1
|
Radhouani M, Farhat A, Hakobyan A, Zahalka S, Pimenov L, Fokina A, Hladik A, Lakovits K, Brösamlen J, Dvorak V, Nunes N, Zech A, Idzko M, Krausgruber T, Köhl J, Uluckan O, Kovarik J, Hoehlig K, Vater A, Eckhard M, Sombke A, Fortelny N, Menche J, Knapp S, Starkl P. Eosinophil innate immune memory after bacterial skin infection promotes allergic lung inflammation. Sci Immunol 2025; 10:eadp6231. [PMID: 40184438 DOI: 10.1126/sciimmunol.adp6231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 11/22/2024] [Accepted: 02/27/2025] [Indexed: 04/06/2025]
Abstract
Microbial exposure at barrier interfaces drives development and balance of the immune system, but the consequences of local infections for systemic immunity and secondary inflammation are unclear. Here, we show that skin exposure to the bacterium Staphylococcus aureus persistently shapes the immune system of mice with specific impact on progenitor and mature bone marrow neutrophil and eosinophil populations. The infection-imposed changes in eosinophils were long-lasting and associated with functional as well as imprinted epigenetic and metabolic changes. Bacterial exposure enhanced cutaneous allergic sensitization and resulted in exacerbated allergen-induced lung inflammation. Functional bone marrow eosinophil reprogramming and pulmonary allergen responses were driven by the alarmin interleukin-33 and the complement cleavage fragment C5a. Our study highlights the systemic impact of skin inflammation and reveals mechanisms of eosinophil innate immune memory and organ cross-talk that modulate systemic responses to allergens.
Collapse
Affiliation(s)
- Mariem Radhouani
- Department of Medicine I, Research Division Infection Biology, Medical University of Vienna, Vienna, Austria
- CeMM-Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Asma Farhat
- Department of Medicine I, Research Division Infection Biology, Medical University of Vienna, Vienna, Austria
- CeMM-Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Anna Hakobyan
- CeMM-Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Department of Structural and Computational Biology, Center for Molecular Biology, University of Vienna, Vienna, Austria
| | - Sophie Zahalka
- Department of Medicine I, Research Division Infection Biology, Medical University of Vienna, Vienna, Austria
- CeMM-Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Lisabeth Pimenov
- Department of Medicine I, Research Division Infection Biology, Medical University of Vienna, Vienna, Austria
| | - Alina Fokina
- Department of Medicine I, Research Division Infection Biology, Medical University of Vienna, Vienna, Austria
| | - Anastasiya Hladik
- Department of Medicine I, Research Division Infection Biology, Medical University of Vienna, Vienna, Austria
| | - Karin Lakovits
- Department of Medicine I, Research Division Infection Biology, Medical University of Vienna, Vienna, Austria
| | - Jessica Brösamlen
- Department of Medicine I, Research Division Infection Biology, Medical University of Vienna, Vienna, Austria
| | | | - Natalia Nunes
- Center for Tumor Biology and Immunology, Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, Salzburg, Austria
| | - Andreas Zech
- Department of Medicine II, Department of Pulmonology, Medical University of Vienna, Vienna, Austria
| | - Marco Idzko
- Department of Medicine II, Department of Pulmonology, Medical University of Vienna, Vienna, Austria
| | - Thomas Krausgruber
- CeMM-Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Institute of Artificial Intelligence, Center for Medical Data Science, Medical University of Vienna, Vienna, Austria
| | - Jörg Köhl
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Ozge Uluckan
- Novartis Biomedical Research, Basel, Switzerland
| | - Jiri Kovarik
- Novartis Biomedical Research, Basel, Switzerland
| | | | | | - Margret Eckhard
- Center for Anatomy and Cell Biology, Cell and Developmental Biology, Medical University of Vienna, Vienna, Austria
| | - Andy Sombke
- Center for Anatomy and Cell Biology, Cell and Developmental Biology, Medical University of Vienna, Vienna, Austria
| | - Nikolaus Fortelny
- Center for Tumor Biology and Immunology, Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, Salzburg, Austria
| | - Jörg Menche
- CeMM-Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Department of Structural and Computational Biology, Center for Molecular Biology, University of Vienna, Vienna, Austria
- Faculty of Mathematics, University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Network Medicine at the University of Vienna, Vienna, Austria
| | - Sylvia Knapp
- Department of Medicine I, Research Division Infection Biology, Medical University of Vienna, Vienna, Austria
- Ignaz Semmelweis Institute, Interuniversity Institute for Infection Research, Vienna, Austria
| | - Philipp Starkl
- Department of Medicine I, Research Division Infection Biology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
2
|
Luo Z, Liao G, Meng M, Huang X, Liu X, Wen W, Yue T, Yu W, Wang C, Jiang Y. The Causal Relationship Between Gut and Skin Microbiota and Chronic Obstructive Pulmonary Disease:A Bidirectional Two-Sample Mendelian Randomization Analysis. Int J Chron Obstruct Pulmon Dis 2025; 20:709-722. [PMID: 40115862 PMCID: PMC11922780 DOI: 10.2147/copd.s494289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 03/09/2025] [Indexed: 03/23/2025] Open
Abstract
Background Recently, numerous studies have explored the potential impact of gut microbiota on Chronic Obstructive Pulmonary Disease (COPD). However, the causal relationship between skin microbiota and COPD, as well as the differences and similarities between the relationships of gut microbiota and COPD, has not been thoroughly studied. Methods We conducted a comprehensive two-sample Mendelian randomization (MR) analysis to investigate the relationships between gut and skin microbiota and COPD. The inverse variance weighted (IVW) method was used as the primary approach. MR-Egger, weighted median, and MR-PRESSO methods were used as supplementary approaches. Various sensitivity and stability analyses were conducted to validate the results. Genetic variations of gut microbiota were obtained from the FR02 cohort study. Genetic variations of skin microbiota were derived from the KORA FF4 and PopGen cohorts, with a total of 1,656 skin samples. GWAS data for COPD were obtained from the FinnGen consortium, including 18,266 COPD cases and 311,286 controls from European cohorts. Results The results of IVW method of MR analysis showed that 10 gut microbiotas and 4 skin microbiotas were negatively associated with COPD [p < 0.05, odds ratio (OR) < 1]; 3 gut microbiotas and 6 skin microbiotas were positively associated with COPD (p < 0.05, OR > 1). None of them were heterogeneous or horizontally pleiotropic (p > 0.05) or reverse causality. Conclusion This study revealed the causal relationships between gut and skin microbiota and COPD, offering fresh perspectives for the prevention, diagnosis, and management of COPD.
