1
|
Henderson LA, Abraham RS, Ahmed A, Blount L, Canna SW, Chaimowitz NS, Chandrakasan S, Coates B, Connelly JA, Cooper MA, Duncan CN, French A, Hazen M, Hermiston ML, Nolan B, Ray A, Rose MJ, Satter LF, Schulert G, Tejtel SKS, Vogel T, Walkovich K, Zinter MS, Behrens EM. Multidisciplinary approach to treating complex immune dysregulation disorders: an adaptive model for institutional implementation. Front Immunol 2025; 16:1519955. [PMID: 40124385 PMCID: PMC11926151 DOI: 10.3389/fimmu.2025.1519955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/10/2025] [Indexed: 03/25/2025] Open
Abstract
Patients with immune dysregulation may present with varying combinations of autoimmunity, autoinflammation, immunodeficiency, atopy, lymphoproliferation, and/or malignancy, often with multisystem involvement. Recognizing specific patterns of immune dysregulation, coordinating and interpreting complex diagnostic testing, and choosing initial (often empiric) treatment can be challenging. Centers are increasingly assembling multidisciplinary teams (MDTs) to standardize evaluation and optimize treatment of patients with complex immune dysregulation (immune dysregulation MDTs [immMDTs]). However, published information on the composition and function of immMDTs is sparse, and there is little guidance for those seeking to establish or optimize an immMDT. To inform this review, we assembled a panel of 24 pediatric providers from multiple specialties who actively participate in immMDTs to provide expert opinion. We also conducted a search of the available information on pediatric immMDTs from PubMed. Based on these insights, we summarize the structure and function of active immMDTs across the United States and focus on best practices and context-dependent solutions that may enable institutions with varying goals, patient populations, and resources to establish an immMDT.
Collapse
Affiliation(s)
- Lauren A. Henderson
- Division of Immunology, Boston Children’s Hospital, Boston, MA, United States
| | - Roshini S. Abraham
- Department of Pathology and Laboratory Medicine, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Aisha Ahmed
- Division of Allergy and Immunology, Ann and Robert H. Lurie Children’s Hospital of Chicago and Department of Pediatrics, Northwestern University, Chicago, IL, United States
| | - Lindsey Blount
- Division of Critical Care, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, United States
| | - Scott W. Canna
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine and Division of Rheumatology, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Natalia S. Chaimowitz
- Department of Immunology, Cook Children’s Medical Center, Fort Worth, TX, United States
| | - Shanmuganathan Chandrakasan
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, United States
| | - Bria Coates
- Division of Critical Care, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, United States
| | - James A. Connelly
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Megan A. Cooper
- Division of Rheumatology and Immunology, Department of Pediatrics, Washington University in St. Louis, St. Louis, MO, United States
| | - Christine N. Duncan
- Pediatric Hematopoietic Cellular Therapy, Dana Farber/Boston Children’s Cancer and Blood Disorders Center and Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Anthony French
- Division of Pediatric Rheumatology/Immunology, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States
| | - Melissa Hazen
- Division of Immunology and Department of Pediatrics, Division of Pediatric Hospital Medicine, Boston Children’s Hospital, Boston, MA, United States
| | - Michelle L. Hermiston
- Department of Pediatrics, UCSF Benioff Children’s Hospital, University of California, San Francisco, San Francisco, CA, United States
| | - Brian Nolan
- Division of Rheumatology, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, United States
| | - Anish Ray
- Texas College of Osteopathic Medicine, The University of North Texas Health Science Center and Department of Hematology/Oncology, Cook Children’s Medical Center, Fort Worth, TX, United States
| | - Melissa J. Rose
- Division of Pediatric Hematology and Oncology, Nationwide Children’s Hospital and Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Lisa Forbes Satter
- Department of Pediatrics, Division of Immunology, Allergy, and Retrovirology, Baylor College of Medicine, Houston, TX, United States
- William T. Shearer Center for Human Immunobiology, Texas Children’s Hospital, Houston, TX, United States
| | - Grant Schulert
- Division of Rheumatology, Cincinnati Children’s Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Sara Kristen Sexson Tejtel
- Division of Pediatric Cardiology, Department of Pediatrics, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX, United States
| | - Tiphanie Vogel
- William T. Shearer Center for Human Immunobiology, Texas Children’s Hospital, Houston, TX, United States
- Division of Rheumatology, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Kelly Walkovich
- Pediatric Hematology/Oncology, C.S. Mott Children’s Hospital, University of Michigan, Ann Arbor, MI, United States
| | - Matt S. Zinter
- Department of Pediatrics, Division of Critical Care Medicine, UCSF School of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Edward M. Behrens
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine and Division of Rheumatology, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| |
Collapse
|
2
|
Genio E, Lecca M, Ciccocioppo R, Errichiello E. CTLA4 Alteration and Neurologic Manifestations: A New Family with Large Phenotypic Variability and Literature Review. Genes (Basel) 2025; 16:306. [PMID: 40149457 PMCID: PMC11942126 DOI: 10.3390/genes16030306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/21/2025] [Accepted: 02/26/2025] [Indexed: 03/29/2025] Open
Abstract
Cytotoxic-T-lymphocyte-antigen-4 (CTLA-4), a member of the immunoglobulin superfamily, is an essential negative regulator of immune responses that is constitutively expressed on both regulatory (Treg) and activated T cells. To date, heterozygous germline variants in CTLA4, leading to haploinsufficiency, have been associated with several immunological disorders, including hypogammaglobulinemia, multi-organ autoimmunity, lymphoproliferative disorders, and enlarged lymphoid organs. Indeed, CTLA4 carriers display highly heterogeneous clinical manifestations with a phenotypic spectrum ranging from asymptomatic carrier status to fatal autoimmunity. Here, we describe a family with autoimmune phenotypes (Hashimoto thyroiditis, psoriasiform dermatitis, celiac disease/inflammatory bowel disease, and rheumatoid arthritis), segregating across three different generations due to a recurrent missense variant [c.436G>A, p.(Gly146Arg)] in the CTLA4 gene. Interestingly, the proband showed prominent neurological manifestations, including seizures, hydrocephalus, and demyelination, which are less frequently reported in individuals with pathogenic variants in CTLA4. A detailed literature review of neurologic features that have been reported so far in CTLA4 carriers is also provided.
Collapse
Affiliation(s)
- Edoardo Genio
- Unit of Medical Genetics, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy; (E.G.); (M.L.)
| | - Mauro Lecca
- Unit of Medical Genetics, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy; (E.G.); (M.L.)
| | - Rachele Ciccocioppo
- Gastroenterology and Endoscopic Unit, Department of Medicine and Ageing, University Gabriele D’Annunzio of Chieti-Pescara, 66100 Chieti, Italy;
| | - Edoardo Errichiello
- Unit of Medical Genetics, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy; (E.G.); (M.L.)
- IRCCS Mondino Foundation, 27100 Pavia, Italy
| |
Collapse
|
3
|
Pfeuffer S, Nelke C, Pawlitzki M, Ruck T, Schroeter CB, Thomas C, Kobbe G, Dietrich S, Zimprich AA, Wiendl H, Meuth SG. Abatacept Induces Long-Term Reconstitution of the B-Cell Niche in a Patient With CTLA-4 Haploinsufficiency: A Case Report. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2025; 12:e200351. [PMID: 39689284 DOI: 10.1212/nxi.0000000000200351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 11/04/2024] [Indexed: 12/19/2024]
Abstract
OBJECTIVES Cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) haploinsufficiency is a rare genetic condition characterized by development of immune cytopenia, hypogammaglobulinemia, and/or lymphoproliferative disorder, as well as multiple autoimmunity. Treatment with abatacept was shown to alleviate autoimmune conditions, yet its long-lasting impact on bone marrow function remains undetermined. METHODS We here present the case of a now 39-year-old woman with CTLA-4 haploinsufficiency with predominant CNS affection, yet multiorgan autoimmunity and lymphopenia. We conducted single-cell RNA sequencing (scRNA-seq) of peripheral mononuclear blood cells before and after abatacept induction. RESULTS After several high-efficacy immunosuppressive treatments with little-to-no response, she started abatacept in 2017 and experienced ongoing remission including resolution of pre-existing immune cytopenia and hypogammaglobulinemia. Using scRNA-seq, we were able to demonstrate reconstitution of peripheral B cells accompanied by reduction of CD8+ T cells. CD4+ and CD8+ T cells were characterized by downregulation of pathways involved in activation of innate immune cells. DISCUSSION Our findings demonstrate long-lasting resolution of lymphopenia after abatacept treatment in CTLA-4 haploinsufficiency despite severity and duration of symptoms. Thus, abatacept should be considered throughout before stem cell transplantation also in CTLA-4 haploinsufficiency with severe symptoms. CLASSIFICATION OF EVIDENCE As a single report without controls, this report provides class IV evidence that abatacept might revert lymphopenia in patients with CTLA-4 haploinsufficiency.
Collapse
Affiliation(s)
- Steffen Pfeuffer
- Department of Neurology, Justus-Liebig-University Giessen, Germany
| | - Christopher Nelke
- Department of Neurology, Medical Faculty and University Hospital Duesseldorf, Germany
| | - Marc Pawlitzki
- Department of Neurology, Medical Faculty and University Hospital Duesseldorf, Germany
| | - Tobias Ruck
- Department of Neurology, Medical Faculty and University Hospital Duesseldorf, Germany
| | - Christina B Schroeter
- Department of Neurology, Medical Faculty and University Hospital Duesseldorf, Germany
| | - Christian Thomas
- Institute of Neuropathology, University Hospital Muenster, Germany
| | - Guido Kobbe
- Department of Hematology, Oncology and Clinical Immunology, University Hospital Duesseldorf, Germany
| | - Sascha Dietrich
- Department of Hematology, Oncology and Clinical Immunology, University Hospital Duesseldorf, Germany
| | | | - Heinz Wiendl
- Department of Neurology, University Hospital Muenster, Germany
| | - Sven G Meuth
- Department of Neurology, Medical Faculty and University Hospital Duesseldorf, Germany
| |
Collapse
|
4
|
Abrams ED, Basu A, Zavorka Thomas ME, Henrickson SE, Abraham RS. Expanding the diagnostic toolbox for complex genetic immune disorders. J Allergy Clin Immunol 2025; 155:255-274. [PMID: 39581295 DOI: 10.1016/j.jaci.2024.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/29/2024] [Accepted: 11/12/2024] [Indexed: 11/26/2024]
Abstract
Laboratory-based immunology evaluation is essential to the diagnostic workup of patients with complex immune disorders, and is as essential, if not more so, depending on the context, as genetic testing, because it enables identification of aberrant pathways amenable to therapeutic intervention and clarifies variants of uncertain significance. There have been considerable advances in techniques and instrumentation in the clinical laboratory in the past 2 decades, although there are still "miles to go." One of the goals of the clinical laboratory is to ensure advanced diagnostic testing is widely accessible to physicians and thus patients, through reference laboratories, particularly in the context of academic medical centers. This ensures a greater likelihood of translating research discoveries into the diagnostic laboratory, on the basis of patient care needs rather than a sole emphasis on commercial utility. However, these advances are under threat from burdensome regulatory oversight that can compromise, at best, and curtail, at worst, the ability to rapidly diagnose rare immune disorders and ensure delivery of precision medicine. This review discusses the clinical utility of diagnostic immunology tools, beyond cellular immunophenotyping of lymphocyte subsets, which can be used in conjunction with clinical and other laboratory data for diagnosis as well as monitoring of therapeutic response in patients with genetic immunologic diseases.
Collapse
Affiliation(s)
- Eric D Abrams
- Division of Allergy and Immunology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Amrita Basu
- Diagnostic Immunology Laboratory, Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, Ohio
| | - Megan E Zavorka Thomas
- Diagnostic Immunology Laboratory, Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, Ohio
| | - Sarah E Henrickson
- Division of Allergy and Immunology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pa; Institute for Immunology and Immune Health, University of Pennsylvania, Philadelphia, Pa; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa
| | - Roshini S Abraham
- Diagnostic Immunology Laboratory, Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, Ohio.
| |
Collapse
|
5
|
Park YJ, Grossman J, Robertson L. Severe atopic dermatitis treated with Dupilumab in a CTLA-4-deficient patient: A case report and review of the literature. SAGE Open Med Case Rep 2025; 13:2050313X241311042. [PMID: 39777027 PMCID: PMC11705363 DOI: 10.1177/2050313x241311042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025] Open
Abstract
Atopic dermatitis is a chronic inflammatory skin disease associated with immune dysregulation, particularly overexpression of T helper 2 cytokines. Cytotoxic T lymphocyte-associated antigen 4 deficiency, a primary immune disorder, can exacerbate atopic dermatitis. Dupilumab, an IL-4 and IL-13 receptor antagonist, has demonstrated efficacy in controlling severe, recalcitrant atopic dermatitis by mitigating T helper 2-driven inflammation. We present a case of a 24-year-old male with cytotoxic T lymphocyte-associated antigen 4 haploinsufficiency and severe atopic dermatitis successfully managed with Dupilumab. The patient showed marked improvement in eczema severity scores, including a sixfold reduction in the Eczema Area and Severity Index and a threefold reduction in the Dermatology Life Quality Index over 6 months, highlighting Dupilumab's potential role in cytotoxic T lymphocyte-associated antigen 4-deficient patients experiencing atopic dermatitis.
Collapse
Affiliation(s)
- Ye-Jean Park
- Temerty Faculty of Medicine, Division of Medicine, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Jennifer Grossman
- Division of Hematology, Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Lynne Robertson
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Division of Dermatology, Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
6
|
Fox TA, Massey V, Lever C, Pearce R, Laurence A, Grace S, Oliviero F, Workman S, Symes A, Lowe DM, Fiaccadori V, Hough R, Tadros S, Burns SO, Seidel MG, Carpenter B, Morris EC. Pre-Transplant Immune Dysregulation Predicts for Poor Outcome Following Allogeneic Haematopoietic Stem Cell Transplantation in Adolescents and Adults with Inborn Errors of Immunity (IEI). J Clin Immunol 2025; 45:64. [PMID: 39760904 PMCID: PMC11703937 DOI: 10.1007/s10875-024-01854-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 12/17/2024] [Indexed: 01/07/2025]
Abstract
Allogeneic haematopoietic stem cell transplantation (alloHSCT) is safe and effective for adolescents and adults with inborn errors of immunity (IEI) with severe disease manifestations of their disease. The haematopoietic cell transplantation comorbidity index (HCT-CI) score predicts transplant survival in non-malignant diseases, including IEIs. We hypothesised that immune dysregulation pre-transplant may also influence transplant outcomes. We calculated the pre-transplant immune dysregulation and disease activity score (IDDA v2.1) for 82 adolescent and adult IEI patients (aged ≥ 13 years). Three-year overall survival (OS) for the whole cohort was 90% (n = 82) with a median follow up of 44.7 months (range 8.4 to 225.8). Events were defined as acute graft-versus-host disease (GvHD) grades II or above, chronic GvHD of any grade, graft failure, or death from any cause. Three-year event free survival (EFS) for the whole cohort was 72%. In multivariable analysis the IDDA v2.1 score pre-transplant and HCT-CI score significantly impacted OS (hazard ratio 1.08, p = 0.028) and EFS (hazard ratio 1.04, p = 0.0005). Importantly, 35% of this cohort had a high IDDA v2.1 score (≥ 15) and low HCT-CI score (< 3) suggesting that the risks of alloHSCT may be underestimated in a proportion of patients with IEI if the HCT-CI score is used alone. These findings support the potential for improved outcomes following successful modulation of immune dysregulation pre-transplant. The IDDA v2.1 score has utility as an objective measurement of pre-transplant immune dysregulation providing additional information reagrding the risks and potential complications of alloHSCT in an individual IEI patient.
Collapse
Affiliation(s)
- Thomas A Fox
- UCL Institute of Immunity and Transplantation, UCL, London, UK
- Department of Haematology, University College London Hospitals NHS Foundation Trust, London, UK
| | - Valerie Massey
- Department of Immunology, Royal Free London Hospitals NHS Foundation Trust, London, UK
| | - Charley Lever
- Department of Immunology, Royal Free London Hospitals NHS Foundation Trust, London, UK
| | | | - Arian Laurence
- Department of Haematology, University College London Hospitals NHS Foundation Trust, London, UK
- Department of Immunology, Royal Free London Hospitals NHS Foundation Trust, London, UK
| | - Sarah Grace
- Department of Haematology, University College London Hospitals NHS Foundation Trust, London, UK
| | - Filippo Oliviero
- Department of Haematology, University College London Hospitals NHS Foundation Trust, London, UK
| | - Sarita Workman
- Department of Immunology, Royal Free London Hospitals NHS Foundation Trust, London, UK
| | - Andrew Symes
- Department of Immunology, Royal Free London Hospitals NHS Foundation Trust, London, UK
| | - David M Lowe
- UCL Institute of Immunity and Transplantation, UCL, London, UK
- Department of Immunology, Royal Free London Hospitals NHS Foundation Trust, London, UK
| | - Valeria Fiaccadori
- Department of Haematology, University College London Hospitals NHS Foundation Trust, London, UK
| | - Rachael Hough
- Department of Haematology, University College London Hospitals NHS Foundation Trust, London, UK
| | - Susan Tadros
- Department of Immunology, Royal Free London Hospitals NHS Foundation Trust, London, UK
| | - Siobhan O Burns
- UCL Institute of Immunity and Transplantation, UCL, London, UK
- Department of Immunology, Royal Free London Hospitals NHS Foundation Trust, London, UK
| | - Markus G Seidel
- Division of Pediatric Hematology-Oncology, Department of Pediatrics and Adolescent Medicine, Styrian Children's Cancer Research Unit for Cancer and Inborn Errors of the Blood and Immunity in Children, Medical University of Graz, Graz, Austria
| | - Ben Carpenter
- Department of Haematology, University College London Hospitals NHS Foundation Trust, London, UK
| | - Emma C Morris
- UCL Institute of Immunity and Transplantation, UCL, London, UK.
- Department of Haematology, University College London Hospitals NHS Foundation Trust, London, UK.
- Department of Immunology, Royal Free London Hospitals NHS Foundation Trust, London, UK.
| |
Collapse
|
7
|
Parsons AJ, Franco‐Palacios D, Kelly B, Grafton G, McIntosh J, Coleman D, Abdul Hameed AM, Sayf AA. Common Variable Immunodeficiency Associated With Noninfectious Pulmonary Complications and Its Treatment: Beyond Immunoglobulin Therapy. Pulm Circ 2025; 15:e70034. [PMID: 39744645 PMCID: PMC11688575 DOI: 10.1002/pul2.70034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 11/12/2024] [Accepted: 12/08/2024] [Indexed: 01/26/2025] Open
Abstract
Common variable immunodeficiency (CVID) is a type of primary immunodeficiency that presents as a heterogenous disorder characterized by hypogammaglobinemia, poor response to vaccines, recurrent sinopulmonary infections, and can have noninfectious systemic manifestations. We performed a single-center, retrospective, observational study of five patients with noninfectious complications of CVID. All patients had CVID as defined by the European Society of Immunodeficiencies criteria and had received intravenous immunoglobulin therapy. There were multiple pulmonary manifestations of CVID including frequent pneumonias, bronchiectasis, granulomatous lung disease, and pulmonary hypertension. All our patients were treated with pulmonary vasodilators for severe precapillary pulmonary hypertension along with individualized immunosuppression regimen for interstitial lung disease. Despite treatment for interstitial lung disease and PH, their conditions worsened over 2-3 years with all patients progressing toward organ transplant evaluation. Idiopathic thrombocytopenia and non-cirrhotic portal hypertension were common, with three patients probably suffering from nodular regenerative hyperplasia. Noninfectious complications of CVID can affect different organs and progress despite advanced therapies. Single or multiorgan transplantation is a treatment option for patients with end-stage organ involvement refractory to medical therapy.
Collapse
Affiliation(s)
- Austin J. Parsons
- Department of Internal MedicineHenry Ford HospitalDetroitMichiganUSA
| | | | - Bryan Kelly
- Division of Pulmonary Medicine, Henry Ford HospitalDetroitMichiganUSA
| | - Gillian Grafton
- Division of Cardiovascular MedicineHenry Ford HospitalDetroitMichiganUSA
| | - Javardo McIntosh
- Division of Pulmonary Medicine, Henry Ford HospitalDetroitMichiganUSA
| | - David Coleman
- Division of Allergy and ImmunologyHenry Ford HospitalDetroitMichiganUSA
- Department of MedicineWayne State University School of MedicineDetroitMichiganUSA
- Department of Human MedicineMichigan State UniversityEast LansingMichiganUSA
| | | | - Alaa Abu Sayf
- Division of Pulmonary Medicine, Henry Ford HospitalDetroitMichiganUSA
| |
Collapse
|
8
|
Cortesi M, Dotta L, Cattalini M, Lougaris V, Soresina A, Badolato R. Unmasking inborn errors of immunity: identifying the red flags of immune dysregulation. Front Immunol 2024; 15:1497921. [PMID: 39749336 PMCID: PMC11693724 DOI: 10.3389/fimmu.2024.1497921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 12/04/2024] [Indexed: 01/04/2025] Open
Abstract
Inborn errors of immunity (IEI) are rare diseases that affect the immune system. According to the latest International Union of Immunological Societies (IUIS) classification, 485 different IEI have been identified. Even if increased susceptibility to infections is the best-known symptom, IEI are no longer defined by the higher likelihood of infections alone. Immune dysregulation with autoimmune disease and hyperinflammation, lymphoproliferation, and malignancy are common manifestations and could be the only symptoms of IEI that must be recognized. An exclusive focus on infection-centered warning signs would miss around 25% of patients with IEI who initially present with other manifestations. Timely and appropriate diagnosis and treatment are essential to enhance the quality of life (QoL) and, in some cases, survival, as patients are susceptible to life-threatening infections or autoimmunity. In addition, the advantage of early diagnosis in IEI with immune dysregulation (i.e. CTLA4 deficiency, LRBA deficiency, NF-kB1/NF-kB2 deficiency, activated phosphoinositide 3-kinase delta syndrome -APDS-) is the initiation of targeted therapies with precise re-balancing of the dysregulated immune pathways (i.e., biologicals, selective inhibitors) or definitive therapy (i.e., HSCT).
Collapse
Affiliation(s)
- Manuela Cortesi
- Pediatrics Clinic and Institute for Molecular Medicine “A. Nocivelli”, Department of Clinical and Experimental Sciences, University of Brescia and ASST-Spedali Civili di Brescia, Brescia, Italy
| | | | | | | | | | | |
Collapse
|
9
|
Rao VK. Beyond FAScinating: advances in diagnosis and management of autoimmune lymphoproliferative syndrome and activated PI3 kinase δ syndrome. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2024; 2024:126-136. [PMID: 39644063 PMCID: PMC11665610 DOI: 10.1182/hematology.2024000537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
Refractory autoimmune mutilineage cytopenias can present in childhood associated with chronic nonmalignant lymphoproliferation (splenomegaly, hepatomegaly, and/or lymphadenopathy). Cytopenias due to peripheral destruction and sequestration have been well recognized since the 1950s and are often lumped together as eponymous syndromes, such as Evans syndrome and Canale-Smith syndrome. Though their clinical and genetic diagnostic workup may appear daunting, it can provide the basis for early intervention, genetic counseling, and empirical and targeted therapies. Autoimmune lymphoproliferative syndrome (ALPS), activated phosphatidylinositol 3-kinase delta syndrome (APDS), and many other related genetic disorders are otherwise collectively known as inborn errors of immunity (IEI). They present in early childhood as refractory autoimmune cytopenias due to immune dysregulation leading to lymphadenopathy, splenomegaly, and increased susceptibility to lymphoma. More recently, controlled clinical trials have shown that some of these immune system disorders with hematological manifestations might be more readily amenable to specific targeted treatments, thus preventing end-organ damage and associated comorbidities. Over the last 20 years, both rapamycin and mycophenolate mofetil have been successfully used as steroid-sparing long-term measures in ALPS. Current therapeutic options for APDS/PASLI (phosphoinositide 3-kinase [PI3K]-associated senescent T lymphocytes, lymphadenopathy, and immunodeficiency) include the orally bioavailable PI3Kδ inhibitor, leniolisib, which was licensed by the US Food and Drug Administration (FDA) in 2023 for use in individuals older than 12 years as a targeted treatment. Paradigms learned from patients with rare genetic disorders like ALPS and APDS may help in exploring and streamlining molecular therapy strategies in the wider group of IEIs presenting with refractory cytopenias and lymphoproliferation.
Collapse
|
10
|
Tsilifis C, Speckmann C, Lum SH, Fox TA, Soler AM, Mozo Y, Corral D, Ewins AM, Hague R, Oikonomopoulou C, Kałwak K, Drabko K, Wynn R, Morris EC, Elcombe S, Bigley V, Lougaris V, Malagola M, Hauck F, Sedlacek P, Laberko A, Tjon JML, Buddingh EP, Wehr C, Grimbacher B, Gennery AR, Lankester AC, Albert MH, Neven B, Slatter MA. Hematopoietic stem cell transplantation for CTLA-4 insufficiency across Europe: A European Society for Blood and Marrow Transplantation Inborn Errors Working Party study. J Allergy Clin Immunol 2024; 154:1534-1544. [PMID: 39218359 DOI: 10.1016/j.jaci.2024.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Cytotoxic T-lymphocyte antigen 4 (CTLA-4) insufficiency causes a primary immune regulatory disorder characterized by lymphoproliferation, dysgammaglobulinemia, and multiorgan autoimmunity including cytopenias and colitis. OBJECTIVE We examined the outcome of hematopoietic stem cell transplantation (HSCT) for CTLA-4 insufficiency and study the impact of pre-HSCT CTLA-4 fusion protein (CTLA-4-Ig) therapy and pre-HSCT immune dysregulation on survival and immunologic outcome. METHODS This was a retrospective study of HSCT for CTLA-4 insufficiency and 2q33.2-3 deletion from the European Society for Blood and Marrow Transplantation Inborn Errors Working Party. Primary end points were overall survival (OS) and disease- and chronic graft-versus-host disease-free survival (DFS). Secondary end point was immunologic outcome assessed by immune dysregulation disease activity (IDDA) score. RESULTS Forty patients were included over a 25-year period. Before HSCT, 60% received CTLA-4-Ig, and median (range) IDDA score was 23.3 (3.9-84.0). Median (range) age at HSCT was 14.2 (1.3-56.0) years. Patients received peripheral blood stem cell (58%) or marrow (43%) from a matched unrelated donor (75%), mismatched unrelated donor (12.5%), or matched family donor (12.5%). Median (range) follow-up was 3 (0.6-15) years, and 3-year OS was 76.7% (58-87%) and DFS was 74.4% (54.9-86.0%). At latest follow-up, disease of 28 of 30 surviving patients was in disease-free remission with median IDDA reduction of 16. Probability of OS and DFS was greater in patients with lower disease activity before HSCT (IDDA < 23, P = .002 and P = .006, respectively). CTLA-4-Ig receipt did not influence OS or DFS. Cause of death was transplant related in 7 of 8 patients. CONCLUSION HSCT is an effective therapy to prevent ongoing disease progression and morbidity, with improving survival rates over time and in patients with lower pre-HSCT disease activity.
