1
|
Mahendran M, Upton JEM, Ramasubramanian R, Memmott HL, Germain G, Büsch K, Laliberté F, Harrington A. Overall survival among patients with activated phosphoinositide 3-kinase delta syndrome (APDS). Orphanet J Rare Dis 2025; 20:212. [PMID: 40319290 PMCID: PMC12049806 DOI: 10.1186/s13023-025-03734-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 04/15/2025] [Indexed: 05/07/2025] Open
Abstract
BACKGROUND This study aimed to describe overall survival (OS) of patients with APDS relative to the global population as well as among subsets of patients with concurrent lymphoma or hematopoietic stem cell transplant (HSCT) relative to the overall APDS population. METHODS Patient-level data were extracted from a recent systematic literature review of 351 unique patients with APDS. OS was evaluated using the Kaplan-Meier method up to age 65 years. OS rate and corresponding 95% CI were reported at each decade of age. Global mortality estimates were obtained from World Health Organization life tables for 2019. RESULTS Of the 351 patients with APDS (APDS1, 267 [76.1%]; APDS2, 83 [23.6%]; unspecified, 1 [0.3%]), 41 (11.7%) died. The OS rate was 25.0% (95% CI, 1.6-62.7%) by the last death event at 64 years of age. Starting at 12 years of age, the OS rate was numerically lower in patients with APDS relative to the global population (median OS, 64 vs. 75 years, respectively). Relative to the overall APDS population, OS rates were numerically similar in those who underwent HSCT (median OS, 64 years for both; p = 0.569), whereas OS rates were numerically lower in patients with concurrent lymphoma (median OS, 41 vs. 64 years, respectively; p = 0.109). Publication bias in source data was a possible limitation. CONCLUSION Reduced survival in patients with APDS suggests a high disease burden, particularly in those with concurrent lymphoma. These results highlight the unmet need for disease-modifying treatments for APDS.
Collapse
Affiliation(s)
| | - Julia E M Upton
- Clinical Immunology and Allergy, Department of Pediatrics, The Hospital For Sick Children, Toronto, ON, Canada
- Department of Pediatrics, University of Toronto, Toronto, ON, Canada
| | | | | | | | | | | | | |
Collapse
|
2
|
Büsch K, Memmott HL, McLaughlin HM, Upton JEM, Harrington A. Genetic Etiologies and Outcomes in Malignancy and Mortality in Activated Phosphoinositide 3-Kinase Delta Syndrome: A Systematic Review. Adv Ther 2025; 42:752-771. [PMID: 39636570 PMCID: PMC11787279 DOI: 10.1007/s12325-024-03066-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 11/05/2024] [Indexed: 12/07/2024]
Abstract
INTRODUCTION This analysis evaluated literature on patients with activated phosphoinositide 3-kinase delta syndrome (APDS) to better understand the genetic etiologies and occurrence of mortality in this population. METHODS A systematic review was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses approach, including all articles published in English prior to March 13, 2023, in PubMed and Embase. Patients included in the study had reported either (1) APDS diagnosis or (2) ≥ 1 clinical sign consistent with APDS and a first-degree relative with genetically confirmed APDS. Reported age at last observation was also a required outcome. Publications not meeting these criteria were excluded. Data were summarized using descriptive statistics. RESULTS The search identified 108 publications describing 351 unique patients with 39 distinct disease-causing variants. Among these, 41 (12%) deaths were reported, with a mean age at last follow-up of 19.6 (range, 1-64) years. A cause of death was reported for 80% (33/41) of deaths; lymphoma (24%, 10/41) and infections (22%, 9/41) were the most common causes. Types of infections causing death were severe uncontrollable infections (n = 3), sepsis (n = 2), viral infection (varicella zoster pneumonitis [n = 1], cytomegalovirus and adenovirus [n = 1], and Epstein-Barr virus [n = 1]), and infection (n = 1). Mean age at death for lymphoma was 24.9 (range, 1-41) years, and all nine patients who died from infections died before the age of 15 years. The mean age at first APDS symptom was 2.0 (range, < 1-22) years, and mean age at APDS diagnosis was 13.4 (range, 0-56) years; the mean time between symptoms and diagnosis was 10.6 (range, 0-44) years. Limitations of the study were primarily related to the data source. CONCLUSION Patients with APDS suffer early mortality, largely from lymphoma and infection, with large time gaps between symptoms and diagnosis. These findings highlight the need for improved diagnostics, earlier genetic testing for APDS, increased awareness of familial testing, and targeted therapies.
Collapse
Affiliation(s)
- Katharina Büsch
- KJM Büsch Consulting GmbH, Industriestrasse 24, 6300, Zug, Switzerland
| | - Heidi L Memmott
- Pharming Healthcare, Inc., 10 Independence Blvd, Warren, NJ, 07059, USA
| | | | - Julia E M Upton
- Division of Immunology and Allergy, Department of Paediatrics, The Hospital For Sick Children, 175 Elizabeth St, Room 13-14-027, Toronto, ON, M5G 2G3, Canada
- Department of Paediatrics, Temerty School of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Amanda Harrington
- Pharming Healthcare, Inc., 10 Independence Blvd, Warren, NJ, 07059, USA.
| |
Collapse
|
3
|
Whalen J, Chandra A, Kracker S, Ehl S, Seidel MG, Gulas I, Dron L, Velummailum R, Nagamuthu C, Liu S, Tutein Nolthenius J, Maccari ME. Comparative efficacy of leniolisib (CDZ173) versus standard of care on rates of respiratory tract infection and serum immunoglobulin M (IgM) levels among individuals with activated phosphoinositide 3-kinase delta (PI3Kδ) syndrome (APDS): an externally controlled study. Clin Exp Immunol 2025; 219:uxae107. [PMID: 39673396 PMCID: PMC11754865 DOI: 10.1093/cei/uxae107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/22/2024] [Accepted: 11/29/2024] [Indexed: 12/16/2024] Open
Abstract
Leniolisib, an oral, targeted phosphoinositide 3-kinase delta (PI3Kδ) inhibitor, was well-tolerated and efficacious versus placebo in treating individuals with activated PI3Kδ syndrome (APDS), an ultra-rare inborn error of immunity (IEI), in a 12-week randomised controlled trial. However, longer-term comparative data versus standard of care are lacking. This externally controlled study compared the long-term effects of leniolisib on annual rate of respiratory tract infections and change in serum immunoglobulin M (IgM) levels versus current standard of care, using data from the leniolisib single-arm open-label extension study 2201E1 (NCT02859727) and the European Society for Immunodeficiencies (ESID) registry. The endpoints were chosen following feasibility assessment considering comparability and availability of data from both sources. Baseline characteristics between groups were balanced through inverse probability of treatment weighting. The leniolisib-treated group included 37 participants, with 62 and 49 participants in the control group for the respiratory tract infections and serum IgM analyses, respectively. Significant reductions in the annual rate of respiratory tract infections (rate ratio: 0.34; 95% confidence interval [CI]: 0.19, 0.59) and serum IgM levels (treatment effect: -1.09 g/L; 95% CI: -1.78, -0.39, P = 0.002) were observed in leniolisib-treated individuals versus standard of care. The results were consistent across all sensitivity analyses, regardless of censoring, baseline infection rate definition, missing data handling, or covariate selection. These novel data provide an extended comparison of leniolisib treatment versus standard of care, highlighting the potential for leniolisib to deliver long-term benefits by restoring immune system function and reducing infection rate, potentially reducing complications and treatment burden.
Collapse
Affiliation(s)
- John Whalen
- Pharming Group N.V., Leiden, The Netherlands
| | - Anita Chandra
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Sven Kracker
- Université Paris Cité, Imagine Institute, Laboratory of Human Lymphohematopoiesis, INSERM UMR 1163, F-7015, Paris, France
| | - Stephan Ehl
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Markus G Seidel
- Division of Pediatric Hematology Oncology, Department of Pediatrics and Adolescent Medicine, Medical University of Graz, Austria
| | | | | | | | | | | | | | - Maria Elena Maccari
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
4
|
Fekrvand S, Abolhassani H, Esfahani ZH, Fard NNG, Amiri M, Salehi H, Almasi-Hashiani A, Saeedi-Boroujeni A, Fathi N, Mohtashami M, Razavi A, Heidari A, Azizi G, Khanmohammadi S, Ahangarzadeh M, Saleki K, Hassanpour G, Rezaei N, Yazdani R. Cancer Trends in Inborn Errors of Immunity: A Systematic Review and Meta-Analysis. J Clin Immunol 2024; 45:34. [PMID: 39466473 DOI: 10.1007/s10875-024-01810-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 09/16/2024] [Indexed: 10/30/2024]
Abstract
BACKGROUND Patients with inborn errors of immunity (IEI) are susceptible to developing cancer due to defects in the immune system. The prevalence of cancer is higher in IEI patients compared to the immunocompetent population and cancers are considered as an important and common cause of death in IEI patients. OBJECTIVES To systematically review demographic, genetic and cancer-related data of IEI patients with a history of malignancy. Moreover, we performed a meta-analysis aiming to determine the frequency of cancer in patients with different types of IEI. METHODS We conducted electronic searches on Embase, Web of Science, PubMed, and Scopus (until September 2023) introducing terms related to IEI and cancer. Studies with human subjects with confirmed IEI who had developed at least one malignancy during their lifetime were included. RESULTS A total number of 4607 IEI patients with a cancer history were included in the present study. Common variable immunodeficiency (CVID) had the highest number of reported cases (1284 cases), mainly due to a higher relative proportion of patients with predominantly antibody deficiencies (PAD) and their increased life expectancy contributing to the higher detection and reporting of cancers among these patients. The most common malignancy was hematologic/blood cancers (3026 cases, mainly diffuse large B cell lymphoma). A total number of 1173 cases (55.6%) succumbed to cancer, with the highest rate of bone marrow failure (64.9%). Among the patients with monogenic defects in IEI-associated genes, the majority of cases had ATM deficiency (926 cases), but the highest cancer frequency rate belonged to NBS1 deficiency (50.5%). 1928 cases out of total 4607 eligible cases had detailed data to allow further statistical analysis that revealed BRCA2 deficiency had the earliest cancer development (~ 38 months), lowest cure frequency, and highest fatality rate (85%), while ATM deficiency had the lowest cure frequency and highest fatality rate (72%) among total cases reviewed with exclusion of Fanconi anemia. CONCLUSION The overall reported cancer frequency in the cases reviewed with and without exclusion of Fanconi anemia was 11.1% (95% confidence interval: 9.8-12.5%) and 12.0% (95% confidence interval: 10.6-13.5%), respectively. Our study revealed that the incidence of cancer is significantly dependent on the molecular and pathway defects in IEI patients, and individualized early screening and appropriate treatment, might improve the prognosis of these patients.
Collapse
Affiliation(s)
- Saba Fekrvand
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Division of Clinical Immunology, Department of Biosciences and Nutrition, Karolinska Institutet, Karolinska University Hospital, Stockholm, Huddinge, Sweden
| | - Zahra Hamidi Esfahani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Najmeh Nameh Goshay Fard
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahboube Amiri
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Helia Salehi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Almasi-Hashiani
- Department of Epidemiology, School of Health, Arak University of Medical Sciences, Arak, Iran
| | - Ali Saeedi-Boroujeni
- Department of Basic Medical Sciences, Faculty of Medicine, Abadan University of Medical Sciences, Abadan, Iran
| | - Nazanin Fathi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Maryam Mohtashami
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Azadehsadat Razavi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Arash Heidari
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Gholamreza Azizi
- Noncommunicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Shaghayegh Khanmohammadi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Milad Ahangarzadeh
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Kiarash Saleki
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- Department of E-Learning, Virtual School of Medical Education and Management, Shahid Beheshti University of MedicalSciences (SBMU), Tehran, Iran
- USERN Office, Babol University of Medical Sciences, Babol, Iran
| | - Gholamreza Hassanpour
- Center for Research of Endemic Parasites of Iran, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
5
|
Lougaris V, Piane FL, Cancrini C, Conti F, Tommasini A, Badolato R, Trizzino A, Zecca M, De Rosa A, Barzaghi F, Pignata C. Activated phosphoinositde 3-kinase (PI3Kδ) syndrome: an Italian point of view on diagnosis and new advances in treatment. Ital J Pediatr 2024; 50:103. [PMID: 38769568 PMCID: PMC11106885 DOI: 10.1186/s13052-024-01662-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/28/2024] [Indexed: 05/22/2024] Open
Abstract
Activated phosphoinositide 3-kinase (PI3Kδ) Syndrome (APDS) is an inborn error of immunity (IEI) with a variable clinical presentation, characterized by infection susceptibility and immune dysregulation that may overlaps with other Primary Immune Regulatory Disorders (PIRDs). The rarity of the disease, its recent discovery, and the multiform /multifaced clinical presentation make it difficult to establish a correct diagnosis, especially at an early stage. As a result, the true prevalence of the pathology remains unknown. There is no treatment protocol for APDS, and drug therapy is primarily focused on treating symptoms. The most common therapies include immunoglobulin replacement therapy, antimicrobial prophylaxis, and immunosuppressive drugs. Hematopoietic stem cell transplantation (HSCT) has been used in some cases, but the risk-benefit balance remains unclear. With the upcoming introduction of specific medications, such as selective inhibitors for PI3Kδ, clinicians are shifting their attention towards target therapy.This review provides a comprehensive overview of APDS with a focus on diagnostic and treatments procedures available. This review may be useful in implementing strategies for a more efficient patients' management and therapeutic interventions.Main Text.
Collapse
Affiliation(s)
- Vassilios Lougaris
- Pediatrics Clinic, Department of Clinical and Experimental Sciences, University of Brescia, Azienda Socio Sanitaria Territoriale Spedali Civili di Brescia, Brescia, Italy
| | | | - Caterina Cancrini
- Department of System Medicine, Pediatric Chair, University of Tor Vergata, Rome, Italy
- Research and Clinical Unit of Primary Immunodeficiencies, IRCCS Bambin Gesù Children Hospital, Rome, Italy
| | - Francesca Conti
- Pediatric Unit, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| | - Alberto Tommasini
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, 34137, Italy
- Department of Pediatrics, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, 34137, Italy
| | - Raffaele Badolato
- Department of Pediatrics, Università di Brescia, Istituto di Medicina Molecolare Angelo Nocivelli", ASST Spedali Civili, Brescia, Italy
| | - Antonino Trizzino
- Department of Pediatric Hematology and Oncology, ARNAS Ospedali Civico Di Cristina Benfratelli Hospital, Palermo, Italy
| | - Marco Zecca
- Paediatric Haematology and Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Antonio De Rosa
- Department of Translational Medical Sciences, Università degli Studi di Napoli "Federico II", Naples, 80125, Italy
| | - Federica Barzaghi
- San Raffaele Telethon Institute for Gene Therapy (Sr-Tiget), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, Italy
| | - Claudio Pignata
- Department of Translational Medical Sciences, Università degli Studi di Napoli "Federico II", Naples, 80125, Italy.
| |
Collapse
|
6
|
Hanson J, Bonnen PE. Systematic review of mortality and survival rates for APDS. Clin Exp Med 2024; 24:17. [PMID: 38280023 PMCID: PMC10821986 DOI: 10.1007/s10238-023-01259-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/14/2023] [Indexed: 01/29/2024]
Abstract
Activated phosphoinositide 3-kinase delta syndrome (APDS) is a rare genetic disorder that presents clinically as a primary immunodeficiency. Clinical presentation of APDS includes severe, recurrent infections, lymphoproliferation, lymphoma, and other cancers, autoimmunity and enteropathy. Autosomal dominant variants in two independent genes have been demonstrated to cause APDS. Pathogenic variants in PIK3CD and PIK3R1, both of which encode components of the PI3-kinase, have been identified in subjects with APDS. APDS1 is caused by gain of function variants in the PIK3CD gene, while loss of function variants in PIK3R1 have been reported to cause APDS2. We conducted a review of the medical literature and identified 256 individuals who had a molecular diagnosis for APDS as well as age at last report; 193 individuals with APDS1 and 63 with APDS2. Despite available treatments, survival for individuals with APDS appears to be shortened from the average lifespan. A Kaplan-Meier survival analysis for APDS showed the conditional survival rate at the age of 20 years was 87%, age of 30 years was 74%, and ages of 40 and 50 years were 68%. Review of causes of death showed that the most common cause of death was lymphoma, followed by complications from HSCT. The overall mortality rate for HSCT in APDS1 and APDS2 cases was 15.6%, while the mortality rate for lymphoma was 47.6%. This survival and mortality data illustrate that new treatments are needed to mitigate the risk of death from lymphoma and other cancers as well as infection. These analyses based on real-world evidence gathered from the medical literature comprise the largest study of survival and mortality for APDS to date.
Collapse
Affiliation(s)
- Jennifer Hanson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Penelope E Bonnen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
7
|
Rao VK, Kulm E, Šedivá A, Plebani A, Schuetz C, Shcherbina A, Dalm VA, Trizzino A, Zharankova Y, Webster S, Orpia A, Körholz J, Lougaris V, Rodina Y, Radford K, Bradt J, Relan A, Holland SM, Lenardo MJ, Uzel G. Interim analysis: Open-label extension study of leniolisib for patients with APDS. J Allergy Clin Immunol 2024; 153:265-274.e9. [PMID: 37797893 PMCID: PMC10841669 DOI: 10.1016/j.jaci.2023.09.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 09/01/2023] [Accepted: 09/22/2023] [Indexed: 10/07/2023]
Abstract
BACKGROUND Activated phosphoinositide 3-kinase delta (PI3Kδ) syndrome (APDS; or p110δ-activating mutations causing senescent T cells, lymphadenopathy, and immunodeficiency) is an inborn error of immunity caused by PI3Kδ hyperactivity. Resultant immune deficiency and dysregulation lead to recurrent sinopulmonary infections, herpes viremia, autoimmunity, and lymphoproliferation. OBJECTIVE Leniolisib, a selective PI3Kδ inhibitor, demonstrated favorable impact on immune cell subsets and lymphoproliferation over placebo in patients with APDS over 12 weeks. Here, we report results from an interim analysis of an ongoing open-label, single-arm extension study. METHODS Patients with APDS aged 12 years or older who completed NCT02435173 or had previous exposure to PI3Kδ inhibitors were eligible. The primary end point was safety, assessed via investigator-reported adverse events (AEs) and clinical/laboratory evaluations. Secondary and exploratory end points included health-related quality of life, inflammatory markers, frequency of infections, and lymphoproliferation. RESULTS Between September 2016 and August 2021, 37 patients (median age, 20 years; 42.3% female) were enrolled. Of these 37 patients, 26, 9, and 2 patients had previously received leniolisib, placebo, or other PI3Kδ inhibitors, respectively. At the data cutoff date (December 13, 2021), median leniolisib exposure was 102 weeks. Overall, 32 patients (87%) experienced an AE. Most AEs were grades 1 to 3; none were grade 4. One patient with severe baseline comorbidities experienced a grade 5 AE, determined as unrelated to leniolisib treatment. While on leniolisib, patients had reduced annualized infection rates (P = .004), and reductions in immunoglobulin replacement therapy occurred in 10 of 27 patients. Other observations include reduced lymphadenopathy and splenomegaly, improved cytopenias, and normalized lymphocyte subsets. CONCLUSIONS Leniolisib was well tolerated and maintained durable outcomes with up to 5 years of exposure in 37 patients with APDS. CLINICALTRIALS gov identifier: NCT02859727.
