1
|
Gül A, Aksentijevich I, Brogan P, Gattorno M, Grayson PC, Ozen S. The pathogenesis, clinical presentations and treatment of monogenic systemic vasculitis. Nat Rev Rheumatol 2025:10.1038/s41584-025-01250-9. [PMID: 40369133 DOI: 10.1038/s41584-025-01250-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2025] [Indexed: 05/16/2025]
Abstract
Many monogenic autoinflammatory diseases, including DADA2 (deficiency of adenosine deaminase 2), HA20 (haploinsufficiency of A20), SAVI (STING-associated vasculopathy with onset in infancy), COPA syndrome, LAVLI (LYN kinase-associated vasculopathy and liver fibrosis) and VEXAS (vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic) syndrome, present predominantly with vasculitis and constitute a substantial subgroup of vasculitic conditions associated with a 'probable aetiology'. The spectrum of monogenic vasculitis encompasses all sizes and types of blood vessel, ranging from large vessels to medium-size and small vessels, and from the arterial side to the venous side of the vasculature. Monogenic vasculitis typically starts early in life during infancy or childhood; VEXAS syndrome, which presents in late adulthood, is an exception. The activation of myeloid cells via inflammasome and nuclear factor-κB pathways, type I interferon-enhanced autoimmune mechanisms and/or dysregulated adaptive immune responses have an important role in the development of immune-mediated endothelial dysfunction and vascular damage. Genetic testing is essential for the diagnosis of underlying monogenic autoinflammatory diseases; however, the penetrance of genetic variants can vary. Increased awareness and recognition of distinctive clinical findings could facilitate earlier diagnosis and allow for more-targeted treatments.
Collapse
Affiliation(s)
- Ahmet Gül
- Division of Rheumatology, Department of Internal Medicine, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey.
| | - Ivona Aksentijevich
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, MD, USA
| | - Paul Brogan
- Infection, Immunity and Inflammation, University College London Great Ormond Street Institute of Child Health, London, UK
| | - Marco Gattorno
- UOC Reumatologia e Malattie Autoinfiammatorie, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Peter C Grayson
- National Institutes of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Seza Ozen
- Department of Paediatric Rheumatology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
2
|
Xie J, Chen Q, Li L, Liu J. Overexpression of SERPINA3 inhibits castration-resistant prostate cancer progression by enhancing M1 macrophage recruitment via CXCL2 upregulation. Braz J Med Biol Res 2025; 58:e14445. [PMID: 40367014 PMCID: PMC12068766 DOI: 10.1590/1414-431x2025e14445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 03/19/2025] [Indexed: 05/16/2025] Open
Abstract
The primary objective of the present study was to identify differentially expressed genes (DEGs) associated with castration-resistant prostate cancer (CRPC) to verify the potential mechanism of CRPC progression. DEGs from CRPC datasets were filtered with a P<0.05 and Spearman correlation coefficient ≥0.3. Serpin peptidase inhibitor, clade A member 3 (SERPINA3), was uniquely present in three CRPC datasets, and its low expression in CRPC was confirmed in cell lines and tissues. Colony formation, transwell assays, and subcutaneous tumor formation experiments in mice demonstrated that overexpression of SERPINA3 may significantly inhibit the proliferation and invasion of PC3 cells. Mechanistic studies revealed that, in prostate cancer (PCa), SERPINA3 can activate the interleukin (IL)-17 and tumor necrosis factor (TNF)α signaling pathways by promoting the expression of CXC chemokine ligand 2 (CXCL2), thereby increasing the recruitment of M1 macrophages into the tumor microenvironment and inhibiting the progression of PCa. The current results indicated that the expression of SERPINA3 may be negatively correlated with CRPC, and it could promote the M1 polarization of macrophages and inhibit the progression of CRPC by increasing the expression of CXCL2.
Collapse
Affiliation(s)
- Jianbing Xie
- Department of Urology, Affiliated Hospital of Putian University, Putian, Fujian, China
| | - Qiren Chen
- Department of Breast Surgery, Affiliated Hospital of Putian University, Putian, Fujian, China
| | - Lixian Li
- Department of Urology, Affiliated Hospital of Putian University, Putian, Fujian, China
| | - Jinyu Liu
- Department of Urology, Affiliated Hospital of Putian University, Putian, Fujian, China
| |
Collapse
|
3
|
Wang S, Xiao R, Chen Y, Ye Y, He T, Yang Y, Chen X, Chou CK. Anti-tumor necrosis factor therapy in the treatment of systemic autoinflammatory diseases: the responses of innate immune cells. J Leukoc Biol 2025; 117:qiaf026. [PMID: 40084825 DOI: 10.1093/jleuko/qiaf026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/09/2025] [Accepted: 03/01/2025] [Indexed: 03/16/2025] Open
Abstract
Systemic autoinflammatory diseases are rare conditions resulting from dysregulation of the innate immune system, culminating in repetitive bouts of systemic inflammation without the presence of external or self-antigens. Most systemic autoinflammatory diseases are associated with mutations in genes affecting the innate immune response. Tumor necrosis factor is a central player in the pathogenesis of numerous chronic inflammatory disorders, and anti-tumor necrosis factor therapy is widely used in the clinical management of systemic autoinflammatory diseases. Tumor necrosis factor inhibitors block the interaction of tumor necrosis factor with its 2 receptors, tumor necrosis factor receptor 1 and tumor necrosis factor receptor 2. These inhibitors primarily target soluble tumor necrosis factor, which mainly binds to tumor necrosis factor receptor 1, exerting anti-inflammatory effects. Interestingly, tumor necrosis factor inhibitors also affect transmembrane tumor necrosis factor, which engages tumor necrosis factor receptor 2 to initiate reverse signaling. This reverse signaling can activate innate immune cells, prevent apoptosis, or paradoxically inhibit the production of pro-inflammatory cytokines. Tumor necrosis factor inhibitors also promote the release of soluble tumor necrosis factor receptor 2, which neutralizes circulating tumor necrosis factor. Some agents targeting tumor necrosis factor receptor 2 can even act as agonists, triggering reverse signaling by binding to transmembrane tumor necrosis factor. While effective, prolonged use of tumor necrosis factor inhibitors may cause significant side effects due to the widespread expression and pleiotropic functions of tumor necrosis factor receptors. A more thorough understanding of the mechanisms underlying the action of tumor necrosis factor inhibitors is required to develop a more effective and safer treatment for systemic autoinflammatory diseases. This article reviews current studies on the role of the innate immune system in systemic autoinflammatory disease pathogenesis, the impact of anti-tumor necrosis factor therapy on innate immune cells, and perspectives on developing improved agents targeting tumor necrosis factor or its receptors.
Collapse
Affiliation(s)
- Shuyi Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau 999078, P. R. China
| | - Rufei Xiao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau 999078, P. R. China
| | - Yibo Chen
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau 999078, P. R. China
| | - Yishan Ye
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, P. R. China
| | - Tianzhen He
- Institute of Special Environmental Medicine, Nantong University, Nantong 226019, P. R. China
| | - Yang Yang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau 999078, P. R. China
| | - Xin Chen
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau 999078, P. R. China
- Department of Pharmaceutical Science, Faculty of Health Sciences, University of Macau, Macau 999078, P. R. China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau 999078, P. R. China
| | - Chon-Kit Chou
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau 999078, P. R. China
| |
Collapse
|
4
|
Ehlers L, Meyts I. Getting to know adenosine deaminase 2 deficiency inside and out. J Allergy Clin Immunol 2025; 155:1451-1463. [PMID: 39956283 PMCID: PMC12060026 DOI: 10.1016/j.jaci.2025.01.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/22/2025] [Accepted: 01/27/2025] [Indexed: 02/18/2025]
Abstract
Ten years after the description of the first cohorts of patients with adenosine deaminase (ADA2) deficiency (DADA2), the pathomechanisms underlying the disease on a cellular level remain poorly understood. With the establishment of the lysosomal localization of the ADA2 protein and its involvement in nucleic acid sensing, the pathophysiologic focus has shifted to the inside of the cell. At the same time, extracellular (serum) ADA2 enzyme activity continues to be the diagnostic reference standard in patients with suspected DADA2. The diverse clinical phenotype and weak genotype-phenotype correlations further complicate the identification of shared cellular mechanisms that cause inflammation, immunodeficiency, and bone marrow failure in the absence of functional ADA2. This review inspects the characteristics of the ADA2 protein and its proposed function. The latter is discussed in the context of possible mechanisms driving the clinical phenotype in patients lacking functional ADA2. We discuss established processes and introduce unexplored pathways in the pathogenesis of DADA2.
Collapse
Affiliation(s)
- Lisa Ehlers
- Department of Microbiology, Immunology and Transplantation, Laboratory for Inborn Errors of Immunity, Katholieke Universiteit (KU) Leuven, Leuven, Belgium; Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany; German Center for Child and Adolescent Health (DZKJ), partner site Berlin, Berlin, Germany; Deutsches Rheuma-Forschungszentrum, an Institute of the Leibniz Association, Berlin, Germany
| | - Isabelle Meyts
- Department of Microbiology, Immunology and Transplantation, Laboratory for Inborn Errors of Immunity, Katholieke Universiteit (KU) Leuven, Leuven, Belgium; Department of Pediatrics, University Hospitals Leuven, KU Leuven, Leuven, Belgium.
| |
Collapse
|
5
|
Dong L, Lu B, Luo W, Gu X, Wu C, Trotta L, Seppanen M, Zhang Y, Zavialov AV. Intracellular concentration of ADA2 is a marker for monocyte differentiation and activation. Front Med 2025; 19:359-375. [PMID: 39832022 DOI: 10.1007/s11684-024-1110-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/18/2024] [Indexed: 01/22/2025]
Abstract
Adenosine, a critical molecule regulating cellular function both inside and outside cells, is controlled by two human adenosine deaminases: ADA1 and ADA2. While ADA1 primarily resides in the cytoplasm, ADA2 can be transported to lysosomes within cells or secreted outside the cell. Patients with ADA2 deficiency (DADA2) often suffer from systemic vasculitis due to elevated levels of TNF-α in their blood. Monocytes from DADA2 patients exhibit excessive TNF-α secretion and differentiate into pro-inflammatory M1-type macrophages. Our findings demonstrate that ADA2 localizes to endolysosomes within macrophages, and its intracellular concentration decreases in cells secreting TNF-α. This suggests that ADA2 may function as a lysosomal adenosine deaminase, regulating TNF-α expression by the cells. Interestingly, pneumonia patients exhibit higher ADA2 concentrations in their bronchoalveolar lavage (BAL), correlating with elevated pro-inflammatory cytokine levels. Conversely, cord blood has low ADA2 levels, creating a more immunosuppressive environment. Additionally, secreted ADA2 can bind to apoptotic cells, activating immune cells by reducing extracellular adenosine levels. These findings imply that ADA2 release from monocytes during inflammation, triggered by growth factors, may be crucial for cell activation. Targeting intracellular and extracellular ADA2 activities could pave the way for novel therapies in inflammatory and autoimmune disorders.
