1
|
Wu J, Lai J, Zhao X, Wang Z, Zhang Y, Wang L, Su Y, He Y, Li S, Jiang Y, Han J. DeepCCDS: Interpretable Deep Learning Framework for Predicting Cancer Cell Drug Sensitivity through Characterizing Cancer Driver Signals. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2416958. [PMID: 40397390 DOI: 10.1002/advs.202416958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 04/18/2025] [Indexed: 05/22/2025]
Abstract
Accurate characterization of cellular states is the foundation for precise prediction of drug sensitivity in cancer cell lines, which in turn is fundamental to realizing precision oncology. However, current deep learning approaches have limitations in characterizing cellular states. They rely solely on isolated genetic markers, overlooking the complex regulatory networks and cellular mechanisms that underlie drug responses. To address this limitation, this work proposes DeepCCDS, a Deep learning framework for Cancer Cell Drug Sensitivity prediction through Characterizing Cancer Driver Signals. DeepCCDS incorporates a prior knowledge network to characterize cancer driver signals, building upon the self-supervised neural network framework. The signals can reflect key mechanisms influencing cancer cell development and drug response, enhancing the model's predictive performance and interpretability. DeepCCDS has demonstrated superior performance in predicting drug sensitivity compared to previous state-of-the-art approaches across multiple datasets. Benefiting from integrating prior knowledge, DeepCCDS exhibits powerful feature representation capabilities and interpretability. Based on these feature representations, we have identified embedding features that could potentially be used for drug screening in new indications. Further, this work demonstrates the applicability of DeepCCDS on solid tumor samples from The Cancer Genome Atlas. This work believes integrating DeepCCDS into clinical decision-making processes can potentially improve the selection of personalized treatment strategies for cancer patients.
Collapse
Affiliation(s)
- Jiashuo Wu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Jiyin Lai
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Xilong Zhao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Ziyi Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Yongbao Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Liqiang Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Yinchun Su
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Yalan He
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Siyuan Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Ying Jiang
- College of Basic Medical Science, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Junwei Han
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| |
Collapse
|
2
|
Wong SKA, Appenzeller S, Twilt M. Advances in pharmacotherapy of juvenile idiopathic arthritis. Expert Opin Pharmacother 2025:1-10. [PMID: 40310283 DOI: 10.1080/14656566.2025.2501146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 04/28/2025] [Accepted: 04/29/2025] [Indexed: 05/02/2025]
Abstract
INTRODUCTION Juvenile Idiopathic Arthritis (JIA) is the most common chronic rheumatic disease in childhood. More therapeutic options are available for the treatment of JIA with more children achieving minimal active disease or inactive disease status. AREAS COVERED This review summarizes the major novel treatment options for children with non-systemic JIA, including current evidence supporting the safety and efficacy of biologic treatments. EXPERT OPINION With all the advances in treatment targets, the disease trajectory of patients with JIA have changed significantly and remission is the goal of today's treatment. New treatment trials show the pharmacokinetic, immunogenicity, efficacy and safety for these medications in children with JIA. Future studies will need to incorporate patient and family preferences, in addition to novel biomarkers and artificial intelligence-based diagnostic systems into head-to-head international multicenter trials to better assess the treatment algorithm for individual patients.
Collapse
Affiliation(s)
- Stephanie K A Wong
- Section of Rheumatology, Department of Pediatrics, British Columbia Children's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Simone Appenzeller
- Department of Orthopedics, Rheumatology and Traumatology, School of Medical Science, University of Campinas (UNICAMP), Sao Paulo, Brazil
| | - Marinka Twilt
- Section of Rheumatology, Department of Pediatrics, Alberta Children's Hospital, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
3
|
Cintron MA, Baumer Y, Pang AP, Aquino Peterson EM, Ortiz-Whittingham LR, Jacobs JA, Sharda S, Potharaju KA, Baez AS, Gutierrez-Huerta CA, Ortiz-Chaparro EN, Collins BS, Mitchell VM, Saurabh A, Mendelsohn LG, Redekar NR, Paul S, Corley MJ, Powell-Wiley TM. Associations between the neural-hematopoietic-inflammatory axis and DNA methylation of stress-related genes in human leukocytes: Data from the Washington, D.C. cardiovascular health and needs assessment. Brain Behav Immun Health 2025; 45:100976. [PMID: 40166762 PMCID: PMC11957810 DOI: 10.1016/j.bbih.2025.100976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 02/28/2025] [Accepted: 03/08/2025] [Indexed: 04/02/2025] Open
Abstract
Chronic stress is associated with cardiovascular disease (CVD) risk and elevated amygdala activity. Previous research suggests a plausible connection between amygdala activity, hematopoietic tissue activity, and cardiovascular events; however, the underlying biological mechanisms linking these relationships are incompletely understood. Chronic stress is thought to modulate epigenomic modifications. Our investigation focused on associations between amygdala activity (left (L), right (R), maximum (M), and average (Av) AmygA), and splenic (SpleenA), and bone marrow activity (BMA) as determined by 18Fluorodeoxyglucose (FDG) on Positron Emission Tomography/Computed Tomography (PET/CT) scans. Subsequently, we assessed how these markers of chronic stress and hematopoietic activity might relate to the DNA methylation of stress-associated genes in a community-based cohort of African American individuals from Washington D.C. at risk for CVD. To assess the relationships between AmgyA, SpleenA, BMA, and DNA methylation, linear regression models were run and adjusted for body mass index and 10-year predicted atherosclerotic CVD risk. Among 60 participants (93.3% female, mean age 60.8), M-AmygA positively associated with SpleenA (β = 0.29; p = 0.001), but not BMA (β = 0.01; p = 0.89). M-AmygA (β = 0.37; p = 0.01 and β = 0.31; p = 0.02, respectively) and SpleenA (β = 0.73; p < 0.01 and β = 0.59; p = 0.005, respectively) were associated with both IL-1β and TNFα. Decreased M-AmygA, SpleenA, IL-1β, and TNFα were associated with methylation of NFκB1 at cg07955720 and STAT3 at cg19438966. Our findings suggest a potential association between AmygA, SpleenA, and pro-inflammatory cytokines in the setting of chronic stress, suggesting an adverse hematopoietic effect. Furthermore, findings reveal associations with epigenetic markers of NFκB and JAK/STAT pathways linked to chronic stress.
Collapse
Affiliation(s)
- Manuel A. Cintron
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yvonne Baumer
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alina P.S. Pang
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York, NY, USA
| | - Elizabeth M. Aquino Peterson
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lola R. Ortiz-Whittingham
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Joshua A. Jacobs
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sonal Sharda
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kameswari A. Potharaju
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Andrew S. Baez
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Cristhian A. Gutierrez-Huerta
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Erika N. Ortiz-Chaparro
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Billy S. Collins
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Valerie M. Mitchell
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Abhinav Saurabh
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Laurel G. Mendelsohn
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Neelam R. Redekar
- Integrated Data Sciences Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Subrata Paul
- Integrated Data Sciences Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Michael J. Corley
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York, NY, USA
| | - Tiffany M. Powell-Wiley
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- Intramural Research Program, National Institute on Minority Health Disparities, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
4
|
Potashnikova D, Fasler-Kan E. Special Issue "Functional Role of Cytokines in Cancer and Chronic Inflammation". Int J Mol Sci 2025; 26:4048. [PMID: 40362288 PMCID: PMC12072130 DOI: 10.3390/ijms26094048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Accepted: 04/22/2025] [Indexed: 05/15/2025] Open
Abstract
Cytokines are a diverse group of signaling proteins that are secreted by a wide range of cell types, including, but not limited to, immune cells [...].
Collapse
Affiliation(s)
- Daria Potashnikova
- Department of Cell Biology and Histology, School of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
- I.V. Davydovsky City Clinical Hospital, Moscow Department of Healthcare, 109240 Moscow, Russia
| | - Elizaveta Fasler-Kan
- Department of Pediatric Surgery, Children’s Hospital, Inselspital Bern, CH-3010 Bern, Switzerland
- Department of Biomedical Research, University of Bern, CH-3010 Bern, Switzerland
| |
Collapse
|
5
|
Waeckel L, Talon C, Barrau M, Berger AE, Roblin X, Paul S. Development and evaluation of two whole-blood flow cytometry protocols for monitoring patients treated with JAK inhibitors. IMMUNOTHERAPY ADVANCES 2025; 5:ltaf006. [PMID: 40265078 PMCID: PMC12012447 DOI: 10.1093/immadv/ltaf006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 02/27/2025] [Indexed: 04/24/2025] Open
Abstract
Introduction The clinical efficacy of Janus kinase inhibitors (JAKinibs) is highly variable and their safety profiles are poorly understood. Methods We established two flow cytometry panels for the assessment of two promising leukocyte biomarkers: signal transducer and activator of transcription (STAT) phosphorylation and cytokine receptor expression. We evaluated the first panel, which assesses phosphorylation levels for STAT1, STAT3, and STAT5 after cytokine stimulation, with or without in vitro pretreatment with JAKinibs, in 10 healthy donors. We then evaluated the second panel, which assesses cytokine receptor expression on T cells and B cells, in five healthy donors. Results Stimulation with interleukin (IL)-2 or IL-7 increased STAT5 phosphorylation in T cells but not in B cells or monocytes. IL-6 stimulation induced STAT3 phosphorylation in monocytes and CD4 T cells and, to a lesser extent, in CD8 T cells, but not in B cells. IL-21 stimulation led to STAT3 phosphorylation in T cells and, to a lesser extent, in B cells, but not in monocytes. Interferon-α stimulation increased STAT1 phosphorylation in all cell types. STAT phosphorylation levels were lower after pretreatment with JAKinibs. A dose-response curve was plotted, confirming the correlation between JAKinib concentration and STAT phosphorylation inhibition. The second panel showed that each cell type displayed a distinct pattern of cytokine receptors expression, and that this pattern might be modified by in vitro treatment with JAKinibs. Conclusion This preliminary study confirms the utility of flow cytometry for monitoring the biological effects of JAKinibs. Further studies on treated patients are now required to evaluate the clinical value of these two flow cytometry panels.
Collapse
Affiliation(s)
- Louis Waeckel
- Immunology Laboratory, iBiothera Reference Center, CHU Saint-Etienne, F42055 Saint-Etienne, France
- CIRI - Centre International de Recherche en Infectiologie, Team GIMAP, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, F42023 Saint-Etienne, France
- CIC 1408 Inserm Vaccinology, CHU Saint-Etienne, F42055 Saint-Etienne, France
| | - Chloé Talon
- Immunology Laboratory, iBiothera Reference Center, CHU Saint-Etienne, F42055 Saint-Etienne, France
| | - Mathilde Barrau
- Department of Gastroenterology, CHU Saint-Etienne, Saint-Etienne, France
| | - Anne-Emmanuelle Berger
- Immunology Laboratory, iBiothera Reference Center, CHU Saint-Etienne, F42055 Saint-Etienne, France
- CIRI - Centre International de Recherche en Infectiologie, Team GIMAP, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, F42023 Saint-Etienne, France
- CIC 1408 Inserm Vaccinology, CHU Saint-Etienne, F42055 Saint-Etienne, France
| | - Xavier Roblin
- CIRI - Centre International de Recherche en Infectiologie, Team GIMAP, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, F42023 Saint-Etienne, France
- CIC 1408 Inserm Vaccinology, CHU Saint-Etienne, F42055 Saint-Etienne, France
- Department of Gastroenterology, CHU Saint-Etienne, Saint-Etienne, France
| | - Stéphane Paul
- Immunology Laboratory, iBiothera Reference Center, CHU Saint-Etienne, F42055 Saint-Etienne, France
- CIRI - Centre International de Recherche en Infectiologie, Team GIMAP, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, F42023 Saint-Etienne, France
- CIC 1408 Inserm Vaccinology, CHU Saint-Etienne, F42055 Saint-Etienne, France
| |
Collapse
|
6
|
Ni M, Peng W, Wang X, Li J. Role of Aging in Ulcerative Colitis Pathogenesis: A Focus on ETS1 as a Promising Biomarker. J Inflamm Res 2025; 18:1839-1853. [PMID: 39931173 PMCID: PMC11809410 DOI: 10.2147/jir.s504040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/18/2025] [Indexed: 02/13/2025] Open
Abstract
Purpose An increasing proportion of the aging population has led to a rapid increase in the number of elderly patients with ulcerative colitis (UC). However, the molecular mechanisms by which aging causes UC remain unclear. In this study, we explored the role of aging-related genes (ARGs) in UC pathogenesis and diagnosis prediction. Methods Gene expression data were obtained from four independent datasets (GSE75214, GSE87466, GSE94648, and GSE169568) in the GEO database, and ARGs were derived from multiple public databases. After identifying UC-related ARGs, consistent clustering was performed to screen aging-related molecular subtypes, followed by the exploration of differences in the immune microenvironment and pathways between distinct subtypes. Next, core module genes were screened using WGCNA and then the hub genes were characterized using LASSO and random forest methods. Besides, the associations between hub genes, immune cells, and key pathways were explored. Finally, the expression levels of key genes were determined in a dextran sulfate sodium (DSS)-induced UC mouse model by qRT-PCR. Results UC samples were classified into two subtypes (1 and 2), which displayed significant differences in the immune landscape and JAK/STAT signaling pathways. A series of machine learning algorithms was used to screen two feature genes (ETS1 and IL7R) to establish the diagnostic model, which exhibited satisfactory diagnostic efficiency. In addition, these hub genes were closely associated with the infiltration of specific immune cells (such as neutrophils, memory B cells, and M2 macrophages) as well as with the JAK/STAT pathway. Later, experimental validation confirmed that ETS1 expression was markedly increased in a mouse model of UC. Conclusion Overall, aging, immune dysregulation, and UC process are closely associated. The identified feature genes, particularly ETS1, could serve as novel diagnostic biomarkers for UC. These findings have the potential to enhance the understanding of the age-related mechanisms of UC.
Collapse
Affiliation(s)
- Man Ni
- School of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, People’s Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, People’s Republic of China
| | - Weilong Peng
- School of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, People’s Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, People’s Republic of China
| | - Xiaoguang Wang
- School of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, People’s Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, People’s Republic of China
| | - Jingui Li
- School of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, People’s Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, People’s Republic of China
| |
Collapse
|
7
|
Chikhoune L, Poggi C, Moreau J, Dubucquoi S, Hachulla E, Collet A, Launay D. JAK inhibitors (JAKi): Mechanisms of action and perspectives in systemic and autoimmune diseases. Rev Med Interne 2025; 46:89-106. [PMID: 39550233 DOI: 10.1016/j.revmed.2024.10.452] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 10/07/2024] [Accepted: 10/27/2024] [Indexed: 11/18/2024]
Abstract
Janus kinase (JAK) molecules are involved in important cellular activation pathways. Over the past decade, many targeted therapies have emerged, including the increasingly promising role of JAK inhibitors (JAKi) in the treatment of inflammatory and autoimmune diseases. The spectrum of use of these small molecules is increasingly broader. JAKi have been approved in several autoimmune diseases. Currently, four molecules (tofacitinib, baricitinib, upadacitinib and filgotinib) have been labeled for moderate to severe rheumatoid arthritis (RA) with failure or poor tolerance of one or more conventional disease-modifying antirheumatic drug (csDMARDS), or biologics (bDMARDS). JAKi are now also commonly used in other diseases such as psoriatic arthritis, ankylosing spondylitis, and ulcerative colitis. They have also shown promising results in clinical trials for the treatment of other autoimmune conditions. We present here their mechanisms of action, and the main data about JAKi use on systemic and autoimmune diseases.