Collapse
Affiliation(s)
- V Koneti Rao
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md.
| | - Elaine Kulm
- Clinical Research Directorate, Frederick National Laboratory for Cancer Research, Bethesda, Md
| | - Anna Šedivá
- Department of Immunology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Alessandro Plebani
- Pediatrics Clinic, Department of Clinical and Experimental Sciences, University of Brescia, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Catharina Schuetz
- Department of Pediatric Immunology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Anna Shcherbina
- Department of Immunology, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Virgil A Dalm
- Division of Allergy & Clinical Immunology, Department of Internal Medicine, Rotterdam, The Netherlands; Department of Immunology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Antonino Trizzino
- Department of Pediatric Hematology and Oncology, ARNAS Civico Di Cristina Benfratelli Hospital, Palermo, Italy
| | - Yulia Zharankova
- Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| | - Sharon Webster
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Alanvin Orpia
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Julia Körholz
- Department of Pediatric Immunology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Vassilios Lougaris
- Pediatrics Clinic, Department of Clinical and Experimental Sciences, University of Brescia, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Yulia Rodina
- Department of Immunology, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Kath Radford
- Novartis Pharmaceuticals UK Ltd, London, United Kingdom
| | | | | | - Steven M Holland
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Michael J Lenardo
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Gulbu Uzel
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| |
Collapse
|
8
|
Abad MR, Alerany C, Alsina L, Granados EL, Neth O, Poveda JL, Rivière JG, Rodríguez-Gallego C, Tutein Nolthenius JB, Figueiredo R, Labazuy SS, Gil A. Determining value in the treatment of activated PI3Kδ syndrome in Spain: a multicriteria decision analysis from the perspective of key stakeholders. GLOBAL & REGIONAL HEALTH TECHNOLOGY ASSESSMENT 2024; 11:124-130. [PMID: 38784663 PMCID: PMC11113520 DOI: 10.33393/grhta.2024.3041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024] Open
Abstract
Introduction Activated phosphoinositide 3-kinase (PI3K)δ syndrome (APDS) is an ultra-rare inborn error of immunity (IEI) combining immunodeficiency and immune dysregulation. This study determined what represents value in APDS in Spain from a multidisciplinary perspective applying multicriteria decision analysis (MCDA) methodology. Methods A multidisciplinary committee of nine experts scored the evidence matrix. A specific framework for orphan drug evaluation in Spain and the weights assigned by a panel of 98 evaluators and decision-makers was used. Re-evaluation of scores was performed. Results APDS is considered a very severe disease with important unmet needs, including misdiagnosis and diagnostic delay. Current management is limited to treatment of symptoms with off-label use of therapies supported by limited evidence. Therapeutic benefit is partial, resulting in limited disease control. Haematopoietic stem cell transplantation (HSCT), the only potential curative alternative, is restricted to a reduced patient population and without evidence of long-term efficacy or safety. All options present a limited safety profile. Data on patients' quality of life are lacking. APDS is associated with high pharmacological, medical and indirect costs. Conclusions APDS is considered a severe disease, with limited understanding by key stakeholders of how treatment success is assessed in clinical practice, the serious impact that has on patients and the associated high economic burden. This study brings to light how MCDA methodology could represent a useful tool to complement current clinical and decision-making methods used by APDS experts and evaluators.
Collapse
Affiliation(s)
| | - Carmen Alerany
- Pharmacy Department, H.U. Vall d’ Hebron, Barcelona - Spain
| | - Laia Alsina
- Clinical Immunology and Primary Immunodeficiencies Unit, Pediatric Allergy and Clinical Immunology Department, H. Sant Joan de Déu. Institut de Recerca Sant Joan de Déu. Universitat de Barcelona, Barcelona - Spain
| | | | - Olaf Neth
- Paediatric Infectious Diseases, Rheumatology and Immunology Unit H.U. Virgen del Rocío, Seville - Spain
| | | | - Jacques G. Rivière
- Paediatric Infectious Diseases and Immunodeficiencies Unit, H.U. Vall d’Hebron University Hospital, Barcelona - Spain
- Infection and Immunity in Pediatric Patients Research Group, Vall d’Hebron Institut de Recerca (VHIR), H.U. Vall d’Hebron, Barcelona - Spain
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Medical University of South Carolina, Barcelona - Spain
| | - Carlos Rodríguez-Gallego
- Department of Immunology, H.U. of Gran Canaria Dr. Negrin, Las Palmas de Gran Canaria, Gran Canaria - Spain
| | | | | | | | - Alicia Gil
- Omakase Consulting S.L., Barcelona - Spain
| |
Collapse
|
9
|
Tessarin G, Baronio M, Lougaris V. Monogenic forms of common variable immunodeficiency and implications on target therapeutic approaches. Curr Opin Allergy Clin Immunol 2023; 23:461-466. [PMID: 37767915 PMCID: PMC10621638 DOI: 10.1097/aci.0000000000000947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
PURPOSE OF REVIEW Common variable immunodeficiency (CVID) is the most common symptomatic inborn error of immunity. The disorder is characterized by variable clinical and immunological manifestations, and, in a small minority of patients, a monogenic cause may be identified. In this review, we focalized on three different monogenic forms of CVID-like disease. RECENT FINDINGS Activated phosphoinositide 3-kinase delta syndrome (APDS) is a rare disorder characterized by hyperactivated class I phosphatidylinositol-3 kinase (PI3K) pathway. Affected patients present with respiratory infectious episodes, impaired viral clearance and lymphoproliferation. Recently, a direct PI3K inhibitor has been approved and it showed encouraging results both in controlling clinical and immunological manifestations of the disease. On the other hand, patients with defects in CTLA-4 or LRBA gene present with life-threatening immune dysregulation, autoimmunity and lymphocytic infiltration of multiple organs. Abatacept, a soluble cytotoxic T lymphocyte antigen 4 (CTLA-4) fusion protein that acts as a costimulation modulator, has been widely implemented for affected patients with good results as bridge treatment. SUMMARY Understanding the biological basis of CVID is important not only for enriching our knowledge of the human immune system, but also for setting the basis for potential targeted treatments in this disorder.
Collapse
Affiliation(s)
- Giulio Tessarin
- Pediatrics Clinic and Institute for Molecular Medicine 'A. Nocivelli', Department of Clinical and Experimental Sciences, University of Brescia and ASST Spedali Civili of Brescia, Brescia, Italy
| | | | | |
Collapse
|
10
|
Moriya K, Mitsui-Sekinaka K, Sekinaka Y, Endo A, Kanegane H, Morio T, Imai K, Nonoyama S. Clinical practice guideline for activated phosphatidyl inositol 3-kinase-delta syndrome in Japan. Immunol Med 2023; 46:153-157. [PMID: 37178059 DOI: 10.1080/25785826.2023.2210366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Activated phosphatidyl inositol 3-kinase-delta syndrome (APDS) due to gain-of-function variant in the class IA PI3K catalytic subunit p110δ (responsible gene: PIK3CD) was described in 2013. The disease is characterized by recurrent airway infections and bronchiectasis. It is associated with hyper-IgM syndrome due to the defect of immunoglobulin class switch recombination and decreased CD27-positive memory B cells. Patients also suffered from immune dysregulations, such as lymphadenopathy, autoimmune cytopenia or enteropathy. T-cell dysfunction due to increased senescence is associated with a decrease in CD4-positive T lymphocytes and CD45RA-positive naive T lymphocytes, along with increased susceptibility to Epstein-Barr virus/cytomegalovirus infections. In 2014, loss-of-function (LOF) mutation of p85α (responsible gene: PIK3R1), a regulatory subunit of p110δ, was identified as a causative gene, followed in 2016 by the identification of the LOF mutation of PTEN, which dephosphorylates PIP3, leading to the differentiation of APDS1 (PIK3CD-GOF), APDS2 (PIK3R1-LOF) and APDS-L (PTEN-LOF). Since the pathophysiology of patients with APDS varies with a wide range of severity, it is crucial that patients receive appropriate treatment and management. Our research group created a disease outline and a diagnostic flow chart and summarized clinical information such as the severity classification of APDS and treatment options.
Collapse
Affiliation(s)
- Kunihiko Moriya
- Department of Pediatrics, National Defense Medical College, Saitama, Japan
| | | | - Yujin Sekinaka
- Department of Pediatrics, National Defense Medical College, Saitama, Japan
| | - Akifumi Endo
- Clinical Research Center, Tokyo Medical and Dental University Hospital, Tokyo, Japan
| | - Hirokazu Kanegane
- Department of Child Health and Development, Graduate School of Medicine, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Graduate School of Medicine, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Kohsuke Imai
- Department of Pediatrics, National Defense Medical College, Saitama, Japan
| | - Shigeaki Nonoyama
- Department of Pediatrics, National Defense Medical College, Saitama, Japan
| |
Collapse
|
11
|
Maccari ME, Wolkewitz M, Schwab C, Lorenzini T, Leiding JW, Aladjdi N, Abolhassani H, Abou-Chahla W, Aiuti A, Azarnoush S, Baris S, Barlogis V, Barzaghi F, Baumann U, Bloomfield M, Bohynikova N, Bodet D, Boutboul D, Bucciol G, Buckland MS, Burns SO, Cancrini C, Cathébras P, Cavazzana M, Cheminant M, Chinello M, Ciznar P, Coulter TI, D'Aveni M, Ekwall O, Eric Z, Eren E, Fasth A, Frange P, Fournier B, Garcia-Prat M, Gardembas M, Geier C, Ghosh S, Goda V, Hammarström L, Hauck F, Heeg M, Heropolitanska-Pliszka E, Hilfanova A, Jolles S, Karakoc-Aydiner E, Kindle GR, Kiykim A, Klemann C, Koletsi P, Koltan S, Kondratenko I, Körholz J, Krüger R, Jeziorski E, Levy R, Le Guenno G, Lefevre G, Lougaris V, Marzollo A, Mahlaoui N, Malphettes M, Meinhardt A, Merlin E, Meyts I, Milota T, Moreira F, Moshous D, Mukhina A, Neth O, Neubert J, Neven B, Nieters A, Nove-Josserand R, Oksenhendler E, Ozen A, Olbrich P, Perlat A, Pac M, Schmid JP, Pacillo L, Parra-Martinez A, Paschenko O, Pellier I, Sefer AP, Plebani A, Plantaz D, Prader S, Raffray L, Ritterbusch H, Riviere JG, Rivalta B, Rusch S, Sakovich I, Savic S, Scheible R, Schleinitz N, Schuetz C, Schulz A, et alMaccari ME, Wolkewitz M, Schwab C, Lorenzini T, Leiding JW, Aladjdi N, Abolhassani H, Abou-Chahla W, Aiuti A, Azarnoush S, Baris S, Barlogis V, Barzaghi F, Baumann U, Bloomfield M, Bohynikova N, Bodet D, Boutboul D, Bucciol G, Buckland MS, Burns SO, Cancrini C, Cathébras P, Cavazzana M, Cheminant M, Chinello M, Ciznar P, Coulter TI, D'Aveni M, Ekwall O, Eric Z, Eren E, Fasth A, Frange P, Fournier B, Garcia-Prat M, Gardembas M, Geier C, Ghosh S, Goda V, Hammarström L, Hauck F, Heeg M, Heropolitanska-Pliszka E, Hilfanova A, Jolles S, Karakoc-Aydiner E, Kindle GR, Kiykim A, Klemann C, Koletsi P, Koltan S, Kondratenko I, Körholz J, Krüger R, Jeziorski E, Levy R, Le Guenno G, Lefevre G, Lougaris V, Marzollo A, Mahlaoui N, Malphettes M, Meinhardt A, Merlin E, Meyts I, Milota T, Moreira F, Moshous D, Mukhina A, Neth O, Neubert J, Neven B, Nieters A, Nove-Josserand R, Oksenhendler E, Ozen A, Olbrich P, Perlat A, Pac M, Schmid JP, Pacillo L, Parra-Martinez A, Paschenko O, Pellier I, Sefer AP, Plebani A, Plantaz D, Prader S, Raffray L, Ritterbusch H, Riviere JG, Rivalta B, Rusch S, Sakovich I, Savic S, Scheible R, Schleinitz N, Schuetz C, Schulz A, Sediva A, Semeraro M, Sharapova SO, Shcherbina A, Slatter MA, Sogkas G, Soler-Palacin P, Speckmann C, Stephan JL, Suarez F, Tommasini A, Trück J, Uhlmann A, van Aerde KJ, van Montfrans J, von Bernuth H, Warnatz K, Williams T, Worth AJJ, Ip W, Picard C, Catherinot E, Nademi Z, Grimbacher B, Forbes Satter LR, Kracker S, Chandra A, Condliffe AM, Ehl S. Activated phosphoinositide 3-kinase δ syndrome: Update from the ESID Registry and comparison with other autoimmune-lymphoproliferative inborn errors of immunity. J Allergy Clin Immunol 2023; 152:984-996.e10. [PMID: 37390899 DOI: 10.1016/j.jaci.2023.06.015] [Show More Authors] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/30/2023] [Accepted: 06/08/2023] [Indexed: 07/02/2023]
Abstract
BACKGROUND Activated phosphoinositide-3-kinase δ syndrome (APDS) is an inborn error of immunity (IEI) with infection susceptibility and immune dysregulation, clinically overlapping with other conditions. Management depends on disease evolution, but predictors of severe disease are lacking. OBJECTIVES This study sought to report the extended spectrum of disease manifestations in APDS1 versus APDS2; compare these to CTLA4 deficiency, NFKB1 deficiency, and STAT3 gain-of-function (GOF) disease; and identify predictors of severity in APDS. METHODS Data was collected from the ESID (European Society for Immunodeficiencies)-APDS registry and was compared with published cohorts of the other IEIs. RESULTS The analysis of 170 patients with APDS outlines high penetrance and early onset of APDS compared to the other IEIs. The large clinical heterogeneity even in individuals with the same PIK3CD variant E1021K illustrates how poorly the genotype predicts the disease phenotype and course. The high clinical overlap between APDS and the other investigated IEIs suggests relevant pathophysiological convergence of the affected pathways. Preferentially affected organ systems indicate specific pathophysiology: bronchiectasis is typical of APDS1; interstitial lung disease and enteropathy are more common in STAT3 GOF and CTLA4 deficiency. Endocrinopathies are most frequent in STAT3 GOF, but growth impairment is also common, particularly in APDS2. Early clinical presentation is a risk factor for severe disease in APDS. CONCLUSIONS APDS illustrates how a single genetic variant can result in a diverse autoimmune-lymphoproliferative phenotype. Overlap with other IEIs is substantial. Some specific features distinguish APDS1 from APDS2. Early onset is a risk factor for severe disease course calling for specific treatment studies in younger patients.
