis and Management From ICAR 2023. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:773-796. [PMID: 36894277 DOI: 10.1016/j.jaip.2023.01.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 03/09/2023]
Abstract
An updated edition of the International Consensus Statement on Allergy and Rhinology: Allergic Rhinitis (ICAR:AR) has recently been published. This consensus document, which included the participation of 87 primary authors and 40 additional consultant authors, who critically appraised evidence on 144 individual topics concerning allergic rhinitis, provides guidance for health care providers using the evidence-based review with recommendations (EBRR) methodology. This synopsis highlights topical areas including pathophysiology, epidemiology, disease burden, risk and protective factors, evaluation and diagnosis, aeroallergen avoidance and environmental controls, single and combination pharmacotherapy options, allergen immunotherapy (subcutaneous, sublingual, rush, cluster), pediatric considerations, alternative and emerging therapies, and unmet needs. Based on the EBRR methodology, ICAR:AR includes strong recommendations for the treatment of allergic rhinitis: (1) for the use of newer generation antihistamines compared with first-generation alternatives, intranasal corticosteroid, intranasal saline, combination therapy with intranasal corticosteroid plus intranasal antihistamine for patients not responding to monotherapy, and subcutaneous immunotherapy and sublingual tablet immunotherapy in properly selected patients; (2) against the use of oral decongestant monotherapy and routine use of oral corticosteroids.
Collapse
|
12
|
León B. Understanding the development of Th2 cell-driven allergic airway disease in early life. FRONTIERS IN ALLERGY 2023; 3:1080153. [PMID: 36704753 PMCID: PMC9872036 DOI: 10.3389/falgy.2022.1080153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/21/2022] [Indexed: 01/12/2023] Open
Abstract
Allergic diseases, including atopic dermatitis, allergic rhinitis, asthma, and food allergy, are caused by abnormal responses to relatively harmless foreign proteins called allergens found in pollen, fungal spores, house dust mites (HDM), animal dander, or certain foods. In particular, the activation of allergen-specific helper T cells towards a type 2 (Th2) phenotype during the first encounters with the allergen, also known as the sensitization phase, is the leading cause of the subsequent development of allergic disease. Infants and children are especially prone to developing Th2 cell responses after initial contact with allergens. But in addition, the rates of allergic sensitization and the development of allergic diseases among children are increasing in the industrialized world and have been associated with living in urban settings. Particularly for respiratory allergies, greater susceptibility to developing allergic Th2 cell responses has been shown in children living in urban environments containing low levels of microbial contaminants, principally bacterial endotoxins [lipopolysaccharide (LPS)], in the causative aeroallergens. This review highlights the current understanding of the factors that balance Th2 cell immunity to environmental allergens, with a particular focus on the determinants that program conventional dendritic cells (cDCs) toward or away from a Th2 stimulatory function. In this context, it discusses transcription factor-guided functional specialization of type-2 cDCs (cDC2s) and how the integration of signals derived from the environment drives this process. In addition, it analyzes observational and mechanistic studies supporting an essential role for innate sensing of microbial-derived products contained in aeroallergens in modulating allergic Th2 cell immune responses. Finally, this review examines whether hyporesponsiveness to microbial stimulation, particularly to LPS, is a risk factor for the induction of Th2 cell responses and allergic sensitization during infancy and early childhood and the potential factors that may affect early-age response to LPS and other environmental microbial components.
Collapse
Affiliation(s)
- Beatriz León
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
13
|
Gribben KC, Wyss AB, Poole JA, Farazi PA, Wichman C, Richards-Barber M, Beane Freeman LE, Henneberger PK, Umbach DM, London SJ, LeVan TD, Gribben KC. CC16 polymorphisms in asthma, asthma subtypes, and asthma control in adults from the Agricultural Lung Health Study. Respir Res 2022; 23:305. [PMID: 36352422 PMCID: PMC9644514 DOI: 10.1186/s12931-022-02211-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 10/04/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND The club cell secretory protein (CC16) has anti-inflammatory and antioxidant effects and is a potential early biomarker of lung damage. The CC16 single nucleotide polymorphism (SNP) rs3741240 risk allele (A) has been inconsistently linked to asthma; other tagging SNPs in the gene have not been explored. The aim was to determine whether CC16 tagging polymorphisms are associated with adult asthma, asthma subtypes or asthma control in the Agricultural Lung Health Study (ALHS). METHODS The ALHS is an asthma case-control study nested in the Agricultural Health Study cohort. Asthma cases were individuals with current doctor diagnosed asthma, likely undiagnosed asthma, or asthma-COPD overlap defined by questionnaire. We also examined asthma subtypes and asthma control. Five CC16 tagging SNPs were imputed to 1000 Genomes Integrated phase 1 reference panel. Logistic regression was used to estimate associations between CC16 SNPs and asthma outcomes adjusted for covariates. RESULTS The sample included 1120 asthma cases and 1926 controls of European ancestry, with a mean age of 63 years. The frequency of the risk genotype (AA) for rs3741240 was 12.5% (n = 382). CC16 rs3741240 was not associated with adult asthma outcomes. A tagging SNP in the CC16 gene, rs12270961 was associated with uncontrolled asthma (n = 208, ORadj= 1.4, 95% CI 1.0, 1.9; p = 0.03). CONCLUSION This study, the largest study to investigate associations between CC16 tagging SNPs and asthma phenotypes in adults, did not confirm an association of rs3741240 with adult asthma. A tagging SNP in CC16 suggests a potential relationship with asthma control.
Collapse
Affiliation(s)
- KC Gribben
- Department of Epidemiology, University of Nebraska Medical Center, 68198 Omaha, NE USA
| | - AB Wyss
- Epidemiology Branch, National Institute of Environmental Health Sciences, Department of Health and Human Services, National Institutes of Health, Research Triangle Park, NC USA
| | - JA Poole
- Department of Internal Medicine, Division of Allergy and Immunology, University of Nebraska Medical Center, 68198 Omaha, NE USA
| | - PA Farazi
- Department of Epidemiology, University of Nebraska Medical Center, 68198 Omaha, NE USA
| | - C Wichman
- Department of Biostatistics, University of Nebraska Medical Center, 68198 Omaha, NE USA
| | | | - LE Beane Freeman
- Occupational and Environmental Epidemiology Branch, National Cancer Institute, Bethesda, MD USA
| | - PK Henneberger
- Respiratory Health Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV USA
| | - DM Umbach
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Department of Health and Human Services, National Institutes of Health, Research Triangle Park, NC USA
| | - SJ London
- Epidemiology Branch, National Institute of Environmental Health Sciences, Department of Health and Human Services, National Institutes of Health, Research Triangle Park, NC USA
| | - TD LeVan
- Department of Epidemiology, University of Nebraska Medical Center, 68198 Omaha, NE USA
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep, University of Nebraska Medical Center, 68198 Omaha, NE USA
| | - Kelli C. Gribben
- Department of Epidemiology, University of Nebraska Medical Center, 68198 Omaha, NE USA
| |
Collapse
|
14
|
Wyss AB, Hoang TT, Vindenes HK, White JD, Sikdar S, Richards M, Beane-Freeman LE, Parks CG, Lee M, Umbach DM, London SJ. Early-life farm exposures and eczema among adults in the Agricultural Lung Health Study. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2022; 1:248-256. [PMID: 36569583 PMCID: PMC9784317 DOI: 10.1016/j.jacig.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Background Several studies conducted in Europe have suggested a protective association between early-life farming exposures and childhood eczema or atopic dermatitis; few studies have examined associations in adults. Objectives To investigate associations between early-life exposures and eczema among 3217 adult farmers and farm spouses (mean age 62.8 years) in a case-control study nested within an US agricultural cohort. Methods We used sampling-weighted logistic regression to estimate odds ratios (ORs) and 95% confidence intervals (95%CIs) for associations between early-life exposures and self-reported doctor-diagnosed eczema (273 cases) and polytomous logistic regression to estimate ORs (95%CIs) for a 4-level outcome combining information on eczema and atopy (specific IgE≥0.35). Additionally, we explored genetic and gene-environment associations with eczema. Results Although early-life farming exposures were not associated with eczema overall, several early-life exposures were associated with a reduced risk of having both eczema and atopy. Notably, results suggest stronger protective associations among individuals with both eczema and atopy than among those with either atopy alone or eczema alone. For example, ORs (95%CIs) for having a mother who did farm work while pregnant were 1.01 (0.60-1.69) for eczema alone and 0.80 (0.65-0.99) for atopy alone, but 0.54 (0.33-0.80) for having both eczema and atopy. A genetic risk score based on previously identified atopic dermatitis variants was strongly positively associated with eczema, and interaction testing suggested protective effects of several early-life farming exposures only in individuals at lower genetic risk. Conclusions In utero and childhood farming exposures are associated with decreased odds of having eczema with atopy in adults.
Collapse
Affiliation(s)
- Annah B Wyss
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC
| | - Thanh T Hoang
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC
| | - Hilde K Vindenes
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC
- Department of Occupational Medicine, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Julie D White
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC
| | - Sinjini Sikdar
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC
- Department of Mathematics and Statistics, Old Dominion University, Norfolk, VA
| | | | - Laura E Beane-Freeman
- Occupational and Environmental Epidemiology Branch, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD
| | - Christine G Parks
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC
| | - Mikyeong Lee
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC
| | - David M Umbach
- Biostatistics and Computation Biology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC
| | - Stephanie J London
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC
| |
Collapse
|
15
|
Liu C, Makrinioti H, Saglani S, Bowman M, Lin LL, Camargo CA, Hasegawa K, Zhu Z. Microbial dysbiosis and childhood asthma development: Integrated role of the airway and gut microbiome, environmental exposures, and host metabolic and immune response. Front Immunol 2022; 13:1028209. [PMID: 36248891 PMCID: PMC9561420 DOI: 10.3389/fimmu.2022.1028209] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 09/20/2022] [Indexed: 12/12/2022] Open
Abstract
Asthma is a chronic and heterogeneous respiratory disease with many risk factors that typically originate during early childhood. A complex interplay between environmental factors and genetic predisposition is considered to shape the lung and gut microbiome in early life. The growing literature has identified that changes in the relative abundance of microbes (microbial dysbiosis) and reduced microbial diversity, as triggers of the airway-gut axis crosstalk dysregulation, are associated with asthma development. There are several mechanisms underlying microbial dysbiosis to childhood asthma development pathways. For example, a bacterial infection in the airway of infants can lead to the activation and/or dysregulation of inflammatory pathways that contribute to bronchoconstriction and bronchial hyperresponsiveness. In addition, gut microbial dysbiosis in infancy can affect immune development and differentiation, resulting in a suboptimal balance between innate and adaptive immunity. This evolving dysregulation of secretion of pro-inflammatory mediators has been associated with persistent airway inflammation and subsequent asthma development. In this review, we examine current evidence around associations between the airway and gut microbial dysbiosis with childhood asthma development. More specifically, this review focuses on discussing the integrated roles of environmental exposures, host metabolic and immune responses, airway and gut microbial dysbiosis in driving childhood asthma development.