Collapse
Affiliation(s)
- Liang Dong
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Bingtai Lu
- Department of Respiratory Medicine, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Centre, State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, 510623, China
| | - Wenwen Luo
- International Center for Aging and Cancer (ICAC), Hainan Medical University, Haikou, 571199, China
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Xiaoqiong Gu
- Guangzhou Women and Children's Medical Center, Guangzhou, 510623, China
| | - Chengxiang Wu
- Tulane National Primate Research Center, Covington, USA
| | - Luca Trotta
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Mikko Seppanen
- Adult Immunodeficiency Unit, Inflammation Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Rare Diseases Center, Hospital for Children and Adolescents, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Yuxia Zhang
- Department of Respiratory Medicine, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Centre, State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, 510623, China
| | - Andrey V Zavialov
- International Center for Aging and Cancer (ICAC), Hainan Medical University, Haikou, 571199, China.
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China.
- Turku Center for Biotechnology, Turku, Finland.
| |
Collapse
|
6
|
Bulté D, Barzaghi F, Mesa-Nuñez C, Rigamonti C, Basso-Ricci L, Visconti C, Crippa S, Pettinato E, Gilioli D, Milani R, Quaranta P, Caorsi R, Cafaro A, Cangemi G, Lupia M, Schena F, Grossi A, Di Colo G, Federici S, Insalaco A, De Benedetti F, Marktel S, Di Micco R, Bernardo ME, Scala S, Cicalese MP, Conti F, Miano M, Gattorno M, Dufour C, Aiuti A, Mortellaro A. Early bone marrow alterations in patients with adenosine deaminase 2 deficiency across disease phenotypes and severities. J Allergy Clin Immunol 2025; 155:616-627.e8. [PMID: 39284370 PMCID: PMC11804788 DOI: 10.1016/j.jaci.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND Deficiency of adenosine deaminase 2 (DADA2) is a complex monogenic disease caused by recessive mutations in the ADA2 gene. DADA2 exhibits a broad clinical spectrum encompassing vasculitis, immunodeficiency, and hematologic abnormalities. Yet, the impact of DADA2 on the bone marrow (BM) microenvironment is largely unexplored. OBJECTIVE This study comprehensively examined the BM and peripheral blood of pediatric and adult patients with DADA2 presenting with rheumatologic/immunologic symptoms or severe hematologic manifestations. METHODS Immunophenotyping of hematopoietic stem cells (HSCs), progenitor cells, and mature cell populations was performed for 18 patients with DADA2. We also conducted a characterization of mesenchymal stromal cells. RESULTS Our study revealed a significant decrease in primitive HSCs and progenitor cells, alongside their reduced clonogenic capacity and multilineage differentiation potential. These BM defects were evident in patients with both severe and nonsevere hematologic manifestations, including pediatric patients, demonstrating that BM disruption can emerge silently and early on, even in patients who do not show obvious hematologic symptoms. Beyond stem cells, there was a reduction in mature cell populations in the BM and peripheral blood, affecting myeloid, erythroid, and lymphoid populations. Furthermore, BM mesenchymal stromal cells in patients with DADA2 exhibited reduced clonogenic and proliferation capabilities and were more prone to undergo cellular senescence marked by elevated DNA damage. CONCLUSIONS Our exploration into the BM landscape of patients with DADA2 sheds light on the critical hematologic dimension of the disease and emphasizes the importance of vigilant monitoring, even in the case of subclinical presentation.
Collapse
Affiliation(s)
- Dimitri Bulté
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federica Barzaghi
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Cristina Mesa-Nuñez
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Rigamonti
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Luca Basso-Ricci
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Camilla Visconti
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Stefania Crippa
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Emanuela Pettinato
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Diego Gilioli
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Raffaella Milani
- Immunohematology and Transfusion Medicine Unit, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Pamela Quaranta
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Roberta Caorsi
- UOC Rheumatology and Autoinflammatory Diseases, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Alessia Cafaro
- Chromatography and Mass Spectrometry Section, Central Laboratory of Analysis, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Giuliana Cangemi
- Chromatography and Mass Spectrometry Section, Central Laboratory of Analysis, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Michela Lupia
- Hematology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Francesca Schena
- UOC Rheumatology and Autoinflammatory Diseases, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Alice Grossi
- Laboratorio Genetica e Genomica delle Malattie Rare, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Giulia Di Colo
- Vita-Salute San Raffaele University, Milan, Italy; Immunology, Rheumatology, Allergy and Rare Disease Unit, IRCCS San Raffaele Hospital, Milan, Italy
| | - Silvia Federici
- Division of Rheumatology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Antonella Insalaco
- Division of Rheumatology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Sarah Marktel
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Raffaella Di Micco
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria Ester Bernardo
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy; Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Serena Scala
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria Pia Cicalese
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy; Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Francesca Conti
- Pediatric Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy; Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Maurizio Miano
- Hematology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Marco Gattorno
- UOC Rheumatology and Autoinflammatory Diseases, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Carlo Dufour
- Hematology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Alessandro Aiuti
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy; Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Alessandra Mortellaro
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
7
|
Öztürk A, Yagci L, Ugurlu S. Mimics and challenging presentations of DADA2. Clin Exp Immunol 2025; 219:uxaf017. [PMID: 40117338 PMCID: PMC12062958 DOI: 10.1093/cei/uxaf017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 01/21/2025] [Accepted: 03/14/2025] [Indexed: 03/23/2025] Open
Abstract
Deficiency of adenosine deaminase 2 (DADA2) has been a challenging diagnosis to make since it was first described in 2014. The disease represents a wide range of phenotypes. Therefore, it may present with various clinical patterns. Throughout the years, several difficult-to-diagnose cases of DADA2 were reported in the literature. Although several studies and reviews were published regarding different phenotypes and manifestations of DADA2, a review of challenging cases with diverse combinations of DADA2 manifestations was needed to integrate the knowledge from the literature into the clinical practice. Immunological, hematologic, autoinflammatory, and adult-onset polyarteritis-nodosa patterns were reported in the literature as cases challenging to diagnose. In this review, we aim to summarize the challenging case reports from the literature, provide an algorithmic approach for these kinds of presentations, and share our perspective and recommendations on the topic. Diagnosing DADA2 on time is a vital issue for preventing fatal and debilitating vascular events with anti-TNF-alpha therapy. Thus, early testing for DADA2 in suspected cases is recommended. Family history and genetic testing of the patient and the first-degree relatives are essential for accurate diagnosis. Thorough systemic examination and imaging might help detect clinically silent findings of vasculitis. Enzymatic activity of ADA2, when available, is also a key diagnostic tool that complements genetic testing and clinical evaluation.
Collapse
Affiliation(s)
- Admir Öztürk
- Medicine, Cerrahpasa Medical Faculty, University of Istanbul-Cerrahpasa, Istanbul, Türkiye
| | - Lara Yagci
- Medicine, Cerrahpasa Medical Faculty, University of Istanbul-Cerrahpasa, Istanbul, Türkiye
| | - Serdal Ugurlu
- Division of Rheumatology, Department of Internal Medicine, Cerrahpasa Medical Faculty, University of Istanbul-Cerrahpasa, Istanbul, Türkiye
| |
Collapse
|
8
|
Al-Ghoul M, Yazbak J, Rummanneh I, Abuhammad A, Khalilia AH, Wahdan AAM. Deficiency of adenosine deaminase 2 (DADA2) presented with bilateral renal subcapsular hematoma: a case report and literature review. Ann Med Surg (Lond) 2024; 86:6717-6720. [PMID: 39525764 PMCID: PMC11543174 DOI: 10.1097/ms9.0000000000002340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/22/2024] [Indexed: 11/16/2024] Open
Abstract
Introduction and importance Adenosine deaminase 2 (DADA2) deficiency is a monogenic autoinflammatory disease caused by biallelic mutations in the ADA2 gene. Small- and medium-sized vessels may be involved and can cause various clinical symptoms, including features resembling polyarteritis nodosa (PAN). In this article, the authors discuss a unique case of DADA2 disease in which a patient presented with a bilateral renal subcapsular hematoma. Case presentation An 18-year-old female patient with a history of recurrent optic neuritis presented with a sudden onset of right flank pain as well as nausea, vomiting, weight loss, fever, and elevated arterial blood pressure. Comprehensive abdominal imaging revealed the presence of a bilateral renal subcapsular hematoma. A laboratory test revealed a positive ANA, negative C-ANCA and P-ANCA, and high ESR and CRP. This finding indicated the presence of systemic inflammation. The authors considered DADA2 based on the patient's clinical features and her family's history of autoimmune diseases. A genetic study of the patient revealed the presence of a homozygous ADA2 mutation at chromosomal position 22:17182609, which confirmed the presence of adenosine deaminase 2 deficiency. Clinical discussion The authors present a rare case of DADA2 disease successfully treated with immunosuppressive therapy. As the authors suspected of having known autoimmune diseases, the patient's clinical and laboratory results improved with corticosteroids and etanercept treatment, leading to notable remission. Under continuous CT imaging, the subcapsular hematoma shrank significantly over two months, decreasing from 8.3 to 5 cm in size for the right-sided hematoma and completely disappearing for the left-sided hematoma. Conclusion The clinical features of DADA2 may be fatal, but DADA2 may also be curable; therefore, early diagnosis and treatment are essential.
Collapse
Affiliation(s)
| | | | | | | | - Ali H. Khalilia
- Palestine Medical Complex, Internal Medicine, Ramallah, State of Palestine
| | - Adnan A. M. Wahdan
- Palestine Medical Complex, Internal Medicine, Ramallah, State of Palestine
| |
Collapse
|
9
|
Dong L, Luo W, Maksym S, Robson SC, Zavialov AV. Adenosine deaminase 2 regulates the activation of the toll-like receptor 9 in response to nucleic acids. Front Med 2024; 18:814-830. [PMID: 39078537 DOI: 10.1007/s11684-024-1067-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/31/2024] [Indexed: 07/31/2024]
Abstract
Human cells contain two types of adenosine deaminases (ADA) each with unique properties: ADA1, which is present in all cells where it modulates intracellular functions and extracellular signaling, and ADA2, which is secreted by immune cells. The exact intracellular functions of ADA2 remain undetermined and less defined than those of ADA1. ADA2 has distinct characteristics, such as low adenosine affinity, heparin-binding ability, and putative lysosomal entry. Here, we confirm that ADA2 is a lysosomal protein that binds toll-like receptor 9 (TLR9) agonists, specifically CpG oligodeoxynucleotides (CpG ODNs). We show that interferon-alpha (IFN-α) is secreted in response to TLR9 activation by CpG ODNs and natural DNA and markedly increases when ADA2 expression is downregulated in plasmacytoid dendritic cells (pDCs). Additionally, the pretreatment of pDCs with RNA further stimulates IFN-α secretion by pDCs after activation with CpG ODNs. Our findings indicate that ADA2 regulates TLR9 responses to DNA in activated pDCs. In conclusion, decreasing ADA2 expression or blocking it with specific oligonucleotides can enhance IFN-α secretion from pDCs, improving immune responses against intracellular infections and cancer.