Collapse
Affiliation(s)
- Zhiyan Luo
- Department of Respiratory and Critical Care Medicine, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, People’s Republic of China
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Gang Liao
- Department of Respiratory and Critical Care Medicine, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, People’s Republic of China
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, People’s Republic of China
- Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, People’s Republic of China
| | - Miaodi Meng
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Xiufang Huang
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Xiaohong Liu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Wujin Wen
- Department of Respiratory and Critical Care Medicine, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, People’s Republic of China
| | - Tiegang Yue
- Department of Respiratory and Critical Care Medicine, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, People’s Republic of China
| | - Weifeng Yu
- Department of Respiratory and Critical Care Medicine, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, People’s Republic of China
| | - Changjun Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, People’s Republic of China
- Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, People’s Republic of China
| | - Yong Jiang
- Department of Respiratory and Critical Care Medicine, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, People’s Republic of China
| |
Collapse
|
3
|
Pattaroni C, Marsland BJ, Harris NL. Early-Life Host-Microbial Interactions and Asthma Development: A Lifelong Impact? Immunol Rev 2025; 330:e70019. [PMID: 40099971 PMCID: PMC11917194 DOI: 10.1111/imr.70019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 02/19/2025] [Accepted: 02/28/2025] [Indexed: 03/20/2025]
Abstract
Childhood is a multifactorial disease, and recent research highlights the influence of early-life microbial communities in shaping disease risk. This review explores the roles of the gut and respiratory microbiota in asthma development, emphasizing the importance of early microbial exposure. The gut microbiota has been particularly well studied, with certain taxa like Faecalibacterium and Bifidobacterium linked to asthma protection, whereas short-chain fatty acids produced by gut microbes support immune tolerance through the gut-lung axis. In contrast, the respiratory microbiota, though low in biomass, shows consistent associations between early bacterial colonization by Streptococcus, Moraxella, and Haemophilus and increased asthma risk. The review also addresses the emerging roles of the skin microbiota and environmental fungi in asthma, though findings remain inconsistent. Timing is a critical factor, with early-life disruptions, such as antibiotic use, potentially leading to increased asthma risk. Despite significant advances, there are still unresolved questions about the long-term consequences of early microbial perturbations, particularly regarding whether microbial dysbiosis is a cause or consequence of asthma. This review integrates current findings, highlighting the need for deeper investigation into cross-organ interactions and early microbial exposures to understand childhood asthma pathophysiology.
Collapse
Affiliation(s)
- Céline Pattaroni
- Department of Immunology, School of Translational MedicineMonash UniversityMelbourneVictoriaAustralia
| | - Benjamin J. Marsland
- Department of Immunology, School of Translational MedicineMonash UniversityMelbourneVictoriaAustralia
| | - Nicola L. Harris
- Department of Immunology, School of Translational MedicineMonash UniversityMelbourneVictoriaAustralia
| |
Collapse
|
4
|
Pan Y, Hochgerner M, Cichoń MA, Benezeder T, Bieber T, Wolf P. Langerhans cells: Central players in the pathophysiology of atopic dermatitis. J Eur Acad Dermatol Venereol 2025; 39:278-289. [PMID: 39157943 PMCID: PMC11760705 DOI: 10.1111/jdv.20291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/21/2024] [Indexed: 08/20/2024]
Abstract
Atopic dermatitis (AD) is the most common chronic inflammatory skin disease worldwide. AD is a highly complex disease with different subtypes. Many elements of AD pathophysiology have been described, but if/how they interact with each other or which mechanisms are important in which patients is still unclear. Langerhans cells (LCs) are antigen-presenting cells (APCs) in the epidermis. Depending on the context, they can act either pro- or anti-inflammatory. Many different studies have investigated LCs in the context of AD and found them to be connected to all major mechanisms of AD pathophysiology. As APCs, LCs recruit other immune cells and shape the immune response, especially adaptive immunity via polarization of T cells. As sentinel cells, LCs are primary sensors of the skin microbiome and are important for the decision of immunity versus tolerance. LCs are also involved with the integrity of the skin barrier by influencing tight junctions. Finally, LCs are important cells in the neuro-immune crosstalk in the skin. In this review, we provide an overview about the many different roles of LCs in AD. Understanding LCs might bring us closer to a more complete understanding of this highly complex disease. Potentially, modulating LCs might offer new options for targeted therapies for AD patients.
Collapse
Affiliation(s)
- Yi Pan
- Department of Dermatology and AllergyUniversity Hospital of BonnBonnGermany
- Department of Dermatology and VenerologyMedical University of GrazGrazAustria
| | - Mathias Hochgerner
- Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences, Fudan UniversityShanghaiChina
| | | | - Theresa Benezeder
- Department of Dermatology and VenerologyMedical University of GrazGrazAustria
| | - Thomas Bieber
- Department of Dermatology and AllergyUniversity Hospital of BonnBonnGermany
- CK‐CARE, Medicine CampusDavosSwitzerland
- Department of DermatologyUniversity Hospital of ZürichZürichSwitzerland
| | - Peter Wolf
- Department of Dermatology and VenerologyMedical University of GrazGrazAustria
| |
Collapse
|
5
|
Hornikova T, Jelinkova A, Jiraskova Zakostelska Z, Thon T, Coufal S, Polouckova A, Kopelentova E, Kverka M, Makovicky P, Tlaskalova-Hogenova H, Sediva A, Schwarzer M, Srutkova D. Genetic background and microbiome drive susceptibility to epicutaneous sensitization and food allergy in adjuvant-free mouse model. Front Immunol 2025; 15:1509691. [PMID: 39944558 PMCID: PMC11814220 DOI: 10.3389/fimmu.2024.1509691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 12/31/2024] [Indexed: 05/09/2025] Open
Abstract
Background The dual allergen exposure hypothesis states that sensitization to food antigens occurs through a damaged skin barrier in individuals with no previous oral tolerance to certain foods. However, the resulting allergic reaction could depend on factors such as the host's genetic predisposition as well as the skin and gut microbiota. Methods Specific-pathogen-free BALB/c and C57BL/6 and germ-free (GF) BALB/c mice were epicutaneously sensitized with ovalbumin (OVA) via dorsal tape-stripped skin and challenged with OVA by intragastric gavage. The development of food allergy (FA) symptoms, the Th2 and mast cell immune response and differences in the skin and gut microbiota were investigated. Results BALB/c mice, but not C57BL/6 mice, showed severe clinical signs of FA (hypothermia, diarrhea) as well as a stronger serum antibody response and Th2 cytokine secretion in the spleen and jejunum after OVA-treatment. The increased mast cell count correlated with higher MCPT-1 production and histidine decarboxylase mRNA expression in the jejunum of these mice. The 16S rRNA sequencing analysis revealed lower abundance of short-chain fatty acids producing bacteria in the gut microbiome of OVA-treated BALB/c mice. Changes in the β-diversity of the gut microbiome reflect both the genetic background as well as the OVA treatment of experimental mice. Compared to SPF mice, GF mice developed more severe anaphylactic hypothermia but no diarrhea, although they had a higher mast cell count, increased MCPT-1 production in the jejunum and serum, and increased arachidonate 5-lipoxygenase mRNA expression. Conclusions We show that the BALB/c mice are a mouse strain of choice for model of adjuvant-free epicutaneous sensitization through the disrupted skin barrier and following food allergy development. Our results highlight the significant influence of genetic background and microbiota on food allergy susceptibility, emphasizing the complex interplay between these factors in the allergic response.