Collapse
Affiliation(s)
- Maria Elena Maccari
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Martin Wolkewitz
- Institute of Medical Biometry and Statistics, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Charlotte Schwab
- Department of Pediatrics and Adolescent Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tiziana Lorenzini
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Pediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, University of Brescia and ASST-Spedali Civili of Brescia, Brescia, Italy
| | - Jennifer W Leiding
- Division of Allergy and Immunology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Nathalie Aladjdi
- Pediatric Haemato-Immunology, Clinical Investigation Center (CIC) 1401, Institut National de la Santé et de la Recherche Médicale (INSERM) Centre d'Investigation Clinique Pluridisciplinaire (CICP), Bordeaux University Hospital and Centre de Reference National des Cytopenies Auto-immunoes de l'Enfant (CEREVANCE), Bordeaux, France
| | - Hassan Abolhassani
- Division of Clinical Immunology, Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden; Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Wadih Abou-Chahla
- Department of Pediatric Hematology, Jeanne de Flandre Hospital, Centre Hospitalier Universitaire (CHU), Lille, France
| | - Alessandro Aiuti
- San Raffaele Telethon Institute for Gene Therapy (Sr-Tiget), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, Italy; Università Vita-Salute San Raffaele, Milan, Italy
| | - Saba Azarnoush
- Pediatric Hematology and Immunology Unit, Robert Debré Hospital, Paris, France
| | - Safa Baris
- Pediatric Allergy and Immunology, Faculty of Medicine, Marmara University, Istanbul, Turkey; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey
| | - Vincent Barlogis
- Pediatric Hematology, Immunology and Oncology, Aix-Marseille Université, Marseille, France
| | - Federica Barzaghi
- San Raffaele Telethon Institute for Gene Therapy (Sr-Tiget), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, Italy
| | - Ulrich Baumann
- Pediatric Pulmonology, Allergy, and Neonatology, Hannover Medical School, Hannover, Germany
| | - Marketa Bloomfield
- Department of Immunology, Motol University Hospital, Prague, Czech Republic; Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Nadezda Bohynikova
- Department of Immunology, Children's Memorial Health Institute, Warsaw, Poland
| | - Damien Bodet
- Department of Pediatric Hematology and Oncology, University Hospital of Caen, Caen, France
| | - David Boutboul
- Clinical Immunology Department, Hôpital Saint-Louis, Paris, France
| | - Giorgia Bucciol
- Departments of Pediatrics, University Hospitals Leuven, Leuven, Belgium; Microbiology, Immunology, and Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Matthew S Buckland
- Barts Health National Health Service Trust, London, United Kingdom; Molecular and Cellular Immunology Section, Immunity and Inflammation Department, Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Siobhan O Burns
- Institute of Immunity and Transplantation, London, United Kingdom; Department of Immunology, Royal Free London National Health Service Foundation Trust, London, United Kingdom
| | - Caterina Cancrini
- Department of System Medicine, Pediatric Chair, University of Tor Vergata, Rome, Italy; Research and Clinical Unit of Primary Immunodeficiencies, IRCCS Bambin Gesù Children Hospital, Rome, Italy
| | | | - Marina Cavazzana
- Imagine Institute, INSERM U1163, Institut Imagine, Université Paris Cité, Paris, France; Biotherapy Department, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP) Centre, Paris, France; Biotherapy Clinical Investigation Center Groupe Hospitalier Centre, AP-HP, INSERM, Paris, France
| | - Morgane Cheminant
- Imagine Institute, INSERM U1163, Institut Imagine, Université Paris Cité, Paris, France; Service d'Hématologie Adulte, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP) Centre, Paris, France
| | - Matteo Chinello
- Pediatric Hematology Oncology, Department of Mother and Child, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Peter Ciznar
- Pediatric Department, Comenius University Medical Faculty, Bratislava, Slovakia
| | - Tanya I Coulter
- Belfast Health and Social Care Trust, Ireland, United Kingdom
| | - Maud D'Aveni
- Department of Hematology, Nancy University Hospital, Université de Lorraine, Nancy, France; UMR 7365, Centre National de la Recherche Scientifique, Ingénierie Moléculaire et Physiopathologie Articulaire, Université de Lorraine, Nancy, France
| | - Olov Ekwall
- Department of Pediatrics, Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Rheumatology and Inflammation Research, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Zelimir Eric
- University Clinical Centre of the Republic of Srpska, Republic of Srpska, Bosnia and Herzegovina
| | - Efrem Eren
- University Hospital Southampton, Southampton, United Kingdom
| | - Anders Fasth
- Department of Pediatrics, Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Medicine, Queen Silvia Children's Hospital, Gothenburg, Sweden
| | - Pierre Frange
- Unité de Recherche Propre 7328, Fédération pour l'Étude et évaluation des Thérapeutiques intra-UtérineS (FETUS), Institut Imagine, Université Paris Cité, Paris, France; Laboratory of Clinical Microbiology, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP) Centre, Paris, France
| | - Benjamin Fournier
- Pediatric Immunology-Hematology and Rheumatology Unit, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP) Centre, Paris, France
| | - Marina Garcia-Prat
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d'Hebron University Hospital, Barcelona, Spain
| | | | - Christoph Geier
- Department of Rheumatology and Clinical Immunology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sujal Ghosh
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine-University-University Hospital Düsseldorf, Düsseldorf, Germany
| | - Vera Goda
- Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - Lennart Hammarström
- Division of Clinical Immunology, Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden
| | - Fabian Hauck
- Division of Pediatric Immunology and Rheumatology, Department of Pediatrics, Dr von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Maximilian Heeg
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Anna Hilfanova
- Department of Pediatrics, Immunology, Infectious and Rare Diseases, European Medical School, International European University, Kyiv, Ukraine
| | - Stephen Jolles
- Immunodeficiency Centre for Wales, University Hospital of Wales, Cardiff, United Kingdom
| | - Elif Karakoc-Aydiner
- Pediatric Allergy and Immunology, Faculty of Medicine, Marmara University, Istanbul, Turkey; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey; Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Gerhard R Kindle
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Centre for Biobanking FREEZE, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ayca Kiykim
- Pediatric Allergy and Immunology, Istanbul University Cerrahpasa Medical Faculty, Istanbul, Turkey
| | - Christian Klemann
- Departments of Human Genetics, Hannover Medical School, Hannover, Germany; Department of Pediatric Immunology, Rheumatology, & Infectiology, Hospital for Children and Adolescents, Leipzig University, Leipzig, Germany
| | - Patra Koletsi
- Department of Pediatrics, Penteli Children's Hospital, Athens, Greece
| | - Sylwia Koltan
- Department of Paediatric Haematology and Oncology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland
| | - Irina Kondratenko
- Russian Clinical Childrens Hospital, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Julia Körholz
- Department of Pediatrics, Universitätsklinikum Carl-Gustav-Carus, Technische Universität Dresden, Dresden, Germany
| | - Renate Krüger
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Berlin Institute of Health, Berlin, Germany
| | - Eric Jeziorski
- General Pediatrics, CHU Montpellier, Montpellier, France; Pathogenesis and Control of Chronic Infections, INSERM, Université de Montpellier, Montpellier, France
| | - Romain Levy
- Pediatric Immunology-Hematology and Rheumatology Unit, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP) Centre, Paris, France
| | - Guillaume Le Guenno
- Department of Internal Medicine, Hôpital d'Estaing, Clermont-Ferrand, France
| | - Guillaume Lefevre
- CHU Lille, Institut d'Immunologie and University of Lille, Lille, France; Inserm U995, LIRIC-Lille Inflammation Research International Center, Lille, France
| | - Vassilios Lougaris
- Pediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, University of Brescia and ASST-Spedali Civili of Brescia, Brescia, Italy
| | - Antonio Marzollo
- Pediatric Hematology, Oncology, and Stem Cell Transplant Division, Padua University Hospital, Padua, Italy
| | - Nizar Mahlaoui
- Pediatric Immunology-Hematology and Rheumatology Unit, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP) Centre, Paris, France; Necker Enfants Malades University Hospital, AP-HP, French National Reference Center for Primary Immune Deficiencies (CEREDIH), Paris Université Cité, Paris, France
| | | | - Andrea Meinhardt
- Center for Pediatrics and Adolescent Medicine, Department of Pediatric Hematology and Oncology, Medical Center, University Hospital Giessen, Giessen, Germany
| | - Etienne Merlin
- Department of Pediatrics, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Isabelle Meyts
- Departments of Pediatrics, University Hospitals Leuven, Leuven, Belgium; Microbiology, Immunology, and Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Tomas Milota
- Department of Immunology, Motol University Hospital, Prague, Czech Republic; Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Fernando Moreira
- Department of Immunology, Royal Free London National Health Service Foundation Trust, London, United Kingdom
| | - Despina Moshous
- Laboratories of Dynamique du Génome et Système Immunitaire, Institut Imagine, Université Paris Cité, Paris, France; Pediatric Immunology-Hematology and Rheumatology Unit, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP) Centre, Paris, France; Necker Enfants Malades University Hospital, AP-HP, French National Reference Center for Primary Immune Deficiencies (CEREDIH), Paris Université Cité, Paris, France
| | - Anna Mukhina
- Department of Immunology, Research and Clinical Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Olaf Neth
- Paediatric Infectious Diseases, Rheumatology and Immunology Unit, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla, Universidad de Sevilla, Consejo Superior de Investigaciones Cientificas, Red de Investigación Translacional en Infectología Pediátrica, Seville, Spain
| | - Jennifer Neubert
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine-University-University Hospital Düsseldorf, Düsseldorf, Germany
| | - Benedicte Neven
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Institut Imagine, Université Paris Cité, Paris, France; Pediatric Immunology-Hematology and Rheumatology Unit, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP) Centre, Paris, France
| | - Alexandra Nieters
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Centre for Biobanking FREEZE, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | | | - Ahmet Ozen
- Pediatric Allergy and Immunology, Faculty of Medicine, Marmara University, Istanbul, Turkey; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey; Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Peter Olbrich
- Paediatric Infectious Diseases, Rheumatology and Immunology Unit, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla, Universidad de Sevilla, Consejo Superior de Investigaciones Cientificas, Red de Investigación Translacional en Infectología Pediátrica, Seville, Spain
| | | | - Malgorzata Pac
- Department of Immunology, Children's Memorial Health Institute, Warsaw, Poland
| | - Jana Pachlopnik Schmid
- Division of Immunology, University Children's Hospital Zurich, Zurich, Switzerland; Children's Research Center, Zurich, Switzerland
| | - Lucia Pacillo
- Department of System Medicine, Pediatric Chair, University of Tor Vergata, Rome, Italy; Research and Clinical Unit of Primary Immunodeficiencies, IRCCS Bambin Gesù Children Hospital, Rome, Italy
| | - Alba Parra-Martinez
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Olga Paschenko
- Russian Clinical Childrens Hospital, Pirogov Russian National Research Medical University, Moscow, Russia
| | | | - Asena Pinar Sefer
- Pediatric Allergy and Immunology, Faculty of Medicine, Marmara University, Istanbul, Turkey; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey
| | - Alessandro Plebani
- Pediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, University of Brescia and ASST-Spedali Civili of Brescia, Brescia, Italy
| | - Dominique Plantaz
- Unit of Pediatric Immuno Hemato and Oncology, University Hospital Centre of Grenoble, Grenoble, France
| | - Seraina Prader
- Division of Immunology, University Children's Hospital Zurich, Zurich, Switzerland; Children's Research Center, Zurich, Switzerland
| | - Loic Raffray
- Internal Medicine Department, Felix Guyon University Hospital, Saint Denis, La Réunion, France; Mixed Research Unit (UMR) "Infectious Processes in Tropical Island Environments", La Réunion, France
| | - Henrike Ritterbusch
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jacques G Riviere
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Beatrice Rivalta
- Department of System Medicine, Pediatric Chair, University of Tor Vergata, Rome, Italy; Research and Clinical Unit of Primary Immunodeficiencies, IRCCS Bambin Gesù Children Hospital, Rome, Italy
| | - Stephan Rusch
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Inga Sakovich
- Belarusian Research Center for Pediatric Oncology, Hematology, and Immunology, Minsk, Belarus
| | - Sinisa Savic
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom; Department of Clinical Immunology and Allergy, St James's University Hospital, Leeds, United Kingdom
| | - Raphael Scheible
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Institute for AI and Informatics in Medicine, University Hospital Rechts der Isar, Technical University Munich, Munich, Germany
| | - Nicolas Schleinitz
- Département de Médecine Interne, Timone Hospital, Assistance Publique-Hôpitaux de Marseille, Aix-Marseille Université, Marseille, France
| | - Catharina Schuetz
- Department of Pediatrics, Universitätsklinikum Carl-Gustav-Carus, Technische Universität Dresden, Dresden, Germany
| | - Ansgar Schulz
- Department of Pediatrics, University Medical Center Ulm, Ulm, Germany
| | - Anna Sediva
- Department of Immunology, Motol University Hospital, Prague, Czech Republic; Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Michaela Semeraro
- Clinical Investigation Center (CIC) 1419, Necker-Enfants Malades Hospital, AP-HP, Groupe Hospitalier Paris Centre, Paris, France; EA7323 Pediatric and Perinatal Drug Evaluation and Pharmacology Research Unit, Université Paris Cité, Paris, France
| | - Svetlana O Sharapova
- Belarusian Research Center for Pediatric Oncology, Hematology, and Immunology, Minsk, Belarus
| | - Anna Shcherbina
- Department of Immunology, Research and Clinical Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Mary A Slatter
- Great North Children' s Hospital, Newcastle upon Tyne, United Kingdom; Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Georgios Sogkas
- Rheumatology and Immunology, Hannover Medical School, Hannover, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Pere Soler-Palacin
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Carsten Speckmann
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jean-Louis Stephan
- Department of Pediatrics, North Hospital, University Hospital of Saint Etienne, Saint-Etienne, France; University Jean Monnet, Saint-Etienne, France
| | - Felipe Suarez
- Imagine Institute, INSERM U1163, Institut Imagine, Université Paris Cité, Paris, France; Service d'Hématologie Adulte, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP) Centre, Paris, France
| | - Alberto Tommasini
- Department of Medical Sciences, University of Trieste, Trieste, Italy; Institute for Maternal and Child Health, IRCCS Burlo Garofalo, Trieste, Italy
| | - Johannes Trück
- Division of Immunology, University Children's Hospital Zurich, Zurich, Switzerland; Children's Research Center, Zurich, Switzerland
| | - Annette Uhlmann
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Clinical Trials Unit, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Koen J van Aerde
- Amalia Children's Hospital, Radboudumc, Nijmegen, The Netherlands
| | - Joris van Montfrans
- Department of Pediatric Immunology and Infectious Diseases, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Horst von Bernuth
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Berlin Institute of Health, Berlin, Germany
| | - Klaus Warnatz
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Department of Rheumatology and Clinical Immunology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Department of Immunology, University Hospital Zurich, Zurich, Switzerland
| | - Tony Williams
- University Hospital Southampton, Southampton, United Kingdom
| | - Austen J J Worth
- Great Ormond Street Hospital for Children, University College London, London, United Kingdom
| | - Winnie Ip
- Great Ormond Street Institute of Child Health, London, United Kingdom; Great Ormond Street Hospital for Children, University College London, London, United Kingdom
| | - Capucine Picard
- Lymphocyte Activation and Susceptibility to EBV Infection, Institut Imagine, Université Paris Cité, Paris, France; Pediatric Immunology-Hematology and Rheumatology Unit, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP) Centre, Paris, France; Study Center for Primary Immunodeficiencies, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP) Centre, Paris, France; Necker Enfants Malades University Hospital, AP-HP, French National Reference Center for Primary Immune Deficiencies (CEREDIH), Paris Université Cité, Paris, France
| | | | - Zohreh Nademi
- Great North Children' s Hospital, Newcastle upon Tyne, United Kingdom; Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Bodo Grimbacher
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Department of Rheumatology and Clinical Immunology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; DZIF-German Center for Infection Research, Satellite Center Freiburg, Freiburg, Germany; CIBSS-Centre for Integrative Biological Signalling Studies, Albert-Ludwigs University, Freiburg, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Lisa R Forbes Satter
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, Tex; William T. Shearer Center for Human Immunobiology, Texas Children's Hospital, Houston, Tex
| | - Sven Kracker
- Human Lymphohematopoiesis, INSERM Unité Mixte de Recherche (UMR) 1163, Institut Imagine, Université Paris Cité, Paris, France; Université Paris Cité, Paris, France
| | - Anita Chandra
- Department of Clinical Immunology, Cambridge University Hospitals National Health Service Foundation Trust, Cambridge, United Kingdom; Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Alison M Condliffe
- Department of Infection, Immunity and Cardiovascular Diseases, University of Sheffield, Sheffield, United Kingdom
| | - Stephan Ehl
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
12
|
Jiang L, Hu X, Lin Q, Chen R, Shen Y, Zhu Y, Xu Q, Li X. Two cases of successful sirolimus treatment for patients with activated phosphoinositide 3-kinase δ syndrome 1. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2023; 19:86. [PMID: 37742016 PMCID: PMC10518115 DOI: 10.1186/s13223-023-00840-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 09/05/2023] [Indexed: 09/25/2023]
Abstract
BACKGROUND Activated phosphoinositide3-kinase (PI3K) δ syndrome 1 (APDS1) is a novel inborn errors of immunity (IEIs) caused by heterozygous gain of function mutations in PI3Kδ catalytic p110δ (PIK3CD). APDS1 has a spectrum of clinical manifestations. Recurrent respiratory infections, lymphoproliferation, hepatosplenomegaly, hyper-IgM syndrome and autoimmunity are the common symptoms of this disease. CASE PRESENTATION Patient 1 presented with recurrent respiratory infections, hepatosplenomegaly and hyper-IgM syndrome. Patient 2 developed early onset systemic lupus erythematosus (SLE)-like disease with resistant thrombocytopenia. c.3061 G > A and c.2314G > A variants in the PIK3CD gene were detected by whole exome sequencing in two patients respectively. c.2314G > A variant in PIK3CD gene of patient 2 is a newly report. After genetic diagnosis, two patients received sirolimus treatment and sirolimus alleviated clinical manifestations, including hepatosplenomegaly in patient 1 and thrombocytopenia in patient 2. CONCLUSION Genetics diagnosis should be considered in patients with complicated clinical manifestations with no or insufficient response to the conventional therapies. If whole exome sequencing suggests a variant in PIK3CD gene, sirolimus may relieve hepatosplenomegaly and resistant thrombocytopenia. This is the first report of c.2314G > A variant in PIK3CD gene.
Collapse
Affiliation(s)
- Lu Jiang
- Department of Nephrology and Immunology, Children's Hospital of Soochow University, No. 303, Jingde Road, Suzhou, 215003, Jiangsu, China
| | - Xiaohan Hu
- Institute of Pediatrics, Children's Hospital of Soochow University, Suzhou, 215003, China
| | - Qiang Lin
- Department of Nephrology and Immunology, Children's Hospital of Soochow University, No. 303, Jingde Road, Suzhou, 215003, Jiangsu, China
| | - Ruyue Chen
- Department of Nephrology and Immunology, Children's Hospital of Soochow University, No. 303, Jingde Road, Suzhou, 215003, Jiangsu, China
| | - Yunyan Shen
- Department of Nephrology and Immunology, Children's Hospital of Soochow University, No. 303, Jingde Road, Suzhou, 215003, Jiangsu, China
| | - Yun Zhu
- Department of Nephrology and Immunology, Children's Hospital of Soochow University, No. 303, Jingde Road, Suzhou, 215003, Jiangsu, China
| | - Qinying Xu
- Department of Nephrology and Immunology, Children's Hospital of Soochow University, No. 303, Jingde Road, Suzhou, 215003, Jiangsu, China
| | - Xiaozhong Li
- Department of Nephrology and Immunology, Children's Hospital of Soochow University, No. 303, Jingde Road, Suzhou, 215003, Jiangsu, China.
| |
Collapse
|
13
|
Toskov V, Ehl S. Autoimmune lymphoproliferative immunodeficiencies (ALPID) in childhood: breakdown of immune homeostasis and immune dysregulation. Mol Cell Pediatr 2023; 10:11. [PMID: 37702894 PMCID: PMC10499775 DOI: 10.1186/s40348-023-00167-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/05/2023] [Indexed: 09/14/2023] Open
Abstract
Many inborn errors of immunity (IEI) manifest with hallmarks of both immunodeficiency and immune dysregulation due to uncontrolled immune responses and impaired immune homeostasis. A subgroup of these disorders frequently presents with autoimmunity and lymphoproliferation (ALPID phenotype). After the initial description of the genetic basis of autoimmune lymphoproliferative syndrome (ALPS) more than 20 years ago, progress in genetics has helped to identify many more genetic conditions underlying this ALPID phenotype. Among these, the majority is caused by a group of autosomal-dominant conditions including CTLA-4 haploinsufficiency, STAT3 gain-of-function disease, activated PI3 kinase syndrome, and NF-κB1 haploinsufficiency. Even within a defined genetic condition, ALPID patients may present with staggering clinical heterogeneity, which makes diagnosis and management a challenge. In this review, we discuss the pathophysiology, clinical presentation, approaches to diagnosis, and conventional as well as targeted therapy of the most common ALPID conditions.
Collapse
Affiliation(s)
- Vasil Toskov
- Centre for Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Stephan Ehl
- Centre for Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
14
|
Vanselow S, Wahn V, Schuetz C. Activated PI3Kδ syndrome - reviewing challenges in diagnosis and treatment. Front Immunol 2023; 14:1208567. [PMID: 37600808 PMCID: PMC10432830 DOI: 10.3389/fimmu.2023.1208567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/04/2023] [Indexed: 08/22/2023] Open
Abstract
Activated PI3Kδ syndrome (APDS) is a rare inborn error of immunity (IEI) characterized primarily by frequent infections, lymphoproliferation and autoimmunity. Since its initial description in 2013, APDS has become part of the growing group of nearly 500 IEIs affecting various components of the immune system. The two subtypes of APDS - APDS1 and APDS2 - are caused by variants in the PIK3CD and PIK3R1 genes, respectively. Due to the rarity of the disease and the heterogeneous clinical picture, many patients are not diagnosed until years after symptom onset. Another challenge is the large number of PIK3CD and PIK3R1 variants whose functional significance for developing APDS is inconclusive. Treatment of APDS has so far been mostly symptom-oriented with immunoglobulin replacement therapy, immunosuppressive therapies and antibiotic or antiviral prophylaxes. Additionally, allogeneic stem cell transplantation as well as new targeted therapies are options targeting the root cause that may improve patients' quality of life and life expectancy. However, the clinical course of the disease is difficult to predict which complicates the choice of appropriate therapies. This review article discusses diagnostic procedures and current and future treatment options, and highlights the difficulties that physicians, patients and their caretakers face in managing this complex disease. This article is based on cohort studies, the German and US guidelines on the management of primary immunodeficiencies as well as on published experience with diagnosis and compiled treatment experience for APDS.