Collapse
Affiliation(s)
- Liticia Chikhoune
- CHU de Lille, Service de Médecine Interne et Immunologie Clinique, Centre de référence des Maladies Auto-Immunes et Auto-inflammatoires Systémiques rares de l'Adulte du Nord, Nord-Ouest, Méditerranée et Guadeloupe (CeRAINOM), 59000 Lille, France
| | - Claire Poggi
- CHU de Lille, Service de Médecine Interne et Immunologie Clinique, Centre de référence des Maladies Auto-Immunes et Auto-inflammatoires Systémiques rares de l'Adulte du Nord, Nord-Ouest, Méditerranée et Guadeloupe (CeRAINOM), 59000 Lille, France
| | - Julie Moreau
- CHU de Lille, Service de Médecine Interne et Immunologie Clinique, Centre de référence des Maladies Auto-Immunes et Auto-inflammatoires Systémiques rares de l'Adulte du Nord, Nord-Ouest, Méditerranée et Guadeloupe (CeRAINOM), 59000 Lille, France
| | - Sylvain Dubucquoi
- Institut d'Immunologie, Pôle de Biologie Pathologie Génétique Médicale, CHU de Lille, 59000 Lille, France; U1286-INFINITE-Institute for Translational Research in Inflammation, Université de Lille, 59000 Lille, France
| | - Eric Hachulla
- CHU de Lille, Service de Médecine Interne et Immunologie Clinique, Centre de référence des Maladies Auto-Immunes et Auto-inflammatoires Systémiques rares de l'Adulte du Nord, Nord-Ouest, Méditerranée et Guadeloupe (CeRAINOM), 59000 Lille, France; U1286-INFINITE-Institute for Translational Research in Inflammation, Université de Lille, 59000 Lille, France; Inserm, 59000 Lille, France
| | - Aurore Collet
- Institut d'Immunologie, Pôle de Biologie Pathologie Génétique Médicale, CHU de Lille, 59000 Lille, France; U1286-INFINITE-Institute for Translational Research in Inflammation, Université de Lille, 59000 Lille, France
| | - David Launay
- CHU de Lille, Service de Médecine Interne et Immunologie Clinique, Centre de référence des Maladies Auto-Immunes et Auto-inflammatoires Systémiques rares de l'Adulte du Nord, Nord-Ouest, Méditerranée et Guadeloupe (CeRAINOM), 59000 Lille, France; U1286-INFINITE-Institute for Translational Research in Inflammation, Université de Lille, 59000 Lille, France; Inserm, 59000 Lille, France.
| |
Collapse
|
8
|
Virtanen A, Kettunen V, Musta K, Räkköläinen V, Knapp S, Haikarainen T, Silvennoinen O. Molecular basis of JAK kinase regulation guiding therapeutic approaches: Evaluating the JAK3 pseudokinase domain as a drug target. Adv Biol Regul 2025; 95:101072. [PMID: 39755448 DOI: 10.1016/j.jbior.2024.101072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 12/22/2024] [Indexed: 01/06/2025]
Abstract
Janus kinases (JAK1-3, TYK2) are critical mediators of cytokine signaling and their role in hematological and inflammatory and autoimmune diseases has sparked widespread interest in their therapeutic targeting. JAKs have unique tandem kinase structure consisting of an active tyrosine kinase domain adjacent to a pseudokinase domain that is a hotspot for pathogenic mutations. The development of JAK inhibitors has focused on the active kinase domain and the developed drugs have demonstrated good clinical efficacy but due to off-target inhibition cause also side-effects and carry a black box warning limiting their use. Our understanding of the regulatory function of the pseudokinase domain in physiological and pathological signaling has improved substantially. The pseudokinase domain maintains the inactive state of JAKs in the absence of cytokine stimulation but it has also a key role in physiological and mutation-driven activation process. Furthermore, the pseudokinase domain has favourable structural characteristics for selective targeting of cytokine signaling, such as unique mode of ATP-binding, and the first pseudokinase targeting inhibitor for TYK2 has been approved for clinical use. Here we describe the recent functional and structural knowledge of JAK signaling and their therapeutic targeting, and present data evaluating the druggability of the JAK3 pseudokinase domain.
Collapse
Affiliation(s)
- Anniina Virtanen
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpönkatu 34, 33014, Finland; Institute of Biotechnology, HiLIFE, University of Helsinki, P.O. Box 56, 00014, Finland
| | - Vivian Kettunen
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpönkatu 34, 33014, Finland
| | - Kirsikka Musta
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpönkatu 34, 33014, Finland
| | - Veera Räkköläinen
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpönkatu 34, 33014, Finland
| | - Stefan Knapp
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany; Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany
| | - Teemu Haikarainen
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpönkatu 34, 33014, Finland; Department of Microbiology, Fimlab Laboratories, P.O.Box 66, 33013, Tampere, Finland
| | - Olli Silvennoinen
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpönkatu 34, 33014, Finland; Institute of Biotechnology, HiLIFE, University of Helsinki, P.O. Box 56, 00014, Finland; Department of Microbiology, Fimlab Laboratories, P.O.Box 66, 33013, Tampere, Finland.
| |
Collapse
|
9
|
Jinesh S, Radhakrishnan R. Pharmaceutical aspects of JAK inhibitors: a comparative review. Inflammopharmacology 2025; 33:91-104. [PMID: 39661274 DOI: 10.1007/s10787-024-01614-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 09/21/2024] [Indexed: 12/12/2024]
Abstract
Janus kinase inhibitors (JAKIs) are a new class of drugs used in the treatment of a heterogeneous group of diseases, mainly inflammatory and autoimmune diseases. Janus kinase (JAK) is a family of non-receptor tyrosine kinases in cells that transduce cytokine-mediated signals. JAK, along with signal transducer and activator of transcription (STAT) protein, mediate important cellular processes such as immune response, carcinogenesis, cell differentiation, cell division, and cell death. Therefore, inhibitors of JAK-STAT signaling pathways could be useful in treating conditions mediated by the above-mentioned processes. JAK inhibitors mainly treat inflammatory and/or autoimmune diseases such as rheumatoid arthritis, psoriasis, and atopic dermatitis. In this review, we tried to focus on the discovery, pharmacology, and pharmaceutical aspects of JAK inhibitor drugs and their relative risks and benefits, especially focusing on the adverse effects of this class of drugs.
Collapse
Affiliation(s)
| | - Rajan Radhakrishnan
- College of Medicine, Mohammed Bin Rashid University of Medicine & Health Sciences, Dubai, UAE
| |
Collapse
|
10
|
Valerio-Gómez V, Pérez-Blanco U, Velázquez-Sámano G, Velasco-Medina AA, Albarrán A, Sánchez IY, Berrón-Ruiz L, Espinosa-Padilla S, Blancas-Galicia L. Chronic mucocutaneous candidiasis, mycobacterial infections and rosacea in a Mexican adult with STAT1 gain of function. BIOMEDICA : REVISTA DEL INSTITUTO NACIONAL DE SALUD 2024; 44:22-30. [PMID: 39836847 PMCID: PMC12014210 DOI: 10.7705/biomedica.7521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 09/09/2024] [Indexed: 01/23/2025]
Abstract
STAT1 is a cytoplasmic transcription factor associated with cell growth regulation, differentiation, proliferation, metabolism, and apoptosis. IFN-mediated JAK/STAT signaling pathway is involved in eliminating intracellular pathogens and viruses. However, pathogenic variants in STAT1 can result in impaired or increased function. Increased activity or function in STAT1 was described in 2011 and is characterized by excessive phosphorylation of the transcription factor. Carriers can develop autoimmune and inflammatory diseases and are susceptible to fungal, viral, and bacterial infections. The early and common manifestation is chronic mucocutaneous candidiasis. Here, we report a clinical case of a patient with increased STAT1 activity or gain of function, which started in the first year of his life. He is currently 27 years old and has presented bacillus Calmette-Guérin and Mycobacterium tuberculosis infection, chronic mucocutaneous candidiasis, tinea capitis, and facial and ocular rosacea. HIV infection was ruled out. Given the clinical manifestations, an inborn error of immunity was suspected, specifically STAT1 with gain of function. The diagnosis was corroborated by the sequencing of multiple genes associated with inborn errors of immunity. The pathogenic variant c.961A>G (p.Arg321Gly) in the STAT1 gene, previously reported as a gain of function mutation, was found in the patient. Finally, this case illustrates that mutations in immune-associated genes can contribute to producing severe and recurrent infections, even in adult patients. Chronic mucocutaneous candidiasis should raise suspicion of gain of function in STAT1.
Collapse
Affiliation(s)
- Valeria Valerio-Gómez
- Servicio de Alergia e Inmunología, Hospital General de México “Dr. Eduardo Liceaga”, Ciudad de México, MéxicoHospital General de MéxicoHospital General de MéxicoCiudad de MéxicoMéxico
| | - Uriel Pérez-Blanco
- Laboratorio de Inmunodeficiencias, Instituto Nacional de Pediatría, Ciudad de México, MéxicoInstituto Nacional de PediatríaInstituto Nacional de PediatríaCiudad de MéxicoMéxico
| | - Guillermo Velázquez-Sámano
- Servicio de Alergia e Inmunología, Hospital General de México “Dr. Eduardo Liceaga”, Ciudad de México, MéxicoHospital General de MéxicoHospital General de MéxicoCiudad de MéxicoMéxico
| | - Andrea Aída Velasco-Medina
- Servicio de Alergia e Inmunología, Hospital General de México “Dr. Eduardo Liceaga”, Ciudad de México, MéxicoHospital General de MéxicoHospital General de MéxicoCiudad de MéxicoMéxico
| | - Antonio Albarrán
- Servicio de Alergia e Inmunología, Hospital General de México “Dr. Eduardo Liceaga”, Ciudad de México, MéxicoHospital General de MéxicoHospital General de MéxicoCiudad de MéxicoMéxico
| | - Itzel Yoselín Sánchez
- Servicio de Alergia e Inmunología, Hospital General de México “Dr. Eduardo Liceaga”, Ciudad de México, MéxicoHospital General de MéxicoHospital General de MéxicoCiudad de MéxicoMéxico
| | - Laura Berrón-Ruiz
- Laboratorio de Inmunodeficiencias, Instituto Nacional de Pediatría, Ciudad de México, MéxicoInstituto Nacional de PediatríaInstituto Nacional de PediatríaCiudad de MéxicoMéxico
| | - Sara Espinosa-Padilla
- Laboratorio de Inmunodeficiencias, Instituto Nacional de Pediatría, Ciudad de México, MéxicoInstituto Nacional de PediatríaInstituto Nacional de PediatríaCiudad de MéxicoMéxico
| | - Lizbeth Blancas-Galicia
- Laboratorio de Inmunodeficiencias, Instituto Nacional de Pediatría, Ciudad de México, MéxicoInstituto Nacional de PediatríaInstituto Nacional de PediatríaCiudad de MéxicoMéxico
| |
Collapse
|
11
|
Maji L, Sengupta S, Purawarga Matada GS, Teli G, Biswas G, Das PK, Panduranga Mudgal M. Medicinal chemistry perspective of JAK inhibitors: synthesis, biological profile, selectivity, and structure activity relationship. Mol Divers 2024; 28:4467-4513. [PMID: 38236444 DOI: 10.1007/s11030-023-10794-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/07/2023] [Indexed: 01/19/2024]
Abstract
JAK-STAT signalling pathway was discovered more than quarter century ago. The JAK-STAT pathway protein is considered as one of the crucial hubs for cytokine secretion which mediates activation of different inflammatory, cellular responses and hence involved in different etiological factors. The various etiological factors involved are haematopoiesis, immune fitness, tissue repair, inflammation, apoptosis, and adipogenesis. The presence of the active mutation V617K plays a significant role in the progression of the JAK-STAT pathway-related disease. Consequently, targeting the JAK-STAT pathway could be a promising therapeutic approach for addressing a range of causative factors. In this current review, we provided a comprehensive discussion for the in-detail study of anatomy and physiology of the JAK-STAT pathway which contributes structural domain rearrangement, activation, and negative regulation associated with the downstream signaling pathway, relationship between different cytokines and diseases. This review also discussed the recent development of clinical trial entities. Additionally, this review also provides updates on FDA-approved drugs. In the current investigation, we have classified recently developed small molecule inhibitors of JAK-STAT pathway according to different chemical classes and we emphasized their synthetic routes, biological evaluation, selectivity, and structure-activity relationship.
Collapse
Affiliation(s)
- Lalmohan Maji
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, Karnataka, India
| | - Sindhuja Sengupta
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, Karnataka, India
| | | | - Ghanshyam Teli
- School of Pharmacy, Sangam University, Atoon, Bhilwara, 311001, Rajasthan, India
| | - Gourab Biswas
- Department of Pharmaceutical Technology, Brainware University, Kolkata, West Bengal, India
| | - Pronoy Kanti Das
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, Karnataka, India
| | | |
Collapse
|
12
|
Gao S, Li W, Huang Z, Deiuliis JA, Braunstein Z, Liu X, Li X, Kosari M, Chen J, Min X, Yang H, Gong Q, Liu Z, Wei Y, Zhang Z, Dong L, Zhong J. Deciphering the therapeutic potential of Myeloid-Specific JAK2 inhibition in acute respiratory distress syndrome. Mucosal Immunol 2024; 17:1273-1284. [PMID: 39173745 DOI: 10.1016/j.mucimm.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 08/09/2024] [Accepted: 08/16/2024] [Indexed: 08/24/2024]
Abstract
Acute respiratory distress syndrome (ARDS) is a life-threatening condition characterized by severe inflammation and pulmonary dysfunction. Despite advancements in critical care, effective pharmacological interventions for ARDS remain elusive. While Janus kinase 2 (JAK2) inhibitors have emerged as an innovative treatment for numerous autoinflammatory diseases, their therapeutic potential in ARDS remains unexplored. In this study, we investigated the contribution of JAK2 and its underlying mechanisms in ARDS utilizing myeloid-specific JAK2 knockout murine models alongside a pharmacological JAK2 inhibitor. Notably, myeloid-specific JAK2 knockout led to a notable attenuation of ARDS induced by intratracheal administration of LPS, accompanied by reduced levels of neutrophils and inflammatory cytokines in bronchoalveolar lavage fluid (BALF) and lung tissue. Intriguingly, the ameliorative effects were abolished upon the depletion of monocyte-derived alveolar macrophages (Mo-AMs) rather than tissue-resident alveolar macrophages (TR-AMs). JAK2 deficiency markedly reversed LPS-induced activation of STAT5 in macrophages. Remarkably, pharmacological JAK2 inhibition using baricitinib failed to substantially alleviate neutrophils infiltration, implying that specific inhibition of JAK2 in Mo-AMs is imperative for ARDS amelioration. Collectively, our data suggest that JAK2 may mitigate ARDS progression through the JAK2 pathway in Mo-AMs, underscoring JAK2 in alveolar macrophages, particularly Mo-AMs, as a promising therapeutic target for ARDS treatment.
Collapse
Affiliation(s)
- Shupei Gao
- Department of Rheumatology and Immunology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Wenjuan Li
- Department of Rheumatology and Immunology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Zhiwen Huang
- Department of Rheumatology and Immunology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jeffrey A Deiuliis
- Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Zachary Braunstein
- Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Xinxin Liu
- Department of Rheumatology and Immunology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xinlu Li
- Department of Rheumatology and Immunology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Mohammadreza Kosari
- Department of Rheumatology and Immunology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jun Chen
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research (Hubei University of Medicine), Shiyan, Hubei 442008, China
| | - Xinwen Min
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research (Hubei University of Medicine), Shiyan, Hubei 442008, China
| | - Handong Yang
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research (Hubei University of Medicine), Shiyan, Hubei 442008, China
| | - Quan Gong
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, Hubei 434023, China
| | - Zheng Liu
- Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yingying Wei
- Department of Rheumatology and Immunology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ziyang Zhang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Qiaokou District, Wuhan 430030, China
| | - Lingli Dong
- Department of Rheumatology and Immunology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - Jixin Zhong
- Department of Rheumatology and Immunology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH 44106, USA; Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Vascular Aging (HUST), Ministry of Education, Wuhan, Hubei 430030, China.
| |
Collapse
|
13
|
Saff RR, DiGiacomo D. Targeted treatment for activated phosphoinositide 3-kinase delta syndrome, CTLA-4 insufficiency, and STAT1 gain-of-function. Ann Allergy Asthma Immunol 2024:S1081-1206(24)01709-5. [PMID: 39608674 DOI: 10.1016/j.anai.2024.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/20/2024] [Accepted: 11/20/2024] [Indexed: 11/30/2024]
Affiliation(s)
- Rebecca R Saff
- Division of Rheumatology, Allergy, and Immunology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts.
| | - Daniel DiGiacomo
- Department of Pediatrics, K. Hovnanian Children's Hospital, Jersey Shore University Medical Center, Neptune, New Jersey; Hackensack Meridian School of Medicine, Nutley, New Jersey
| |
Collapse
|
14
|
Chen M, Zou F, Wang P, Hu W, Shen P, Wu X, Xu H, Rui Y, Wang X, Wang Y. Dual-Barb Microneedle with JAK/STAT Inhibitor-Loaded Nanovesicles Encapsulation for Tendinopathy. Adv Healthc Mater 2024; 13:e2401512. [PMID: 39030889 DOI: 10.1002/adhm.202401512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/09/2024] [Indexed: 07/22/2024]
Abstract
Tendon stem/progenitor cells (TSPCs) are crucial for tendon repair, regeneration, and homeostasis. Dysfunction of TSPCs, due to aberrant activation of the Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway, contributes to tendinopathy. Unfortunately, the effectiveness of conventional subcutaneous injection targeting at suppressing JAK/STAT signaling pathway is limited due to the passive diffusion of drugs away from the injury site. Herein, a novel poly-gamma-glutamic acid (γ-PGA) dual-barb microneedle (MN) path loaded with TSPCs-derived nanovesicles (NVs) containing JAK/STAT inhibitor WP1066 (MN-WP1066-NVs) for tendinopathy treatment is designed. The dual-barb design of the MN ensures firm adhesion to the skin, allowing for sustained and prolonged release of WP1066-NVs, facilitating enhanced TSPCs self-renewal, migration, and stemness in tendinopathy. In vitro and in vivo experiments demonstrate that the degradation of γ-PGA patch tips facilitates the gradual release of WP1066-NVs at the lesion site. This release alleviates inflammation, suppresses extracellular matrix degradation, and restores normal tendon histological structure by inhibiting the JAK/STAT pathway. These findings suggest that the multifunctional dual-barb MN patch offers a novel and effective therapeutic strategy for tendinopathy treatment.