Collapse
Affiliation(s)
- Christo Tsilifis
- Paediatric Haematopoietic Stem Cell Transplant Unit, Great North Children's Hospital, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom; Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom.
| | - Carsten Speckmann
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Su Han Lum
- Paediatric Haematopoietic Stem Cell Transplant Unit, Great North Children's Hospital, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom; Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Thomas A Fox
- UCL Institute of Immunity and Transplantation, UCL, London, The Netherlands; Department of Haematology, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Adriana Margarit Soler
- Bone Marrow Transplant Unit, Oncology Service, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Yasmina Mozo
- Paediatric Haematopoietic Stem Cell Transplant Unit, University Hospital La Paz, Madrid, Spain
| | - Dolores Corral
- Paediatric Haematopoietic Stem Cell Transplant Unit, University Hospital La Paz, Madrid, Spain
| | - Anna-Maria Ewins
- Paediatric Stem Cell Transplantation, Royal Hospital for Children, Glasgow, United Kingdom
| | - Rosie Hague
- Paediatric Immunology, Royal Hospital for Children, Glasgow, United Kingdom
| | | | - Krzysztof Kałwak
- Department of Pediatric Hematology, Oncology and BMT, Wroclaw Medical University, Wroclaw, Poland
| | - Katarzyna Drabko
- Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, Lublin, Poland
| | - Robert Wynn
- Department of Blood and Marrow Transplantation, Royal Manchester Children's Hospital, Manchester, United Kingdom
| | - Emma C Morris
- UCL Institute of Immunity and Transplantation, UCL, London, The Netherlands; Department of Haematology, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Suzanne Elcombe
- Department of Immunology, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Venetia Bigley
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom; Northern Centre for Bone Marrow Transplantation, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Vassilios Lougaris
- Adult Bone Marrow Transplant Unit, ASST Spedali Civili, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Michele Malagola
- Adult Bone Marrow Transplant Unit, ASST Spedali Civili, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Fabian Hauck
- Department of Pediatrics, Dr von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Petr Sedlacek
- Department of Pediatric Hematology and Oncology, 2nd Medical School, Charles University Motol, Prague, Czech Republic
| | - Alexandra Laberko
- Department of Haematopoietic Stem Cell Transplantation, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Jennifer M L Tjon
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Emilie P Buddingh
- Department of Pediatrics, Willem-Alexander Children's Hospital, Pediatric Stem Cell Transplantation Program, Leiden University Medical Center, Leiden, The Netherlands
| | - Claudia Wehr
- Department of Haematology and Oncology, University Hospital Freiburg, Freiburg, Germany
| | - Bodo Grimbacher
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Department of Medicine I/Hematology, Oncology, and Stem Cell Transplantation, Medical Center-University of Freiburg, Faculty of Medicine, Freiburg, Germany; CCI, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Department of Rheumatology and Clinical Immunology, CCI, University Hospital Freiburg, Freiburg, Germany
| | - Andrew R Gennery
- Paediatric Haematopoietic Stem Cell Transplant Unit, Great North Children's Hospital, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom; Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Arjan C Lankester
- Department of Pediatrics, Willem-Alexander Children's Hospital, Pediatric Stem Cell Transplantation Program, Leiden University Medical Center, Leiden, The Netherlands
| | - Michael H Albert
- Department of Pediatrics, Dr von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Bénédicte Neven
- Pediatric Immunology, Hematology, and Rheumatology Department, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Mary A Slatter
- Paediatric Haematopoietic Stem Cell Transplant Unit, Great North Children's Hospital, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom; Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
11
|
McClory SE, Oved JH. Transplantation for immune dysregulatory disorders: current themes and future expectations. Curr Opin Pediatr 2024; 36:693-701. [PMID: 39345097 DOI: 10.1097/mop.0000000000001401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
PURPOSE OF REVIEW Primary immune regulatory disorders (PIRDs) are an increasing indication for hematopoietic stem cell transplant (HCT) in pediatric patients. Here, we provide an updated overview of HCT for PIRDs, and discuss future avenues for improvement in outcomes. RECENT FINDINGS There are now more than 50 described monogenic PIRDs, which impact all aspects of immune tolerance, regulation, and suppression. Disease characteristics are highly variable, and HCT remains the only option for cure. We review advances in targeted therapies for individual PIRDs, which have significantly improved outcomes and the ability to safely bridge to transplant. Additionally, advances in GVHD prevention, graft manipulation, personalized conditioning regimens, and supportive care have all increased survival after HCT. The high inflammatory state increases the risk of nonengraftment, rejection, and autologous reconstitution. Therapy to reduce the inflammatory state may further improve outcomes. In addition, although younger patients with fewer comorbidities have better outcomes, the clinical courses of these diseases may be extremely variable thereby complicating the decision to proceed to HCT. SUMMARY HCT for PIRDs is a growing consideration in cell therapy. Yet, there remain significant gaps in our understanding of which patients this curative therapy could benefit the most. Here, we review the current data supporting HCT for PIRDs as well as areas for future improvement.
Collapse
Affiliation(s)
- Susan E McClory
- Program for Integrated Immunodeficiency and Cell Therapy, The Children's Hospital of Philadelphia
- Cell Therapy and Transplant, Division of Oncology, The Children's Hospital of Philadelphia
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Joseph H Oved
- Transplant and Cellular Therapies, MSK Kids, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
12
|
O'Donnell JEM, Walters TD, Benchimol EI. Advancements in the management of pediatric inflammatory bowel disease. Expert Rev Gastroenterol Hepatol 2024; 18:815-827. [PMID: 39688852 DOI: 10.1080/17474124.2024.2444555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 11/22/2024] [Accepted: 12/16/2024] [Indexed: 12/18/2024]
Abstract
INTRODUCTION The management of pediatric inflammatory bowel disease (PIBD) has drastically changed in the last decade. The limited availability of new biologics or small molecule therapies, and concerns about durability in children has necessitated the development of other advances in management to optimize care. AREAS COVERED This review covers guidance for management targets and advances in optimizing biologic therapies, new medical therapies, adjuvant therapies, precision medicine and mental health concerns in PIBD. This review focused on recent advances and was not intended as a complete overview of the investigations and management of pediatric IBD. EXPERT OPINION Advancements include standardization of treatment goals via a treat-to-target strategy, optimizing anti-TNF biologics through combination therapy or proactive drug monitoring, earlier initiation of treatment for Crohn's disease, the emergence of new biologic/advanced therapies and a growing focus on adjuvant therapies targeting the microbiome. Future progress relies on the inclusion of children/adolescents in clinical trials to facilitate faster regulatory approval for pediatric therapies and the integration of precision medicine and mental health screening to improve patient care and outcomes.
Collapse
Affiliation(s)
- Jonathan E M O'Donnell
- SickKids Inflammatory Bowel Disease Centre, Division of Gastroenterology, Hepatology and Nutrition, The Hospital for Sick Children, Toronto, Canada
- Department of Paediatrics, University of Toronto, Toronto, Canada
| | - Thomas D Walters
- SickKids Inflammatory Bowel Disease Centre, Division of Gastroenterology, Hepatology and Nutrition, The Hospital for Sick Children, Toronto, Canada
- Department of Paediatrics, University of Toronto, Toronto, Canada
- Institute of Health Policy, Management and Evaluation, Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| | - Eric I Benchimol
- SickKids Inflammatory Bowel Disease Centre, Division of Gastroenterology, Hepatology and Nutrition, The Hospital for Sick Children, Toronto, Canada
- Department of Paediatrics, University of Toronto, Toronto, Canada
- Institute of Health Policy, Management and Evaluation, Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
- Child Health Evaluative Sciences, SickKids Research Institute, The Hospital for Sick Children, Toronto, Canada
- ICES, Toronto, Canada
| |
Collapse
|
13
|
Brakta C, Tabet AC, Puel M, Pacault M, Stolzenberg MC, Goudet C, Merger M, Reumaux H, Lambert N, Alioua N, Malan V, Hanein S, Dupin-Deguine D, Treiner E, Lefèvre G, Farhat MM, Luca LE, Hureaux M, Li H, Chelloug N, Dehak R, Boussion S, Ouachée-Chardin M, Schleinitz N, Abou Chahla W, Barlogis V, Vély F, Oksenhendler E, Quartier P, Pasquet M, Suarez F, Bustamante J, Neven B, Picard C, Rieux-Laucat F, Lévy J, Rosain J. 2q33 Deletions Underlying Syndromic and Non-syndromic CTLA4 Deficiency. J Clin Immunol 2024; 45:46. [PMID: 39578275 DOI: 10.1007/s10875-024-01831-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/31/2024] [Indexed: 11/24/2024]
Abstract
PURPOSE CTLA4 deficiency is an inborn error of immunity (IEI) due to heterozygosity for germline loss-of-function variants of the CTLA4 gene located on chromosome 2q33.2. CTLA4 deficiency underlies pleiotropic immune and lymphoproliferation-mediated features with incomplete penetrance. It has been identified in hundreds of patients but copy number variants (CNVs) have been reported in only 12 kindreds, including nine which displayed large 2q33.1-2q33.2 deletions encompassing CTLA4. METHODS We conducted a nationwide study in France to identify patients with 2q33 deletions encompassing CTLA4. We investigated the clinical and immunological phenotypes and genotypes of these patients. RESULTS We identified 12 patients across six unrelated kindreds with clinical immunodeficiency. Neurological features were recorded in three patients, including one with syndromic neurodevelopmental disorder. Single-nucleotide polymorphism (SNP) or comparative genomic hybridization (CGH) array analysis, and targeted high-throughput sequencing revealed five different heterozygous 2q33 deletions of 26 kilobases to 7.12 megabases in size and encompassing one to 41 genes. We identified a contiguous gene syndrome (CGS) due to associated KLF7 deficiency in a kindred with a neurodevelopmental phenotype. CONCLUSION Deletions within the 2q33 region encompassing CTLA4 are rare and not extensively explored, and are probably underdiagnosed in cytogenetic practice. A literature review identified 14 different CGS loci including at least one gene responsible for an IEI. The deletions involved in IEIs should be systematically delimited, to facilitate screening for CGS.
Collapse
Affiliation(s)
- Charlyne Brakta
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique Hôpitaux de Paris (AP-HP), Paris, EU, France
| | - Anne-Claude Tabet
- Genetics Department, AP-HP, Robert-Debré University Hospital, Paris, EU, France
| | - Mathilde Puel
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique Hôpitaux de Paris (AP-HP), Paris, EU, France
| | - Mathilde Pacault
- Genetics Department, AP-HP, Robert-Debré University Hospital, Paris, EU, France
| | - Marie-Claude Stolzenberg
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, UMR 1163, Imagine Institute, INSERM, Paris, EU, France
- Inserm U1163, Imagine Institute, University of Paris Cité, Paris, Paris, EU, France
| | - Claire Goudet
- Pediatric Hematology Department, Timone Enfant, Assistance Publique Hôpitaux de Marseille (AP-HM), Marseille, EU, France
| | - Marguerite Merger
- Department of Internal Medicine and Clinical Immunology, University of Lille, Lille, EU, France
| | - Héloïse Reumaux
- Pediatric Rheumatology Unit, Jeanne de Flandre Hospital, University of Lille, Lille, EU, France
| | - Nathalie Lambert
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique Hôpitaux de Paris (AP-HP), Paris, EU, France
| | - Najiba Alioua
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique Hôpitaux de Paris (AP-HP), Paris, EU, France
| | - Valérie Malan
- Inserm U1163, Imagine Institute, University of Paris Cité, Paris, Paris, EU, France
- Laboratory of Genomic Medicine for Rare Diseases, Necker Hospital for Sick Children, Assistance Publique Hôpitaux de Paris (AP-HP), Paris, EU, France
| | - Sylvain Hanein
- Bioinformatic Platform, Institute of Genetic Diseases, Université Paris-Cité and Structure Fédérative de Recherche Necker, INSERM UMR1163, Imagine, Paris, EU, France
| | - Delphine Dupin-Deguine
- Medical Genetics Department, University of Toulouse, CHU Purpan, Toulouse, EU, France
- Otoneurosurgery and Pediatric ENT Department, University of Toulouse, CHU Purpan, Toulouse, EU, France
| | - Emmanuel Treiner
- Faculty of Medicine, University Toulouse III Paul Sabatier, Toulouse, France
- Laboratory of Immunology, University Hospital of Toulouse, Toulouse, France
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), Inserm UMR1291, Toulouse, EU, France
| | - Guillaume Lefèvre
- Institute for Translational Research in Inflammation (INFINITE), Inserm U1286, University of Lille, Lille, EU, France
- Laboratory of Immunology, University of Lille, Lille, EU, France
| | - Méryem-Maud Farhat
- Department of Internal Medicine and Clinical Immunology, University of Lille, Lille, EU, France
| | - Luminita Elena Luca
- Department of Internal Medicine, Infectious and Tropical Diseases, University Hospital Center of Poitiers, Poitiers, EU, France
| | - Marguerite Hureaux
- Department of Genetics, Georges-Pompidou European Hospital, AP-HP, Paris, EU, France
- Reference Center for Hereditary Kidney Diseases in Children and Adults (MARHEA), University of Paris Cité, Paris, EU, France
| | - Hailun Li
- Inserm U1163, Imagine Institute, University of Paris Cité, Paris, Paris, EU, France
- Laboratory of Human Genetics of Infectious Diseases, Necker Hospital for Sick Children, Necker Branch, Inserm U1163, Paris, EU, France
| | - Nora Chelloug
- Medical Genetics Department, University of Toulouse, CHU Purpan, Toulouse, EU, France
| | - Rabha Dehak
- Department of Pediatrics, Calais Hospital, Calais, EU, France
| | - Simon Boussion
- Clinical Genetics Department, University of Lille, Lille, EU, France
| | - Marie Ouachée-Chardin
- Department of Pediatric Hematology, IHOPe, Hospices Civils de Lyon, Lyon, EU, France
| | - Nicolas Schleinitz
- Department of Internal Medicine La Timone, Aix-Marseille University, Assistance Publique - AP-HM, Marseille, EU, France
| | - Wadih Abou Chahla
- Department of Pediatric Hematology, Jeanne de Flandre Hospital, University of Lille, Lille, EU, France
| | - Vincent Barlogis
- Pediatric Hematology Department, Timone Enfant, Assistance Publique Hôpitaux de Marseille (AP-HM), Marseille, EU, France
| | - Frédéric Vély
- Aix Marseille Université, CNRS, Inserm, Centre d'Immunologie de Marseille-Luminy, Marseille, EU, France
- Departement of Immunology, Assistance Publique Des Hôpitaux de Marseille, Hôpital de La Timone, Marseille Immunopole, Marseille, EU, France
| | - Eric Oksenhendler
- Clinical Immunology Department, Saint-Louis Hospital, Paris-Diderot University, Paris, EU, France
| | - Pierre Quartier
- Pediatric Immunology-Hematology and Rheumatology Unit, Necker-Enfants Malades University Hospital, AP-HP, Paris, EU, France
- Université Paris-Cité, Paris, EU, France
| | - Marlène Pasquet
- Department of Pediatric Hematology and Immunology, Children's Hospital, University Hospital, Toulouse, EU, France
| | - Felipe Suarez
- Université Paris-Cité, Paris, EU, France
- Department of Clinical Hematology, Necker Hospital for Sick Children, AP-HP, Paris, EU, France
- Centre de Référence Des Déficits Immunitaires Héréditaires (CEREDIH), Necker-Enfants Malades Hospital, Assistance Publique Hôpitaux de Paris (AP-HP), Paris, EU, France
| | - Jacinta Bustamante
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique Hôpitaux de Paris (AP-HP), Paris, EU, France
- Laboratory of Human Genetics of Infectious Diseases, Necker Hospital for Sick Children, Necker Branch, Inserm U1163, Paris, EU, France
- Université Paris-Cité, Paris, EU, France
- St.Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University, Rockefeller Branch, New York, NY, USA
| | - Bénédicte Neven
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, UMR 1163, Imagine Institute, INSERM, Paris, EU, France
- Inserm U1163, Imagine Institute, University of Paris Cité, Paris, Paris, EU, France
- Pediatric Immunology-Hematology and Rheumatology Unit, Necker-Enfants Malades University Hospital, AP-HP, Paris, EU, France
- Université Paris-Cité, Paris, EU, France
| | - Capucine Picard
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique Hôpitaux de Paris (AP-HP), Paris, EU, France
- Université Paris-Cité, Paris, EU, France
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, Inserm U1163, Imagine Institute, Paris, EU, France
- Centre de Référence Des Déficits Immunitaires Héréditaires (CEREDIH), Necker-Enfants Malades Hospital, Assistance Publique Hôpitaux de Paris (AP-HP), Paris, EU, France
| | - Frédéric Rieux-Laucat
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, UMR 1163, Imagine Institute, INSERM, Paris, EU, France
- Inserm U1163, Imagine Institute, University of Paris Cité, Paris, Paris, EU, France
| | - Jonathan Lévy
- Genetics Department, AP-HP, Robert-Debré University Hospital, Paris, EU, France
| | - Jérémie Rosain
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique Hôpitaux de Paris (AP-HP), Paris, EU, France.
- Laboratory of Human Genetics of Infectious Diseases, Necker Hospital for Sick Children, Necker Branch, Inserm U1163, Paris, EU, France.
- Université Paris-Cité, Paris, EU, France.
- St.Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University, Rockefeller Branch, New York, NY, USA.
| |
Collapse
|
14
|
Drabko K, Zarychta J, Kowalczyk A, Cienkusz M. Case report: Pediatric patient with severe clinical course of CTLA-4 insufficiency treated with HSCT. Front Immunol 2024; 15:1484467. [PMID: 39624103 PMCID: PMC11609194 DOI: 10.3389/fimmu.2024.1484467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/28/2024] [Indexed: 04/06/2025] Open
Abstract
Background Cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) insufficiency is a rare disease belonging to inborn errors of immunity. Most cases of patients with CTLA-4 insufficiency are diagnosed in adults, therefore it is not a common problem in the clinical practice of pediatricians. However, it is worth noticing that most cases described in the literature show the first symptoms of the disease before the age of 18, but the phenotypic variability of patients complicates and delays the diagnostic process. Case description Herein, we report a case of an almost 4-year-old patient whose first symptom of CTLA-4 insufficiency was thrombocytopenia after an upper respiratory tract infection, suggesting the diagnosis of primary immune thrombocytopenia, often occurring in pediatric patients. Due to the addition of symptoms suggesting a proliferative disease in this patient (pancytopenia, enlargement of lymph nodes, liver and spleen), a bone marrow biopsy was performed 11 months later, which did not confirm a hematopoietic tumor. Two years after the first symptoms appeared, the patient was referred for next-generation sequencing genetic testing, which confirmed the presence of a pathological CTLA-4 variant (c.356T>C). Due to the patient's lack of response to the pharmacological treatment and the intensification of autoimmune symptoms that threatened the patient's life, the patient underwent hematopoietic stem cell transplantation (HSCT) 34 months after the first occurrence of symptoms. After HSCT, the patient is alive and does not present any symptoms of autoimmunity. Conclusions The first symptoms of some diseases classified as inborn errors of immunity are non-specific and may delay the final diagnosis. Therefore, it seems extremely important that practicing pediatricians should take into account inborn errors of immunity in the differential diagnosis of autoimmune diseases.
Collapse
Affiliation(s)
- Katarzyna Drabko
- Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, Lublin, Poland
| | - Julia Zarychta
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, Lublin, Poland
| | - Adrian Kowalczyk
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, Lublin, Poland
| | - Magdalena Cienkusz
- Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
15
|
Jiang MJ, Cui HP, Li TT, Yang XM, Lu XL, Liu AQ. A novel anti-CTLA-4 nanobody-IL12 fusion protein in combination with a dendritic cell/tumour fusion cell vaccine enhances the antitumour activity of CD8 + T cells in solid tumours. J Nanobiotechnology 2024; 22:645. [PMID: 39427185 PMCID: PMC11490160 DOI: 10.1186/s12951-024-02914-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 10/07/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND We previously developed a nanobody targeting CTLA-4 and demonstrated that it can boost antitumour T-cell responses in vitro; however, the resulting responses after the injection of T cells into cancer models are usually weak and transient. Here, we explored whether fusing our nanobody to IL-12 would enable it to induce stronger, longer-lasting T-cell immune responses after exposure to immature dendritic cell and tumour cell fusions. RESULTS The fusion protein enhanced the response of CD8+ T cells to tumour antigens in vitro and led to stronger, more persistent immune responses after the T cells were injected into mice bearing different types of xenografts. CONCLUSION Our in vitro and in vivo results suggest the anticancer potential of our nanobody-interleukin fusion system and support the clinical application of this fusion approach for various nanobodies.
Collapse
Affiliation(s)
- Meng-Jie Jiang
- Department of Gastroenterology and Respiratory Medicine & Endoscopy Center, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, China
| | - Hao-Peng Cui
- Department of Gastroenterology and Respiratory Medicine & Endoscopy Center, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, China
| | - Ting-Ting Li
- Department of Gastroenterology and Respiratory Medicine & Endoscopy Center, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, China
| | - Xiao-Mei Yang
- Guangxi Key Laboratory of Nanobody Research and Guangxi Nanobody Engineering Research Center, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Xiao-Ling Lu
- Guangxi Key Laboratory of Nanobody Research and Guangxi Nanobody Engineering Research Center, Guangxi Medical University, Nanning, Guangxi, 530021, China.
| | - Ai-Qun Liu
- Department of Gastroenterology and Respiratory Medicine & Endoscopy Center, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, China.
| |
Collapse
|
16
|
Woodward R, Gross A, Justin GA, Jaffe GJ, Grewal DS. Bilateral Panuveitis in an Adolescent with Autoimmune Lymphoproliferative Syndrome Due to CTLA4 Haploinsufficiency. Ocul Immunol Inflamm 2024; 32:1888-1892. [PMID: 37703496 DOI: 10.1080/09273948.2023.2250441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 08/09/2023] [Accepted: 08/16/2023] [Indexed: 09/15/2023]
Abstract
PURPOSE To describe a case of bilateral panuveitis in an 11-year-old girl with autoimmune lymphoproliferative syndrome (ALPS) due to CTLA4 haploinsufficiency. CASE DESCRIPTION A 5-year-old girl developed cervical adenopathy, and autoimmune hemolytic anemia and thrombocytopenia consistent with Evan's Syndrome. She was subsequently diagnosed with autosomal dominant CTLA4 haploinsuffciency and treated with immunosuppressants. Ocular symptoms developed 6 years later when she complained of blurry vision and photophobia. There were 3+ anterior chamber cells and 1+ flare, stellate keratic precipitates, and 3+ vitreous cells in both eyes. On fluorescein angiography, there was staining along the arcades and peripheral perivascular leakage in both eyes. On indocyanine green angiography, there were hypofluorescent spots throughout the posterior pole. The inflammation was partially responsive to topical and oral corticosteroids. CONCLUSION Panuveitis may be associated with ALPS due to CTLA4 haploinsufficiency. Retinal and choroidal involvement should be assessed when anterior chamber inflammation is the presenting sign.
Collapse
Affiliation(s)
- Richmond Woodward
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Andrew Gross
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Grant A Justin
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Glenn J Jaffe
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Dilraj S Grewal
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
17
|
Bildstein T, Charbit-Henrion F, Azabdaftari A, Cerf-Bensussan N, Uhlig HH. Cellular and molecular basis of proximal small intestine disorders. Nat Rev Gastroenterol Hepatol 2024; 21:687-709. [PMID: 39117867 DOI: 10.1038/s41575-024-00962-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/28/2024] [Indexed: 08/10/2024]
Abstract
The proximal part of the small intestine, including duodenum and jejunum, is not only dedicated to nutrient digestion and absorption but is also a highly regulated immune site exposed to environmental factors. Host-protective responses against pathogens and tolerance to food antigens are essential functions in the small intestine. The cellular ecology and molecular pathways to maintain those functions are complex. Maladaptation is highlighted by common immune-mediated diseases such as coeliac disease, environmental enteric dysfunction or duodenal Crohn's disease. An expanding spectrum of more than 100 rare monogenic disorders inform on causative molecular mechanisms of nutrient absorption, epithelial homeostasis and barrier function, as well as inflammatory immune responses and immune regulation. Here, after summarizing the architectural and cellular traits that underlie the functions of the proximal intestine, we discuss how the integration of tissue immunopathology and molecular mechanisms can contribute towards our understanding of disease and guide diagnosis. We propose an integrated mechanism-based taxonomy and discuss the latest experimental approaches to gain new mechanistic insight into these disorders with large disease burden worldwide as well as implications for therapeutic interventions.
Collapse
Affiliation(s)
- Tania Bildstein
- Great Ormond Street Hospital for Children, Department of Paediatric Gastroenterology, London, UK
| | - Fabienne Charbit-Henrion
- Department of Genomic Medicine for Rare Diseases, Necker-Enfants Malades Hospital, APHP, University of Paris-Cité, Paris, France
- INSERM UMR1163, Intestinal Immunity, Institut Imagine, Paris, France
| | - Aline Azabdaftari
- Translational Gastroenterology Unit, Nuffield Department of Medicine, Oxford, UK
| | | | - Holm H Uhlig
- Translational Gastroenterology Unit, Nuffield Department of Medicine, Oxford, UK.
- Department of Paediatrics, University of Oxford, Oxford, UK.
- National Institute for Health and Care Research (NIHR) Oxford Biomedical Research Centre, Oxford, UK.
| |
Collapse
|
18
|
Robinson MA, Kennedy A, Orozco CT, Chen HC, Waters E, Giovacchini D, Yeung K, Filer L, Hinze C, Lloyd C, Dovedi SJ, Sansom DM. Rigid, bivalent CTLA-4 binding to CD80 is required to disrupt the cis CD80/PD-L1 interaction. Cell Rep 2024; 43:114768. [PMID: 39277860 DOI: 10.1016/j.celrep.2024.114768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/20/2024] [Accepted: 08/30/2024] [Indexed: 09/17/2024] Open
Abstract
The CTLA-4 and PD-1 checkpoints control immune responses and are key targets in immunotherapy. Both pathways are connected via a cis interaction between CD80 and PD-L1, the ligands for CTLA-4 and PD-1, respectively. This cis interaction prevents PD-1-PD-L1 binding but is reversed by CTLA-4 trans-endocytosis of CD80. However, how CTLA-4 selectively removes CD80, but not PD-L1, is unclear. Here, we show CTLA-4-CD80 interactions are unimpeded by PD-L1 and that CTLA-4 binding with CD80 does not displace PD-L1 per se. Rather, both rigidity and bivalency of CTLA-4 molecules are required to orientate CD80 such that PD-L1 interactions are no longer permissible. Moreover, soluble CTLA-4 released PD-L1 only at specific expression levels of CD80 and PD-L1, whereas CTLA-4 trans-endocytosis released PD-L1 in all conditions. These data show that PD-L1 release from CD80 is driven by orientation and bivalent cross-linking of membrane proteins and that trans-endocytosis of CD80 efficiently promotes PD-L1 availability.