Collapse
Affiliation(s)
- Liang Dong
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Wenwen Luo
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Skaldin Maksym
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
- Joint Biotechnology Laboratory, University of Turku, Turku, 20520, Finland
| | - Simon C Robson
- Center for Inflammation Research, Departments of Anesthesia and Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, 02215, USA
| | - Andrey V Zavialov
- International Center for Aging and Cancer (ICAC), Hainan Medical University, Haikou, 571199, China.
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China.
| |
Collapse
|
10
|
Afzal SY, MacDougall MS, McGhee SA. Immunodeficiency: Gene therapy for primary immune deficiency. Allergy Asthma Proc 2024; 45:384-388. [PMID: 39294901 DOI: 10.2500/aap.2024.45.240054] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Current gene therapy for inborn errors of immunity have involved the use of gene addition approaches with viral delivery. This main strategy has had demonstrated success mainly in severe combined immune deficiency, Wiskott-Aldrich syndrome, and chronic granulomatous disease. Despite the increasing success of gene therapy, there are limitations of gene therapy, and, therefore, hematopoietic stem cell transplantation continues to be the preferred option. With improvements in viral delivery through next-generation lentiviral vectors and the advent of gene editing with CRISPR-Cas9, the efficacy and safety of gene therapy may soon surpass hematopoietic stem cell transplantation. Furthermore, these advances improve the viability of gene therapy for inborn errors of immunity primarily through decreased risk of transplantation-related complications. Therefore, despite current limitations, gene therapy for inborn errors of immunity is poised to continue to expand to more patients and indications.
Collapse
|
11
|
Kozu KT, Nascimento RRNRD, Aires PP, Cordeiro RA, Moura TCLD, Sztajnbok FR, Pereira IA, Almeida de Jesus A, Perazzio SF. Inflammatory turmoil within: an exploration of autoinflammatory disease genetic underpinnings, clinical presentations, and therapeutic approaches. Adv Rheumatol 2024; 64:62. [PMID: 39175060 DOI: 10.1186/s42358-024-00404-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 08/11/2024] [Indexed: 08/24/2024] Open
Abstract
Systemic autoinflammatory diseases (SAIDs) arise from dysregulated innate immune system activity, which leads to systemic inflammation. These disorders, encompassing a diverse array of genetic defects classified as inborn errors of immunity, are significant diagnostic challenges due to their genetic heterogeneity and varied clinical presentations. Although recent advances in genetic sequencing have facilitated pathogenic gene discovery, approximately 40% of SAIDs patients lack molecular diagnoses. SAIDs have distinct clinical phenotypes, and targeted therapeutic approaches are needed. This review aims to underscore the complexity and clinical significance of SAIDs, focusing on prototypical disorders grouped according to their pathophysiology as follows: (i) inflammasomopathies, characterized by excessive activation of inflammasomes, which induces notable IL-1β release; (ii) relopathies, which are monogenic disorders characterized by dysregulation within the NF-κB signaling pathway; (iii) IL-18/IL-36 signaling pathway defect-induced SAIDs, autoinflammatory conditions defined by a dysregulated balance of IL-18/IL-36 cytokine signaling, leading to uncontrolled inflammation and tissue damage, mainly in the skin; (iv) type I interferonopathies, a diverse group of disorders characterized by uncontrolled production of type I interferons (IFNs), notably interferon α, β, and ε; (v) anti-inflammatory signaling pathway impairment-induced SAIDs, a spectrum of conditions characterized by IL-10 and TGFβ anti-inflammatory pathway disruption; and (vi) miscellaneous and polygenic SAIDs. The latter group includes VEXAS syndrome, chronic recurrent multifocal osteomyelitis/chronic nonbacterial osteomyelitis, Schnitzler syndrome, and Still's disease, among others, illustrating the heterogeneity of SAIDs and the difficulty in creating a comprehensive classification. Therapeutic strategies involving targeted agents, such as JAK inhibitors, IL-1 blockers, and TNF inhibitors, are tailored to the specific disease phenotypes.
Collapse
Affiliation(s)
- Kátia Tomie Kozu
- Universidade de Sao Paulo, Faculdade de Medicina (USP FM), Sao Paulo, Brazil
| | | | - Patrícia Pontes Aires
- Universidade Federal de Sao Paulo, Escola Paulista de Medicina (Unifesp EPM), Rua Otonis, 863, Vila Clementino, São Paulo, SP, 04025-002, Brazil
| | | | | | - Flavio Roberto Sztajnbok
- Federal University of Rio de Janeiro: Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Sandro Félix Perazzio
- Universidade de Sao Paulo, Faculdade de Medicina (USP FM), Sao Paulo, Brazil.
- Universidade Federal de Sao Paulo, Escola Paulista de Medicina (Unifesp EPM), Rua Otonis, 863, Vila Clementino, São Paulo, SP, 04025-002, Brazil.
- Division of Immunology and Rheumatology, Fleury Laboratories, Sao Paulo, SP, Brazil.
| |
Collapse
|
12
|
Grim A, Veiga KR, Saad N. Deficiency of Adenosine Deaminase 2: Clinical Manifestations, Diagnosis, and Treatment. Rheum Dis Clin North Am 2023; 49:773-787. [PMID: 37821195 DOI: 10.1016/j.rdc.2023.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Deficiency of adenosine deaminase 2 (DADA2) is a monogenic vasculitis syndrome caused by biallelic mutations in the adenosine deaminase 2 gene. The diagnosis of DADA2 is confirmed by decreased enzymatic activity of ADA2 and genetic testing. Symptoms range from cutaneous vasculitis and polyarteritis nodosa-like lesions to stroke. The vasculopathy of DADA2 can affect many organ systems, including the gastrointestinal and renal systems. Hematologic manifestations occur early with hypogammaglobulinemia, lymphopenia, pure red cell aplasia, or pancytopenia. Treatment can be challenging. Tumor necrosis factor inhibitors are helpful to control inflammatory symptoms. Hematopoietic stem cell transplant may be needed to treat refractory cytopenias, vasculopathy, or immunodeficiency.
Collapse
Affiliation(s)
- Andrew Grim
- Division of Pediatric Rheumatology, Department of Pediatrics, Michigan Medicine, 1500 East Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Keila R Veiga
- Division of Pediatric Rheumatology, Department of Pediatrics, New York Medical College/Maria Fareri Children's Hospital, 100 Woods Road, Valhalla, NY 10595, USA
| | - Nadine Saad
- Division of Pediatric Rheumatology, Department of Pediatrics, Michigan Medicine, 1500 East Medical Center Drive, Ann Arbor, MI 48109, USA.
| |
Collapse
|
13
|
Mohan S. Targeted Treatment of Diseases of Immune Dysregulation. Rheum Dis Clin North Am 2023; 49:913-929. [PMID: 37821203 DOI: 10.1016/j.rdc.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Increasing molecular knowledge of autoinflammatory and autoimmune disorders has enabled more targeted treatment of these conditions. Treatment of inflammasomopathies is often aimed at interleukin-1 (IL-1) blockade, with potential use of other inhibitors targeting cytokines such as IL-18 and IL-6. Interferonopathies and some disorders with overlap features of autoimmunity and autoinflammation may improve with Janus kinase inhibition. Autoimmune conditions may also respond to inhibition of different cytokines, as well as to inhibition of T and B lymphocytes. Effective treatment is increasingly possible through targeted/precision medicine approaches.
Collapse
Affiliation(s)
- Smriti Mohan
- Division of Rheumatology, Department of Pediatrics, University of Michigan CS Mott Children's Hospital, 1500 East Medical Ctr Dr SPC 5718, Ann Arbor, MI 48109-5718, USA.
| |
Collapse
|
14
|
Jefferson L, Ramanan AV, Cummins M, Roderick M. Tailing growth, neonatal jaundice and anaemia. Arch Dis Child Educ Pract Ed 2023; 108:377-384. [PMID: 37263765 DOI: 10.1136/archdischild-2022-324990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 05/11/2023] [Indexed: 06/03/2023]
Abstract
At medical school, there is a phrase to help us remember that common things are common: 'If you hear hooves think horses, not zebras'. However, zebras do exist, and from time to time in general paediatric and neonatal practice, we will encounter these rare diagnoses, more of which we can now accurately diagnose through the ever-expanding field of genomics. Our case demonstrates how a rare diagnosis can present with common features of growth restriction, jaundice and anaemia. Paediatricians therefore require a high index of suspicion and increasing knowledge of the logistics of genetic testing.
Collapse
Affiliation(s)
- Lucy Jefferson
- Paediatrics, Bristol Royal Hospital for Children, Bristol, UK
| | - Athimalaipet V Ramanan
- Department of Paediatric Rheumatology, Bristol Royal Hospital for Children, Bristol, UK
- Translational Health Sciences, University of Bristol, Bristol, UK
| | - Michelle Cummins
- Paediatric Haematology, Bristol Royal Hospital for Children, Bristol, UK
| | - Marion Roderick
- Paediatric Infectious Diseases and Immunology, Bristol Royal Hospital for Children, Bristol, UK
| |
Collapse
|
15
|
Chen L, Mamutova A, Kozlova A, Latysheva E, Evgeny F, Latysheva T, Savostyanov K, Pushkov A, Zhanin I, Raykina E, Kurnikova M, Mersiyanova I, Platt CD, Jee H, Brodeur K, Du Y, Liu M, Weiss A, Schulert GS, Rodriguez-Smith J, Hershfield MS, Aksentijevich I, Zhou Q, Nigrovic PA, Shcherbina A, Alexeeva E, Lee PY. Comparison of disease phenotypes and mechanistic insight on causal variants in patients with DADA2. J Allergy Clin Immunol 2023; 152:771-782. [PMID: 37150360 DOI: 10.1016/j.jaci.2023.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 04/14/2023] [Accepted: 04/20/2023] [Indexed: 05/09/2023]
Abstract
BACKGROUND Deficiency of adenosine deaminase 2 (DADA2) results in heterogeneous manifestations including systemic vasculitis and red cell aplasia. The basis of different disease phenotypes remains incompletely defined. OBJECTIVE We sought to further delineate disease phenotypes in DADA2 and define the mechanistic basis of ADA2 variants. METHODS We analyzed the clinical features and ADA2 variants in 33 patients with DADA2. We compared the transcriptomic profile of 14 patients by bulk RNA sequencing. ADA2 variants were expressed experimentally to determine impact on protein production, trafficking, release, and enzymatic function. RESULTS Transcriptomic analysis of PBMCs from DADA2 patients with the vasculitis phenotype or pure red cell aplasia phenotype exhibited similar upregulation of TNF, type I interferon, and type II interferon signaling pathways compared with healthy controls. These pathways were also activated in 3 asymptomatic individuals with DADA2. Analysis of ADA2 variants, including 7 novel variants, showed different mechanisms of functional disruption including (1) unstable transcript leading to RNA degradation; (2) impairment of ADA2 secretion because of retention in the endoplasmic reticulum; (3) normal expression and secretion of ADA2 that lacks enzymatic function; and (4) disruption of the N-terminal signal peptide leading to cytoplasmic localization of unglycosylated protein. CONCLUSIONS Transcriptomic signatures of inflammation are observed in patients with different disease phenotypes, including some asymptomatic individuals. Disease-associated ADA2 variants affect protein function by multiple mechanisms, which may contribute to the clinical heterogeneity of DADA2.