Collapse
Affiliation(s)
- Minhao Chen
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Fengkai Zou
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, 226001, China
- Department of Orthopaedics, The Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Pei Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Wenbo Hu
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Peng Shen
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Xinyuan Wu
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Hua Xu
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Yunfeng Rui
- Department of Orthopaedics, Zhongda Hospital, Southeast University School of Medicine, Nanjing, 210009, China
| | - Xiansong Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Youhua Wang
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, 226001, China
| |
Collapse
|
15
|
Pal R, Matada GSP, Teli G, Saha M, Patel R. Therapeutic potential of anticancer activity of nitrogen-containing heterocyclic scaffolds as Janus kinase (JAK) inhibitor: Biological activity, selectivity, and structure-activity relationship. Bioorg Chem 2024; 152:107696. [PMID: 39167870 DOI: 10.1016/j.bioorg.2024.107696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/21/2024] [Accepted: 08/04/2024] [Indexed: 08/23/2024]
Abstract
The JAK-STAT signalling pathway is primarily involved in cytokine signalling and induces various factors namely, erythropoietin, thrombopoietin, interferons, interleukins, and granulocyte colony-stimulating factors. These factors tremendously influenced understanding human health and illness, specifically cancer. Inhibiting the JAK/STAT pathway offers enormous therapeutic promises against cancer. Many JAK inhibitors are now being studied due to their efficacy in various cancer treatments. Further, the Nitrogen-heterocyclic (N-heterocyclic) scaffold has always shown to be a powerful tool for designing and discovering synthetic compounds with diverse pharmacological characteristics. The review focuses on several FDA-approved JAK inhibitors and their systematic categorization. The medicinal chemistry perspective is highlighted and classified review on the basis of N-heterocyclic molecules. Several examples of designing strategies of N-heterocyclic rings including pyrrolo-azepine, purine, 1H-pyrazolo[3,4-d]pyrimidine, 1H-pyrrolo[2,3-b]pyridine, pyrazole, thieno[3,2-d] pyrimidine, and, pyrimidine-based derivatives and their structure-activity relationships (SAR) are discussed. Among the various N-heterocyclic-based JAK inhibitors pyrimidine-containing compound 1 exhibited excellent inhibition activity against JAK2WT and mutated-JAK2V617F with IC50 of 2.01 and 18.84 nM respectively. Amino pyrimidine-containing compound 6 and thiopheno[3,2-d]pyrimidine-containing compound 13 expressed admirable JAK3 inhibition activity with IC50 of 1.7 nM and 1.38 nM respectively. Our review will support the medicinal chemists in refining and directing the development of novel N-heterocyclic-based JAK inhibitors.
Collapse
Affiliation(s)
- Rohit Pal
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru 560107, Karnataka, India.
| | - Gurubasavaraja Swamy Purawarga Matada
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru 560107, Karnataka, India.
| | - Ghanshyam Teli
- School of Pharmacy, Sangam University, Atoon, Bhilwara, 311001, Rajasthan, India
| | - Moumita Saha
- Department of Pharmaceutical Analysis, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga-142001, Punjab, India; Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, MAHE, Karnataka
| | - Rajiv Patel
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga-142001, Punjab, India
| |
Collapse
|
16
|
Zhou H, Wu C, Jin Y, Wu O, Chen L, Guo Z, Wang X, Chen Q, Kwan KYH, Li YM, Xia D, Chen T, Wu A. Role of oxidative stress in mitochondrial dysfunction and their implications in intervertebral disc degeneration: Mechanisms and therapeutic strategies. J Orthop Translat 2024; 49:181-206. [PMID: 39483126 PMCID: PMC11526088 DOI: 10.1016/j.jot.2024.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/03/2024] [Accepted: 08/22/2024] [Indexed: 11/03/2024] Open
Abstract
Background Intervertebral disc degeneration (IVDD) is widely recognized as one of the leading causes of low back pain. Intervertebral disc cells are the main components of the intervertebral disc (IVD), and their functions include synthesizing and secreting collagen and proteoglycans to maintain the structural and functional stability of the IVD. In addition, IVD cells are involved in several physiological processes. They help maintain nutrient metabolism balance in the IVD. They also have antioxidant and anti-inflammatory effects. Because of these roles, IVD cells are crucial in IVDD. When IVD cells are subjected to oxidative stress, mitochondria may become damaged, affecting normal cell function and accelerating degenerative changes. Mitochondria are the energy source of the cell and regulate important intracellular processes. As a key site for redox reactions, excessive oxidative stress and reactive oxygen species can damage mitochondria, leading to inflammation, DNA damage, and apoptosis, thus accelerating disc degeneration. Aim of review Describes the core knowledge of IVDD and oxidative stress. Comprehensively examines the complex relationship and potential mechanistic pathways between oxidative stress, mitochondrial dysfunction and IVDD. Highlights potential therapeutic targets and frontier therapeutic concepts. Draws researchers' attention and discussion on the future research of all three. Key scientific concepts of review Origin, development and consequences of IVDD, molecular mechanisms of oxidative stress acting on mitochondria, mechanisms of oxidative stress damage to IVD cells, therapeutic potential of targeting mitochondria to alleviate oxidative stress in IVDD. The translational potential of this article Targeted therapeutic strategies for oxidative stress and mitochondrial dysfunction are particularly critical in the treatment of IVDD. Using antioxidants and specific mitochondrial therapeutic agents can help reduce symptoms and pain. This approach is expected to significantly improve the quality of life for patients. Individualized therapeutic approaches, on the other hand, are based on an in-depth assessment of the patient's degree of oxidative stress and mitochondrial functional status to develop a targeted treatment plan for more precise and effective IVDD management. Additionally, we suggest preventive measures like customized lifestyle changes and medications. These are based on understanding how IVDD develops. The aim is to slow down the disease and reduce the chances of it coming back. Actively promoting clinical trials and evaluating the safety and efficacy of new therapies helps translate cutting-edge treatment concepts into clinical practice. These measures not only improve patient outcomes and quality of life but also reduce the consumption of healthcare resources and the socio-economic burden, thus having a positive impact on the advancement of the IVDD treatment field.
Collapse
Affiliation(s)
- Hao Zhou
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, China
- The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province, 315010, China
| | - Chenyu Wu
- The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province, 315010, China
| | - Yuxin Jin
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, China
| | - Ouqiang Wu
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, China
| | - Linjie Chen
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, China
| | - Zhenyu Guo
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, China
| | - Xinzhou Wang
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, China
| | - Qizhu Chen
- Department of Clinic of Spine Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200082, China
| | - Kenny Yat Hong Kwan
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 5/F Professorial Block, Queen Mary Hospital, 102 Pokfulam Road, Pokfulam, China
| | - Yan Michael Li
- Minimally Invasive Brain and Spine Institute, Upstate Medical University 475 Irving Ave, #402 Syracuse, NY, 13210, USA
| | - Dongdong Xia
- The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province, 315010, China
| | - Tao Chen
- Department of Orthopaedics, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Tongji Hospital, Tongji University School of Medicine, School of Life Science and Technology, Tongji University, Shanghai, 200065, China
| | - Aimin Wu
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, China
| |
Collapse
|
17
|
Hadjadj J, Nguyen Y, Mouloudj D, Bourguiba R, Heiblig M, Aloui H, McAvoy C, Lacombe V, Ardois S, Campochiaro C, Maria A, Coustal C, Comont T, Lazaro E, Lifermann F, Le Guenno G, Lobbes H, Grobost V, Outh R, Campagne J, Dor-Etienne A, Garnier A, Jamilloux Y, Dossier A, Samson M, Audia S, Nicolas B, Mathian A, de Maleprade B, De Sainte-Marie B, Faucher B, Bouaziz JD, Broner J, Dumain C, Antoine C, Carpentier B, Castel B, Lartigau-Roussin C, Crickx E, Volle G, Fayard D, Decker P, Moulinet T, Dumont A, Nguyen A, Aouba A, Martellosio JP, Levavasseur M, Puigrenier S, Antoine P, Giraud JT, Hermine O, Lacout C, Martis N, Karam JD, Chasset F, Arnaud L, Marianetti P, Deligny C, Chazal T, Woaye-Hune P, Roux-Sauvat M, Meyer A, Sujobert P, Hirsch P, Abisror N, Fenaux P, Kosmider O, Jachiet V, Fain O, Terrier B, Mekinian A, Georgin-Lavialle S. Efficacy and safety of targeted therapies in VEXAS syndrome: retrospective study from the FRENVEX. Ann Rheum Dis 2024; 83:1358-1367. [PMID: 38777378 DOI: 10.1136/ard-2024-225640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024]
Abstract
OBJECTIVES Vacuoles, E1 enzyme, X-linked, autoinflammatory and somatic (VEXAS) syndrome is an adult-onset autoinflammatory disease associated with somatic ubiquitin-like modifier-activating enzyme 1 (UBA1) mutations. We aimed to evaluate the efficacy and safety of targeted therapies. METHODS Multicentre retrospective study including patients with genetically proven VEXAS syndrome who had received at least one targeted therapy. Complete response (CR) was defined by a clinical remission, C-reactive protein (CRP) ≤10 mg/L and a ≤10 mg/day of prednisone-equivalent therapy, and partial response (PR) was defined by a clinical remission and a 50% reduction in CRP levels and glucocorticoid dose. RESULTS 110 patients (median age 71 (68-79) years) who received 194 targeted therapies were included: 78 (40%) received Janus kinase (JAK) inhibitors (JAKi), 51 (26%) interleukin (IL)-6 inhibitors, 33 (17%) IL-1 inhibitors, 20 (10%) tumour necrosis factor (TNFα) blockers and 12 (6%) other targeted therapies. At 3 months, the overall response (CR and PR) rate was 24% with JAKi, 32% with IL-6 inhibitors, 9% with anti-IL-1 and 0% with TNFα blockers or other targeted therapies. At 6 months, the overall response rate was 30% with JAKi and 26% with IL-6 inhibitors. Survival without treatment discontinuation was significantly longer with JAKi than with the other targeted therapies. Among patients who discontinued treatment, causes were primary failure, secondary failure, serious adverse event or death in 43%, 14%, 19% and 19%, respectively, with JAKi and 46%, 11%, 31% and 9%, respectively, with IL-6 inhibitors. CONCLUSIONS This study shows the benefit of JAKi and IL-6 inhibitors, whereas other therapies have lower efficacy. These results need to be confirmed in prospective trials.
Collapse
Affiliation(s)
- Jerome Hadjadj
- Sorbonne Université, service de médecine interne, Hôpital Saint-Antoine, AP-HP, Paris, France
| | - Yann Nguyen
- Service de médecine interne, Hôpital Beaujon, AP-HP.Nord, Université Paris Cité, Clichy, France
| | - Dalila Mouloudj
- Sorbonne Université, service de médecine interne, Hôpital Saint-Antoine, AP-HP, Paris, France
| | - Rim Bourguiba
- Médecine Interne, CEREMAIA, Sorbonne Université, Hospital Tenon, Paris, France
- Université Tunis el Manar, Faculté de médecine de Tunis, Tunis, Tunisia
| | - Mael Heiblig
- Hématologie, Hôpital Lyon Sud - HCL, Pierre-Bénite, France
| | - Hassina Aloui
- Médecine Interne, CEREMAIA, Sorbonne Université, Hospital Tenon, Paris, France
| | - Chloe McAvoy
- Sorbonne Université, service de médecine interne, Hôpital Saint-Antoine, AP-HP, Paris, France
| | - Valentin Lacombe
- Department of Internal Medicine, University Hospital Centre Angers, Angers, Pays de la Loire, France
| | | | - Corrado Campochiaro
- Unit of Immunology, Rheumatology, Allergy ad Rre Disesaes. IRCCS San Raffaele Hospital. Vita-Salute Vita-Salute San Raffaele University, Milan, Italy
| | - Alexandre Maria
- Department of Internal Medicine - Multi-organ Diseases, St Eloi Hospital, Montpellier University Hospital, Univ Montpellier, Montpellier, France
| | - Cyrille Coustal
- Department of Internal Medicine - Multi-organ Diseases, St Eloi Hospital, Montpellier University Hospital, Univ Montpellier, Montpellier, France
| | - Thibault Comont
- Service de médecine interne IUCT-Oncopole, CHU Toulouse, Université Paul Sabatier, Toulouse, France
| | - Estibaliz Lazaro
- Internal Medicine, CHU de Bordeaux, Bordeaux, Nouvelle-Aquitaine, France
| | - Francois Lifermann
- Service de médecine interne, Centre Hospitalier Dax, Dax, Nouvelle-Aquitaine, France
| | - Guillaume Le Guenno
- Médecine Interne, CHU Estaing, Clermont-Ferrand, Auvergne-Rhône-Alpes, France
| | - Hervé Lobbes
- Médecine Interne, CHU Estaing, Clermont-Ferrand, Auvergne-Rhône-Alpes, France
| | - Vincent Grobost
- Médecine Interne, CHU Estaing, Clermont-Ferrand, Auvergne-Rhône-Alpes, France
| | - Roderau Outh
- Service de médecine interne et générale, Perpignan University, Perpignan, France
| | | | | | - Alice Garnier
- Hematology Department, Nantes University Hospital, Nantes, France
| | - Yvan Jamilloux
- Department of Internal Medicine, Hôpital Universitaire de la Croix-Rousse, Hospices Civils de Lyon, University Claude Bernard Lyon 1, Lyon, France
| | - Antoine Dossier
- Service de Médecine Interne, Hôpital Bichat-Claude-Bernard, APHP, Paris, France
| | - Maxime Samson
- Service de Médecine Interne et Immunologie Clinique, Centre de Référence Constitutif des Maladies Auto-immunes et Auto-inflammatoires Rares de l'adulte, CHU Dijon-Bourgogne, Dijon,France; Université de Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, Dijon, France
| | - Sylvain Audia
- Service de Médecine Interne et Immunologie Clinique, Centre de Référence Constitutif des Maladies Auto-immunes et Auto-inflammatoires Rares de l'adulte, CHU Dijon-Bourgogne, Dijon,France; Université de Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, Dijon, France
| | - Barbara Nicolas
- Service de Médecine Interne et Immunologie Clinique, Centre de Référence Constitutif des Maladies Auto-immunes et Auto-inflammatoires Rares de l'adulte, CHU Dijon-Bourgogne, Dijon,France; Université de Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, Dijon, France
| | - Alexis Mathian
- French National Referral Center for Systemic Lupus Erythematosus, Antiphospholipid Antibody Syndrome and Other Autoimmune Disorders, Service de Médecine Interne 2, Institut E3M, Inserm UMRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Hôpital Universitaire Pitié Salpêtrière, Paris, Île-de-France, France
| | | | - Benjamin De Sainte-Marie
- Department of Internal Medicine, Centre Hospitalier Universitaire de La Timone, Marseille, France
| | - Benoit Faucher
- Department of Internal Medicine, Centre Hospitalier Universitaire de La Timone, Marseille, France
| | | | - Jonathan Broner
- Internal Medicine Department, University Hospital Centre Nimes, Nimes, France
| | - Cyril Dumain
- Internal Medicine Department, University Hospital Centre Nimes, Nimes, France
| | - Carole Antoine
- Internal Medicine, Sainte-Anne Military Teaching Hospital, Toulon, Provence-Alpes-Côte d'Azu, France
| | - Benjamin Carpentier
- Hématologie clinique, Universite Catholique de Lille Hopital Saint-Vincent de Paul, Lille, Hauts-de-France, France
| | - Brice Castel
- Service de Médecine Interne et d'Immunologie clinique, Centre Hospitalier de Lourdes, Lourdes, France
| | | | - Etienne Crickx
- Centre national de référence des cytopénies auto-immunes de l'adulte, Hôpital Henri Mondor, Fédération Hospitalo-Universitaire TRUE InnovaTive theRapy for immUne disordErs, Assistance Publique Hôpitaux de Paris (AP-HP), Université Paris Est Créteil, Créteil, France
| | - Geoffroy Volle
- Centre national de référence des cytopénies auto-immunes de l'adulte, Hôpital Henri Mondor, Fédération Hospitalo-Universitaire TRUE InnovaTive theRapy for immUne disordErs, Assistance Publique Hôpitaux de Paris (AP-HP), Université Paris Est Créteil, Créteil, France
| | - Damien Fayard
- University Hospital Centre Gabriel Montpied, Clermont-Ferrand, Auvergne-Rhône-Alpes, France
| | - Paul Decker
- Médecine interne et immunologie clinique, CHU de Nancy, UMR 7365, IMoPA, Université de Lorraine, CNRS, Nancy, France
| | - Thomas Moulinet
- Médecine interne et immunologie clinique, CHU de Nancy, UMR 7365, IMoPA, Université de Lorraine, CNRS, Nancy, France
| | - Anael Dumont
- Department of Internal Medicine, University Hospital Centre Caen, Caen, Basse-Normandie, France
| | - Alexandre Nguyen
- Department of Internal Medicine, University Hospital Centre Caen, Caen, Basse-Normandie, France
| | - Achille Aouba
- Department of Internal Medicine, University Hospital Centre Caen, Caen, Basse-Normandie, France
| | | | | | - Sebastien Puigrenier
- Department of Internal Medicine, Centre hospitalier de Boulogne-sur-Mer, Boulogne-sur-Mer, France
| | - Pascale Antoine
- Department of Internal Medicine, Centre hospitalier de Boulogne-sur-Mer, Boulogne-sur-Mer, France
| | | | | | - Carole Lacout
- Department of Internal Medicine, University Hospital Centre Angers, Angers, Pays de la Loire, France
| | - Nihal Martis
- Internal Medicine Department, University Hospital of Nice, Archet 1 Hospital, Nice, France
| | - Jean-Denis Karam
- Department of Internal Medicine Amiens University Hospital, Amiens, France
| | - Francois Chasset
- Sorbonne Université, Faculté de Médecine, AP-HP, Service de Dermatologie et Allergologie, Paris, France
| | - Laurent Arnaud
- Department of Rheumatology. National reference Center for rare diseases (RESO). Hôpitaux Universitaires de Strasbourg et INSERM UMR-S 1109, Strasbourg, France
| | - Paola Marianetti
- Service de médecine interne, maladies infectieuses, immunologie clinique, Reims Champagne-Ardenne University, Reims, France
| | - Christophe Deligny
- Service de Médecine Interne, University Hospital of Martinique, Fort-de-France, Martinique
| | - Thibaud Chazal
- Internal Medicine, The Fondation Adolphe de Rothschild Hospital, Paris, France
| | | | - Murielle Roux-Sauvat
- Service de médecine interne, Pierre Oudot Hospital of Bourgoin-Jallieu, Bourgoin-Jallieu, France
| | - Aurore Meyer
- Service d'immunologie clinique et médecine interne, Hopitaux universitaires de Strasbourg, Strasbourg, Alsace, France
| | - Pierre Sujobert
- Hospices Civils de Lyon, Hôpital Lyon Sud, Service d'hématologie biologique, Pierre Bénite, France
| | - Pierre Hirsch
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, SIRIC8 CURAMUS, Hôpital Saint-Antoine, Service d'Hématologie Biologique, Paris, France
| | - Noemie Abisror
- Sorbonne Université, service de médecine interne, Hôpital Saint-Antoine, AP-HP, Paris, France
| | - Pierre Fenaux
- Hématologie, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Université Paris Cité, Paris, France
| | - Olivier Kosmider
- Service d'Hématologie Biologique, DMU BioPhyGen, APHP, Paris, France
| | - Vincent Jachiet
- Sorbonne Université, service de médecine interne, Hôpital Saint-Antoine, AP-HP, Paris, France
| | - Olivier Fain
- Sorbonne Université, service de médecine interne, Hôpital Saint-Antoine, AP-HP, Paris, France
| | - Benjamin Terrier
- Médecine interne, Hôpital Cochin, AP-HP.Centre, Université Paris Cité, Paris, France
| | - Arsène Mekinian
- Sorbonne Université, service de médecine interne, Hôpital Saint-Antoine, AP-HP, Paris, France
| | | |
Collapse
|
18
|
Scheer M, Polak M, Fritzsche S, Strauss C, Scheller C, Leisz S. Nimodipine Used with Vincristine: Protects Schwann Cells and Neuronal Cells from Vincristine-Induced Cell Death but Increases Tumor Cell Susceptibility. Int J Mol Sci 2024; 25:10389. [PMID: 39408743 PMCID: PMC11476576 DOI: 10.3390/ijms251910389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
The chemotherapeutic agent vincristine is commonly used for a variety of hematologic cancers, as well as solid tumors of the head and neck, bronchial carcinoma, as part of the procarbazine, lomustine and vincristine (PCV) regimen, for glioma. Damage to nerve tissue (neuropathy) is often dose-limiting and restricts treatment. Nimodipine is a calcium antagonist that has also shown neuroprotective properties in preliminary studies. In this approach here, we investigated the effects of the combination of vincristine and nimodipine on three cancer cell lines (A549, SAS and LN229) and neuronal cells (RN33B, SW10). Fluorescence microscopy, lactate dehydrogenase (LDH) assays and Western blot analyses were used. Nimodipine was able to enhance the cell death effects of vincristine in all tumor cells, while neuronal cells were protected and showed less cell death. There was an opposite change in the protein levels of Ak strain transforming/protein kinase B (AKT) in tumor cells (down) and neuronal cells (up), with simultaneous increased protein levels of cyclic adenosine monophosphate response element-binding protein (CREB) in all cell lines. In the future, this approach may improve tumor response to chemotherapy and reduce unwanted side effects such as neuropathy.