Collapse
Affiliation(s)
- Sven Vanselow
- Infill Healthcare Communication, Königswinter, Germany
| | - Volker Wahn
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine at Charité University Hospital Berlin, Berlin, Germany
| | - Catharina Schuetz
- Medical Faculty of The Technical University (TU) Dresden, Department of Pediatrics, University Hospital Carl Gustav Carus, Dresden, Germany
- University Center for Rare Diseases, University Hospital Carl Gustav Carus, Dresden, Germany
| |
Collapse
|
15
|
Sood AK, Francis O, Schworer SA, Johnson SM, Smith BD, Googe PB, Wu EY. ANCA vasculitis expands the spectrum of autoimmune manifestations of activated PI3 kinase δ syndrome. Front Pediatr 2023; 11:1179788. [PMID: 37274825 PMCID: PMC10235767 DOI: 10.3389/fped.2023.1179788] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 05/03/2023] [Indexed: 06/07/2023] Open
Abstract
Activated phosphoinositide 3-kinase δ syndrome (APDS) is a combined immunodeficiency with a broad clinical phenotype, including not only an increased propensity for sinopulmonary and herpesviruses infections but also immune dysregulation, such as benign lymphoproliferation, autoimmunity, and malignancy. Autoimmune complications are increasingly recognized as initial presenting features of immune dysregulation in inborn errors of immunity (IEIs), including APDS, so awareness of the spectrum of autoimmune features inherit within these disorders is critical. We present here a patient vignette to highlight cutaneous antineutrophil cytoplasmic antibody (ANCA) vasculitis as an underrecognized autoimmune manifestation of APDS. The genetic defects underlying APDS result in increased PI3Kδ signaling with aberrant downstream signaling pathways and loss of B- and/or T-cell immunologic tolerance mechanisms, which promote the development of autoimmunity. An understanding of the molecular pathways and mechanisms that lead to immune dysregulation in APDS has allowed for significant advancements in the development of precision-medicine therapeutics, such as leniolisib, to reduce the morbidity and mortality for these patients. Overall, this case and review highlight the need to maintain a high index of suspicion for IEIs, such as APDS, in those presenting with autoimmunity in combination with a dysregulated immune phenotype for prompt diagnosis and targeted intervention.
Collapse
Affiliation(s)
- Amika K. Sood
- Division of Rheumatology, Allergy, and Immunology, Department of Internal Medicine, The University of North Carolina, Chapel Hill, NC, United States
| | - Olivia Francis
- Division of Allergy/Immunology, Department of Pediatrics, The University of North Carolina, Chapel Hill, NC, United States
| | - Stephen A. Schworer
- Division of Rheumatology, Allergy, and Immunology, Department of Internal Medicine, The University of North Carolina, Chapel Hill, NC, United States
- Division of Allergy/Immunology, Department of Pediatrics, The University of North Carolina, Chapel Hill, NC, United States
| | - Steven M. Johnson
- Department of Pathology and Laboratory Medicine, The University of North Carolina, Chapel Hill, NC, United States
| | - Benjamin D. Smith
- Division of Pediatric Radiology, Department of Radiology, The University of North Carolina, Chapel Hill, NC, United States
| | - Paul B. Googe
- Dermatopathology, Department of Dermatology, The University of North Carolina, Chapel Hill, NC, United States
| | - Eveline Y. Wu
- Division of Allergy/Immunology, Department of Pediatrics, The University of North Carolina, Chapel Hill, NC, United States
- Division of Rheumatology, Department of Pediatrics, The University of North Carolina, Chapel Hill, NC, United States
| |
Collapse
|
16
|
Cortesi M, Soresina A, Dotta L, Gorio C, Cattalini M, Lougaris V, Porta F, Badolato R. Pathogenesis of Autoimmune Cytopenias in Inborn Errors of Immunity Revealing Novel Therapeutic Targets. Front Immunol 2022; 13:846660. [PMID: 35464467 PMCID: PMC9019165 DOI: 10.3389/fimmu.2022.846660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/21/2022] [Indexed: 12/02/2022] Open
Abstract
Autoimmune diseases are usually associated with environmental triggers and genetic predisposition. However, a few number of autoimmune diseases has a monogenic cause, mostly in children. These diseases may be the expression, isolated or associated with other symptoms, of an underlying inborn error of immunity (IEI). Autoimmune cytopenias (AICs), including immune thrombocytopenic purpura (ITP), autoimmune hemolytic anemia (AIHA), autoimmune neutropenia (AN), and Evans’ syndrome (ES) are common presentations of immunological diseases in the pediatric age, with at least 65% of cases of ES genetically determined. Autoimmune cytopenias in IEI have often a more severe, chronic, and relapsing course. Treatment refractoriness also characterizes autoimmune cytopenia with a monogenic cause, such as IEI. The mechanisms underlying autoimmune cytopenias in IEI include cellular or humoral autoimmunity, immune dysregulation in cases of hemophagocytosis or lymphoproliferation with or without splenic sequestration, bone marrow failure, myelodysplasia, or secondary myelosuppression. Genetic characterization of autoimmune cytopenias is of fundamental importance as an early diagnosis improves the outcome and allows the setting up of a targeted therapy, such as CTLA-4 IgG fusion protein (Abatacept), small molecule inhibitors (JAK-inhibitors), or gene therapy. Currently, gene therapy represents one of the most attractive targeted therapeutic approaches to treat selected inborn errors of immunity. Even in the absence of specific targeted therapies, however, whole exome genetic testing (WES) for children with chronic multilineage cytopenias should be considered as an early diagnostic tool for disease diagnosis and genetic counseling.
Collapse
Affiliation(s)
- Manuela Cortesi
- Paediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, ASST- Spedali Civili of Brescia, University of Brescia, Brescia, Italy
| | - Annarosa Soresina
- Paediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, ASST- Spedali Civili of Brescia, University of Brescia, Brescia, Italy
| | - Laura Dotta
- Paediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, ASST- Spedali Civili of Brescia, University of Brescia, Brescia, Italy
| | - Chiara Gorio
- Paediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, ASST- Spedali Civili of Brescia, University of Brescia, Brescia, Italy
| | - Marco Cattalini
- Paediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, ASST- Spedali Civili of Brescia, University of Brescia, Brescia, Italy
| | - Vassilios Lougaris
- Paediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, ASST- Spedali Civili of Brescia, University of Brescia, Brescia, Italy
| | - Fulvio Porta
- Paediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, ASST- Spedali Civili of Brescia, University of Brescia, Brescia, Italy
| | - Raffaele Badolato
- Paediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, ASST- Spedali Civili of Brescia, University of Brescia, Brescia, Italy
| |
Collapse
|
17
|
Qiu L, Wang Y, Tang W, Yang Q, Zeng T, Chen J, Chen X, Zhang L, Zhou L, Zhang Z, An Y, Tang X, Zhao X. Activated Phosphoinositide 3-Kinase δ Syndrome: a Large Pediatric Cohort from a Single Center in China. J Clin Immunol 2022; 42:837-850. [PMID: 35296988 DOI: 10.1007/s10875-022-01218-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 01/17/2022] [Indexed: 11/25/2022]
Abstract
PURPOSE Activated phosphoinositide 3-kinase δ syndrome (APDS) is a primary immunodeficiency first described in 2013, which is caused by gain-of-function mutations in PIK3CD or PIK3R1, and characterized by recurrent respiratory tract infections, lymphoproliferation, herpesvirus infection, autoimmunity, and enteropathy. We sought to review the clinical phenotypes, immunological characteristics, treatment, and prognosis of APDS in a large genetically defined Chinese pediatric cohort. METHODS Clinical records, radiology examinations, and laboratory investigations of 40 APDS patients were reviewed. Patients were contacted via phone call to follow up their current situation. RESULTS Sinopulmonary infections and lymphoproliferation were the most common complications in this cohort. Three (10.3%) and five (12.5%) patients suffered localized BCG-induced granulomatous inflammation and tuberculosis infection, respectively. Twenty-seven patients (67.5%) were affected by autoimmunity, while malignancy (7.5%) was relatively rare to be seen. Most patients in our cohort took a combined treatment of anti-infection prophylaxis, immunoglobulin replacement, and immunosuppressive therapy such as glucocorticoid or rapamycin administration. Twelve patients underwent hematopoietic stem cell transplantation (HSCT) and had a satisfying prognosis. CONCLUSION Clinical spectrum of APDS is heterogeneous. This cohort's high incidence of localized BCG-induced granulomatous inflammation and tuberculosis indicates Mycobacterial susceptibility in APDS patients. Rapamycin is effective in improving lymphoproliferation and cytopenia. HSCT is an option for those who have severe complications and poor response to other treatments.
Collapse
Affiliation(s)
- Luyao Qiu
- Department of Pediatric Research Institute; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- Department of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Yanping Wang
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Wenjing Tang
- Department of Pediatric Research Institute; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
- Department of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Qiuyun Yang
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Ting Zeng
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Junjie Chen
- Department of Pediatric Research Institute; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- Department of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Xuemei Chen
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Liang Zhang
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Lina Zhou
- Department of Pediatric Research Institute; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- Department of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Zhiyong Zhang
- Department of Pediatric Research Institute; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
- Department of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Yunfei An
- Department of Pediatric Research Institute; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
- Department of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Xuemei Tang
- Department of Pediatric Research Institute; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
- Department of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Xiaodong Zhao
- Department of Pediatric Research Institute; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China.
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
- Department of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
| |
Collapse
|
18
|
Successful treatment for diffuse large B-cell lymphoma in a Japanese adolescent with PIK3CD germ-line mutation: stem cell transplantation after reduced-intensity conditioning. Ann Hematol 2022; 101:1617-1619. [PMID: 35247100 DOI: 10.1007/s00277-022-04809-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 02/21/2022] [Indexed: 11/01/2022]
|
19
|
Cameron B, Zaheer SA, Dominguez-Villar M. Control of CD4+ T Cell Differentiation and Function by PI3K Isoforms. Curr Top Microbiol Immunol 2022; 436:197-216. [DOI: 10.1007/978-3-031-06566-8_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
20
|
Schworer SA, Francis O, Johnson SM, Smith BD, Gold SH, Smitherman AB, Wu EY. Autoimmune Cytopenia as an Early and Initial Presenting Manifestation in Activated PI3 Kinase Delta Syndrome: Case Report and Review. J Pediatr Hematol Oncol 2021; 43:281-287. [PMID: 34054047 PMCID: PMC8542580 DOI: 10.1097/mph.0000000000002214] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/27/2021] [Indexed: 11/25/2022]
Abstract
Activated PI3 kinase delta syndrome (APDS) is a combined immunodeficiency characterized by recurrent sinopulmonary infections, increased risk of herpesvirus infections, lymphoproliferation, autoimmunity, and increased risk of lymphoid malignancies. Gain-of-function mutations in PIK3CD and PIK3R1 result in increased phosphoinositide-3-kinase-delta activity which causes hyperactivation of lymphocytes and abnormal development and activation of T and B cells. Cytopenias are the most common autoimmune process occurring in patients with APDS and typically occur as a later manifestation of the disease. Here we present a female patient with an early autoimmune hemolytic anemia, hepatosplenomegaly, and frequent infections presenting in infancy, followed by development of significant lymphadenopathy before her diagnosis with APDS type 1. She had significant improvement in her infectious history with immunoglobulin replacement, and control of autoimmune hemolytic anemia with initiation of sirolimus after her diagnosis with APDS type 1. We utilize this case to review the literature on APDS and present the novel finding of early-onset autoimmune disease in the setting of APDS. Autoimmune cytopenias are seen in many primary immunodeficiencies, and workup of autoimmune cytopenias in young patients should include evaluation for underlying immune disorder.
Collapse
Affiliation(s)
- Stephen A. Schworer
- Division of Allergy/Immunology, Department of Pediatrics, The University of North Carolina, Chapel Hill, NC
| | - Olivia Francis
- Division of Allergy/Immunology, Department of Pediatrics, The University of North Carolina, Chapel Hill, NC
| | - Steven M. Johnson
- Department of Pathology and Laboratory Medicine, The University of North Carolina, Chapel Hill, NC
| | - Benjamin D. Smith
- Division of Pediatric Radiology, Department of Radiology, The University of North Carolina, Chapel Hill, NC
| | - Stuart H. Gold
- Division of Hematology/Oncology, Department of Pediatrics, The University of North Carolina, Chapel Hill, NC
- The Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, NC
| | - Andrew B. Smitherman
- Division of Hematology/Oncology, Department of Pediatrics, The University of North Carolina, Chapel Hill, NC
- The Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, NC
| | - Eveline Y. Wu
- Division of Allergy/Immunology, Department of Pediatrics, The University of North Carolina, Chapel Hill, NC
- Division of Rheumatology, Department of Pediatrics, The University of North Carolina, Chapel Hill, NC
| |
Collapse
|
21
|
Seth N, Tuano KS, Chinen J. Inborn errors of immunity: Recent progress. J Allergy Clin Immunol 2021; 148:1442-1450. [PMID: 34688776 DOI: 10.1016/j.jaci.2021.10.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/16/2021] [Accepted: 10/18/2021] [Indexed: 10/20/2022]
Abstract
Recent advances in the field of inborn errors of immunity (IEIs) have been wide in scope, including progress in mechanisms of disease, diagnosis, and management. New gene defects affecting the immune response continue to be reported, as many as 26 in the year 2020. It was noted that the presentation of IEIs might not include recurrent infections in 9% of cases, and that current diagnostic methods can identify molecular causes in 92% of patients with severe combined immunodeficiency. Progress in immunopathogenesis explained mechanisms leading to symptoms of autosomal-recessive hyper-IgE syndrome. There was an emphasis on research in primary antibody deficiencies. The benefit of antibiotic prophylaxis to reduce the frequency of infections was demonstrated in these patients. The regimen of rituximab and azathioprine or mycophenolate was proven effective for chronic granulocytic interstitial pneumonia. The efficacy and adverse events of hematopoietic stem cell transplant in different IEI conditions were reported, as well as different strategies to improve outcomes, supporting its use in immunodeficiency and immunodysregulatory syndromes. The recent pandemic of coronavirus disease 2019 affected patients with IEIs, in particular those with deficiency in the interferon-mediated activation of the immune response. Initial data suggest that coronavirus disease 2019 vaccines might elicit anti-coronavirus disease 2019-neutralizing antibody responses in some patients with IEI conditions.
Collapse
Affiliation(s)
- Neha Seth
- Division of Immunology, Allergy and Retrovirology, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, The Woodlands, Tex
| | - Karen S Tuano
- Division of Immunology, Allergy and Retrovirology, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, The Woodlands, Tex
| | - Javier Chinen
- Division of Immunology, Allergy and Retrovirology, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, The Woodlands, Tex.
| |
Collapse
|
22
|
Clinical, Immunological, and Genetic Features in Patients with Activated PI3Kδ Syndrome (APDS): a Systematic Review. Clin Rev Allergy Immunol 2021; 59:323-333. [PMID: 31111319 DOI: 10.1007/s12016-019-08738-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Activated phosphoinositide 3-kinase delta syndrome (APDS) is a novel primary immunodeficiency (PID) caused by heterozygous gain of function mutations in PI3Kδ catalytic p110δ (PIK3CD) or regulatory p85α (PIK3R1) subunits leading to APDS1 and APDS2, respectively. Patients with APDS present a spectrum of clinical manifestations, particularly recurrent respiratory infections and lymphoproliferation. We searched PubMed, Web of Science, and Scopus databases for APDS patients and screened for eligibility criteria. A total of 243 APDS patients were identified from 55 articles. For all patients, demographic, clinical, immunologic, and molecular data were collected. Overall, 179 APDS1 and 64 APDS2 patients were identified. The most common clinical manifestations were respiratory tract infections (pneumonia (43.6%), otitis media (28.8%), and sinusitis (25.9%)), lymphoproliferation (70.4%), autoimmunity (28%), enteropathy (26.7%), failure to thrive (20.6%), and malignancy (12.8%). The predominant immunologic phenotype was hyper-IgM syndrome (48.1%). Immunologic profiling showed decreased B cells in 74.8% and CD4+ T cells in 64.8% of APDS patients. The c.3061 G>A (p. E1021K) mutation in APDS1 with 85% frequency and c.1425+1 G> (A, C, T) (p.434-475del) mutation in APDS2 with 79% frequency were hotspot mutations. The majority of APDS patients were placed on long-term immunoglobulin replacement therapy. Immunosuppressive agents such as rituximab, tacrolimus, rapamycin, and leniolisib were also administered for autoimmunity and inflammatory complications. In addition, hematopoietic stem cell transplantation (HSCT) was used in 12.8% of patients. APDS has heterogynous clinical manifestations. It should be suspected in patients with history of recurrent respiratory infections, lymphoproliferation, and raised IgM levels. Moreover, HSCT should be considered in patients with severe and complicated clinical manifestations with no or insufficient response to the conventional therapies.
Collapse
|
23
|
Chinn IK, Xie Z, Chan EC, Nagata BM, Koval A, Chen WS, Zhang F, Ganesan S, Hong DN, Suzuki M, Nardone G, Moore IN, Katanaev VL, Balazs AE, Liu C, Lupski JR, Orange JS, Druey KM. Short stature and combined immunodeficiency associated with mutations in RGS10. Sci Signal 2021; 14:14/693/eabc1940. [PMID: 34315806 DOI: 10.1126/scisignal.abc1940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We report the clinical and molecular phenotype of three siblings from one family, who presented with short stature and immunodeficiency and carried uncharacterized variants in RGS10 (c.489_491del:p.E163del and c.G511T:p.A171S). This gene encodes regulator of G protein signaling 10 (RGS10), a member of a large family of GTPase-activating proteins (GAPs) that targets heterotrimeric G proteins to constrain the activity of G protein-coupled receptors, including receptors for chemoattractants. The affected individuals exhibited systemic abnormalities directly related to the RGS10 mutations, including recurrent infections, hypergammaglobulinemia, profoundly reduced lymphocyte chemotaxis, abnormal lymph node architecture, and short stature due to growth hormone deficiency. Although the GAP activity of each RGS10 variant was intact, each protein exhibited aberrant patterns of PKA-mediated phosphorylation and increased cytosolic and cell membrane localization and activity compared to the wild-type protein. We propose that the RGS10 p.E163del and p.A171S mutations lead to mislocalization of the RGS10 protein in the cytosol, thereby resulting in attenuated chemokine signaling. This study suggests that RGS10 is critical for both immune competence and normal hormonal metabolism in humans and that rare RGS10 variants may contribute to distinct systemic genetic disorders.