Collapse
Affiliation(s)
- Conglin Liu
- Immunology & Inflammation Research Therapeutic Area, Sanofi US, Cambridge, MA, United States
- *Correspondence: Conglin Liu, ; Zhaozhong Zhu,
| | | | - Sejal Saglani
- National Heart and Lung Institute, Imperial College, London, United Kingdom
- Centre for Paediatrics and Child Health, Imperial College, London, United Kingdom
| | - Michael Bowman
- Immunology & Inflammation Research Therapeutic Area, Sanofi US, Cambridge, MA, United States
| | - Lih-Ling Lin
- Immunology & Inflammation Research Therapeutic Area, Sanofi US, Cambridge, MA, United States
| | - Carlos A. Camargo
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Kohei Hasegawa
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Zhaozhong Zhu
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- *Correspondence: Conglin Liu, ; Zhaozhong Zhu,
| |
Collapse
|
16
|
White JD, Wyss AB, Hoang TT, Lee M, Richards M, Parks CG, Beane-Freeman LE, Hankinson JL, Umbach DM, London SJ. Residential Wood Burning and Pulmonary Function in the Agricultural Lung Health Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:87008. [PMID: 36006053 PMCID: PMC9406613 DOI: 10.1289/ehp10734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 07/18/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND In low- and middle-income countries, burning biomass indoors for cooking or heating has been associated with poorer lung function. In high-income countries, wood, a form of biomass, is commonly used for heating in rural areas with increasing prevalence. However, in these settings the potential impact of chronic indoor woodsmoke exposure on pulmonary function is little studied. OBJECTIVE We evaluated the association of residential wood burning with pulmonary function in case-control study of asthma nested within a U.S. rural cohort. METHODS Using sample weighted multivariable linear regression, we estimated associations between some and frequent wood burning, both relative to no exposure, in relation to forced expiratory volume in 1 s (FEV 1 ), forced vital capacity (FVC), their ratio (FEV 1 / FVC ), and fractional exhaled nitric oxide (FeNO). We examined effect modification by smoking or asthma status. RESULTS Among all participants and within smoking groups, wood burning was not appreciably related to pulmonary function. However, in individuals with asthma (n = 1,083 ), frequent wood burning was significantly associated with lower FEV 1 [β : - 164 mL ; 95% confidence interval (CI): - 261 , - 66 mL ], FVC (β : - 125 mL ; 95% CI: - 230 , - 20 mL ), and FEV 1 / FVC (β : - 2 % ; 95% CI: - 4 , - 0.4 % ), whereas no appreciable association was seen in individuals without asthma (n = 1,732 ). These differences in association by asthma were statistically significant for FEV 1 (p i n t e r a c t i o n = 0.0044 ) and FEV 1 / FVC (p i n t e r a c t i o n = 0.049 ). Frequent wood burning was also associated with higher FeNO levels in all individuals (n = 2,598 ; β : 0.1 ln ( ppb ) ; 95% CI: 0.02, 0.2), but associations did not differ by asthma or smoking status. DISCUSSION Frequent exposure to residential wood burning was associated with a measure of airway inflammation (FeNO) among all individuals and with lower pulmonary function among individuals with asthma. This group may wish to reduce wood burning or consider using air filtration devices. https://doi.org/10.1289/EHP10734.
Collapse
Affiliation(s)
- Julie D. White
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
- GenOmics, Bioinformatics, and Translational Research Center, Biostatistics and Epidemiology Division, RTI International, Research Triangle Park, North Carolina, USA
| | - Annah B. Wyss
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Thanh T. Hoang
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Mikyeong Lee
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | | | - Christine G. Parks
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Laura E. Beane-Freeman
- Occupational and Environmental Epidemiology Branch, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, USA
| | | | - David M. Umbach
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Stephanie J. London
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| |
Collapse
|
17
|
Parks CG, Costenbader KH, Long S, Hofmann JN, Beane FLE, Sandler DP. Pesticide use and risk of systemic autoimmune diseases in the Agricultural Health Study. ENVIRONMENTAL RESEARCH 2022; 209:112862. [PMID: 35123967 PMCID: PMC9205340 DOI: 10.1016/j.envres.2022.112862] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/23/2021] [Accepted: 01/27/2022] [Indexed: 06/03/2023]
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) risk has been associated with pesticide use, but evidence on specific pesticides or other agricultural exposures is lacking. We investigated history of pesticide use and risk of SLE and a related disease, Sjögren's syndrome (SS), in the Agricultural Health Study. METHODS The study sample (N = 54,419, 52% male, enrolled in 1993-1997) included licensed pesticide applicators from North Carolina and Iowa and spouses who completed any of the follow-up questionnaires (1999-2003, 2005-2010, 2013-2015). Self-reported cases were confirmed by medical records or medication use (total: 107 incident SLE or SS, 79% female). We examined ever use of 31 pesticides and farm tasks and exposures reported at enrollment in association with SLE/SS, using Cox regression to estimate hazard ratios (HR) and 95% confidence intervals (CI), with age as the timescale and adjusting for gender, state, and correlated pesticides. RESULTS In older participants (>62 years), SLE/SS was associated with ever use of the herbicide metribuzin (HR 5.33; 95%CI 2.19, 12.96) and applying pesticides 20+ days per year (2.97; 1.20, 7.33). Inverse associations were seen for petroleum oil/distillates (0.39; 0.18, 0.87) and the insecticide carbaryl (0.56; 0.36, 0.87). SLE/SS was inversely associated with having a childhood farm residence (0.59; 0.39, 0.91), but was not associated with other farm tasks/exposures (except welding, HR 2.65; 95%CI 0.96, 7.35). CONCLUSIONS These findings suggest that some agricultural pesticides may be associated with higher or lower risk of SLE/SS. However, the overall risk associated with farming appears complex, involving other factors and childhood exposures.
Collapse
Affiliation(s)
- C G Parks
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA.
| | - K H Costenbader
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - S Long
- Westat, Rockville, MD, USA
| | - J N Hofmann
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Freeman L E Beane
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - D P Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| |
Collapse
|
18
|
Tizek L, Redlinger E, Ring J, Eyerich K, Biedermann T, Zink A. Urban vs rural - Prevalence of self-reported allergies in various occupational and regional settings. World Allergy Organ J 2022; 15:100625. [PMID: 35145605 PMCID: PMC8802121 DOI: 10.1016/j.waojou.2022.100625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 11/08/2021] [Accepted: 01/05/2022] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Allergies have an enormous individual and economic impact worldwide and affect more than one quarter of the population in Germany. Various factors influence the development of allergies: besides genetic predisposition the environment in which a person is raised and living also plays a role. The aim of the study was to evaluate differences in allergy prevalence in relation to age, sex, occupation, and living area (settlement structures). METHODS A cross-sectional study using a paper-based questionnaire about allergies was performed at the Munich Oktoberfest 2016. Participants were divided into 4 occupational groups and compared using descriptive statistics and multiple regression. RESULTS Overall, 2701 individuals (mean age 51.9 ± 15.3 years; 53.5% women) participated in the study. The overall rate of any self-reported allergy was 27.3% in the study population, in which women were more likely to be affected than men (OR = 1.82; 95% CI [1.50; 2.22]). Compared to farmers, all other occupational groups had a higher risk of reporting pollen allergies. Participants from rural areas (OR = 0.38; 95% CI [0.26; 0.58]) and suburban areas (OR = 0.44; 95% CI [0.30; 0.64]) were significantly less affected by allergies than participants from urban areas. Around 45.2% of the participants affected by allergies reported not receiving any treatment at all. CONCLUSION Differences in the self-reported prevalence of allergies were shown for age groups, sex, living area, and occupation. Especially the reported pollen allergy prevalence ranged widely between different occupations, indicating that those individuals with an occupational exposure to pollen may have a lower risk than indoor workers. Overall, there remains a high need for sufficient treatment of allergies.
Collapse
Affiliation(s)
- Linda Tizek
- Technical University of Munich, School of Medicine, Department of Dermatology and Allergy, Biedersteinerstraße 29, Munich, 80802, Germany
| | - Elisa Redlinger
- Technical University of Munich, School of Medicine, Department of Dermatology and Allergy, Biedersteinerstraße 29, Munich, 80802, Germany
| | - Johannes Ring
- Technical University of Munich, School of Medicine, Department of Dermatology and Allergy, Biedersteinerstraße 29, Munich, 80802, Germany
| | - Kilian Eyerich
- Technical University of Munich, School of Medicine, Department of Dermatology and Allergy, Biedersteinerstraße 29, Munich, 80802, Germany
- Division of Dermatology and Venereology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Tilo Biedermann
- Technical University of Munich, School of Medicine, Department of Dermatology and Allergy, Biedersteinerstraße 29, Munich, 80802, Germany
| | - Alexander Zink
- Technical University of Munich, School of Medicine, Department of Dermatology and Allergy, Biedersteinerstraße 29, Munich, 80802, Germany
- Division of Dermatology and Venereology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
19
|
Nourishing the Human Holobiont to Reduce the Risk of Non-Communicable Diseases: A Cow’s Milk Evidence Map Example. Appl Microbiol 2021. [DOI: 10.3390/applmicrobiol2010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The microbiome revolution brought the realization that diet, health, and safety for humans in reality means diet, health, and safety for the human holobiont/superorganism. Eating healthier means much more than just feeding human cells. Our diet must also nourish the combination of our microbiome and our connected physiological systems (e.g., the microimmunosome). For this reason, there has been an interest in returning to ancestral “complete” unprocessed foods enriched in microbes, including raw milks. To contribute to this inevitable “nourishing the holobiont” trend, we introduce a systematic risk–benefit analysis tool (evidence mapping), which facilitates transdisciplinary state-of-the-science decisions that transcend single scientific disciplines. Our prior paper developed an evidence map (a type of risk–benefit mind map) for raw vs. processed/pasteurized human breast milk. In the present paper, we follow with a comprehensive evidence map and narrative for raw/natural vs. processed/pasteurized cow’s milk. Importantly, the evidence maps incorporate clinical data for both infectious and non-communicable diseases and allow the impact of modern agricultural, food management, and medical and veterinary monitoring outcomes to be captured. Additionally, we focus on the impact of raw milks (as “complete” foods) on the microimmunosome, the microbiome-systems biology unit that significantly determines risk of the world’s number one cause of human death, non-communicable diseases.
Collapse
|
20
|
Berufsasthma. ALLERGO JOURNAL 2021. [DOI: 10.1007/s15007-021-4934-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
21
|
Dhariwala MO, Scharschmidt TC. Baby's skin bacteria: first impressions are long-lasting. Trends Immunol 2021; 42:1088-1099. [PMID: 34743922 PMCID: PMC9206859 DOI: 10.1016/j.it.2021.10.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 12/12/2022]
Abstract
Early life is a dynamic period for skin microbial colonization and immune development. We postulate that microbial exposures in this period durably alter the skin immune trajectory and later disease susceptibility. Bacteria contribute to infant skin immune imprinting via interactions with microbes as well as with cutaneous epithelial and immune cells. Excellent research is underway at the skin microbiome-immune interface, both in deciphering basic mechanisms and implementing their therapeutic applications. As emphasized herein, focusing on the unique opportunities and challenges presented by microbial immune modulation in early life will be important. In our view, only through dedicated study of skin-microbe crosstalk in this developmental window can we elucidate the molecular underpinnings of pivotal events that contribute to sustained host-microbe symbiosis.