Collapse
|
19
|
Lv Y, Qi J, Babon JJ, Cao L, Fan G, Lang J, Zhang J, Mi P, Kobe B, Wang F. The JAK-STAT pathway: from structural biology to cytokine engineering. Signal Transduct Target Ther 2024; 9:221. [PMID: 39169031 PMCID: PMC11339341 DOI: 10.1038/s41392-024-01934-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/12/2024] [Accepted: 07/16/2024] [Indexed: 08/23/2024] Open
Abstract
The Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway serves as a paradigm for signal transduction from the extracellular environment to the nucleus. It plays a pivotal role in physiological functions, such as hematopoiesis, immune balance, tissue homeostasis, and surveillance against tumors. Dysregulation of this pathway may lead to various disease conditions such as immune deficiencies, autoimmune diseases, hematologic disorders, and cancer. Due to its critical role in maintaining human health and involvement in disease, extensive studies have been conducted on this pathway, ranging from basic research to medical applications. Advances in the structural biology of this pathway have enabled us to gain insights into how the signaling cascade operates at the molecular level, laying the groundwork for therapeutic development targeting this pathway. Various strategies have been developed to restore its normal function, with promising therapeutic potential. Enhanced comprehension of these molecular mechanisms, combined with advances in protein engineering methodologies, has allowed us to engineer cytokines with tailored properties for targeted therapeutic applications, thereby enhancing their efficiency and safety. In this review, we outline the structural basis that governs key nodes in this pathway, offering a comprehensive overview of the signal transduction process. Furthermore, we explore recent advances in cytokine engineering for therapeutic development in this pathway.
Collapse
Affiliation(s)
- You Lv
- Center for Molecular Biosciences and Non-communicable Diseases Research, Xi'an University of Science and Technology, Xi'an, Shaanxi, 710054, China
- Xi'an Amazinggene Co., Ltd, Xi'an, Shaanxi, 710026, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100080, China
| | - Jeffrey J Babon
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Longxing Cao
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
| | - Guohuang Fan
- Immunophage Biotech Co., Ltd, No. 10 Lv Zhou Huan Road, Shanghai, 201112, China
| | - Jiajia Lang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Jin Zhang
- Xi'an Amazinggene Co., Ltd, Xi'an, Shaanxi, 710026, China
| | - Pengbing Mi
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland, 4072, Australia.
| | - Faming Wang
- Center for Molecular Biosciences and Non-communicable Diseases Research, Xi'an University of Science and Technology, Xi'an, Shaanxi, 710054, China.
| |
Collapse
|
20
|
Poto R, Cristinziano L, Criscuolo G, Strisciuglio C, Palestra F, Lagnese G, Di Salvatore A, Marone G, Spadaro G, Loffredo S, Varricchi G. The JAK1/JAK2 inhibitor ruxolitinib inhibits mediator release from human basophils and mast cells. Front Immunol 2024; 15:1443704. [PMID: 39188724 PMCID: PMC11345246 DOI: 10.3389/fimmu.2024.1443704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/29/2024] [Indexed: 08/28/2024] Open
Abstract
Introduction The Janus kinase (JAK) family includes four cytoplasmic tyrosine kinases (JAK1, JAK2, JAK3, and TYK2) constitutively bound to several cytokine receptors. JAKs phosphorylate downstream signal transducers and activators of transcription (STAT). JAK-STAT5 pathways play a critical role in basophil and mast cell activation. Previous studies have demonstrated that inhibitors of JAK-STAT pathway blocked the activation of mast cells and basophils. Methods In this study, we investigated the in vitro effects of ruxolitinib, a JAK1/2 inhibitor, on IgE- and IL-3-mediated release of mediators from human basophils, as well as substance P-induced mediator release from skin mast cells (HSMCs). Results Ruxolitinib concentration-dependently inhibited IgE-mediated release of preformed (histamine) and de novo synthesized mediators (leukotriene C4) from human basophils. Ruxolitinib also inhibited anti-IgE- and IL-3-mediated cytokine (IL-4 and IL-13) release from basophils, as well as the secretion of preformed mediators (histamine, tryptase, and chymase) from substance P-activated HSMCs. Discussion These results indicate that ruxolitinib, inhibiting the release of several mediators from human basophils and mast cells, is a potential candidate for the treatment of inflammatory disorders.
Collapse
Affiliation(s)
- Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità (ISS), Rome, Italy
- World Allergy Organization (WAO) Center of Excellence, Naples, Italy
| | - Leonardo Cristinziano
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Gjada Criscuolo
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Caterina Strisciuglio
- Department of Woman, Child and General and Specialistic Surgery, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Francesco Palestra
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, Naples, Italy
| | - Gianluca Lagnese
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, Naples, Italy
| | - Antonio Di Salvatore
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, Naples, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples, Italy
| | - Giuseppe Spadaro
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Stefania Loffredo
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples, Italy
| | - Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples, Italy
| |
Collapse
|
21
|
Neurath L, Sticherling M, Schett G, Fagni F. Targeting cytokines in psoriatic arthritis. Cytokine Growth Factor Rev 2024; 78:1-13. [PMID: 39068140 DOI: 10.1016/j.cytogfr.2024.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/30/2024]
Abstract
Psoriatic arthritis (PsA) is part of the psoriatic disease spectrum and is characterized by a chronic inflammatory process that affects entheses, tendons and joints. Cytokines produced by immune and non-immune cells play a central role in the pathogenesis of PsA by orchestrating key aspects of the inflammatory response. Pro-inflammatory cytokines such as TNF, IL-23 and IL-17 have been shown to regulate the initiation and progression of PsA, ultimately leading to the destruction of the architecture of the local tissues such as soft tissue, cartilage and bone. The important role of cytokines in PsA has been underscored by the clinical success of antibodies that neutralize their function. In addition to biologic agents targeting individual pro-inflammatory cytokines, signaling inhibitors that block multiple cytokines simultaneously such as JAK inhibitors have been approved for PsA therapy. In this review, we will focus on our current understanding of the role of cytokines in the disease process of PsA and discuss potential new treatment options based on modulation of cytokine function.
Collapse
Affiliation(s)
- Laura Neurath
- Department of Internal Medicine 3, Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum Immuntherapie DZI, Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Michael Sticherling
- Deutsches Zentrum Immuntherapie DZI, Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany; Department of Dermatology, Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Georg Schett
- Department of Internal Medicine 3, Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum Immuntherapie DZI, Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Filippo Fagni
- Department of Internal Medicine 3, Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum Immuntherapie DZI, Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany.
| |
Collapse
|
22
|
Jiang Y, Chen Y, Fu J, Zhao R, Xu J, Liu Y. Bone morphogenetic protein 4 alleviates pulmonary fibrosis by regulating macrophages. Int Immunopharmacol 2024; 139:112530. [PMID: 39053231 DOI: 10.1016/j.intimp.2024.112530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 05/27/2024] [Accepted: 06/17/2024] [Indexed: 07/27/2024]
Abstract
Fibrosis is a pathological change mainly characterized by an increase of fibrous connective tissue and decrease of parenchymal cells. Its continuous progress may lead to the destruction of organ structure and function decline. An excess of alternatively activated M2 macrophages have been considered crucial candidates in the progression of fibrosis. Bone morphogenetic proteins (BMPs), a group of multifunctional growth factors, are essential for organ development and pathophysiological process, however, the roles that BMPs play in innate immune homeostasis in the development of fibrosis and the downstream signals have not been fully explored. In the current study, we firstly found that the expression of BMP4 was significantly down-regulated in human and mouse fibrosis samples. Then we investigated the effects of BMP4 on macrophage polarization in IL-4 environment and related molecular mechanisms, and found that BMP4 caused a decrease in polarized response towards M2, reflected in the expression of the markers Fizz1, Ym1 and Arg1, together with an inhibition in Stat6 phosphorylation. This relied on the Smad1/5/8 signaling, which had a crosstalk with Stat6. Moreover, the in vivo study showed that BMP4 treatment can reduce collagen deposition and delay the development of experimental pulmonary fibrosis in mice by inhibiting M2 macrophages through adoptive transfer experiment. These findings revealed a novel role of BMP4 in regulating macrophages, offering potential strategies for treating pulmonary fibrosis.
Collapse
Affiliation(s)
- Yiyang Jiang
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, PR China
| | - Yingyi Chen
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, PR China
| | - Jingfei Fu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, PR China
| | - Rui Zhao
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, PR China
| | - Junji Xu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, PR China.
| | - Yi Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, PR China.
| |
Collapse
|
23
|
Rothenberg-Lausell C, Bar J, Dahabreh D, Renert-Yuval Y, Del Duca E, Guttman-Yassky E. Biologic and small-molecule therapy for treating moderate to severe atopic dermatitis: Mechanistic considerations. J Allergy Clin Immunol 2024; 154:20-30. [PMID: 38670231 DOI: 10.1016/j.jaci.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/21/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024]
Abstract
Atopic dermatitis (AD) is a complex and heterogeneous skin disease for which achieving complete clinical clearance for most patients has proven challenging through single cytokine inhibition. Current studies integrate biomarkers and evaluate their role in AD, aiming to advance our understanding of the diverse molecular profiles implicated. Although traditionally characterized as a TH2-driven disease, extensive research has recently revealed the involvement of TH1, TH17, and TH22 immune pathways as well as the interplay of pivotal immune molecules, such as OX40, OX40 ligand (OX40L), thymic stromal lymphopoietin, and IL-33. This review explores the mechanistic effects of treatments for AD, focusing on mAbs and Janus kinase inhibitors. It describes how these treatments modulate immune pathways and examines their impact on key inflammatory and barrier biomarkers.
Collapse
Affiliation(s)
- Camille Rothenberg-Lausell
- Department of Dermatology and Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, NY; University of Puerto Rico School of Medicine, San Juan, Puerto Rico
| | - Jonathan Bar
- Department of Dermatology and Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, NY; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Dante Dahabreh
- Department of Dermatology and Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Yael Renert-Yuval
- Department of Dermatology and Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, NY; Pediatric Dermatology Unit, Schneider Children's Medical Center of Israel and the Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ester Del Duca
- Department of Dermatology and Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Dermatology, University of La Sapienza, Rome, Italy
| | - Emma Guttman-Yassky
- Department of Dermatology and Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, NY.
| |
Collapse
|
24
|
Wang X, Chen J, Shen Y, Zhang H, Xu Y, Zhang J, Cheng L. Baricitinib protects ICIs-related myocarditis by targeting JAK1/STAT3 to regulate Macrophage polarization. Cytokine 2024; 179:156620. [PMID: 38701735 DOI: 10.1016/j.cyto.2024.156620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/13/2024] [Indexed: 05/05/2024]
Abstract
PURPOSE The emergence of immune checkpoint inhibitors (ICIs) has revolutionized cancer treatment, but these drugs can also cause severe immune-related adverse effects (irAEs), including myocarditis. Researchers have become interested in exploring ways to mitigate this side effect, and one promising avenue is the use of baricitinib, a Janus kinase inhibitor known to have anti-inflammatory properties. This study aimed to examine the potential mechanism by which baricitinib in ICIs-related myocarditis. METHODS To establish an ICIs-related myocarditis model, BALB/c mice were administered murine cardiac troponin I (cTnI) peptide and anti-mouse programmed death 1 (PD-1) antibodies. Subsequently, baricitinib was administered to the mice via intragastric administration. Echocardiography, HE staining, and Masson staining were performed to evaluate myocardial functions, inflammation, and fibrosis. Immunofluorescence was used to detect macrophages in the cardiac tissue of the mice.In vitro experiments utilized raw264.7 cells to induce macrophage polarization using anti-PD-1 antibodies. Different concentrations of baricitinib were applied to assess cell viability, and the release of pro-inflammatory cytokines was measured. The activation of the JAK1/STAT3 signaling pathway was evaluated through western blot analysis. RESULTS Baricitinib demonstrated its ability to improve cardiac function and reduce cardiac inflammation, as well as fibrosis induced by ICIs. Mechanistically, baricitinib treatment promoted the polarization of macrophages towards the M2 phenotype. In vitro and in vivo experiments showed that anti-PD-1 promoted the release of inflammatory factors. However, treatment with baricitinib significantly inhibited the phosphorylation of JAK1 and STAT3. Additionally, the use of RO8191 reversed the effects of baricitinib, further confirming our findings. CONCLUSION Baricitinib demonstrated its potential as a protective agent against ICIs-related myocarditis by modulating macrophage polarization. These findings provide a solid theoretical foundation for the development of future treatments for ICIs-related myocarditis.
Collapse
Affiliation(s)
- Xuejun Wang
- Department of Echocardiography, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai Institute of Medical Imaging, 180 Fenglin Road, Shanghai, China; Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai, China
| | - Jiahui Chen
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai, China
| | - Yihui Shen
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai, China
| | - Hui Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai, China
| | - Yuchen Xu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai, China
| | - Jian Zhang
- Department of Echocardiography, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai Institute of Medical Imaging, 180 Fenglin Road, Shanghai, China; Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai, China
| | - Leilei Cheng
- Department of Echocardiography, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai Institute of Medical Imaging, 180 Fenglin Road, Shanghai, China; Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai, China.
| |
Collapse
|
25
|
Lv Y, Mi P, Babon JJ, Fan G, Qi J, Cao L, Lang J, Zhang J, Wang F, Kobe B. Small molecule drug discovery targeting the JAK-STAT pathway. Pharmacol Res 2024; 204:107217. [PMID: 38777110 DOI: 10.1016/j.phrs.2024.107217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/05/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
The Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway functions as a central hub for transmitting signals from more than 50 cytokines, playing a pivotal role in maintaining hematopoiesis, immune balance, and tissue homeostasis. Dysregulation of this pathway has been implicated in various diseases, including immunodeficiency, autoimmune conditions, hematological disorders, and certain cancers. Proteins within this pathway have emerged as effective therapeutic targets for managing these conditions, with various approaches developed to modulate key nodes in the signaling process, spanning from receptor engagement to transcription factor activation. Following the success of JAK inhibitors such as tofacitinib for RA treatment and ruxolitinib for managing primary myelofibrosis, the pharmaceutical industry has obtained approvals for over 10 small molecule drugs targeting the JAK-STAT pathway and many more are at various stages of clinical trials. In this review, we consolidate key strategies employed in drug discovery efforts targeting this pathway, with the aim of contributing to the collective understanding of small molecule interventions in the context of JAK-STAT signaling. We aspire that our endeavors will contribute to advancing the development of innovative and efficacious treatments for a range of diseases linked to this pathway dysregulation.