Collapse
Affiliation(s)
- Tereza Hornikova
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czechia
| | - Anna Jelinkova
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czechia
| | - Zuzana Jiraskova Zakostelska
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Tomas Thon
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Stepan Coufal
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Andrea Polouckova
- Department of Immunology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czechia
| | - Eliska Kopelentova
- Department of Immunology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czechia
| | - Miloslav Kverka
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Peter Makovicky
- Department of Histology and Embryology, Faculty of Medicine, University of Ostrava, Ostrava, Czechia
| | - Helena Tlaskalova-Hogenova
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Anna Sediva
- Department of Immunology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czechia
| | - Martin Schwarzer
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czechia
| | - Dagmar Srutkova
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czechia
| |
Collapse
|
6
|
Grigg J, Barratt B, Bønnelykke K, Custovic A, Ege M, Pasquali C, Palomares O, Shaheen S, Sokolowska M, Vercelli D, Maizels R, von Mutius E. European Respiratory Society Research Seminar on Preventing Pediatric Asthma. Pediatr Pulmonol 2025; 60:e27401. [PMID: 39625247 PMCID: PMC11748117 DOI: 10.1002/ppul.27401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 10/29/2024] [Accepted: 11/01/2024] [Indexed: 01/22/2025]
Abstract
This report is a summary of the presentations given at the European Respiratory Society's Research Seminar on Asthma Prevention. The seminar reviewed both epidemiological and mechanistic studies and concluded that; (i) reducing exposure of pregnant women and children to air pollution will reduce incident asthma, (ii) there are promising data that both fish oil and a component of raw cow's milk prevent asthma, and (iii) modulating trained immunity by either mimicking helminth infection or oral and sublingual bacterial products is a promising area of research.
Collapse
Affiliation(s)
- Jonathan Grigg
- Institute of Asthma and Allergy Prevention, Helmholtz Zentrum München, German Research Center for Environmental HealthNeuherbergGermany
- Blizard InstituteQueen Mary University of LondonLondonUK
| | - Benjamin Barratt
- MRC Centre for Environment and Health, Environmental Research Group, Imperial College LondonLondonUK
| | - Klaus Bønnelykke
- Copenhagen Prospective Studies on Asthma in ChildhoodCopenhagen University HospitalCopenhagenDenmark
| | - Adnan Custovic
- National Heart and Lung Institute, Imperial College LondonLondonUK
| | - Markus Ege
- Institute of Asthma and Allergy Prevention, Helmholtz Zentrum München, German Research Center for Environmental HealthNeuherbergGermany
- Dr von Hauner Children's HospitalLudwig Maximilian University; Institute of Asthma and Allergy prevention, Helmholtz Centre Munich; Comprehensive Pneumology Center Munich (CPC‐M), German Center for Lung ResearchMunichGermany
| | | | - Oscar Palomares
- Department of Biochemistry and Molecular BiologySchool of Chemistry, Complutense University of MadridMadridSpain
| | - Seif Shaheen
- Wolfson Institute of Population HealthQueen Mary University of LondonLondonUK
- Allergy and Lung Health Unit, Melbourne School of Population and Global HealthThe University of MelbourneVictoriaAustralia
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma ResearchUniversity of ZurichDavosSwitzerland
| | - Donata Vercelli
- Department of Cellular and Molecular MedicineThe University of ArizonaTucsonArizonaUSA
- Asthma and Airway Disease Research CenterThe University of ArizonaTucsonArizonaUSA
- The BIO5 InstituteThe University of ArizonaTucsonArizonaUSA
- Arizona Center for the Biology of Complex DiseasesThe University of ArizonaTucsonArizonaUSA
| | - Rick Maizels
- Wellcome Centre of Integrative Parasitology, School of Infection and ImmunityUniversity of GlasgowGlasgowUK
| | - Erika von Mutius
- Institute of Asthma and Allergy Prevention, Helmholtz Zentrum München, German Research Center for Environmental HealthNeuherbergGermany
| |
Collapse
|
7
|
Radhouani M, Starkl P. Adjuvant-independent airway sensitization and infection mouse models leading to allergic asthma. FRONTIERS IN ALLERGY 2024; 5:1423938. [PMID: 39157265 PMCID: PMC11327155 DOI: 10.3389/falgy.2024.1423938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/05/2024] [Indexed: 08/20/2024] Open
Abstract
Asthma is a chronic respiratory disease of global importance. Mouse models of allergic asthma have been instrumental in advancing research and novel therapeutic strategies for patients. The application of relevant allergens and physiological routes of exposure in such models has led to valuable insights into the complexities of asthma onset and development as well as key disease mechanisms. Furthermore, environmental microbial exposures and infections have been shown to play a fundamental part in asthma pathogenesis and alter disease outcome. In this review, we delve into physiological mouse models of allergic asthma and explore literature reports on most significant interplays between microbial infections and asthma development with relevance to human disease.
Collapse
Affiliation(s)
- Mariem Radhouani
- Research Division of Infection Biology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Philipp Starkl
- Research Division of Infection Biology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
8
|
Lane Starr NM, Al-Rayyan N, Smith JM, Sandstrom S, Swaney MH, Salamzade R, Steidl O, Kalan LR, Singh AM. Combined metagenomic- and culture-based approaches to investigate bacterial strain-level associations with medication-controlled mild-moderate atopic dermatitis. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2024; 3:100259. [PMID: 38779310 PMCID: PMC11109885 DOI: 10.1016/j.jacig.2024.100259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 01/05/2024] [Accepted: 01/27/2024] [Indexed: 05/25/2024]
Abstract
Background The skin microbiome is disrupted in atopic dermatitis (AD). Existing research focuses on moderate to severe, unmedicated disease. Objective We sought to investigate metagenomic- and culture-based bacterial strain-level differences in mild, medicated AD and the effects these have on human keratinocytes (HKs). Methods Skin swabs from anterior forearms were collected from 20 pediatric participants (11 participants with AD sampled at lesional and nonlesional sites and 9 age- and sex-matched controls). Participants had primarily mild to moderate AD and maintained medication use. Samples were processed for microbial metagenomic sequencing and bacterial isolation. Isolates identified as Staphylococcus aureus were tested for enterotoxin production. HK cultures were treated with cell-free conditioned media from representative Staphylococcus species to measure barrier effects. Results Metagenomic sequencing identified significant differences in microbiome composition between AD and control groups. Differences were seen at the species and strain levels for Staphylococci, with S aureus found only in participants with AD and differences in Staphylococcus epidermidis strains between control and AD swabs. These strains showed differences in toxin gene presence, which was confirmed in vitro for S aureus enterotoxins. The strain from the participant with the most severe AD produced enterotoxin B levels more than 100-fold higher than the other strains (P < .001). Strains also displayed differential effects on HK metabolism and barrier function. Conclusions Strain-level differences in toxin genes from Staphylococcus strains may explain varying effects on HK, with S aureus and non-aureus strains negatively affecting viability and barrier function. These differences are likely important in AD pathogenesis.