Collapse
Affiliation(s)
- Ivan K Chinn
- Department of Pediatrics, Texas Children's Hospital and Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhihui Xie
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, NIAID/NIH Bethesda, MD 20892, USA
| | - Eunice C Chan
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, NIAID/NIH Bethesda, MD 20892, USA
| | - Bianca M Nagata
- Infectious Disease Pathogenesis Section, NIAID/NIH, Bethesda, MD 20892, USA
| | - Alexey Koval
- Department of Cell Physiology and Metabolism, Translational Research Centre in Oncohaematology, Faculty of Medicine, University of Geneva, Rue Michel-Servet 1, Geneva CH-1211, Switzerland.,School of Biomedicine, Far Eastern Federal University, 8 ul. Sukhanova, Vladivostok 690950, Russia
| | - Wei-Sheng Chen
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, NIAID/NIH Bethesda, MD 20892, USA
| | - Fan Zhang
- Transgenic Core, NHLBI/NIH, Bethesda, MD 20892 USA
| | - Sundar Ganesan
- Biological Imaging Section, NIAID/NIH Bethesda, MD 20892, USA
| | - Diana N Hong
- Department of Pediatrics, Texas Children's Hospital and Baylor College of Medicine, Houston, TX 77030, USA
| | - Motoshi Suzuki
- Protein Chemistry Section, NIAID/NIH, Bethesda, MD 20892, USA
| | - Glenn Nardone
- Protein Chemistry Section, NIAID/NIH, Bethesda, MD 20892, USA
| | - Ian N Moore
- Infectious Disease Pathogenesis Section, NIAID/NIH, Bethesda, MD 20892, USA
| | - Vladimir L Katanaev
- Department of Cell Physiology and Metabolism, Translational Research Centre in Oncohaematology, Faculty of Medicine, University of Geneva, Rue Michel-Servet 1, Geneva CH-1211, Switzerland.,School of Biomedicine, Far Eastern Federal University, 8 ul. Sukhanova, Vladivostok 690950, Russia
| | - Andrea E Balazs
- Department of Pediatrics, Texas Children's Hospital and Baylor College of Medicine, Houston, TX 77030, USA
| | - Chengyu Liu
- Transgenic Core, NHLBI/NIH, Bethesda, MD 20892 USA
| | - James R Lupski
- Department of Molecular and Human Genetics and Baylor-Hopkins Center for Mendelian Genomics, Baylor College of Medicine, Houston, TX 77030, USA.,Texas Children’s Hospital, Houston, TX 77030, USA
| | - Jordan S Orange
- Columbia University Vagelos College of Physicians and Surgeons and New York-Presbyterian Hospital
| | - Kirk M Druey
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, NIAID/NIH Bethesda, MD 20892, USA.
| |
Collapse
|
24
|
Nguyen T, Deenick EK, Tangye SG. Phosphatidylinositol 3-kinase signaling and immune regulation: insights into disease pathogenesis and clinical implications. Expert Rev Clin Immunol 2021; 17:905-914. [PMID: 34157234 DOI: 10.1080/1744666x.2021.1945443] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Phosphatidylinositol 3-kinase (PI3K) is a lipid kinase that plays a fundamental role in cell survival, metabolism, proliferation and differentiation. Thus, balanced PI3K signalling is critical for multiple aspects of human health. The discovery that germline variants in genes in the PI3K pathway caused inborn errors of immunity highlighted the non-redundant role of these signalling proteins in the human immune system. The subsequent identification and characterisation of >300 individuals with a novel immune dysregulatory disorder, termed activated PI3K-delta syndrome (APDS), has reinforced the status of PI3K as a key pathway regulating immune function. Studies of APDS have demonstrated that dysregulated PI3K function is disruptive for immune cell development, activation, differentiation, effector function and self-tolerance, which are all important in supporting effective, long-term immune responses. AREAS COVERED In this review, we recount recent findings regarding humans with germline variants in PI3K genes and discuss the underlying cellular and molecular pathologies, with a focus on implications for therapy in APDS patients. EXPERT OPINION Modulating PI3K immune cell signalling by offers opportunities for therapeutic interventions in settings of immunodeficiency, autoimmunity and malignancy, but also highlights potential adverse events that may result from overt pharmacological or intrinsic inhibition of PI3K function.
Collapse
Affiliation(s)
- Tina Nguyen
- Immunity & Inflammation Theme, Garvan Institute of Medical Research, Darlinghurst, Australia.,St Vincent's Clinical Clinical School, University of NSW, Kensington, NSW, Australia
| | - Elissa K Deenick
- Immunity & Inflammation Theme, Garvan Institute of Medical Research, Darlinghurst, Australia.,St Vincent's Clinical Clinical School, University of NSW, Kensington, NSW, Australia
| | - Stuart G Tangye
- Immunity & Inflammation Theme, Garvan Institute of Medical Research, Darlinghurst, Australia.,St Vincent's Clinical Clinical School, University of NSW, Kensington, NSW, Australia
| |
Collapse
|
25
|
Arnold DE, Chellapandian D, Leiding JW. The Use of Biologic Modifiers as a Bridge to Hematopoietic Cell Transplantation in Primary Immune Regulatory Disorders. Front Immunol 2021; 12:692219. [PMID: 34248986 PMCID: PMC8264452 DOI: 10.3389/fimmu.2021.692219] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/12/2021] [Indexed: 11/13/2022] Open
Abstract
Recently, primary immune regulatory disorders have been described as a subset of inborn errors of immunity that are dominated by immune mediated pathology. As the pathophysiology of disease is elucidated, use of biologic modifiers have been increasingly used successfully to treat disease mediated clinical manifestations. Hematopoietic cell transplant (HCT) has also provided definitive therapy in several PIRDs. Although biologic modifiers have been largely successful at treating disease related manifestations, data are lacking regarding long term efficacy, safety, and their use as a bridge to HCT. This review highlights biologic modifiers in the treatment of several PIRDs and there use as a therapeutic bridge to HCT.
Collapse
Affiliation(s)
- Danielle E Arnold
- National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Deepak Chellapandian
- Center for Cell and Gene Therapy for Non-Malignant Conditions, Cancer and Blood Disorders Institute, Johns Hopkins All Children's Hospital, St. Petersburg, FL, United States
| | - Jennifer W Leiding
- Center for Cell and Gene Therapy for Non-Malignant Conditions, Cancer and Blood Disorders Institute, Johns Hopkins All Children's Hospital, St. Petersburg, FL, United States.,Division of Allergy and Immunology, Department of Pediatrics, University of South Florida, St. Petersburg, FL, United States
| |
Collapse
|
26
|
Zhang X, Wang J, Zhu K, Jin Y, Fu H, Mao J. Activated phosphoinositide 3-kinase delta syndrome misdiagnosed as anti-neutrophil cytoplasmic antibody-associated vasculitis: a case report. J Int Med Res 2021; 49:3000605211013222. [PMID: 34039074 PMCID: PMC8755648 DOI: 10.1177/03000605211013222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Activated phosphoinositide 3-kinase delta syndrome (APDS) is a combined inborn error of immunity mainly caused by PIK3CD mutations. We herein describe a 4-year-old Chinese boy who was admitted for recurrent pneumonia and persistent hematuria and exhibited multisystem involvement and anti-neutrophil cytoplasmic antibody (ANCA) positivity. He was initially diagnosed with ANCA-associated vasculitis. However, genetic testing revealed a c.1574A>G PIK3CD mutation, resulting in a diagnosis of APDS1.
Collapse
Affiliation(s)
- Xiaojing Zhang
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Jingjing Wang
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Kun Zhu
- Department of Pathology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Yanyan Jin
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Haidong Fu
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Jianhua Mao
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| |
Collapse
|
27
|
Brodsky NN, Lucas CL. Infections in activated PI3K delta syndrome (APDS). Curr Opin Immunol 2021; 72:146-157. [PMID: 34052541 DOI: 10.1016/j.coi.2021.04.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/25/2021] [Accepted: 04/27/2021] [Indexed: 01/07/2023]
Abstract
Activated PI3K-delta Syndrome (APDS), also called PI3K-delta activating mutation causing senescent T cells, lymphadenopathy, and immunodeficiency (PASLI), is an autosomal dominant disorder caused by inherited or de novo gain-of-function mutations in one of two genes encoding subunits of the phosphoinositide-3-kinase delta (PI3Kδ) complex. This largely leukocyte-restricted protein complex regulates cell growth, activation, proliferation, and survival. Patients who harbor these mutations have early onset immunodeficiency with recurrent infections, lymphadenopathy, and autoimmunity. The most common infection susceptibilities are sinopulmonary (encapsulated bacteria) and herpesviruses. Multiple defects in both innate and adaptive immune function are responsible for this phenotype. Apart from anti-microbial prophylaxis and immunoglobulin replacement, patients are treated with a variety of immunomodulatory agents and some have needed hematopoietic stem cell transplants. Here, we highlight the spectrum of infections, immune defects, and therapy options in this inborn error of immunity.
Collapse
Affiliation(s)
- Nina N Brodsky
- Department of Immunobiology, Yale University School of Medicine, 300 George Street 353G, New Haven, CT, 06511, USA; Department of Pediatrics, Yale University School of Medicine, 333 Cedar Street, P.O. Box 208064, New Haven, CT 06520, USA
| | - Carrie L Lucas
- Department of Immunobiology, Yale University School of Medicine, 300 George Street 353G, New Haven, CT, 06511, USA.
| |
Collapse
|
28
|
Dimitrova D, Nademi Z, Maccari ME, Ehl S, Uzel G, Tomoda T, Okano T, Imai K, Carpenter B, Ip W, Rao K, Worth AJJ, Laberko A, Mukhina A, Néven B, Moshous D, Speckmann C, Warnatz K, Wehr C, Abolhassani H, Aghamohammadi A, Bleesing JJ, Dara J, Dvorak CC, Ghosh S, Kang HJ, Markelj G, Modi A, Bayer DK, Notarangelo LD, Schulz A, Garcia-Prat M, Soler-Palacín P, Karakükcü M, Yilmaz E, Gambineri E, Menconi M, Masmas TN, Holm M, Bonfim C, Prando C, Hughes S, Jolles S, Morris EC, Kapoor N, Koltan S, Paneesha S, Steward C, Wynn R, Duffner U, Gennery AR, Lankester AC, Slatter M, Kanakry JA. International retrospective study of allogeneic hematopoietic cell transplantation for activated PI3K-delta syndrome. J Allergy Clin Immunol 2021; 149:410-421.e7. [PMID: 34033842 PMCID: PMC8611111 DOI: 10.1016/j.jaci.2021.04.036] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/10/2021] [Accepted: 04/30/2021] [Indexed: 12/01/2022]
Abstract
Background: Activated phosphoinositide 3-kinase delta syndrome (APDS) is a combined immunodeficiency with a heterogeneous phenotype considered reversible by allogeneic hematopoietic cell transplantation (HCT). Objectives: This study sought to characterize HCT outcomes in APDS. Methods: Retrospective data were collected on 57 patients with APDS1/2 (median age, 13 years; range, 2–66 years) who underwent HCT. Results: Pre-HCT comorbidities such as lung, gastrointestinal, and liver pathology were common, with hematologic malignancy in 26%. With median follow-up of 2.3 years, 2-year overall and graft failure–free survival probabilities were 86% and 68%, respectively, and did not differ significantly by APDS1 versus APDS2, donor type, or conditioning intensity. The 2-year cumulative incidence of graft failure following first HCT was 17% overall but 42% if mammalian target of rapamycin inhibitor(s) (mTORi) were used in the first year post-HCT, compared with 9% without mTORi. Similarly, 2-year cumulative incidence of unplanned donor cell infusion was overall 28%, but 65% in the context of mTORi receipt and 23% without. Phenotype reversal occurred in 96% of evaluable patients, of whom 17% had mixed chimerism. Vulnerability to renal complications continued post-HCT, adding new insights into potential nonimmunologic roles of phosphoinositide 3-kinase not correctable through HCT. Conclusions: Graft failure, graft instability, and poor graft function requiring unplanned donor cell infusion were major barriers to successful HCT. Post-HCT mTORi use may confer an advantage to residual host cells, promoting graft instability. Longer-term post-HCT follow-up of more patients is needed to elucidate the kinetics of immune reconstitution and donor chimerism, establish approaches that reduce graft instability, and assess the completeness of phenotype reversal over time.
Collapse
Affiliation(s)
- Dimana Dimitrova
- Experimental Transplantation and Immunotherapy Branch, National Cancer Institute, National Institutes of Health, Bethesda, Md.
| | - Zohreh Nademi
- Children's Bone Marrow Transplant Unit, Great North Children's Hospital, Newcastle upon Tyne, United Kingdom; The Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Maria Elena Maccari
- Department of Pediatric Hematology and Oncology, Center for Pediatrics, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Stephan Ehl
- Department of Pediatric Hematology and Oncology, Center for Pediatrics, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Gulbu Uzel
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Takahiro Tomoda
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tsubasa Okano
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kohsuke Imai
- Department of Community Pediatrics, Perinatal, and Maternal Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Benjamin Carpenter
- Department of Haematology, University College Hospital National Health Service Trust, London, United Kingdom
| | - Winnie Ip
- Department of Immunology, Great Ormond Street Hospital for Children National Health Service Foundation Trust, London, United Kingdom; University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Kanchan Rao
- Department of Bone Marrow Transplantation, Great Ormond Street Hospital for Children National Health Service Foundation Trust, London, United Kingdom
| | - Austen J J Worth
- Department of Immunology, Great Ormond Street Hospital for Children National Health Service Foundation Trust, London, United Kingdom; University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Alexandra Laberko
- Department of Immunology, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Anna Mukhina
- Department of Immunology, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Bénédicte Néven
- Unité d'Immuno-hématologie Pédiatrique, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France; Université de Paris, Paris, France; Institut Imagine, Paris, France
| | - Despina Moshous
- Unité d'Immuno-hématologie Pédiatrique, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France; Université de Paris, Paris, France; Institut Imagine, Paris, France
| | - Carsten Speckmann
- Department of Pediatric Hematology and Oncology, Center for Pediatrics, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Klaus Warnatz
- Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Claudia Wehr
- Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hassan Abolhassani
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden; Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Jacob J Bleesing
- Division of Bone Marrow Transplantation and Immunodeficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Jasmeen Dara
- Department of Pediatrics, Division of Allergy, Immunology, Blood and Marrow Transplantation, Benioff Children's Hospital, University of California San Francisco, San Francisco, Calif
| | - Christopher C Dvorak
- Department of Pediatrics, Division of Allergy, Immunology, Blood and Marrow Transplantation, Benioff Children's Hospital, University of California San Francisco, San Francisco, Calif
| | - Sujal Ghosh
- Department of Pediatric Oncology, Hematology and Clinical Immunology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Hyoung Jin Kang
- Department of Pediatrics, Seoul National University College of Medicine, Seoul National University Cancer Research Institute, Wide River Institute of Immunology, Seoul, Korea
| | - Gašper Markelj
- Department of Allergology, Rheumatology and Clinical Immunology, University Children's Hospital, University Medical Center, Ljubljana, Slovenia
| | - Arunkumar Modi
- University of Arkansas for Medical Sciences Department of Pediatrics, Little Rock, Ark
| | - Diana K Bayer
- Stead Family Department of Pediatrics, University of Iowa, Iowa City, Iowa
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Ansgar Schulz
- Department of Pediatrics, University Medical Center Ulm, Ulm, Germany
| | - Marina Garcia-Prat
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Pere Soler-Palacín
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Musa Karakükcü
- Department of Pediatric Hematology and Oncology, Erciyes University, Kayseri, Turkey
| | - Ebru Yilmaz
- Department of Pediatric Hematology and Oncology, Erciyes University, Kayseri, Turkey
| | - Eleonora Gambineri
- Department of "NEUROFARBA": Section of Child's Health, University of Florence, Florence, Italy; Department of Haematology-Oncology: BMT Unit, "Anna Meyer" Children's Hospital, Florence, Italy
| | - Mariacristina Menconi
- Unità Operativa Oncoematologia Pediatrica, Azienda Ospedaliero Universitaria Pisana Santa Chiara, Pisa, Italy
| | - Tania N Masmas
- Pediatric Hematopoietic Stem Cell Transplantation and Immunodeficiency, The Child and Adolescent Clinic, Copenhagen University Hospital, Copenhagen, Denmark
| | - Mette Holm
- Department of Pediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Carmem Bonfim
- Department of Immunology, Hospital Pequeno Principe, Curitiba, Brazil
| | - Carolina Prando
- Faculdades Pequeno Príncipe, Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Brazil
| | - Stephen Hughes
- Department of Paediatric Immunology, Royal Manchester Children's Hospital, Manchester, United Kingdom
| | - Stephen Jolles
- Immunodeficiency Centre for Wales, University Hospital of Wales, Cardiff, United Kingdom
| | - Emma C Morris
- Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Neena Kapoor
- Cancer and Blood Disease Institute, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Sylwia Koltan
- Department of Pediatric Hematology and Oncology, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Shankara Paneesha
- Department of Haematology and Stem Cell Transplantation, Birmingham Heartlands Hospital, Birmingham, United Kingdom
| | - Colin Steward
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Robert Wynn
- Department of Paediatric Immunology, Royal Manchester Children's Hospital, Manchester, United Kingdom
| | - Ulrich Duffner
- Blood and Bone Marrow Transplantation, Helen DeVos Children's Hospital, Grand Rapids, Mich; Department of Pediatrics and Human Development, Spectrum Health and Michigan State University, Grand Rapids, Mich
| | - Andrew R Gennery
- Children's Bone Marrow Transplant Unit, Great North Children's Hospital, Newcastle upon Tyne, United Kingdom; The Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Arjan C Lankester
- Department of Pediatrics, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, The Netherlands
| | - Mary Slatter
- Children's Bone Marrow Transplant Unit, Great North Children's Hospital, Newcastle upon Tyne, United Kingdom; The Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Jennifer A Kanakry
- Experimental Transplantation and Immunotherapy Branch, National Cancer Institute, National Institutes of Health, Bethesda, Md.
| |
Collapse
|
29
|
Abstract
Primary immune regulatory disorders (PIRDs) are a group of diseases belonging to inborn errors of immunity. They usually exhibit lymphoproliferation, autoimmunities, and malignancies, with less susceptibility to recurrent infections. Unlike classical primary immune deficiencies, in autoimmune manifestations, such as cytopenias, enteropathy can be the first symptom of diseases, and they are typically resistant to treatment. Increasing awareness of PIRDs among specialists and a multidisciplinary team approach would provide early diagnosis and treatment that could prevent end-organ damage related to the diseases. In recent years, many PIRDs have been described, and understanding the immunological pathways linked to these disorders provides us an opportunity to use directed therapies for specific molecules, which usually offer better disease control than known classical immunosuppressants. In this review, in light of the most recent literature, we will discuss the common PIRDs and explain their clinical symptoms and recent treatment modalities.