Collapse
Affiliation(s)
- You Lv
- Center for Molecular Biosciences and Non-Communicable Diseases Research, Xi'an University of Science and Technology, Xi'an, Shaanxi 710054, China; Xi'an Amazinggene Co., Ltd, Xi'an, Shaanxi 710026, China
| | - Pengbing Mi
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| | - Jeffrey J Babon
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Guohuang Fan
- Immunophage Biotech Co., Ltd, No. 10 Lv Zhou Huan Road, Shanghai 201112, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100080, China
| | - Longxing Cao
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China
| | - Jiajia Lang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Jin Zhang
- Xi'an Amazinggene Co., Ltd, Xi'an, Shaanxi 710026, China
| | - Faming Wang
- Center for Molecular Biosciences and Non-Communicable Diseases Research, Xi'an University of Science and Technology, Xi'an, Shaanxi 710054, China.
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
26
|
Qian G, Zhang J, Shi L, Li D, Yang B, Chen B, Shi D. Chinese Chronic Mucocutaneous Candidiasis: A Case Report Series. Infect Drug Resist 2024; 17:1869-1877. [PMID: 38745679 PMCID: PMC11092975 DOI: 10.2147/idr.s456121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/23/2024] [Indexed: 05/16/2024] Open
Abstract
Chronic Mucocutaneous Candidiasis (CMC) is a rare immunodeficiency disease characterized by chronic or recurrent superficial Candida infections on the skin, nail, and mucous membranes. Here, we present four Chinese patients with CMC who manifested oral mucosal leukoplakia and nail thickening during early childhood, all displaying fissured tongue lines. The causative pathogens isolated from their oral mucosa and nails were identified as C. albicans and C. parapsilosis through morphology and molecular sequencing. Notably, among the four patients, one presented with vitiligo, while another had hypothyroidism. We have also conducted a review of reported cases of CMC in China and worldwide over the last five years, highlighting potential approaches for diagnosis and treatment. The current molecular evidence in the literature suggests potential for the development of early diagnosis methods, such as screening genetic variables on STAT1 and STAT3. Additionally, potential treatment avenues, including gene-targeted analogues and GM-CSF analogues, could be explored in conjunction with traditional antifungal therapy.
Collapse
Affiliation(s)
- Guocheng Qian
- The Second Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Jiaying Zhang
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, People’s Republic of China
| | - Leyao Shi
- The Second Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Dongmei Li
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC, USA
| | - Biao Yang
- Laboratory of Medical Mycology, Jining No. 1 People’s Hospital, Jining, Shandong Province, People’s Republic of China
- Department of Dermatology, Jining No. 1 People’s Hospital, Jining, Shandong Province, People’s Republic of China
| | - Biao Chen
- Laboratory of Medical Mycology, Jining No. 1 People’s Hospital, Jining, Shandong Province, People’s Republic of China
| | - Dongmei Shi
- Laboratory of Medical Mycology, Jining No. 1 People’s Hospital, Jining, Shandong Province, People’s Republic of China
- Department of Dermatology, Jining No. 1 People’s Hospital, Jining, Shandong Province, People’s Republic of China
| |
Collapse
|
27
|
Sadakata M, Fujii K, Kaneko R, Hosoya E, Sugimoto H, Kawabata-Iwakawa R, Kasamatsu T, Hongo S, Koshidaka Y, Takase A, Iijima T, Takao K, Sadakata T. Maternal immunoglobulin G affects brain development of mouse offspring. J Neuroinflammation 2024; 21:114. [PMID: 38698428 PMCID: PMC11064405 DOI: 10.1186/s12974-024-03100-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/14/2024] [Indexed: 05/05/2024] Open
Abstract
Maternal immunoglobulin (Ig)G is present in breast milk and has been shown to contribute to the development of the immune system in infants. In contrast, maternal IgG has no known effect on early childhood brain development. We found maternal IgG immunoreactivity in microglia, which are resident macrophages of the central nervous system of the pup brain, peaking at postnatal one week. Strong IgG immunoreactivity was observed in microglia in the corpus callosum and cerebellar white matter. IgG stimulation of primary cultured microglia activated the type I interferon feedback loop by Syk. Analysis of neonatal Fc receptor knockout (FcRn KO) mice that could not take up IgG from their mothers revealed abnormalities in the proliferation and/or survival of microglia, oligodendrocytes, and some types of interneurons. Moreover, FcRn KO mice also exhibited abnormalities in social behavior and lower locomotor activity in their home cages. Thus, changes in the mother-derived IgG levels affect brain development in offsprings.
Collapse
Affiliation(s)
- Mizuki Sadakata
- Education and Research Support Center, Gunma University Graduate School of Medicine, Maebashi, Gunma, 371-8511, Japan.
| | - Kazuki Fujii
- Department of Behavioral Physiology, Faculty of Medicine, University of Toyama, Toyama, 930-0194, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, 930-0194, Japan
- Life Science Research Center, University of Toyama, Toyama, 930-0194, Japan
| | - Ryosuke Kaneko
- Medical Genetics Research Center, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Emi Hosoya
- Education and Research Support Center, Gunma University Graduate School of Medicine, Maebashi, Gunma, 371-8511, Japan
| | - Hisako Sugimoto
- Education and Research Support Center, Gunma University Graduate School of Medicine, Maebashi, Gunma, 371-8511, Japan
| | - Reika Kawabata-Iwakawa
- Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research (GIAR), Gunma University, Maebashi, Gunma, 371-8511, Japan
| | - Tetsuhiro Kasamatsu
- Department of Medical Technology and Clinical Engineering, Gunma University of Health and Walfare, Maebashi, Gunma, 371-0823, Japan
| | - Shoko Hongo
- Life Science Research Center, University of Toyama, Toyama, 930-0194, Japan
| | - Yumie Koshidaka
- Life Science Research Center, University of Toyama, Toyama, 930-0194, Japan
| | - Akinori Takase
- Medical Science College Office, Tokai University, Isehara, Kanagawa, 259-1193, Japan
| | - Takatoshi Iijima
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, School of Medicine, Tokai University, Isehara, Kanagawa, 259-1193, Japan
| | - Keizo Takao
- Department of Behavioral Physiology, Faculty of Medicine, University of Toyama, Toyama, 930-0194, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, 930-0194, Japan
- Life Science Research Center, University of Toyama, Toyama, 930-0194, Japan
| | - Tetsushi Sadakata
- Education and Research Support Center, Gunma University Graduate School of Medicine, Maebashi, Gunma, 371-8511, Japan.
| |
Collapse
|
28
|
Amegashie EA, Asamoah P, Ativi LEA, Adusei-Poku M, Bonney EY, Tagoe EA, Paintsil E, Torpey K, Quaye O. Clinical outcomes and immunological response to SARS-CoV-2 infection among people living with HIV. Exp Biol Med (Maywood) 2024; 249:10059. [PMID: 38628843 PMCID: PMC11020089 DOI: 10.3389/ebm.2024.10059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/22/2024] [Indexed: 04/19/2024] Open
Abstract
People living with HIV (PLWH) usually suffer from co-infections and co-morbidities including respiratory tract infections. SARS-CoV-2 has been reported to cause respiratory infections. There are uncertainties in the disease severity and immunological response among PLWH who are co-infected with COVID-19. This review outlines the current knowledge on the clinical outcomes and immunological response to SARS-CoV-2 among PLWH. Literature was searched in Google scholar, Scopus, PubMed, and Science Direct conforming with the Preferred Reporting Items for Systematic reviews and Meta-analyses (PRISMA) guidelines from studies published from January 2020 to June 2023. A total of 81 studies from 25 countries were identified, and RT-PCR was used in confirming COVID-19 in 80 of the studies. Fifty-seven studies assessed risk factors and clinical outcomes in HIV patients co-infected with COVID-19. Thirty-nine of the studies indicated the following factors being associated with severe outcomes in HIV/SARS-CoV-2: older age, the male sex, African American race, smoking, obesity, cardiovascular diseases, low CD4+ count, high viral load, tuberculosis, high levels of inflammatory markers, chronic kidney disease, hypertension, diabetes, interruption, and delayed initiation of ART. The severe outcomes are patients' hospitalization, admission at intensive care unit, mechanical ventilation, and death. Twenty (20) studies, however, reported no difference in clinical presentation among co-infected compared to mono-infected individuals. Immune response to SARS-CoV-2 infection was investigated in 25 studies, with some of the studies reporting high levels of inflammatory markers, T cell exhaustion and lower positive conversion rate of IgG in PLWH. There is scanty information on the cytokines that predisposes to severity among HIV/SARS-CoV-2 co-infected individuals on combined ART. More research work should be carried out to validate co-infection-related cytokines and/or immune markers to SARS-CoV-2 among PLWH.
Collapse
Affiliation(s)
- Esimebia Adjovi Amegashie
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
| | - Prince Asamoah
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
| | - Lawrencia Emefa Ami Ativi
- Department of Medical Microbiology, University of Ghana Medical School, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Mildred Adusei-Poku
- Department of Medical Microbiology, University of Ghana Medical School, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Evelyn Yayra Bonney
- Department of Virology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Emmanuel Ayitey Tagoe
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, University of Ghana, Accra, Ghana
| | - Elijah Paintsil
- Department of Paediatrics, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - Kwasi Torpey
- Department of Population, Family and Reproductive Health, School of Public Health, University of Ghana, Accra, Ghana
| | - Osbourne Quaye
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
| |
Collapse
|
29
|
Yu SS, Tang RC, Zhang A, Geng S, Yu H, Zhang Y, Sun XY, Zhang J. Deacetylase Sirtuin 1 mitigates type I IFN- and type II IFN-induced signaling and antiviral immunity. J Virol 2024; 98:e0008824. [PMID: 38386781 PMCID: PMC10949466 DOI: 10.1128/jvi.00088-24] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 01/31/2024] [Indexed: 02/24/2024] Open
Abstract
Type I and type II IFNs are important immune modulators in both innate and adaptive immunity. They transmit signaling by activating JAK-STAT pathways. Sirtuin 1 (SIRT1), a class III NAD+-dependent deacetylase, has multiple functions in a variety of physiological processes. Here, we characterized the novel functions of SIRT1 in the regulation of type I and type II IFN-induced signaling. Overexpression of SIRT1 inhibited type I and type II IFN-induced interferon-stimulated response element activation. In contrast, knockout of SIRT1 promoted type I and type II IFN-induced expression of ISGs and inhibited viral replication. Treatment with SIRT1 inhibitor EX527 had similar positive effects. SIRT1 physically associated with STAT1 or STAT3, and this interaction was enhanced by IFN stimulation or viral infection. By deacetylating STAT1 at K673 and STAT3 at K679/K685/K707/K709, SIRT1 downregulated the phosphorylation of STAT1 (Y701) and STAT3 (Y705). Sirt1+/- primary peritoneal macrophages and Sirt1+/- mice exhibited enhanced IFN-induced signaling and antiviral activity. Thus, SIRT1 is a novel negative regulator of type I and type II IFN-induced signaling through its deacetylase activity.IMPORTANCESIRT1 has been reported in the precise regulation of antiviral (RNA and DNA) immunity. However, its functions in type I and type II IFN-induced signaling are still unclear. In this study, we deciphered the important functions of SIRT1 in both type I and type II IFN-induced JAK-STAT signaling and explored the potential acting mechanisms. It is helpful for understanding the regulatory roles of SIRT1 at different levels of IFN signaling. It also consolidates the notion that SIRT1 is an important target for intervention in viral infection, inflammatory diseases, or even interferon-related therapies.
Collapse
Affiliation(s)
- Shuang-Shuang Yu
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, Peking University, Beijing, China
| | - Rong-Chun Tang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, Peking University, Beijing, China
| | - Ao Zhang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, Peking University, Beijing, China
| | - Shijin Geng
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, Peking University, Beijing, China
| | - Hengxiang Yu
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, Peking University, Beijing, China
| | - Yan Zhang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, Peking University, Beijing, China
| | - Xiu-Yuan Sun
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, Peking University, Beijing, China
| | - Jun Zhang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, Peking University, Beijing, China
| |
Collapse
|
30
|
Liongue C, Ratnayake T, Basheer F, Ward AC. Janus Kinase 3 (JAK3): A Critical Conserved Node in Immunity Disrupted in Immune Cell Cancer and Immunodeficiency. Int J Mol Sci 2024; 25:2977. [PMID: 38474223 DOI: 10.3390/ijms25052977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
The Janus kinase (JAK) family is a small group of protein tyrosine kinases that represent a central component of intracellular signaling downstream from a myriad of cytokine receptors. The JAK3 family member performs a particularly important role in facilitating signal transduction for a key set of cytokine receptors that are essential for immune cell development and function. Mutations that impact JAK3 activity have been identified in a number of human diseases, including somatic gain-of-function (GOF) mutations associated with immune cell malignancies and germline loss-of-function (LOF) mutations associated with immunodeficiency. The structure, function and impacts of both GOF and LOF mutations of JAK3 are highly conserved, making animal models highly informative. This review details the biology of JAK3 and the impact of its perturbation in immune cell-related diseases, including relevant animal studies.
Collapse
Affiliation(s)
- Clifford Liongue
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, VIC 3216, Australia
| | | | - Faiza Basheer
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, VIC 3216, Australia
| | - Alister C Ward
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, VIC 3216, Australia
| |
Collapse
|
31
|
Zhong X, Feng W, Liu L, Liu Q, Xu Q, Liu M, Liu X, Xu S, Deng M, Lin C. Periplogenin inhibits pathologic synovial proliferation and infiltration in rheumatoid arthritis by regulating the JAK2/3-STAT3 pathway. Int Immunopharmacol 2024; 128:111487. [PMID: 38183911 DOI: 10.1016/j.intimp.2024.111487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/31/2023] [Accepted: 01/02/2024] [Indexed: 01/08/2024]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease that affects joints, causing inflammation, synovitis, and erosion of cartilage and bone. Periplogenin is an active ingredient in the anti-rheumatic and anti-inflammatory herb, cortex periplocae. We conducted a study using a CIA model and an in vitro model of fibroblast-like synoviocytes (FLS) induced by Tumor Necrosis Factor-alpha (TNF-α) stimulation. We evaluated cell activity, proliferation, and migration using the CCK8 test, EDU kit, and transwell assays, as well as network pharmacokinetic analysis of periplogenin targets and RA-related effects. Furthermore, we measured inflammatory factors and matrix metalloproteinases (MMPs) expression using ELISA and qRT-PCR assays. We also evaluated joint destruction using HE and Safranin O-Fast Green Staining and examined the changes in the JAK2/3-STAT3 pathway using western blot. The results indicated that periplogenin can effectively inhibit the secretion of inflammatory factors, suppress the JAK2/3-STAT3 pathway, and impede the proliferation and migration of RA FLS. Thus, periplogenin alleviated the Synovial inflammatory infiltration of RA.
Collapse
Affiliation(s)
- Xiaoqin Zhong
- The First Clinical Medicine College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510405, China; Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510405, China
| | - Wei Feng
- The First Clinical Medicine College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510405, China; Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510405, China
| | - Lianjie Liu
- The First Clinical Medicine College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510405, China; Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510405, China
| | - Qingping Liu
- The First Clinical Medicine College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510405, China; Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510405, China
| | - Qiang Xu
- The First Clinical Medicine College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510405, China; Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510405, China
| | - Minying Liu
- The First Clinical Medicine College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510405, China; Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510405, China
| | - Xiaobao Liu
- The First Clinical Medicine College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510405, China; Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510405, China
| | - Shudi Xu
- The First Clinical Medicine College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510405, China; Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510405, China
| | - Minzhen Deng
- State Key Laboratory of Traditional Chinese Medicine Syndrome/Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, China; Guangdong Provincial Key Laboratory of Research on Emergency in TCM, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510120, China.
| | - Changsong Lin
- The First Clinical Medicine College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510405, China; Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510405, China.
| |
Collapse
|
32
|
Fasler-Kan E, Milošević M, Ruggiero S, Aliu N, Cholewa D, Häcker FM, Dekany G, Bartenstein A, Berger SM. Cytokine Signaling in Pediatric Kidney Tumor Cell Lines WT-CLS1, WT-3ab and G-401. Int J Mol Sci 2024; 25:2281. [PMID: 38396958 PMCID: PMC10889092 DOI: 10.3390/ijms25042281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/01/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024] Open
Abstract
Renal tumors comprise ~7% of all malignant pediatric tumors. Approximately 90% of pediatric kidney tumors comprise Wilms tumors, and the remaining 10% include clear cell sarcoma of the kidney, malignant rhabdoid tumor of the kidney, renal cell carcinoma and other rare renal tumors. Over the last 30 years, the role of cytokines and their receptors has been considerably investigated in both cancer progression and anti-cancer therapy. However, more effective immunotherapies require the cytokine profiling of each tumor type and comprehensive understanding of tumor biology. In this study, we aimed to investigate the activation of signaling pathways in response to cytokines in three pediatric kidney tumor cell lines, in WT-CLS1 and WT-3ab cells (both are Wilms tumors), and in G-401 cells (a rhabdoid kidney tumor, formerly classified as Wilms tumor). We observed that interferon-alpha (IFN-α) and interferon-gamma (IFN-γ) very strongly induced the activation of the STAT1 protein, whereas IL-6 and IFN-α activated STAT3 and IL-4 activated STAT6 in all examined tumor cell lines. STAT protein activation was examined by flow cytometry and Western blot using phospho-specific anti-STAT antibodies which recognize only activated (phosphorylated) STAT proteins. Nuclear translocation of phospho-STAT proteins upon activation with specific cytokines was furthermore confirmed by immunofluorescence. Our results also showed that both IFN-α and IFN-γ caused upregulation of major histocompatibility complex (MHC) class I proteins, however, these cytokines did not have any effect on the expression of MHC class II proteins. We also observed that pediatric kidney tumor cell lines exhibit the functional expression of an additional cytokine signaling pathway, the tumor necrosis factor (TNF)-α-mediated activation of nuclear factor kappa B (NF-κB). In summary, our data show that human pediatric renal tumor cell lines are responsive to stimulation with various human cytokines and could be used as in vitro models for profiling cytokine signaling pathways.