Collapse
Affiliation(s)
- Liang Chen
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Mass
| | - Anna Mamutova
- Federal State Autonomous Institution "National Medical Research Center for Children's Health" of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Anna Kozlova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | | | - Frolov Evgeny
- NRC Institute of Immunology FMBA of Russia, Moscow, Russia
| | | | - Kirill Savostyanov
- Federal State Autonomous Institution "National Medical Research Center for Children's Health" of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Alexander Pushkov
- Federal State Autonomous Institution "National Medical Research Center for Children's Health" of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Ilya Zhanin
- Federal State Autonomous Institution "National Medical Research Center for Children's Health" of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Elena Raykina
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Maria Kurnikova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Irina Mersiyanova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Craig D Platt
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Mass
| | - Hyuk Jee
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Mass
| | - Kailey Brodeur
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Mass
| | - Yan Du
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Mass; Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Meng Liu
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Mass
| | - Aaron Weiss
- Department of Pediatrics, Maine Medical Center, Portland, Me
| | - Grant S Schulert
- Division of Rheumatology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Jackeline Rodriguez-Smith
- Division of Rheumatology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Michael S Hershfield
- Department of Medicine and Biochemistry, Duke University School of Medicine, Durham, NC
| | - Ivona Aksentijevich
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, Md
| | - Qing Zhou
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Peter A Nigrovic
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Mass; Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Boston, Mass
| | - Anna Shcherbina
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Ekaterina Alexeeva
- Federal State Autonomous Institution "National Medical Research Center for Children's Health" of the Ministry of Health of the Russian Federation, Moscow, Russia; Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - Pui Y Lee
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Mass.
| |
Collapse
|
16
|
Gagne S, Sivaraman V, Akoghlanian S. Interferonopathies masquerading as non-Mendelian autoimmune diseases: pattern recognition for early diagnosis. Front Pediatr 2023; 11:1169638. [PMID: 37622085 PMCID: PMC10445166 DOI: 10.3389/fped.2023.1169638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 07/05/2023] [Indexed: 08/26/2023] Open
Abstract
Type I interferonopathies are a broad category of conditions associated with increased type I interferon gene expression and include monogenic autoinflammatory diseases and non-Mendelian autoimmune diseases such as dermatomyositis and systemic lupus erythematosus. While a wide range of clinical presentations among type I interferonopathies exists, these conditions often share several clinical manifestations and implications for treatment. Presenting symptoms may mimic non-Mendelian autoimmune diseases, including vasculitis and systemic lupus erythematosus, leading to delayed or missed diagnosis. This review aims to raise awareness about the varied presentations of monogenic interferonopathies to provide early recognition and appropriate treatment to prevent irreversible damage and improve quality of life and outcomes in this unique patient population.
Collapse
Affiliation(s)
- Samuel Gagne
- Division of Pediatric Rheumatology, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Vidya Sivaraman
- Division of Pediatric Rheumatology, Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University, Columbus, OH, United States
| | - Shoghik Akoghlanian
- Division of Pediatric Rheumatology, Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
17
|
Nicoară D, Niță C, Stanilă A, Martiniuc A, Popa L, Petrescu E, Bătăneant M, Ciofu R, Guriță A, Tabăcaru R, Ionescu R, Groșeanu L. A new CECR1 mutation associated with severe hematological involvement in ADA2 deficiency. Immun Inflamm Dis 2023; 11:e930. [PMID: 37647436 PMCID: PMC10443069 DOI: 10.1002/iid3.930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 06/09/2023] [Accepted: 06/14/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND The deficiency of adenosine deaminase 2 (DADA2) is an autosomal recessively inherited disease resulting from loss-of-function mutations in ADA2, formerly named CECR1 (cat eye syndrome chromosome region, candidate 1) gene. Disease manifestations could be separated into three major phenotypes: inflammatory/vascular, immune dysregulatory, and hematologic; however, most patients presented with significant overlap between these three phenotype groups. CASE PRESENTATION We present a case of DADA2 deficiency with disease onset at 3 years old, not recognized till the age of 18 with severe gastrointestinal vasculitis and recurrent episodes of neutropenia associated with a new CECR1 mutation.
Collapse
Affiliation(s)
| | | | - Ana Stanilă
- Sfânta Maria Clinical HospitalBucharestRomania
| | | | - Laura Popa
- Sfânta Maria Clinical HospitalBucharestRomania
| | | | | | | | - Adriana Guriță
- Marie Skłodowska Curie Children's Clinical HospitalBucharestRomania
| | - Radu Tabăcaru
- Marie Skłodowska Curie Children's Clinical HospitalBucharestRomania
| | - Ruxandra Ionescu
- Sfânta Maria Clinical HospitalBucharestRomania
- Carol Davila University of Medicine and PharmacyBucharestRomania
| | - Laura Groșeanu
- Sfânta Maria Clinical HospitalBucharestRomania
- Carol Davila University of Medicine and PharmacyBucharestRomania
| |
Collapse
|
18
|
Simão Raimundo D, Cordeiro AI, Parente Freixo J, Valente Pinto M, Neves C, Farela Neves J. Case Report: Patient with deficiency of ADA2 presenting leukocytoclastic vasculitis and pericarditis during infliximab treatment. Front Pediatr 2023; 11:1200401. [PMID: 37388286 PMCID: PMC10303984 DOI: 10.3389/fped.2023.1200401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/15/2023] [Indexed: 07/01/2023] Open
Abstract
Deficiency of adenosine deaminase 2 (DADA2), first reported in 2014, is a disease with great phenotypic variability, which has been increasingly reported. Therapeutic response depends on the phenotype. We present a case of an adolescent with recurrent fever, oral aphthous ulcers, and lymphadenopathy from 8 to 12 years of age and subsequently presented with symptomatic neutropenia. After the diagnosis of DADA2, therapy with infliximab was started, but after the second dose, she developed leukocytoclastic vasculitis and showed symptoms of myopericarditis. Infliximab was switched to etanercept, with no relapses. Despite the safety of tumor necrosis factor alpha inhibitors (TNFi), paradoxical adverse effects have been increasingly reported. The differential diagnosis between disease new-onset manifestations of DADA2 and side effects of TNFi can be challenging and warrants further clarification.
Collapse
Affiliation(s)
- Diana Simão Raimundo
- Pediatrics Department, Hospital do Divino Espírito Santo, Ponta Delgada, Portugal
| | - Ana Isabel Cordeiro
- Primary Immunodeficiencies Unit, Hospital Dona Estefânia, Centro Hospitalar Universitário de Lisboa Central, Lisboa, Portugal
| | - João Parente Freixo
- Centro de Genética Preditiva e Preventiva, Instituto de Biologia Molecular e Celular, Instituto de Investigação e Inovação em Saúde, Porto, Portugal
| | - Marta Valente Pinto
- Primary Immunodeficiencies Unit, Hospital Dona Estefânia, Centro Hospitalar Universitário de Lisboa Central, Lisboa, Portugal
- Egas Moniz Center for Interdisciplinary Research (CiiEM); Egas Moniz School of Health & Science, Caparica, Almada, Portugal
| | - Conceição Neves
- Primary Immunodeficiencies Unit, Hospital Dona Estefânia, Centro Hospitalar Universitário de Lisboa Central, Lisboa, Portugal
| | - João Farela Neves
- Primary Immunodeficiencies Unit, Hospital Dona Estefânia, Centro Hospitalar Universitário de Lisboa Central, Lisboa, Portugal
- NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
- CHRC, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| |
Collapse
|
19
|
Maccora I, Maniscalco V, Campani S, Carrera S, Abbati G, Marrani E, Mastrolia MV, Simonini G. A wide spectrum of phenotype of deficiency of deaminase 2 (DADA2): a systematic literature review. Orphanet J Rare Dis 2023; 18:117. [PMID: 37179309 PMCID: PMC10183141 DOI: 10.1186/s13023-023-02721-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/01/2023] [Indexed: 05/15/2023] Open
Abstract
INTRODUCTION Deficiency of adenosine deaminase 2 (DADA2) is a rare monogenic autoinflammatory disease, whose clinical phenotype was expanded since the first cases, originally described as mimicker of polyarteritis nodosa, with immunodeficiency and early-onset stroke. METHODS A systematic review according to PRISMA approach, including all articles published before the 31st of August 2021 in Pubmed and EMBASE database was performed. RESULTS The search identified 90 publications describing 378 unique patients (55.8% male). To date 95unique mutations have been reported. The mean age at disease onset was 92.15 months (range 0-720 months), 32 (8.5%) showed an onset of the first signs/symptoms after 18 years old and 96 (25.4%) after 10 years old. The most frequent clinical characteristics described were cutaneous (67.9%), haematological manifestations (56.3%), recurrent fever (51.3%), neurological as stroke and polyneuropathy (51%), immunological abnormalities (42.3%), arthralgia/arthritis (35.4%), splenomegaly (30.6%), abdominal involvement (29.8%), hepatomegaly (23.5%), recurrent infections (18.5%), myalgia (17.9%), kidney involvement (17.7%) etc. Patients with skin manifestations were older than the others (101.1 months SD ± 116.5, vs. 75.3 SD ± 88.2, p 0.041), while those with a haematological involvement (64.1 months SD ± 75.6 vs. 133.1 SD ± 133.1, p < 0.001) and immunological involvement (73.03 months SD ± 96.9 vs. 103.2 SD ± 112.9, p 0.05) are younger than the others. We observed different correlations among the different clinical manifestations. The use of anti-TNFα and hematopoietic cell stems transplantation (HCST) has improved the current history of the disease. CONCLUSION Due to this highly variable phenotype and age of presentation, patients with DADA2 may present to several type of specialists. Given the important morbidity and mortality, early diagnosis and treatment are mandatory.
Collapse
Affiliation(s)
- Ilaria Maccora
- Rheumatology Unit, ERN ReConnet Center, Meyer Children's Hospital IRCCS, Florence, Italy.