Collapse
Affiliation(s)
- Nicole M. Lane Starr
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin, Madison, Wis
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin, Madison, Wis
| | - Numan Al-Rayyan
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin, Madison, Wis
| | - Jennifer M. Smith
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin, Madison, Wis
| | - Shelby Sandstrom
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin, Madison, Wis
| | - Mary Hannah Swaney
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin, Madison, Wis
| | - Rauf Salamzade
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin, Madison, Wis
| | - Olivia Steidl
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin, Madison, Wis
| | - Lindsay R. Kalan
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin, Madison, Wis
- Division of Infectious Disease, Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Wis
- Department of Biochemistry and Biomedical Sciences, M.G. DeGroote Institute for Infectious Disease Research, David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada
| | - Anne Marie Singh
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin, Madison, Wis
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin, Madison, Wis
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin, Madison, Wis
| |
Collapse
|
9
|
Musiol S, Harris CP, Gschwendtner S, Burrell A, Amar Y, Schnautz B, Renisch D, Braun SC, Haak S, Schloter M, Schmidt-Weber CB, Zielinski CE, Alessandrini F. The impact of high-salt diet on asthma in humans and mice: Effect on specific T-cell signatures and microbiome. Allergy 2024; 79:1844-1857. [PMID: 38798015 DOI: 10.1111/all.16148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/25/2024] [Accepted: 04/14/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND The rise in asthma has been linked to different environmental and lifestyle factors including dietary habits. Whether dietary salt contributes to asthma incidence, remains controversial. We aimed to investigate the impact of higher salt intake on asthma incidence in humans and to evaluate underlying mechanisms using mouse models. METHODS Epidemiological research was conducted using the UK Biobank Resource. Data were obtained from 42,976 participants with a history of allergies. 24-h sodium excretion was estimated from spot urine, and its association with asthma incidence was assessed by Cox regression, adjusting for relevant covariates. For mechanistic studies, a mouse model of mite-induced allergic airway inflammation (AAI) fed with high-salt diet (HSD) or normal-salt chow was used to characterize disease development. The microbiome of lung and feces (as proxy for gut) was analyzed via 16S rRNA gene based metabarcoding approach. RESULTS In humans, urinary sodium excretion was directly associated with asthma incidence among females but not among males. HSD-fed female mice displayed an aggravated AAI characterized by increased levels of total IgE, a TH2-TH17-biased inflammatory cell infiltration accompanied by upregulation of osmosensitive stress genes. HSD induced distinct changes in serum short chain fatty acids and in both gut and lung microbiome, with a lower Bacteroidetes to Firmicutes ratio and decreased Lactobacillus relative abundance in the gut, and enriched members of Gammaproteobacteria in the lung. CONCLUSIONS High dietary salt consumption correlates with asthma incidence in female adults with a history of allergies. Female mice revealed HSD-induced T-cell lung profiles accompanied by alterations of gut and lung microbiome.
Collapse
Affiliation(s)
- Stephanie Musiol
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Carla P Harris
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Dr. von Hauner Children's Hospital, University Hospital, LMU of Munich, Munich, Germany
| | - Silvia Gschwendtner
- Research Unit for Comparative Microbiome Analysis, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Amy Burrell
- Department of Infection Immunology, Leibniz Institute for Natural Product Research & Infection Biology, Hans-Knöll-Institute, Jena, Germany
- Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany
| | - Yacine Amar
- Department of Dermatology and Allergy, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Benjamin Schnautz
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Dennis Renisch
- Department of Chemistry - TRIGA site, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Sonja C Braun
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Chair of Epidemiology, Faculty of Medicine, LMU of Munich, Munich, Germany
| | - Stefan Haak
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Michael Schloter
- Research Unit for Comparative Microbiome Analysis, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Carsten B Schmidt-Weber
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Christina E Zielinski
- Department of Infection Immunology, Leibniz Institute for Natural Product Research & Infection Biology, Hans-Knöll-Institute, Jena, Germany
- Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany
- Center for Translational Cancer Research & Institute of Virology, Technical University of Munich, Munich, Germany
| | - Francesca Alessandrini
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Member of the German Center of Lung Research (DZL), Munich, Germany
| |
Collapse
|
10
|
Yang Y, Huang J, Zeng A, Long X, Yu N, Wang X. The role of the skin microbiome in wound healing. BURNS & TRAUMA 2024; 12:tkad059. [PMID: 38444635 PMCID: PMC10914219 DOI: 10.1093/burnst/tkad059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/05/2023] [Accepted: 11/21/2023] [Indexed: 03/07/2024]
Abstract
The efficient management of skin wounds for rapid and scarless healing represents a major clinical unmet need. Nonhealing skin wounds and undesired scar formation impair quality of life and result in high healthcare expenditure worldwide. The skin-colonizing microbiota contributes to maintaining an intact skin barrier in homeostasis, but it also participates in the pathogenesis of many skin disorders, including aberrant wound healing, in many respects. This review focuses on the composition of the skin microbiome in cutaneous wounds of different types (i.e. acute and chronic) and with different outcomes (i.e. nonhealing and hypertrophic scarring), mainly based on next-generation sequencing analyses; furthermore, we discuss the mechanistic insights into host-microbe and microbe-microbe interactions during wound healing. Finally, we highlight potential therapeutic strategies that target the skin microbiome to improve healing outcomes.
Collapse
Affiliation(s)
- Yuyan Yang
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1, Shuaifuyuan, Dongcheng District, Beijing, 100005, China
| | - Jiuzuo Huang
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1, Shuaifuyuan, Dongcheng District, Beijing, 100005, China
| | - Ang Zeng
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1, Shuaifuyuan, Dongcheng District, Beijing, 100005, China
| | - Xiao Long
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1, Shuaifuyuan, Dongcheng District, Beijing, 100005, China
| | - Nanze Yu
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1, Shuaifuyuan, Dongcheng District, Beijing, 100005, China
| | - Xiaojun Wang
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1, Shuaifuyuan, Dongcheng District, Beijing, 100005, China
| |
Collapse
|
11
|
Al Meslamani AZ. Insights into the immunological links between dietary habits and asthma. Expert Rev Clin Immunol 2024; 20:245-248. [PMID: 37897370 DOI: 10.1080/1744666x.2023.2277864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/27/2023] [Indexed: 10/30/2023]
Affiliation(s)
- Ahmad Z Al Meslamani
- College of Pharmacy, Al Ain University, Abu Dhabi, United Arab Emirates
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
12
|
Kim K, Jang H, Kim E, Kim H, Sung GY. Recent advances in understanding the role of the skin microbiome in the treatment of atopic dermatitis. Exp Dermatol 2023; 32:2048-2061. [PMID: 37767872 DOI: 10.1111/exd.14940] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/31/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023]
Abstract
The skin is the largest organ in the human body, and histologically consists of the epidermis, dermis and subcutaneous tissue. Humans maintain a cooperative symbiotic relationship with their skin microbiota, a complex community of bacteria, fungi and viruses that live on the surface of the skin, and which act as a barrier to protect the body from the inside and outside. The skin is a 'habitat' and vast 'ecosystem' inhabited by countless microbes; as such, relationships have been forged through millions of years of coevolution. It is not surprising then that microbes are key participants in shaping and maintaining essential physiological processes. In addition to maintaining barrier function, the unique symbiotic microbiota that colonizes the skin increases the immune response and provides protection against pathogenic microbes. This review examines our current understanding of skin microbes in shaping and enhancing the skin barrier, as well as skin microbiome-host interactions and their roles in skin diseases, such as atopic dermatitis (AD). We also report on the current status of AD therapeutic drugs that target the skin microbiome, related research on current therapeutic strategies, and the limitations and future considerations of skin microbiome research. In particular, as a future strategy, we discuss the need for a skin-on-a-chip-based microphysiological system research model amenable to biomimetic in vitro studies and human skin equivalent models, including skin appendages.