Collapse
Affiliation(s)
- Elizaveta Fasler-Kan
- Department of Pediatric Surgery, Children’s Hospital, Inselspital Bern, University of Bern, CH-3010 Bern, Switzerland; (M.M.); (S.R.); (D.C.); (G.D.); (A.B.)
| | - Milan Milošević
- Department of Pediatric Surgery, Children’s Hospital, Inselspital Bern, University of Bern, CH-3010 Bern, Switzerland; (M.M.); (S.R.); (D.C.); (G.D.); (A.B.)
| | - Sabrina Ruggiero
- Department of Pediatric Surgery, Children’s Hospital, Inselspital Bern, University of Bern, CH-3010 Bern, Switzerland; (M.M.); (S.R.); (D.C.); (G.D.); (A.B.)
| | - Nijas Aliu
- Department of Human Genetics, Inselspital Bern, University of Bern, CH-3010 Bern, Switzerland;
| | - Dietmar Cholewa
- Department of Pediatric Surgery, Children’s Hospital, Inselspital Bern, University of Bern, CH-3010 Bern, Switzerland; (M.M.); (S.R.); (D.C.); (G.D.); (A.B.)
| | - Frank-Martin Häcker
- Department of Pediatric Surgery, Children’s Hospital of Eastern Switzerland, CH-9000 St. Gallen, Switzerland;
- Faculty of Medicine, University of Basel, CH-4031 Basel, Switzerland
| | - Gabriela Dekany
- Department of Pediatric Surgery, Children’s Hospital, Inselspital Bern, University of Bern, CH-3010 Bern, Switzerland; (M.M.); (S.R.); (D.C.); (G.D.); (A.B.)
| | - Andreas Bartenstein
- Department of Pediatric Surgery, Children’s Hospital, Inselspital Bern, University of Bern, CH-3010 Bern, Switzerland; (M.M.); (S.R.); (D.C.); (G.D.); (A.B.)
| | - Steffen M. Berger
- Department of Pediatric Surgery, Children’s Hospital, Inselspital Bern, University of Bern, CH-3010 Bern, Switzerland; (M.M.); (S.R.); (D.C.); (G.D.); (A.B.)
| |
Collapse
|
33
|
De Togni E, Cole O, Abboud R. Janus kinase inhibition in the treatment and prevention of graft-versus-host disease. Front Immunol 2024; 15:1304065. [PMID: 38380328 PMCID: PMC10877010 DOI: 10.3389/fimmu.2024.1304065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/18/2024] [Indexed: 02/22/2024] Open
Abstract
Graft-versus-host disease (GVHD) is a significant cause of morbidity and mortality after allogeneic hematopoietic stem cell transplantation (HSCT). For many years, corticosteroids have been the mainstay treatment for GVHD, but cases of steroid-refractory GVHD and the severe adverse effects of high-dose corticosteroids have increased the need for preventative and therapeutic strategies for GVHD. Due to the nature of alloreactive T cells, GVHD is inherently linked to the graft-versus-leukemia (GVL) effect, the therapeutic driving force behind stem cell transplantation. A considerable clinical challenge is to preserve GVL while suppressing GVHD. The field of GVHD research has greatly expanded over the past decades, including advancements in T cell modulation and depletion, antibody therapies, chemotherapeutics, cellular therapies, and Janus kinase inhibition. In this review, we discuss current approaches and advances in the prophylaxis and treatment of GVHD with a focus on new emerging advancements in Janus kinase inhibitor therapy.
Collapse
Affiliation(s)
- Elisa De Togni
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Oladipo Cole
- Division of Oncology, Washington University School of Medicine, St. Louis, MO, United States
| | - Ramzi Abboud
- Division of Oncology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
34
|
Mok CC. Outlook of the jakinibs in systemic lupus erythematous after baricitinib failed. Int J Rheum Dis 2024; 27:e15082. [PMID: 38375760 DOI: 10.1111/1756-185x.15082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 01/31/2024] [Indexed: 02/21/2024]
Affiliation(s)
- Chi Chiu Mok
- Department of Medicine, Tuen Mun Hospital, Hong Kong, China
| |
Collapse
|
35
|
Fischer M, Olbrich P, Hadjadj J, Aumann V, Bakhtiar S, Barlogis V, von Bismarck P, Bloomfield M, Booth C, Buddingh EP, Cagdas D, Castelle M, Chan AY, Chandrakasan S, Chetty K, Cougoul P, Crickx E, Dara J, Deyà-Martínez A, Farmand S, Formankova R, Gennery AR, Gonzalez-Granado LI, Hagin D, Hanitsch LG, Hanzlikovà J, Hauck F, Ivorra-Cortés J, Kisand K, Kiykim A, Körholz J, Leahy TR, van Montfrans J, Nademi Z, Nelken B, Parikh S, Plado S, Ramakers J, Redlich A, Rieux-Laucat F, Rivière JG, Rodina Y, Júnior PR, Salou S, Schuetz C, Shcherbina A, Slatter MA, Touzot F, Unal E, Lankester AC, Burns S, Seppänen MRJ, Neth O, Albert MH, Ehl S, Neven B, Speckmann C. JAK inhibitor treatment for inborn errors of JAK/STAT signaling: An ESID/EBMT-IEWP retrospective study. J Allergy Clin Immunol 2024; 153:275-286.e18. [PMID: 37935260 DOI: 10.1016/j.jaci.2023.10.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/21/2023] [Accepted: 10/25/2023] [Indexed: 11/09/2023]
Abstract
BACKGROUND Inborn errors of immunity (IEI) with dysregulated JAK/STAT signaling present with variable manifestations of immune dysregulation and infections. Hematopoietic stem cell transplantation (HSCT) is potentially curative, but initially reported outcomes were poor. JAK inhibitors (JAKi) offer a targeted treatment option that may be an alternative or bridge to HSCT. However, data on their current use, treatment efficacy and adverse events are limited. OBJECTIVE We evaluated the current off-label JAKi treatment experience for JAK/STAT inborn errors of immunity (IEI) among European Society for Immunodeficiencies (ESID)/European Society for Blood and Marrow Transplantation (EBMT) Inborn Errors Working Party (IEWP) centers. METHODS We conducted a multicenter retrospective study on patients with a genetic disorder of hyperactive JAK/STAT signaling who received JAKi treatment for at least 3 months. RESULTS Sixty-nine patients (72% children) were evaluated (45 STAT1 gain of function [GOF], 21 STAT3-GOF, 1 STAT5B-GOF, 1 suppressor of cytokine signaling 1 [aka SOCS1] loss of function, 1 JAK1-GOF). Ruxolitinib was the predominantly prescribed JAKi (80%). Overall, treatment resulted in improvement (partial or complete remission) of clinical symptoms in 87% of STAT1-GOF and in 90% of STAT3-GOF patients. We documented highly heterogeneous dosing and monitoring regimens. The response rate and time to response varied across different diseases and manifestations. Adverse events including infection and weight gain were frequent (38% of patients) but were mild (grade I-II) and transient in most patients. At last follow-up, 52 (74%) of 69 patients were still receiving JAKi treatment, and 11 patients eventually underwent HSCT after receipt of previous JAKi bridging therapy, with 91% overall survival. CONCLUSIONS Our study suggests that JAKi may be highly effective to treat symptomatic JAK/STAT IEI patients. Prospective studies to define optimal JAKi dosing for the variable clinical presentations and age ranges should be pursued.
Collapse
Affiliation(s)
- Marco Fischer
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Division of Immunology and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland; Department of Immunology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Peter Olbrich
- Pediatric Infectious Diseases, Rheumatology and Immunology Unit, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla, IBiS/ Universidad de Sevilla/CSIC, Red de Investigación Traslacional en Infectología Pediátrica RITIP, Seville, Spain; Departamento de Pediatría, Facultad de Medicina, Universidad de Sevilla, Seville, Spain
| | - Jérôme Hadjadj
- Sorbonne University, Department of Internal Medicine, APHP, Saint-Antoine Hospital, F-75012 Paris, France
| | - Volker Aumann
- Pediatric Oncology Department, Otto von Guericke University Children's Hospital Magdeburg, Magdeburg, Germany
| | - Shahrzad Bakhtiar
- Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Department for Children and Adolescents Medicine, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Vincent Barlogis
- Pediatric Hematology Unit, Latimone University Hospital, Marseille, France
| | - Philipp von Bismarck
- Clinic for General Pediatrics, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Markéta Bloomfield
- Department of Immunology, 2nd Faculty of Medicine, Charles University in Prague and University Hospital in Motol, 1st Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Claire Booth
- Department of Paediatric Immunology and Gene Therapy, Great Ormond Street Hospital London, London, England, United Kingdom
| | - Emmeline P Buddingh
- Willem-Alexander Children's Hospital, Department of Pediatrics, Pediatric Stem cell Transplantation program, Leiden University Medical Center, Leiden, The Netherlands
| | - Deniz Cagdas
- Department of Pediatric Immunology, Hacettepe University Medical School, Ankara, Turkey
| | - Martin Castelle
- Immuno-hematology and Rheumatology Unit, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris, Université de Paris, INSERM 1163, Institut Imagine, Paris, Île-de-France, France
| | - Alice Y Chan
- Division of Allergy, Immunology, Bone Marrow Transplantation, Department of Pediatrics, University of California, San Francisco, Calif
| | - Shanmuganathan Chandrakasan
- Aflac Cancer and Blood Disorder Center, Department of Pediatrics, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Ga
| | - Kritika Chetty
- Department of Paediatric Immunology and Gene Therapy, Great Ormond Street Hospital London, London, England, United Kingdom
| | - Pierre Cougoul
- Oncopole, Institut Universitaire du cancer de toulouse, Toulouse, France
| | - Etienne Crickx
- Internal Medicine Department, Centre Hospitalier Universitaire Henri-Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris-Est Créteil (UPEC), Créteil, France
| | - Jasmeen Dara
- Division of Allergy, Immunology, Bone Marrow Transplantation, Department of Pediatrics, University of California, San Francisco, Calif
| | - Angela Deyà-Martínez
- Clinical Immunology and Primary Immunodeficiencies Unit, Pediatric Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain; Universitat de Barcelona Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Susan Farmand
- Division of Pediatric Stem Cell Transplantation and Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Renata Formankova
- Department of Paediatric Haematology and Oncology, Motol University Hospital and 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Andrew R Gennery
- Children's Hematopoietic Stem Cell Transplant Unit, Great North Children's Hospital, Newcastle upon Tyne, England, United Kingdom
| | - Luis Ignacio Gonzalez-Granado
- Primary Immunodeficiencies Unit, Department of Pediatrics, Hospital 12 Octubre Research Institute, Hospital 12 Octubre (i+12) Complutense University School of Medicine, Madrid, Spain
| | - David Hagin
- Allergy and Clinical Immunology Unit, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Leif Gunnar Hanitsch
- Institute of Medical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin and the Berlin Institute of Health (BIH), BIH Center for Regenerative Therapies, Berlin, Germany
| | - Jana Hanzlikovà
- Department of Immunology and Allergology, Faculty of Medicine and Faculty Hospital, Pilsen, Czech Republic
| | - Fabian Hauck
- Department of Pediatrics, Dr von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - José Ivorra-Cortés
- Rheumatology Department, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - Kai Kisand
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Ayca Kiykim
- Istanbul University-Cerrahpasa, Pediatric Immunology and Allergy, Istanbul, Turkey
| | - Julia Körholz
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Timothy Ronan Leahy
- Children's Health Ireland, Crumlin, Dublin, Ireland; University of Dublin, Trinity College, Dublin, Ireland
| | - Joris van Montfrans
- Department of Pediatric Immunology and Infectious Diseases, Wilhelmina's Children Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Zohreh Nademi
- Children's Hematopoietic Stem Cell Transplant Unit, Great North Children's Hospital, Newcastle upon Tyne, England, United Kingdom
| | - Brigitte Nelken
- Pediatric Hematology Unit, Centre Hospitalier Universitaire Regional de Lille, Lille, France
| | - Suhag Parikh
- Aflac Cancer and Blood Disorder Center, Department of Pediatrics, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Ga
| | - Silvi Plado
- Department of Pediatrics, Tallinn Children's Hospital, Tallinn, Estonia
| | - Jan Ramakers
- Department of Pediatrics. Hospital Universitari Son Espases, Palma, Spain; Multidisciplinary Group for Research in Pediatrics, Hospital Universtari Son Espases, Balearic Island Health Research Institute (IdISBa), Palma, Spain
| | - Antje Redlich
- Pediatric Oncology Department, Otto von Guericke University Children's Hospital Magdeburg, Magdeburg, Germany
| | - Frédéric Rieux-Laucat
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Institut Imagine, INSERM, UMR 1163, Paris, France
| | - Jacques G Rivière
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Yulia Rodina
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology, and Immunology, Moscow, Russia
| | - Pérsio Roxo Júnior
- Division of Pediatric Immunology and Allergy, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Sarah Salou
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Catharina Schuetz
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Anna Shcherbina
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology, and Immunology, Moscow, Russia
| | - Mary A Slatter
- Children's Hematopoietic Stem Cell Transplant Unit, Great North Children's Hospital, Newcastle upon Tyne, England, United Kingdom
| | - Fabien Touzot
- Department of Pediatrics, CHU Ste-Justine, Université de Montréal, Montreal, Canada
| | - Ekrem Unal
- Department of Pediatric Hematology and Oncology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Arjan C Lankester
- Willem-Alexander Children's Hospital, Department of Pediatrics, Pediatric Stem cell Transplantation program, Leiden University Medical Center, Leiden, The Netherlands
| | - Siobhan Burns
- Institute of Immunity and Transplantation, University College London, London, England, United Kingdom
| | - Mikko R J Seppänen
- The Rare Disease and Pediatric Research Centers, Hospital for Children and Adolescents and Adult Immunodeficiency Unit, Inflammation Center, University of Helsinki and HUS Helsinki, University Hospital, Helsinki, Finland
| | - Olaf Neth
- Pediatric Infectious Diseases, Rheumatology and Immunology Unit, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla, IBiS/ Universidad de Sevilla/CSIC, Red de Investigación Traslacional en Infectología Pediátrica RITIP, Seville, Spain
| | - Michael H Albert
- Department of Pediatrics, Dr von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Stephan Ehl
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bénédicte Neven
- Immuno-hematology and Rheumatology Unit, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris, Université de Paris, INSERM 1163, Institut Imagine, Paris, Île-de-France, France
| | - Carsten Speckmann
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
36
|
Liongue C, Sobah ML, Ward AC. Signal Transducer and Activator of Transcription Proteins at the Nexus of Immunodeficiency, Autoimmunity and Cancer. Biomedicines 2023; 12:45. [PMID: 38255152 PMCID: PMC10813391 DOI: 10.3390/biomedicines12010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
The signal transducer and activator of transcription (STAT) family of proteins has been demonstrated to perform pivotal roles downstream of a myriad of cytokines, particularly those that control immune cell production and function. This is highlighted by both gain-of-function (GOF) and loss-of-function (LOF) mutations being implicated in various diseases impacting cells of the immune system. These mutations are typically inherited, although somatic GOF mutations are commonly observed in certain immune cell malignancies. This review details the growing appreciation of STAT proteins as a key node linking immunodeficiency, autoimmunity and cancer.
Collapse
Affiliation(s)
- Clifford Liongue
- School of Medicine, Deakin University, Waurn Ponds, Geelong, VIC 3216, Australia; (C.L.); (M.L.S.)
- Institute for Mental and Physical Health and Clinical Translation, Deakin University, Waurn Ponds, Geelong, VIC 3216, Australia
| | - Mohamed Luban Sobah
- School of Medicine, Deakin University, Waurn Ponds, Geelong, VIC 3216, Australia; (C.L.); (M.L.S.)
| | - Alister C. Ward
- School of Medicine, Deakin University, Waurn Ponds, Geelong, VIC 3216, Australia; (C.L.); (M.L.S.)
- Institute for Mental and Physical Health and Clinical Translation, Deakin University, Waurn Ponds, Geelong, VIC 3216, Australia
| |
Collapse
|
37
|
Lévy R, Escudier A, Bastard P, Briand C, Polivka L, Stoupa A, Talbotec C, Rothenbuhler A, Charbit M, Debray D, Bodemer C, Casanova JL, Linglart A, Neven B. Ruxolitinib Rescues Multiorgan Clinical Autoimmunity in Patients with APS-1. J Clin Immunol 2023; 44:5. [PMID: 38112858 PMCID: PMC10730634 DOI: 10.1007/s10875-023-01629-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 11/21/2023] [Indexed: 12/21/2023]
Abstract
Autoimmune polyendocrine syndrome type-1 (APS-1) is caused by mono- or biallelic loss-of-function variants of the autoimmune regulator gene AIRE underlying early-onset multiorgan autoimmunity and the production of neutralizing autoantibodies against cytokines, accounting for mucosal candidiasis and viral diseases. Medical intervention is essential to prevent or attenuate autoimmune manifestations. Ruxolitinib is a JAK inhibitor approved for use in several autoimmune conditions. It is also used off-label to treat autoimmune manifestations of a growing range of inborn errors of immunity. We treated three APS-1 patients with ruxolitinib and followed them for at least 30 months. Tolerance was excellent, with no medical or biological adverse events. All three patients had remarkably positive responses to ruxolitinib for alopecia, nail dystrophy, keratitis, mucosal candidiasis, steroid-dependent autoimmune hepatitis, exocrine pancreatic insufficiency, renal potassium wasting, hypoparathyroidism, and diabetes insipidus. JAK inhibitors were therefore considered an effective treatment in three patients with APS-1. Our observations suggest that JAK/STAT pathways are involved in the pathogenesis of APS-1 autoimmune manifestations. They also suggest that JAK inhibitors should be tested in a broader range of APS-1 patients.