Collapse
Affiliation(s)
- Miqdad O Dhariwala
- Department of Dermatology, University of California San Francisco (UCSF), San Francisco, CA 94143, USA
| | - Tiffany C Scharschmidt
- Department of Dermatology, University of California San Francisco (UCSF), San Francisco, CA 94143, USA.
| |
Collapse
|
22
|
Andersén H, Ilmarinen P, Honkamäki J, Tuomisto LE, Hisinger-Mölkänen H, Backman H, Lundbäck B, Rönmark E, Lehtimäki L, Sovijärvi A, Piirilä P, Kankaanranta H. Influence of Childhood Exposure to a Farming Environment on Age at Asthma Diagnosis in a Population-Based Study. J Asthma Allergy 2021; 14:1081-1091. [PMID: 34522104 PMCID: PMC8434911 DOI: 10.2147/jaa.s323504] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 08/21/2021] [Indexed: 11/26/2022] Open
Abstract
Purpose Asthma is a heterogeneous disease, and factors associated with different asthma phenotypes are poorly understood. Given the higher prevalence of farming exposure and late diagnosis of asthma in more rural Western Finland as compared with the capital of Helsinki, we investigated the relationship between childhood farming environment and age at asthma diagnosis. Methods A cross-sectional population-based study was carried out with subjects aged 20–69 years in Western Finland. The response rate was 52.5%. We included 3864 participants, 416 of whom had physician-diagnosed asthma at a known age and with data on the childhood environment. The main finding was confirmed in a similar sample from Helsinki. Participants were classified as follows with respect to asthma diagnosis: early diagnosis (0–11 years), intermediate diagnosis (12–39 years), and late diagnosis (40–69 years). Results The prevalence of asthma was similar both without and with childhood exposure to a farming environment (11.7% vs 11.3%). Allergic rhinitis, family history of asthma, ex-smoker, occupational exposure, and BMI ≥ 30 kg/m2 were associated with a higher likelihood of asthma. Childhood exposure to a farming environment did not increase the odds of having asthma (aOR, 1.10; 95% CI, 0.87–1.40). It did increase the odds of late diagnosis (aOR, 2.30; 95% CI, 1.12–4.69), but the odds were lower for early (aOR, 0.49; 95% CI, 0.30–0.80) and intermediate diagnosis of asthma (aOR, 0.75; 95% CI, 0.47–1.18). Conclusion Odds were lower for early diagnosis of asthma and higher for late diagnosis of asthma in a childhood farming environment. This suggests a new hypothesis concerning the etiology of asthma when it is diagnosed late. ![]()
Point your SmartPhone at the code above. If you have a QR code reader the video abstract will appear. Or use: https://youtu.be/BdY2eA86hV8
Collapse
Affiliation(s)
- Heidi Andersén
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Pinja Ilmarinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Jasmin Honkamäki
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Leena E Tuomisto
- Department of Respiratory Medicine, Seinäjoki Central Hospital, Seinäjoki, Etelä-Pohjanmaa, Finland
| | | | - Helena Backman
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Norrbotten, Sweden
| | - Bo Lundbäck
- Department of Internal Medicine, Krefting Research Center, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Västra Götaland, Sweden
| | - Eva Rönmark
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Norrbotten, Sweden
| | - Lauri Lehtimäki
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Anssi Sovijärvi
- Faculty of Medicine, University of Helsinki, Helsinki, Uusimaa, Finland
| | - Päivi Piirilä
- Faculty of Medicine, University of Helsinki, Helsinki, Uusimaa, Finland
| | - Hannu Kankaanranta
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| |
Collapse
|
23
|
Hoang TT, Qi C, Paul KC, Lee M, White JD, Richards M, Auerbach SS, Long S, Shrestha S, Wang T, Beane Freeman LE, Hofmann JN, Parks C, Xu CJ, Ritz B, Koppelman GH, London SJ. Epigenome-Wide DNA Methylation and Pesticide Use in the Agricultural Lung Health Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:97008. [PMID: 34516295 PMCID: PMC8437246 DOI: 10.1289/ehp8928] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
BACKGROUND Pesticide exposure is associated with many long-term health outcomes; the potential underlying mechanisms are not well established for most associations. Epigenetic modifications, such as DNA methylation, may contribute. Individual pesticides may be associated with specific DNA methylation patterns but no epigenome-wide association study (EWAS) has evaluated methylation in relation to individual pesticides. OBJECTIVES We conducted an EWAS of DNA methylation in relation to several pesticide active ingredients. METHODS The Agricultural Lung Health Study is a case-control study of asthma, nested within the Agricultural Health Study. We analyzed blood DNA methylation measured using Illumina's EPIC array in 1,170 male farmers of European ancestry. For pesticides still on the market at blood collection (2009-2013), we evaluated nine active ingredients for which at least 30 participants reported past and current (within the last 12 months) use, as well as seven banned organochlorines with at least 30 participants reporting past use. We used robust linear regression to compare methylation at individual C-phosphate-G sites (CpGs) among users of a specific pesticide to never users. RESULTS Using family-wise error rate (p<9×10-8) or false-discovery rate (FDR<0.05), we identified 162 differentially methylated CpGs across 8 of 9 currently marketed active ingredients (acetochlor, atrazine, dicamba, glyphosate, malathion, metolachlor, mesotrione, and picloram) and one banned organochlorine (heptachlor). Differentially methylated CpGs were unique to each active ingredient, and a dose-response relationship with lifetime days of use was observed for most. Significant CpGs were enriched for transcription motifs and 28% of CpGs were associated with whole blood cis-gene expression, supporting functional effects of findings. We corroborated a previously reported association between dichlorodiphenyltrichloroethane (banned in the United States in 1972) and epigenetic age acceleration. DISCUSSION We identified differential methylation for several active ingredients in male farmers of European ancestry. These may serve as biomarkers of chronic exposure and could inform mechanisms of long-term health outcomes from pesticide exposure. https://doi.org/10.1289/EHP8928.
Collapse
Affiliation(s)
- Thanh T. Hoang
- Epidemiology Branch, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| | - Cancan Qi
- Department of Pediatric Pulmonology and Pediatric Allergy, University Medical Center Groningen, Beatrix Children’s Hospital, University of Groningen, Groningen, Netherlands
- Groningen Research Institute for Asthma and Chronic Obstructive Pulmonary Disease, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Kimberly C. Paul
- Department of Epidemiology, University of California, Los Angeles Fielding School of Public Health, Los Angeles, California, USA
| | - Mikyeong Lee
- Epidemiology Branch, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| | - Julie D. White
- Epidemiology Branch, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| | | | - Scott S. Auerbach
- Biomolecular Screening Branch, National Toxicology Program, NIEHS, NIH, DHHS, Morrisville, North Carolina, USA
| | | | - Srishti Shrestha
- Epidemiology Branch, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| | - Tianyuan Wang
- Integrative Bioinformatics Support Group, NIH, DHHS, Research Triangle Park, North Carolina, USA
| | - Laura E. Beane Freeman
- Occupational and Environmental Epidemiology Branch, National Cancer Institute, NIH, DHHS, Bethesda, Maryland, USA
| | - Jonathan N. Hofmann
- Occupational and Environmental Epidemiology Branch, National Cancer Institute, NIH, DHHS, Bethesda, Maryland, USA
| | - Christine Parks
- Epidemiology Branch, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| | | | - Cheng-Jian Xu
- Research Group of Bioinformatics and Computational Genomics, CiiM, Centre for individualized infection medicine, a joint venture between Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- Department of Gastroenterology, Hepatology and Endocrinology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Beate Ritz
- Department of Epidemiology, University of California, Los Angeles Fielding School of Public Health, Los Angeles, California, USA
- Department of Neurology, David Geffen School of Medicine, Los Angeles, California, USA
| | - Gerard H. Koppelman
- Department of Pediatric Pulmonology and Pediatric Allergy, University Medical Center Groningen, Beatrix Children’s Hospital, University of Groningen, Groningen, Netherlands
- Groningen Research Institute for Asthma and Chronic Obstructive Pulmonary Disease, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Stephanie J. London
- Epidemiology Branch, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| |
Collapse
|
24
|
Sikdar S, Wyss AB, Lee MK, Hoang TT, Richards M, Beane Freeman LE, Parks C, Thorne PS, Hankinson JL, Umbach DM, Motsinger-Reif A, London SJ. Interaction between Genetic Risk Scores for reduced pulmonary function and smoking, asthma and endotoxin. Thorax 2021; 76:1219-1226. [PMID: 33963087 PMCID: PMC8572320 DOI: 10.1136/thoraxjnl-2020-215624] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 02/17/2021] [Accepted: 03/22/2021] [Indexed: 01/04/2023]
Abstract
Rationale Genome-wide association studies (GWASs) have identified numerous loci associated with lower pulmonary function. Pulmonary function is strongly related to smoking and has also been associated with asthma and dust endotoxin. At the individual SNP level, genome-wide analyses of pulmonary function have not identified appreciable evidence for gene by environment interactions. Genetic Risk Scores (GRSs) may enhance power to identify gene–environment interactions, but studies are few. Methods We analysed 2844 individuals of European ancestry with 1000 Genomes imputed GWAS data from a case–control study of adult asthma nested within a US agricultural cohort. Pulmonary function traits were FEV1, FVC and FEV1/FVC. Using data from a recent large meta-analysis of GWAS, we constructed a weighted GRS for each trait by combining the top (p value<5×10−9) genetic variants, after clumping based on distance (±250 kb) and linkage disequilibrium (r2=0.5). We used linear regression, adjusting for relevant covariates, to estimate associations of each trait with its GRS and to assess interactions. Results Each trait was highly significantly associated with its GRS (all three p values<8.9×10−8). The inverse association of the GRS with FEV1/FVC was stronger for current smokers (pinteraction=0.017) or former smokers (pinteraction=0.064) when compared with never smokers and among asthmatics compared with non-asthmatics (pinteraction=0.053). No significant interactions were observed between any GRS and house dust endotoxin. Conclusions Evaluation of interactions using GRSs supports a greater impact of increased genetic susceptibility on reduced pulmonary function in the presence of smoking or asthma.
Collapse
Affiliation(s)
- Sinjini Sikdar
- Department of Mathematics and Statistics, Old Dominion University, Norfolk, Virginia, USA.,Epidemiology Branch, National Institute of Environmental Health Sciences, Durham, North Carolina, USA
| | - Annah B Wyss
- Epidemiology Branch, National Institute of Environmental Health Sciences, Durham, North Carolina, USA
| | - Mi Kyeong Lee
- Epidemiology Branch, National Institute of Environmental Health Sciences, Durham, North Carolina, USA
| | - Thanh T Hoang
- Epidemiology Branch, National Institute of Environmental Health Sciences, Durham, North Carolina, USA
| | | | - Laura E Beane Freeman
- Occupational and Environmental Epidemiology Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Christine Parks
- Epidemiology Branch, National Institute of Environmental Health Sciences, Durham, North Carolina, USA
| | - Peter S Thorne
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, Iowa, USA
| | | | - David M Umbach
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Durham, North Carolina, USA
| | - Alison Motsinger-Reif
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Durham, North Carolina, USA
| | - Stephanie J London
- Epidemiology Branch, National Institute of Environmental Health Sciences, Durham, North Carolina, USA
| |
Collapse
|
25
|
Sveiven SN, Bookman R, Ma J, Lyden E, Hanson C, Nordgren TM. Milk Consumption and Respiratory Function in Asthma Patients: NHANES Analysis 2007-2012. Nutrients 2021; 13:1182. [PMID: 33918391 PMCID: PMC8067167 DOI: 10.3390/nu13041182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/27/2021] [Accepted: 03/31/2021] [Indexed: 11/16/2022] Open
Abstract
Per the Centers for Disease Control and Prevention, asthma prevalence has steadily risen since the 1980s. Using data from the National Health and Nutrition Examination Survey (NHANES), we investigated associations between milk consumption and pulmonary function (PF). Multivariable analyses were performed, adjusted for a priori potential confounders for lung function, within the eligible total adult population (n = 11,131) and those self-reporting asthma (n = 1,542), included the following variables: milk-consumption, asthma diagnosis, forced vital capacity (FVC), FVC%-predicted (%), forced expiratory volume in one-second (FEV1), FEV1% and FEV1/FVC. Within the total population, FEV1% and FVC% were significantly associated with regular (5+ days weekly) consumption of exclusively 1% milk in the prior 30-days (β:1.81; 95% CI: [0.297, 3.325]; p = 0.020 and β:1.27; [0.16, 3.22]; p = 0.046). Among participants with asthma, varied-regular milk consumption in a lifetime was significantly associated with FVC (β:127.3; 95% CI: [13.1, 241.4]; p = 0.002) and FVC% (β:2.62; 95% CI: [0.44, 4.80]; p = 0.006). No association between milk consumption and FEV1/FVC was found, while milk-type had variable influence and significance. Taken together, we found certain milk consumption tendencies were associated with pulmonary function values among normal and asthmatic populations. These findings propound future investigations into the potential role of dairy consumption in altering lung function and asthma outcomes, with potential impact on the protection and maintenance of pulmonary health.