Collapse
Affiliation(s)
- Burcu Kolukısa
- Marmara University Faculty of Medicine, Division of Pediatric Allergy and Immunology, İstanbul, Turkey,İstanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, İstanbul, Turkey,The Işıl Berat Barlan Center for Translational Medicine, İstanbul, Turkey
| | - Safa Barış
- Marmara University Faculty of Medicine, Division of Pediatric Allergy and Immunology, İstanbul, Turkey,İstanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, İstanbul, Turkey,The Işıl Berat Barlan Center for Translational Medicine, İstanbul, Turkey
| |
Collapse
|
30
|
Nishimura A, Aoki Y, Ishiwata Y, Ichimura T, Ueyama J, Kawahara Y, Tomoda T, Inoue M, Matsumoto K, Inoue K, Hiroki H, Ono S, Yamashita M, Okano T, Tanaka-Kubota M, Ashiarai M, Miyamoto S, Miyawaki R, Yamagishi C, Tezuka M, Okawa T, Hoshino A, Endo A, Yasuhara M, Kamiya T, Mitsuiki N, Ono T, Isoda T, Yanagimachi M, Tomizawa D, Nagasawa M, Mizutani S, Kajiwara M, Takagi M, Kanegane H, Imai K, Morio T. Hematopoietic Cell Transplantation with Reduced Intensity Conditioning Using Fludarabine/Busulfan or Fludarabine/Melphalan for Primary Immunodeficiency Diseases. J Clin Immunol 2021; 41:944-957. [PMID: 33527309 DOI: 10.1007/s10875-021-00966-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 01/06/2021] [Indexed: 01/01/2023]
Abstract
PURPOSE The purpose of our study was to compare the safety and efficacy of hematopoietic cell transplantation (HCT) using fludarabine (Flu)-based reduced intensity conditioning (RIC) with busulfan (BU) or melphalan (Mel) for primary immunodeficiency diseases (PID). METHODS We retrospectively analyzed transplant outcome, including engraftment, chimerism, immune reconstitution, and complications in 15 patients with severe combined immunodeficiency (SCID) and 27 patients with non-SCID PID. The patients underwent Flu-based RIC-HCT with BU (FluBU: 7 SCID, 16 non-SCID) or Mel (FluMel: 8 SCID, 11 non-SCID). The targeted low-dose BU with therapeutic drug monitoring was set to 30 mg hour/L for SCID. RESULTS The 2-year overall survival of all patients was 79.6% and that of patients with SCID in the FluBU and FluMel groups was 100% and 62.5%, respectively. In the FluBU group, all seven patients achieved engraftment, good immune reconstitution, and long-term survival. All five patients receiving umbilical cord blood transplantation achieved complete or high-level mixed chimerism and sufficient specific IgG production. In the FluMel group, six of eight patients achieved complete or high-level mixed chimerism. Viral reactivation or new viral infection occurred in one FluBU group patient and four FluMel group patients. In the non-SCID group, 10 of 11 patients (91%) who received FluMel achieved complete or high-level mixed chimerism but had variable outcomes. Patients with WAS (2/2 patients), NEMO deficiency (2/2 patients), and X-linked hyper IgM syndrome (2/3 patients) who received FluBU achieved complete or high-level mixed chimerism and long-term survival. CONCLUSIONS RIC-HCT with FluBU is a safe and effective strategy for obtaining high-level donor chimerism, immune reconstitution including B cell function, and long-term survival in patients with SCID. In patients with non-SCID PID, the results varied according to the subtype of the disease. Further prospective studies are required to optimize the conditioning regimen for non-SCID PID.
Collapse
Affiliation(s)
- Akira Nishimura
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yuki Aoki
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yasuyoshi Ishiwata
- Department of Hospital Pharmacy, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Takuya Ichimura
- Department of Pediatrics, Yamaguchi University Hospital, Yamaguchi, Japan
| | - Junichi Ueyama
- Department of Pediatrics, Tottori University Hospital, Tottori, Japan
| | - Yuta Kawahara
- Department of Pediatrics, Jichi Medical University School of Medicine, Shimotsuke, Japan
| | - Takahiro Tomoda
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Maiko Inoue
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Kazuaki Matsumoto
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Kento Inoue
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Haruka Hiroki
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Shintaro Ono
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Motoi Yamashita
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Tsubasa Okano
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Mari Tanaka-Kubota
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Miho Ashiarai
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Satoshi Miyamoto
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Reiji Miyawaki
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Chika Yamagishi
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Mari Tezuka
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Teppei Okawa
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Akihiro Hoshino
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Akifumi Endo
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Masato Yasuhara
- Department of Pharmacokinetics and Pharmacodynamics, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Takahiro Kamiya
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Noriko Mitsuiki
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Toshiaki Ono
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Takeshi Isoda
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Masakatsu Yanagimachi
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Daisuke Tomizawa
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.,Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Masayuki Nagasawa
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Shuki Mizutani
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Michiko Kajiwara
- Department of Transfusion Medicine and Cell Therapy, Tokyo Medical and Dental University (TMDU), Medical Hospital, Tokyo, Japan
| | - Masatoshi Takagi
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Hirokazu Kanegane
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.,Department of Child Health and Development, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Kohsuke Imai
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan. .,Department of Community Pediatrics, Perinatal, and Maternal Medicine, Tokyo Medical and Dental University (TMDU), 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan.
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
31
|
Fekrvand S, Delavari S, Chavoshzadeh Z, Sherkat R, Mahdaviani SA, Sadeghi Shabestari M, Azizi G, Arzanian MT, Shahin Shamsian B, Eskandarzadeh S, Eslami N, Rae W, Condino-Neto A, Mohammadi J, Abolhassani H, Yazdani R, Aghamohammadi A. The First Iranian Cohort of Pediatric Patients with Activated Phosphoinositide 3-Kinase-δ (PI3Kδ) Syndrome (APDS). Immunol Invest 2021; 51:644-659. [PMID: 33401995 DOI: 10.1080/08820139.2020.1863982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background: Activated phosphoinositide 3-kinase δ syndrome (APDS) is a recently defined combined primary immunodeficiency disease (PID) characterized by recurrent respiratory tract infections, lymphoproliferation, autoimmunity and lymphoma. Gain-of-function mutations in PIK3CD and loss-of-function of PIK3R1 genes lead to APDS1 and APDS2, respectively.Methods: Demographic, clinical, immunological and genetic data were collected from medical records of 15 pediatric patients, who were genetically identified using the whole-exome sequencing method.Results: Fifteen patients (6 APDS1 and 9 APDS2) were enrolled in this study. Recurrent respiratory tract infections followed by lymphoproliferation and autoimmunity were the most common manifestations (86.7%, 53.3% and 26.7%, respectively). Five patients (33.3%) had a Hyper-IgM-syndrome-like immunoglobulin profile. In the APDS1 group, splice site and missense mutations were found in half of the patients and the C-lobe domain of PIK3CD was the most affected region (50%). In the APDS2 group, splice site mutation was the most frequent mutation (77.8%) and the inter-SH2 domain was the most affected region of PIK3R1 (66.7%). Mortality rate was significantly higher in APDS2 group (P = .02) mainly due to chronic lung infections.Conclusion: Respiratory tract infections and humoral immunodeficiency are commonly the most important complication in pediatric APDS patients, and they can be fatal by ultimately causing catastrophic damage to the structure of lungs. Hence, physicians should be aware of its significance and further work-up of patients with recurrent respiratory tract infections especially in patients with lymphoproliferation. Moreover, delineation of genotype-phenotype associations with disease severity could be helpful in the timely application of appropriate management and patients' survival.
Collapse
Affiliation(s)
- Saba Fekrvand
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Samaneh Delavari
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Zahra Chavoshzadeh
- Pediatric Infections Research Center, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Roya Sherkat
- Acquired Immunodeficiency Research Center, lsfahan University of Medical Sciences, Isfahan, Iran
| | - Seyed Alireza Mahdaviani
- Pediatric Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahnaz Sadeghi Shabestari
- Children Hospital of Tabriz, Immunology Research Center of Tabriz, TB and Lung Research Center of Tabriz, Tabriz University of Medical Science, Tabriz, Iran
| | - Gholamreza Azizi
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Mohammad Taghi Arzanian
- Pediatric Hematologist-Oncologist, Congenital Hematological Disorders Research Center, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bibi Shahin Shamsian
- Pediatric Hematologist-Oncologist, Congenital Hematological Disorders Research Center, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shabnam Eskandarzadeh
- Pediatric Infections Research Center, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Narges Eslami
- Pediatric Infections Research Center, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - William Rae
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge, UK.,Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK
| | - Antonio Condino-Neto
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Javad Mohammadi
- Department of Biomedical Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Hassan Abolhassani
- Research Center for Primary Immunodeficiencies, Iran University of Medical Science, Tehran, Iran.,Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran.,Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| |
Collapse
|
32
|
Bloomfield M, Klocperk A, Zachova R, Milota T, Kanderova V, Sediva A. Natural Course of Activated Phosphoinositide 3-Kinase Delta Syndrome in Childhood and Adolescence. Front Pediatr 2021; 9:697706. [PMID: 34350147 PMCID: PMC8326455 DOI: 10.3389/fped.2021.697706] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/18/2021] [Indexed: 11/13/2022] Open
Abstract
Activated phosphoinositide 3-kinase delta syndrome (APDS), caused by mutations in PI3Kδ catalytic p110δ (PIK3CD) or regulatory p85α (PIK3R1) subunits, is a primary immunodeficiency affecting both humoral and cellular immunity, which shares some phenotypic similarities with hyper-IgM syndromes and common variable immunodeficiency (CVID). Since its first description in 2013, over 200 patients have been reported worldwide. Unsurprisingly, many of the newly diagnosed patients were recruited later in life from previously long-standing unclassified immunodeficiencies and the early course of the disease is, therefore, often less well-described. In this study, we report clinical and laboratory features of eight patients followed for APDS, with particular focus on early warning signs, longitudinal development of their symptoms, individual variations, and response to therapy. The main clinical features shared by our patients included recurrent bacterial and viral respiratory tract infections, gastrointestinal disease, non-malignant lymphoproliferation, autoimmune thyroiditis, and susceptibility to EBV. All patients tolerated vaccination with both attenuated live and subunit vaccines with no adverse effects, although some failed to mount adequate antibody response. Laboratory findings were characterized by dysgammaglobulinaemia, elevated serum IgM, block in B-cell maturation with high transitional B cells, and low naïve T cells with CD8 T-cell activation. All patients benefited from immunoglobulin replacement therapy, whereas immunosuppression with mTOR pathway inhibitors was only partially successful. Therapy with specific PI3K inhibitor leniolisib was beneficial in all patients in the clinical trial. These vignettes, summary data, and particular tell-tale signs should serve to facilitate early recognition, referral, and initiation of outcome-improving therapy.
Collapse
Affiliation(s)
- Marketa Bloomfield
- Department of Immunology, 2nd Faculty of Medicine, Charles University Hospital in Motol, Prague, Czechia.,Department of Pediatrics, 1st Faculty of Medicine, Charles University in Prague and Thomayer University Hospital, Prague, Czechia
| | - Adam Klocperk
- Department of Immunology, 2nd Faculty of Medicine, Charles University Hospital in Motol, Prague, Czechia
| | - Radana Zachova
- Department of Immunology, 2nd Faculty of Medicine, Charles University Hospital in Motol, Prague, Czechia
| | - Tomas Milota
- Department of Immunology, 2nd Faculty of Medicine, Charles University Hospital in Motol, Prague, Czechia
| | - Veronika Kanderova
- Childhood Leukaemia Investigation Prague, Department of Paediatric Haematology and Oncology, 2nd Faculty of Medicine, Charles University and University Hospital in Motol, Prague, Czechia
| | - Anna Sediva
- Department of Immunology, 2nd Faculty of Medicine, Charles University Hospital in Motol, Prague, Czechia
| |
Collapse
|
33
|
Rivalta B, Amodio D, Milito C, Chiriaco M, Di Cesare S, Giancotta C, Conti F, Santilli V, Pacillo L, Cifaldi C, Desimio MG, Doria M, Quinti I, De Vito R, Di Matteo G, Finocchi A, Palma P, Trizzino A, Tommasini A, Cancrini C. Case Report: EBV Chronic Infection and Lymphoproliferation in Four APDS Patients: The Challenge of Proper Characterization, Therapy, and Follow-Up. Front Pediatr 2021; 9:703853. [PMID: 34540765 PMCID: PMC8448282 DOI: 10.3389/fped.2021.703853] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/03/2021] [Indexed: 11/13/2022] Open
Abstract
Activated PI3K-kinase Delta Syndrome (APDS) is an autosomal-dominant primary immunodeficiency (PID) caused by the constitutive activation of the PI3Kδ kinase. The consequent hyperactivation of the PI3K-Akt-mTOR pathway leads to an impaired T- and B-cells differentiation and function, causing progressive lymphopenia, hypogammaglobulinemia and hyper IgM. Patients with APDS show recurrent sinopulmonary and chronic herpes virus infections, immune dysregulation manifestations, including cytopenia, arthritis, inflammatory enteropathy, and a predisposition to persistent non-neoplastic splenomegaly/lymphoproliferation and lymphoma. The recurrence of the lymphoproliferative disorder and the difficulties in the proper definition of malignancy on histological examination represents the main challenge in the clinical management of APDS patients, since a prompt and correct diagnosis is needed to avoid major complications. Targeted therapies with PI3Kδ-Akt-mTOR pathway pharmacologic inhibitors (i.e., Rapamycin, Theophylline, PI3K inhibitors) represent a good therapeutic strategy. They can also be used as bridge therapies when HSCT is required in order to control refractory symptoms. Indeed, treated patients showed a good tolerance, improved immunologic phenotype and reduced incidence/severity of immune dysregulation manifestations. Here, we describe our experience in the management of four patients, one male affected with APDS1 (P1) and the other three, a male and two females, with APDS2 (P2, P3, P4) presenting with chronic EBV replication, recurrent episodes of immune dysregulation manifestations and lymphomas. These cases highlighted the importance of a tailored and close follow-up, including serial endoscopic and lymph nodes biopsies control to detect a prompt and correct diagnosis and offer the best therapeutic strategy.
Collapse
Affiliation(s)
- Beatrice Rivalta
- Research Unit of Primary Immunodeficiencies, Immune and Infectious Diseases Division, Academic Department of Pediatrics (DPUO), Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.,Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Donato Amodio
- Research Unit of Clinical Immunology and Vaccinology, Academic Department of Pediatrics (DPUO), Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Cinzia Milito
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Maria Chiriaco
- Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Silvia Di Cesare
- Research Unit of Primary Immunodeficiencies, Immune and Infectious Diseases Division, Academic Department of Pediatrics (DPUO), Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.,Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Carmela Giancotta
- Research Unit of Clinical Immunology and Vaccinology, Academic Department of Pediatrics (DPUO), Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Francesca Conti
- Pediatric Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, University of Bologna, Bologna, Italy
| | - Veronica Santilli
- Research Unit of Clinical Immunology and Vaccinology, Academic Department of Pediatrics (DPUO), Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Lucia Pacillo
- Research Unit of Primary Immunodeficiencies, Immune and Infectious Diseases Division, Academic Department of Pediatrics (DPUO), Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.,Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Cristina Cifaldi
- Research Unit of Primary Immunodeficiencies, Immune and Infectious Diseases Division, Academic Department of Pediatrics (DPUO), Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Maria Giovanna Desimio
- Research Unit of Primary Immunodeficiencies, Immune and Infectious Diseases Division, Academic Department of Pediatrics (DPUO), Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Margherita Doria
- Research Unit of Primary Immunodeficiencies, Immune and Infectious Diseases Division, Academic Department of Pediatrics (DPUO), Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Isabella Quinti
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Rita De Vito
- Pathology Unit, Department of Laboratories, Bambino Gesù Children's Hospital, Rome, Italy
| | - Gigliola Di Matteo
- Research Unit of Primary Immunodeficiencies, Immune and Infectious Diseases Division, Academic Department of Pediatrics (DPUO), Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.,Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Andrea Finocchi
- Research Unit of Primary Immunodeficiencies, Immune and Infectious Diseases Division, Academic Department of Pediatrics (DPUO), Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.,Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Paolo Palma
- Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy.,Research Unit of Clinical Immunology and Vaccinology, Academic Department of Pediatrics (DPUO), Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Antonino Trizzino
- Department of Pediatric Hematology and Oncology, ARNAS Civico Di Cristina and Benfratelli Hospital, Palermo, Italy
| | - Alberto Tommasini
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy.,Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Caterina Cancrini
- Research Unit of Primary Immunodeficiencies, Immune and Infectious Diseases Division, Academic Department of Pediatrics (DPUO), Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.,Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
34
|
Thouenon R, Moreno-Corona N, Poggi L, Durandy A, Kracker S. Activated PI3Kinase Delta Syndrome-A Multifaceted Disease. Front Pediatr 2021; 9:652405. [PMID: 34249806 PMCID: PMC8267809 DOI: 10.3389/fped.2021.652405] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 05/24/2021] [Indexed: 12/17/2022] Open
Abstract
Autosomal dominant gain-of-function mutations in the PIK3CD gene encoding the catalytic subunit p110δ of phosphoinositide 3-kinase-δ (PI3K-δ) or autosomal dominant loss-of-function mutations in the PIK3R1 gene encoding the p85α, p55α and p50α regulatory subunits cause Activated PI3-kinase-δ syndrome (APDS; referred as type 1 APDS and type 2 APDS, respectively). Consequences of these mutations are PI3K-δ hyperactivity. Clinical presentation described for both types of APDS patients is very variable, ranging from mild or asymptomatic features to profound combined immunodeficiency. Massive lymphoproliferation, bronchiectasis, increased susceptibility to bacterial and viral infections and, at a lesser extent, auto-immune manifestations and occurrence of cancer, especially B cell lymphoma, have been described for both types of APDS patients. Here, we review clinical presentation and treatment options as well as fundamental immunological and biological features associated to PI3K-δ increased signaling.
Collapse
Affiliation(s)
- Romane Thouenon
- Laboratory of Human Lymphohematopoiesis, Imagine Institute, INSERM UMR 1163, Université de Paris, Paris, France
| | - Nidia Moreno-Corona
- Laboratory of Human Lymphohematopoiesis, Imagine Institute, INSERM UMR 1163, Université de Paris, Paris, France
| | - Lucie Poggi
- Laboratory of Human Lymphohematopoiesis, Imagine Institute, INSERM UMR 1163, Université de Paris, Paris, France
| | - Anne Durandy
- Laboratory of Human Lymphohematopoiesis, Imagine Institute, INSERM UMR 1163, Université de Paris, Paris, France
| | - Sven Kracker
- Laboratory of Human Lymphohematopoiesis, Imagine Institute, INSERM UMR 1163, Université de Paris, Paris, France
| |
Collapse
|
35
|
Redenbaugh V, Coulter T. Disorders Related to PI3Kδ Hyperactivation: Characterizing the Clinical and Immunological Features of Activated PI3-Kinase Delta Syndromes. Front Pediatr 2021; 9:702872. [PMID: 34422726 PMCID: PMC8374435 DOI: 10.3389/fped.2021.702872] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/28/2021] [Indexed: 11/28/2022] Open
Abstract
Phosphoinositide-3-kinase δ (PI3Kδ) is found in immune cells and is part of the PI3K/AKT/mTOR/S6K signalling pathway essential to cell survival, growth and differentiation. Hyperactivation of PI3Kδ enzyme results in Activated PI3-kinase delta syndrome (APDS). This childhood onset, autosomal dominant, combined immunodeficiency, is caused by heterozygous gain of function (GOF) mutations in PIK3CD (encodes PI3Kδ catalytic subunit p110δ), mutations in PIK3R1 (encodes PI3Kδ regulatory subunit p85α) or LOF mutations in PTEN (terminates PI3Kδ signalling) leading to APDS1, APDS2 and APDS-Like (APDS-L), respectively. APDS was initially described in 2013 and over 285 cases have now been reported. Prompt diagnosis of APDS is beneficial as targeted pharmacological therapies such as sirolimus and potentially PI3Kδ inhibitors can be administered. In this review, we provide an update on the clinical and laboratory features of this primary immunodeficiency. We discuss the common manifestations such as sinopulmonary infections, bronchiectasis, lymphoproliferation, susceptibility to herpesvirus, malignancy, as well as more rare non-immune features such as short stature and neurodevelopmental abnormalities. Laboratory characteristics, such as antibody deficiency and B cell and T cell, phenotypes are also summarised.