Collapse
Affiliation(s)
- Kyunghee Kim
- Interdisciplinary Program of Nano-Medical Device Engineering, Hallym University, Chuncheon, Korea
- Integrative Materials Research Institute, Hallym University, Chuncheon, Korea
| | - Hyeji Jang
- Interdisciplinary Program of Nano-Medical Device Engineering, Hallym University, Chuncheon, Korea
- Integrative Materials Research Institute, Hallym University, Chuncheon, Korea
| | - Eunyul Kim
- Interdisciplinary Program of Nano-Medical Device Engineering, Hallym University, Chuncheon, Korea
- Integrative Materials Research Institute, Hallym University, Chuncheon, Korea
| | - Hyeju Kim
- Interdisciplinary Program of Nano-Medical Device Engineering, Hallym University, Chuncheon, Korea
- Integrative Materials Research Institute, Hallym University, Chuncheon, Korea
| | - Gun Yong Sung
- Interdisciplinary Program of Nano-Medical Device Engineering, Hallym University, Chuncheon, Korea
- Integrative Materials Research Institute, Hallym University, Chuncheon, Korea
- Major in Materials Science and Engineering, Hallym University, Chuncheon, Korea
| |
Collapse
|
13
|
Rapin A, Rehbinder EM, Macowan M, Pattaroni C, Lødrup Carlsen KC, Harris NL, Jonassen CM, Landrø L, Lossius AH, Nordlund B, Rudi K, Skjerven HO, Cathrine Staff A, Söderhäll C, Ubags N, Vettukattil R, Marsland BJ. The skin microbiome in the first year of life and its association with atopic dermatitis. Allergy 2023; 78:1949-1963. [PMID: 36779606 DOI: 10.1111/all.15671] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 12/14/2022] [Accepted: 01/04/2023] [Indexed: 02/14/2023]
Abstract
BACKGROUND Early-life microbial colonization of the skin may modulate the immune system and impact the development of atopic dermatitis (AD) and allergic diseases later in life. To address this question, we assessed the association between the skin microbiome and AD, skin barrier integrity and allergic diseases in the first year of life. We further explored the evolution of the skin microbiome with age and its possible determinants, including delivery mode. METHODS Skin microbiome was sampled from the lateral upper arm on the first day of life, and at 3, 6, and 12 months of age. Bacterial communities were assessed by 16S rRNA gene amplicon sequencing in 346 infants from the PreventADALL population-based birth cohort study, representing 970 samples. Clinical investigations included skin examination and skin barrier function measured as trans-epidermal water loss (TEWL) at the site and time of microbiome sampling at 3, 6, and 12 months. Parental background information was recorded in electronic questionnaires, and delivery mode (including vaginal delivery (VD), VD in water, elective caesarean section (CS) and emergency CS) was obtained from maternal hospital charts. RESULTS Strong temporal variations in skin bacterial community composition were found in the first year of life, with distinct patterns associated with different ages. Confirming our hypothesis, skin bacterial community composition in the first year of life was associated with skin barrier integrity and later onsets of AD. Delivery mode had a strong impact on the microbiome composition at birth, with each mode leading to distinct patterns of colonization. Other possible determinants of the skin microbiome were identified, including environmental and parental factors as well as breastfeeding. CONCLUSION Skin microbiome composition during infancy is defined by age, transiently influenced by delivery mode as well as environmental, parental factors and breastfeeding. The microbiome is also associated with skin barrier integrity and the onset of AD.
Collapse
Affiliation(s)
- Alexis Rapin
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Service de Pneumologie, Département de Médecine, Centre Hospitalier Universitaire Vaudois (CHUV), Epalinges, Switzerland
| | - Eva Maria Rehbinder
- Department of Dermatology, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Matthew Macowan
- Department of Immunology, Monash University, Melbourne, Victoria, Australia
| | - Céline Pattaroni
- Service de Pneumologie, Département de Médecine, Centre Hospitalier Universitaire Vaudois (CHUV), Epalinges, Switzerland
- Department of Immunology, Monash University, Melbourne, Victoria, Australia
| | - Karin C Lødrup Carlsen
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Nicola L Harris
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Department of Immunology, Monash University, Melbourne, Victoria, Australia
| | - Christine M Jonassen
- Genetic Unit, Centre for Laboratory Medicine, Østfold Hospital Trust, Kalnes, Norway
| | - Linn Landrø
- Department of Dermatology, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Astrid H Lossius
- Department of Dermatology, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Björn Nordlund
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Knut Rudi
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Håvard O Skjerven
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Anne Cathrine Staff
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Obstetrics and Gynaecology, Oslo University Hospital, Oslo, Norway
| | - Cilla Söderhäll
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Niki Ubags
- Service de Pneumologie, Département de Médecine, Centre Hospitalier Universitaire Vaudois (CHUV), Epalinges, Switzerland
| | - Riyas Vettukattil
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Benjamin J Marsland
- Service de Pneumologie, Département de Médecine, Centre Hospitalier Universitaire Vaudois (CHUV), Epalinges, Switzerland
- Department of Immunology, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
14
|
Planchette AL, Schmidt C, Burri O, Gomez de Agüero M, Radenovic A, Mylonas A, Extermann J. Optical imaging of the small intestine immune compartment across scales. Commun Biol 2023; 6:352. [PMID: 37002381 PMCID: PMC10066397 DOI: 10.1038/s42003-023-04642-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 02/28/2023] [Indexed: 04/03/2023] Open
Abstract
The limitations of 2D microscopy constrain our ability to observe and understand tissue-wide networks that are, by nature, 3-dimensional. Optical projection tomography (OPT) enables the acquisition of large volumes (ranging from micrometres to centimetres) in various tissues. We present a multi-modal workflow for the characterization of both structural and quantitative parameters of the mouse small intestine. As proof of principle, we evidence its applicability for imaging the mouse intestinal immune compartment and surrounding mucosal structures. We quantify the volumetric size and spatial distribution of Isolated Lymphoid Follicles (ILFs) and quantify the density of villi throughout centimetre-long segments of intestine. Furthermore, we exhibit the age and microbiota dependence for ILF development, and leverage a technique that we call reverse-OPT for identifying and homing in on regions of interest. Several quantification capabilities are displayed, including villous density in the autofluorescent channel and the size and spatial distribution of the signal of interest at millimetre-scale volumes. The concatenation of 3D imaging with reverse-OPT and high-resolution 2D imaging allows accurate localisation of ROIs and adds value to interpretations made in 3D. Importantly, OPT may be used to identify sparsely-distributed regions of interest in large volumes whilst retaining compatibility with high-resolution microscopy modalities, including confocal microscopy. We believe this pipeline to be approachable for a wide-range of specialties, and to provide a new method for characterisation of the mouse intestinal immune compartment.