Collapse
Affiliation(s)
- Stefanie N. Sveiven
- Division of Biomedical Sciences, School of Medicine, University of California-Riverside, Riverside, CA 92521, USA; (S.N.S.); (R.B.)
| | - Rachel Bookman
- Division of Biomedical Sciences, School of Medicine, University of California-Riverside, Riverside, CA 92521, USA; (S.N.S.); (R.B.)
| | - Jihyun Ma
- Biostatistics Department, College of Public Health, University of Nebraska Medical Center, Omaha, NE 68198, USA; (J.M.); (E.L.)
| | - Elizabeth Lyden
- Biostatistics Department, College of Public Health, University of Nebraska Medical Center, Omaha, NE 68198, USA; (J.M.); (E.L.)
| | - Corrine Hanson
- Medical Nutrition Education Division, College of Allied Health Professions, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Tara M. Nordgren
- Division of Biomedical Sciences, School of Medicine, University of California-Riverside, Riverside, CA 92521, USA; (S.N.S.); (R.B.)
| |
Collapse
|
26
|
Crawford MS, Nordgren TM, McCole DF. Every breath you take: Impacts of environmental dust exposure on intestinal barrier function-from the gut-lung axis to COVID-19. Am J Physiol Gastrointest Liver Physiol 2021; 320:G586-G600. [PMID: 33501887 PMCID: PMC8054554 DOI: 10.1152/ajpgi.00423.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 01/31/2023]
Abstract
As countries continue to industrialize, major cities experience diminished air quality, whereas rural populations also experience poor air quality from sources such as agricultural operations. These exposures to environmental pollution from both rural and populated/industrialized sources have adverse effects on human health. Although respiratory diseases (e.g., asthma and chronic obstructive pulmonary disease) are the most commonly reported following long-term exposure to particulate matter and hazardous chemicals, gastrointestinal complications have also been associated with the increased risk of lung disease from inhalation of polluted air. The interconnectedness of these organ systems has offered valuable insights into the roles of the immune system and the micro/mycobiota as mediators of communication between the lung and the gut during disease states. A topical example of this relationship is provided by reports of multiple gastrointestinal symptoms in patients with coronavirus disease 2019 (COVID-19), whereas the rapid transmission and increased risk of COVID-19 has been linked to poor air quality and high levels of particulate matter. In this review, we focus on the mechanistic effects of environmental pollution on disease progression with special emphasis on the gut-lung axis.
Collapse
Affiliation(s)
- Meli'sa S Crawford
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, California
| | - Tara M Nordgren
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, California
| | - Declan F McCole
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, California
| |
Collapse
|
27
|
Selma-Royo M, Calatayud Arroyo M, García-Mantrana I, Parra-Llorca A, Escuriet R, Martínez-Costa C, Collado MC. Perinatal environment shapes microbiota colonization and infant growth: impact on host response and intestinal function. MICROBIOME 2020; 8:167. [PMID: 33228771 PMCID: PMC7685601 DOI: 10.1186/s40168-020-00940-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 10/14/2020] [Indexed: 05/11/2023]
Abstract
BACKGROUND Early microbial colonization triggers processes that result in intestinal maturation and immune priming. Perinatal factors, especially those associated with birth, including both mode and place of delivery are critical to shaping the infant gut microbiota with potential health consequences. METHODS Gut microbiota profile of 180 healthy infants (n = 23 born at home and n = 157 born in hospital, 41.7% via cesarean section [CS]) was analyzed by 16S rRNA gene sequencing at birth, 7 days, and 1 month of life. Breastfeeding habits and infant clinical data, including length, weight, and antibiotic exposure, were collected up to 18 months of life. Long-term personalized in vitro models of the intestinal epithelium and innate immune system were used to assess the link between gut microbiota composition, intestinal function, and immune response. RESULTS Microbiota profiles were shaped by the place and mode of delivery, and they had a distinct biological impact on the immune response and intestinal function in epithelial/immune cell models. Bacteroidetes and Bifidobacterium genus were decreased in C-section infants, who showed higher z-scores BMI and W/L during the first 18 months of life. Intestinal simulated epithelium had a stronger epithelial barrier function and intestinal maturation, alongside a higher immunological response (TLR4 route activation and pro-inflammatory cytokine release), when exposed to home-birth fecal supernatants, compared with CS. Distinct host response could be associated with different microbiota profiles. CONCLUSIONS Mode and place of birth influence the neonatal gut microbiota, likely shaping its interplay with the host through the maturation of the intestinal epithelium, regulation of the intestinal epithelial barrier, and control of the innate immune system during early life, which can affect the phenotypic responses linked to metabolic processes in infants. TRIAL REGISTRATION NCT03552939 . Video Abstract.
Collapse
Affiliation(s)
- M Selma-Royo
- Institute of Agrochemistry and Food Technology (IATA-CSIC), Spanish National Research council, 46980, Valencia, Spain
| | - M Calatayud Arroyo
- Institute of Agrochemistry and Food Technology (IATA-CSIC), Spanish National Research council, 46980, Valencia, Spain
| | - I García-Mantrana
- Institute of Agrochemistry and Food Technology (IATA-CSIC), Spanish National Research council, 46980, Valencia, Spain
| | - A Parra-Llorca
- Neonatal Research Group, Health Research Institute La Fe, Valencia, Spain
| | - R Escuriet
- Gerencia de Procesos Integrales de Salud. Area Asistencial, Servicio Catalan de la Salud. Generalitat de Catalunya, Centre for Research in Health and Economics, Universidad Pompeu Fabra, Barcelona, Spain
| | - C Martínez-Costa
- Department of Pediatrics, School of Medicine, University of Valencia, 46010, Valencia, Spain
- Pediatric Gastroenterology and Nutrition Section, Hospital Clínico Universitario Valencia, INCLIVA, 46010, Valencia, Spain
| | - M C Collado
- Institute of Agrochemistry and Food Technology (IATA-CSIC), Spanish National Research council, 46980, Valencia, Spain.
| |
Collapse
|
28
|
Hoang TT, Sikdar S, Xu CJ, Lee MK, Cardwell J, Forno E, Imboden M, Jeong A, Madore AM, Qi C, Wang T, Bennett BD, Ward JM, Parks CG, Beane-Freeman LE, King D, Motsinger-Reif A, Umbach DM, Wyss AB, Schwartz DA, Celedón JC, Laprise C, Ober C, Probst-Hensch N, Yang IV, Koppelman GH, London SJ. Epigenome-wide association study of DNA methylation and adult asthma in the Agricultural Lung Health Study. Eur Respir J 2020; 56:13993003.00217-2020. [PMID: 32381493 PMCID: PMC7469973 DOI: 10.1183/13993003.00217-2020] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/15/2020] [Indexed: 12/11/2022]
Abstract
Epigenome-wide studies of methylation in children support a role for epigenetic mechanisms in asthma; however, studies in adults are rare and few have examined non-atopic asthma. We conducted the largest epigenome-wide association study (EWAS) of blood DNA methylation in adults in relation to non-atopic and atopic asthma. We measured DNA methylation in blood using the Illumina MethylationEPIC array among 2286 participants in a case-control study of current adult asthma nested within a United States agricultural cohort. Atopy was defined by serum specific immunoglobulin E (IgE). Participants were categorised as atopy without asthma (n=185), non-atopic asthma (n=673), atopic asthma (n=271), or a reference group of neither atopy nor asthma (n=1157). Analyses were conducted using logistic regression. No associations were observed with atopy without asthma. Numerous cytosine–phosphate–guanine (CpG) sites were differentially methylated in non-atopic asthma (eight at family-wise error rate (FWER) p<9×10−8, 524 at false discovery rate (FDR) less than 0.05) and implicated 382 novel genes. More CpG sites were identified in atopic asthma (181 at FWER, 1086 at FDR) and implicated 569 novel genes. 104 FDR CpG sites overlapped. 35% of CpG sites in non-atopic asthma and 91% in atopic asthma replicated in studies of whole blood, eosinophils, airway epithelium, or nasal epithelium. Implicated genes were enriched in pathways related to the nervous system or inflammation. We identified numerous, distinct differentially methylated CpG sites in non-atopic and atopic asthma. Many CpG sites from blood replicated in asthma-relevant tissues. These circulating biomarkers reflect risk and sequelae of disease, as well as implicate novel genes associated with non-atopic and atopic asthma. Distinct methylation signals are found in non-atopic and atopic asthma. Most are related to gene expression and are replicated in asthma-relevant tissues, confirming the value of blood DNA methylation for identifying novel genes linked in asthma pathogenesis.https://bit.ly/2VnbJg3
Collapse
Affiliation(s)
- Thanh T Hoang
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Dept of Health and Human Services, Research Triangle Park, NC, USA.,Joint first authors
| | - Sinjini Sikdar
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Dept of Health and Human Services, Research Triangle Park, NC, USA.,Dept of Mathematics and Statistics, Old Dominion University, Norfolk, VA, USA.,Joint first authors
| | - Cheng-Jian Xu
- Centre for Individualised Infection Medicine (CiiM), Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany.,Centre for Experimental and Clinical Infection Research (TWINCORE), Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany.,Joint first authors
| | - Mi Kyeong Lee
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Dept of Health and Human Services, Research Triangle Park, NC, USA
| | - Jonathan Cardwell
- Dept of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Erick Forno
- Division of Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA.,Dept of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Medea Imboden
- Chronic Disease Epidemiology Unit, Dept of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland.,Dept of Public Health, University of Basel, Basel, Switzerland
| | - Ayoung Jeong
- Chronic Disease Epidemiology Unit, Dept of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland.,Dept of Public Health, University of Basel, Basel, Switzerland
| | - Anne-Marie Madore
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Saguenay, QC, Canada
| | - Cancan Qi
- Dept of Pediatric Pulmonology and Pediatric Allergy, University Medical Center Groningen, University of Groningen, Beatrix Children's Hospital and GRIAC Research Institute, Groningen, The Netherlands
| | - Tianyuan Wang
- Integrative Bioinformatics Support Group, National Institutes of Health, Dept of Health and Human Services, Research Triangle Park, NC, USA
| | - Brian D Bennett
- Integrative Bioinformatics Support Group, National Institutes of Health, Dept of Health and Human Services, Research Triangle Park, NC, USA
| | - James M Ward
- Integrative Bioinformatics Support Group, National Institutes of Health, Dept of Health and Human Services, Research Triangle Park, NC, USA
| | - Christine G Parks
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Dept of Health and Human Services, Research Triangle Park, NC, USA
| | - Laura E Beane-Freeman
- Occupational and Environmental Epidemiology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Debra King
- Clinical Pathology Group, National Institute of Environmental Health Sciences, National Institutes of Health, Dept of Health and Human Services, Research Triangle Park, NC, USA
| | - Alison Motsinger-Reif
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Dept of Health and Human Services, Research Triangle Park, NC, USA
| | - David M Umbach
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Dept of Health and Human Services, Research Triangle Park, NC, USA
| | - Annah B Wyss
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Dept of Health and Human Services, Research Triangle Park, NC, USA
| | - David A Schwartz
- Dept of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Juan C Celedón
- Division of Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA.,Dept of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Catherine Laprise
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Saguenay, QC, Canada.,Centre Intersectoriel en Santé Durable, Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Saguenay, QC, Canada.,Dept of Pediatrics, Centre Intégré Universitaire de Santé et de Services Sociaux du Saguenay-Lac-Saint-Jean, Saguenay, QC, Canada
| | - Carole Ober
- Dept of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Nicole Probst-Hensch
- Chronic Disease Epidemiology Unit, Dept of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland.,Dept of Public Health, University of Basel, Basel, Switzerland
| | - Ivana V Yang
- Dept of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Gerard H Koppelman
- Dept of Pediatric Pulmonology and Pediatric Allergy, University Medical Center Groningen, University of Groningen, Beatrix Children's Hospital and GRIAC Research Institute, Groningen, The Netherlands
| | - Stephanie J London
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Dept of Health and Human Services, Research Triangle Park, NC, USA
| |
Collapse
|
29
|
Lee MK, Wyss AB, Carnes MU, Richards M, Parks CG, Beane Freeman LE, Thorne PS, Umbach DM, Azcarate-Peril MA, Peddada SD, London SJ. House dust microbiota in relation to adult asthma and atopy in a US farming population. J Allergy Clin Immunol 2020; 147:910-920. [PMID: 32615170 DOI: 10.1016/j.jaci.2020.06.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 06/18/2020] [Accepted: 06/22/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Bacterial exposure from house dust has been associated with asthma and atopy in children but whether these relationships are present in adults remains unclear. OBJECTIVE We sought to examine associations of house dust microbiota with adult asthma, atopy, and hay fever. METHODS Vacuumed bedroom dust samples from the homes of 879 participants (average age, 62 years) in the Agricultural Lung Health Study, a case-control study of asthma nested within a farming cohort, were subjected to 16S rRNA amplicon sequencing to characterize bacterial communities. We defined current asthma and hay fever using questionnaires and current atopy by blood specific IgE level > 0.70 IU/mL to 1 or more of 10 common allergens. We used linear regression to examine whether overall within-sample bacterial diversity differed by outcome, microbiome regression-based kernel association test to evaluate whether between-sample bacterial community compositions differed by outcome, and analysis of composition of microbiomes to identify differentially abundant bacterial taxa. RESULTS Overall diversity of bacterial communities in house dust was similar by asthma status but was lower (P < .05) with atopy or hay fever. Many individual bacterial taxa were differentially abundant (false-discovery rate, <0.05) by asthma, atopy, or hay fever. Several taxa from Cyanobacteria, Bacteroidetes, and Fusobacteria were more abundant with asthma, atopy, or hay fever. In contrast, several taxa from Firmicutes were more abundant in homes of individuals with adequately controlled asthma (vs inadequately controlled asthma), individuals without atopy, or individuals without hay fever. CONCLUSIONS Microbial composition of house dust may influence allergic outcomes in adults.