Collapse
Affiliation(s)
- Vyanka Redenbaugh
- Regional Immunology Services of Northern Ireland, Belfast Health and Social Care Trust, Belfast, United Kingdom.,Mayo Clinic, Rochester, MN, United States
| | - Tanya Coulter
- Regional Immunology Services of Northern Ireland, Belfast Health and Social Care Trust, Belfast, United Kingdom
| |
Collapse
|
36
|
Diaz N, Juarez M, Cancrini C, Heeg M, Soler-Palacín P, Payne A, Johnston GI, Helmer E, Cain D, Mann J, Yuill D, Conti F, Di Cesare S, Ehl S, Garcia-Prat M, Maccari ME, Martín-Nalda A, Martínez-Gallo M, Moshous D, Santilli V, Semeraro M, Simonetti A, Suarez F, Cavazzana M, Kracker S. Seletalisib for Activated PI3Kδ Syndromes: Open-Label Phase 1b and Extension Studies. THE JOURNAL OF IMMUNOLOGY 2020; 205:2979-2987. [PMID: 33115853 DOI: 10.4049/jimmunol.2000326] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 09/22/2020] [Indexed: 12/11/2022]
Abstract
Mutations in two genes can result in activated PI3Kδ syndrome (APDS), a rare immunodeficiency disease with limited therapeutic options. Seletalisib, a potent, selective PI3Kδ inhibitor, was evaluated in patients with APDS1 and APDS2. In the phase 1b study (European Clinical Trials Database 2015-002900-10) patients with genetic and clinical confirmation of APDS1 or APDS2 received 15-25 mg/d seletalisib for 12 wk. Patients could enter an extension study (European Clinical Trials Database 2015-005541). Primary endpoints were safety and tolerability, with exploratory efficacy and immunology endpoints. Seven patients (median age 15 years; APDS1 n = 3; APDS2 n = 4) received seletalisib; five completed the phase 1b study. For the extension study, four patients entered, one withdrew consent (week 24), three completed ≥84 wk of treatment. In the phase 1b study, patients had improved peripheral lymphadenopathy (n = 2), lung function (n = 1), thrombocyte counts (n = 1), and chronic enteropathy (n = 1). Overall, effects were maintained in the extension. In the phase 1b study, percentages of transitional B cells decreased, naive B cells increased, and senescent CD8 T cells decreased (human cells); effects were generally maintained in the extension. Seletalisib-related adverse events occurred in four of seven patients (phase 1b study: hepatic enzyme increased, dizziness, aphthous ulcer, arthralgia, arthritis, increased appetite, increased weight, restlessness, tendon disorder, and potential drug-induced liver injury) and one of four patients had adverse events in the extension (aphthous ulcer). Serious adverse events occurred in three of seven patients (phase 1b study: hospitalization, colitis, and potential drug-induced liver injury) and one of four patients had adverse events in the extension (stomatitis). Patients with APDS receiving seletalisib had improvements in variable clinical and immunological features, and a favorable risk-benefit profile was maintained for ≤96 wk.
Collapse
Affiliation(s)
| | | | - Caterina Cancrini
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy.,Unit of Immune and Infectious Diseases, Academic Department of Pediatrics, Children's Hospital Bambino Gesù, 00165 Rome, Italy
| | - Maximilian Heeg
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, 79106 Freiburg, Germany.,Center for Pediatrics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Pere Soler-Palacín
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d'Hebron University Hospital, 08035 Barcelona, Catalonia, Spain
| | | | | | | | | | | | | | - Francesca Conti
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy.,Unit of Immune and Infectious Diseases, Academic Department of Pediatrics, Children's Hospital Bambino Gesù, 00165 Rome, Italy
| | - Silvia Di Cesare
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy.,Unit of Immune and Infectious Diseases, Academic Department of Pediatrics, Children's Hospital Bambino Gesù, 00165 Rome, Italy
| | - Stephan Ehl
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, 79106 Freiburg, Germany.,Center for Pediatrics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Marina Garcia-Prat
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d'Hebron University Hospital, 08035 Barcelona, Catalonia, Spain
| | - Maria Elena Maccari
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, 79106 Freiburg, Germany.,Center for Pediatrics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Andrea Martín-Nalda
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d'Hebron University Hospital, 08035 Barcelona, Catalonia, Spain
| | - Mónica Martínez-Gallo
- Immunology Division and Diagnostic Immunology Research Group, Vall d'Hebron University Hospital, Vall d'Hebron Research Institute, 08035 Barcelona, Catalonia, Spain
| | - Despina Moshous
- Pediatric Immunology, Haematology and Rheumatology Unit, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, Center - University of Paris, 75743 Paris, France.,Imagine Institute, INSERM UMR 1163, University of Paris, 75015 Paris, France
| | - Veronica Santilli
- Unit of Immune and Infectious Diseases, Academic Department of Pediatrics, Children's Hospital Bambino Gesù, 00165 Rome, Italy
| | - Michaela Semeraro
- Imagine Institute, INSERM UMR 1163 et CNRS ERL 8254, University of Paris, 75015 Paris, France.,Academic Department of Pediatrics, Clinical Trial Unit, Children's Hospital Bambino Gesù, 00165 Rome, Italy
| | - Alessandra Simonetti
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy.,Academic Department of Pediatrics, Clinical Trial Unit, Children's Hospital Bambino Gesù, 00165 Rome, Italy
| | - Felipe Suarez
- Imagine Institute, INSERM UMR 1163 et CNRS ERL 8254, University of Paris, 75015 Paris, France.,Adult Haematology Department, Haematology and Rheumatology Unit, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, Center - University of Paris, 75743 Paris, France
| | - Marina Cavazzana
- Biotherapy Clinical Investigation Center, University Hospitals Paris West, Assistance Publique-Hôpitaux de Paris, INSERM, 75004 Paris, France.,Imagine Institute, University of Paris, 75015 Paris, France.,Laboratory of Human Lymphohematopoiesis, INSERM UMR 1163, Imagine Institute, 75015 Paris, France; and.,Biotherapy Department, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, Center - University of Paris, 75015 Paris, France
| | - Sven Kracker
- Imagine Institute, University of Paris, 75015 Paris, France.,Laboratory of Human Lymphohematopoiesis, INSERM UMR 1163, Imagine Institute, 75015 Paris, France; and
| |
Collapse
|
37
|
Activated Phosphoinositide 3-Kinase Delta Syndrome 1: Clinical and Immunological Data from an Italian Cohort of Patients. J Clin Med 2020; 9:jcm9103335. [PMID: 33080915 PMCID: PMC7603210 DOI: 10.3390/jcm9103335] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 01/01/2023] Open
Abstract
Activated phosphoinositide 3-kinase delta syndrome 1 (APDS-1) is a recently described inborn error of immunity caused by monoallelic gain-of-function mutations in the PIK3CD gene. We reviewed for the first time medical records and laboratory data of eight Italian APDS-1 patients. Recurrent sinopulmonary infections were the most common clinical feature at onset of disease. Seven patients presented lymphoproliferative disease, at onset or during follow-up, one of which resembled hemophagocytic lymphohistiocytosis (HLH). Genetic analysis of the PIK3CD gene revealed three novel mutations: functional testing confirmed their activating nature. In the remaining patients, the previously reported variants p.E1021K (n = 4) and p.E525A (n = 1) were identified. Six patients were started on immunoglobulin replacement treatment (IgRT). One patient successfully underwent hematopoietic stem cell transplantation (HSCT), with good chimerism and no GVHD at 21 months post-HSCT. APDS-1 is a combined immune deficiency with a wide variety of clinical manifestations and a complex immunological presentation. Besides IgRT, specific therapies targeting the PI3Kδ pathway will most likely become a valid aid for the amelioration of patients’ clinical management and their quality of life.
Collapse
|
38
|
Immune dysregulation in patients with RAG deficiency and other forms of combined immune deficiency. Blood 2020; 135:610-619. [PMID: 31942628 DOI: 10.1182/blood.2019000923] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 09/25/2019] [Indexed: 12/12/2022] Open
Abstract
Traditionally, primary immune deficiencies have been defined based on increased susceptibility to recurrent and/or severe infections. However, immune dysregulation, manifesting with autoimmunity or hyperinflammatory disease, has emerged as a common feature. This is especially true in patients affected by combined immune deficiency (CID), a group of disorders caused by genetic defects that impair, but do not completely abolish, T-cell function. Hypomorphic mutations in the recombination activating genes RAG1 and RAG2 represent the prototype of the broad spectrum of clinical and immunological phenotypes associated with CID. The study of patients with RAG deficiency and with other forms of CID has revealed distinct abnormalities in central and peripheral T- and B-cell tolerance as the key mechanisms involved in immune dysregulation. Understanding the pathophysiology of autoimmunity and hyperinflammation in these disorders may also permit more targeted therapeutic interventions.
Collapse
|
39
|
Increased activation of PI3 kinase-δ predisposes to B-cell lymphoma. Blood 2020; 135:638-643. [PMID: 31942637 DOI: 10.1182/blood.2019002072] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 08/28/2019] [Indexed: 12/12/2022] Open
Abstract
Activated phosphatidylinositol 3-kinase-δ (PI3K-δ) syndrome (APDS) is a rare primary combined immunodeficiency caused by either dominant gain-of-function mutations in the PIK3CD gene encoding the catalytic subunit p110δ of PI3K-δ (referred to as type 1 APDS) or dominant loss-of-function mutations in the PIK3R1 gene encoding the p85α, p55α, and p50α regulatory subunits (type 2 APDS). In types 1 and 2 APDS, the PI3K-δ hyperactivity resulting from the gene mutations leads to similar clinical presentations, characterized by increased susceptibility to bacterial and viral infections and (to a lesser extent) autoimmune manifestations. A hallmark of this disease is lymphoproliferation, which may even be life threatening and require repeated surgical treatment. A major complication of APDS is malignancy (especially B-cell lymphomas), which greatly worsens the prognosis. Here, we review the different neoplastic conditions observed in patients with APDS and discuss the uncontrolled PI3K-δ activity in B and T cells that leads to malignant transformation.
Collapse
|
40
|
Nunes-Santos CJ, Uzel G, Rosenzweig SD. PI3K pathway defects leading to immunodeficiency and immune dysregulation. J Allergy Clin Immunol 2020; 143:1676-1687. [PMID: 31060715 DOI: 10.1016/j.jaci.2019.03.017] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/26/2019] [Accepted: 03/26/2019] [Indexed: 12/16/2022]
Abstract
The phosphatidylinositol 3-kinase (PI3K) signaling pathway is involved in a broad range of cellular processes, including growth, metabolism, differentiation, proliferation, motility, and survival. The PI3Kδ enzyme complex is primarily present in the immune system and comprises a catalytic (p110δ) and regulatory (p85α) subunit. Dynamic regulation of PI3Kδ activity is required to ensure normal function and differentiation of immune cells. In the last decade, discovery of germline mutations in genes involved in the PI3Kδ pathway (PIK3CD, PIK3R1, or phosphatase and tensin homolog [PTEN]) proved that both overactivation and underactivation (gain of function and loss of function, respectively) of PI3Kδ lead to impaired and dysregulated immunity. Although a small group of patients reported to underactivate PI3Kδ show predominantly humoral defects and autoimmune features, more than 200 patients have been described with overactivation of PI3Kδ, presenting with a much more complex phenotype of combined immunodeficiency and immune dysregulation. The clinical and immunologic characterization, as well as current pathophysiologic understanding and specific therapies for PI3K pathway defects leading to immunodeficiency and immune dysregulation, are reviewed here.
Collapse
Affiliation(s)
- Cristiane J Nunes-Santos
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health (NIH) Clinical Center, Bethesda, Md; Faculdade de Medicina, Instituto da Crianca, Universidade de São Paulo, São Paulo, Brazil
| | - Gulbu Uzel
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Md
| | - Sergio D Rosenzweig
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health (NIH) Clinical Center, Bethesda, Md.
| |
Collapse
|
41
|
Kelsen JR, Sullivan KE, Rabizadeh S, Singh N, Snapper S, Elkadri A, Grossman AB. North American Society for Pediatric Gastroenterology, Hepatology, and Nutrition Position Paper on the Evaluation and Management for Patients With Very Early-onset Inflammatory Bowel Disease. J Pediatr Gastroenterol Nutr 2020; 70:389-403. [PMID: 32079889 PMCID: PMC12024488 DOI: 10.1097/mpg.0000000000002567] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The rate of pediatric inflammatory bowel disease (IBD) has been increasing over the last decade and this increase has occurred most rapidly in the youngest children diagnosed <6 years, known as very early-onset inflammatory bowel disease (VEO-IBD). These children can present with more extensive and severe disease than older children and adults. The contribution of host genetics in this population is underscored by the young age of onset and the distinct, aggressive phenotype. In fact, monogenic defects, often involving primary immunodeficiency genes, have been identified in children with VEO-IBD and have led to targeted and life-saving therapy. This position paper will discuss the phenotype of VEO-IBD and outline the approach and evaluation for these children and what factors should trigger concern for an underlying immunodeficiency. We will then review the immunological assays and genetic studies that can facilitate the identification of the underlying diagnosis in patients with VEO-IBD and how this evaluation may lead to directed therapies. The position paper will also aid the pediatric gastroenterologist in recognizing when a patient should be referred to a center specializing in the care of these patients. These guidelines are intended for pediatricians, allied health professionals caring for children, pediatric gastroenterologists, pediatric pathologists, and immunologists.
Collapse
Affiliation(s)
| | - Kathleen E. Sullivan
- Division of Immunology and Allergy, Children’s Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Shervin Rabizadeh
- Division of Gastroenterology, Hepatology, and Nutrition, Cedar-Sinai Medical Center, Los Angeles, CA
| | - Namita Singh
- Division of Gastroenterology, Department of Pediatrics, Seattle Children’s Hospital, University of Washington, Seattle, WA
| | - Scott Snapper
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children’s Hospital, Department of Pediatrics, Harvard Medical School
- Division of Gastroenterology, Department of Medicine, Brigham & Women’s Hospital and Harvard Medical School, Boston, MA
| | - Abdul Elkadri
- Division of Gastroenterology, Hepatology, and Nutrition, Medical College of Wisconsin, Milwaukee, WI
| | | |
Collapse
|
42
|
Chan AY, Leiding JW, Liu X, Logan BR, Burroughs LM, Allenspach EJ, Skoda-Smith S, Uzel G, Notarangelo LD, Slatter M, Gennery AR, Smith AR, Pai SY, Jordan MB, Marsh RA, Cowan MJ, Dvorak CC, Craddock JA, Prockop SE, Chandrakasan S, Kapoor N, Buckley RH, Parikh S, Chellapandian D, Oshrine BR, Bednarski JJ, Cooper MA, Shenoy S, Davila Saldana BJ, Forbes LR, Martinez C, Haddad E, Shyr DC, Chen K, Sullivan KE, Heimall J, Wright N, Bhatia M, Cuvelier GDE, Goldman FD, Meyts I, Miller HK, Seidel MG, Vander Lugt MT, Bacchetta R, Weinacht KG, Andolina JR, Caywood E, Chong H, de la Morena MT, Aquino VM, Shereck E, Walter JE, Dorsey MJ, Seroogy CM, Griffith LM, Kohn DB, Puck JM, Pulsipher MA, Torgerson TR. Hematopoietic Cell Transplantation in Patients With Primary Immune Regulatory Disorders (PIRD): A Primary Immune Deficiency Treatment Consortium (PIDTC) Survey. Front Immunol 2020; 11:239. [PMID: 32153572 PMCID: PMC7046837 DOI: 10.3389/fimmu.2020.00239] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 01/29/2020] [Indexed: 12/20/2022] Open
Abstract
Primary Immune Regulatory Disorders (PIRD) are an expanding group of diseases caused by gene defects in several different immune pathways, such as regulatory T cell function. Patients with PIRD develop clinical manifestations associated with diminished and exaggerated immune responses. Management of these patients is complicated; oftentimes immunosuppressive therapies are insufficient, and patients may require hematopoietic cell transplant (HCT) for treatment. Analysis of HCT data in PIRD patients have previously focused on a single gene defect. This study surveyed transplanted patients with a phenotypic clinical picture consistent with PIRD treated in 33 Primary Immune Deficiency Treatment Consortium centers and European centers. Our data showed that PIRD patients often had immunodeficient and autoimmune features affecting multiple organ systems. Transplantation resulted in resolution of disease manifestations in more than half of the patients with an overall 5-years survival of 67%. This study, the first to encompass disorders across the PIRD spectrum, highlights the need for further research in PIRD management.