Collapse
Affiliation(s)
- Maximillian A Robinson
- Institute of Immunity and Transplantation, Pears Building, Rowland Hill St, London NW3 2PP, UK
| | - Alan Kennedy
- Institute of Immunity and Transplantation, Pears Building, Rowland Hill St, London NW3 2PP, UK
| | - Carolina T Orozco
- Biologics Engineering, R&D, AstraZeneca, 1, Francis Crick Avenue Cambridge CB2 0AA, UK
| | - Hung-Chang Chen
- Early Oncology ICC, R&D, AstraZeneca, 1, Francis Crick Avenue, Cambridge CB2 0AA, UK
| | - Erin Waters
- Institute of Immunity and Transplantation, Pears Building, Rowland Hill St, London NW3 2PP, UK
| | - Dalisay Giovacchini
- Institute of Immunity and Transplantation, Pears Building, Rowland Hill St, London NW3 2PP, UK
| | - Kay Yeung
- Institute of Immunity and Transplantation, Pears Building, Rowland Hill St, London NW3 2PP, UK
| | - Lily Filer
- Institute of Immunity and Transplantation, Pears Building, Rowland Hill St, London NW3 2PP, UK
| | - Claudia Hinze
- Institute of Immunity and Transplantation, Pears Building, Rowland Hill St, London NW3 2PP, UK
| | - Christopher Lloyd
- Biologics Engineering, R&D, AstraZeneca, 1, Francis Crick Avenue Cambridge CB2 0AA, UK
| | - Simon J Dovedi
- Early Oncology ICC, R&D, AstraZeneca, 1, Francis Crick Avenue, Cambridge CB2 0AA, UK
| | - David M Sansom
- Institute of Immunity and Transplantation, Pears Building, Rowland Hill St, London NW3 2PP, UK.
| |
Collapse
|
19
|
Erman B, Aba U, Ipsir C, Pehlivan D, Aytekin C, Cildir G, Cicek B, Bozkurt C, Tekeoglu S, Kaya M, Aydogmus C, Cipe F, Sucak G, Eltan SB, Ozen A, Barıs S, Karakoc-Aydiner E, Kıykım A, Karaatmaca B, Kose H, Uygun DFK, Celmeli F, Arikoglu T, Ozcan D, Keskin O, Arık E, Aytekin ES, Cesur M, Kucukosmanoglu E, Kılıc M, Yuksek M, Bıcakcı Z, Esenboga S, Ayvaz DÇ, Sefer AP, Guner SN, Keles S, Reisli I, Musabak U, Demirbas ND, Haskologlu S, Kilic SS, Metin A, Dogu F, Ikinciogulları A, Tezcan I. Genetic Evaluation of the Patients with Clinically Diagnosed Inborn Errors of Immunity by Whole Exome Sequencing: Results from a Specialized Research Center for Immunodeficiency in Türkiye. J Clin Immunol 2024; 44:157. [PMID: 38954121 PMCID: PMC11219406 DOI: 10.1007/s10875-024-01759-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 06/22/2024] [Indexed: 07/04/2024]
Abstract
Molecular diagnosis of inborn errors of immunity (IEI) plays a critical role in determining patients' long-term prognosis, treatment options, and genetic counseling. Over the past decade, the broader utilization of next-generation sequencing (NGS) techniques in both research and clinical settings has facilitated the evaluation of a significant proportion of patients for gene variants associated with IEI. In addition to its role in diagnosing known gene defects, the application of high-throughput techniques such as targeted, exome, and genome sequencing has led to the identification of novel disease-causing genes. However, the results obtained from these different methods can vary depending on disease phenotypes or patient characteristics. In this study, we conducted whole-exome sequencing (WES) in a sizable cohort of IEI patients, consisting of 303 individuals from 21 different clinical immunology centers in Türkiye. Our analysis resulted in likely genetic diagnoses for 41.1% of the patients (122 out of 297), revealing 52 novel variants and uncovering potential new IEI genes in six patients. The significance of understanding outcomes across various IEI cohorts cannot be overstated, and we believe that our findings will make a valuable contribution to the existing literature and foster collaborative research between clinicians and basic science researchers.
Collapse
Affiliation(s)
- Baran Erman
- Institute of Child Health, Hacettepe University, Ankara, Turkey.
- Can Sucak Research Laboratory for Translational Immunology, Hacettepe University, Ankara, Turkey.
| | - Umran Aba
- Can Sucak Research Laboratory for Translational Immunology, Hacettepe University, Ankara, Turkey
- Department of Pediatric Immunology, Institute of Child Health, Hacettepe University, Ankara, Turkey
| | - Canberk Ipsir
- Can Sucak Research Laboratory for Translational Immunology, Hacettepe University, Ankara, Turkey
- Department of Pediatric Immunology, Institute of Child Health, Hacettepe University, Ankara, Turkey
| | - Damla Pehlivan
- Can Sucak Research Laboratory for Translational Immunology, Hacettepe University, Ankara, Turkey
| | - Caner Aytekin
- Pediatric Immunology, SBU Ankara Dr Sami Ulus Maternity Child Health and Diseases Training and Research Hospital, Ankara, Turkey
| | - Gökhan Cildir
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, 5000, Australia
| | - Begum Cicek
- Institute of Child Health, Hacettepe University, Ankara, Turkey
| | - Ceren Bozkurt
- Can Sucak Research Laboratory for Translational Immunology, Hacettepe University, Ankara, Turkey
| | - Sidem Tekeoglu
- Can Sucak Research Laboratory for Translational Immunology, Hacettepe University, Ankara, Turkey
| | - Melisa Kaya
- Can Sucak Research Laboratory for Translational Immunology, Hacettepe University, Ankara, Turkey
| | - Cigdem Aydogmus
- Department of Pediatric Allergy and Clinical Immunology, University of Health Sciences, Istanbul Basaksehir Cam and Sakura City Hospital, Istanbul, Turkey
| | - Funda Cipe
- Department of Pediatric Allergy and Clinical Immunology, Altinbas University School of Medicine, Istanbul, Turkey
| | - Gulsan Sucak
- Medical Park Bahçeşehir Hospital, Clinic of Hematology and Transplantation, İstanbul, Turkey
| | - Sevgi Bilgic Eltan
- Marmara University, Faculty of Medicine, Department of Pediatric Allergy and Immunology, Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Ahmet Ozen
- Marmara University, Faculty of Medicine, Department of Pediatric Allergy and Immunology, Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Safa Barıs
- Marmara University, Faculty of Medicine, Department of Pediatric Allergy and Immunology, Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Elif Karakoc-Aydiner
- Marmara University, Faculty of Medicine, Department of Pediatric Allergy and Immunology, Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Ayca Kıykım
- Pediatric Allergy and Immunology, Cerrahpasa School of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Betul Karaatmaca
- Department of Pediatric Allergy and Immunology, University of Health Sciences, Ankara Bilkent City Hospital, Ankara, Turkey
| | - Hulya Kose
- Department of Pediatric Immunology, Diyarbakir Children Hospital, Diyarbakır, Turkey
| | - Dilara Fatma Kocacık Uygun
- Division of Allergy Immunology, Department of Pediatrics, Akdeniz University Faculty of Medicine, Antalya, Turkey
| | - Fatih Celmeli
- Republic of Turkey Ministry of Health Antalya Training and Research Hospital Pediatric Immunology and Allergy Diseases, Antalya, Turkey
| | - Tugba Arikoglu
- Department of Pediatric Allergy and Immunology, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Dilek Ozcan
- Division of Pediatric Allergy and Immunology, Faculty of Medicine, Balcali Hospital, Cukurova University, Adana, Turkey
| | - Ozlem Keskin
- Department of Pediatric Allergy and Immunology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Elif Arık
- Department of Pediatric Allergy and Immunology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Elif Soyak Aytekin
- Department of Pediatric Allergy and Immunology, Etlik City Hospital, Ankara, Turkey
| | - Mahmut Cesur
- Department of Pediatric Allergy and Immunology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Ercan Kucukosmanoglu
- Department of Pediatric Allergy and Immunology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Mehmet Kılıc
- Division of Allergy and Immunology, Department of Pediatrics, Faculty of Medicine, University of Firat, Elazığ, Turkey
| | - Mutlu Yuksek
- Department of Pediatric Immunology and Allergy, Faculty of Medicine, Zonguldak Bulent Ecevit University, Zonguldak, Turkey
| | - Zafer Bıcakcı
- Department of Pediatric Hematology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Saliha Esenboga
- Department of Pediatrics, Division of Pediatric Immunology, Hacettepe University School of Medicine, Ankara, Turkey
| | - Deniz Çagdaş Ayvaz
- Department of Pediatrics, Division of Pediatric Immunology, Hacettepe University School of Medicine, Ankara, Turkey
- Section of Pediatric Immunology, Institute of Child Health, Hacettepe University, Ankara, Turkey
| | - Asena Pınar Sefer
- Department of Pediatric Allergy and Immunology, Şanlıurfa Training and Research Hospital, Şanlıurfa, Turkey
| | - Sukrü Nail Guner
- Department of Pediatric Immunology and Allergy, Medicine Faculty, Necmettin Erbakan University, Konya, Turkey
| | - Sevgi Keles
- Department of Pediatric Immunology and Allergy, Medicine Faculty, Necmettin Erbakan University, Konya, Turkey
| | - Ismail Reisli
- Department of Pediatric Immunology and Allergy, Medicine Faculty, Necmettin Erbakan University, Konya, Turkey
| | - Ugur Musabak
- Department of Immunology and Allergy, Baskent University School of Medicine, Ankara, Turkey
| | - Nazlı Deveci Demirbas
- Department of Pediatric Immunology and Allergy, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Sule Haskologlu
- Department of Pediatric Immunology and Allergy, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Sara Sebnem Kilic
- Division of Pediatric Immunology-Rheumatology, Bursa Uludag University Faculty of Medicine, Bursa, Turkey
- Translational Medicine, Bursa Uludag University, Bursa, Turkey
| | - Ayse Metin
- Department of Pediatric Allergy and Immunology, University of Health Sciences, Ankara Bilkent City Hospital, Ankara, Turkey
| | - Figen Dogu
- Department of Pediatric Immunology and Allergy, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Aydan Ikinciogulları
- Department of Pediatric Immunology and Allergy, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Ilhan Tezcan
- Department of Pediatrics, Division of Pediatric Immunology, Hacettepe University School of Medicine, Ankara, Turkey
| |
Collapse
|
20
|
Quaak MSW, Buijze MSJS, Verhoeven VJM, Vermont C, Buddingh EP, Heredia M, Samsom JN, Titulaer MJ, van Rossum AM, Kamphuis S, Neuteboom RF. Management of Autoimmune Encephalitis in a 7-Year-Old Child With CTLA-4 Haploinsufficiency and AMPA Receptor Antibodies: A Case Report. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2024; 11:e200254. [PMID: 38728609 PMCID: PMC11089537 DOI: 10.1212/nxi.0000000000200254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/19/2024] [Indexed: 05/12/2024]
Abstract
OBJECTIVES We report on the therapeutic management of early-onset severe neurologic symptoms in cytotoxic T lymphocyte antigen-4 haploinsufficiency (CTLA-4h) and the presence of antibodies to the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) as an important finding. METHODS This is a case report from a Dutch academic hospital. Repeated clinical examinations, repeated brain MRI and extended diagnostics on serum and CSF were performed. We used the CARE checklist. RESULTS A 7-year-old boy was diagnosed with CTLA-4h based on family screening. On diagnosis, he had mild chronic diarrhea and autism spectrum disorder, but no abnormalities in extensive laboratory screening. Six months later, he presented with sudden-onset autoimmune encephalitis. Repeated brain MRI revealed no abnormalities, but immunohistochemistry analysis on serum and CSF showed the presence of AMPAR antibodies. Treatment was initially focused on immunomodulation and targeted CTLA-4 replacement therapy. Because of the persistent fluctuating cerebellar and neuropsychiatric symptoms and the potential clinical significance of the AMPAR antibodies, treatment was intensified with repetition of first-line immunomodulation and rituximab. This combined therapy resulted in sustained clinical improvement and served as a bridge to curative hematopoietic stem cell transplantation. DISCUSSION This case illustrates the rare early onset of autoimmune encephalitis and presence of AMPAR antibodies in CTLA-4h. Targeted CTLA-4 replacement therapy resulted in a partial response. However, awaiting its optimal therapeutic effect, refractory CNS symptoms required intensification of immunomodulation. The identification of AMPAR antibodies guided our treatment decisions. CLASSIFICATION OF EVIDENCE This provides Class IV evidence. It is a single observational study without controls.
Collapse
Affiliation(s)
- Marjolijn S W Quaak
- From the Division of Infectious Diseases and Immunology (M.S.W.Q., C.V., A.M.C.R.), Department of Pediatrics, Erasmus MC University Medical Center-Sophia Children's Hospital; Department of Neurology (M.S.J.B., M.J.T., R.F.N.); Department of Clinical Genetics (V.J.M.V.), Erasmus MC University Medical Center, Rotterdam; Pediatric Stem Cell Transplantation Program (E.P.B.), Department of Pediatrics, Willem-Alexander Children's Hospital, Leiden University Medical Center; Division Gastroenterology and Nutrition (M.H., J.N.S.), Department of Pediatrics/Laboratory of Pediatrics, Erasmus MC University Medical Center; and Division of Rheumatology (S.K.), Department of Pediatrics, Erasmus MC University Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Michiel S J S Buijze
- From the Division of Infectious Diseases and Immunology (M.S.W.Q., C.V., A.M.C.R.), Department of Pediatrics, Erasmus MC University Medical Center-Sophia Children's Hospital; Department of Neurology (M.S.J.B., M.J.T., R.F.N.); Department of Clinical Genetics (V.J.M.V.), Erasmus MC University Medical Center, Rotterdam; Pediatric Stem Cell Transplantation Program (E.P.B.), Department of Pediatrics, Willem-Alexander Children's Hospital, Leiden University Medical Center; Division Gastroenterology and Nutrition (M.H., J.N.S.), Department of Pediatrics/Laboratory of Pediatrics, Erasmus MC University Medical Center; and Division of Rheumatology (S.K.), Department of Pediatrics, Erasmus MC University Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Virginie J M Verhoeven
- From the Division of Infectious Diseases and Immunology (M.S.W.Q., C.V., A.M.C.R.), Department of Pediatrics, Erasmus MC University Medical Center-Sophia Children's Hospital; Department of Neurology (M.S.J.B., M.J.T., R.F.N.); Department of Clinical Genetics (V.J.M.V.), Erasmus MC University Medical Center, Rotterdam; Pediatric Stem Cell Transplantation Program (E.P.B.), Department of Pediatrics, Willem-Alexander Children's Hospital, Leiden University Medical Center; Division Gastroenterology and Nutrition (M.H., J.N.S.), Department of Pediatrics/Laboratory of Pediatrics, Erasmus MC University Medical Center; and Division of Rheumatology (S.K.), Department of Pediatrics, Erasmus MC University Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Clementien Vermont
- From the Division of Infectious Diseases and Immunology (M.S.W.Q., C.V., A.M.C.R.), Department of Pediatrics, Erasmus MC University Medical Center-Sophia Children's Hospital; Department of Neurology (M.S.J.B., M.J.T., R.F.N.); Department of Clinical Genetics (V.J.M.V.), Erasmus MC University Medical Center, Rotterdam; Pediatric Stem Cell Transplantation Program (E.P.B.), Department of Pediatrics, Willem-Alexander Children's Hospital, Leiden University Medical Center; Division Gastroenterology and Nutrition (M.H., J.N.S.), Department of Pediatrics/Laboratory of Pediatrics, Erasmus MC University Medical Center; and Division of Rheumatology (S.K.), Department of Pediatrics, Erasmus MC University Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Emmeline P Buddingh
- From the Division of Infectious Diseases and Immunology (M.S.W.Q., C.V., A.M.C.R.), Department of Pediatrics, Erasmus MC University Medical Center-Sophia Children's Hospital; Department of Neurology (M.S.J.B., M.J.T., R.F.N.); Department of Clinical Genetics (V.J.M.V.), Erasmus MC University Medical Center, Rotterdam; Pediatric Stem Cell Transplantation Program (E.P.B.), Department of Pediatrics, Willem-Alexander Children's Hospital, Leiden University Medical Center; Division Gastroenterology and Nutrition (M.H., J.N.S.), Department of Pediatrics/Laboratory of Pediatrics, Erasmus MC University Medical Center; and Division of Rheumatology (S.K.), Department of Pediatrics, Erasmus MC University Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Maud Heredia
- From the Division of Infectious Diseases and Immunology (M.S.W.Q., C.V., A.M.C.R.), Department of Pediatrics, Erasmus MC University Medical Center-Sophia Children's Hospital; Department of Neurology (M.S.J.B., M.J.T., R.F.N.); Department of Clinical Genetics (V.J.M.V.), Erasmus MC University Medical Center, Rotterdam; Pediatric Stem Cell Transplantation Program (E.P.B.), Department of Pediatrics, Willem-Alexander Children's Hospital, Leiden University Medical Center; Division Gastroenterology and Nutrition (M.H., J.N.S.), Department of Pediatrics/Laboratory of Pediatrics, Erasmus MC University Medical Center; and Division of Rheumatology (S.K.), Department of Pediatrics, Erasmus MC University Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Janneke N Samsom
- From the Division of Infectious Diseases and Immunology (M.S.W.Q., C.V., A.M.C.R.), Department of Pediatrics, Erasmus MC University Medical Center-Sophia Children's Hospital; Department of Neurology (M.S.J.B., M.J.T., R.F.N.); Department of Clinical Genetics (V.J.M.V.), Erasmus MC University Medical Center, Rotterdam; Pediatric Stem Cell Transplantation Program (E.P.B.), Department of Pediatrics, Willem-Alexander Children's Hospital, Leiden University Medical Center; Division Gastroenterology and Nutrition (M.H., J.N.S.), Department of Pediatrics/Laboratory of Pediatrics, Erasmus MC University Medical Center; and Division of Rheumatology (S.K.), Department of Pediatrics, Erasmus MC University Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Maarten J Titulaer
- From the Division of Infectious Diseases and Immunology (M.S.W.Q., C.V., A.M.C.R.), Department of Pediatrics, Erasmus MC University Medical Center-Sophia Children's Hospital; Department of Neurology (M.S.J.B., M.J.T., R.F.N.); Department of Clinical Genetics (V.J.M.V.), Erasmus MC University Medical Center, Rotterdam; Pediatric Stem Cell Transplantation Program (E.P.B.), Department of Pediatrics, Willem-Alexander Children's Hospital, Leiden University Medical Center; Division Gastroenterology and Nutrition (M.H., J.N.S.), Department of Pediatrics/Laboratory of Pediatrics, Erasmus MC University Medical Center; and Division of Rheumatology (S.K.), Department of Pediatrics, Erasmus MC University Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Annemarie M van Rossum
- From the Division of Infectious Diseases and Immunology (M.S.W.Q., C.V., A.M.C.R.), Department of Pediatrics, Erasmus MC University Medical Center-Sophia Children's Hospital; Department of Neurology (M.S.J.B., M.J.T., R.F.N.); Department of Clinical Genetics (V.J.M.V.), Erasmus MC University Medical Center, Rotterdam; Pediatric Stem Cell Transplantation Program (E.P.B.), Department of Pediatrics, Willem-Alexander Children's Hospital, Leiden University Medical Center; Division Gastroenterology and Nutrition (M.H., J.N.S.), Department of Pediatrics/Laboratory of Pediatrics, Erasmus MC University Medical Center; and Division of Rheumatology (S.K.), Department of Pediatrics, Erasmus MC University Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Sylvia Kamphuis
- From the Division of Infectious Diseases and Immunology (M.S.W.Q., C.V., A.M.C.R.), Department of Pediatrics, Erasmus MC University Medical Center-Sophia Children's Hospital; Department of Neurology (M.S.J.B., M.J.T., R.F.N.); Department of Clinical Genetics (V.J.M.V.), Erasmus MC University Medical Center, Rotterdam; Pediatric Stem Cell Transplantation Program (E.P.B.), Department of Pediatrics, Willem-Alexander Children's Hospital, Leiden University Medical Center; Division Gastroenterology and Nutrition (M.H., J.N.S.), Department of Pediatrics/Laboratory of Pediatrics, Erasmus MC University Medical Center; and Division of Rheumatology (S.K.), Department of Pediatrics, Erasmus MC University Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Rinze F Neuteboom
- From the Division of Infectious Diseases and Immunology (M.S.W.Q., C.V., A.M.C.R.), Department of Pediatrics, Erasmus MC University Medical Center-Sophia Children's Hospital; Department of Neurology (M.S.J.B., M.J.T., R.F.N.); Department of Clinical Genetics (V.J.M.V.), Erasmus MC University Medical Center, Rotterdam; Pediatric Stem Cell Transplantation Program (E.P.B.), Department of Pediatrics, Willem-Alexander Children's Hospital, Leiden University Medical Center; Division Gastroenterology and Nutrition (M.H., J.N.S.), Department of Pediatrics/Laboratory of Pediatrics, Erasmus MC University Medical Center; and Division of Rheumatology (S.K.), Department of Pediatrics, Erasmus MC University Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands
| |
Collapse
|
21
|
Bush A. Learning from cystic fibrosis: How can we start to personalise treatment of Children's Interstitial Lung Disease (chILD)? Paediatr Respir Rev 2024; 50:46-53. [PMID: 37996258 DOI: 10.1016/j.prrv.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 11/17/2023] [Indexed: 11/25/2023]
Abstract
Cystic fibrosis (CF) is a monogenic disorder cause by mutations in the CF Transmembrane Regulator (CFTR) gene. The prognosis of cystic fibrosis has been transformed by the discovery of highly effective modulator therapies (HEMT). Treatment has changed from reactive therapy dealing with complications of the disease to pro-active correction of the underlying molecular functional abnormality. This has come about by discovering the detailed biology of the different CF molecular sub-endotypes; the development of biomarkers to assess response even in mild disease or young children; the performance of definitive large randomised controlled trials in patients with a common mutation and the development of in vitro testing systems to test efficacy in those patients with rare CFTR mutations. As a result, CF is now an umbrella term, rather than a specific diagnostic label; we have moved from clinical phenotypes to molecular subendotypes. Children's Interstitial Lung Diseases (chILDs) comprise more than 200 entities, and are a diverse group of diseases, for an increasing number of which an underlying gene mutation has been discovered. Many of these entities are umbrella terms, such as pulmonary alveolar proteinosis or hypersensitivity pneumonitis, for each of which there are multiple and very different endotypes. Even those chILDs for which a specific gene mutation has been discovered comprise, as with CF, different molecular subendotypes likely mandating different therapies. For most chILDs, current treatment is non-specific (corticosteroids, azithromycin, hydroxychloroquine). The variability of the different entities means that there is little evidence for the efficacy of any treatment. This review considers how some of the lessons of the success story of CF are being applied to chILD, thus opening the opportunities for truly personalised medicine in these conditions. Advances in knowledge in the molecular biology of surfactant protein C and Adenosine triphosphate binding cassette subfamily A member 3 (ABCA3), and the possibilities of discovering novel therapies by in vitro studies will especially be highlighted.
Collapse
Affiliation(s)
- Andrew Bush
- National Heart and Lung Institute, Imperial College, and Imperial Centre for Paediatrics and Child Health, Consultant Paediatric Chest Physician, Royal Brompton Hospital, UK.
| |
Collapse
|
22
|
Rossini L, Ricci S, Montin D, Azzari C, Gambineri E, Tellini M, Conti F, Pession A, Saettini F, Naviglio S, Valencic E, Magnolato A, Baselli L, Azzolini S, Consolini R, Leonardi L, D'Alba I, Carraro E, Romano R, Melis D, Stagi S, Cirillo E, Giardino G, Biffi A, Pignata C, Putti MC, Marzollo A. Immunological Aspects of Kabuki Syndrome: A Retrospective Multicenter Study of the Italian Primary Immunodeficiency Network (IPINet). J Clin Immunol 2024; 44:105. [PMID: 38676773 DOI: 10.1007/s10875-024-01676-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/23/2024] [Indexed: 04/29/2024]
Abstract
Kabuki Syndrome (KS) is a multisystemic genetic disorder. A portion of patients has immunological manifestations characterized by increased susceptibility to infections and autoimmunity. Aiming to describe the clinical and laboratory immunological aspects of KS, we conducted a retrospective multicenter observational study on patients with KS treated in centers affiliated to the Italian Primary Immunodeficiency Network.Thirty-nine patients were enrolled, with a median age at evaluation of 10 years (range: 3 m-21y). All individuals had organ malformations of variable severity. Congenital heart defect (CHD) was present in 19/39 patients (49%) and required surgical correction in 9/39 (23%), with associated thymectomy in 7/39 (18%). Autoimmune cytopenia occurred in 6/39 patients (15%) and was significantly correlated with thymectomy (p < 0.002), but not CHD. Individuals with cytopenia treated with mycophenolate as long-term immunomodulatory treatment (n = 4) showed complete response. Increased susceptibility to infections was observed in 22/32 patients (69%). IgG, IgA, and IgM were low in 13/29 (45%), 13/30 (43%) and 4/29 (14%) patients, respectively. Immunoglobulin substitution was required in three patients. Lymphocyte subsets were normal in all patients except for reduced naïve T-cells in 3/15 patients (20%) and reduced memory switched B-cells in 3/17 patients (18%). Elevated CD3 + TCRαβ + CD4-CD8-T-cells were present in 5/17 individuals (23%) and were correlated with hematological and overall autoimmunity (p < 0.05).In conclusion, immunological manifestations of KS in our cohort include susceptibility to infections, antibody deficiency, and autoimmunity. Autoimmune cytopenia is correlated with thymectomy and elevated CD3 + TCRαβ + CD4-CD8-T-cells, and benefits from treatment with mycophenolate.