Collapse
Affiliation(s)
- Romain Lévy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, EU, France.
- Paris-Cité University, Imagine Institute, Paris, EU, France.
- Pediatric Hematology, Immunology and Rheumatology Unit, Necker Hospital for Sick Children, AP-HP, Paris, EU, France.
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA.
| | - Agathe Escudier
- Paris-Cité University, Imagine Institute, Paris, EU, France
- Pediatric Hematology, Immunology and Rheumatology Unit, Necker Hospital for Sick Children, AP-HP, Paris, EU, France
| | - Paul Bastard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, EU, France
- Paris-Cité University, Imagine Institute, Paris, EU, France
- Pediatric Hematology, Immunology and Rheumatology Unit, Necker Hospital for Sick Children, AP-HP, Paris, EU, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Coralie Briand
- Department of Pediatrics, Jean Verdier Hospital, AP-HP, Bondy, EU, France
| | - Laura Polivka
- Paris-Cité University, Imagine Institute, Paris, EU, France
- Department of Dermatology, Reference Center for Genodermatoses (MAGEC), Imagine Institute, Necker Hospital for Sick Children, AP-HP, Paris, EU, France
| | - Athanasia Stoupa
- Pediatric Endocrinology, Gynecology and Diabetology Department, Necker Hospital for Sick Children, AP-HP, Paris, EU, France
| | - Cécile Talbotec
- Department of Pediatric Gastroenterology, Necker Hospital for Sick Children, AP-HP, Paris, EU, France
| | - Anya Rothenbuhler
- Department of Endocrinology and Diabetes for Children; Reference Center for Rare Diseases of Calcium and Phosphate Metabolism, Filière OSCAR, ERN BOND, Endo-ERN, Bicêtre Paris Saclay Hospital, AP-HP, Le Kremlin-Bicêtre, EU, France
| | - Marina Charbit
- Department of Pediatric Nephrology, Necker Hospital for Sick Children, AP-HP, Paris, EU, France
| | - Dominique Debray
- Department of Pediatric Hepatology, Necker Hospital for Sick Children, AP-HP, Paris, EU, France
| | - Christine Bodemer
- Paris-Cité University, Imagine Institute, Paris, EU, France
- Department of Dermatology, Reference Center for Genodermatoses (MAGEC), Imagine Institute, Necker Hospital for Sick Children, AP-HP, Paris, EU, France
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, EU, France
- Paris-Cité University, Imagine Institute, Paris, EU, France
- Pediatric Hematology, Immunology and Rheumatology Unit, Necker Hospital for Sick Children, AP-HP, Paris, EU, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, New York, NY, USA
| | - Agnès Linglart
- Department of Endocrinology and Diabetes for Children; Reference Center for Rare Diseases of Calcium and Phosphate Metabolism, Filière OSCAR, ERN BOND, Endo-ERN, Bicêtre Paris Saclay Hospital, AP-HP, Le Kremlin-Bicêtre, EU, France
- Paris Saclay University, INSERM U1185, Bicêtre Paris Saclay Hospital, Le Kremlin-Bicêtre, EU, France
| | - Bénédicte Neven
- Paris-Cité University, Imagine Institute, Paris, EU, France
- Pediatric Hematology, Immunology and Rheumatology Unit, Necker Hospital for Sick Children, AP-HP, Paris, EU, France
| |
Collapse
|
38
|
Li J, Li L, Zhang Z, Chen P, Shu H, Yang C, Chu Y, Liu J. Ferroptosis: an important player in the inflammatory response in diabetic nephropathy. Front Immunol 2023; 14:1294317. [PMID: 38111578 PMCID: PMC10725962 DOI: 10.3389/fimmu.2023.1294317] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/15/2023] [Indexed: 12/20/2023] Open
Abstract
Diabetic nephropathy (DN) is a chronic inflammatory disease that affects millions of diabetic patients worldwide. The key to treating of DN is early diagnosis and prevention. Once the patient enters the clinical proteinuria stage, renal damage is difficult to reverse. Therefore, developing early treatment methods is critical. DN pathogenesis results from various factors, among which the immune response and inflammation play major roles. Ferroptosis is a newly discovered type of programmed cell death characterized by iron-dependent lipid peroxidation and excessive ROS production. Recent studies have demonstrated that inflammation activation is closely related to the occurrence and development of ferroptosis. Moreover, hyperglycemia induces iron overload, lipid peroxidation, oxidative stress, inflammation, and renal fibrosis, all of which are related to DN pathogenesis, indicating that ferroptosis plays a key role in the development of DN. Therefore, this review focuses on the regulatory mechanisms of ferroptosis, and the mutual regulatory processes involved in the occurrence and development of DN and inflammation. By discussing and analyzing the relationship between ferroptosis and inflammation in the occurrence and development of DN, we can deepen our understanding of DN pathogenesis and develop new therapeutics targeting ferroptosis or inflammation-related regulatory mechanisms for patients with DN.
Collapse
Affiliation(s)
- Jialing Li
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Luxin Li
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China
| | - Zhen Zhang
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China
- School of First Clinical Medical College, Mudanjiang Medical University, Mudanjiang, China
| | - Peijian Chen
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China
| | - Haiying Shu
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Can Yang
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Yanhui Chu
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China
| | - Jieting Liu
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China
| |
Collapse
|
39
|
Sapountzi E, Fotis L, Kotanidou E, Fidani L, Galli-Tsinopoulou A. Janus Kinase Inhibitors and Interstitial Lung Disease Associated With Pediatric Rheumatic Diseases: An Unexplored Field. Cureus 2023; 15:e50928. [PMID: 38143732 PMCID: PMC10739229 DOI: 10.7759/cureus.50928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2023] [Indexed: 12/26/2023] Open
Abstract
Rheumatic diseases are often complicated by lung disease, commonly presenting as interstitial lung disease (ILD), with potentially detrimental consequences for patient survival. Although less frequent in pediatric patients, pulmonary involvement may be observed in almost all childhood-onset rheumatic conditions. The development of biological disease-modifying anti-rheumatic drugs has significantly improved clinical outcomes. However, disease remission is not always complete or long-lasting, and treatment may need to be discontinued due to adverse effects. A novel class of drugs, namely Janus kinase inhibitors (JAKis), has been proposed to provide a significant survival benefit for patients with rheumatic diseases. Despite the ample literature on the efficacy and safety of JAKis in rheumatic disease, only a few studies have investigated the effectiveness of these drugs in patients with pulmonary involvement, and only two case reports have presented results in pediatric patients. We provide an overview of the rationale for using JAKis in ILDs associated with rheumatic disease and summarize the main studies evaluating their efficacy in both adult and pediatric patients. The present review highlights the need for controlled long-term studies to assess the efficacy and safety of JAKis in pediatric rheumatic disease complicated by lung disease.
Collapse
Affiliation(s)
- Evdoxia Sapountzi
- 2nd Department of Pediatrics, AHEPA University General Hospital, Aristotle University of Thessaloniki, Thessaloniki, GRC
| | - Lampros Fotis
- Department of Pediatrics, Attikon General University Hospital, National and Kapodistrian University of Athens, Athens, GRC
| | - Eleni Kotanidou
- 2nd Department of Pediatrics, AHEPA University General Hospital, Aristotle University of Thessaloniki, Thessaloniki, GRC
| | - Liana Fidani
- Department of Medical Biology Genetics, Aristotle University of Thessaloniki, Thessaloniki, GRC
- 2nd Department of Pediatrics, AHEPA University General Hospital, Aristotle University of Thessaloniki, Thessaloniki, GRC
| | - Assimina Galli-Tsinopoulou
- 2nd Department of Pediatrics, AHEPA University General Hospital, Aristotle University of Thessaloniki, Thessaloniki, GRC
| |
Collapse
|
40
|
Deng H, Gong X, Ji G, Li C, Cheng S. KIF2C promotes clear cell renal cell carcinoma progression via activating JAK2/STAT3 signaling pathway. Mol Cell Probes 2023; 72:101938. [PMID: 37863123 DOI: 10.1016/j.mcp.2023.101938] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/14/2023] [Accepted: 10/16/2023] [Indexed: 10/22/2023]
Abstract
BACKGROUND Clear cell renal cell carcinoma (ccRCC) is one of the most common malignant tumors that can be highly aggressive. Despite advances in the exploration of its underlying molecular biology, the clinical outcome for advanced ccRCC is still unsatisfied. Recently, more attention was paid to the functions of Kinesin family member 2C (KIF2C) in cancer progression, while the specific function of KIF2C in ccRCC has not been sufficiently elucidated. The present study aims to investigate the role of KIF2C in the progression of ccRCC and reveal potential mechanisms. METHODS Expression of KIF2C in ccRCC tissues and adjacent normal tissue was compared and the association of KIF2C expression level with tumor grade, stage, and metastasis were analyzed using online web tool. Kaplan-Meier survival was performed to detect the association of KIF2C expression and patient' prognosis. Stably cell lines with KIF2C knockdown or overexpression were constructed by lentivirus infection. CCK-8, colony formation, scratch healing, and transwell invasion assays were carried out to explore the effect of KIF2C knockdown or overexpression on the proliferation, migration, and invasion of ccRCC cells. Gene set enrichment analysis (GSEA) was conducted to reveal signaling pathways associated with KIF2C expression. The effect of KIF2C on JAK2/STAT3 signaling pathway were explored by western blot assay. RESULTS KIF2C expression was significantly upregulated in ccRCC tissues and was higher with the increase of tumor grade, stage, and metastasis. Higher expression of KIF2C was correlated with worse overall survival and diseases free survival in ccRCC patients. Silence of KIF2C inhibited proliferation, migration, and invasion in ccRCC cells. Conversely, overexpression of KIF2C had the opposite effect. GSEA results showed that JAK/STAT signaling pathway was markedly enriched in KIF2Chigh group. Pearson' correlation revealed that KIF2C expression was significantly associated with genes in JAK2/STAT3 signaling. Western blot results showed that KIF2C knockdown decreased protein expression of p-JAK2 and p-STAT3, and KIF2C overexpression increased the phosphorylation of JAK2 and STAT3. AG490, a JAK2/STAT3 signaling inhibitor, could partly impair the tumor-promoting effects of KIF2C in ccRCC. CONCLUSION KIF2C expression was significantly upregulated in ccRCC and correlated with tumor grade, stage, metastasis, and patients' prognosis. KIF2C promoted ccRCC progression via activating JAK2/STAT3 signaling pathway, and KIF2C might be a novel target in ccRCC therapy.
Collapse
Affiliation(s)
- Hao Deng
- Department of Urology, The First People's Hospital of Jingzhou, Jingzhou, 434000, PR China
| | - Xiaobo Gong
- Department of Urology, The First People's Hospital of Jingzhou, Jingzhou, 434000, PR China
| | - Guanghai Ji
- Department of Urology, The First People's Hospital of Jingzhou, Jingzhou, 434000, PR China
| | - Chenglong Li
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, PR China.
| | - Shaoping Cheng
- Department of Urology, The First People's Hospital of Jingzhou, Jingzhou, 434000, PR China.
| |
Collapse
|
41
|
Ma L, Peng L, Zhao J, Bai W, Jiang N, Zhang S, Wu C, Wang L, Xu D, Leng X, Wang Q, Zhang W, Zhao Y, Tian X, Li M, Zeng X. Efficacy and safety of Janus kinase inhibitors in systemic and cutaneous lupus erythematosus: A systematic review and meta-analysis. Autoimmun Rev 2023; 22:103440. [PMID: 37678618 DOI: 10.1016/j.autrev.2023.103440] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/03/2023] [Indexed: 09/09/2023]
Abstract
BACKGROUND Janus kinase (JAK) inhibitors have been proven to be effective and safe in various autoimmune diseases. However, there is still a lack of comprehensive evidence regarding their efficacy and safety in systemic and cutaneous lupus erythematosus. METHODS We searched for systemic and cutaneous lupus erythematosus patients who were treated with JAK inhibitors in PubMed, Embase, Web of Science, and the Cochrane Library until February 28, 2023. The quality of clinical trials was assessed using the Cochrane risk-of-bias tool. Meta-analysis was conducted when at least three studies had comparable measures of outcome. If meta-analysis was not feasible, a descriptive review was carried out. RESULTS We included 30 studies, consisting of 10 randomized controlled trials and 20 case series or reports, with a total of 2,460 patients. JAK inhibitors were found to be more effective than placebo in systemic lupus erythematosus (SLE) based on the percentage of achieving SLE Responder Index (SRI)-4 response (RR = 1.18; 95% CI 1.07 to 1.31; p = 0.001), British Isles Lupus Assessment Group -based Composite Lupus Assessment (BICLA) response (RR = 1.16; 95% CI 1.02 to 1.31; p = 0.02), Lupus Low Disease Activity State (LLDAS) (RR = 1.28; 95% CI 1.07 to 1.54; p = 0.008), and Systemic Lupus Erythematosus Disease Activity Index 2000 (SLEDAI-2 K) remission of arthritis or rash (RR = 1.09; 95% CI 1.00 to 1.18; p = 0.04), particularly in treating musculoskeletal and mucocutaneous involvement. However, the effect of JAK inhibitors on cutaneous lupus erythematosus was uncertain. JAK inhibitors and placebo had a similar incidence of adverse events (RR = 1.01; 95% CI 0.97 to 1.04; p = 0.65). CONCLUSION JAK inhibitors could be a potential treatment option for systemic and cutaneous lupus erythematosus, particularly in treating cutaneous and musculoskeletal lesions of SLE. JAK inhibitors had a safe profile.
Collapse
Affiliation(s)
- Leyao Ma
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Beijing, China; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China; Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Liying Peng
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Beijing, China; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China; Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Jiuliang Zhao
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Beijing, China; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China; Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China.
| | - Wei Bai
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Beijing, China; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China; Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Nan Jiang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Beijing, China; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China; Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Shangzhu Zhang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Beijing, China; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China; Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Chanyuan Wu
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Beijing, China; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China; Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Li Wang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Beijing, China; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China; Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Dong Xu
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Beijing, China; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China; Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Xiaomei Leng
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Beijing, China; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China; Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Qian Wang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Beijing, China; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China; Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Wen Zhang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Beijing, China; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China; Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Yan Zhao
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Beijing, China; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China; Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Xinping Tian
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Beijing, China; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China; Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China.
| | - Mengtao Li
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Beijing, China; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China; Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China.
| | - Xiaofeng Zeng
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Beijing, China; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China; Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| |
Collapse
|
42
|
Pilania RK, Goyal T, Singh S. Editorial: Advances in therapeutic strategies of inborn errors of immunity. Front Immunol 2023; 14:1328846. [PMID: 38022641 PMCID: PMC10666772 DOI: 10.3389/fimmu.2023.1328846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 11/01/2023] [Indexed: 12/01/2023] Open
Affiliation(s)
- Rakesh Kumar Pilania
- Pediatric Allergy Immunology Unit, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Taru Goyal
- Pediatric Allergy Immunology Unit, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Surjit Singh
- Pediatric Allergy Immunology Unit, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
43
|
Chen L, Zhu MY, Wang GX, Lu LL, Lin L, Lei L, Wu T. Ruxolitinib ameliorated coxsackievirus B3-induced acute viral myocarditis by suppressing the JAK-STAT pathway. Int Immunopharmacol 2023; 124:110797. [PMID: 37634445 DOI: 10.1016/j.intimp.2023.110797] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 08/02/2023] [Accepted: 08/11/2023] [Indexed: 08/29/2023]
Abstract
BACKGROUND Accumulating evidences have demonstrated that overwhelming inflammation occurs in the process of Coxsackievirus B3 (CVB3)-induced acute viral myocarditis (AVM). No specific therapy is available. More than an effective Janus-associated kinase (JAK) inhibiter, ruxolitinib exerts a critical role in the inflammatory diseases. In this study, we investigated the potential effect of ruxolitinib on CVB3-induced acute viral myocarditis. METHOD In vivo, BALB/c mice were intraperitoneally injected of CVB3, treated of a successive gavage of ruxolitinib for seven days, and subjected to a series of analysis. In vitro, primary bone marrow-derived macrophages (BMDMs) and cardiac fibroblasts were isolated, cultured, treated, harvested and finally detected. RESULTS In vivo, acute viral myocarditis was successfully induced by the injection of CVB3 characterized by impaired cardiac function, predominant infiltration of inflammatory cells, necroptosis of myocardium, great increase of cardiac troponin I (cTnI) and cytokine levels, replication of CVB3, and excessive activation of JAK-STAT pathways. Oral administration of ruxolitinib suppressed the activation of JAK-STAT pathway in a dosage-dependent way, lessened the infiltration of inflammatory cells and necroptosis of myocardium, reduced the levels of cTnI and cytokines, and finally alleviated CVB3-induced cardiac dysfunction, with the reduced production of type I interferon and no promising effect on the replication of CVB3. In vitro, the treatment of ruxolitinib inhibited the activation of JAK-STAT pathway and increase of multiple cytokines mRNA levels in BMDMs and had no protective effect against CVB3 replication in cardiac fibroblasts. CONCLUSIONS Our study suggested that ruxolitinib ameliorated CVB3-induced AVM by inhibiting the activation of JAK-STAT pathway, infiltration of inflammatory cells and necroptosis of myocardium, which may provide a novel strategy for AVM therapy.