Collapse
Affiliation(s)
- Alice Y Chan
- Division of Pediatric Allergy, Immunology, BMT, Benioff Children's Hospital, University of California, San Francisco, San Francisco, CA, United States
| | - Jennifer W Leiding
- Department of Pediatrics, Johns Hopkins All Children's Hospital, University of South Florida, St. Petersburg, FL, United States
| | - Xuerong Liu
- Division of Biostatistics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Brent R Logan
- Division of Biostatistics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Lauri M Burroughs
- Department of Pediatrics, Fred Hutchinson Cancer Research Center, Seattle Children's Hospital, University of Washington School of Medicine, Seattle, WA, United States
| | - Eric J Allenspach
- Department of Pediatrics, Seattle Children's Hospital, University of Washington School of Medicine, Seattle, WA, United States
| | - Suzanne Skoda-Smith
- Department of Pediatrics, Seattle Children's Hospital, University of Washington School of Medicine, Seattle, WA, United States
| | - Gulbu Uzel
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Luigi D Notarangelo
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Mary Slatter
- Primary Immunodeficiency Group, Paediatric Immunology and Haematopoietic Stem Cell Transplantation, Translational and Clinical Research Institute, Great North Childrens' Hospital, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Andrew R Gennery
- Primary Immunodeficiency Group, Paediatric Immunology and Haematopoietic Stem Cell Transplantation, Translational and Clinical Research Institute, Great North Childrens' Hospital, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Angela R Smith
- Pediatric Blood and Marrow Transplant, University of Minnesota, Minneapolis, MN, United States
| | - Sung-Yun Pai
- Division of Pediatric Hematology-Oncology, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Michael B Jordan
- Division of Bone Marrow Transplantation and Immune Deficiency, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, United States
| | - Rebecca A Marsh
- Division of Bone Marrow Transplantation and Immune Deficiency, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, United States
| | - Morton J Cowan
- Division of Pediatric Allergy, Immunology, BMT, Benioff Children's Hospital, University of California, San Francisco, San Francisco, CA, United States
| | - Christopher C Dvorak
- Division of Pediatric Allergy, Immunology, BMT, Benioff Children's Hospital, University of California, San Francisco, San Francisco, CA, United States
| | - John A Craddock
- Texas Children's Cancer Center, Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, United States
| | - Susan E Prockop
- Stem Cell Transplant and Cellular Therapy Service, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Shanmuganathan Chandrakasan
- Division of Bone Marrow Transplant, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, United States
| | - Neena Kapoor
- Section of Transplantation and Cellular Therapy, Cancer and Blood Disease Institute, Keck School of Medicine, Children's Hospital Los Angeles, University of Southern California, Los Angeles, CA, United States
| | - Rebecca H Buckley
- Departments of Pediatrics and Immunology, Duke University School of Medicine, Durham, NC, United States
| | - Suhag Parikh
- Departments of Pediatrics and Immunology, Duke University School of Medicine, Durham, NC, United States
| | - Deepak Chellapandian
- Cancer and Blood Disorders Institute, Blood and Marrow Transplant Program, Johns Hopkins All Children's Hospital, St. Petersburg, FL, United States
| | - Benjamin R Oshrine
- Cancer and Blood Disorders Institute, Blood and Marrow Transplant Program, Johns Hopkins All Children's Hospital, St. Petersburg, FL, United States
| | - Jeffrey J Bednarski
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States
| | - Megan A Cooper
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States
| | - Shalini Shenoy
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States
| | - Blachy J Davila Saldana
- Division of Blood and Marrow Transplantation, Children's National Health System, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Lisa R Forbes
- Department of Pediatrics, Immunology, Allergy, and Retrovirology Baylor College of Medicine, Texas Children's Hospital William T. Shearer Center for Human Immunobiology, Houston, TX, United States
| | - Caridad Martinez
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital Cancer Center, Houston, TX, United States
| | - Elie Haddad
- Department of Pediatrics, University of Montreal, Montreal, QC, Canada
| | - David C Shyr
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Karin Chen
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Kathleen E Sullivan
- Children's Hospital of Philadelphia, Perelman School of Medicine at University of Pennsylvania, Philadelphia, PA, United States
| | - Jennifer Heimall
- Children's Hospital of Philadelphia, Perelman School of Medicine at University of Pennsylvania, Philadelphia, PA, United States
| | - Nicola Wright
- Department of Pediatrics, Alberta Children's Hospital, University of Calgary, Calgary, AB, Canada
| | - Monica Bhatia
- Pediatric Stem Cell Transplantation, Columbia University College of Physicians and Surgeons, New York, NY, United States
| | - Geoffrey D E Cuvelier
- Manitoba Blood and Marrow Transplant Program, CancerCare Manitoba, University of Manitoba, Winnipeg, MB, Canada
| | - Frederick D Goldman
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Isabelle Meyts
- Laboratory of Inborn Errors of Immunity, Department of Immunology, Microbiology and Transplantation, KU Leuven, Leuven, Belgium.,Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
| | | | - Markus G Seidel
- Research Unit for Pediatric Hematology and Immunology, Department of Pediatrics and Adolescent Medicine, Medical University Graz, Graz, Austria
| | - Mark T Vander Lugt
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, United States
| | - Rosa Bacchetta
- Division of Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford School of Medicine, Stanford, CA, United States
| | - Katja G Weinacht
- Division of Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford School of Medicine, Stanford, CA, United States
| | - Jeffrey R Andolina
- Department of Pediatrics, Golisano Children's Hospital, University of Rochester Medical Center, Rochester, NY, United States
| | - Emi Caywood
- Nemours/Alfred I duPont Hospital for Children, Wilmington, DE, United States
| | - Hey Chong
- UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, United States
| | - Maria Teresa de la Morena
- Department of Pediatrics, Seattle Children's Hospital, University of Washington School of Medicine, Seattle, WA, United States
| | - Victor M Aquino
- Department of Pediatrics, University of Texas Southwestern Medical Center Dallas, Dallas, TX, United States
| | - Evan Shereck
- Department of Pediatrics, Oregon Health & Science University, Portland, OR, United States
| | - Jolan E Walter
- Division of Allergy and Immunology, Department of Pediatrics, Morsani College of Medicine, University of South Florida, St. Petersburg, FL, United States.,Division of Allergy and Immunology, Department of Pediatrics, Johns Hopkins All Children's Hospital, St. Petersburg, FL, United States.,Division of Allergy and Immunology, Department of Pediatrics, Massachusetts General Hospital for Children, Boston, MA, United States
| | - Morna J Dorsey
- Division of Pediatric Allergy, Immunology, BMT, Benioff Children's Hospital, University of California, San Francisco, San Francisco, CA, United States
| | - Christine M Seroogy
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Linda M Griffith
- Division of Allergy, Immunology and Transplantation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Donald B Kohn
- Department of Pediatrics, David Geffen School of Medicine at University of California, Los Angeles, CA, United States
| | - Jennifer M Puck
- Division of Pediatric Allergy, Immunology, BMT, Benioff Children's Hospital, University of California, San Francisco, San Francisco, CA, United States
| | - Michael A Pulsipher
- Section of Transplantation and Cellular Therapy, Cancer and Blood Disease Institute, Keck School of Medicine, Children's Hospital Los Angeles, University of Southern California, Los Angeles, CA, United States
| | - Troy R Torgerson
- Allen Institute for Immunology and Department of Pediatrics, University of Washington, Seattle, WA, United States
| |
Collapse
|
43
|
Dimitrova D, Gea-Banacloche J, Steinberg SM, Sadler JL, Hicks SN, Carroll E, Wilder JS, Parta M, Skeffington L, Hughes TE, Blau JE, Broadney MM, Rose JJ, Hsu AP, Fletcher R, Nunes NS, Yan XY, Telford WG, Kapoor V, Cohen JI, Freeman AF, Garabedian E, Holland SM, Lisco A, Malech HL, Notarangelo LD, Sereti I, Shah NN, Uzel G, Zerbe CS, Fowler DH, Gress RE, Kanakry CG, Kanakry JA. Prospective Study of a Novel, Radiation-Free, Reduced-Intensity Bone Marrow Transplantation Platform for Primary Immunodeficiency Diseases. Biol Blood Marrow Transplant 2020; 26:94-106. [PMID: 31493539 PMCID: PMC6942248 DOI: 10.1016/j.bbmt.2019.08.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/28/2019] [Accepted: 08/28/2019] [Indexed: 12/20/2022]
Abstract
Allogeneic blood or marrow transplantation (BMT) is a potentially curative therapy for patients with primary immunodeficiency (PID). Safe and effective reduced-intensity conditioning (RIC) approaches that are associated with low toxicity, use alternative donors, and afford good immune reconstitution are needed to advance the field. Twenty PID patients, ranging in age from 4 to 58 years, were treated on a prospective clinical trial of a novel, radiation-free and serotherapy-free RIC, T-cell-replete BMT approach using pentostatin, low-dose cyclophosphamide, and busulfan for conditioning with post-transplantation cyclophosphamide-based graft-versus-host-disease (GVHD) prophylaxis. This was a high-risk cohort with a median hematopoietic cell transplantation comorbidity index of 3. With median follow-up of survivors of 1.9 years, 1-year overall survival was 90% and grade III to IV acute GVHD-free, graft-failure-free survival was 80% at day +180. Graft failure incidence was 10%. Split chimerism was frequently observed at early post-BMT timepoints, with a lower percentage of donor T cells, which gradually increased by day +60. The cumulative incidences of grade II to IV and grade III to IV acute GVHD (aGVHD) were 15% and 5%, respectively. All aGVHD was steroid responsive. No patients developed chronic GVHD. Few significant organ toxicities were observed. Evidence of phenotype reversal was observed for all engrafted patients, even those with significantly mixed chimerism (n = 2) or with unknown underlying genetic defect (n = 3). All 6 patients with pre-BMT malignancies or lymphoproliferative disorders remain in remission. Most patients have discontinued immunoglobulin replacement. All survivors are off immunosuppression for GVHD prophylaxis or treatment. This novel RIC BMT approach for patients with PID has yielded promising results, even for high-risk patients.
Collapse
Affiliation(s)
- Dimana Dimitrova
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | | | - Seth M Steinberg
- Biostatistics and Data Management Section, National Cancer Institute, Center for Cancer Research, National Institutes of Health, Bethesda, Maryland
| | - Jennifer L Sadler
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Stephanie N Hicks
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Ellen Carroll
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Jennifer S Wilder
- Clinical Research Directorate/Clinical Monitoring Research Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Bethesda, Maryland
| | - Mark Parta
- Clinical Research Directorate/Clinical Monitoring Research Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Bethesda, Maryland
| | - Lauren Skeffington
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Thomas E Hughes
- National Institutes of Health Clinical Center, Bethesda, Maryland
| | - Jenny E Blau
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Miranda M Broadney
- Section on Growth and Obesity, Program in Endocrinology, Metabolism and Genetics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Jeremy J Rose
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Amy P Hsu
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland
| | - Rochelle Fletcher
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Natalia S Nunes
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Xiao-Yi Yan
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - William G Telford
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Veena Kapoor
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Jeffrey I Cohen
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Alexandra F Freeman
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland
| | - Elizabeth Garabedian
- Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Steven M Holland
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland
| | - Andrea Lisco
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Harry L Malech
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland
| | - Irini Sereti
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Nirali N Shah
- Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Gulbu Uzel
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland
| | - Christa S Zerbe
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland
| | - Daniel H Fowler
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Ronald E Gress
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Christopher G Kanakry
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Jennifer A Kanakry
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
44
|
Delmonte OM, Notarangelo LD. Targeted Therapy with Biologicals and Small Molecules in Primary Immunodeficiencies. Med Princ Pract 2019; 29:101-112. [PMID: 31597133 PMCID: PMC7098309 DOI: 10.1159/000503997] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 10/09/2019] [Indexed: 01/14/2023] Open
Abstract
Primary immunodeficiencies are disorders resulting from mutations in genes involved in immune defense and immune regulation. These conditions are characterized by various combinations of recurrent infections, autoimmunity, lymphoproliferation, inflammatory manifestations, and malignancy. In the last 20 years, newborn screening programs and next generation sequencing techniques have increased the ability to diagnose primary immunodeficiencies. Furthermore, an advanced understanding of the molecular basis of these inherited disorders has led to the implementation of targeted therapies that utilize small molecules and biologics to modulate the activity of impaired intracellular pathways. This article will discuss selected primary immunodeficiencies, the genetic defects of which have been recently studied and are amenable to targeted therapy as a reflection of the potential of precision medicine in the future.
Collapse
Affiliation(s)
- Ottavia Maria Delmonte
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Luigi Daniele Notarangelo
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA,
| |
Collapse
|
45
|
Delmonte OM, Castagnoli R, Calzoni E, Notarangelo LD. Inborn Errors of Immunity With Immune Dysregulation: From Bench to Bedside. Front Pediatr 2019; 7:353. [PMID: 31508401 PMCID: PMC6718615 DOI: 10.3389/fped.2019.00353] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 08/08/2019] [Indexed: 12/20/2022] Open
Abstract
Inborn errors of immunity are genetic disorders with broad clinical manifestations, ranging from increased susceptibility to infections to significant immune dysregulation, often leading to multiple autoimmune phenomena, lymphoproliferation, and malignancy. The treatment is challenging as it requires careful balancing of immunosuppression in subjects at increased risk of infections. Recently, the improved ability to define inborn errors of immunity pathophysiology at the molecular level has set the basis for the development of targeted therapeutic interventions. Such a "precision medicine" approach is mainly bases on the use of available small molecules and biologics to target a specific cell function. In this article, we summarize the clinical and laboratory features of various recently described inborn errors of immunity associated with immune dysregulation and hyperinflammation in which mechanism-based therapeutic approaches have been implemented.
Collapse
Affiliation(s)
- Ottavia Maria Delmonte
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Riccardo Castagnoli
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
- Foundation IRCCS Policlinico San Matteo, Department of Pediatrics, University of Pavia, Pavia, Italy
| | - Enrica Calzoni
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
- Department of Molecular and Translational Medicine, A. Nocivelli Institute for Molecular Medicine, University of Brescia, Brescia, Italy
| | - Luigi Daniele Notarangelo
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
46
|
Tangye SG, Bier J, Lau A, Nguyen T, Uzel G, Deenick EK. Immune Dysregulation and Disease Pathogenesis due to Activating Mutations in PIK3CD-the Goldilocks' Effect. J Clin Immunol 2019; 39:148-158. [PMID: 30911953 DOI: 10.1007/s10875-019-00612-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 03/12/2019] [Indexed: 12/12/2022]
Abstract
"This porridge is too hot!" she exclaimed. So, she tasted the porridge from the second bowl. "This porridge is too cold," she said. So, she tasted the last bowl of porridge. "Ahhh, this porridge is just right," she said happily and she ate it all up. While this describes the adventures of Goldilocks in the classic fairytale "The Story of Goldilocks and the Three Bears," it is an ideal analogy for the need for balanced signaling mediated by phosphatidylinositol-3-kinase (PI3K), a key signaling hub in immune cells. Either too little or too much PI3K activity is deleterious, even pathogenic-it needs to be "just right"! This has been elegantly demonstrated by the identification of inborn errors of immunity in key components of the PI3K pathway, and the impact of these mutations on immune regulation. Detailed analyses of patients with germline activating mutations in PIK3CD, as well as the parallel generation of novel murine models of this disease, have shed substantial light on the role of PI3K in lymphocyte development and differentiation, and mechanisms of disease pathogenesis resulting not only from PIK3CD mutations but genetic lesions in other components of the PI3K pathway. Furthermore, by being able to pharmacologically target PI3K, these monogenic conditions have provided opportunities for the implementation of precision medicine as a therapy, as well as to gain further insight into the consequences of modulating the PI3K pathway in clinical settings.
Collapse
Affiliation(s)
- Stuart G Tangye
- Immunology, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW, 2010, Australia. .,St Vincent's Clinical School, University of New South Wales, Darlinghurst, Australia.
| | - Julia Bier
- Immunology, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW, 2010, Australia.,St Vincent's Clinical School, University of New South Wales, Darlinghurst, Australia
| | - Anthony Lau
- Immunology, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW, 2010, Australia.,St Vincent's Clinical School, University of New South Wales, Darlinghurst, Australia
| | - Tina Nguyen
- Immunology, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW, 2010, Australia.,St Vincent's Clinical School, University of New South Wales, Darlinghurst, Australia
| | - Gulbu Uzel
- Laboratory of Clinical Immunology and Microbiology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Elissa K Deenick
- Immunology, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW, 2010, Australia.,St Vincent's Clinical School, University of New South Wales, Darlinghurst, Australia
| |
Collapse
|
47
|
Heimall J. Genetic Testing to Diagnose Primary Immunodeficiency Disorders and to Identify Targeted Therapy. Immunol Allergy Clin North Am 2019; 39:129-140. [DOI: 10.1016/j.iac.2018.08.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
48
|
Now Is the Time to Use Molecular Gene Testing for the Diagnosis of Primary Immune Deficiencies. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2019; 7:833-838. [PMID: 30639929 DOI: 10.1016/j.jaip.2018.12.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 12/26/2018] [Accepted: 12/26/2018] [Indexed: 12/11/2022]
Abstract
The discovery of chromosomes, genes, and DNA in the early 20th century paved the way for the development of techniques to examine the role of these elements in disease pathogenesis. Since the start of the 21st century, genetic testing and particularly next-generation sequencing has allowed for a rapid rate of gene disease associations for a broad range of primary immunodeficiency patients. At the same time, biologic and small molecule-based therapies targeting specific molecular pathways have been developed and are being applied clinically and in research settings to treat genetically defined immunodeficiencies. In recent years, both the American Academy of Allergy Asthma and Immunology and the Clinical Immunology Society have recommended the use of genetic testing for diagnosis, therapy guidance, and genetic counseling in patients with clinical symptoms of primary immunodeficiency.
Collapse
|
49
|
Castagnoli R, Delmonte OM, Calzoni E, Notarangelo LD. Hematopoietic Stem Cell Transplantation in Primary Immunodeficiency Diseases: Current Status and Future Perspectives. Front Pediatr 2019; 7:295. [PMID: 31440487 PMCID: PMC6694735 DOI: 10.3389/fped.2019.00295] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 07/03/2019] [Indexed: 12/29/2022] Open
Abstract
Primary immunodeficiencies (PID) are disorders that for the most part result from mutations in genes involved in immune host defense and immunoregulation. These conditions are characterized by various combinations of recurrent infections, autoimmunity, lymphoproliferation, inflammatory manifestations, atopy, and malignancy. Most PID are due to genetic defects that are intrinsic to hematopoietic cells. Therefore, replacement of mutant cells by healthy donor hematopoietic stem cells (HSC) represents a rational therapeutic approach. Full or partial ablation of the recipient's marrow with chemotherapy is often used to allow stable engraftment of donor-derived HSCs, and serotherapy may be added to the conditioning regimen to reduce the risks of graft rejection and graft versus host disease (GVHD). Initially, hematopoietic stem cell transplantation (HSCT) was attempted in patients with severe combined immunodeficiency (SCID) as the only available curative treatment. It was a challenging procedure, associated with elevated rates of morbidity and mortality. Overtime, outcome of HSCT for PID has significantly improved due to availability of high-resolution HLA typing, increased use of alternative donors and new stem cell sources, development of less toxic, reduced-intensity conditioning (RIC) regimens, and cellular engineering techniques for graft manipulation. Early identification of infants affected by SCID, prior to infectious complication, through newborn screening (NBS) programs and prompt genetic diagnosis with Next Generation Sequencing (NGS) techniques, have also ameliorated the outcome of HSCT. In addition, HSCT has been applied to treat a broader range of PID, including disorders of immune dysregulation. Yet, the broad spectrum of clinical and immunological phenotypes associated with PID makes it difficult to define a universal transplant regimen. As such, integration of knowledge between immunologists and transplant specialists is necessary for the development of innovative transplant protocols and to monitor their results during follow-up. Despite the improved outcome observed after HSCT, patients with severe forms of PID still face significant challenges of short and long-term transplant-related complications. To address this issue, novel HSCT strategies are being implemented aiming to improve both survival and long-term quality of life. This article will discuss the current status and latest developments in HSCT for PID, and present data regarding approach and outcome of HSCT in recently described PID, including disorders associated with immune dysregulation.
Collapse
Affiliation(s)
- Riccardo Castagnoli
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States.,Department of Pediatrics, Foundation IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Ottavia Maria Delmonte
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Enrica Calzoni
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States.,Department of Molecular and Translational Medicine, A. Nocivelli Institute for Molecular Medicine, University of Brescia, Brescia, Italy
| | - Luigi Daniele Notarangelo
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
50
|
Notarangelo LD. Hematopoietic stem cell transplantation for activated phosphoinositide 3-kinase δ syndrome: Who, when, and how? J Allergy Clin Immunol 2018; 143:91-93. [PMID: 30218677 DOI: 10.1016/j.jaci.2018.08.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 07/30/2018] [Accepted: 08/13/2018] [Indexed: 11/27/2022]
Affiliation(s)
- Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md.
| |
Collapse
|