- NeuroFARBA Department, University of Florence, Florence, Italy.
| | | | - Silvia Campani
- School of Health Science, University of Florence, Florence, Italy
| | - Simona Carrera
- School of Health Science, University of Florence, Florence, Italy
| | - Giulia Abbati
- School of Health Science, University of Florence, Florence, Italy
| | - Edoardo Marrani
- Rheumatology Unit, ERN ReConnet Center, Meyer Children's Hospital IRCCS, Florence, Italy
| | | | - Gabriele Simonini
- Rheumatology Unit, ERN ReConnet Center, Meyer Children's Hospital IRCCS, Florence, Italy
- NeuroFARBA Department, University of Florence, Florence, Italy
| |
Collapse
|
20
|
Li GM, Han X, Wu Y, Wang W, Tang HX, Lu MP, Tang XM, Lin Y, Deng F, Yang J, Wang XN, Liu CC, Zheng WJ, Wu BB, Zhou F, Luo H, Zhang L, Liu HM, Guan WZ, Wang SH, Tao PF, Jin TJ, Fang R, Wu Y, Zhang J, Zhang Y, Zhang TN, Yin W, Guo L, Tang WJ, Chang H, Zhang QY, Li XZ, Li JG, Zhou ZX, Yang SR, Yang KK, Xu H, Song HM, Deuitch NT, Lee PY, Zhou Q, Sun L. A Cohort Study on Deficiency of ADA2 from China. J Clin Immunol 2023; 43:835-845. [PMID: 36807221 PMCID: PMC10110724 DOI: 10.1007/s10875-023-01432-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 01/08/2023] [Indexed: 02/21/2023]
Abstract
PURPOSE Deficiency of adenosine deaminase 2 (DADA2), an autosomal recessive autoinflammatory disorder caused by biallelic loss-of-function variants in adenosine deaminase 2 (ADA2), has not been systemically investigated in Chinese population yet. We aim to further characterize DADA2 cases in China. METHODS A retrospective analysis of patients with DADA2 identified through whole exome sequencing (WES) at seventeen rheumatology centers across China was conducted. Clinical characteristics, laboratory findings, genotype, and treatment response were analyzed. RESULTS Thirty patients with DADA2 were enrolled between January 2015 and December 2021. Adenosine deaminase 2 enzymatic activity was low in all tested cases to confirm pathogenicity. Median age of disease presentation was 4.3 years and the median age at diagnosis was 7.8 years. All but one patient presented during childhood and two subjects died from complications of their disease. The patients most commonly presented with systemic inflammation (92.9%), vasculitis (86.7%), and hypogammaglobinemia (73.3%) while one patient presented with bone marrow failure (BMF) with variable cytopenia. Twenty-three (76.7%) patients were treated with TNF inhibitors (TNFi), while two (6.7%) underwent hematopoietic stem cell transplantation (HSCT). They all achieved clinical remission. A total of thirty-nine ADA2 causative variants were identified, six of which were novel. CONCLUSION To establish early diagnosis and improve clinical outcomes, genetic screening and/or testing of ADA2 enzymatic activity should be performed in patients with suspected clinical features. TNFi is considered as first line treatment for those with vascular phenotypes. HSCT may be beneficial for those with hematological disease or in those who are refractory to TNFi.
Collapse
Affiliation(s)
- Guo-Min Li
- National Children's Medical Center, Shanghai, China
- Department of Rheumatology, Children's Hospital of Fudan University, Shanghai, China
| | - Xu Han
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Ye Wu
- Peking University First Hospital, Beijing, China
| | - Wei Wang
- Department of Pediatrics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Hong-Xia Tang
- Wuhan Children's Hospital Tongji Medical College Huazhong University of Science & Technology, Wuhan, China
| | - Mei-Ping Lu
- Department of Rheumatology Immunology and Allergy, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xue-Mei Tang
- Department of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yi Lin
- Affiliated Hospital of Qingdao University, Qingdao, China
| | - Fan Deng
- The Children's Hospital of Soochow, Suzhou, China
| | - Jun Yang
- Department of Rheumatology and Immunology, Shenzhen Children's Hospital, Shenzhen, China
| | - Xin-Ning Wang
- Affiliated Children's Hospital of Capital Institute of Pediatrics, Beijing, China
| | - Cong-Cong Liu
- Division of Rheumatology, Immunology & Allergy in the Department of Pediatrics, The First Hospital of Jilin University, Changchun, China
| | - Wen-Jie Zheng
- Department of Rheumatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Bing-Bing Wu
- National Children's Medical Center, Shanghai, China
- Medical Transformation Centre, Children's Hospital of Fudan University, Shanghai, China
| | - Fang Zhou
- No. 960 Hospital of the Joint Service Support Force of the Chinese People's Liberation Army, Jinan, China
| | - Hong Luo
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Liang Zhang
- Hunan Provincial People's Hospital, Hunan, China
| | - Hai-Mei Liu
- National Children's Medical Center, Shanghai, China
- Department of Rheumatology, Children's Hospital of Fudan University, Shanghai, China
| | - Wan-Zhen Guan
- National Children's Medical Center, Shanghai, China
- Department of Rheumatology, Children's Hospital of Fudan University, Shanghai, China
| | - Shi-Hao Wang
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Pan-Feng Tao
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Tai-Jie Jin
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Ran Fang
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Yuan Wu
- Peking University First Hospital, Beijing, China
| | - Jie Zhang
- Peking University First Hospital, Beijing, China
| | - Yao Zhang
- Peking University First Hospital, Beijing, China
| | - Tian-Nan Zhang
- Department of Pediatrics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Wei Yin
- Wuhan Children's Hospital Tongji Medical College Huazhong University of Science & Technology, Wuhan, China
| | - Li Guo
- Department of Rheumatology Immunology and Allergy, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wen-Jing Tang
- Department of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Hong Chang
- Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qiu-Ye Zhang
- Affiliated Hospital of Qingdao University, Qingdao, China
| | | | - Jian-Guo Li
- Affiliated Children's Hospital of Capital Institute of Pediatrics, Beijing, China
| | - Zhi-Xuan Zhou
- Affiliated Children's Hospital of Capital Institute of Pediatrics, Beijing, China
| | - Si-Rui Yang
- Division of Rheumatology, Immunology & Allergy in the Department of Pediatrics, The First Hospital of Jilin University, Changchun, China
| | - Kang-Kang Yang
- Department of Rheumatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hong Xu
- National Children's Medical Center, Shanghai, China
- Department of Rheumatology, Children's Hospital of Fudan University, Shanghai, China
| | - Hong-Mei Song
- Department of Pediatrics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | | | - Pui Y Lee
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Qing Zhou
- Life Sciences Institute, Zhejiang University, Hangzhou, China.
| | - Li Sun
- National Children's Medical Center, Shanghai, China.
- Department of Rheumatology, Children's Hospital of Fudan University, Shanghai, China.
| |
Collapse
|
21
|
Soldatos A, Toro C, Hoffmann P, Romeo T, Deuitch N, Brofferio A, Aksentijevich I, Kastner DL, Ombrello AK. TNF-Blockade for Primary Stroke Prevention in Adenosine Deaminase 2 Deficiency: A Case Series. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2023; 10:e200073. [PMID: 36941081 PMCID: PMC10027231 DOI: 10.1212/nxi.0000000000200073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 10/17/2022] [Indexed: 03/22/2023]
Abstract
OBJECTIVES Adenosine deaminase 2 deficiency (DADA2) is a genetic, neurologic, and systemic vasculitis syndrome, which can lead to recurrent strokes, typically lacunar. In the cohort of now 60 patients followed up at the NIH Clinical Center (NIH CC), no patient has had a stroke since starting tumor necrosis factor (TNF) blockade. We present a family with multiple affected children to highlight the importance of TNF blockade not just as secondary stroke prevention but also as primary stroke prevention in genetically affected but clinically asymptomatic patients. METHODS A proband with recurrent cryptogenic strokes was referred for evaluation at the NIH CC. The parents and 3 clinically asymptomatic siblings were also evaluated. RESULTS The proband was diagnosed with DADA2 based on biochemical testing; her antiplatelet therapies were discontinued, and she was started on TNF blockade for secondary stroke prevention. Her 3 asymptomatic siblings were subsequently tested and 2 were found to be biochemically affected. One of them elected to start TNF blockade for primary stroke prevention and the other sibling declined this approach and experienced a stroke. A second genetic sequence variant was subsequently identified in the ADA2 gene. DISCUSSION This family illustrates the importance of testing for DADA2 in young patients with cryptogenic stroke, given the hemorrhagic risks with antiplatelet drugs in these patients and effectiveness of TNF blockade as secondary stroke prevention. In addition, this family highlights the importance of screening all siblings of affected patients because they may be presymptomatic, and we advocate starting TNF blockade for primary stroke prevention in those who are found to be genetically or biochemically affected.
Collapse
Affiliation(s)
- Ariane Soldatos
- From the National Institute of Neurological Disorders and Stroke (A.S.); National Human Genome Research Institute (C.T., P.H., T.R., N.D., I.A., D.L.K., A.K.O.); and National Heart (A.B.), Lung, and Blood Institute, Bethesda, MD.
| | - Camilo Toro
- From the National Institute of Neurological Disorders and Stroke (A.S.); National Human Genome Research Institute (C.T., P.H., T.R., N.D., I.A., D.L.K., A.K.O.); and National Heart (A.B.), Lung, and Blood Institute, Bethesda, MD
| | - Patrycja Hoffmann
- From the National Institute of Neurological Disorders and Stroke (A.S.); National Human Genome Research Institute (C.T., P.H., T.R., N.D., I.A., D.L.K., A.K.O.); and National Heart (A.B.), Lung, and Blood Institute, Bethesda, MD
| | - Tina Romeo
- From the National Institute of Neurological Disorders and Stroke (A.S.); National Human Genome Research Institute (C.T., P.H., T.R., N.D., I.A., D.L.K., A.K.O.); and National Heart (A.B.), Lung, and Blood Institute, Bethesda, MD
| | - Natalie Deuitch
- From the National Institute of Neurological Disorders and Stroke (A.S.); National Human Genome Research Institute (C.T., P.H., T.R., N.D., I.A., D.L.K., A.K.O.); and National Heart (A.B.), Lung, and Blood Institute, Bethesda, MD
| | - Alessandra Brofferio
- From the National Institute of Neurological Disorders and Stroke (A.S.); National Human Genome Research Institute (C.T., P.H., T.R., N.D., I.A., D.L.K., A.K.O.); and National Heart (A.B.), Lung, and Blood Institute, Bethesda, MD
| | - Ivona Aksentijevich
- From the National Institute of Neurological Disorders and Stroke (A.S.); National Human Genome Research Institute (C.T., P.H., T.R., N.D., I.A., D.L.K., A.K.O.); and National Heart (A.B.), Lung, and Blood Institute, Bethesda, MD
| | - Daniel L Kastner
- From the National Institute of Neurological Disorders and Stroke (A.S.); National Human Genome Research Institute (C.T., P.H., T.R., N.D., I.A., D.L.K., A.K.O.); and National Heart (A.B.), Lung, and Blood Institute, Bethesda, MD
| | - Amanda K Ombrello
- From the National Institute of Neurological Disorders and Stroke (A.S.); National Human Genome Research Institute (C.T., P.H., T.R., N.D., I.A., D.L.K., A.K.O.); and National Heart (A.B.), Lung, and Blood Institute, Bethesda, MD
| |
Collapse
|
22
|
Sakura F, Noma K, Asano T, Tanita K, Toyofuku E, Kato K, Tsumura M, Nihira H, Izawa K, Mitsui-Sekinaka K, Konno R, Kawashima Y, Mizoguchi Y, Karakawa S, Hayakawa S, Kawaguchi H, Imai K, Nonoyama S, Yasumi T, Ohnishi H, Kanegane H, Ohara O, Okada S. A complementary approach for genetic diagnosis of inborn errors of immunity using proteogenomic analysis. PNAS NEXUS 2023; 2:pgad104. [PMID: 37077884 PMCID: PMC10109033 DOI: 10.1093/pnasnexus/pgad104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 03/06/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023]
Abstract
Advances in next-generation sequencing technology have identified many genes responsible for inborn errors of immunity (IEI). However, there is still room for improvement in the efficiency of genetic diagnosis. Recently, RNA sequencing and proteomics using peripheral blood mononuclear cells (PBMCs) have gained attention, but only some studies have integrated these analyses in IEI. Moreover, previous proteomic studies for PBMCs have achieved limited coverage (approximately 3000 proteins). More comprehensive data are needed to gain valuable insights into the molecular mechanisms underlying IEI. Here, we propose a state-of-the-art method for diagnosing IEI using PBMCs proteomics integrated with targeted RNA sequencing (T-RNA-seq), providing unique insights into the pathogenesis of IEI. This study analyzed 70 IEI patients whose genetic etiology had not been identified by genetic analysis. In-depth proteomics identified 6498 proteins, which covered 63% of 527 genes identified in T-RNA-seq, allowing us to examine the molecular cause of IEI and immune cell defects. This integrated analysis identified the disease-causing genes in four cases undiagnosed in previous genetic studies. Three of them could be diagnosed by T-RNA-seq, while the other could only be diagnosed by proteomics. Moreover, this integrated analysis showed high protein-mRNA correlations in B- and T-cell-specific genes, and their expression profiles identified patients with immune cell dysfunction. These results indicate that integrated analysis improves the efficiency of genetic diagnosis and provides a deep understanding of the immune cell dysfunction underlying the etiology of IEI. Our novel approach demonstrates the complementary role of proteogenomic analysis in the genetic diagnosis and characterization of IEI.