Collapse
Affiliation(s)
- Linda Rossini
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Padua University Hospital, Via Giustiniani 3, Padua, 35128, Italy
- Maternal and Child Health Department, Padua University, Via Giustiniani, 3, Padua, 35128, Italy
| | - Silvia Ricci
- Immunology, Pediatric Unit, IRCCS Meyer Children's Hospital, viale G.Pieraccini 24, Florence, 50139, Italy
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Davide Montin
- Immunology and Rheumatology Unit, Regina Margherita Children Hospital, Turin, Italy
| | - Chiara Azzari
- Immunology, Pediatric Unit, IRCCS Meyer Children's Hospital, viale G.Pieraccini 24, Florence, 50139, Italy
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Eleonora Gambineri
- Centre of Excellence, Department of Pediatric Hematology-Oncology, IRCCS Meyer Children's Hospital, Florence, Italy
- Department of "NEUROFARBA", Section of Child's Health, University of Florence, Florence, Italy
| | - Marco Tellini
- Centre of Excellence, Department of Pediatric Hematology-Oncology, IRCCS Meyer Children's Hospital, Florence, Italy
| | - Francesca Conti
- Pediatric Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, 40138, Italy
- Dept. of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Andrea Pession
- Pediatric Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, 40138, Italy
- Dept. of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Francesco Saettini
- Tettamanti Research Center, University of Milano-Bicocca, University of Milano Bicocca, Monza, Italy
| | - Samuele Naviglio
- Institute for Maternal and Child Health IRCCS "Burlo Garofolo", Trieste, Italy
| | - Erica Valencic
- Institute for Maternal and Child Health IRCCS "Burlo Garofolo", Trieste, Italy
| | - Andrea Magnolato
- Institute for Maternal and Child Health IRCCS "Burlo Garofolo", Trieste, Italy
| | - Lucia Baselli
- Department of Pediatrics, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Rita Consolini
- Section of Clinical and Laboratory Immunology, Division of Pediatrics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Lucia Leonardi
- Maternal, Infantile and Urological Sciences Department, Sapienza University of Rome, Rome, Italy
| | - Irene D'Alba
- Paediatric Haematology-Oncology, Maternal Infant Hospital "G. Salesi", Ancona, Italy
| | - Elisa Carraro
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Padua University Hospital, Via Giustiniani 3, Padua, 35128, Italy
| | - Roberta Romano
- Department of Translational Medical Sciences, Section of Pediatrics, Federico II University, Naples, Italy
| | - Daniela Melis
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via Salvador Allende Baronissi, Campania, 84081, Italy
| | - Stefano Stagi
- Department of Health Sciences, University of Florence, Florence, Italy
- Auxoendocrinology Division, Meyer Children's Hospital, IRCCS, viale G.Pieraccini 24, Florence, 50139, Italy
| | - Emilia Cirillo
- Department of Translational Medical Sciences, Section of Pediatrics, Federico II University, Naples, Italy
| | - Giuliana Giardino
- Department of Translational Medical Sciences, Section of Pediatrics, Federico II University, Naples, Italy
| | - Alessandra Biffi
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Padua University Hospital, Via Giustiniani 3, Padua, 35128, Italy
- Maternal and Child Health Department, Padua University, Via Giustiniani, 3, Padua, 35128, Italy
| | - Claudio Pignata
- Department of Translational Medical Sciences, Section of Pediatrics, Federico II University, Naples, Italy
| | - Maria Caterina Putti
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Padua University Hospital, Via Giustiniani 3, Padua, 35128, Italy
| | - Antonio Marzollo
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Padua University Hospital, Via Giustiniani 3, Padua, 35128, Italy.
| |
Collapse
|
23
|
Szaflarska A, Lenart M, Rutkowska-Zapała M, Siedlar M. Clinical and experimental treatment of primary humoral immunodeficiencies. Clin Exp Immunol 2024; 216:120-131. [PMID: 38306460 PMCID: PMC11036112 DOI: 10.1093/cei/uxae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/13/2023] [Accepted: 01/31/2024] [Indexed: 02/04/2024] Open
Abstract
Selective IgA deficiency (sIgAD), common variable immunodeficiency (CVID), and transient hypogammaglobulinemia of infancy (THI) are the most frequent forms of primary antibody deficiencies. Difficulties in initial diagnosis, especially in the early childhood, the familiar occurrence of these diseases, as well as the possibility of progression to each other suggest common cellular and molecular patomechanism and a similar genetic background. In this review, we discuss both similarities and differences of these three humoral immunodeficiencies, focusing on current and novel therapeutic approaches. We summarize immunoglobulin substitution, antibiotic prophylaxis, treatment of autoimmune diseases, and other common complications, i.e. cytopenias, gastrointestinal complications, and granulomatous disease. We discuss novel therapeutic approaches such as allogenic stem cell transplantation and therapies targeting-specific proteins, dependent on the patient's genetic defect. The diversity of possible therapeutics models results from a great heterogeneity of the disease variants, implying the need of personalized medicine approach as a future of primary humoral immunodeficiencies treatment.
Collapse
Affiliation(s)
- Anna Szaflarska
- Department of Clinical Immunology, Institute of Paediatrics, Jagiellonian University Medical College, Wielicka 265, Cracow, Poland
- Deparment of Clinical Immunology, University Children’s Hospital, Wielicka 265, Cracow, Poland
| | - Marzena Lenart
- Department of Clinical Immunology, Institute of Paediatrics, Jagiellonian University Medical College, Wielicka 265, Cracow, Poland
- Deparment of Clinical Immunology, University Children’s Hospital, Wielicka 265, Cracow, Poland
| | - Magdalena Rutkowska-Zapała
- Department of Clinical Immunology, Institute of Paediatrics, Jagiellonian University Medical College, Wielicka 265, Cracow, Poland
- Deparment of Clinical Immunology, University Children’s Hospital, Wielicka 265, Cracow, Poland
| | - Maciej Siedlar
- Department of Clinical Immunology, Institute of Paediatrics, Jagiellonian University Medical College, Wielicka 265, Cracow, Poland
- Deparment of Clinical Immunology, University Children’s Hospital, Wielicka 265, Cracow, Poland
| |
Collapse
|
24
|
Campbell E, Shaker MS, Williams KW. Clinical updates in inborn errors of immunity: a focus on the noninfectious clinical manifestations. Curr Opin Pediatr 2024; 36:228-236. [PMID: 38299990 DOI: 10.1097/mop.0000000000001331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
PURPOSE OF REVIEW In the last 5 years, several new inborn errors of immunity (IEI) have been described, especially in the areas of immune dysregulation and autoinflammation. As a result, the clinical presentation of IEIs has broadened. We review the heterogeneous presentation of IEIs and detail several of the recently described IEIs with a focus on the noninfectious manifestations commonly seen. RECENT FINDINGS IEIs may present with early onset and/or multiple autoimmune manifestations, increased risk for malignancy, lymphoproliferation, severe atopy, autoinflammation and/or hyperinflammation. Because of this, patients can present to a wide array of providers ranging from primary care to various pediatric subspecialists. The International Union of Immunological Societies (IUIS) expert committee has created a phenotypic classification of IEIs in order to help clinicians narrow their evaluation based on the laboratory and clinical findings. SUMMARY Both primary care pediatricians and pediatric subspecialists need to be aware of the common clinical features associated with IEI and recognize when to refer to allergy-immunology for further evaluation. Early diagnosis can lead to earlier treatment initiation and improve clinical outcomes for our patients.
Collapse
Affiliation(s)
- Emily Campbell
- Division of Pediatric Pulmonology, Allergy and Immunology, Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina
| | - Marcus S Shaker
- Section of Allergy and Clinical Immunology, Dartmouth-Hitchcock Medical Center, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Kelli W Williams
- Division of Pediatric Pulmonology, Allergy and Immunology, Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
25
|
Thangaraj A, Tyagi R, Suri D, Gupta S. Infections in Disorders of Immune Regulation. Pathogens 2024; 13:259. [PMID: 38535602 PMCID: PMC10976012 DOI: 10.3390/pathogens13030259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 02/11/2025] Open
Abstract
Primary immune regulatory disorders (PIRDs) constitute a spectrum of inborn errors of immunity (IEIs) that are primarily characterized by autoimmunity, lymphoproliferation, atopy, and malignancy. In PIRDs, infections are infrequent compared to other IEIs. While susceptibility to infection primarily stems from antibody deficiency, it is sometimes associated with additional innate immune and T or NK cell defects. The use of immunotherapy and chemotherapy further complicates the immune landscape, increasing the risk of diverse infections. Recurrent sinopulmonary infections, particularly bacterial infections such as those associated with staphylococcal and streptococcal organisms, are the most reported infectious manifestations. Predisposition to viral infections, especially Epstein-Barr virus (EBV)-inducing lymphoproliferation and malignancy, is also seen. Notably, mycobacterial and invasive fungal infections are rarely documented in these disorders. Knowledge about the spectrum of infections in these disorders would prevent diagnostic delays and prevent organ damage. This review delves into the infection profile specific to autoimmune lymphoproliferative syndrome (ALPS), Tregopathies, and syndromes with autoimmunity within the broader context of PIRD. Despite the critical importance of understanding the infectious aspects of these disorders, there remains a scarcity of comprehensive reports on this subject.
Collapse
Affiliation(s)
- Abarna Thangaraj
- Pediatric Allergy Immunology Unit, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India; (A.T.); (R.T.)
| | - Reva Tyagi
- Pediatric Allergy Immunology Unit, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India; (A.T.); (R.T.)
| | - Deepti Suri
- Pediatric Allergy Immunology Unit, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India; (A.T.); (R.T.)
| | - Sudhir Gupta
- Division of Basic and Clinical Immunology, Department of Medicine, University of California, Irvine, CA 92697, USA;
| |
Collapse
|
26
|
Seidel MG, Hauck F. Multilayer concept of autoimmune mechanisms and manifestations in inborn errors of immunity: Relevance for precision therapy. J Allergy Clin Immunol 2024; 153:615-628.e4. [PMID: 38185417 DOI: 10.1016/j.jaci.2023.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/12/2023] [Accepted: 12/21/2023] [Indexed: 01/09/2024]
Abstract
Autoimmunity in inborn errors of immunity (IEIs) has a multifactorial pathogenesis and develops subsequent to a genetic predisposition in conjunction with gene regulation, environmental modifiers, and infectious triggers. On the basis of incremental data availability owing to upfront application of omics technologies, a more granular and dynamic view of mechanisms and manifestations is warranted. Here, we present a comprehensive novel concept of autoimmunity in IEIs that considers multiple layers of interdependent elements and connects 101 causative genes or deletions according to the quality of the allelic variants with 47 molecular pathways and 22 immune effector mechanisms. Furthermore, we list 50 resulting manifestations together with the corresponding Human Phenotype Ontology terms and review the types and frequencies of the most relevant clinical presentations. When all of its elements are taken together, this concept (1) extends the historical anatomic view of central versus peripheral tolerance toward multiple interdependent mechanisms of immune tolerance, (2) delineates the mechanisms underlying the protean clinical manifestations, and thereby, (3) points toward the most suitable precision therapy for autoimmunity in IEIs. The multilayer concept of autoimmune mechanisms and manifestations in IEIs will facilitate research design and provide clinical guidance on the use of precision medicine irrespective of the data depth available in each health care scenario.
Collapse
Affiliation(s)
- Markus G Seidel
- Research Unit for Pediatric Hematology and Immunology, Division of Pediatric Hemato-Oncology, Department of Pediatrics and Adolescent Medicine, Medical University of Graz, Graz, Austria.
| | - Fabian Hauck
- Division of Pediatric Immunology and Rheumatology, Department of Pediatrics, Dr von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, München, Germany.
| |
Collapse
|
27
|
Duke S, Maiarana J, Yousefi P, Burks E, Gerrie S, Setiadi A, Hildebrand KJ, James E, Turvey SE, Markle JG, Biggs CM. Expanding the molecular and phenotypic spectrum of CTLA-4 insufficiency. Pediatr Allergy Immunol 2024; 35:e14077. [PMID: 38351878 PMCID: PMC12019878 DOI: 10.1111/pai.14077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/06/2024] [Accepted: 01/08/2024] [Indexed: 02/16/2024]
Affiliation(s)
- Sean Duke
- Department of Pediatrics, BC Children’s Hospital,
The University of British Columbia, Vancouver, British Columbia, Canada
| | - James Maiarana
- Department of Pathology, Microbiology, and Immunology,
Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Pariya Yousefi
- Department of Pediatrics, BC Children’s Hospital,
The University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Samantha Gerrie
- Department of Radiology, BC Children’s Hospital, The
University of British Columbia, Vancouver, British Columbia, Canada
| | - Audi Setiadi
- Department of Pathology, BC Children’s Hospital, The
University of British Columbia, Vancouver, British Columbia, Canada
| | - BC Children’s and St Paul’s Hospital Members
- Department of Pediatrics, BC Children’s Hospital,
The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Pathology, BC Children’s Hospital, The
University of British Columbia, Vancouver, British Columbia, Canada
- Department of Medical Genetics, BC Children’s
Hospital, The University of British Columbia, Vancouver, British Columbia,
Canada
- Division of Allergy & Immunology, St Paul’s
Hospital, The University of British Columbia, Vancouver, British Columbia,
Canada
- Division of Rheumatology, Vancouver General Hospital and St
Paul’s Hospital, The University of British Columbia, Vancouver, British
Columbia, Canada
| | - Kyla J. Hildebrand
- Department of Pediatrics, BC Children’s Hospital,
The University of British Columbia, Vancouver, British Columbia, Canada
| | - Elliot James
- Department of Pediatrics, BC Children’s Hospital,
The University of British Columbia, Vancouver, British Columbia, Canada
| | - Stuart E. Turvey
- Department of Pediatrics, BC Children’s Hospital,
The University of British Columbia, Vancouver, British Columbia, Canada
| | - Janet G. Markle
- Department of Pathology, Microbiology, and Immunology,
Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Catherine M. Biggs
- Department of Pediatrics, BC Children’s Hospital,
The University of British Columbia, Vancouver, British Columbia, Canada
- Division of Allergy & Immunology, St Paul’s
Hospital, The University of British Columbia, Vancouver, British Columbia,
Canada
| |
Collapse
|
28
|
Wang JJF, Dhir A, Hildebrand KJ, Turvey SE, Schellenberg R, Chen LYC, Pourshahnazari P, Biggs CM. Inborn errors of immunity in adulthood. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2024; 20:6. [PMID: 38233962 DOI: 10.1186/s13223-023-00862-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/26/2023] [Indexed: 01/19/2024]
Abstract
Inborn errors of immunity (IEIs) are a group of conditions whereby parts of the immune system are missing or dysfunctional. Once thought to primarily be a pediatric disorder, it is now estimated that more than 50% of worldwide incident IEI cases are accounted for by adults. Delayed diagnosis, late symptom onset, and IEI phenocopies can all lead to adult-onset recognition of IEIs. Lack of awareness regarding the diversity of IEI manifestations in adults contributes to diagnostic and treatment delays. Prompt referral to immunology is critical so that patients can receive a precise molecular diagnosis and targeted therapy when available. This article serves as a primer on IEIs in adulthood, highlighting the pathophysiology, epidemiology and clinical features. We present clinical vignettes of three key IEIs to assist clinicians in building illness scripts on their presentations. We provide a framework for the laboratory evaluation of IEIs and their initial treatment, with the aim of improving recognition and management of these conditions.
Collapse
Affiliation(s)
- Joanne J F Wang
- Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Arün Dhir
- Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Kyla J Hildebrand
- Department of Pediatrics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, Canada
| | - Stuart E Turvey
- Department of Pediatrics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, Canada
| | | | - Luke Y C Chen
- Department of Medicine, University of British Columbia, Vancouver, Canada
| | | | - Catherine M Biggs
- Department of Medicine, University of British Columbia, Vancouver, Canada.
- Department of Pediatrics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
29
|
Magerus A, Rensing-Ehl A, Rao VK, Teachey DT, Rieux-Laucat F, Ehl S. Autoimmune lymphoproliferative immunodeficiencies (ALPIDs): A proposed approach to redefining ALPS and other lymphoproliferative immune disorders. J Allergy Clin Immunol 2024; 153:67-76. [PMID: 37977527 PMCID: PMC10841637 DOI: 10.1016/j.jaci.2023.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
Chronic nonmalignant lymphoproliferation and autoimmune cytopenia are relevant manifestations of immunohematologic diseases of childhood. Their diagnostic classification is challenging but important for therapy. Autoimmune lymphoproliferative syndrome (ALPS) is a genetically defined inborn error of immunity combining these manifestations, but it can explain only a small proportion of cases. Diagnostic categories such as ALPS-like disease, common variable immunodeficiency, or Evans syndrome have therefore been used. Advances in genetics and increasing availablity of targeted therapies call for more therapy-oriented disease classification. Moreover, recent discoveries in the (re)analysis of genetic conditions affecting FAS signaling ask for a more precise definition of ALPS. In this review, we propose the term autoimmune lymphoproliferative immunodeficiencies for a disease phenotype that is enriched for patients with genetic diseases for which targeted therapies are available. For patients without a current molecular diagnosis, this term defines a subgroup of immune dysregulatory disorders for further studies. Within the concept of autoimmune lymphoproliferative immunodeficiencies, we propose a revision of the ALPS classification, restricting use of this term to conditions with clear evidence of perturbation of FAS signaling and resulting specific biologic and clinical consequences. This proposed approach to redefining ALPS and other lymphoproliferative conditions provides a framework for disease classification and diagnosis that is relevant for the many specialists confronted with these diseases.
Collapse
Affiliation(s)
- Aude Magerus
- University of Paris Cité, Paris, France; Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Anne Rensing-Ehl
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - V Koneti Rao
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, Md
| | - David T Teachey
- Division of Hematology, The Children's Hospital of Philadelphia, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pa; Division of Oncology, The Children's Hospital of Philadelphia, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pa
| | - Frederic Rieux-Laucat
- University of Paris Cité, Paris, France; Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Stephan Ehl
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
30
|
Tessarin G, Baronio M, Lougaris V. Monogenic forms of common variable immunodeficiency and implications on target therapeutic approaches. Curr Opin Allergy Clin Immunol 2023; 23:461-466. [PMID: 37767915 PMCID: PMC10621638 DOI: 10.1097/aci.0000000000000947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
PURPOSE OF REVIEW Common variable immunodeficiency (CVID) is the most common symptomatic inborn error of immunity. The disorder is characterized by variable clinical and immunological manifestations, and, in a small minority of patients, a monogenic cause may be identified. In this review, we focalized on three different monogenic forms of CVID-like disease. RECENT FINDINGS Activated phosphoinositide 3-kinase delta syndrome (APDS) is a rare disorder characterized by hyperactivated class I phosphatidylinositol-3 kinase (PI3K) pathway. Affected patients present with respiratory infectious episodes, impaired viral clearance and lymphoproliferation. Recently, a direct PI3K inhibitor has been approved and it showed encouraging results both in controlling clinical and immunological manifestations of the disease. On the other hand, patients with defects in CTLA-4 or LRBA gene present with life-threatening immune dysregulation, autoimmunity and lymphocytic infiltration of multiple organs. Abatacept, a soluble cytotoxic T lymphocyte antigen 4 (CTLA-4) fusion protein that acts as a costimulation modulator, has been widely implemented for affected patients with good results as bridge treatment. SUMMARY Understanding the biological basis of CVID is important not only for enriching our knowledge of the human immune system, but also for setting the basis for potential targeted treatments in this disorder.
Collapse
Affiliation(s)
- Giulio Tessarin
- Pediatrics Clinic and Institute for Molecular Medicine 'A. Nocivelli', Department of Clinical and Experimental Sciences, University of Brescia and ASST Spedali Civili of Brescia, Brescia, Italy
| | | | | |
Collapse
|
31
|
Taghizade N, Babayeva R, Kara A, Karakus IS, Catak MC, Bulutoglu A, Haskologlu ZS, Akay Haci I, Tunakan Dalgic C, Karabiber E, Bilgic Eltan S, Yorgun Altunbas M, Sefer AP, Sezer A, Kokcu Karadag SI, Arik E, Karali Z, Ozhan Kont A, Tuzer C, Karaman S, Mersin SS, Kasap N, Celik E, Kocacik Uygun DF, Aydemir S, Kiykim A, Aydogmus C, Ozek Yucel E, Celmeli F, Karatay E, Bozkurtlar E, Demir S, Metin A, Karaca NE, Kutukculer N, Aksu G, Guner SN, Keles S, Reisli I, Kendir Demirkol Y, Arikoglu T, Gulez N, Genel F, Kilic SS, Aytekin C, Keskin O, Yildiran A, Ozcan D, Altintas DU, Ardeniz FO, Dogu EF, Ikinciogullari KA, Karakoc-Aydiner E, Ozen A, Baris S. Therapeutic modalities and clinical outcomes in a large cohort with LRBA deficiency and CTLA4 insufficiency. J Allergy Clin Immunol 2023; 152:1634-1645. [PMID: 37595759 DOI: 10.1016/j.jaci.2023.08.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/01/2023] [Accepted: 08/08/2023] [Indexed: 08/20/2023]
Abstract
BACKGROUND LPS-responsive beige-like anchor (LRBA) deficiency (LRBA-/-) and cytotoxic T-lymphocyte-associated antigen-4 (CTLA4) insufficiency (CTLA4+/-) are mechanistically overlapped diseases presenting with recurrent infections and autoimmunity. The effectiveness of different treatment regimens remains unknown. OBJECTIVE Our aim was to determine the comparative efficacy and long-term outcome of therapy with immunosuppressants, CTLA4-immunoglobulin (abatacept), and hematopoietic stem cell transplantation (HSCT) in a single-country multicenter cohort of 98 patients with a 5-year median follow-up. METHODS The 98 patients (63 LRBA-/- and 35 CTLA4+/-) were followed and evaluated at baseline and every 6 months for clinical manifestations and response to the respective therapies. RESULTS The LRBA-/- patients exhibited a more severe disease course than did the CTLA4+/- patients, requiring more immunosuppressants, abatacept, and HSCT to control their symptoms. Among the 58 patients who received abatacept as either a primary or rescue therapy, sustained complete control was achieved in 46 (79.3%) without severe side effects. In contrast, most patients who received immunosuppressants as primary therapy (n = 61) showed either partial or no disease control (72.1%), necessitating additional immunosuppressants, abatacept, or transplantation. Patients with partial or no response to abatacept (n = 12) had longer disease activity before abatacept therapy, with higher organ involvement and poorer disease outcomes than those with a complete response. HSCT was performed in 14 LRBA-/- patients; 9 patients (64.2%) showed complete remission, and 3 (21.3%) continued to receive immunosuppressants after transplantation. HSCT and abatacept therapy gave rise to similar probabilities of survival. CONCLUSIONS Abatacept is superior to immunosuppressants in controlling disease manifestations over the long term, especially when started early, and it may provide a safe and effective therapeutic alternative to transplantation.
Collapse
Affiliation(s)
- Nigar Taghizade
- Department of Pediatrics, School of Medicine, Marmara University, Istanbul, Turkey
| | - Royala Babayeva
- Division of Pediatric Allergy and Immunology, School of Medicine, Marmara University, Istanbul, Turkey; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey; The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Altan Kara
- TUBITAK Marmara Research Center, Gene Engineering and Biotechnology Institute, Gebze, Turkey
| | | | - Mehmet Cihangir Catak
- Division of Pediatric Allergy and Immunology, School of Medicine, Marmara University, Istanbul, Turkey; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey; The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Alper Bulutoglu
- Division of Pediatric Allergy and Immunology, School of Medicine, Marmara University, Istanbul, Turkey; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey; The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Zehra Sule Haskologlu
- Division of Pediatric Allergy and Immunology, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Idil Akay Haci
- Division of Pediatric Allergy and Immunology, Dr Behcet Uz Children's Education and Research Hospital, University of Health Sciences, Izmir, Turkey
| | - Ceyda Tunakan Dalgic
- Department of Allergy and Immunology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Esra Karabiber
- Department of Allergy and Immunology, Marmara University Training and Research Hospital, Ministry of Health, Istanbul, Turkey
| | - Sevgi Bilgic Eltan
- Division of Pediatric Allergy and Immunology, School of Medicine, Marmara University, Istanbul, Turkey; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey; The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Melek Yorgun Altunbas
- Division of Pediatric Allergy and Immunology, School of Medicine, Marmara University, Istanbul, Turkey; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey; The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Asena Pinar Sefer
- Division of Pediatric Allergy and Immunology, School of Medicine, Marmara University, Istanbul, Turkey; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey; The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Ahmet Sezer
- Division of Pediatric Allergy and Immunology, Faculty of Medicine, Çukurova University, Adana, Turkey
| | | | - Elif Arik
- Division of Pediatric Allergy and Immunology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Zuhal Karali
- Division of Pediatric Immunology and Rheumatology, Faculty of Medicine, Uludag University, Bursa, Turkey
| | - Aylin Ozhan Kont
- Division of Pediatric Allergy and Immunology, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Can Tuzer
- Department of Allergy and Immunology, Batman Training and Research Hospital, Ministry of Health, Batman, Turkey
| | - Sait Karaman
- Pediatric Allergy and Immunology, Manisa City Hospital, University of Health Sciences, Manisa, Turkey
| | - Selver Seda Mersin
- Department of Allergy and Immunology, Dr Ersin Arslan Training and Research Hospital, Ministry of Health, Gaziantep, Turkey
| | - Nurhan Kasap
- Division of Pediatric Allergy and Immunology, Faculty of Medicine, Istanbul Medeniyet University, Istanbul, Turkey
| | - Enes Celik
- Division of Pediatric Allergy and Immunology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | | | - Sezin Aydemir
- Division of Pediatric Allergy and Immunology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Ayca Kiykim
- Division of Pediatric Allergy and Immunology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Cigdem Aydogmus
- Division of Pediatric Allergy and Immunology, Basaksehir Cam and Sakura City Hospital, University of Health Sciences, Istanbul, Turkey
| | - Esra Ozek Yucel
- Division of Pediatric Allergy and Immunology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Fatih Celmeli
- Division of Pediatric Allergy and Immunology, Antalya Training and Research Hospital, University of Health Sciences, Antalya, Turkey
| | - Emrah Karatay
- Department of Radiology, Marmara University Education and Research Hospital, Istanbul, Turkey
| | - Emine Bozkurtlar
- Department of Pathology, Faculty of Medicine, Marmara University, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Semra Demir
- Department of Allergy and Immunology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Ayse Metin
- Division of Pediatric Immunology, Ankara City Hospital, University of Health Sciences, Ankara, Turkey
| | - Neslihan Edeer Karaca
- Division of Pediatric Allergy and Immunology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Necil Kutukculer
- Division of Pediatric Allergy and Immunology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Guzide Aksu
- Division of Pediatric Allergy and Immunology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Sukru Nail Guner
- Division of Pediatric Allergy and Immunology, Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Sevgi Keles
- Division of Pediatric Allergy and Immunology, Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Ismail Reisli
- Division of Pediatric Allergy and Immunology, Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Yasemin Kendir Demirkol
- Division of Pediatric Genetics, Umraniye Education and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Tugba Arikoglu
- Division of Pediatric Allergy and Immunology, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Nesrin Gulez
- Division of Pediatric Allergy and Immunology, Dr Behcet Uz Children's Education and Research Hospital, University of Health Sciences, Izmir, Turkey
| | - Ferah Genel
- Division of Pediatric Allergy and Immunology, Dr Behcet Uz Children's Education and Research Hospital, University of Health Sciences, Izmir, Turkey
| | - Sara Sebnem Kilic
- Division of Pediatric Immunology and Rheumatology, Faculty of Medicine, Uludag University, Bursa, Turkey
| | - Caner Aytekin
- Department of Pediatric Immunology, Dr Sami Ulus Children Health and Diseases Training and Research Hospital, Ankara, Turkey
| | - Ozlem Keskin
- Division of Pediatric Allergy and Immunology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Alisan Yildiran
- Division of Pediatric Allergy and Immunology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Dilek Ozcan
- Division of Pediatric Allergy and Immunology, Faculty of Medicine, Çukurova University, Adana, Turkey
| | - Derya Ufuk Altintas
- Division of Pediatric Allergy and Immunology, Faculty of Medicine, Çukurova University, Adana, Turkey
| | - Fatma Omur Ardeniz
- Department of Allergy and Immunology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Esin Figen Dogu
- Division of Pediatric Allergy and Immunology, Faculty of Medicine, Ankara University, Ankara, Turkey
| | | | - Elif Karakoc-Aydiner
- Division of Pediatric Allergy and Immunology, School of Medicine, Marmara University, Istanbul, Turkey; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey; The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Ahmet Ozen
- Division of Pediatric Allergy and Immunology, School of Medicine, Marmara University, Istanbul, Turkey; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey; The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Safa Baris
- Division of Pediatric Allergy and Immunology, School of Medicine, Marmara University, Istanbul, Turkey; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey; The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey.
| |
Collapse
|
32
|
Uhlig HH, Booth C, Cho J, Dubinsky M, Griffiths AM, Grimbacher B, Hambleton S, Huang Y, Jones K, Kammermeier J, Kanegane H, Koletzko S, Kotlarz D, Klein C, Lenardo MJ, Lo B, McGovern DPB, Özen A, de Ridder L, Ruemmele F, Shouval DS, Snapper SB, Travis SP, Turner D, Wilson DC, Muise AM. Precision medicine in monogenic inflammatory bowel disease: proposed mIBD REPORT standards. Nat Rev Gastroenterol Hepatol 2023; 20:810-828. [PMID: 37789059 DOI: 10.1038/s41575-023-00838-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/31/2023] [Indexed: 10/05/2023]
Abstract
Owing to advances in genomics that enable differentiation of molecular aetiologies, patients with monogenic inflammatory bowel disease (mIBD) potentially have access to genotype-guided precision medicine. In this Expert Recommendation, we review the therapeutic research landscape of mIBD, the reported response to therapies, the medication-related risks and systematic bias in reporting. The mIBD field is characterized by the absence of randomized controlled trials and is dominated by retrospective observational data based on case series and case reports. More than 25 off-label therapeutics (including small-molecule inhibitors and biologics) as well as cellular therapies (including haematopoietic stem cell transplantation and gene therapy) have been reported. Heterogeneous reporting of outcomes impedes the generation of robust therapeutic evidence as the basis for clinical decision making in mIBD. We discuss therapeutic goals in mIBD and recommend standardized reporting (mIBD REPORT (monogenic Inflammatory Bowel Disease Report Extended Phenotype and Outcome of Treatments) standards) to stratify patients according to a genetic diagnosis and phenotype, to assess treatment effects and to record safety signals. Implementation of these pragmatic standards should help clinicians to assess the therapy responses of individual patients in clinical practice and improve comparability between observational retrospective studies and controlled prospective trials, supporting future meta-analysis.