Collapse
Affiliation(s)
- Mi Kyeong Lee
- Epidemiology Branch, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, NC
| | - Annah B Wyss
- Epidemiology Branch, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, NC
| | - Megan U Carnes
- Genomics in Public Health and Medicine Center, Biostatistics and Epidemiology Division, RTI International, Research Triangle Park, NC
| | | | - Christine G Parks
- Epidemiology Branch, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, NC
| | - Laura E Beane Freeman
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Rockville, Md
| | - Peter S Thorne
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, Iowa
| | - David M Umbach
- Biostatistics and Computational Biology Branch, NIEHS, NIH, DHHS, Research Triangle Park, NC
| | - M Andrea Azcarate-Peril
- Department of Medicine and Microbiome Core, Center for Gastrointestinal Biology and Disease, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Shyamal D Peddada
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pa
| | - Stephanie J London
- Epidemiology Branch, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, NC.
| |
Collapse
|
30
|
Li LX, Lin SZ, Zhang RP, Chen SW. [Prevalence of pediatric asthma in the rural areas of China: a Meta analysis]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2020; 22:380-386. [PMID: 32312379 PMCID: PMC7389704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/20/2020] [Indexed: 11/04/2023]
Abstract
OBJECTIVE To systematically review the prevalence of pediatric asthma in the rural areas of China, and to provide data for the prevention and treatment of pediatric asthma. METHODS PubMed, Cochrane, China National Knowledge Infrastructure, Wanfang Database, and Embase were searched for cross-sectional studies on the prevalence of pediatric asthma in the rural areas of China published up to August 31, 2019. Two researchers independently conducted preliminary screening and data extraction. Stata 14.0 and R software were used to perform a Meta analysis of prevalence rate. Subgroup analysis was also performed. RESULTS A total of 24 articles were reviewed, with a sample size of 212 814 children, among whom there were 3 254 children with asthma, with an overall prevalence rate of 2.02% (95%CI: 1.67%-2.36%). Boys had a significantly higher prevalence rate than girls (3.64% vs 2.03%, P<0.001). The annual prevalence rate increased from 1.21% in 1990-1999 to 3.36% in 2011-2015. The prevalence rate of pediatric asthma was 3.15% in South China, which was higher than that in East China (2.31%), Southwest China (2.15%), North China (1.19%), and Central China (1.12%). Preschool children had the highest prevalence rate of 2.63%, followed by infants and young children (2.48%) and school-age children (1.41%). CONCLUSIONS The prevalence rate of pediatric asthma is relatively low but tends to increase in the rural areas of China. Boys have a higher prevalence rate of asthma than girls, and the prevalence rate is higher in South China. Preschool children have the highest prevalence rate.
Collapse
Affiliation(s)
- Li-Xiang Li
- Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| | | | | | | |
Collapse
|
31
|
Li LX, Lin SZ, Zhang RP, Chen SW. [Prevalence of pediatric asthma in the rural areas of China: a Meta analysis]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2020; 22:380-386. [PMID: 32312379 PMCID: PMC7389704 DOI: 10.7499/j.issn.1008-8830.1910164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/20/2020] [Indexed: 06/11/2023]
Abstract
OBJECTIVE To systematically review the prevalence of pediatric asthma in the rural areas of China, and to provide data for the prevention and treatment of pediatric asthma. METHODS PubMed, Cochrane, China National Knowledge Infrastructure, Wanfang Database, and Embase were searched for cross-sectional studies on the prevalence of pediatric asthma in the rural areas of China published up to August 31, 2019. Two researchers independently conducted preliminary screening and data extraction. Stata 14.0 and R software were used to perform a Meta analysis of prevalence rate. Subgroup analysis was also performed. RESULTS A total of 24 articles were reviewed, with a sample size of 212 814 children, among whom there were 3 254 children with asthma, with an overall prevalence rate of 2.02% (95%CI: 1.67%-2.36%). Boys had a significantly higher prevalence rate than girls (3.64% vs 2.03%, P<0.001). The annual prevalence rate increased from 1.21% in 1990-1999 to 3.36% in 2011-2015. The prevalence rate of pediatric asthma was 3.15% in South China, which was higher than that in East China (2.31%), Southwest China (2.15%), North China (1.19%), and Central China (1.12%). Preschool children had the highest prevalence rate of 2.63%, followed by infants and young children (2.48%) and school-age children (1.41%). CONCLUSIONS The prevalence rate of pediatric asthma is relatively low but tends to increase in the rural areas of China. Boys have a higher prevalence rate of asthma than girls, and the prevalence rate is higher in South China. Preschool children have the highest prevalence rate.
Collapse
Affiliation(s)
- Li-Xiang Li
- Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| | | | | | | |
Collapse
|
32
|
Bawany F, Beck LA, Järvinen KM. Halting the March: Primary Prevention of Atopic Dermatitis and Food Allergies. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2020; 8:860-875. [PMID: 32147139 PMCID: PMC7355223 DOI: 10.1016/j.jaip.2019.12.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 12/13/2022]
Abstract
Atopic dermatitis (AD) is one of the most common inflammatory skin conditions, affecting 15% to 30% of children and 2% to 10% of adults. Population-based studies suggest that having AD is associated with subsequent development of other atopic diseases, in what is known as the "atopic march." We will provide an overview of studies that investigate primary prevention strategies for the first 2 diseases in the march, namely, AD and food allergies (FA). These strategies include emollients, breastfeeding, microbial exposures, probiotics, vitamin D and UV light, water hardness, and immunotherapy. Some studies, including randomized controlled trials on emollients and microbial supplementation, have found encouraging results; however, the evidence remains limited and contradictory. With regard to breastfeeding, microbial and lifestyle exposures, vitamin D and UV light, water hardness, and immunotherapy, the lack of randomized controlled trials makes it difficult to draw definitive conclusions. Current American Academy of Pediatrics guidelines support the idea that breastfeeding for 3 to 4 months can decrease AD incidence in children less than 2 years old. Recommendations regarding a direct relationship between breastfeeding on FA, however, cannot be made because of insufficient data. Regarding microbial supplementation, most guidelines do not recommend probiotics or prebiotics for the purpose of preventing allergic diseases because of limited evidence. Before definitive conclusions can be made regarding these interventions, more well-designed, longitudinal, and randomized controlled trials, particularly in at-risk populations, are required.
Collapse
Affiliation(s)
- Fatima Bawany
- School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY
| | - Lisa A Beck
- Department of Dermatology, University of Rochester Medical Center, Rochester, NY.
| | - Kirsi M Järvinen
- Department of Pediatrics, Division of Allergy and Immunology & Center for Food Allergy, University of Rochester Medical Center, Rochester, NY
| |
Collapse
|
33
|
Lin X, Ren X, Xiao X, Yang Z, Yao S, Wong GW, Liu Z, Wang C, Su Z, Li J. Important Role of Immunological Responses to Environmental Exposure in the Development of Allergic Asthma. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2020; 12:934-948. [PMID: 32935487 PMCID: PMC7492518 DOI: 10.4168/aair.2020.12.6.934] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 04/30/2020] [Accepted: 05/02/2020] [Indexed: 12/16/2022]
Abstract
Allergic asthma is a public health problem that affects human health and socioeconomic development. Studies have found that the prevalence of asthma has significantly increased in recent years, which has become particularly pronounced in developed countries. With rapid urbanization in China in the last 3 decades, the prevalence of asthma has increased significantly in urban areas. As changes in genetic backgrounds of human populations are limited, environmental exposure may be a major factor that is responsible for the increased prevalence of asthma. This review focuses on environmental components of farms and rural areas that may have protective effects in reducing the development of asthma. Farm and rural related microorganism- and pathogen-associated molecular patterns are considered to be important environmental factors that modulate host's innate and adaptive immune system to induce protection effects later in life. Environmental microbial-related immunotherapy will also be discussed as the future research direction for the prevention of allergic asthma.
Collapse
Affiliation(s)
- Xinliu Lin
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xia Ren
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaojun Xiao
- Institute of Allergy and Immunology, School of Medicine, Shenzhen University, Shenzhen, China
| | - Zhaowei Yang
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Center for Genomics, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Siyang Yao
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Gary Wk Wong
- Departments of Pediatrics, Prince of Wales Hospital, The Chinese University of Hong Kong, China
| | - Zhigang Liu
- Institute of Allergy and Immunology, School of Medicine, Shenzhen University, Shenzhen, China
| | - Charles Wang
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Center for Genomics, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Zhong Su
- Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
| | - Jing Li
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
34
|
Deckers J, Lambrecht BN, Hammad H. How a farming environment protects from atopy. Curr Opin Immunol 2019; 60:163-169. [PMID: 31499321 DOI: 10.1016/j.coi.2019.08.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 08/02/2019] [Indexed: 12/15/2022]
Abstract
It is now well established that the exposure to certain environments such as farms has the potential to protect from the development of allergies later in life. This protection is achieved when repeated exposure to the farming environment occurs early in life, but persists when children spend sufficient amount of time in contact with livestock and hay, and drink unpasteurized milk. The capacity of farm dust to protect from allergy development lies, amongst others, in the microbe composition in the farm. These protective microbes release various metabolites and cell wall components that change farmers' home dust composition, when compared to urbanized home dust. Additionally, they can colonize various barrier sites (skin, lung, intestine) in farmers' children, leading to persistent changes in the way their immune system and their barrier cells respond to environmental allergens.