Collapse
Affiliation(s)
- Fumiaki Sakura
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami Ward, Hiroshima 734-8551, Japan
| | - Kosuke Noma
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami Ward, Hiroshima 734-8551, Japan
| | - Takaki Asano
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami Ward, Hiroshima 734-8551, Japan
| | - Kay Tanita
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo City, Tokyo 113-0034, Japan
| | - Etsushi Toyofuku
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo City, Tokyo 113-0034, Japan
| | - Kentaro Kato
- Department of Pediatrics, Kyoto University Graduate School of Medicine, 54 Shogoin Kawaharacho, Sakyo Ward, Kyoto City 606-8507, Japan
| | - Miyuki Tsumura
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami Ward, Hiroshima 734-8551, Japan
| | - Hiroshi Nihira
- Department of Pediatrics, Kyoto University Graduate School of Medicine, 54 Shogoin Kawaharacho, Sakyo Ward, Kyoto City 606-8507, Japan
| | - Kazushi Izawa
- Department of Pediatrics, Kyoto University Graduate School of Medicine, 54 Shogoin Kawaharacho, Sakyo Ward, Kyoto City 606-8507, Japan
| | - Kanako Mitsui-Sekinaka
- Department of Pediatrics, National Defense Medical College, 3-2 Namiki, Tokorozawa City, Saitama 359-8513, Japan
| | - Ryo Konno
- Kazusa DNA Research Institute, 2-6-7 Kazusakamatari, Kisarazu City, Chiba 292-0818, Japan
| | - Yusuke Kawashima
- Kazusa DNA Research Institute, 2-6-7 Kazusakamatari, Kisarazu City, Chiba 292-0818, Japan
| | - Yoko Mizoguchi
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami Ward, Hiroshima 734-8551, Japan
| | - Shuhei Karakawa
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami Ward, Hiroshima 734-8551, Japan
| | - Seiichi Hayakawa
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami Ward, Hiroshima 734-8551, Japan
| | - Hiroshi Kawaguchi
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami Ward, Hiroshima 734-8551, Japan
| | - Kohsuke Imai
- Department of Pediatrics, National Defense Medical College, 3-2 Namiki, Tokorozawa City, Saitama 359-8513, Japan
| | - Shigeaki Nonoyama
- Department of Pediatrics, National Defense Medical College, 3-2 Namiki, Tokorozawa City, Saitama 359-8513, Japan
| | - Takahiro Yasumi
- Department of Pediatrics, Kyoto University Graduate School of Medicine, 54 Shogoin Kawaharacho, Sakyo Ward, Kyoto City 606-8507, Japan
| | - Hidenori Ohnishi
- Department of Pediatrics, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu City 501-1112, Japan
| | - Hirokazu Kanegane
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo City, Tokyo 113-0034, Japan
| | - Osamu Ohara
- Kazusa DNA Research Institute, 2-6-7 Kazusakamatari, Kisarazu City, Chiba 292-0818, Japan
| | - Satoshi Okada
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami Ward, Hiroshima 734-8551, Japan
| |
Collapse
|
23
|
Du Y, Liu M, Nigrovic PA, Dedeoglu F, Lee PY. Biologics and JAK inhibitors for the treatment of monogenic systemic autoinflammatory diseases in children. J Allergy Clin Immunol 2023; 151:607-618. [PMID: 36707349 PMCID: PMC9992337 DOI: 10.1016/j.jaci.2022.12.816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/09/2022] [Accepted: 12/29/2022] [Indexed: 01/26/2023]
Abstract
Systemic autoinflammatory diseases (SAIDs) are caused by aberrant activation of 1 or more inflammatory pathways in an antigen-independent manner. Monogenic forms of SAIDs typically manifest during childhood, and early treatment is essential to minimize morbidity and mortality. On the basis of the mechanism of disease and the dominant cytokine(s) that propagates inflammation, monogenic SAIDs can be grouped into major categories including inflammasomopathies/disorders of IL-1, interferonopathies, and disorders of nuclear factor-κB and/or aberrant TNF activity. This classification scheme has direct therapeutic relevance given the availability of biologic agents and small-molecule inhibitors that specifically target these pathways. Here, we review the experience of using biologics that target IL-1 and TNF as well as using Janus kinase inhibitors for the treatment of monogenic SAIDs in pediatric patients. We provide an evidence-based guide for the use of these medications and discuss their mechanism of action, safety profile, and strategies for therapeutic monitoring.
Collapse
Affiliation(s)
- Yan Du
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston; Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou
| | - Meng Liu
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston; Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, Guangzhou
| | - Peter A Nigrovic
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston; Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston
| | - Fatma Dedeoglu
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston
| | - Pui Y Lee
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston.
| |
Collapse
|
24
|
Ayan G, Yagiz B, Cinar OE, Cagdas D, Ozbek DA, Tuncer A, Oguz KK, Ozen S, Alikasifoglu M, Karadag O. A novel variant in severe disease of DADA2: involving vasculitic and haematologic features. Scand J Rheumatol 2023; 52:93-95. [PMID: 35852217 DOI: 10.1080/03009742.2022.2095724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- G Ayan
- Department of Internal Medicine, Division of Rheumatology, Hacettepe University Faculty of Medicine, Ankara, Turkey.,Hacettepe Universitiy Vasculitis Research Center (HUVAC), Hacettepe University, Ankara, Turkey
| | - B Yagiz
- Department of Internal Medicine, Division of Rheumatology, Faculty of Medicine, Uludağ University Bursa, Bursa, Turkey
| | - O E Cinar
- Department of Internal Medicine, Division of Hematology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - D Cagdas
- Department of Pediatrics, Division of Pediatric Immunology, Hacettepe University Faculty of Medicine Ankara, Ankara, Turkey
| | - D A Ozbek
- Department of Internal Medicine, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - A Tuncer
- Department of Neurology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - K K Oguz
- Department of Radiology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - S Ozen
- Hacettepe Universitiy Vasculitis Research Center (HUVAC), Hacettepe University, Ankara, Turkey.,Department of Pediatrics, Division of Rheumatology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - M Alikasifoglu
- Department of Pediatrics, Division of Medical Genetics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - O Karadag
- Department of Internal Medicine, Division of Rheumatology, Hacettepe University Faculty of Medicine, Ankara, Turkey.,Hacettepe Universitiy Vasculitis Research Center (HUVAC), Hacettepe University, Ankara, Turkey
| |
Collapse
|
25
|
Long A, Kleiner A, Looney RJ. Immune dysregulation. J Allergy Clin Immunol 2023; 151:70-80. [PMID: 36608984 DOI: 10.1016/j.jaci.2022.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/27/2022] [Accepted: 11/01/2022] [Indexed: 01/05/2023]
Abstract
The understanding of immune dysregulation in many different diseases continues to grow. There is increasing evidence that altered microbiome and gut barrier dysfunction contribute to systemic inflammation in patients with primary immunodeficiency and in patients with rheumatic disease. Recent research provides insight into the process of induction and maturation of pathogenic age-associated B cells and highlights the role of age-associated B cells in creating tissue inflammation. T follicular regulatory cells are shown to help maintain B-cell tolerance, and therapeutic approaches to increase or promote T follicular regulatory cells may help prevent or decrease immune dysregulation. Meanwhile, novel studies of systemic-onset juvenile idiopathic arthritis reveal a strong HLA association with interstitial lung disease and identify key aspects of the pathogenesis of macrophage activation syndrome. Studies of hyperinflammatory syndromes, including the recently described multisystem inflammatory syndrome of children, characterize similarities and differences in cytokine profiles and T-cell activation. This review focuses on recent advances in the understanding of immune dysregulation and describes potential key factors that may function as biomarkers for disease or targets for therapeutic interventions. Future trials are necessary to address the many remaining questions with regards to pathogenesis, diagnosis, and treatment of autoimmune, inflammatory, and immunodeficiency syndromes.
Collapse
Affiliation(s)
- Andrew Long
- Allergy Immunology Rheumatology Division, University of Rochester School of Medicine and Dentistry, Rochester, NY
| | - Anatole Kleiner
- Allergy Immunology Rheumatology Division, University of Rochester School of Medicine and Dentistry, Rochester, NY
| | - R John Looney
- Allergy Immunology Rheumatology Division, University of Rochester School of Medicine and Dentistry, Rochester, NY.
| |
Collapse
|
26
|
CellCallEXT: Analysis of Ligand-Receptor and Transcription Factor Activities in Cell-Cell Communication of Tumor Immune Microenvironment. Cancers (Basel) 2022; 14:cancers14194957. [PMID: 36230879 PMCID: PMC9563271 DOI: 10.3390/cancers14194957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/01/2022] [Accepted: 10/05/2022] [Indexed: 12/02/2022] Open
Abstract
Simple Summary CellCall is an R package tool that is used to analyze cell–cell communication based on transcription factor (TF) activities calculated by cell-type specificity of target genes and thus cannot directly handle two-condition comparisons. We developed CellCallEXT to complement CellCall. CellCallEXT can directly identify ligand–receptor (L–R) interactions that alter the expression profiles of downstream genes between two conditions, such as tumor and healthy tissue. Scoring in CellCallEXT quantitatively integrates expression of ligands, receptors, TFs, and target genes (TGs). The pathway enrichment analysis and visualization modules allow biologists to investigate how disease alters cell–cell communication. Furthermore, Reactome pathways were added into CellCallEXT to expand the L–R–TF database. Abstract (1) Background: Single-cell RNA sequencing (scRNA-seq) data are useful for decoding cell–cell communication. CellCall is a tool that is used to infer inter- and intracellular communication pathways by integrating paired ligand–receptor (L–R) and transcription factor (TF) activities from steady-state data and thus cannot directly handle two-condition comparisons. For tumor and healthy status, it can only individually analyze cells from tumor or healthy tissue and examine L–R pairs only identified in either tumor or healthy controls, but not both together. Furthermore, CellCall is highly affected by gene expression specificity in tissues. (2) Methods: CellCallEXT is an extension of CellCall that deconvolutes intercellular communication and related internal regulatory signals based on scRNA-seq. Information on Reactome was retrieved and integrated with prior knowledge of L–R–TF signaling and gene regulation datasets of CellCall. (3) Results: CellCallEXT was successfully applied to examine tumors and immune cell microenvironments and to identify the altered L–R pairs and downstream gene regulatory networks among immune cells. Application of CellCallEXT to scRNA-seq data from patients with deficiency of adenosine deaminase 2 demonstrated its ability to impute dysfunctional intercellular communication and related transcriptional factor activities. (4) Conclusions: CellCallEXT provides a practical tool to examine intercellular communication in disease based on scRNA-seq data.