Collapse
Affiliation(s)
- Arielle Louise Planchette
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland.
| | - Cédric Schmidt
- HEPIA/HES-SO, University of Applied Sciences of Western Switzerland, Rue de la Prairie 4, 1202, Geneva, Switzerland
| | - Olivier Burri
- BioImaging & Optics Platform, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Mercedes Gomez de Agüero
- Host-microbial interactions group, Institute of Systems Immunology, Max Planck research group, University of Würzburg, Würzburg, Germany
- Mucosal Immunology Group, Department for Biomedical Research, University of Bern, Bern, Switzerland
| | - Aleksandra Radenovic
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland.
| | - Alessio Mylonas
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Jérôme Extermann
- HEPIA/HES-SO, University of Applied Sciences of Western Switzerland, Rue de la Prairie 4, 1202, Geneva, Switzerland
| |
Collapse
|
15
|
Trompette A, Ubags ND. Skin barrier immunology from early life to adulthood. Mucosal Immunol 2023; 16:194-207. [PMID: 36868478 DOI: 10.1016/j.mucimm.2023.02.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/15/2023] [Accepted: 02/21/2023] [Indexed: 03/05/2023]
Abstract
Our skin has a unique barrier function, which is imperative for the body's protection against external pathogens and environmental insults. Although interacting closely and sharing many similarities with key mucosal barrier sites, such as the gut and the lung, the skin also provides protection for internal tissues and organs and has a distinct lipid and chemical composition. Skin immunity develops over time and is influenced by a multiplicity of different factors, including lifestyle, genetics, and environmental exposures. Alterations in early life skin immune and structural development may have long-term consequences for skin health. In this review, we summarize the current knowledge on cutaneous barrier and immune development from early life to adulthood, with an overview of skin physiology and immune responses. We specifically highlight the influence of the skin microenvironment and other host intrinsic, host extrinsic (e.g. skin microbiome), and environmental factors on early life cutaneous immunity.
Collapse
Affiliation(s)
- Aurélien Trompette
- Faculty of Biology and Medicine, University of Lausanne, Service de Pneumologie, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Niki D Ubags
- Faculty of Biology and Medicine, University of Lausanne, Service de Pneumologie, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland.
| |
Collapse
|
16
|
Abstract
Human skin forms a protective barrier against the external environment and is our first line of defense against toxic, solar, and pathogenic insults. Our skin also defines our outward appearance, protects our internal tissues and organs, acts as a sensory interface, and prevents dehydration. Crucial to the skin's barrier function is the colonizing microbiota, which provides protection against pathogens, tunes immune responses, and fortifies the epithelium. Here we highlight recent advances in our understanding of how the microbiota mediates multiple facets of skin barrier function. We discuss recent insights into pathological host-microbiota interactions and implications for disorders of the skin and distant organs. Finally, we examine how microbiota-based mechanisms can be targeted to prevent or manage skin disorders and impaired wound healing.
Collapse
Affiliation(s)
- Tamia A Harris-Tryon
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Elizabeth A Grice
- Departments of Dermatology and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
17
|
Trompette A, Pernot J, Perdijk O, Alqahtani RAA, Domingo JS, Camacho-Muñoz D, Wong NC, Kendall AC, Wiederkehr A, Nicod LP, Nicolaou A, von Garnier C, Ubags NDJ, Marsland BJ. Gut-derived short-chain fatty acids modulate skin barrier integrity by promoting keratinocyte metabolism and differentiation. Mucosal Immunol 2022; 15:908-926. [PMID: 35672452 PMCID: PMC9385498 DOI: 10.1038/s41385-022-00524-9] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/06/2022] [Accepted: 04/25/2022] [Indexed: 02/07/2023]
Abstract
Barrier integrity is central to the maintenance of healthy immunological homeostasis. Impaired skin barrier function is linked with enhanced allergen sensitization and the development of diseases such as atopic dermatitis (AD), which can precede the development of other allergic disorders, for example, food allergies and asthma. Epidemiological evidence indicates that children suffering from allergies have lower levels of dietary fibre-derived short-chain fatty acids (SCFA). Using an experimental model of AD-like skin inflammation, we report that a fermentable fibre-rich diet alleviates systemic allergen sensitization and disease severity. The gut-skin axis underpins this phenomenon through SCFA production, particularly butyrate, which strengthens skin barrier function by altering mitochondrial metabolism of epidermal keratinocytes and the production of key structural components. Our results demonstrate that dietary fibre and SCFA improve epidermal barrier integrity, ultimately limiting early allergen sensitization and disease development.The Graphical Abstract was designed using Servier Medical Art images ( https://smart.servier.com ).