Collapse
Affiliation(s)
- Julie Deckers
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Technologiepark-Zwijnaarde 71, B-9052 Ghent (Zwijnaarde), Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Bart N Lambrecht
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Technologiepark-Zwijnaarde 71, B-9052 Ghent (Zwijnaarde), Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Department of Respiratory Medicine, Erasmus Medical Center, Rotterdam, The Netherlands.
| | - Hamida Hammad
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Technologiepark-Zwijnaarde 71, B-9052 Ghent (Zwijnaarde), Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| |
Collapse
|
35
|
Is atopy a risk indicator of chronic obstructive pulmonary disease in dairy farmers? Respir Res 2019; 20:124. [PMID: 31208466 PMCID: PMC6580567 DOI: 10.1186/s12931-019-1082-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 05/23/2019] [Indexed: 01/30/2023] Open
Abstract
Abstract Allergic mechanisms related to environmental and occupational exposure have been suggested to contribute to the development of chronic obstructive pulmonary disease (COPD). Objectives To investigate the relationships between atopy markers, persistent airflow limitation (PAL) and occupational exposure in dairy farmers. Methods Clinical and biological (total IgE and 21 allergen specific IgE) markers of atopy were assessed in 101 dairy farmers with PAL (DF-PAL), 85 non-farmers with PAL (NF-PAL) (both groups were prospectively included from a screening program performed between 2011 and 2015), and matched controls, i.e. 98 farmers without PAL (DF-controls) and 89 non-farming subjects without PAL (NF-controls). Occupational exposure in farmers was estimated using a validated questionnaire. Results Prevalence of allergy history was significantly higher in DF-PAL and in NF-PAL than in controls. Polysensitization, and sensitization to seasonal and food allergens were more frequent in DF-PAL than in DF-controls, respectively: 13.8% vs 1% (adjusted odds ratio (aOR): 17.5 (2.2–134), 11.9% vs 3.1% (aOR: 4.4 (1.2–7.2) and 16.8% vs 4.1% (aOR: 5.2 (1.7–7.2)). The prevalence of atopy markers was similar between NF-PAL patients and NF-controls. Conclusions PAL in farmers is associated with a high rate of markers of atopy, supporting atopy as a risk indicator. Clinical trial registered with ClinicalTrials.gov (NCT02540408). Electronic supplementary material The online version of this article (10.1186/s12931-019-1082-2) contains supplementary material, which is available to authorized users.
Collapse
|
36
|
Liu S, Wolters PJ, Zhang Y, Zhao M, Liu D, Wang L, Zhao G, Mao S, Wu L, Zhao H, Wang X. Association between greenhouse working exposure and bronchial asthma: A pilot, cross-sectional survey of 5,420 greenhouse farmers from northeast China. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2019; 16:286-293. [PMID: 30822226 DOI: 10.1080/15459624.2019.1574973] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Long-term exposure to greenhouse environments exposes greenhouse workers to inhalation of antigens that can cause respiratory diseases. This study was conducted to investigate the prevalence and potential risk factors for bronchial asthma among the Chinese greenhouse workers based on questionnaire and spirometry data. This was an observational cross-sectional study, performed via stratified-cluster-random sampling. It was conducted in Liaoning Province from the northeast of People's Republic of China, using a population-based sample of 5,880 workers at 835 plastic film greenhouses. All subjects were interviewed using a standardized questionnaire and underwent pulmonary function tests. Multiple logistic regression analysis was conducted to assess associations between self-reported factors of greenhouse worker exposure and bronchial asthma and to identify potential risk factors for this disease. A total of 5,420 questionnaires were completed. The overall prevalence of asthma in greenhouse workers was 19.2% (1040/5420). Multiple logistic regression analysis revealed that the use of multiple pesticides (odds ratio [OR] 1.24, 95% confidence interval [CI] 1.03-1.49), bad odors in the greenhouse (OR = 1.26, 95% CI = 1.07-1.49), and report of the onset of cough when entering the greenhouse (OR = 1.25, 95% CI = 1.09-1.44) were associated with the development of asthma. In contrast, a higher body mass index (BMI >18.5 kg/m2, OR = 0.93, 95% CI = 0.90-0.95), planting flowers (OR = 0.92, 95% CI = 0.87-0.98), open sidewall to outside (natural ventilation) for at least 30 min per event (OR = 0.82, 95% CI = 0.69-0.96), living in greenhouse (OR = 0.85, 95% CI = 0.73-0.99), and experiencing cough before 14 years old (OR = 0.61, 95% CI = 0.43-0.84) were protective factors to the presentation of asthma among greenhouse workers. Our results suggest that asthma is a major public health problem among Chinese greenhouse workers and more attention should be devoted to preventive measures and management of this disease.
Collapse
Affiliation(s)
- Shuo Liu
- a Department of Respiratory Medicine , The First Affiliated Hospital of China Medical University , Shenyang , Liaoning , People's Republic of China
- b Department of Respiratory Medicine , The Fourth Affiliated Hospital of China Medical University , Shenyang , Liaoning , People's Republic of China
- c Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine , University of California , San Francisco, San Francisco , California, USA
| | - Paul J Wolters
- c Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine , University of California , San Francisco, San Francisco , California, USA
| | - Yibing Zhang
- d Department of Scientific Research , The General Hospital of Shenyang Military Command , Shenyang , Liaoning , People's Republic of China
| | - Mingjing Zhao
- b Department of Respiratory Medicine , The Fourth Affiliated Hospital of China Medical University , Shenyang , Liaoning , People's Republic of China
| | - Dan Liu
- b Department of Respiratory Medicine , The Fourth Affiliated Hospital of China Medical University , Shenyang , Liaoning , People's Republic of China
| | - Lingling Wang
- b Department of Respiratory Medicine , The Fourth Affiliated Hospital of China Medical University , Shenyang , Liaoning , People's Republic of China
| | - Guangdan Zhao
- b Department of Respiratory Medicine , The Fourth Affiliated Hospital of China Medical University , Shenyang , Liaoning , People's Republic of China
| | - Shitao Mao
- b Department of Respiratory Medicine , The Fourth Affiliated Hospital of China Medical University , Shenyang , Liaoning , People's Republic of China
| | - Lijian Wu
- b Department of Respiratory Medicine , The Fourth Affiliated Hospital of China Medical University , Shenyang , Liaoning , People's Republic of China
| | - Hongwen Zhao
- a Department of Respiratory Medicine , The First Affiliated Hospital of China Medical University , Shenyang , Liaoning , People's Republic of China
| | - Xiaoge Wang
- b Department of Respiratory Medicine , The Fourth Affiliated Hospital of China Medical University , Shenyang , Liaoning , People's Republic of China
| |
Collapse
|
37
|
Raw Cow's Milk and Its Protective Effect on Allergies and Asthma. Nutrients 2019; 11:nu11020469. [PMID: 30813365 PMCID: PMC6413174 DOI: 10.3390/nu11020469] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 02/17/2019] [Accepted: 02/18/2019] [Indexed: 12/27/2022] Open
Abstract
Living on a farm and having contact with rural exposures have been proposed as one of the most promising ways to be protected against allergy and asthma development. There is a significant body of epidemiological evidence that consumption of raw milk in childhood and adulthood in farm but also nonfarm populations can be one of the most effective protective factors. The observation is even more intriguing when considering the fact that milk is one of the most common food allergens in childhood. The exact mechanisms underlying this association are still not well understood, but the role of raw milk ingredients such as proteins, fat and fatty acids, and bacterial components has been recently studied and its influence on the immune function has been documented. In this review, we present the current understanding of the protective effect of raw milk on allergies and asthma.
Collapse
|
38
|
Close social relationships correlate with human gut microbiota composition. Sci Rep 2019; 9:703. [PMID: 30679677 PMCID: PMC6345772 DOI: 10.1038/s41598-018-37298-9] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 11/16/2018] [Indexed: 01/07/2023] Open
Abstract
Social relationships shape human health and mortality via behavioral, psychosocial, and physiological mechanisms, including inflammatory and immune responses. Though not tested in human studies, recent primate studies indicate that the gut microbiome may also be a biological mechanism linking relationships to health. Integrating microbiota data into the 60-year-old Wisconsin Longitudinal Study, we found that socialness with family and friends is associated with differences in the human fecal microbiota. Analysis of spouse (N = 94) and sibling pairs (N = 83) further revealed that spouses have more similar microbiota and more bacterial taxa in common than siblings, with no observed differences between sibling and unrelated pairs. These differences held even after accounting for dietary factors. The differences between unrelated individuals and married couples was driven entirely by couples who reported close relationships; there were no differences in similarity between couples reporting somewhat close relationships and unrelated individuals. Moreover, married individuals harbor microbial communities of greater diversity and richness relative to those living alone, with the greatest diversity among couples reporting close relationships, which is notable given decades of research documenting the health benefits of marriage. These results suggest that human interactions, especially sustained, close marital relationships, influence the gut microbiota.
Collapse
|
39
|
Schouten J, Beach J, Burstyn I, Senthilselvan A, Cherry N. Is Farm Milk a Risk Factor for Sarcoidosis? The Role of Farm Residence, Unpiped Water and Untreated Milk in Sarcoidosis: A Case-Referent Study in Alberta, Canada. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15122755. [PMID: 30563171 PMCID: PMC6313709 DOI: 10.3390/ijerph15122755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 11/28/2018] [Accepted: 11/28/2018] [Indexed: 11/30/2022]
Abstract
Objective: Sarcoidosis is thought to be an aberrant immune response to environmental agents, with rural living as a risk factor. We aimed to determine if farm living, consumption of farm (untreated) milk, or untreated water increased the risk of sarcoidosis. Methods: In a case-referent design, patients aged 18–60 with pulmonary sarcoidosis together with referents with other chronic respiratory disease, diagnosed 1999–2005 in Alberta, Canada, were approached through their specialist physician. Participants completed a telephone questionnaire about farm living, use of untreated water and farm milk for each residence from birth to diagnosis. Exposures at birth, up to age five, and up to diagnosis were calculated. Results: The study included 615 cases and 1334 referents. The consumption of farm milk, but not of unpiped water or farm living overall, appeared to be consistently associated with sarcoidosis in a fully adjusted analysis. The association was present for farm milk used in the residence of birth (odds ratios (OR): 1.59, 95% confidence intervals (CI): 1.08–2.34) and persisted for those drinking farm milk to age five years (OR: 1.52, 95% CI: 1.04–2.21), and for those drinking farm milk for >16 years to diagnosis (OR: 1.50, 95% CI: 1.04–2.15). The association with sarcoidosis was stronger when the referent was in the subgroup diagnosed with asthma but was present also with referents with other chronic respiratory disease. Among those whose family used farm milk at birth and to age 5 years, continued use of farm milk into adulthood increased the risk of sarcoidosis. Conclusion: We observed evidence of positive association between consumption of farm milk and sarcoidosis.
Collapse
Affiliation(s)
- Janine Schouten
- Faculty of Medicine, Division of Preventive Medicine, University of Alberta, Edmonton, AB T6G 2T4, Canada.
| | - Jeremy Beach
- Faculty of Medicine, Division of Preventive Medicine, University of Alberta, Edmonton, AB T6G 2T4, Canada.
| | - Igor Burstyn
- Department of Environmental and Occupational Health, Dornsife School of Public Health, Drexel University, Philadelphia, PA 19104, USA.
| | | | - Nicola Cherry
- Faculty of Medicine, Division of Preventive Medicine, University of Alberta, Edmonton, AB T6G 2T4, Canada.
| |
Collapse
|
40
|
Abstract
PURPOSE OF REVIEW Agriculture environments contain a variety of inflammatory aerosols that may increase risk for lung inflammation and disease in exposed individuals. In addition, epidemiological studies have also identified protective effects of rural environments and farming exposures. RECENT FINDINGS In this review, we will discuss recent literature published since 2016 that investigates the impact of differing agricultural exposures on respiratory health. Discussions include the impact of farming modernization, education, and personal protective equipment usage among workers, timing and duration in mediating lung health outcomes, and population studies investigating the association between exposure and risk for numerous lung diseases.