Collapse
Affiliation(s)
- Holm H Uhlig
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK.
- Department of Paediatrics, University of Oxford, Oxford, UK.
- Biomedical Research Centre, University of Oxford, Oxford, UK.
| | - Claire Booth
- UCL Great Ormond Street Institute of Child Health, London, UK
- Department of Paediatric Immunology and Gene Therapy, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Judy Cho
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marla Dubinsky
- Department of Paediatric Gastroenterology, Susan and Leonard Feinstein IBD Clinical Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anne M Griffiths
- SickKids Inflammatory Bowel Disease Centre and Cell Biology Program, Research Institute, Toronto, Canada
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Paediatrics, University of Toronto, Toronto, Canada
| | - Bodo Grimbacher
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert Ludwig University of Freiburg, Freiburg, Germany
- Department of Rheumatology and Clinical Immunology, Medical Center, Faculty of Medicine, Albert Ludwig University of Freiburg, Freiburg, Germany
- Institute of Immunology and Transplantation, Royal Free Hospital, University College London, London, UK
| | - Sophie Hambleton
- Primary Immunodeficiency Group, Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, UK
| | - Ying Huang
- Department of Gastroenterology, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai, China
| | - Kelsey Jones
- Paediatric Gastroenterology, Great Ormond Street Hospital, London, UK
- Kennedy Institute, University of Oxford, Oxford, UK
| | - Jochen Kammermeier
- Gastroenterology Department, Evelina London Children's Hospital, London, UK
| | - Hirokazu Kanegane
- Department of Child Health and Development, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Sibylle Koletzko
- Dr. von Hauner Children's Hospital, Department of Paediatrics, University Hospital, LMU Munich, Munich, Germany
- Department of Paediatrics, Gastroenterology and Nutrition, School of Medicine Collegium Medicum University of Warmia and Mazury, Olsztyn, Poland
| | - Daniel Kotlarz
- Dr. von Hauner Children's Hospital, Department of Paediatrics, University Hospital, LMU Munich, Munich, Germany
- German Center for Child and Adolescent Health, Munich, Germany
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Christoph Klein
- Dr. von Hauner Children's Hospital, Department of Paediatrics, University Hospital, LMU Munich, Munich, Germany
- German Center for Child and Adolescent Health, Munich, Germany
| | - Michael J Lenardo
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, and Clinical Genomics Program, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Bernice Lo
- Research Branch, Sidra Medicine, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Dermot P B McGovern
- F. Widjaja Foundation, Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ahmet Özen
- Marmara University Division of Allergy and Immunology, Istanbul, Turkey
| | - Lissy de Ridder
- Department of Paediatric Gastroenterology, Erasmus University Medical Center Sophia Children's Hospital, Rotterdam, Netherlands
| | - Frank Ruemmele
- Université Paris Cité, APHP, Hôpital Necker Enfants Malades, Service de Gastroentérologie pédiatrique, Paris, France
| | - Dror S Shouval
- Institute of Gastroenterology, Nutrition and Liver Diseases, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Scott B Snapper
- Division of Gastroenterology and Nutrition, Boston Children's Hospital, Boston, MA, USA
- Department of Paediatrics and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Simon P Travis
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
- Biomedical Research Centre, University of Oxford, Oxford, UK
- Kennedy Institute, University of Oxford, Oxford, UK
| | - Dan Turner
- Shaare Zedek Medical Center, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - David C Wilson
- Child Life and Health, Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
- Department of Paediatric Gastroenterology, The Royal Hospital for Children, and Young People, Edinburgh, UK
| | - Aleixo M Muise
- SickKids Inflammatory Bowel Disease Centre and Cell Biology Program, Research Institute, Toronto, Canada
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Paediatrics, University of Toronto, Toronto, Canada
- Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
33
|
Rojas-Restrepo J, Sindram E, Zenke S, Haberstroh H, Mitsuiki N, Gabrysch A, Huebscher K, Posadas-Cantera S, Krausz M, Kobbe R, Rohr JC, Grimbacher B, Gámez-Díaz L. Functional Relevance of CTLA4 Variants: an Upgraded Approach to Assess CTLA4-Dependent Transendocytosis by Flow Cytometry. J Clin Immunol 2023; 43:2076-2089. [PMID: 37740092 PMCID: PMC10661720 DOI: 10.1007/s10875-023-01582-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 09/05/2023] [Indexed: 09/24/2023]
Abstract
Variants of uncertain significance (VUS) in CTLA4 are frequently identified in patients with antibody deficiency or immune dysregulation syndromes including, but not limited to, patients with multi-organ autoimmunity and autoinflammation. However, to ascertain the diagnosis of CTLA4 insufficiency, the functional relevance of each variant needs to be determined. Currently, various assays have been proposed to assess the functionality of CTLA4 VUS, including the analysis of transendocytosis, the biological function of CTLA4 to capture CD80 molecules from antigen presenting cells. Challenges of this assay include weak fluorescence intensity of the internalized ligand, poor reproducibility, and poor performance upon analyzing thawed cells. In addition, the distinction of pathogenic from non-pathogenic variants and from wild-type CTLA4, and the classification of the different VUS according to its level of CTLA4 dysfunction, would be desirable. We developed a novel CD80-expressing cell line for the evaluation of CD80-transendocytosis and compared it to the published transendocytosis assay. Our approach showed lower inter-assay variability and better robustness regardless the type of starting material (fresh or thawed peripheral mononuclear cells). In addition, receiver operating characteristic analysis showed 100% specificity, avoiding false positive results and allowing for a clear distinction between pathogenic and non-pathogenic variants in CTLA4-variant carriers. With our transendocytosis assay, we assessed the pathogenicity of 24 distinct CTLA4 variants from patients submitted to our diagnostic unit. Significantly impaired transendocytosis was demonstrated for 17 CTLA4 variants, whereas seven variants tested normal. In conclusion, our upgraded transendocytosis assay allows a reliable assessment of newly identified variants in CTLA4.
Collapse
Affiliation(s)
- Jessica Rojas-Restrepo
- Institute for Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Elena Sindram
- Institute for Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Simon Zenke
- Institute for Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Matterhorn Biosciences GmbH, Basel, Switzerland
| | - Hanna Haberstroh
- Institute for Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Noriko Mitsuiki
- Institute for Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Annemarie Gabrysch
- Institute for Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Katrin Huebscher
- Institute for Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sara Posadas-Cantera
- Institute for Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Máté Krausz
- Institute for Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Freiburg, Germany
| | - Robin Kobbe
- Institute for Infection Research and Vaccine Development (IIRVD), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Infectious Disease Epidemiology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Jan C Rohr
- Institute for Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Novartis Institutes for Biomedical Research (NIBR), Novartis Pharma AG, Basel, Switzerland
| | - Bodo Grimbacher
- Institute for Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Freiburg, Germany.
- German Center for Infection Research (DZIF), Satellite Center Freiburg, Freiburg, Germany.
- CIBSS - Center for Integrative Biological Signaling Studies, University of Freiburg, Freiburg, Germany.
- RESIST - Cluster of Excellence 2155 to Hanover Medical School, Satellite Center Freiburg, Freiburg, Germany.
| | - Laura Gámez-Díaz
- Institute for Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
34
|
Tsilifis C, Slatter MA, Gennery AR. Too much of a good thing: a review of primary immune regulatory disorders. Front Immunol 2023; 14:1279201. [PMID: 38022498 PMCID: PMC10645063 DOI: 10.3389/fimmu.2023.1279201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Primary immune regulatory disorders (PIRDs) are inborn errors of immunity caused by a loss in the regulatory mechanism of the inflammatory or immune response, leading to impaired immunological tolerance or an exuberant inflammatory response to various stimuli due to loss or gain of function mutations. Whilst PIRDs may feature susceptibility to recurrent, severe, or opportunistic infection in their phenotype, this group of syndromes has broadened the spectrum of disease caused by defects in immunity-related genes to include autoimmunity, autoinflammation, lymphoproliferation, malignancy, and allergy; increasing focus on PIRDs has thus redefined the classical 'primary immunodeficiency' as one aspect of an overarching group of inborn errors of immunity. The growing number of genetic defects associated with PIRDs has expanded our understanding of immune tolerance mechanisms and prompted identification of molecular targets for therapy. However, PIRDs remain difficult to recognize due to incomplete penetrance of their diverse phenotype, which may cross organ systems and present to multiple clinical specialists prior to review by an immunologist. Control of immune dysregulation with immunosuppressive therapies must be balanced against the enhanced infective risk posed by the underlying defect and accumulated end-organ damage, posing a challenge to clinicians. Whilst allogeneic hematopoietic stem cell transplantation may correct the underlying immune defect, identification of appropriate patients and timing of transplant is difficult. The relatively recent description of many PIRDs and rarity of individual genetic entities that comprise this group means data on natural history, clinical progression, and treatment are limited, and so international collaboration will be needed to better delineate phenotypes and the impact of existing and potential therapies. This review explores pathophysiology, clinical features, current therapeutic strategies for PIRDs including cellular platforms, and future directions for research.
Collapse
Affiliation(s)
- Christo Tsilifis
- Paediatric Immunology and Haematopoietic Stem Cell Transplantation, Great North Children’s Hospital, Newcastle upon Tyne, United Kingdom
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Mary A. Slatter
- Paediatric Immunology and Haematopoietic Stem Cell Transplantation, Great North Children’s Hospital, Newcastle upon Tyne, United Kingdom
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Andrew R. Gennery
- Paediatric Immunology and Haematopoietic Stem Cell Transplantation, Great North Children’s Hospital, Newcastle upon Tyne, United Kingdom
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
35
|
Coustal C, Goulabchand R, Labauge P, Guilpain P, Carra-Dallière C, Januel E, Jeziorski E, Salle V, Viallard JF, Boutboul D, Fieschi C, Gobert D, Aladjidi N, Rullier P, Graveleau J, Piel-Julian M, Suarez F, Neven B, Mahlaoui N, Ayrignac X. Clinical, Radiologic, and Immunologic Features of Patients With CTLA4 Deficiency With Neurologic Involvement. Neurology 2023; 101:e1560-e1566. [PMID: 37487754 PMCID: PMC10585684 DOI: 10.1212/wnl.0000000000207609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 05/18/2023] [Indexed: 07/26/2023] Open
Abstract
OBJECTIVES CTLA4 deficiency (CTLA4d) is a disease with multisystem autoimmune features, including neurologic manifestations. We aimed to describe neurologic involvement in these patients. METHODS We performed a cross-sectional observational study using the French Reference Centre for Primary Immunodeficiencies (CEREDIH) registry plus a surveillance in national society networks. Participants with confirmed CTLA4d and neurologic involvement were included. Clinical, laboratory, and radiologic features were collected, as well as treatments. Available MRI was double-reviewed. RESULTS Among 70 patients with CTLA4d, 13 patients (21%) had neurologic involvement. Neurologic symptoms began at a median age of 18 [15-45] years, mostly occurring after systemic manifestations (median delay: 8.5 [4.5-10.5] years). Main symptoms included headaches, focal deficit (54% each), and seizures (38%). MRI detected at least 1 large contrast-enhancing lesion in 8 patients. Lesions reminiscent of multiple sclerosis lesions were found in 6 patients. Cerebellar (6 patients) and large spinal cord lesions (3 patients) were common. Ten patients were treated with abatacept, of whom 9 (90%) showed good clinical and radiologic response. DISCUSSION Neurologic involvement is common among patients with CTLA4d. Despite its rarity, and considering the suspected efficacy of abatacept, neurologists should be aware of the characteristics of CTLA4d neurologic involvement.
Collapse
Affiliation(s)
- Cyrille Coustal
- From the Department of Internal Medicine and Multi-Organic Diseases (C.C., P.G., P.R.), Local Referral Center for Rare Autoimmune Diseases, Montpellier University Hospital; University of Montpellier (C.C., R.G., P.L., P.G., E. Jeziorski, X.A.); Internal Medicine Department (R.G.), CHU Nîmes; Department of Neurology (P.L., C.C.-D., X.A.), Montpellier University Hospital; INM (P.L., X.A.), INSERM; Institute of Regenerative Medicine and Biotherapy (P.G.), INSERM U1183, Montpellier; Sorbonne Université (E. Januel); Institut Pierre Louis d'Epidémiologie et de Santé Publique (E. Januel), Département de Santé Publique; Département de Neurologie (E. Januel), Hôpital Pitié Salpêtrière, AP-HP, Paris; Pediatrics Department (E. Jeziorski), Montpellier University Hospital; Department of Internal Medicine (V.S.), Amiens University Medical Center; Internal Medicine Department (J.-F.V.), Bordeaux University Hospital Centre, Hôpital Haut-Lévêque, Pessac; Clinical Immunology Department (D.B., C.F.), National Reference Center for Castleman Disease; UMR 1149 CRI INSERM (D.B.), Hôpital Saint Louis, Assistance Publique Hôpitaux de Paris (APHP); Université Paris Diderot (D.B., C.F.); Inserm U1126 (C.F.), Centre Hayem, Hôpital Saint-Louis; Internal Medicine Department (D.G.), Hôpital Saint Antoine, APHP, Paris; Pediatric Oncology Hematology Unit (N.A.), Bordeaux University Hospital; Plurithématique CIC (CICP) (N.A.), Centre d'Investigation Clinique (CIC) 1401, INSERM; Centre de Référence National des Cytopénies Autoimmunes de l'Enfant (CEREVANCE) (N.A.), Bordeaux; Department of Internal Medicine (J.G.), Saint-Nazaire Hospital; Department of Internal Medicine (M.P.-J.), Purpan University Hospital, Toulouse; Department of Hematology (F.S.), Necker-Enfants Malades University Hospital, AP-HP; INSERM UMR 1163 and CNRS ERL 8254 (F.S.), Imagine Institut; Descartes University (F.S., B.N.); Pediatric Hematology-Immunology and Rheumatology Department (B.N., N.M.), Hôpital Necker-Enfants Malades, AP-HP; Laboratory of Immunogenetics of Pediatric Autoimmunity (B.N.), INSERM UMR 1163, Imagine Institute; and French National Reference Center for Primary Immune Deficiencies (CEREDIH) (N.M.), Necker Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Radjiv Goulabchand
- From the Department of Internal Medicine and Multi-Organic Diseases (C.C., P.G., P.R.), Local Referral Center for Rare Autoimmune Diseases, Montpellier University Hospital; University of Montpellier (C.C., R.G., P.L., P.G., E. Jeziorski, X.A.); Internal Medicine Department (R.G.), CHU Nîmes; Department of Neurology (P.L., C.C.-D., X.A.), Montpellier University Hospital; INM (P.L., X.A.), INSERM; Institute of Regenerative Medicine and Biotherapy (P.G.), INSERM U1183, Montpellier; Sorbonne Université (E. Januel); Institut Pierre Louis d'Epidémiologie et de Santé Publique (E. Januel), Département de Santé Publique; Département de Neurologie (E. Januel), Hôpital Pitié Salpêtrière, AP-HP, Paris; Pediatrics Department (E. Jeziorski), Montpellier University Hospital; Department of Internal Medicine (V.S.), Amiens University Medical Center; Internal Medicine Department (J.-F.V.), Bordeaux University Hospital Centre, Hôpital Haut-Lévêque, Pessac; Clinical Immunology Department (D.B., C.F.), National Reference Center for Castleman Disease; UMR 1149 CRI INSERM (D.B.), Hôpital Saint Louis, Assistance Publique Hôpitaux de Paris (APHP); Université Paris Diderot (D.B., C.F.); Inserm U1126 (C.F.), Centre Hayem, Hôpital Saint-Louis; Internal Medicine Department (D.G.), Hôpital Saint Antoine, APHP, Paris; Pediatric Oncology Hematology Unit (N.A.), Bordeaux University Hospital; Plurithématique CIC (CICP) (N.A.), Centre d'Investigation Clinique (CIC) 1401, INSERM; Centre de Référence National des Cytopénies Autoimmunes de l'Enfant (CEREVANCE) (N.A.), Bordeaux; Department of Internal Medicine (J.G.), Saint-Nazaire Hospital; Department of Internal Medicine (M.P.-J.), Purpan University Hospital, Toulouse; Department of Hematology (F.S.), Necker-Enfants Malades University Hospital, AP-HP; INSERM UMR 1163 and CNRS ERL 8254 (F.S.), Imagine Institut; Descartes University (F.S., B.N.); Pediatric Hematology-Immunology and Rheumatology Department (B.N., N.M.), Hôpital Necker-Enfants Malades, AP-HP; Laboratory of Immunogenetics of Pediatric Autoimmunity (B.N.), INSERM UMR 1163, Imagine Institute; and French National Reference Center for Primary Immune Deficiencies (CEREDIH) (N.M.), Necker Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Pierre Labauge
- From the Department of Internal Medicine and Multi-Organic Diseases (C.C., P.G., P.R.), Local Referral Center for Rare Autoimmune Diseases, Montpellier University Hospital; University of Montpellier (C.C., R.G., P.L., P.G., E. Jeziorski, X.A.); Internal Medicine Department (R.G.), CHU Nîmes; Department of Neurology (P.L., C.C.-D., X.A.), Montpellier University Hospital; INM (P.L., X.A.), INSERM; Institute of Regenerative Medicine and Biotherapy (P.G.), INSERM U1183, Montpellier; Sorbonne Université (E. Januel); Institut Pierre Louis d'Epidémiologie et de Santé Publique (E. Januel), Département de Santé Publique; Département de Neurologie (E. Januel), Hôpital Pitié Salpêtrière, AP-HP, Paris; Pediatrics Department (E. Jeziorski), Montpellier University Hospital; Department of Internal Medicine (V.S.), Amiens University Medical Center; Internal Medicine Department (J.-F.V.), Bordeaux University Hospital Centre, Hôpital Haut-Lévêque, Pessac; Clinical Immunology Department (D.B., C.F.), National Reference Center for Castleman Disease; UMR 1149 CRI INSERM (D.B.), Hôpital Saint Louis, Assistance Publique Hôpitaux de Paris (APHP); Université Paris Diderot (D.B., C.F.); Inserm U1126 (C.F.), Centre Hayem, Hôpital Saint-Louis; Internal Medicine Department (D.G.), Hôpital Saint Antoine, APHP, Paris; Pediatric Oncology Hematology Unit (N.A.), Bordeaux University Hospital; Plurithématique CIC (CICP) (N.A.), Centre d'Investigation Clinique (CIC) 1401, INSERM; Centre de Référence National des Cytopénies Autoimmunes de l'Enfant (CEREVANCE) (N.A.), Bordeaux; Department of Internal Medicine (J.G.), Saint-Nazaire Hospital; Department of Internal Medicine (M.P.-J.), Purpan University Hospital, Toulouse; Department of Hematology (F.S.), Necker-Enfants Malades University Hospital, AP-HP; INSERM UMR 1163 and CNRS ERL 8254 (F.S.), Imagine Institut; Descartes University (F.S., B.N.); Pediatric Hematology-Immunology and Rheumatology Department (B.N., N.M.), Hôpital Necker-Enfants Malades, AP-HP; Laboratory of Immunogenetics of Pediatric Autoimmunity (B.N.), INSERM UMR 1163, Imagine Institute; and French National Reference Center for Primary Immune Deficiencies (CEREDIH) (N.M.), Necker Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Philippe Guilpain
- From the Department of Internal Medicine and Multi-Organic Diseases (C.C., P.G., P.R.), Local Referral Center for Rare Autoimmune Diseases, Montpellier University Hospital; University of Montpellier (C.C., R.G., P.L., P.G., E. Jeziorski, X.A.); Internal Medicine Department (R.G.), CHU Nîmes; Department of Neurology (P.L., C.C.-D., X.A.), Montpellier University Hospital; INM (P.L., X.A.), INSERM; Institute of Regenerative Medicine and Biotherapy (P.G.), INSERM U1183, Montpellier; Sorbonne Université (E. Januel); Institut Pierre Louis d'Epidémiologie et de Santé Publique (E. Januel), Département de Santé Publique; Département de Neurologie (E. Januel), Hôpital Pitié Salpêtrière, AP-HP, Paris; Pediatrics Department (E. Jeziorski), Montpellier University Hospital; Department of Internal Medicine (V.S.), Amiens University Medical Center; Internal Medicine Department (J.-F.V.), Bordeaux University Hospital Centre, Hôpital Haut-Lévêque, Pessac; Clinical Immunology Department (D.B., C.F.), National Reference Center for Castleman Disease; UMR 1149 CRI INSERM (D.B.), Hôpital Saint Louis, Assistance Publique Hôpitaux de Paris (APHP); Université Paris Diderot (D.B., C.F.); Inserm U1126 (C.F.), Centre Hayem, Hôpital Saint-Louis; Internal Medicine Department (D.G.), Hôpital Saint Antoine, APHP, Paris; Pediatric Oncology Hematology Unit (N.A.), Bordeaux University Hospital; Plurithématique CIC (CICP) (N.A.), Centre d'Investigation Clinique (CIC) 1401, INSERM; Centre de Référence National des Cytopénies Autoimmunes de l'Enfant (CEREVANCE) (N.A.), Bordeaux; Department of Internal Medicine (J.G.), Saint-Nazaire Hospital; Department of Internal Medicine (M.P.-J.), Purpan University Hospital, Toulouse; Department of Hematology (F.S.), Necker-Enfants Malades University Hospital, AP-HP; INSERM UMR 1163 and CNRS ERL 8254 (F.S.), Imagine Institut; Descartes University (F.S., B.N.); Pediatric Hematology-Immunology and Rheumatology Department (B.N., N.M.), Hôpital Necker-Enfants Malades, AP-HP; Laboratory of Immunogenetics of Pediatric Autoimmunity (B.N.), INSERM UMR 1163, Imagine Institute; and French National Reference Center for Primary Immune Deficiencies (CEREDIH) (N.M.), Necker Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Clarisse Carra-Dallière
- From the Department of Internal Medicine and Multi-Organic Diseases (C.C., P.G., P.R.), Local Referral Center for Rare Autoimmune Diseases, Montpellier University Hospital; University of Montpellier (C.C., R.G., P.L., P.G., E. Jeziorski, X.A.); Internal Medicine Department (R.G.), CHU Nîmes; Department of Neurology (P.L., C.C.-D., X.A.), Montpellier University Hospital; INM (P.L., X.A.), INSERM; Institute of Regenerative Medicine and Biotherapy (P.G.), INSERM U1183, Montpellier; Sorbonne Université (E. Januel); Institut Pierre Louis d'Epidémiologie et de Santé Publique (E. Januel), Département de Santé Publique; Département de Neurologie (E. Januel), Hôpital Pitié Salpêtrière, AP-HP, Paris; Pediatrics Department (E. Jeziorski), Montpellier University Hospital; Department of Internal Medicine (V.S.), Amiens University Medical Center; Internal Medicine Department (J.-F.V.), Bordeaux University Hospital Centre, Hôpital Haut-Lévêque, Pessac; Clinical Immunology Department (D.B., C.F.), National Reference Center for Castleman Disease; UMR 1149 CRI INSERM (D.B.), Hôpital Saint Louis, Assistance Publique Hôpitaux de Paris (APHP); Université Paris Diderot (D.B., C.F.); Inserm U1126 (C.F.), Centre Hayem, Hôpital Saint-Louis; Internal Medicine Department (D.G.), Hôpital Saint Antoine, APHP, Paris; Pediatric Oncology Hematology Unit (N.A.), Bordeaux University Hospital; Plurithématique CIC (CICP) (N.A.), Centre d'Investigation Clinique (CIC) 1401, INSERM; Centre de Référence National des Cytopénies Autoimmunes de l'Enfant (CEREVANCE) (N.A.), Bordeaux; Department of Internal Medicine (J.G.), Saint-Nazaire Hospital; Department of Internal Medicine (M.P.-J.), Purpan University Hospital, Toulouse; Department of Hematology (F.S.), Necker-Enfants Malades University Hospital, AP-HP; INSERM UMR 1163 and CNRS ERL 8254 (F.S.), Imagine Institut; Descartes University (F.S., B.N.); Pediatric Hematology-Immunology and Rheumatology Department (B.N., N.M.), Hôpital Necker-Enfants Malades, AP-HP; Laboratory of Immunogenetics of Pediatric Autoimmunity (B.N.), INSERM UMR 1163, Imagine Institute; and French National Reference Center for Primary Immune Deficiencies (CEREDIH) (N.M.), Necker Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Edouard Januel