Collapse
Affiliation(s)
- Aurélien Trompette
- grid.8515.90000 0001 0423 4662Division of Pulmonary Medicine, Department of Medicine, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Julie Pernot
- grid.8515.90000 0001 0423 4662Division of Pulmonary Medicine, Department of Medicine, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Olaf Perdijk
- grid.1002.30000 0004 1936 7857Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC Australia
| | - Rayed Ali A. Alqahtani
- grid.5379.80000000121662407Laboratory for Lipidomics and Lipid Biology, University of Manchester, Division of Pharmacy and Optometry, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT UK
| | - Jaime Santo Domingo
- grid.5333.60000000121839049Nestlé Institute of Health, EPFL innovation Park, Lausanne, Switzerland
| | - Dolores Camacho-Muñoz
- grid.5379.80000000121662407Laboratory for Lipidomics and Lipid Biology, University of Manchester, Division of Pharmacy and Optometry, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT UK
| | - Nicholas C. Wong
- grid.1002.30000 0004 1936 7857Monash Bioinformatics Platform, Monash University, Clayton, VIC Australia
| | - Alexandra C. Kendall
- grid.5379.80000000121662407Laboratory for Lipidomics and Lipid Biology, University of Manchester, Division of Pharmacy and Optometry, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT UK
| | - Andreas Wiederkehr
- grid.5333.60000000121839049Nestlé Institute of Health, EPFL innovation Park, Lausanne, Switzerland
| | - Laurent P. Nicod
- Pneumologie, Clinic Cecil from Hirslanden, Lausanne, Switzerland
| | - Anna Nicolaou
- grid.5379.80000000121662407Laboratory for Lipidomics and Lipid Biology, University of Manchester, Division of Pharmacy and Optometry, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT UK
| | - Christophe von Garnier
- grid.8515.90000 0001 0423 4662Division of Pulmonary Medicine, Department of Medicine, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Niki D. J. Ubags
- grid.8515.90000 0001 0423 4662Division of Pulmonary Medicine, Department of Medicine, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Benjamin J. Marsland
- grid.1002.30000 0004 1936 7857Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC Australia
| |
Collapse
|
18
|
Visscher MO, Hu P, Carr AN, Bascom CC, Isfort RJ, Creswell K, Adams R, Tiesman JP, Lammers K, Narendran V. Newborn infant skin gene expression: Remarkable differences versus adults. PLoS One 2021; 16:e0258554. [PMID: 34665817 PMCID: PMC8525758 DOI: 10.1371/journal.pone.0258554] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 09/27/2021] [Indexed: 01/03/2023] Open
Abstract
At birth, human infants are poised to survive in harsh, hostile conditions. An understanding of the state of newborn skin development and maturation is key to the maintenance of health, optimum response to injury, healing and disease. The observational study collected full-thickness newborn skin samples from 27 infants at surgery and compared them to skin samples from 43 adult sites protected from ultraviolet radiation exposure, as the standard for stable, mature skin. Transcriptomics profiling and gene set enrichment analysis were performed. Statistical analysis established over 25,000 differentially regulated probe sets, representing 10,647 distinct genes, in infant skin compared to adult skin. Gene set enrichment analysis showed a significant increase in 143 biological processes (adjusted p < 0.01) in infant skin, versus adult skin samples, including extracellular matrix (ECM) organization, cell adhesion, collagen fibril organization and fatty acid metabolic process. ECM organization and ECM structure organization were the biological processes in infant skin with the lowest adjusted P-value. Genes involving epidermal development, immune function, cell differentiation, and hair cycle were overexpressed in adults, representing 101 significantly enriched biological processes (adjusted p < 0.01). The processes with the highest significant difference were skin and epidermal development, e.g., keratinocyte differentiation, keratinization and cornification intermediate filament cytoskeleton organization and hair cycle. Enriched Gene Ontology (GO) biological processes also involved immune function, including antigen processing and presentation. When compared to ultraviolet radiation-protected adult skin, our results provide essential insight into infant skin and its ability to support the newborn's preparedness to survive and flourish, despite the infant's new environment laden with microbes, high oxygen tension and potential irritants. This fundamental knowledge is expected to guide strategies to protect and preserve the features of unperturbed, young skin.
Collapse
Affiliation(s)
- Marty O. Visscher
- Skin Sciences, Program, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
- James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, United States of America
| | - Ping Hu
- The Procter & Gamble Company, Cincinnati, OH, United States of America
| | - Andrew N. Carr
- The Procter & Gamble Company, Cincinnati, OH, United States of America
| | - Charles C. Bascom
- The Procter & Gamble Company, Cincinnati, OH, United States of America
| | - Robert J. Isfort
- The Procter & Gamble Company, Cincinnati, OH, United States of America
| | - Kellen Creswell
- The Procter & Gamble Company, Cincinnati, OH, United States of America
| | - Rachel Adams
- The Procter & Gamble Company, Cincinnati, OH, United States of America
| | - Jay P. Tiesman
- The Procter & Gamble Company, Cincinnati, OH, United States of America
| | - Karen Lammers
- Skin Sciences, Program, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
| | - Vivek Narendran
- Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
| |
Collapse
|
19
|
Suaini NHA, Yap GC, Tung BDP, Loo EXL, Goh AEN, Teoh OH, Tan KH, Godfrey KM, Lee BW, Shek LPC, Van Bever H, Chong YS, Tham EH. Atopic dermatitis trajectories to age 8 years in the GUSTO cohort. Clin Exp Allergy 2021; 51:1195-1206. [PMID: 34310791 PMCID: PMC7611621 DOI: 10.1111/cea.13993] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/09/2021] [Accepted: 07/21/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND The heterogeneity of childhood atopic dermatitis (AD) underscores the need to understand latent phenotypes that may inform risk stratification and disease prognostication. OBJECTIVE To identify AD trajectories across the first 8 years of life and investigate risk factors associated with each trajectory and their relationships with other comorbidities. METHODS Data were collected prospectively from 1152 mother-offspring dyads in the Growing Up in Singapore Towards healthy Outcomes (GUSTO) cohort from ages 3 months to 8 years. AD was defined based on parent-reported doctor's diagnosis. An unsupervised machine learning technique was used to determine AD trajectories. RESULTS Three AD trajectories were identified as follows: early-onset transient (6.3%), late-onset persistent (6.3%) and early-onset persistent (2.1%), alongside a no AD/reference group (85.2%). Early-onset transient AD was positively associated with male gender, family history of atopy, house dust mite sensitization and some measures of wheezing. Early-onset persistent AD was associated with antenatal/intrapartum antibiotic use, food sensitization and some measures of wheezing. Late-onset persistent AD was associated with a family history of atopy, some measures of house dust mite sensitization and some measures of allergic rhinitis and wheezing. CONCLUSION AND CLINICAL RELEVANCE Three AD trajectories were identified in this birth cohort, with different risk factors and prognostic implications. Further work is needed to understand the molecular and immunological origins of these phenotypes.
Collapse
Affiliation(s)
- Noor H. A. Suaini
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Gaik Chin Yap
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore
| | - Bui Do Phuong Tung
- Department of Architecture, School of Design and Environment, National University of Singapore (NUS), Singapore
| | - Evelyn Xiu Ling Loo
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore
| | - Anne Eng Neo Goh
- Allergy service, Department of Paediatrics, KK Women’s and Children’s Hospital (KKH), Singapore
| | - Oon Hoe Teoh
- Respiratory Service, Department of Paediatrics, KK Women’s and Children’s Hospital (KKH), Singapore
| | - Kok Hian Tan
- Department of Maternal Fetal Medicine, KK Women’s and Children’s Hospital (KKH), Singapore
| | - Keith M. Godfrey
- NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, SO16 6YD, Southampton, United Kingdom
- Medical Research Council Lifecourse Epidemiology Unit, SO16 6YD, Southampton, United Kingdom
| | - Bee Wah Lee
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore
| | - Lynette Pei-chi Shek
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore
- Khoo Teck Puat-National University Children’s Medical Institute, National University Health System (NUHS), Singapore
| | - Hugo Van Bever
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore
- Khoo Teck Puat-National University Children’s Medical Institute, National University Health System (NUHS), Singapore
| | - Yap Seng Chong
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), National University Health System (NUHS), Singapore
| | - Elizabeth Huiwen Tham
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore
- Khoo Teck Puat-National University Children’s Medical Institute, National University Health System (NUHS), Singapore
- Human Potential Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore
| |
Collapse
|
20
|
Deckers J, Marsland BJ, von Mutius E. Protection against allergies: Microbes, immunity, and the farming effect. Eur J Immunol 2021; 51:2387-2398. [PMID: 34415577 DOI: 10.1002/eji.202048938] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 07/08/2021] [Accepted: 08/17/2021] [Indexed: 12/19/2022]
Abstract
The prevalence of asthma and other allergic diseases has rapidly increased in "Westernized" countries over recent decades. This rapid increase suggests the involvement of environmental factors, behavioral changes or lifestyle, rather than genetic drift. It has become increasingly clear that the microbiome plays a key role in educating the host immune system and, thus, regulation of disease susceptibility. This review will focus on recent advances uncovering immunological and microbial mechanisms that protect against allergies, in particular, within the context of a farming environment. A whole body of epidemiological data disclosed the nature of the protective exposures in a farm. Current evidence points toward an important role of the host microbiome in setting an immunological equilibrium that determines progression toward, or protection against allergic diseases. Conclusive mechanistic insights on how microbial exposures prevent from developing allergic diseases in humans are still lacking but findings from experimental models reveal plausible immunological mechanisms. Gathering further knowledge on these mechanisms and confirming their relevance in humans is of great importance to develop preventive strategies for children at risk of developing allergies.