Collapse
|
41
|
Gilles S, Akdis C, Lauener R, Schmid-Grendelmeier P, Bieber T, Schäppi G, Traidl-Hoffmann C. The role of environmental factors in allergy: A critical reappraisal. Exp Dermatol 2018; 27:1193-1200. [PMID: 30099779 DOI: 10.1111/exd.13769] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 07/26/2018] [Accepted: 08/07/2018] [Indexed: 12/12/2022]
Abstract
Allergies are usually referred to as type I hypersensitivity reactions against innocuous environmental antigens, characterized by a Th2/IgE-dominated inflammation. They can manifest themselves in various organs, such as skin, gastrointestinal and respiratory tract, and comprise diseases as diverse as allergic rhinitis and conjunctivitis, bronchial asthma, oral allergy syndrome, food allergy, urticaria and atopic eczema, but also anaphylactic shock. Within the last decades, there was a significant global increase in allergy prevalence, which has been mostly attributed to changes in environment and lifestyle. But which, among all factors discussed, are the most relevant, and what are the mechanisms by which these factors promote or prevent the development of allergic diseases? To answer this, it is necessary to go back to the two key questions that have occupied allergy researchers for the last decades: Firstly, what makes an allergen an allergen? Secondly, why are more and more individuals affected? Within the last decade, we have made considerable progress in answering these questions. This review gives an overview over scientific progress in the field, summarizes latest findings and points out future prospective and research needs.
Collapse
Affiliation(s)
- Stefanie Gilles
- Chair and Institute of Environmental Medicine, UNIKA-T, Technical University of Munich, Augsburg, Germany
| | - Cezmi Akdis
- Swiss Institute of Allergy and Asthma Research, University of Zürich, Davos, Switzerland.,Christine Kühne-Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| | - Roger Lauener
- Christine Kühne-Center for Allergy Research and Education (CK-CARE), Davos, Switzerland.,Children's Hospital of Eastern Switzerland, St. Gallen, Switzerland
| | - Peter Schmid-Grendelmeier
- Christine Kühne-Center for Allergy Research and Education (CK-CARE), Davos, Switzerland.,Allergy Unit, Department of Dermatology, University Hospital of Zürich, Zürich, Switzerland
| | - Thomas Bieber
- Christine Kühne-Center for Allergy Research and Education (CK-CARE), Davos, Switzerland.,Department of Dermatology and Allergy, University of Bonn, Bonn, Germany
| | - Georg Schäppi
- Christine Kühne-Center for Allergy Research and Education (CK-CARE), Davos, Switzerland.,Hochgebirgsklinik Davos, Davos-Wolfgang, Switzerland
| | - Claudia Traidl-Hoffmann
- Chair and Institute of Environmental Medicine, UNIKA-T, Technical University of Munich, Augsburg, Germany.,Christine Kühne-Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| |
Collapse
|
42
|
Whitehead J, Lake B. Recent Trends in Unpasteurized Fluid Milk Outbreaks, Legalization, and Consumption in the United States. PLOS CURRENTS 2018; 10. [PMID: 30279996 PMCID: PMC6140832 DOI: 10.1371/currents.outbreaks.bae5a0fd685616839c9cf857792730d1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Introduction: Determining the potential risk of foodborne illness has become critical for informing policy decisions, due to the increasing availability and popularity of unpasteurized (raw) milk. Methods: Trends in foodborne illnesses reported to the Centers for Disease Control in the United States from 2005 to 2016 were analyzed, with comparison to state legal status and to consumption, as estimated by licensing records. Results: The rate of unpasteurized milk-associated outbreaks has been declining since 2010, despite increasing legal distribution. Controlling for growth in population and consumption, the outbreak rate has effectively decreased by 74% since 2005. Discussion: Studies of the role of on-farm food safety programs to promote the further reduction of unpasteurized milk outbreaks should be initiated, to investigate the efficacy of such risk management tools.
Collapse
Affiliation(s)
- Joanne Whitehead
- Centre for Biomedical Research, University of Victoria, British Columbia, Canada
| | - Bryony Lake
- Meta+ Research and Analysis, British Columbia, Canada
| |
Collapse
|
43
|
House JS, Mendez M, Maguire RL, Gonzalez-Nahm S, Huang Z, Daniels J, Murphy SK, Fuemmeler BF, Wright FA, Hoyo C. Periconceptional Maternal Mediterranean Diet Is Associated With Favorable Offspring Behaviors and Altered CpG Methylation of Imprinted Genes. Front Cell Dev Biol 2018; 6:107. [PMID: 30246009 PMCID: PMC6137242 DOI: 10.3389/fcell.2018.00107] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 08/20/2018] [Indexed: 12/28/2022] Open
Abstract
Background: Maternal diet during pregnancy has been shown to influence the child neuro-developmental outcomes. Studies examining effects of dietary patterns on offspring behavior are sparse. Objective: Determine if maternal adherence to a Mediterranean diet is associated with child behavioral outcomes assessed early in life, and to evaluate the role of differentially methylated regions (DMRs) regulating genomically imprinted genes in these associations. Methods: Among 325 mother/infant pairs, we used regression models to evaluate the association between tertiles of maternal periconceptional Mediterranean diet adherence (MDA) scores derived from a Food Frequency Questionnaire, and social and emotional scores derived from the Infant Toddler Social and Emotional Assessment (ITSEA) questionnaire in the second year of life. Methylation of nine genomically imprinted genes was measured to determine if MDA was associated with CpG methylation. Results: Child depression was inversely associated with maternal MDA (Bonferroni-corrected p = 0.041). While controlling for false-discovery, compared to offspring of women with the lowest MDA tertile, those with MDA scores in middle and high MDA tertiles had decreased odds for atypical behaviors [OR (95% CI) = 0.40 (0.20, 0.78) for middle and 0.40 (0.17, 0.92) for highest tertile], for maladaptive behaviors [0.37 (0.18, 0.72) for middle tertile and 0.42 (0.18, 0.95) for highest tertile] and for an index of autism spectrum disorder behaviors [0.46 (0.23, 0.90) for middle and 0.35 (0.15, 0.80) for highest tertile]. Offspring of women with the highest MDA tertile were less likely to exhibit depressive [OR = 0.28 (0.12, 0.64)] and anxiety [0.42 (0.18, 0.97)] behaviors and increased odds of social relatedness [2.31 (1.04, 5.19)] behaviors when compared to low MDA mothers. Some associations varied by sex. Perinatal MDA score was associated with methylation differences for imprinted control regions of PEG10/SGCE [females: Beta (95% CI) = 1.66 (0.52, 2.80) - Bonferroni-corrected p = 0.048; males: -0.56 (-1.13, -0.00)], as well as both MEG3 and IGF2 in males [0.97 (0.00, 1.94)] and -0.92 (-1.65, -0.19) respectively. Conclusion: In this ethnically diverse cohort, maternal adherence to a Mediterranean diet in early pregnancy was associated with favorable neurobehavioral outcomes in early childhood and with sex-dependent methylation differences of MEG3, IGF2, and SGCE/PEG10 DMRs.
Collapse
Affiliation(s)
- John S House
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, United States.,Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, United States
| | - Michelle Mendez
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Rachel L Maguire
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, United States.,Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States
| | - Sarah Gonzalez-Nahm
- Department of Health, Behavior and Society, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Zhiqing Huang
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, United States
| | - Julie Daniels
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Susan K Murphy
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, United States
| | - Bernard F Fuemmeler
- Department of Health Behavior and Policy, Virginia Commonwealth University, Richmond, VA, United States
| | - Fred A Wright
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, United States.,Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, United States.,Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States.,Department of Statistics, North Carolina State University, Raleigh, NC, United States
| | - Cathrine Hoyo
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, United States.,Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
44
|
Lee MK, Carnes MU, Butz N, Azcarate-Peril MA, Richards M, Umbach DM, Thorne PS, Beane Freeman LE, Peddada SD, London SJ. Exposures Related to House Dust Microbiota in a U.S. Farming Population. ENVIRONMENTAL HEALTH PERSPECTIVES 2018; 126:067001. [PMID: 29863827 PMCID: PMC6084882 DOI: 10.1289/ehp3145] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 05/01/2018] [Accepted: 05/02/2018] [Indexed: 05/09/2023]
Abstract
BACKGROUND Environmental factors can influence the house dust microbiota, which may impact health outcomes. Little is known about how farming exposures impact the indoor microbiota. OBJECTIVE We aimed to identify exposures related to bacterial communities in house dust in a U.S. farming population. METHODS We used 16S rRNA amplicon sequencing to characterize bacterial communities in vacuumed dust samples from the bedrooms of a subset of 879 households of farmers and farmers' spouses enrolled in the Agricultural Lung Health Study (ALHS), a case-control study of asthma nested within the Agricultural Health Study (AHS) in North Carolina and Iowa. Information on current farming (past 12 mo), including both crop and animal farming, and other potential microbial sources was obtained via questionnaires. We used linear regression to evaluate associations between exposures and bacterial diversity within each sample, analysis of similarity (ANOSIM), and permutational multivariate analysis of variance (PERMANOVA) to identify exposures related to diversity between samples, and analysis of composition of microbiome to examine whether exposures related to diversity were also related to differential abundance of specific operational taxonomic units (OTUs). RESULTS Current farming was positively associated with bacterial diversity in house dust, with or without adjustment for nonfarm exposures related to diversity, including presence of indoor pets, home condition, and season of dust collection. Many taxa exhibited differential abundance related to farming. Some taxa in the phyla Chloroflexi and Verrucomicrobia were associated [false discovery rate (FDR)<0.05] with farming but not with other nonfarm factors. Many taxa correlated with the concentration of house dust of endotoxin, commonly studied as a general marker of exposure to the farming environment. CONCLUSIONS In this farming population, house dust microbiota differed by current farming status. Understanding the determinants of the indoor microbiota is the first step toward understanding potential relationships with health outcomes. https://doi.org/10.1289/EHP3145.
Collapse
Affiliation(s)
- Mi Kyeong Lee
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Dept. of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Megan U Carnes
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Dept. of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Natasha Butz
- Dept. of Medicine and Microbiome Core Facility, Center for Gastrointestinal Biology and Disease, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - M Andrea Azcarate-Peril
- Dept. of Medicine and Microbiome Core Facility, Center for Gastrointestinal Biology and Disease, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | - David M Umbach
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Dept. of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Peter S Thorne
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, Iowa, USA
| | - Laura E Beane Freeman
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Dept. of Health and Human Services, Rockville, Maryland, USA
| | - Shyamal D Peddada
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Dept. of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Stephanie J London
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Dept. of Health and Human Services, Research Triangle Park, North Carolina, USA
| |
Collapse
|
45
|
Crane J, Barthow C, Mitchell EA, Stanley TV, Purdie G, Rowden J, Kang J, Hood F, Barnes P, Fitzharris P, Maude R, Stone P, Murphy R, Wickens K. Is yoghurt an acceptable alternative to raw milk for reducing eczema and allergy in infancy? Clin Exp Allergy 2018; 48:604-606. [PMID: 29442385 DOI: 10.1111/cea.13121] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- J Crane
- University of Otago, Wellington, New Zealand
| | - C Barthow
- University of Otago, Wellington, New Zealand
| | | | - T V Stanley
- University of Otago, Wellington, New Zealand
| | - G Purdie
- University of Otago, Wellington, New Zealand
| | - J Rowden
- University of Auckland, Auckland, New Zealand
| | - J Kang
- University of Otago, Wellington, New Zealand
| | - F Hood
- University of Otago, Wellington, New Zealand
| | - P Barnes
- University of Otago, Wellington, New Zealand
| | | | - R Maude
- Victoria University, Wellington, New Zealand
| | - P Stone
- University of Auckland, Auckland, New Zealand
| | - R Murphy
- University of Auckland, Auckland, New Zealand
| | - K Wickens
- University of Otago, Wellington, New Zealand
| |
Collapse
|
46
|
Dinakar C, Fineman SM, Chipps BE, Khan DA, Tilles SA. Recent advances in our understanding of the environment's role in allergy. Ann Allergy Asthma Immunol 2018; 120:465-467. [PMID: 29577979 DOI: 10.1016/j.anai.2018.03.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 03/19/2018] [Indexed: 11/24/2022]
Affiliation(s)
- Chitra Dinakar
- AllergyWatch, Sacramento, California; Medicine, Pulmonary & Critical Care Medicine, Stanford University, Stanford, California; Asthma and Immunodeficiency, Stanford Health Care, Stanford, California
| | - Stanley M Fineman
- AllergyWatch, Sacramento, California; Atlanta Allergy & Asthma, Marietta, Georgia
| | - Bradley E Chipps
- AllergyWatch, Sacramento, California; American College of Allergy, Asthma & Immunology, Arlington Heights, Illinois; Capital Allergy & Respiratory Disease Center, Sacramento, California
| | - David A Khan
- AllergyWatch, Sacramento, California; Division of Allergy & Immmunology, University of Texas Southwestern Medical School, Dallas, Texas
| | - Stephen A Tilles
- AllergyWatch, Sacramento, California; Northwest Asthma & Allergy Center, Redmond, Washington.