- From the Department of Internal Medicine and Multi-Organic Diseases (C.C., P.G., P.R.), Local Referral Center for Rare Autoimmune Diseases, Montpellier University Hospital; University of Montpellier (C.C., R.G., P.L., P.G., E. Jeziorski, X.A.); Internal Medicine Department (R.G.), CHU Nîmes; Department of Neurology (P.L., C.C.-D., X.A.), Montpellier University Hospital; INM (P.L., X.A.), INSERM; Institute of Regenerative Medicine and Biotherapy (P.G.), INSERM U1183, Montpellier; Sorbonne Université (E. Januel); Institut Pierre Louis d'Epidémiologie et de Santé Publique (E. Januel), Département de Santé Publique; Département de Neurologie (E. Januel), Hôpital Pitié Salpêtrière, AP-HP, Paris; Pediatrics Department (E. Jeziorski), Montpellier University Hospital; Department of Internal Medicine (V.S.), Amiens University Medical Center; Internal Medicine Department (J.-F.V.), Bordeaux University Hospital Centre, Hôpital Haut-Lévêque, Pessac; Clinical Immunology Department (D.B., C.F.), National Reference Center for Castleman Disease; UMR 1149 CRI INSERM (D.B.), Hôpital Saint Louis, Assistance Publique Hôpitaux de Paris (APHP); Université Paris Diderot (D.B., C.F.); Inserm U1126 (C.F.), Centre Hayem, Hôpital Saint-Louis; Internal Medicine Department (D.G.), Hôpital Saint Antoine, APHP, Paris; Pediatric Oncology Hematology Unit (N.A.), Bordeaux University Hospital; Plurithématique CIC (CICP) (N.A.), Centre d'Investigation Clinique (CIC) 1401, INSERM; Centre de Référence National des Cytopénies Autoimmunes de l'Enfant (CEREVANCE) (N.A.), Bordeaux; Department of Internal Medicine (J.G.), Saint-Nazaire Hospital; Department of Internal Medicine (M.P.-J.), Purpan University Hospital, Toulouse; Department of Hematology (F.S.), Necker-Enfants Malades University Hospital, AP-HP; INSERM UMR 1163 and CNRS ERL 8254 (F.S.), Imagine Institut; Descartes University (F.S., B.N.); Pediatric Hematology-Immunology and Rheumatology Department (B.N., N.M.), Hôpital Necker-Enfants Malades, AP-HP; Laboratory of Immunogenetics of Pediatric Autoimmunity (B.N.), INSERM UMR 1163, Imagine Institute; and French National Reference Center for Primary Immune Deficiencies (CEREDIH) (N.M.), Necker Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Eric Jeziorski
- From the Department of Internal Medicine and Multi-Organic Diseases (C.C., P.G., P.R.), Local Referral Center for Rare Autoimmune Diseases, Montpellier University Hospital; University of Montpellier (C.C., R.G., P.L., P.G., E. Jeziorski, X.A.); Internal Medicine Department (R.G.), CHU Nîmes; Department of Neurology (P.L., C.C.-D., X.A.), Montpellier University Hospital; INM (P.L., X.A.), INSERM; Institute of Regenerative Medicine and Biotherapy (P.G.), INSERM U1183, Montpellier; Sorbonne Université (E. Januel); Institut Pierre Louis d'Epidémiologie et de Santé Publique (E. Januel), Département de Santé Publique; Département de Neurologie (E. Januel), Hôpital Pitié Salpêtrière, AP-HP, Paris; Pediatrics Department (E. Jeziorski), Montpellier University Hospital; Department of Internal Medicine (V.S.), Amiens University Medical Center; Internal Medicine Department (J.-F.V.), Bordeaux University Hospital Centre, Hôpital Haut-Lévêque, Pessac; Clinical Immunology Department (D.B., C.F.), National Reference Center for Castleman Disease; UMR 1149 CRI INSERM (D.B.), Hôpital Saint Louis, Assistance Publique Hôpitaux de Paris (APHP); Université Paris Diderot (D.B., C.F.); Inserm U1126 (C.F.), Centre Hayem, Hôpital Saint-Louis; Internal Medicine Department (D.G.), Hôpital Saint Antoine, APHP, Paris; Pediatric Oncology Hematology Unit (N.A.), Bordeaux University Hospital; Plurithématique CIC (CICP) (N.A.), Centre d'Investigation Clinique (CIC) 1401, INSERM; Centre de Référence National des Cytopénies Autoimmunes de l'Enfant (CEREVANCE) (N.A.), Bordeaux; Department of Internal Medicine (J.G.), Saint-Nazaire Hospital; Department of Internal Medicine (M.P.-J.), Purpan University Hospital, Toulouse; Department of Hematology (F.S.), Necker-Enfants Malades University Hospital, AP-HP; INSERM UMR 1163 and CNRS ERL 8254 (F.S.), Imagine Institut; Descartes University (F.S., B.N.); Pediatric Hematology-Immunology and Rheumatology Department (B.N., N.M.), Hôpital Necker-Enfants Malades, AP-HP; Laboratory of Immunogenetics of Pediatric Autoimmunity (B.N.), INSERM UMR 1163, Imagine Institute; and French National Reference Center for Primary Immune Deficiencies (CEREDIH) (N.M.), Necker Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Valery Salle
- From the Department of Internal Medicine and Multi-Organic Diseases (C.C., P.G., P.R.), Local Referral Center for Rare Autoimmune Diseases, Montpellier University Hospital; University of Montpellier (C.C., R.G., P.L., P.G., E. Jeziorski, X.A.); Internal Medicine Department (R.G.), CHU Nîmes; Department of Neurology (P.L., C.C.-D., X.A.), Montpellier University Hospital; INM (P.L., X.A.), INSERM; Institute of Regenerative Medicine and Biotherapy (P.G.), INSERM U1183, Montpellier; Sorbonne Université (E. Januel); Institut Pierre Louis d'Epidémiologie et de Santé Publique (E. Januel), Département de Santé Publique; Département de Neurologie (E. Januel), Hôpital Pitié Salpêtrière, AP-HP, Paris; Pediatrics Department (E. Jeziorski), Montpellier University Hospital; Department of Internal Medicine (V.S.), Amiens University Medical Center; Internal Medicine Department (J.-F.V.), Bordeaux University Hospital Centre, Hôpital Haut-Lévêque, Pessac; Clinical Immunology Department (D.B., C.F.), National Reference Center for Castleman Disease; UMR 1149 CRI INSERM (D.B.), Hôpital Saint Louis, Assistance Publique Hôpitaux de Paris (APHP); Université Paris Diderot (D.B., C.F.); Inserm U1126 (C.F.), Centre Hayem, Hôpital Saint-Louis; Internal Medicine Department (D.G.), Hôpital Saint Antoine, APHP, Paris; Pediatric Oncology Hematology Unit (N.A.), Bordeaux University Hospital; Plurithématique CIC (CICP) (N.A.), Centre d'Investigation Clinique (CIC) 1401, INSERM; Centre de Référence National des Cytopénies Autoimmunes de l'Enfant (CEREVANCE) (N.A.), Bordeaux; Department of Internal Medicine (J.G.), Saint-Nazaire Hospital; Department of Internal Medicine (M.P.-J.), Purpan University Hospital, Toulouse; Department of Hematology (F.S.), Necker-Enfants Malades University Hospital, AP-HP; INSERM UMR 1163 and CNRS ERL 8254 (F.S.), Imagine Institut; Descartes University (F.S., B.N.); Pediatric Hematology-Immunology and Rheumatology Department (B.N., N.M.), Hôpital Necker-Enfants Malades, AP-HP; Laboratory of Immunogenetics of Pediatric Autoimmunity (B.N.), INSERM UMR 1163, Imagine Institute; and French National Reference Center for Primary Immune Deficiencies (CEREDIH) (N.M.), Necker Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Jean-François Viallard
- From the Department of Internal Medicine and Multi-Organic Diseases (C.C., P.G., P.R.), Local Referral Center for Rare Autoimmune Diseases, Montpellier University Hospital; University of Montpellier (C.C., R.G., P.L., P.G., E. Jeziorski, X.A.); Internal Medicine Department (R.G.), CHU Nîmes; Department of Neurology (P.L., C.C.-D., X.A.), Montpellier University Hospital; INM (P.L., X.A.), INSERM; Institute of Regenerative Medicine and Biotherapy (P.G.), INSERM U1183, Montpellier; Sorbonne Université (E. Januel); Institut Pierre Louis d'Epidémiologie et de Santé Publique (E. Januel), Département de Santé Publique; Département de Neurologie (E. Januel), Hôpital Pitié Salpêtrière, AP-HP, Paris; Pediatrics Department (E. Jeziorski), Montpellier University Hospital; Department of Internal Medicine (V.S.), Amiens University Medical Center; Internal Medicine Department (J.-F.V.), Bordeaux University Hospital Centre, Hôpital Haut-Lévêque, Pessac; Clinical Immunology Department (D.B., C.F.), National Reference Center for Castleman Disease; UMR 1149 CRI INSERM (D.B.), Hôpital Saint Louis, Assistance Publique Hôpitaux de Paris (APHP); Université Paris Diderot (D.B., C.F.); Inserm U1126 (C.F.), Centre Hayem, Hôpital Saint-Louis; Internal Medicine Department (D.G.), Hôpital Saint Antoine, APHP, Paris; Pediatric Oncology Hematology Unit (N.A.), Bordeaux University Hospital; Plurithématique CIC (CICP) (N.A.), Centre d'Investigation Clinique (CIC) 1401, INSERM; Centre de Référence National des Cytopénies Autoimmunes de l'Enfant (CEREVANCE) (N.A.), Bordeaux; Department of Internal Medicine (J.G.), Saint-Nazaire Hospital; Department of Internal Medicine (M.P.-J.), Purpan University Hospital, Toulouse; Department of Hematology (F.S.), Necker-Enfants Malades University Hospital, AP-HP; INSERM UMR 1163 and CNRS ERL 8254 (F.S.), Imagine Institut; Descartes University (F.S., B.N.); Pediatric Hematology-Immunology and Rheumatology Department (B.N., N.M.), Hôpital Necker-Enfants Malades, AP-HP; Laboratory of Immunogenetics of Pediatric Autoimmunity (B.N.), INSERM UMR 1163, Imagine Institute; and French National Reference Center for Primary Immune Deficiencies (CEREDIH) (N.M.), Necker Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - David Boutboul
- From the Department of Internal Medicine and Multi-Organic Diseases (C.C., P.G., P.R.), Local Referral Center for Rare Autoimmune Diseases, Montpellier University Hospital; University of Montpellier (C.C., R.G., P.L., P.G., E. Jeziorski, X.A.); Internal Medicine Department (R.G.), CHU Nîmes; Department of Neurology (P.L., C.C.-D., X.A.), Montpellier University Hospital; INM (P.L., X.A.), INSERM; Institute of Regenerative Medicine and Biotherapy (P.G.), INSERM U1183, Montpellier; Sorbonne Université (E. Januel); Institut Pierre Louis d'Epidémiologie et de Santé Publique (E. Januel), Département de Santé Publique; Département de Neurologie (E. Januel), Hôpital Pitié Salpêtrière, AP-HP, Paris; Pediatrics Department (E. Jeziorski), Montpellier University Hospital; Department of Internal Medicine (V.S.), Amiens University Medical Center; Internal Medicine Department (J.-F.V.), Bordeaux University Hospital Centre, Hôpital Haut-Lévêque, Pessac; Clinical Immunology Department (D.B., C.F.), National Reference Center for Castleman Disease; UMR 1149 CRI INSERM (D.B.), Hôpital Saint Louis, Assistance Publique Hôpitaux de Paris (APHP); Université Paris Diderot (D.B., C.F.); Inserm U1126 (C.F.), Centre Hayem, Hôpital Saint-Louis; Internal Medicine Department (D.G.), Hôpital Saint Antoine, APHP, Paris; Pediatric Oncology Hematology Unit (N.A.), Bordeaux University Hospital; Plurithématique CIC (CICP) (N.A.), Centre d'Investigation Clinique (CIC) 1401, INSERM; Centre de Référence National des Cytopénies Autoimmunes de l'Enfant (CEREVANCE) (N.A.), Bordeaux; Department of Internal Medicine (J.G.), Saint-Nazaire Hospital; Department of Internal Medicine (M.P.-J.), Purpan University Hospital, Toulouse; Department of Hematology (F.S.), Necker-Enfants Malades University Hospital, AP-HP; INSERM UMR 1163 and CNRS ERL 8254 (F.S.), Imagine Institut; Descartes University (F.S., B.N.); Pediatric Hematology-Immunology and Rheumatology Department (B.N., N.M.), Hôpital Necker-Enfants Malades, AP-HP; Laboratory of Immunogenetics of Pediatric Autoimmunity (B.N.), INSERM UMR 1163, Imagine Institute; and French National Reference Center for Primary Immune Deficiencies (CEREDIH) (N.M.), Necker Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Claire Fieschi
- From the Department of Internal Medicine and Multi-Organic Diseases (C.C., P.G., P.R.), Local Referral Center for Rare Autoimmune Diseases, Montpellier University Hospital; University of Montpellier (C.C., R.G., P.L., P.G., E. Jeziorski, X.A.); Internal Medicine Department (R.G.), CHU Nîmes; Department of Neurology (P.L., C.C.-D., X.A.), Montpellier University Hospital; INM (P.L., X.A.), INSERM; Institute of Regenerative Medicine and Biotherapy (P.G.), INSERM U1183, Montpellier; Sorbonne Université (E. Januel); Institut Pierre Louis d'Epidémiologie et de Santé Publique (E. Januel), Département de Santé Publique; Département de Neurologie (E. Januel), Hôpital Pitié Salpêtrière, AP-HP, Paris; Pediatrics Department (E. Jeziorski), Montpellier University Hospital; Department of Internal Medicine (V.S.), Amiens University Medical Center; Internal Medicine Department (J.-F.V.), Bordeaux University Hospital Centre, Hôpital Haut-Lévêque, Pessac; Clinical Immunology Department (D.B., C.F.), National Reference Center for Castleman Disease; UMR 1149 CRI INSERM (D.B.), Hôpital Saint Louis, Assistance Publique Hôpitaux de Paris (APHP); Université Paris Diderot (D.B., C.F.); Inserm U1126 (C.F.), Centre Hayem, Hôpital Saint-Louis; Internal Medicine Department (D.G.), Hôpital Saint Antoine, APHP, Paris; Pediatric Oncology Hematology Unit (N.A.), Bordeaux University Hospital; Plurithématique CIC (CICP) (N.A.), Centre d'Investigation Clinique (CIC) 1401, INSERM; Centre de Référence National des Cytopénies Autoimmunes de l'Enfant (CEREVANCE) (N.A.), Bordeaux; Department of Internal Medicine (J.G.), Saint-Nazaire Hospital; Department of Internal Medicine (M.P.-J.), Purpan University Hospital, Toulouse; Department of Hematology (F.S.), Necker-Enfants Malades University Hospital, AP-HP; INSERM UMR 1163 and CNRS ERL 8254 (F.S.), Imagine Institut; Descartes University (F.S., B.N.); Pediatric Hematology-Immunology and Rheumatology Department (B.N., N.M.), Hôpital Necker-Enfants Malades, AP-HP; Laboratory of Immunogenetics of Pediatric Autoimmunity (B.N.), INSERM UMR 1163, Imagine Institute; and French National Reference Center for Primary Immune Deficiencies (CEREDIH) (N.M.), Necker Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Delphine Gobert
- From the Department of Internal Medicine and Multi-Organic Diseases (C.C., P.G., P.R.), Local Referral Center for Rare Autoimmune Diseases, Montpellier University Hospital; University of Montpellier (C.C., R.G., P.L., P.G., E. Jeziorski, X.A.); Internal Medicine Department (R.G.), CHU Nîmes; Department of Neurology (P.L., C.C.-D., X.A.), Montpellier University Hospital; INM (P.L., X.A.), INSERM; Institute of Regenerative Medicine and Biotherapy (P.G.), INSERM U1183, Montpellier; Sorbonne Université (E. Januel); Institut Pierre Louis d'Epidémiologie et de Santé Publique (E. Januel), Département de Santé Publique; Département de Neurologie (E. Januel), Hôpital Pitié Salpêtrière, AP-HP, Paris; Pediatrics Department (E. Jeziorski), Montpellier University Hospital; Department of Internal Medicine (V.S.), Amiens University Medical Center; Internal Medicine Department (J.-F.V.), Bordeaux University Hospital Centre, Hôpital Haut-Lévêque, Pessac; Clinical Immunology Department (D.B., C.F.), National Reference Center for Castleman Disease; UMR 1149 CRI INSERM (D.B.), Hôpital Saint Louis, Assistance Publique Hôpitaux de Paris (APHP); Université Paris Diderot (D.B., C.F.); Inserm U1126 (C.F.), Centre Hayem, Hôpital Saint-Louis; Internal Medicine Department (D.G.), Hôpital Saint Antoine, APHP, Paris; Pediatric Oncology Hematology Unit (N.A.), Bordeaux University Hospital; Plurithématique CIC (CICP) (N.A.), Centre d'Investigation Clinique (CIC) 1401, INSERM; Centre de Référence National des Cytopénies Autoimmunes de l'Enfant (CEREVANCE) (N.A.), Bordeaux; Department of Internal Medicine (J.G.), Saint-Nazaire Hospital; Department of Internal Medicine (M.P.-J.), Purpan University Hospital, Toulouse; Department of Hematology (F.S.), Necker-Enfants Malades University Hospital, AP-HP; INSERM UMR 1163 and CNRS ERL 8254 (F.S.), Imagine Institut; Descartes University (F.S., B.N.); Pediatric Hematology-Immunology and Rheumatology Department (B.N., N.M.), Hôpital Necker-Enfants Malades, AP-HP; Laboratory of Immunogenetics of Pediatric Autoimmunity (B.N.), INSERM UMR 1163, Imagine Institute; and French National Reference Center for Primary Immune Deficiencies (CEREDIH) (N.M.), Necker Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Nathalie Aladjidi
- From the Department of Internal Medicine and Multi-Organic Diseases (C.C., P.G., P.R.), Local Referral Center for Rare Autoimmune Diseases, Montpellier University Hospital; University of Montpellier (C.C., R.G., P.L., P.G., E. Jeziorski, X.A.); Internal Medicine Department (R.G.), CHU Nîmes; Department of Neurology (P.L., C.C.-D., X.A.), Montpellier University Hospital; INM (P.L., X.A.), INSERM; Institute of Regenerative Medicine and Biotherapy (P.G.), INSERM U1183, Montpellier; Sorbonne Université (E. Januel); Institut Pierre Louis d'Epidémiologie et de Santé Publique (E. Januel), Département de Santé Publique; Département de Neurologie (E. Januel), Hôpital Pitié Salpêtrière, AP-HP, Paris; Pediatrics Department (E. Jeziorski), Montpellier University Hospital; Department of Internal Medicine (V.S.), Amiens University Medical Center; Internal Medicine Department (J.-F.V.), Bordeaux University Hospital Centre, Hôpital Haut-Lévêque, Pessac; Clinical Immunology Department (D.B., C.F.), National Reference Center for Castleman Disease; UMR 1149 CRI INSERM (D.B.), Hôpital Saint Louis, Assistance Publique Hôpitaux de Paris (APHP); Université Paris Diderot (D.B., C.F.); Inserm U1126 (C.F.), Centre Hayem, Hôpital Saint-Louis; Internal Medicine Department (D.G.), Hôpital Saint Antoine, APHP, Paris; Pediatric Oncology Hematology Unit (N.A.), Bordeaux University Hospital; Plurithématique CIC (CICP) (N.A.), Centre d'Investigation Clinique (CIC) 1401, INSERM; Centre de Référence National des Cytopénies Autoimmunes de l'Enfant (CEREVANCE) (N.A.), Bordeaux; Department of Internal Medicine (J.G.), Saint-Nazaire Hospital; Department of Internal Medicine (M.P.-J.), Purpan University Hospital, Toulouse; Department of Hematology (F.S.), Necker-Enfants Malades University Hospital, AP-HP; INSERM UMR 1163 and CNRS ERL 8254 (F.S.), Imagine Institut; Descartes University (F.S., B.N.); Pediatric Hematology-Immunology and Rheumatology Department (B.N., N.M.), Hôpital Necker-Enfants Malades, AP-HP; Laboratory of Immunogenetics of Pediatric Autoimmunity (B.N.), INSERM UMR 1163, Imagine Institute; and French National Reference Center for Primary Immune Deficiencies (CEREDIH) (N.M.), Necker Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Patricia Rullier
- From the Department of Internal Medicine and Multi-Organic Diseases (C.C., P.G., P.R.), Local Referral Center for Rare Autoimmune Diseases, Montpellier University Hospital; University of Montpellier (C.C., R.G., P.L., P.G., E. Jeziorski, X.A.); Internal Medicine Department (R.G.), CHU Nîmes; Department of Neurology (P.L., C.C.-D., X.A.), Montpellier University Hospital; INM (P.L., X.A.), INSERM; Institute of Regenerative Medicine and Biotherapy (P.G.), INSERM U1183, Montpellier; Sorbonne Université (E. Januel); Institut Pierre Louis d'Epidémiologie et de Santé Publique (E. Januel), Département de Santé Publique; Département de Neurologie (E. Januel), Hôpital Pitié Salpêtrière, AP-HP, Paris; Pediatrics Department (E. Jeziorski), Montpellier University Hospital; Department of Internal Medicine (V.S.), Amiens University Medical Center; Internal Medicine Department (J.-F.V.), Bordeaux University Hospital Centre, Hôpital Haut-Lévêque, Pessac; Clinical Immunology Department (D.B., C.F.), National Reference Center for Castleman Disease; UMR 1149 CRI INSERM (D.B.), Hôpital Saint Louis, Assistance Publique Hôpitaux de Paris (APHP); Université Paris Diderot (D.B., C.F.); Inserm U1126 (C.F.), Centre Hayem, Hôpital Saint-Louis; Internal Medicine Department (D.G.), Hôpital Saint Antoine, APHP, Paris; Pediatric Oncology Hematology Unit (N.A.), Bordeaux University Hospital; Plurithématique CIC (CICP) (N.A.), Centre d'Investigation Clinique (CIC) 1401, INSERM; Centre de Référence National des Cytopénies Autoimmunes de l'Enfant (CEREVANCE) (N.A.), Bordeaux; Department of Internal Medicine (J.G.), Saint-Nazaire Hospital; Department of Internal Medicine (M.P.-J.), Purpan University Hospital, Toulouse; Department of Hematology (F.S.), Necker-Enfants Malades University Hospital, AP-HP; INSERM UMR 1163 and CNRS ERL 8254 (F.S.), Imagine Institut; Descartes University (F.S., B.N.); Pediatric Hematology-Immunology and Rheumatology Department (B.N., N.M.), Hôpital Necker-Enfants Malades, AP-HP; Laboratory of Immunogenetics of Pediatric Autoimmunity (B.N.), INSERM UMR 1163, Imagine Institute; and French National Reference Center for Primary Immune Deficiencies (CEREDIH) (N.M.), Necker Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Julie Graveleau
- From the Department of Internal Medicine and Multi-Organic Diseases (C.C., P.G., P.R.), Local Referral Center for Rare Autoimmune Diseases, Montpellier University Hospital; University of Montpellier (C.C., R.G., P.L., P.G., E. Jeziorski, X.A.); Internal Medicine Department (R.G.), CHU Nîmes; Department of Neurology (P.L., C.C.-D., X.A.), Montpellier University Hospital; INM (P.L., X.A.), INSERM; Institute of Regenerative Medicine and Biotherapy (P.G.), INSERM U1183, Montpellier; Sorbonne Université (E. Januel); Institut Pierre Louis d'Epidémiologie et de Santé Publique (E. Januel), Département de Santé Publique; Département de Neurologie (E. Januel), Hôpital Pitié Salpêtrière, AP-HP, Paris; Pediatrics Department (E. Jeziorski), Montpellier University Hospital; Department of Internal Medicine (V.S.), Amiens University Medical Center; Internal Medicine Department (J.-F.V.), Bordeaux University Hospital Centre, Hôpital Haut-Lévêque, Pessac; Clinical Immunology Department (D.B., C.F.), National Reference Center for Castleman Disease; UMR 1149 CRI INSERM (D.B.), Hôpital Saint Louis, Assistance Publique Hôpitaux de Paris (APHP); Université Paris Diderot (D.B., C.F.); Inserm U1126 (C.F.), Centre Hayem, Hôpital Saint-Louis; Internal Medicine Department (D.G.), Hôpital Saint Antoine, APHP, Paris; Pediatric Oncology Hematology Unit (N.A.), Bordeaux University Hospital; Plurithématique CIC (CICP) (N.A.), Centre d'Investigation Clinique (CIC) 1401, INSERM; Centre de Référence National des Cytopénies Autoimmunes de l'Enfant (CEREVANCE) (N.A.), Bordeaux; Department of Internal Medicine (J.G.), Saint-Nazaire Hospital; Department of Internal Medicine (M.P.-J.), Purpan University Hospital, Toulouse; Department of Hematology (F.S.), Necker-Enfants Malades University Hospital, AP-HP; INSERM UMR 1163 and CNRS ERL 8254 (F.S.), Imagine Institut; Descartes University (F.S., B.N.); Pediatric Hematology-Immunology and Rheumatology Department (B.N., N.M.), Hôpital Necker-Enfants Malades, AP-HP; Laboratory of Immunogenetics of Pediatric Autoimmunity (B.N.), INSERM UMR 1163, Imagine Institute; and French National Reference Center for Primary Immune Deficiencies (CEREDIH) (N.M.), Necker Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Marie Piel-Julian
- From the Department of Internal Medicine and Multi-Organic Diseases (C.C., P.G., P.R.), Local Referral Center for Rare Autoimmune Diseases, Montpellier University Hospital; University of Montpellier (C.C., R.G., P.L., P.G., E. Jeziorski, X.A.); Internal Medicine Department (R.G.), CHU Nîmes; Department of Neurology (P.L., C.C.-D., X.A.), Montpellier University Hospital; INM (P.L., X.A.), INSERM; Institute of Regenerative Medicine and Biotherapy (P.G.), INSERM U1183, Montpellier; Sorbonne Université (E. Januel); Institut Pierre Louis d'Epidémiologie et de Santé Publique (E. Januel), Département de Santé Publique; Département de Neurologie (E. Januel), Hôpital Pitié Salpêtrière, AP-HP, Paris; Pediatrics Department (E. Jeziorski), Montpellier University Hospital; Department of Internal Medicine (V.S.), Amiens University Medical Center; Internal Medicine Department (J.-F.V.), Bordeaux University Hospital Centre, Hôpital Haut-Lévêque, Pessac; Clinical Immunology Department (D.B., C.F.), National Reference Center for Castleman Disease; UMR 1149 CRI INSERM (D.B.), Hôpital Saint Louis, Assistance Publique Hôpitaux de Paris (APHP); Université Paris Diderot (D.B., C.F.); Inserm U1126 (C.F.), Centre Hayem, Hôpital Saint-Louis; Internal Medicine Department (D.G.), Hôpital Saint Antoine, APHP, Paris; Pediatric Oncology Hematology Unit (N.A.), Bordeaux University Hospital; Plurithématique CIC (CICP) (N.A.), Centre d'Investigation Clinique (CIC) 1401, INSERM; Centre de Référence National des Cytopénies Autoimmunes de l'Enfant (CEREVANCE) (N.A.), Bordeaux; Department of Internal Medicine (J.G.), Saint-Nazaire Hospital; Department of Internal Medicine (M.P.-J.), Purpan University Hospital, Toulouse; Department of Hematology (F.S.), Necker-Enfants Malades University Hospital, AP-HP; INSERM UMR 1163 and CNRS ERL 8254 (F.S.), Imagine Institut; Descartes University (F.S., B.N.); Pediatric Hematology-Immunology and Rheumatology Department (B.N., N.M.), Hôpital Necker-Enfants Malades, AP-HP; Laboratory of Immunogenetics of Pediatric Autoimmunity (B.N.), INSERM UMR 1163, Imagine Institute; and French National Reference Center for Primary Immune Deficiencies (CEREDIH) (N.M.), Necker Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Felipe Suarez