Collapse
|
27
|
Evangelatos G, Bamias G, Kitas GD, Kollias G, Sfikakis PP. The second decade of anti-TNF-a therapy in clinical practice: new lessons and future directions in the COVID-19 era. Rheumatol Int 2022; 42:1493-1511. [PMID: 35503130 PMCID: PMC9063259 DOI: 10.1007/s00296-022-05136-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/12/2022] [Indexed: 11/22/2022]
Abstract
Since the late 1990s, tumor necrosis factor alpha (TNF-α) inhibitors (anti-TNFs) have revolutionized the therapy of immune-mediated inflammatory diseases (IMIDs) affecting the gut, joints, skin and eyes. Although the therapeutic armamentarium in IMIDs is being constantly expanded, anti-TNFs remain the cornerstone of their treatment. During the second decade of their application in clinical practice, a large body of additional knowledge has accumulated regarding various aspects of anti-TNF-α therapy, whereas new indications have been added. Recent experimental studies have shown that anti-TNFs exert their beneficial effects not only by restoring aberrant TNF-mediated immune mechanisms, but also by de-activating pathogenic fibroblast-like mesenchymal cells. Real-world data on millions of patients further confirmed the remarkable efficacy of anti-TNFs. It is now clear that anti-TNFs alter the physical course of inflammatory arthritis and inflammatory bowel disease, leading to inhibition of local and systemic bone loss and to a decline in the number of surgeries for disease-related complications, while anti-TNFs improve morbidity and mortality, acting beneficially also on cardiovascular comorbidities. On the other hand, no new safety signals emerged, whereas anti-TNF-α safety in pregnancy and amid the COVID-19 pandemic was confirmed. The use of biosimilars was associated with cost reductions making anti-TNFs more widely available. Moreover, the current implementation of the "treat-to-target" approach and treatment de-escalation strategies of IMIDs were based on anti-TNFs. An intensive search to discover biomarkers to optimize response to anti-TNF-α treatment is currently ongoing. Finally, selective targeting of TNF-α receptors, new forms of anti-TNFs and combinations with other agents, are being tested in clinical trials and will probably expand the spectrum of TNF-α inhibition as a therapeutic strategy for IMIDs.
Collapse
Affiliation(s)
- Gerasimos Evangelatos
- Joint Academic Rheumatology Program, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
- First Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| | - Giorgos Bamias
- Gastrointestinal Unit, Third Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - George D Kitas
- Department of Rheumatology, Russells Hall Hospital, Dudley Group NHS Foundation Trust, Dudley, UK
- Arthritis Research UK Centre for Epidemiology, University of Manchester, Manchester, UK
| | - George Kollias
- Joint Academic Rheumatology Program, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Petros P Sfikakis
- Joint Academic Rheumatology Program, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- First Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
28
|
Pan-cancer identification of the relationship of metabolism-related differentially expressed transcription regulation with non-differentially expressed target genes via a gated recurrent unit network. Comput Biol Med 2022; 148:105883. [PMID: 35878490 DOI: 10.1016/j.compbiomed.2022.105883] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/10/2022] [Accepted: 07/16/2022] [Indexed: 11/20/2022]
Abstract
The transcriptome describes the expression of all genes in a sample. Most studies have investigated the differential patterns or discrimination powers of transcript expression levels. In this study, we hypothesized that the quantitative correlations between the expression levels of transcription factors (TFs) and their regulated target genes (mRNAs) serve as a novel view of healthy status, and a disease sample exhibits a differential landscape (mqTrans) of transcription regulations compared with healthy status. We formulated quantitative transcription regulation relationships of metabolism-related genes as a multi-input multi-output regression model via a gated recurrent unit (GRU) network. The GRU model was trained using healthy blood transcriptomes and the expression levels of mRNAs were predicted by those of the TFs. The mqTrans feature of a gene was defined as the difference between its predicted and actual expression levels. A pan-cancer investigation of the differentially expressed mqTrans features was conducted between the early- and late-stage cancers in 26 cancer types of The Cancer Genome Atlas database. This study focused on the differentially expressed mqTrans features, that did not show differential expression in the actual expression levels. These genes could not be detected by conventional differential analysis. Such dark biomarkers are worthy of further wet-lab investigation. The experimental data also showed that the proposed mqTrans investigation improved the classification between early- and late-stage samples for some cancer types. Thus, the mqTrans features serve as a complementary view to transcriptomes, an OMIC type with mature high-throughput production technologies, and abundant public resources.
Collapse
|
29
|
Signa S, Bertoni A, Penco F, Caorsi R, Cafaro A, Cangemi G, Volpi S, Gattorno M, Schena F. Adenosine Deaminase 2 Deficiency (DADA2): A Crosstalk Between Innate and Adaptive Immunity. Front Immunol 2022; 13:935957. [PMID: 35898506 PMCID: PMC9309328 DOI: 10.3389/fimmu.2022.935957] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/10/2022] [Indexed: 11/30/2022] Open
Abstract
Deficiency of Adenosine deaminase 2 (DADA2) is a monogenic autoinflammatory disorder presenting with a broad spectrum of clinical manifestations, including immunodeficiency, vasculopathy and hematologic disease. Biallelic mutations in ADA2 gene have been associated with a decreased ADA2 activity, leading to reduction in deamination of adenosine and deoxyadenosine into inosine and deoxyinosine and subsequent accumulation of extracellular adenosine. In the early reports, the pivotal role of innate immunity in DADA2 pathogenic mechanism has been underlined, showing a skewed polarization from the M2 macrophage subtype to the proinflammatory M1 subtype, with an increased production of inflammatory cytokines such as TNF-α. Subsequently, a dysregulation of NETosis, triggered by the excess of extracellular Adenosine, has been implicated in the pathogenesis of DADA2. In the last few years, evidence is piling up that adaptive immunity is profoundly altered in DADA2 patients, encompassing both T and B branches, with a disrupted homeostasis in T-cell subsets and a B-cell skewing defect. Type I/type II IFN pathway upregulation has been proposed as a possible core signature in DADA2 T cells and monocytes but also an increased IFN-β secretion directly from endothelial cells has been described. So far, a unifying clear pathophysiological explanation for the coexistence of systemic inflammation, immunedysregulation and hematological defects is lacking. In this review, we will explore thoroughly the latest understanding regarding DADA2 pathophysiological process, with a particular focus on dysregulation of both innate and adaptive immunity and their interacting role in the development of the disease.
Collapse
Affiliation(s)
- Sara Signa
- Center for Autoinflammatory Diseases and Immunodeficiencies, Istituto di Ricovero e cura a carattere scientifico (IRCCS) Istituto Giannina Gaslini, Genoa, Italy
| | - Arinna Bertoni
- Center for Autoinflammatory Diseases and Immunodeficiencies, Istituto di Ricovero e cura a carattere scientifico (IRCCS) Istituto Giannina Gaslini, Genoa, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal-Child Sciences (DINOGMI), University of Genoa, Genoa, Italy
| | - Federica Penco
- Center for Autoinflammatory Diseases and Immunodeficiencies, Istituto di Ricovero e cura a carattere scientifico (IRCCS) Istituto Giannina Gaslini, Genoa, Italy
| | - Roberta Caorsi
- Center for Autoinflammatory Diseases and Immunodeficiencies, Istituto di Ricovero e cura a carattere scientifico (IRCCS) Istituto Giannina Gaslini, Genoa, Italy
| | - Alessia Cafaro
- Chromatography and Mass Spectrometry Section, Central Laboratory of Analysis, Istituto di Ricovero e cura a carattere scientifico (IRCCS) Istituto Giannina Gaslini, Genoa, Italy
| | - Giuliana Cangemi
- Chromatography and Mass Spectrometry Section, Central Laboratory of Analysis, Istituto di Ricovero e cura a carattere scientifico (IRCCS) Istituto Giannina Gaslini, Genoa, Italy
| | - Stefano Volpi
- Center for Autoinflammatory Diseases and Immunodeficiencies, Istituto di Ricovero e cura a carattere scientifico (IRCCS) Istituto Giannina Gaslini, Genoa, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal-Child Sciences (DINOGMI), University of Genoa, Genoa, Italy
| | - Marco Gattorno
- Center for Autoinflammatory Diseases and Immunodeficiencies, Istituto di Ricovero e cura a carattere scientifico (IRCCS) Istituto Giannina Gaslini, Genoa, Italy
- *Correspondence: Marco Gattorno,
| | - Francesca Schena
- Center for Autoinflammatory Diseases and Immunodeficiencies, Istituto di Ricovero e cura a carattere scientifico (IRCCS) Istituto Giannina Gaslini, Genoa, Italy
| |
Collapse
|
30
|
Hong Y, Casimir M, Houghton BC, Zhang F, Jensen B, Omoyinmi E, Torrance R, Papadopoulou C, Cummins M, Roderick M, Thrasher AJ, Brogan PA, Eleftheriou D. Lentiviral Mediated ADA2 Gene Transfer Corrects the Defects Associated With Deficiency of Adenosine Deaminase Type 2. Front Immunol 2022; 13:852830. [PMID: 35529868 PMCID: PMC9073084 DOI: 10.3389/fimmu.2022.852830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/28/2022] [Indexed: 12/23/2022] Open
Abstract
Deficiency of adenosine deaminase type 2 (DADA2) is an autosomal recessive disease caused by bi-allelic loss-of-function mutations in ADA2. Treatment with anti-TNF is effective for the autoinflammatory and vasculitic components of the disease but does not correct marrow failure or immunodeficiency; and anti-drug antibodies cause loss of efficacy over time. Allogeneic haematopoietic stem cell transplantation may be curative, but graft versus host disease remains a significant concern. Autologous gene therapy would therefore be an attractive longer-term therapeutic option. We investigated whether lentiviral vector (LV)–mediated ADA2 gene correction could rescue the immunophenotype of DADA2 in primary immune cells derived from patients and in cell line models. Lentiviral transduction led to: i) restoration of ADA2 protein expression and enzymatic activity; (ii) amelioration of M1 macrophage cytokine production, IFN-γ and phosphorylated STAT1 expression in patient-derived macrophages; and (iii) amelioration of macrophage-mediated endothelial activation that drives the vasculitis of DADA2. We also successfully transduced human CD34+ haematopoietic stem progenitor cells (HSPC) derived from a DADA2 patient with pure red cell aplasia and observed restoration of ADA2 expression and enzymatic activity in CD34+HSPC, alongside recovery of stem-cell proliferative and colony forming unit capacity. These preclinical data now expand the evidence for the efficacy of gene transfer strategies in DADA2, and strongly support clinical translation of a lentivirus-mediated gene therapy approach to treat DADA2.