| |
Collapse
|
47
|
Wise SK, Lin SY, Toskala E, Orlandi RR, Akdis CA, Alt JA, Azar A, Baroody FM, Bachert C, Canonica GW, Chacko T, Cingi C, Ciprandi G, Corey J, Cox LS, Creticos PS, Custovic A, Damask C, DeConde A, DelGaudio JM, Ebert CS, Eloy JA, Flanagan CE, Fokkens WJ, Franzese C, Gosepath J, Halderman A, Hamilton RG, Hoffman HJ, Hohlfeld JM, Houser SM, Hwang PH, Incorvaia C, Jarvis D, Khalid AN, Kilpeläinen M, Kingdom TT, Krouse H, Larenas-Linnemann D, Laury AM, Lee SE, Levy JM, Luong AU, Marple BF, McCoul ED, McMains KC, Melén E, Mims JW, Moscato G, Mullol J, Nelson HS, Patadia M, Pawankar R, Pfaar O, Platt MP, Reisacher W, Rondón C, Rudmik L, Ryan M, Sastre J, Schlosser RJ, Settipane RA, Sharma HP, Sheikh A, Smith TL, Tantilipikorn P, Tversky JR, Veling MC, Wang DY, Westman M, Wickman M, Zacharek M. International Consensus Statement on Allergy and Rhinology: Allergic Rhinitis. Int Forum Allergy Rhinol 2018; 8:108-352. [PMID: 29438602 PMCID: PMC7286723 DOI: 10.1002/alr.22073] [Citation(s) in RCA: 234] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 12/01/2017] [Accepted: 12/01/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND Critical examination of the quality and validity of available allergic rhinitis (AR) literature is necessary to improve understanding and to appropriately translate this knowledge to clinical care of the AR patient. To evaluate the existing AR literature, international multidisciplinary experts with an interest in AR have produced the International Consensus statement on Allergy and Rhinology: Allergic Rhinitis (ICAR:AR). METHODS Using previously described methodology, specific topics were developed relating to AR. Each topic was assigned a literature review, evidence-based review (EBR), or evidence-based review with recommendations (EBRR) format as dictated by available evidence and purpose within the ICAR:AR document. Following iterative reviews of each topic, the ICAR:AR document was synthesized and reviewed by all authors for consensus. RESULTS The ICAR:AR document addresses over 100 individual topics related to AR, including diagnosis, pathophysiology, epidemiology, disease burden, risk factors for the development of AR, allergy testing modalities, treatment, and other conditions/comorbidities associated with AR. CONCLUSION This critical review of the AR literature has identified several strengths; providers can be confident that treatment decisions are supported by rigorous studies. However, there are also substantial gaps in the AR literature. These knowledge gaps should be viewed as opportunities for improvement, as often the things that we teach and the medicine that we practice are not based on the best quality evidence. This document aims to highlight the strengths and weaknesses of the AR literature to identify areas for future AR research and improved understanding.
Collapse
Affiliation(s)
| | | | | | | | - Cezmi A. Akdis
- Allergy/Asthma, Swiss Institute of Allergy and Asthma Research, Switzerland
| | | | - Antoine Azar
- Allergy/Immunology, Johns Hopkins University, USA
| | | | | | | | | | - Cemal Cingi
- Otolaryngology, Eskisehir Osmangazi University, Turkey
| | | | | | | | | | | | | | - Adam DeConde
- Otolaryngology, University of California San Diego, USA
| | | | | | | | | | | | | | - Jan Gosepath
- Otorhinolaryngology, Helios Kliniken Wiesbaden, Germany
| | | | | | | | - Jens M. Hohlfeld
- Respiratory Medicine, Hannover Medical School, Airway Research Fraunhofer Institute for Toxicology and Experimental Medicine, German Center for Lung Research, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | - Amber U. Luong
- Otolaryngology, McGovern Medical School at the University of Texas Health Science Center Houston, USA
| | | | | | | | - Erik Melén
- Pediatric Allergy, Karolinska Institutet, Sweden
| | | | | | - Joaquim Mullol
- Otolaryngology, Universitat de Barcelona, Hospital Clinic, IDIBAPS, Spain
| | | | | | | | - Oliver Pfaar
- Rhinology/Allergy, Medical Faculty Mannheim, Heidelberg University, Center for Rhinology and Allergology, Wiesbaden, Germany
| | | | | | - Carmen Rondón
- Allergy, Regional University Hospital of Málaga, Spain
| | - Luke Rudmik
- Otolaryngology, University of Calgary, Canada
| | - Matthew Ryan
- Otolaryngology, University of Texas Southwestern, USA
| | - Joaquin Sastre
- Allergology, Hospital Universitario Fundacion Jiminez Diaz, Spain
| | | | | | - Hemant P. Sharma
- Allergy/Immunology, Children's National Health System, George Washington University School of Medicine, USA
| | | | | | | | | | | | - De Yun Wang
- Otolaryngology, National University of Singapore, Singapore
| | | | | | | |
Collapse
|
48
|
Villaseñor A, Rosace D, Obeso D, Pérez-Gordo M, Chivato T, Barbas C, Barber D, Escribese MM. Allergic asthma: an overview of metabolomic strategies leading to the identification of biomarkers in the field. Clin Exp Allergy 2017; 47:442-456. [PMID: 28160515 DOI: 10.1111/cea.12902] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Allergic asthma is a prominent disease especially during childhood. Indoor allergens, in general, and particularly house dust mites (HDM) are the most prevalent sensitizers associated with allergic asthma. Available data show that 65-130 million people are mite-sensitized world-wide and as many as 50% of these are asthmatic. In fact, sensitization to HDM in the first years of life can produce devastating effects on pulmonary function leading to asthmatic syndromes that can be fatal. To date, there has been considerable research into the pathological pathways and structural changes associated with allergic asthma. However, limitations related to the disease heterogeneity and a lack of knowledge into its pathophysiology have impeded the generation of valuable data needed to appropriately phenotype patients and, subsequently, treat this disease. Here, we report a systematic and integral analysis of the disease, from airway remodelling to the immune response taking place throughout the disease stages. We present an overview of metabolomics, the management of complex multifactorial diseases through the analysis of all possible metabolites in a biological sample, obtaining a global interpretation of biological systems. Special interest is placed on the challenges to obtain biological samples and the methodological aspects to acquire relevant information, focusing on the identification of novel biomarkers associated with specific phenotypes of allergic asthma. We also present an overview of the metabolites cited in the literature, which have been related to inflammation and immune response in asthma and other allergy-related diseases.
Collapse
Affiliation(s)
- A Villaseñor
- Faculty of Medicine, Institute of Applied Molecular Medicine (IMMA), CEU San Pablo University, Boadilla del Monte, Madrid, Spain
| | - D Rosace
- Faculty of Medicine, Institute of Applied Molecular Medicine (IMMA), CEU San Pablo University, Boadilla del Monte, Madrid, Spain
| | - D Obeso
- Faculty of Medicine, Institute of Applied Molecular Medicine (IMMA), CEU San Pablo University, Boadilla del Monte, Madrid, Spain.,Faculty of Pharmacy, Centre for Metabolomics and Bioanalysis (CEMBIO), CEU San Pablo University, Boadilla del Monte, Madrid, Spain
| | - M Pérez-Gordo
- Faculty of Pharmacy, Centre for Metabolomics and Bioanalysis (CEMBIO), CEU San Pablo University, Boadilla del Monte, Madrid, Spain.,Basic Medical Sciences Department, Faculty of Medicine, CEU San Pablo University, Boadilla del Monte, Madrid, Spain
| | - T Chivato
- Basic Medical Sciences Department, Faculty of Medicine, CEU San Pablo University, Boadilla del Monte, Madrid, Spain
| | - C Barbas
- Faculty of Pharmacy, Centre for Metabolomics and Bioanalysis (CEMBIO), CEU San Pablo University, Boadilla del Monte, Madrid, Spain
| | - D Barber
- Faculty of Medicine, Institute of Applied Molecular Medicine (IMMA), CEU San Pablo University, Boadilla del Monte, Madrid, Spain
| | - M M Escribese
- Faculty of Medicine, Institute of Applied Molecular Medicine (IMMA), CEU San Pablo University, Boadilla del Monte, Madrid, Spain.,Basic Medical Sciences Department, Faculty of Medicine, CEU San Pablo University, Boadilla del Monte, Madrid, Spain
| |
Collapse
|
49
|
Global issues in allergy and immunology: Parasitic infections and allergy. J Allergy Clin Immunol 2017; 140:1217-1228. [PMID: 29108604 DOI: 10.1016/j.jaci.2017.09.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 09/19/2017] [Accepted: 09/21/2017] [Indexed: 02/07/2023]
Abstract
Allergic diseases are on the increase globally in parallel with a decrease in parasitic infection. The inverse association between parasitic infections and allergy at an ecological level suggests a causal association. Studies in human subjects have generated a large knowledge base on the complexity of the interrelationship between parasitic infection and allergy. There is evidence for causal links, but the data from animal models are the most compelling: despite the strong type 2 immune responses they induce, helminth infections can suppress allergy through regulatory pathways. Conversely, many helminths can cause allergic-type inflammation, including symptoms of "classical" allergic disease. From an evolutionary perspective, subjects with an effective immune response against helminths can be more susceptible to allergy. This narrative review aims to inform readers of the most relevant up-to-date evidence on the relationship between parasites and allergy. Experiments in animal models have demonstrated the potential benefits of helminth infection or administration of helminth-derived molecules on chronic inflammatory diseases, but thus far, clinical trials in human subjects have not demonstrated unequivocal clinical benefits. Nevertheless, there is sufficiently strong evidence to support continued investigation of the potential benefits of helminth-derived therapies for the prevention or treatment of allergic and other inflammatory diseases.
Collapse
|
50
|
The immunology of the allergy epidemic and the hygiene hypothesis. Nat Immunol 2017; 18:1076-1083. [PMID: 28926539 DOI: 10.1038/ni.3829] [Citation(s) in RCA: 255] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 08/04/2017] [Indexed: 12/18/2022]
Abstract
The immunology of the hygiene hypothesis of allergy is complex and involves the loss of cellular and humoral immunoregulatory pathways as a result of the adoption of a Western lifestyle and the disappearance of chronic infectious diseases. The influence of diet and reduced microbiome diversity now forms the foundation of scientific thinking on how the allergy epidemic occurred, although clear mechanistic insights into the process in humans are still lacking. Here we propose that barrier epithelial cells are heavily influenced by environmental factors and by microbiome-derived danger signals and metabolites, and thus act as important rheostats for immunoregulation, particularly during early postnatal development. Preventive strategies based on this new knowledge could exploit the diversity of the microbial world and the way humans react to it, and possibly restore old symbiotic relationships that have been lost in recent times, without causing disease or requiring a return to an unhygienic life style.
Collapse
|