- From the Department of Internal Medicine and Multi-Organic Diseases (C.C., P.G., P.R.), Local Referral Center for Rare Autoimmune Diseases, Montpellier University Hospital; University of Montpellier (C.C., R.G., P.L., P.G., E. Jeziorski, X.A.); Internal Medicine Department (R.G.), CHU Nîmes; Department of Neurology (P.L., C.C.-D., X.A.), Montpellier University Hospital; INM (P.L., X.A.), INSERM; Institute of Regenerative Medicine and Biotherapy (P.G.), INSERM U1183, Montpellier; Sorbonne Université (E. Januel); Institut Pierre Louis d'Epidémiologie et de Santé Publique (E. Januel), Département de Santé Publique; Département de Neurologie (E. Januel), Hôpital Pitié Salpêtrière, AP-HP, Paris; Pediatrics Department (E. Jeziorski), Montpellier University Hospital; Department of Internal Medicine (V.S.), Amiens University Medical Center; Internal Medicine Department (J.-F.V.), Bordeaux University Hospital Centre, Hôpital Haut-Lévêque, Pessac; Clinical Immunology Department (D.B., C.F.), National Reference Center for Castleman Disease; UMR 1149 CRI INSERM (D.B.), Hôpital Saint Louis, Assistance Publique Hôpitaux de Paris (APHP); Université Paris Diderot (D.B., C.F.); Inserm U1126 (C.F.), Centre Hayem, Hôpital Saint-Louis; Internal Medicine Department (D.G.), Hôpital Saint Antoine, APHP, Paris; Pediatric Oncology Hematology Unit (N.A.), Bordeaux University Hospital; Plurithématique CIC (CICP) (N.A.), Centre d'Investigation Clinique (CIC) 1401, INSERM; Centre de Référence National des Cytopénies Autoimmunes de l'Enfant (CEREVANCE) (N.A.), Bordeaux; Department of Internal Medicine (J.G.), Saint-Nazaire Hospital; Department of Internal Medicine (M.P.-J.), Purpan University Hospital, Toulouse; Department of Hematology (F.S.), Necker-Enfants Malades University Hospital, AP-HP; INSERM UMR 1163 and CNRS ERL 8254 (F.S.), Imagine Institut; Descartes University (F.S., B.N.); Pediatric Hematology-Immunology and Rheumatology Department (B.N., N.M.), Hôpital Necker-Enfants Malades, AP-HP; Laboratory of Immunogenetics of Pediatric Autoimmunity (B.N.), INSERM UMR 1163, Imagine Institute; and French National Reference Center for Primary Immune Deficiencies (CEREDIH) (N.M.), Necker Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Benedicte Neven
- From the Department of Internal Medicine and Multi-Organic Diseases (C.C., P.G., P.R.), Local Referral Center for Rare Autoimmune Diseases, Montpellier University Hospital; University of Montpellier (C.C., R.G., P.L., P.G., E. Jeziorski, X.A.); Internal Medicine Department (R.G.), CHU Nîmes; Department of Neurology (P.L., C.C.-D., X.A.), Montpellier University Hospital; INM (P.L., X.A.), INSERM; Institute of Regenerative Medicine and Biotherapy (P.G.), INSERM U1183, Montpellier; Sorbonne Université (E. Januel); Institut Pierre Louis d'Epidémiologie et de Santé Publique (E. Januel), Département de Santé Publique; Département de Neurologie (E. Januel), Hôpital Pitié Salpêtrière, AP-HP, Paris; Pediatrics Department (E. Jeziorski), Montpellier University Hospital; Department of Internal Medicine (V.S.), Amiens University Medical Center; Internal Medicine Department (J.-F.V.), Bordeaux University Hospital Centre, Hôpital Haut-Lévêque, Pessac; Clinical Immunology Department (D.B., C.F.), National Reference Center for Castleman Disease; UMR 1149 CRI INSERM (D.B.), Hôpital Saint Louis, Assistance Publique Hôpitaux de Paris (APHP); Université Paris Diderot (D.B., C.F.); Inserm U1126 (C.F.), Centre Hayem, Hôpital Saint-Louis; Internal Medicine Department (D.G.), Hôpital Saint Antoine, APHP, Paris; Pediatric Oncology Hematology Unit (N.A.), Bordeaux University Hospital; Plurithématique CIC (CICP) (N.A.), Centre d'Investigation Clinique (CIC) 1401, INSERM; Centre de Référence National des Cytopénies Autoimmunes de l'Enfant (CEREVANCE) (N.A.), Bordeaux; Department of Internal Medicine (J.G.), Saint-Nazaire Hospital; Department of Internal Medicine (M.P.-J.), Purpan University Hospital, Toulouse; Department of Hematology (F.S.), Necker-Enfants Malades University Hospital, AP-HP; INSERM UMR 1163 and CNRS ERL 8254 (F.S.), Imagine Institut; Descartes University (F.S., B.N.); Pediatric Hematology-Immunology and Rheumatology Department (B.N., N.M.), Hôpital Necker-Enfants Malades, AP-HP; Laboratory of Immunogenetics of Pediatric Autoimmunity (B.N.), INSERM UMR 1163, Imagine Institute; and French National Reference Center for Primary Immune Deficiencies (CEREDIH) (N.M.), Necker Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Nizar Mahlaoui
- From the Department of Internal Medicine and Multi-Organic Diseases (C.C., P.G., P.R.), Local Referral Center for Rare Autoimmune Diseases, Montpellier University Hospital; University of Montpellier (C.C., R.G., P.L., P.G., E. Jeziorski, X.A.); Internal Medicine Department (R.G.), CHU Nîmes; Department of Neurology (P.L., C.C.-D., X.A.), Montpellier University Hospital; INM (P.L., X.A.), INSERM; Institute of Regenerative Medicine and Biotherapy (P.G.), INSERM U1183, Montpellier; Sorbonne Université (E. Januel); Institut Pierre Louis d'Epidémiologie et de Santé Publique (E. Januel), Département de Santé Publique; Département de Neurologie (E. Januel), Hôpital Pitié Salpêtrière, AP-HP, Paris; Pediatrics Department (E. Jeziorski), Montpellier University Hospital; Department of Internal Medicine (V.S.), Amiens University Medical Center; Internal Medicine Department (J.-F.V.), Bordeaux University Hospital Centre, Hôpital Haut-Lévêque, Pessac; Clinical Immunology Department (D.B., C.F.), National Reference Center for Castleman Disease; UMR 1149 CRI INSERM (D.B.), Hôpital Saint Louis, Assistance Publique Hôpitaux de Paris (APHP); Université Paris Diderot (D.B., C.F.); Inserm U1126 (C.F.), Centre Hayem, Hôpital Saint-Louis; Internal Medicine Department (D.G.), Hôpital Saint Antoine, APHP, Paris; Pediatric Oncology Hematology Unit (N.A.), Bordeaux University Hospital; Plurithématique CIC (CICP) (N.A.), Centre d'Investigation Clinique (CIC) 1401, INSERM; Centre de Référence National des Cytopénies Autoimmunes de l'Enfant (CEREVANCE) (N.A.), Bordeaux; Department of Internal Medicine (J.G.), Saint-Nazaire Hospital; Department of Internal Medicine (M.P.-J.), Purpan University Hospital, Toulouse; Department of Hematology (F.S.), Necker-Enfants Malades University Hospital, AP-HP; INSERM UMR 1163 and CNRS ERL 8254 (F.S.), Imagine Institut; Descartes University (F.S., B.N.); Pediatric Hematology-Immunology and Rheumatology Department (B.N., N.M.), Hôpital Necker-Enfants Malades, AP-HP; Laboratory of Immunogenetics of Pediatric Autoimmunity (B.N.), INSERM UMR 1163, Imagine Institute; and French National Reference Center for Primary Immune Deficiencies (CEREDIH) (N.M.), Necker Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Xavier Ayrignac
- From the Department of Internal Medicine and Multi-Organic Diseases (C.C., P.G., P.R.), Local Referral Center for Rare Autoimmune Diseases, Montpellier University Hospital; University of Montpellier (C.C., R.G., P.L., P.G., E. Jeziorski, X.A.); Internal Medicine Department (R.G.), CHU Nîmes; Department of Neurology (P.L., C.C.-D., X.A.), Montpellier University Hospital; INM (P.L., X.A.), INSERM; Institute of Regenerative Medicine and Biotherapy (P.G.), INSERM U1183, Montpellier; Sorbonne Université (E. Januel); Institut Pierre Louis d'Epidémiologie et de Santé Publique (E. Januel), Département de Santé Publique; Département de Neurologie (E. Januel), Hôpital Pitié Salpêtrière, AP-HP, Paris; Pediatrics Department (E. Jeziorski), Montpellier University Hospital; Department of Internal Medicine (V.S.), Amiens University Medical Center; Internal Medicine Department (J.-F.V.), Bordeaux University Hospital Centre, Hôpital Haut-Lévêque, Pessac; Clinical Immunology Department (D.B., C.F.), National Reference Center for Castleman Disease; UMR 1149 CRI INSERM (D.B.), Hôpital Saint Louis, Assistance Publique Hôpitaux de Paris (APHP); Université Paris Diderot (D.B., C.F.); Inserm U1126 (C.F.), Centre Hayem, Hôpital Saint-Louis; Internal Medicine Department (D.G.), Hôpital Saint Antoine, APHP, Paris; Pediatric Oncology Hematology Unit (N.A.), Bordeaux University Hospital; Plurithématique CIC (CICP) (N.A.), Centre d'Investigation Clinique (CIC) 1401, INSERM; Centre de Référence National des Cytopénies Autoimmunes de l'Enfant (CEREVANCE) (N.A.), Bordeaux; Department of Internal Medicine (J.G.), Saint-Nazaire Hospital; Department of Internal Medicine (M.P.-J.), Purpan University Hospital, Toulouse; Department of Hematology (F.S.), Necker-Enfants Malades University Hospital, AP-HP; INSERM UMR 1163 and CNRS ERL 8254 (F.S.), Imagine Institut; Descartes University (F.S., B.N.); Pediatric Hematology-Immunology and Rheumatology Department (B.N., N.M.), Hôpital Necker-Enfants Malades, AP-HP; Laboratory of Immunogenetics of Pediatric Autoimmunity (B.N.), INSERM UMR 1163, Imagine Institute; and French National Reference Center for Primary Immune Deficiencies (CEREDIH) (N.M.), Necker Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France.
| |
Collapse
|
36
|
Toskov V, Ehl S. Autoimmune lymphoproliferative immunodeficiencies (ALPID) in childhood: breakdown of immune homeostasis and immune dysregulation. Mol Cell Pediatr 2023; 10:11. [PMID: 37702894 PMCID: PMC10499775 DOI: 10.1186/s40348-023-00167-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/05/2023] [Indexed: 09/14/2023] Open
Abstract
Many inborn errors of immunity (IEI) manifest with hallmarks of both immunodeficiency and immune dysregulation due to uncontrolled immune responses and impaired immune homeostasis. A subgroup of these disorders frequently presents with autoimmunity and lymphoproliferation (ALPID phenotype). After the initial description of the genetic basis of autoimmune lymphoproliferative syndrome (ALPS) more than 20 years ago, progress in genetics has helped to identify many more genetic conditions underlying this ALPID phenotype. Among these, the majority is caused by a group of autosomal-dominant conditions including CTLA-4 haploinsufficiency, STAT3 gain-of-function disease, activated PI3 kinase syndrome, and NF-κB1 haploinsufficiency. Even within a defined genetic condition, ALPID patients may present with staggering clinical heterogeneity, which makes diagnosis and management a challenge. In this review, we discuss the pathophysiology, clinical presentation, approaches to diagnosis, and conventional as well as targeted therapy of the most common ALPID conditions.
Collapse
Affiliation(s)
- Vasil Toskov
- Centre for Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Stephan Ehl
- Centre for Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
37
|
Maiarana J, Moncada-Velez M, Malbran E, Torre MG, Elonen C, Malbran A, Markle JG. Deep immunophenotyping shows altered immune cell subsets in CTLA-4 haploinsufficiency. Pediatr Allergy Immunol 2023; 34:e13994. [PMID: 37492916 DOI: 10.1111/pai.13994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/23/2023] [Accepted: 06/29/2023] [Indexed: 07/27/2023]
Affiliation(s)
- James Maiarana
- Department of Pediatrics, Monroe Carell Jr. Children's Hospital at Vanderbilt, Nashville, Tennessee, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Marcela Moncada-Velez
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York City, New York, USA
| | - Eloisa Malbran
- Unidad de Alergia, Asma e Inmunologia Clinica, Buenos Aires, Argentina
| | | | - Carissa Elonen
- Department of Medicine, Division of Genetic Medicine, Vanderbilt Institute of Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Alejandro Malbran
- Unidad de Alergia, Asma e Inmunologia Clinica, Buenos Aires, Argentina
| | - Janet G Markle
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Medicine, Division of Genetic Medicine, Vanderbilt Institute of Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
38
|
Sorin B, Fadlallah J, Garzaro M, Vigneron J, Bertinchamp R, Boutboul D, Oksenhendler E, Fieschi C, Malphettes M, Galicier L. Real-life use of mTOR inhibitor-based therapy in adults with autoimmune cytopenia highlights strong efficacy in relapsing/refractory multi-lineage autoimmune cytopenia. Ann Hematol 2023:10.1007/s00277-023-05340-0. [PMID: 37386347 DOI: 10.1007/s00277-023-05340-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/25/2023] [Indexed: 07/01/2023]
Abstract
Data on mTOR inhibitors (mTORi) in autoimmune cytopenia (AIC), in adults are scarce. We retrospectively analysed 30 cases of refractory or relapsing AIC treated with an mTORi-based therapy. Eleven warm autoimmune hemolytic anaemia, 10 autoimmune thrombocytopenia, 6 acquired pure red cell aplasia, 3 autoimmune neutropenia were included. Twenty were multilineage AIC (67%) and 21 were secondary AIC (70%). mTORi were associated with other therapies in 23 AIC (77%). Twenty-two AIC (73%) responded to mTORi-based therapy: 5 reached a partial response (17%) and 17 a complete response (57%). Survival without unfavourable outcome (failure, requirement of a new therapy, or death) was longer in multilineage AIC compared to single-lineage AIC (p = 0.049) with a median event-free survival of 48 versus 12 months. Median event-free survival was 48 months in secondary AIC and 33 months in primary AIC (p = 0.79). mTORi were discontinued in 4 patients (15%) for safety reasons and in 3 patients for patient's choice (12%). In conclusion, mTORi could be considered as an alternative or an add-on therapy in refractory or relapsing AIC in adult patients, especially in multilineage AIC.
Collapse
Affiliation(s)
- Boris Sorin
- Department of Clinical Immunology, Hôpital Saint Louis, Assistance Publique-Hôpitaux de Paris, Université de Paris, 1 Avenue Claude Vellefaux, 75010, Paris, France.
| | - Jehane Fadlallah
- Department of Clinical Immunology, Hôpital Saint Louis, Assistance Publique-Hôpitaux de Paris, Université de Paris, 1 Avenue Claude Vellefaux, 75010, Paris, France
| | - Margaux Garzaro
- Department of Clinical Immunology, Hôpital Saint Louis, Assistance Publique-Hôpitaux de Paris, Université de Paris, 1 Avenue Claude Vellefaux, 75010, Paris, France
| | - Julien Vigneron
- Department of Biostatistics and Medical Information, Hôpital Saint Louis, Assistance Publique-Hôpitaux de Paris, Université de Paris, 1 Avenue Claude Vellefaux, 75010, Paris, France
| | - Rémi Bertinchamp
- Department of Clinical Immunology, Hôpital Saint Louis, Assistance Publique-Hôpitaux de Paris, Université de Paris, 1 Avenue Claude Vellefaux, 75010, Paris, France
| | - David Boutboul
- Department of Clinical Immunology, Hôpital Saint Louis, Assistance Publique-Hôpitaux de Paris, Université de Paris, 1 Avenue Claude Vellefaux, 75010, Paris, France
| | - Eric Oksenhendler
- Department of Clinical Immunology, Hôpital Saint Louis, Assistance Publique-Hôpitaux de Paris, Université de Paris, 1 Avenue Claude Vellefaux, 75010, Paris, France
| | - Claire Fieschi
- Department of Clinical Immunology, Hôpital Saint Louis, Assistance Publique-Hôpitaux de Paris, Université de Paris, 1 Avenue Claude Vellefaux, 75010, Paris, France
| | - Marion Malphettes
- Department of Clinical Immunology, Hôpital Saint Louis, Assistance Publique-Hôpitaux de Paris, Université de Paris, 1 Avenue Claude Vellefaux, 75010, Paris, France
| | - Lionel Galicier
- Department of Clinical Immunology, Hôpital Saint Louis, Assistance Publique-Hôpitaux de Paris, Université de Paris, 1 Avenue Claude Vellefaux, 75010, Paris, France
| |
Collapse
|
39
|
Delage L, Carbone F, Riller Q, Zachayus JL, Kerbellec E, Buzy A, Stolzenberg MC, Luka M, de Cevins C, Kalouche G, Favier R, Michel A, Meynier S, Corneau A, Evrard C, Neveux N, Roudières S, Pérot BP, Fusaro M, Lenoir C, Pellé O, Parisot M, Bras M, Héritier S, Leverger G, Korganow AS, Picard C, Latour S, Collet B, Fischer A, Neven B, Magérus A, Ménager M, Pasquier B, Rieux-Laucat F. NBEAL2 deficiency in humans leads to low CTLA-4 expression in activated conventional T cells. Nat Commun 2023; 14:3728. [PMID: 37349339 PMCID: PMC10287742 DOI: 10.1038/s41467-023-39295-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 06/06/2023] [Indexed: 06/24/2023] Open
Abstract
Loss of NBEAL2 function leads to grey platelet syndrome (GPS), a bleeding disorder characterized by macro-thrombocytopenia and α-granule-deficient platelets. A proportion of patients with GPS develop autoimmunity through an unknown mechanism, which might be related to the proteins NBEAL2 interacts with, specifically in immune cells. Here we show a comprehensive interactome of NBEAL2 in primary T cells, based on mass spectrometry identification of altogether 74 protein association partners. These include LRBA, a member of the same BEACH domain family as NBEAL2, recessive mutations of which cause autoimmunity and lymphocytic infiltration through defective CTLA-4 trafficking. Investigating the potential association between NBEAL2 and CTLA-4 signalling suggested by the mass spectrometry results, we confirm by co-immunoprecipitation that CTLA-4 and NBEAL2 interact with each other. Interestingly, NBEAL2 deficiency leads to low CTLA-4 expression in patient-derived effector T cells, while their regulatory T cells appear unaffected. Knocking-down NBEAL2 in healthy primary T cells recapitulates the low CTLA-4 expression observed in the T cells of GPS patients. Our results thus show that NBEAL2 is involved in the regulation of CTLA-4 expression in conventional T cells and provide a rationale for considering CTLA-4-immunoglobulin therapy in patients with GPS and autoimmune disease.
Collapse
Affiliation(s)
- Laure Delage
- Université Paris Cité, Institut Imagine, Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, F-75015, Paris, France
- Checkpoint Immunology, Immunology and Inflammation Therapeutic Area, Sanofi, F-94400, Vitry-sur-Seine, France
| | - Francesco Carbone
- Université Paris Cité, Institut Imagine, Laboratory of Inflammatory Responses and Transcriptomic Networks in Diseases, Atip-Avenir Team, INSERM UMR 1163, F-75015, Paris, France
- Labtech Single-Cell@Imagine, Imagine Institute, INSERM UMR 1163, F-75015, Paris, France
| | - Quentin Riller
- Université Paris Cité, Institut Imagine, Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, F-75015, Paris, France
| | - Jean-Luc Zachayus
- Immunology and Inflammation Therapeutic Area, Sanofi, F-94400, Vitry-sur-Seine, France
| | - Erwan Kerbellec
- Checkpoint Immunology, Immunology and Inflammation Therapeutic Area, Sanofi, F-94400, Vitry-sur-Seine, France
| | - Armelle Buzy
- BioStructure and Biophysics, Integrated Drug Discovery, Sanofi, F- 94400, Vitry-sur-Seine, France
| | - Marie-Claude Stolzenberg
- Université Paris Cité, Institut Imagine, Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, F-75015, Paris, France
| | - Marine Luka
- Université Paris Cité, Institut Imagine, Laboratory of Inflammatory Responses and Transcriptomic Networks in Diseases, Atip-Avenir Team, INSERM UMR 1163, F-75015, Paris, France
- Labtech Single-Cell@Imagine, Imagine Institute, INSERM UMR 1163, F-75015, Paris, France
| | - Camille de Cevins
- Université Paris Cité, Institut Imagine, Laboratory of Inflammatory Responses and Transcriptomic Networks in Diseases, Atip-Avenir Team, INSERM UMR 1163, F-75015, Paris, France
- Artificial Intelligence & Deep Analytics (AIDA) Group, Data & Data Science (DDS), Sanofi R&D, F- 91380, Chilly-Mazarin, France
| | - Georges Kalouche
- Cellomics, Translational Sciences, Sanofi, F- 91380, Chilly-Mazarin, France
| | - Rémi Favier
- Assistance Publique-Hôpitaux de Paris, French national reference center for platelet disorders, Armand Trousseau Children Hospital, F-75012, Paris, France
- INSERM Unité Mixte de Recherche 1287, Gustave Roussy Cancer Campus, Paris-Saclay University, F-94805, Villejuif, France
| | - Alizée Michel
- Université Paris Cité, Institut Imagine, Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, F-75015, Paris, France
| | - Sonia Meynier
- Université Paris Cité, Institut Imagine, Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, F-75015, Paris, France
| | - Aurélien Corneau
- Sorbonne Université, UMS037, PASS, Plateforme de cytométrie de la Pitié-Salpêtrière CyPS, F-75013, Paris, France
| | - Caroline Evrard
- Immunology and Inflammation Therapeutic Area, Sanofi, F-94400, Vitry-sur-Seine, France
| | - Nathalie Neveux
- Laboratory of Biological Nutrition, EA 4466, Faculty of Pharmacy, Paris University, F-75014, Paris, France
- Clinical Chemistry Department, Hôpital Cochin, Assistance Publique - Hôpitaux de Paris (AP-HP), 4 Avenue de l'Observatoire, F-75014, Paris, France
| | - Sébastien Roudières
- BioStructure and Biophysics, Integrated Drug Discovery, Sanofi, F- 94400, Vitry-sur-Seine, France
| | - Brieuc P Pérot
- Université Paris Cité, Institut Imagine, Laboratory of Inflammatory Responses and Transcriptomic Networks in Diseases, Atip-Avenir Team, INSERM UMR 1163, F-75015, Paris, France
| | - Mathieu Fusaro
- Université Paris Cité, Institut Imagine, Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, INSERM UMR 1163, F-75015, Paris, France
| | - Christelle Lenoir
- Université Paris Cité, Institut Imagine, Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, INSERM UMR 1163, F-75015, Paris, France
| | - Olivier Pellé
- Université Paris Cité, Institut Imagine, Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, F-75015, Paris, France
- Flow Cytometry Core Facility, Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, F-75015, Paris, France
| | - Mélanie Parisot
- Genomics Core Facility, Institut Imagine-Structure Fédérative de Recherche Necker, INSERM U1163 et INSERM US24/CNRS UAR3633, Université Paris Cité, F-75015, Paris, France
| | - Marc Bras
- Bioinformatics Platform, Structure Fédérative de Recherche Necker, INSERM UMR1163, Université Paris Cité, Imagine Institute, F-75015, Paris, France
| | - Sébastien Héritier
- Sorbonne Université, INSERM UMRS_938, CRSA, AP-HP, Pediatric Oncology Hematology Unit, Hôpital Armand Trousseau, F-75012, Paris, France
| | - Guy Leverger
- Sorbonne Université, INSERM UMRS_938, CRSA, AP-HP, Pediatric Oncology Hematology Unit, Hôpital Armand Trousseau, F-75012, Paris, France
| | - Anne-Sophie Korganow
- Department of Clinical Immunology and Internal Medicine, National Reference Center for Systemic Autoimmune Diseases (CNR RESO), Tertiary Center for Primary Immunodeficiency, Strasbourg University Hospital, F-67091, Strasbourg, France
| | - Capucine Picard
- French National Reference Center for Primary Immune Deficiencies (CEREDIH), Necker-Enfants Malades University Hospital, AP-HP, F-75015, Paris, France
- Study Center for Primary Immunodeficiencies (CEDI), Necker-Enfants Malades University Hospital, AP-HP, F-75015, Paris, France
- Imagine Institute, INSERM UMR1163, Université Paris Cité, F-75015, Paris, France
| | - Sylvain Latour
- Université Paris Cité, Institut Imagine, Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, INSERM UMR 1163, F-75015, Paris, France
| | - Bénédicte Collet
- Pediatric Unit, Centre Hospitalier de Roubaix, F-59100, Roubaix, France
| | - Alain Fischer
- Imagine Institute, INSERM UMR1163, Université Paris Cité, F-75015, Paris, France
- Department of Paediatric Immuno-Haematology and Rheumatology, Reference Center for Rheumatic, AutoImmune and Systemic Diseases in Children (RAISE), Hôpital Necker-Enfants Malades, Assistance Publique - Hôpitaux de Paris (AP-HP), F-75015, Paris, France
- Collège de France, F-75231, Paris, France
| | - Bénédicte Neven
- Université Paris Cité, Institut Imagine, Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, F-75015, Paris, France
- Pediatric Immunohematology and Rheumatology Department, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris (AP-HP), F-75015, Paris, France
| | - Aude Magérus
- Université Paris Cité, Institut Imagine, Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, F-75015, Paris, France
| | - Mickaël Ménager
- Université Paris Cité, Institut Imagine, Laboratory of Inflammatory Responses and Transcriptomic Networks in Diseases, Atip-Avenir Team, INSERM UMR 1163, F-75015, Paris, France
- Labtech Single-Cell@Imagine, Imagine Institute, INSERM UMR 1163, F-75015, Paris, France
| | - Benoit Pasquier
- Checkpoint Immunology, Immunology and Inflammation Therapeutic Area, Sanofi, F-94400, Vitry-sur-Seine, France
| | - Frédéric Rieux-Laucat
- Université Paris Cité, Institut Imagine, Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, F-75015, Paris, France.
| |
Collapse
|
40
|
Gray PE, David C. Inborn Errors of Immunity and Autoimmune Disease. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:1602-1622. [PMID: 37119983 DOI: 10.1016/j.jaip.2023.04.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 04/01/2023] [Accepted: 04/21/2023] [Indexed: 05/01/2023]
Abstract
Autoimmunity may be a manifestation of inborn errors of immunity, specifically as part of the subgroup of primary immunodeficiency known as primary immune regulatory disorders. However, although making a single gene diagnosis can have important implications for prognosis and management, picking patients to screen can be difficult, against a background of a high prevalence of autoimmune disease in the population. This review compares the genetics of common polygenic and rare monogenic autoimmunity, and explores the molecular mechanisms, phenotypes, and inheritance of autoimmunity associated with primary immune regulatory disorders, highlighting the emerging importance of gain-of-function and non-germline somatic mutations. A novel framework for identifying rare monogenic cases of common diseases in children is presented, highlighting important clinical and immunologic features that favor single gene disease and guides clinicians in selecting appropriate patients for genomic screening. In addition, there will be a review of autoimmunity in non-genetically defined primary immunodeficiency such as common variable immunodeficiency, and of instances where primary autoimmunity can result in clinical phenocopies of inborn errors of immunity.