Collapse
Affiliation(s)
- Julie Deckers
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent (Zwijnaarde), Belgium.,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Benjamin J Marsland
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Erika von Mutius
- Institute for Asthma and Allergy Prevention, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.,German Center for Lung Research, München, Germany.,Dr. von Hauner Children's Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| |
Collapse
|
21
|
Elias AE, McBain AJ, O'Neill CA. The role of the skin microbiota in the modulation of cutaneous inflammation-Lessons from the gut. Exp Dermatol 2021; 30:1509-1516. [PMID: 34173265 DOI: 10.1111/exd.14420] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/02/2021] [Accepted: 06/17/2021] [Indexed: 12/16/2022]
Abstract
Inflammation is a vital defense mechanism used to protect the body from invading pathogens, but dysregulation can lead to chronic inflammatory disorders such as psoriasis and atopic dermatitis. Differences in microbiota composition have been observed in patients with inflammatory skin conditions compared with healthy individuals, particularly within lesions. There is also increasing evidence accumulating to support the notion that the microbiome contributes to the onset or modulates the severity of inflammatory diseases. Despite the known protective effects of orally administered lactic acid bacteria against inflammation, few studies have investigated the potential protective effects of topical application of bacteria on skin health and even fewer have looked at the potential anti-inflammatory effects of skin commensals. If lack of diversity and reduction in the abundance of specific commensal strains is observed in inflammatory skin lesions, and it is known that commensal bacteria can produce anti-inflammatory compounds, we suggest that certain members of the skin microbiota have anti-inflammatory properties that can be harnessed for use as topical therapeutics in inflammatory skin disorders.
Collapse
Affiliation(s)
- Abigail E Elias
- Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Andrew J McBain
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Catherine A O'Neill
- Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| |
Collapse
|
22
|
Ubags NDJ, Alejandre Alcazar MA, Kallapur SG, Knapp S, Lanone S, Lloyd CM, Morty RE, Pattaroni C, Reynaert NL, Rottier RJ, Smits HH, de Steenhuijsen Piters WAA, Strickland DH, Collins JJP. Early origins of lung disease: towards an interdisciplinary approach. Eur Respir Rev 2020; 29:29/157/200191. [PMID: 33004528 DOI: 10.1183/16000617.0191-2020] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/18/2020] [Indexed: 12/27/2022] Open
Abstract
The prenatal and perinatal environments can have profound effects on the development of chronic inflammatory diseases. However, mechanistic insight into how the early-life microenvironment can impact upon development of the lung and immune system and consequent initiation and progression of respiratory diseases is still emerging. Recent studies investigating the developmental origins of lung diseases have started to delineate the effects of early-life changes in the lung, environmental exposures and immune maturation on the development of childhood and adult lung diseases. While the influencing factors have been described and studied in mostly animal models, it remains challenging to pinpoint exactly which factors and at which time point are detrimental in lung development leading to respiratory disease later in life. To advance our understanding of early origins of chronic lung disease and to allow for proper dissemination and application of this knowledge, we propose four major focus areas: 1) policy and education; 2) clinical assessment; 3) basic and translational research; and 4) infrastructure and tools, and discuss future directions for advancement. This review is a follow-up of the discussions at the European Respiratory Society Research Seminar "Early origins of lung disease: towards an interdisciplinary approach" (Lisbon, Portugal, November 2019).
Collapse
Affiliation(s)
- Niki D J Ubags
- Faculty of Biology and Medicine, University of Lausanne, Service de Pneumologie, CHUV, Lausanne, Switzerland.,Authors are listed alphabetically except for N.D.J. Ubags and J.J.P. Collins
| | - Miguel A Alejandre Alcazar
- Dept of Paediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, Translational Experimental Paediatrics, Experimental Pulmonology, University of Cologne, Cologne, Germany.,Centre of Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Institute for Lung Health, University of Giessen and Marburg Lung Centre (UGMLC), Member of the German Centre for Lung Research (DZL), Giessen, Germany
| | - Suhas G Kallapur
- Neonatal-Perinatal Medicine, Dept of Pediatrics, David Geffen School of Medicine, UCLA Mattel Children's Hospital, Los Angeles, CA, USA
| | - Sylvia Knapp
- Dept of Medicine I/Research Laboratory of Infection Biology, Medical University of Vienna, Vienna, Austria.,CeMM, Research Centre for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Sophie Lanone
- Univ Paris Est Creteil, INSERM, IMRB, Creteil, France
| | - Clare M Lloyd
- Inflammation, Repair and Development, National Heart & Lung Institute, Imperial College London, London, UK
| | - Rory E Morty
- Dept of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Dept of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Centre, Member of the German Centre for Lung Research, Giessen, Germany
| | - Céline Pattaroni
- Dept of Immunology and Pathology, Monash University, Melbourne, Australia
| | - Niki L Reynaert
- Dept of Respiratory Medicine and School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Robbert J Rottier
- Dept of Paediatric Surgery, Sophia Children's Hospital, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Hermelijn H Smits
- Dept of Parasitology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Wouter A A de Steenhuijsen Piters
- Dept of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital/University Medical Centre Utrecht, Utrecht, The Netherlands.,National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | | | - Jennifer J P Collins
- Dept of Paediatric Surgery, Sophia Children's Hospital, Erasmus University Medical Centre, Rotterdam, The Netherlands .,Authors are listed alphabetically except for N.D.J. Ubags and J.J.P. Collins
| |
Collapse
|
23
|
Remote tissue immune priming in allergic disease. Mucosal Immunol 2020; 13:719-720. [PMID: 32719410 PMCID: PMC7434592 DOI: 10.1038/s41385-020-0328-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/02/2020] [Accepted: 07/06/2020] [Indexed: 02/04/2023]
|