Collapse
Affiliation(s)
- Ying Hong
- Infection, Immunity, Inflammation Department, University College London (UCL) Great Ormond Street Institute of Child Health, London, United Kingdom
- *Correspondence: Ying Hong,
| | - Marina Casimir
- Infection, Immunity, Inflammation Department, University College London (UCL) Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Benjamin C. Houghton
- Infection, Immunity, Inflammation Department, University College London (UCL) Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Fang Zhang
- Infection, Immunity, Inflammation Department, University College London (UCL) Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Barbara Jensen
- Infection, Immunity, Inflammation Department, University College London (UCL) Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Ebun Omoyinmi
- Infection, Immunity, Inflammation Department, University College London (UCL) Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Robert Torrance
- Infection, Immunity, Inflammation Department, University College London (UCL) Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Charalampia Papadopoulou
- Infection, Immunity, Inflammation Department, University College London (UCL) Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Michelle Cummins
- Paediatric Haematology, Bristol Royal Hospital for Children, Bristol, United Kingdom
| | - Marion Roderick
- Paediatric Clinical Immunology, Bristol Royal Hospital for Children, Bristol, United Kingdom
| | - Adrian J. Thrasher
- Infection, Immunity, Inflammation Department, University College London (UCL) Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Paul A. Brogan
- Infection, Immunity, Inflammation Department, University College London (UCL) Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Despina Eleftheriou
- Infection, Immunity, Inflammation Department, University College London (UCL) Great Ormond Street Institute of Child Health, London, United Kingdom
- Versus Arthritis Centre for Adolescent Rheumatology, University College London (UCL), London, United Kingdom
| |
Collapse
|
31
|
Karer M, Rager-Resch M, Haider T, Petroczi K, Gludovacz E, Borth N, Jilma B, Boehm T. Diamine oxidase knockout mice are not hypersensitive to orally or subcutaneously administered histamine. Inflamm Res 2022; 71:497-511. [PMID: 35303133 PMCID: PMC8989821 DOI: 10.1007/s00011-022-01558-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/21/2022] [Accepted: 03/04/2022] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE To evaluate the contribution of endogenous diamine oxidase (DAO) in the inactivation of exogenous histamine, to find a mouse strain with increased histamine sensitivity and to test the efficacy of rhDAO in a histamine challenge model. METHODS Diamine oxidase knockout (KO) mice were challenged with orally and subcutaneously administered histamine in combination with the β-adrenergic blocker propranolol, with the two histamine-N-methyltransferase (HNMT) inhibitors metoprine and tacrine, with folic acid to mimic acute kidney injury and treated with recombinant human DAO. Core body temperature was measured using a subcutaneously implanted microchip and histamine plasma levels were quantified using a homogeneous time resolved fluorescence assay. RESULTS Core body temperature and plasma histamine levels were not significantly different between wild type (WT) and DAO KO mice after oral and subcutaneous histamine challenge with and without acute kidney injury or administration of HNMT inhibitors. Treatment with recombinant human DAO reduced the mean area under the curve (AUC) for core body temperature loss by 63% (p = 0.002) and the clinical score by 88% (p < 0.001). The AUC of the histamine concentration was reduced by 81%. CONCLUSIONS Inactivation of exogenous histamine is not driven by enzymatic degradation and kidney filtration. Treatment with recombinant human DAO strongly reduced histamine-induced core body temperature loss, histamine concentrations and prevented the development of severe clinical symptoms.
Collapse
Affiliation(s)
- Matthias Karer
- Department of Clinical Pharmacology, Medical University Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Marlene Rager-Resch
- Department of Clinical Pharmacology, Medical University Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Teresa Haider
- Department of Neurophysiology, Center for Brain Research, Medical University Vienna, Vienna, Austria
| | - Karin Petroczi
- Department of Clinical Pharmacology, Medical University Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Elisabeth Gludovacz
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Nicole Borth
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Bernd Jilma
- Department of Clinical Pharmacology, Medical University Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Thomas Boehm
- Department of Clinical Pharmacology, Medical University Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
| |
Collapse
|
32
|
Tarrant TK, Kelly SJ, Hershfield MS. Elucidating the pathogenesis of adenosine deaminase 2 deficiency: current status and unmet needs. Expert Opin Orphan Drugs 2022. [DOI: 10.1080/21678707.2021.2050367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
| | | | - Michael S Hershfield
- Duke University School of Medicine, Durham, US
- Duke University School of Medicine, Medicine and Biochemistry, Durham, US
| |
Collapse
|
33
|
Lee PY, Aksentijevich I, Zhou Q. Mechanisms of vascular inflammation in deficiency of adenosine deaminase 2 (DADA2). Semin Immunopathol 2022; 44:269-280. [PMID: 35178658 DOI: 10.1007/s00281-022-00918-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/27/2022] [Indexed: 12/24/2022]
Abstract
Deficiency of adenosine deaminase 2 (DADA2) was first described as a monogenic form of systemic vasculitis that closely resembles polyarteritis nodosa (PAN). The phenotypic spectrum of DADA2 has vastly expanded in recent years and now includes pure red cell aplasia, bone marrow failure syndrome, lymphoproliferative disease, and humoral immunodeficiency. Vasculitis remains the most common presentation of DADA2, and treatment with tumor necrosis factor inhibitors (TNFi) has shown remarkable efficacy in preventing stroke and ameliorating features of systemic inflammation. The precise function of ADA2 has not been elucidated, and how absence of ADA2 ignites inflammation is an active area of research. In this review, we will discuss the current understanding of DADA2 from research and clinical perspectives. We will evaluate several proposed functions of ADA2, including polarization of monocyte phenotype, regulation of neutrophil extracellular trap formation, and modulation of innate immunity. We will also review the role of inflammatory cytokines including TNF and type I interferons. Lastly, we will provide future perspectives on understanding the phenotypic heterogeneity of DADA2 and discuss potential treatment options.
Collapse
Affiliation(s)
- Pui Y Lee
- Division of Immunology, Boston Childrens Hospital, Harvard Medical School, Boston, MA, USA.
| | - Ivona Aksentijevich
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, MD, USA
| | - Qing Zhou
- The MOE Key Laboratory of Biosystems Homeostasis and Protection, Life Sciences Institute, Zhejiang University, Hangzhou, China.
| |
Collapse
|
34
|
Barron KS, Aksentijevich I, Deuitch NT, Stone DL, Hoffmann P, Videgar-Laird R, Soldatos A, Bergerson J, Toro C, Cudrici C, Nehrebecky M, Romeo T, Jones A, Boehm M, Kanakry JA, Dimitrova D, Calvo KR, Alao H, Kapuria D, Ben-Yakov G, Pichard DC, Hathaway L, Brofferio A, McRae E, Moura NS, Schnappauf O, Rosenzweig S, Heller T, Cowen EW, Kastner DL, Ombrello AK. The Spectrum of the Deficiency of Adenosine Deaminase 2: An Observational Analysis of a 60 Patient Cohort. Front Immunol 2022; 12:811473. [PMID: 35095905 PMCID: PMC8790931 DOI: 10.3389/fimmu.2021.811473] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/08/2021] [Indexed: 11/21/2022] Open
Abstract
The deficiency of adenosine deaminase 2 (DADA2) is an autosomal recessively inherited disease that has undergone extensive phenotypic expansion since being first described in patients with fevers, recurrent strokes, livedo racemosa, and polyarteritis nodosa in 2014. It is now recognized that patients may develop multisystem disease that spans multiple medical subspecialties. Here, we describe the findings from a large single center longitudinal cohort of 60 patients, the broad phenotypic presentation, as well as highlight the cohort’s experience with hematopoietic cell transplantation and COVID-19. Disease manifestations could be separated into three major phenotypes: inflammatory/vascular, immune dysregulatory, and hematologic, however, most patients presented with significant overlap between these three phenotype groups. The cardinal features of the inflammatory/vascular group included cutaneous manifestations and stroke. Evidence of immune dysregulation was commonly observed, including hypogammaglobulinemia, absent to low class-switched memory B cells, and inadequate response to vaccination. Despite these findings, infectious complications were exceedingly rare in this cohort. Hematologic findings including pure red cell aplasia (PRCA), immune-mediated neutropenia, and pancytopenia were observed in half of patients. We significantly extended our experience using anti-TNF agents, with no strokes observed in 2026 patient months on TNF inhibitors. Meanwhile, hematologic and immune features had a more varied response to anti-TNF therapy. Six patients received a total of 10 allogeneic hematopoietic cell transplant (HCT) procedures, with secondary graft failure necessitating repeat HCTs in three patients, as well as unplanned donor cell infusions to avoid graft rejection. All transplanted patients had been on anti-TNF agents prior to HCT and received varying degrees of reduced-intensity or non-myeloablative conditioning. All transplanted patients are still alive and have discontinued anti-TNF therapy. The long-term follow up afforded by this large single-center study underscores the clinical heterogeneity of DADA2 and the potential for phenotypes to evolve in any individual patient.
Collapse
Affiliation(s)
- Karyl S Barron
- National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Ivona Aksentijevich
- National Human Genome Research Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Natalie T Deuitch
- National Human Genome Research Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Deborah L Stone
- National Human Genome Research Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Patrycja Hoffmann
- National Human Genome Research Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Ryan Videgar-Laird
- National Human Genome Research Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Ariane Soldatos
- National Institute of Neurological Diseases and Strokes, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Jenna Bergerson
- National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Camilo Toro
- Undiagnosed Disease Program, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Cornelia Cudrici
- National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Michele Nehrebecky
- National Human Genome Research Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Tina Romeo
- National Human Genome Research Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Anne Jones
- National Human Genome Research Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Manfred Boehm
- National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Jennifer A Kanakry
- National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Dimana Dimitrova
- National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Katherine R Calvo
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Hawwa Alao
- National Institute of Digestive Diseases and Kidney Diseases, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Devika Kapuria
- National Institute of Digestive Diseases and Kidney Diseases, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Gil Ben-Yakov
- National Institute of Digestive Diseases and Kidney Diseases, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Dominique C Pichard
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Londa Hathaway
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Alessandra Brofferio
- National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Elisa McRae
- National Human Genome Research Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Natalia Sampaio Moura
- National Human Genome Research Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Oskar Schnappauf
- National Human Genome Research Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Sofia Rosenzweig
- National Human Genome Research Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Theo Heller
- National Institute of Digestive Diseases and Kidney Diseases, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Edward W Cowen
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Daniel L Kastner
- National Human Genome Research Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Amanda K Ombrello
- National Human Genome Research Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|