Collapse
Affiliation(s)
- Paul Edgar Gray
- Sydney Children's Hospital, Randwick, NSW, Australia; Western Sydney University, Penrith, NSW, Australia.
| | - Clementine David
- Sydney Children's Hospital, Randwick, NSW, Australia; The School of Women's & Children's Health, University of New South Wales, Randwick, NSW, Australia
| |
Collapse
|
41
|
Azabdaftari A, Jones KDJ, Kammermeier J, Uhlig HH. Monogenic inflammatory bowel disease-genetic variants, functional mechanisms and personalised medicine in clinical practice. Hum Genet 2023; 142:599-611. [PMID: 35761107 DOI: 10.1007/s00439-022-02464-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/03/2022] [Indexed: 11/04/2022]
Abstract
Over 100 genes are associated with monogenic forms of inflammatory bowel disease (IBD). These genes affect the epithelial barrier function, innate and adaptive immunity in the intestine, and immune tolerance. We provide an overview of newly discovered monogenic IBD genes and illustrate how a recently proposed taxonomy model can integrate phenotypes and shared pathways. We discuss how functional understanding of genetic disorders and clinical genomics supports personalised medicine for patients with monogenic IBD.
Collapse
Affiliation(s)
- Aline Azabdaftari
- Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Kelsey D J Jones
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
- Gastroenterology Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Jochen Kammermeier
- Gastroenterology Department, Evelina London Children's Hospital, London, UK
| | - Holm H Uhlig
- Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK.
- Department of Paediatrics, University of Oxford, Oxford, UK.
- NIHR Oxford Biomedical Research Centre, Oxford, UK.
| |
Collapse
|
42
|
Fevang B. Treatment of inflammatory complications in common variable immunodeficiency (CVID): current concepts and future perspectives. Expert Rev Clin Immunol 2023; 19:627-638. [PMID: 36996348 DOI: 10.1080/1744666x.2023.2198208] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
INTRODUCTION Patients with Common variable immunodeficiency (CVID) have a high frequency of inflammatory complications like autoimmune cytopenias, interstitial lung disease and enteropathy. These patients have poor prognosis and effective, timely and safe treatment of inflammatory complications in CVID are essential, but guidelines and consensus on therapy are often lacking. AREAS COVERED This review will focus on current medical treatment of inflammatory complications in CVID and point out some future perspectives based on literature indexed in PubMed. There are a number of good observational studies and case reports on treatment of specific complications but randomized controlled trials are scarce. EXPERT OPINION In clinical practice, the most urgent issues that need to be addressed are the preferred treatment of GLILD, enteropathy and liver disease. Treating the underlying immune dysregulation and immune exhaustion in CVID is an alternative approach that potentially could alleviate these and other organ-specific inflammatory complications. Therapies of potential interest and wider use in CVID include mTOR-inhibitors like sirolimus, JAK-inhibitors like tofacitinib, the monoclonal IL-12/23 antibody ustekinumab, the anti-BAFF antibody belimumab and abatacept. For all inflammatory complications, there is a need for prospective therapeutic trials, preferably randomized controlled trials, and multi-center collaborations with larger cohorts of patients will be essential.
Collapse
Affiliation(s)
- Børre Fevang
- Centre for Rare Disorders, Oslo University Hospital, Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital, Oslo, Norway
- Research Institute for Internal Medicine, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
43
|
The link between rheumatic disorders and inborn errors of immunity. EBioMedicine 2023; 90:104501. [PMID: 36870198 PMCID: PMC9996386 DOI: 10.1016/j.ebiom.2023.104501] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/11/2022] [Accepted: 02/10/2023] [Indexed: 03/06/2023] Open
Abstract
Inborn errors of immunity (IEIs) are immunological disorders characterized by variable susceptibility to infections, immune dysregulation and/or malignancies, as a consequence of damaging germline variants in single genes. Though initially identified among patients with unusual, severe or recurrent infections, non-infectious manifestations and especially immune dysregulation in the form of autoimmunity or autoinflammation can be the first or dominant phenotypic aspect of IEIs. An increasing number of IEIs causing autoimmunity or autoinflammation, including rheumatic disease have been reported over the last decade. Despite their rarity, identification of those disorders provided insight into the pathomechanisms of immune dysregulation, which may be relevant for understanding the pathogenesis of systemic rheumatic disorders. In this review, we present novel IEIs primarily causing autoimmunity or autoinflammation along with their pathogenic mechanisms. In addition, we explore the likely pathophysiological and clinical relevance of IEIs in systemic rheumatic disorders.
Collapse
|
44
|
Kammermeier J, Lamb CA, Jones KDJ, Anderson CA, Baple EL, Bolton C, Braggins H, Coulter TI, Gilmour KC, Gregory V, Hambleton S, Hartley D, Hawthorne AB, Hearn S, Laurence A, Parkes M, Russell RK, Speight RA, Travis S, Wilson DC, Uhlig HH. Genomic diagnosis and care co-ordination for monogenic inflammatory bowel disease in children and adults: consensus guideline on behalf of the British Society of Gastroenterology and British Society of Paediatric Gastroenterology, Hepatology and Nutrition. Lancet Gastroenterol Hepatol 2023; 8:271-286. [PMID: 36634696 DOI: 10.1016/s2468-1253(22)00337-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 01/11/2023]
Abstract
Genomic medicine enables the identification of patients with rare or ultra-rare monogenic forms of inflammatory bowel disease (IBD) and supports clinical decision making. Patients with monogenic IBD frequently experience extremely early onset of treatment-refractory disease, with complex extraintestinal disease typical of immunodeficiency. Since more than 100 monogenic disorders can present with IBD, new genetic disorders and variants are being discovered every year, and as phenotypic expression of the gene defects is variable, adaptive genomic technologies are required. Monogenic IBD has become a key area to establish the concept of precision medicine. Clear guidance and standardised, affordable applications of genomic technologies are needed to implement exome or genome sequencing in clinical practice. This joint British Society of Gastroenterology and British Society of Paediatric Gastroenterology, Hepatology and Nutrition guideline aims to ensure that testing resources are appropriately applied to maximise the benefit to patients on a national scale, minimise health-care disparities in accessing genomic technologies, and optimise resource use. We set out the structural requirements for genomic medicine as part of a multidisciplinary team approach. Initiation of genomic diagnostics should be guided by diagnostic criteria for the individual patient, in particular the age of IBD onset and the patient's history, and potential implications for future therapies. We outline the diagnostic care pathway for paediatric and adult patients. This guideline considers how to handle clinically actionable findings in research studies and the impact of consumer-based genomics for monogenic IBD. This document was developed by multiple stakeholders, including UK paediatric and adult gastroenterology physicians, immunologists, transplant specialists, clinical geneticists, scientists, and research leads of UK genetic programmes, in partnership with patient representatives of several IBD and rare disease charities.
Collapse
Affiliation(s)
- Jochen Kammermeier
- Department of Paediatric Gastroenterology, Evelina London Children's Hospital, London, UK
| | - Christopher A Lamb
- Translational & Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK; Department of Gastroenterology, Royal Victoria Infirmary, Newcastle upon Tyne, UK
| | - Kelsey D J Jones
- Department of Gastroenterology, Great Ormond Street Hospital for Children, London, UK; Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, University of Oxford, Oxford, UK
| | | | - Emma L Baple
- University of Exeter Medical School, Royal Devon & Exeter Hospital, Exeter, UK
| | - Chrissy Bolton
- Department of Infection, Immunity and Inflammation, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Helen Braggins
- Department of Immunology, Great Ormond Street Hospital of Children NHS Foundation Trust and NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK; Chronic Granulomatous Disorder Society, Dartford, UK
| | - Tanya I Coulter
- Regional Immunology Service for Northern Ireland, Belfast, UK
| | - Kimberly C Gilmour
- Clinical Immunology Laboratory, Great Ormond Street Hospital of Children NHS Foundation Trust and NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK
| | | | - Sophie Hambleton
- Translational & Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK; Department of Paediatric Immunology, Great North Children's Hospital, Newcastle upon Tyne, UK
| | | | - A Barney Hawthorne
- Department of Gastroenterology, University Hospital of Wales, Cardiff, UK
| | - Sarah Hearn
- Translational Gastroenterology Unit and Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Arian Laurence
- Department of Clinical Immunology, Royal Free Hospital, London, UK; Department of Haematology and Bone Marrow Transplantation, University College Hospital, London, UK
| | - Miles Parkes
- Department of Gastroenterology, Addenbrooke's Hospital, Cambridge, UK
| | - Richard K Russell
- Child Life and Health, University of Edinburgh, The Royal Hospital for Children & Young People, Edinburgh, UK; Department of Paediatric Gastroenterology, The Royal Hospital for Children & Young People, Edinburgh, UK; Department of Paediatric Gastroenterology, The Royal Hospital for Children & Young People, Edinburgh, UK
| | - R Alexander Speight
- Translational & Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK; Department of Gastroenterology, Royal Victoria Infirmary, Newcastle upon Tyne, UK
| | - Simon Travis
- Translational Gastroenterology Unit and Biomedical Research Centre, University of Oxford, Oxford, UK
| | - David C Wilson
- Child Life and Health, University of Edinburgh, The Royal Hospital for Children & Young People, Edinburgh, UK; Department of Paediatric Gastroenterology, The Royal Hospital for Children & Young People, Edinburgh, UK; Department of Paediatric Gastroenterology, The Royal Hospital for Children & Young People, Edinburgh, UK
| | - Holm H Uhlig
- Translational Gastroenterology Unit and Biomedical Research Centre, University of Oxford, Oxford, UK; Department of Paediatrics, University of Oxford, Oxford, UK.
| |
Collapse
|
45
|
Arruda LK, Cordeiro DL, Langer SS, Koenigham-Santos M, Calado RT, Dias MM, Anhesini LR, Oliveira JB, Grimbacher B, Ferriani MP. Efficacy of dupilumab for the treatment of severe skin disease in cytotoxic T lymphocyte antigen-4 insufficiency: A role of type 2 inflammation? THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2023; 2:114-117. [PMID: 37780100 PMCID: PMC10509893 DOI: 10.1016/j.jacig.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 08/21/2022] [Accepted: 08/24/2022] [Indexed: 10/03/2023]
Abstract
We report on the successful treatment of a severe, recalcitrant dermatitis caused by CTLA-4 insufficiency with dupilumab, raising the possibility of a role of type 2 immunity in clinical conditions associated with CTLA-4 insufficiency.
Collapse
Affiliation(s)
- L. Karla Arruda
- Department of Medicine, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Daniel L. Cordeiro
- Department of Medicine, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Sarah S. Langer
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Marcel Koenigham-Santos
- Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Rodrigo T. Calado
- Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Marina M. Dias
- Department of Medicine, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | | | | | - Bodo Grimbacher
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
- Clinic of Rheumatology and Clinical Immunology, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
- German Center for Infection Research, Satellite Center Freiburg, Freiburg, Germany
- Centre for Integrative Biological Signalling Studies, Albert-Ludwigs University, Freiburg, Germany
- RESIST–Cluster of Excellence 2155 to Hanover Medical School, Satellite Center Freiburg, Freiburg, Germany
| | - Mariana P.L. Ferriani
- Department of Medicine, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
46
|
Milota T, Smetanova J, Klojdova I. Gastrointestinal Involvement in Primary Antibody Deficiencies. GASTROINTESTINAL DISORDERS 2023; 5:52-67. [DOI: 10.3390/gidisord5010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
Primary antibody deficiencies (PADs) are the most frequent group of inborn errors of immunity. Impaired B-cell development, reduced production of immunoglobulins (mainly IgG and IgA), and specific antibodies resulting in recurrent infections are their hallmarks. Infections typically affect the respiratory tract; however, gastrointestinal involvement is also common. These include infection with Helicobacter pylori, Salmonella, Campylobacter species, Giardia, and noroviruses. Impaired IgA production also contributes to dysbiosis and thereby an increase in abundance of species with proinflammatory properties, resulting in immune system dysregulation. Dysregulation of the immune system results in a broad spectrum of non-infectious manifestations, including autoimmune, lymphoproliferative, and granulomatous complications. Additionally, it increases the risk of malignancy, which may be present in more than half of patients with PADs. Higher prevalence is often seen in monogenic causes, and gastrointestinal involvement may clinically mimic various conditions including inflammatory bowel diseases and celiac disease but possess different immunological features and response to standard treatment, which make diagnosis and therapy challenging. The spectrum of malignancies includes gastric cancer and lymphoma. Thus, non-infectious manifestations significantly affect mortality and morbidity. In this overview, we provide a comprehensive insight into the epidemiology, genetic background, pathophysiology, and clinical manifestations of infectious and non-infectious complications.
Collapse
Affiliation(s)
- Tomas Milota
- Department of Immunology, Second Faculty of Medicine Charles University and Motol University Hospital, 15006 Prague, Czech Republic
| | - Jitka Smetanova
- Department of Immunology, Second Faculty of Medicine Charles University and Motol University Hospital, 15006 Prague, Czech Republic
| | - Iveta Klojdova
- DRIFT-FOOD, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, 15006 Prague, Czech Republic
| |
Collapse
|
47
|
Milota T, Smetanova J, Bartunkova J. Clinical Outcome of Coronavirus Disease 2019 in Patients with Primary Antibody Deficiencies. Pathogens 2023; 12:pathogens12010109. [PMID: 36678457 PMCID: PMC9860966 DOI: 10.3390/pathogens12010109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/30/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
In 2019, the novel coronavirus, SARS-CoV-2, caused a worldwide pandemic, affecting more than 630 million individuals and causing 6.5 million deaths. In the general population, poorer outcomes have been associated with older age, chronic lung and cardiovascular diseases, and lymphopenia, highlighting the important role of cellular immunity in the immune response against SARS-CoV-2. Moreover, SARS-CoV-2 variants may have a significant impact on disease severity. There is a significant overlap with complications commonly found in inborn errors of immunity (IEI), such as primary antibody deficiencies. The results of various studies have provided ambiguous findings. Several studies identified risk factors in the general population with a minor impact on SARS-CoV-2 infection. However, other studies have found a significant contribution of underlying immunodeficiency and immune-system dysregulation to the disease course. This ambiguity probably reflects the demographic differences and viral evolution. Impaired antibody production was associated with prolonged viral shedding, suggesting a critical role of humoral immunity in controlling SARS-CoV-2 infection. This may explain the poorer outcomes in primary antibody deficiencies compared to other IEIs. Understanding coronavirus disease 2019 (COVID-19) pathogenesis and identifying risk factors may help us identify patients at high risk of severe COVID-19 for whom preventive measures should be introduced.
Collapse
|
48
|
Münz C. Immune checkpoints in T cells during oncogenic γ-herpesvirus infections. J Med Virol 2023; 95:e27840. [PMID: 35524342 PMCID: PMC9790391 DOI: 10.1002/jmv.27840] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/02/2022] [Accepted: 05/05/2022] [Indexed: 01/11/2023]
Abstract
Epstein-Barr virus (EBV) and Kaposi sarcoma-associated herpesvirus (KSHV) are two persistent oncogenic γ-herpesviruses with an exclusive tropism for humans. They cause cancers of lymphocyte, epithelial and endothelial cell origin, such as Burkitt's and Hodgkin's lymphoma, primary effusion lymphoma, nasopharyngeal carcinoma, and Kaposi sarcoma. Mutations in immune-related genes but also adverse events during immune checkpoint inhibition in cancer patients have revealed molecular requirements for immune control of EBV and KSHV. These include costimulatory and coinhibitory receptors on T cells that are currently explored or already therapeutically targeted in tumor patients. This review discusses these co-receptors and their influence on EBV- and KSHV-associated diseases. The respective studies reveal surprising specificities of some of these receptors for immunity to these tumor viruses, benefits of their blockade for some but not other virus-associated diseases, and that EBV- and KSHV-specific immune control should be monitored during immune checkpoint inhibition to prevent adverse events that might be associated with their reactivation during treatment.
Collapse
Affiliation(s)
- Christian Münz
- Viral Immunobiology Department, Institute of Experimental ImmunologyUniversity of ZürichZürichSwitzerland
| |
Collapse
|
49
|
Walter JE, Ziegler JB, Ballow M, Cunningham-Rundles C. Advances and Challenges of the Decade: The Ever-Changing Clinical and Genetic Landscape of Immunodeficiency. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:107-115. [PMID: 36610755 DOI: 10.1016/j.jaip.2022.11.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 01/06/2023]
Abstract
In the past 10 years, we have witnessed major advances in clinical immunology. Newborn screening for severe combined immunodeficiency has become universal in the United States and screening programs are being extended to severe combined immunodeficiency and other inborn errors of immunity globally. Early genetic testing is becoming the norm for many of our patients and allows for informed selection of targeted therapies including biologics repurposed from other specialties. During the COVID-19 pandemic, our understanding of essential immune responses expanded and the discovery of immune gene defects continued. Immunoglobulin products, the backbone of protection for antibody deficiency syndromes, came into use to minimize side effects. New polyclonal and monoclonal antibody products emerged with increasing options to manage respiratory viral agents such as SARS-CoV-2 and respiratory syncytial virus. Against these advances, we still face major challenges. Atypical is becoming typical as phenotypes of distinct genetic disease overlap whereas the clinical spectrum of the same genetic defect widens. Therefore, clinical judgment needs to be paired with repeated deep immune phenotyping and upfront genetic testing, as technologies rapidly evolve, and clinical disease often progresses with age. Managing patients with organ damage resulting from immune dysregulation poses a special major clinical challenge and management often lacks standardization, from autoimmune cytopenias, granulomatous interstitial lung disease, enteropathy, and liver disease to endocrine, rheumatologic, and neurologic complications. Clinical, translational, and basic science networks will continue to advance the field; however, cross-talk and education with practicing allergists/immunologists are essential to keep up with the ever-changing clinical and genetic landscape of inborn errors of immunity.
Collapse
Affiliation(s)
- Jolan E Walter
- Division of Pediatric Allergy and Immunology, University of South Florida at Johns Hopkins All Children's Hospital, St Petersburg, Fla; Division of Allergy and Immunology, Massachusetts General Hospital for Children, Boston, Mass.
| | - John B Ziegler
- School of Women's and Children's Health, UNSW Sydney, Sydney, New South Wales, Australia; Department of Immunology and Infectious Diseases, Sydney Children's Hospital, Randwick, New South Wales, Australia
| | - Mark Ballow
- Department of Pediatrics, Division of Allergy and Immunology, University of South Florida at Johns Hopkins All Children's Hospital, St Petersburg, Fla
| | | |
Collapse
|
50
|
Margarit-Soler A, Deyà-Martínez À, Canizales JT, Vlagea A, García-García A, Marsal J, Del Castillo MT, Planas S, Simó S, Esteve-Sole A, Grande MSL, Badell I, Tarrats MR, Fernández-Avilés F, Alsina L. Case report: Challenges in immune reconstitution following hematopoietic stem cell transplantation for CTLA-4 insufficiency-like primary immune regulatory disorders. Front Immunol 2022; 13:1070068. [PMID: 36636328 PMCID: PMC9831655 DOI: 10.3389/fimmu.2022.1070068] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/28/2022] [Indexed: 12/28/2022] Open
Abstract
Cytotoxic T-lymphocyte antigen-4 (CTLA-4) haploinsufficiency is a T-cell hyperactivation disorder that can manifest with both immunodeficiency and immune dysregulation. Approximately one-third of patients may present mild symptoms and remain stable under supportive care. The remaining patients may develop severe multiorgan autoimmunity requiring lifelong immunosuppressive treatment. Hematopoietic stem cell transplantation (HSCT) is potentially curable for patients with treatment-resistant immune dysregulation. Nevertheless, little experience is reported regarding the management of complications post-HSCT. We present case 1 (CTLA-4 haploinsufficiency) and case 2 (CTLA-4 insufficiency-like phenotype) manifesting with severe autoimmunity including cytopenia and involvement of the central nervous system (CNS), lung, and gut and variable impairment of humoral responses. Both patients underwent HSCT for which the main complications were persistent mixed chimerism, infections, and immune-mediated complications [graft-versus-host disease (GVHD) and nodular lung disease]. Detailed management and outcomes of therapeutic interventions post-HSCT are discussed. Concretely, post-HSCT abatacept and human leukocyte antigen (HLA)-matched sibling donor lymphocyte infusions may be used to increase T-cell donor chimerism with the aim of correcting the immune phenotype of CTLA-4 haploinsufficiency.
Collapse
Affiliation(s)
- Adriana Margarit-Soler
- Bone Marrow Transplant Unit, Oncology Service, Hospital Sant Joan de Déu, Barcelona, Spain,*Correspondence: Adriana Margarit-Soler, ; Laia Alsina,
| | - Àngela Deyà-Martínez
- Clinical Immunology and Primary Immunodeficiencies Unit, Pediatric Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain,Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institut de Recerca Sant Joan de Déu, Barcelona, Spain,Clinical Immunology Program Hospital Sant Joan de Déu-Hospital Clínic Barcelona, Barcelona, Spain
| | - Juan Torres Canizales
- Clinical Immunology Unit, Department of Immunology, Biomedical Diagnostic Center, Hospital Clínic of Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Alexandru Vlagea
- Clinical Immunology Unit, Department of Immunology, Biomedical Diagnostic Center, Hospital Clínic of Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Ana García-García
- Clinical Immunology and Primary Immunodeficiencies Unit, Pediatric Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain,Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institut de Recerca Sant Joan de Déu, Barcelona, Spain,Clinical Immunology Program Hospital Sant Joan de Déu-Hospital Clínic Barcelona, Barcelona, Spain
| | - Júlia Marsal
- Bone Marrow Transplant Unit, Oncology Service, Hospital Sant Joan de Déu, Barcelona, Spain
| | | | - Sílvia Planas
- Department of Pathology, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Sílvia Simó
- Infectious Diseases Unit, Department of Pediatrics, Hospital Sant Joan de Déu, Barcelona, Spain,Center for Biomedical Network Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Ana Esteve-Sole
- Clinical Immunology and Primary Immunodeficiencies Unit, Pediatric Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain,Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institut de Recerca Sant Joan de Déu, Barcelona, Spain,Clinical Immunology Program Hospital Sant Joan de Déu-Hospital Clínic Barcelona, Barcelona, Spain
| | - María Suárez-Lledó Grande
- Hematopoietic Transplantation Unit, Hematology Department, Clinical Institute of Hematology and Oncology (ICMHO), Hospital Clínic de Barcelona, Barcelona, Spain,Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clinic, Barcelona, Spain,Department of Surgery and Surgical Specializations, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Isabel Badell
- Bone Marrow Transplant Unit, Oncology Service, Hospital Sant Joan de Déu, Barcelona, Spain,Pediatric Haematology and Stem Cell Transplantation Unit, Pediatric Department, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Montserrat Rovira Tarrats
- Bone Marrow Transplant Unit, Oncology Service, Hospital Sant Joan de Déu, Barcelona, Spain,Hematopoietic Transplantation Unit, Hematology Department, Clinical Institute of Hematology and Oncology (ICMHO), Hospital Clínic de Barcelona, Barcelona, Spain,Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clinic, Barcelona, Spain
| | - Francesc Fernández-Avilés
- Hematopoietic Transplantation Unit, Hematology Department, Clinical Institute of Hematology and Oncology (ICMHO), Hospital Clínic de Barcelona, Barcelona, Spain,Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clinic, Barcelona, Spain
| | - Laia Alsina
- Clinical Immunology and Primary Immunodeficiencies Unit, Pediatric Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain,Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institut de Recerca Sant Joan de Déu, Barcelona, Spain,Clinical Immunology Program Hospital Sant Joan de Déu-Hospital Clínic Barcelona, Barcelona, Spain,Department of Surgery and Surgical Specializations, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain,*Correspondence: Adriana Margarit-Soler, ; Laia Alsina,
| |
Collapse
|