Collapse
Affiliation(s)
- Liang Chen
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Meng-Ying Zhu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Gao-Xiang Wang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, Hubei 430030, China
| | - Li-Li Lu
- Institute of Pharmaceutical Innovation, College of Medicine, Wuhan University of Science and Technology, Wuhan 430065, Hubei, China
| | - Li Lin
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Lei Lei
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Ting Wu
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
44
|
Pandey R, Bakay M, Hakonarson H. SOCS-JAK-STAT inhibitors and SOCS mimetics as treatment options for autoimmune uveitis, psoriasis, lupus, and autoimmune encephalitis. Front Immunol 2023; 14:1271102. [PMID: 38022642 PMCID: PMC10643230 DOI: 10.3389/fimmu.2023.1271102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/02/2023] [Indexed: 12/01/2023] Open
Abstract
Autoimmune diseases arise from atypical immune responses that attack self-tissue epitopes, and their development is intricately connected to the disruption of the JAK-STAT signaling pathway, where SOCS proteins play crucial roles. Conditions such as autoimmune uveitis, psoriasis, lupus, and autoimmune encephalitis exhibit immune system dysfunctions associated with JAK-STAT signaling dysregulation. Emerging therapeutic strategies utilize JAK-STAT inhibitors and SOCS mimetics to modulate immune responses and alleviate autoimmune manifestations. Although more research and clinical studies are required to assess their effectiveness, safety profiles, and potential for personalized therapeutic approaches in autoimmune conditions, JAK-STAT inhibitors and SOCS mimetics show promise as potential treatment options. This review explores the action, effectiveness, safety profiles, and future prospects of JAK inhibitors and SOCS mimetics as therapeutic agents for psoriasis, autoimmune uveitis, systemic lupus erythematosus, and autoimmune encephalitis. The findings underscore the importance of investigating these targeted therapies to advance treatment options for individuals suffering from autoimmune diseases.
Collapse
Affiliation(s)
- Rahul Pandey
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Marina Bakay
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Hakon Hakonarson
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pediatrics, The University of Pennsylvania School of Medicine, Philadelphia, PA, United States
| |
Collapse
|
45
|
Park H, Lee S, Lee J, Moon H, Ro SW. Exploring the JAK/STAT Signaling Pathway in Hepatocellular Carcinoma: Unraveling Signaling Complexity and Therapeutic Implications. Int J Mol Sci 2023; 24:13764. [PMID: 37762066 PMCID: PMC10531214 DOI: 10.3390/ijms241813764] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Hepatocellular Carcinoma (HCC) continues to pose a substantial global health challenge due to its high incidence and limited therapeutic options. In recent years, the Janus Kinase (JAK) and Signal Transducer and Activator of Transcription (STAT) pathway has emerged as a critical signaling cascade in HCC pathogenesis. The review commences with an overview of the JAK/STAT pathway, delving into the dynamic interplay between the JAK/STAT pathway and its numerous upstream activators, such as cytokines and growth factors enriched in pathogenic livers afflicted with chronic inflammation and cirrhosis. This paper also elucidates how the persistent activation of JAK/STAT signaling leads to diverse oncogenic processes during hepatocarcinogenesis, including uncontrolled cell proliferation, evasion of apoptosis, and immune escape. In the context of therapeutic implications, this review summarizes recent advancements in targeting the JAK/STAT pathway for HCC treatment. Preclinical and clinical studies investigating inhibitors and modulators of JAK/STAT signaling are discussed, highlighting their potential in suppressing the deadly disease. The insights presented herein underscore the necessity for continued research into targeting the JAK/STAT signaling pathway as a promising avenue for HCC therapy.
Collapse
Affiliation(s)
| | | | | | | | - Simon Weonsang Ro
- Department of Genetics and Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si 17104, Republic of Korea; (H.P.); (S.L.); (J.L.); (H.M.)
| |
Collapse
|
46
|
Vaseghi-Shanjani M, Yousefi P, Sharma M, Samra S, Sifuentes E, Turvey SE, Biggs CM. Transcription factor defects in inborn errors of immunity with atopy. FRONTIERS IN ALLERGY 2023; 4:1237852. [PMID: 37727514 PMCID: PMC10505736 DOI: 10.3389/falgy.2023.1237852] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 08/08/2023] [Indexed: 09/21/2023] Open
Abstract
Transcription factors (TFs) are critical components involved in regulating immune system development, maintenance, and function. Monogenic defects in certain TFs can therefore give rise to inborn errors of immunity (IEIs) with profound clinical implications ranging from infections, malignancy, and in some cases severe allergic inflammation. This review examines TF defects underlying IEIs with severe atopy as a defining clinical phenotype, including STAT3 loss-of-function, STAT6 gain-of-function, FOXP3 deficiency, and T-bet deficiency. These disorders offer valuable insights into the pathophysiology of allergic inflammation, expanding our understanding of both rare monogenic and common polygenic allergic diseases. Advances in genetic testing will likely uncover new IEIs associated with atopy, enriching our understanding of molecular pathways involved in allergic inflammation. Identification of monogenic disorders profoundly influences patient prognosis, treatment planning, and genetic counseling. Hence, the consideration of IEIs is essential for patients with severe, early-onset atopy. This review highlights the need for continued investigation into TF defects to enhance our understanding and management of allergic diseases.
Collapse
Affiliation(s)
- Maryam Vaseghi-Shanjani
- British Columbia Children’s Hospital, Department of Pediatrics, The University of British Columbia, Vancouver, BC, Canada
- Experimental Medicine Program, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Pariya Yousefi
- British Columbia Children’s Hospital, Department of Pediatrics, The University of British Columbia, Vancouver, BC, Canada
| | - Mehul Sharma
- British Columbia Children’s Hospital, Department of Pediatrics, The University of British Columbia, Vancouver, BC, Canada
| | - Simran Samra
- British Columbia Children’s Hospital, Department of Pediatrics, The University of British Columbia, Vancouver, BC, Canada
- Experimental Medicine Program, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Erika Sifuentes
- British Columbia Children’s Hospital, Department of Pediatrics, The University of British Columbia, Vancouver, BC, Canada
| | - Stuart E. Turvey
- British Columbia Children’s Hospital, Department of Pediatrics, The University of British Columbia, Vancouver, BC, Canada
| | - Catherine M. Biggs
- British Columbia Children’s Hospital, Department of Pediatrics, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
47
|
Liu Y, Wang W, Zhang J, Gao S, Xu T, Yin Y. JAK/STAT signaling in diabetic kidney disease. Front Cell Dev Biol 2023; 11:1233259. [PMID: 37635867 PMCID: PMC10450957 DOI: 10.3389/fcell.2023.1233259] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/28/2023] [Indexed: 08/29/2023] Open
Abstract
Diabetic kidney disease (DKD) is the most important microvascular complication of diabetes and the leading cause of end-stage renal disease (ESRD) worldwide. The Janus kinase/signal transducer and activator of the transcription (JAK/STAT) signaling pathway, which is out of balance in the context of DKD, acts through a range of metabolism-related cytokines and hormones. JAK/STAT is the primary signaling node in the progression of DKD. The latest research on JAK/STAT signaling helps determine the role of this pathway in the factors associated with DKD progression. These factors include the renin-angiotensin system (RAS), fibrosis, immunity, inflammation, aging, autophagy, and EMT. This review epitomizes the progress in understanding the complicated explanation of the etiologies of DKD and the role of the JAK/STAT pathway in the progression of DKD and discusses whether it can be a potential target for treating DKD. It further summarizes the JAK/STAT inhibitors, natural products, and other drugs that are promising for treating DKD and discusses how these inhibitors can alleviate DKD to explore possible potential drugs that will contribute to formulating effective treatment strategies for DKD in the near future.
Collapse
Affiliation(s)
- Yingjun Liu
- Clinical Medicine Department, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wenkuan Wang
- Clinical Medicine Department, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jintao Zhang
- Clinical Medicine Department, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shuo Gao
- Clinical Medicine Department, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tingting Xu
- Clinical Medicine Department, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yonghui Yin
- Department of Endocrinology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
48
|
Melki I, Frémond ML. JAK Inhibition in Juvenile Idiopathic Arthritis (JIA): Better Understanding of a Promising Therapy for Refractory Cases. J Clin Med 2023; 12:4695. [PMID: 37510809 PMCID: PMC10381267 DOI: 10.3390/jcm12144695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/03/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
Juvenile idiopathic arthritis (JIA) is a heterogeneous group of diseases with probably differential underlying physiopathology. Despite the revolutionary era of biologics, some patients remain difficult to treat because of disease severity, drug adverse events, drug allergy or association with severe comorbidities, i.e., uveitis, interstitial lung disease and macrophagic activation syndrome. Janus Kinase (JAK) inhibitors are small molecules that target JAK/Signal Transducers and Activators of Transcription (STAT) pathways, which could then prevent the activity of several proinflammatory cytokines. They may provide a useful alternative in these cases of JIA or in patients actually affected by Mendelian disorders mimicking JIA, such as type I interferonopathies with joint involvement, and might be the bridge for haematopoietic stem cell transplantation in these disabling conditions. As these treatments may have side effects that should not be ignored, ongoing and further controlled studies are still needed to provide data underlying long-term safety considerations in children and delineate subsets of JIA patients that will benefit from these promising treatments.
Collapse
Affiliation(s)
- Isabelle Melki
- General Paediatrics, Department of Infectious Disease and Internal Medicine, Robert Debré University Hospital, APHP, Nord-Université Paris Cité, F-75020 Paris, France
- Paediatrics, Rheumatology and Paediatric Internal Medicine, Children's Hospital, F-33000 Bordeaux, France
- Laboratory of Neurogenetics and Neuroinflammation, Imagine Institute, Université Paris Cité, Inserm UMR 1163, F-75015 Paris, France
| | - Marie-Louise Frémond
- Laboratory of Neurogenetics and Neuroinflammation, Imagine Institute, Université Paris Cité, Inserm UMR 1163, F-75015 Paris, France
- Paediatric Haematology-Immunology and Rheumatology Unit, Necker Hospital, APHP, Centre-Université Paris Cité, F-75015 Paris, France
| |
Collapse
|
49
|
Baris S, Benamar M, Chen Q, Catak MC, Martínez-Blanco M, Wang M, Fong J, Massaad MJ, Sefer AP, Kara A, Babayeva R, Eltan SB, Yucelten AD, Bozkurtlar E, Cinel L, Karakoc-Aydiner E, Zheng Y, Wu H, Ozen A, Schmitz-Abe K, Chatila TA. Severe allergic dysregulation due to a gain of function mutation in the transcription factor STAT6. J Allergy Clin Immunol 2023; 152:182-194.e7. [PMID: 36758835 PMCID: PMC10330134 DOI: 10.1016/j.jaci.2023.01.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 02/10/2023]
Abstract
BACKGROUND Inborn errors of immunity have been implicated in causing immune dysregulation, including allergic diseases. STAT6 is a key regulator of allergic responses. OBJECTIVES This study sought to characterize a novel gain-of-function STAT6 mutation identified in a child with severe allergic manifestations. METHODS Whole-exome and targeted gene sequencing, lymphocyte characterization, and molecular and functional analyses of mutated STAT6 were performed. RESULTS This study reports a child with a missense mutation in the DNA binding domain of STAT6 (c.1114G>A, p.E372K) who presented with severe atopic dermatitis, eosinophilia, and elevated IgE. Naive lymphocytes from the affected patient displayed increased TH2- and suppressed TH1- and TH17-cell responses. The mutation augmented both basal and cytokine-induced STAT6 phosphorylation without affecting dephosphorylation kinetics. Treatment with the Janus kinase 1/2 inhibitor ruxolitinib reversed STAT6 hyperresponsiveness to IL-4, normalized TH1 and TH17 cells, suppressed the eosinophilia, and improved the patient's atopic dermatitis. CONCLUSIONS This study identified a novel inborn error of immunity due to a STAT6 gain-of-function mutation that gave rise to severe allergic dysregulation. Janus kinase inhibitor therapy could represent an effective targeted treatment for this disorder.
Collapse
Affiliation(s)
- Safa Baris
- Division of Pediatric Allergy and Immunology School of Medicine, Marmara University, Istanbul, Turkey; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey; The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Mehdi Benamar
- Division of Immunology, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Qian Chen
- Division of Immunology, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Mehmet Cihangir Catak
- Division of Pediatric Allergy and Immunology School of Medicine, Marmara University, Istanbul, Turkey; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey; The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Mónica Martínez-Blanco
- Division of Immunology, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Muyun Wang
- Division of Immunology, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Jason Fong
- Division of Immunology, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Michel J Massaad
- Department of Experimental Pathology, Immunology, and Microbiology, American University of Beirut, Beirut, Lebanon; Department of Pediatrics and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Asena Pinar Sefer
- Division of Pediatric Allergy and Immunology School of Medicine, Marmara University, Istanbul, Turkey; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey; The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Altan Kara
- TUBITAK Marmara Research Center, Gene Engineering and Biotechnology Institute, Gebze, Turkey
| | - Royala Babayeva
- Division of Pediatric Allergy and Immunology School of Medicine, Marmara University, Istanbul, Turkey; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey; The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Sevgi Bilgic Eltan
- Division of Pediatric Allergy and Immunology School of Medicine, Marmara University, Istanbul, Turkey; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey; The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Ayse Deniz Yucelten
- Department of Dermatology, School of Medicine, Marmara University, Istanbul, Turkey
| | - Emine Bozkurtlar
- Department of Pathology, School of Medicine, Marmara University, Istanbul, Turkey
| | - Leyla Cinel
- Department of Pathology, School of Medicine, Marmara University, Istanbul, Turkey
| | - Elif Karakoc-Aydiner
- Division of Pediatric Allergy and Immunology School of Medicine, Marmara University, Istanbul, Turkey; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey; The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Yumei Zheng
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Mass; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Mass
| | - Hao Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Mass; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Mass
| | - Ahmet Ozen
- Division of Pediatric Allergy and Immunology School of Medicine, Marmara University, Istanbul, Turkey; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey; The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Klaus Schmitz-Abe
- Division of Immunology, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Harvard Medical School, Boston, Mass; The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Mass
| | - Talal A Chatila
- Division of Immunology, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Harvard Medical School, Boston, Mass.
| |
Collapse
|
50
|
Son A, Meylan F, Gomez-Rodriguez J, Kaul Z, Sylvester M, Falduto GH, Vazquez E, Haque T, Kitakule MM, Wang C, Manthiram K, Qi CF, Cheng J, Gurram RK, Zhu J, Schwartzberg P, Milner JD, Frischmeyer-Guerrerio PA, Schwartz DM. Dynamic chromatin accessibility licenses STAT5- and STAT6-dependent innate-like function of T H9 cells to promote allergic inflammation. Nat Immunol 2023; 24:1036-1048. [PMID: 37106040 PMCID: PMC10247433 DOI: 10.1038/s41590-023-01501-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 03/27/2023] [Indexed: 04/29/2023]
Abstract
Allergic diseases are a major global health issue. Interleukin (IL)-9-producing helper T (TH9) cells promote allergic inflammation, yet TH9 cell effector functions are incompletely understood because their lineage instability makes them challenging to study. Here we found that resting TH9 cells produced IL-9 independently of T cell receptor (TCR) restimulation, due to STAT5- and STAT6-dependent bystander activation. This mechanism was seen in circulating cells from allergic patients and was restricted to recently activated cells. STAT5-dependent Il9/IL9 regulatory elements underwent remodeling over time, inactivating the locus. A broader 'allergic TH9' transcriptomic and epigenomic program was also unstable. In vivo, TH9 cells induced airway inflammation via TCR-independent, STAT-dependent mechanisms. In allergic patients, TH9 cell expansion was associated with responsiveness to JAK inhibitors. These findings suggest that TH9 cell instability is a negative checkpoint on bystander activation that breaks down in allergy and that JAK inhibitors should be considered for allergic patients with TH9 cell expansion.
Collapse
Affiliation(s)
- Aran Son
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Francoise Meylan
- Office of Science and Technology, National Institute of Arthritis, Musculoskeletal, and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Julio Gomez-Rodriguez
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- TCR Therapeutics, Cambridge, MA, USA
| | - Zenia Kaul
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - McKella Sylvester
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Guido H Falduto
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Estefania Vazquez
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Tamara Haque
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Moses M Kitakule
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Division of Pediatric Allergy Immunology and Rheumatology, Department of Pediatrics, Columbia University Medical Center, New York, NY, USA
| | - Chujun Wang
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kalpana Manthiram
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Chen-Feng Qi
- Pathology Core, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jun Cheng
- Embryonic Stem Cell and Transgenic Core, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Rama K Gurram
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jinfang Zhu
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Pamela Schwartzberg
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Joshua D Milner
- Division of Pediatric Allergy Immunology and Rheumatology, Department of Pediatrics, Columbia University Medical Center, New York, NY, USA
| | - Pamela A Frischmeyer-Guerrerio
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Daniella M Schwartz
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|