1
|
Huang H, Li M, Song S, Feng S, Feng X, Liu Y, Yang P, Zheng P. Galectin 9 rescues the inducibility of IL-10 expression in regulatory B cells of patients with food allergy. Sci Rep 2025; 15:196. [PMID: 39747510 PMCID: PMC11696059 DOI: 10.1038/s41598-024-84079-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 12/19/2024] [Indexed: 01/04/2025] Open
Abstract
The deregulation of immune responses is what causes food allergy (FA) to occur. FA's cause is still unknown. The goal of this study is to investigate the mechanism how the impaired production of IL-10 occurs in peripheral naive B cells of patients with FA. Samples from patients with FA and healthy controls (HC) were used to isolate CD19+ CD45R+ naive B cells from peripheral blood mononuclear cells (PBMC). Lipopolysaccharide (LPS) exposure was used to assess the expression of interleukin-10 (IL-10) in B cells. Although the FA and HC groups had similar total B cell counts, the FA patients had fewer IL-10+ B cell counts than the HC group. In peripheral B cells, the concentrations of IL-10 were inversely related to the concentrations of specific IgE, Th2 and Th1 cytokines in the serum. In patients with FA, peripheral B cells experienced impaired immune-suppressive functions. Galectin-9 could restore the defective induction of IL-10 expression in naive B cells of FA patients. In conclusion, FA patients with naive B cells experience impaired IL-10 induction. The induction of IL-10 in naive B cells of FA patients can be restored by galectin-9 treatment, which triggers B cells to differentiate into immune regulatory B cells.
Collapse
Affiliation(s)
- Huang Huang
- Department of Gastroenterology, Fifth Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Minyao Li
- Department of General Practice Medicine, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Shuo Song
- Department of General Practice Medicine, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Shiyu Feng
- Department of Traditional Chinese Medicine, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Xiaoyang Feng
- Department of Traditional Chinese Medicine, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Yu Liu
- Department of General Practice Medicine, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Pingchang Yang
- Institute of Allergy & Immunology of Shenzhen University, State Key Laboratory of Respiratory Diseases Allergy Division, Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen University, A7-509 at Lihu Campus. 1066 Xueyuan Blvd, Shenzhen, 518055, China.
| | - Pengyuan Zheng
- Department of Gastroenterology, Fifth Affiliated Hospital, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
2
|
Feng Y, Zhang Z, Huangfu H, Han H, Xie B, Song S, Liu T, An Y, Yang P. Adjuvant alum regulates the eIF2a-GATA3 axis in CD4 + T cells to influence allergen immunotherapy. Scand J Immunol 2025; 101:e13419. [PMID: 39562297 DOI: 10.1111/sji.13419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/04/2024] [Accepted: 10/15/2024] [Indexed: 11/21/2024]
Abstract
Allergen-specific immunotherapy (AIT) is an aetiology-targeting therapy for allergic diseases. The therapeutic mechanism of AIT is not fully understood yet. Endoplasmic reticulum stress is associated with the pathogenesis of allergic disorders. This study aims to elucidate the effects of AIT on suppressing allergic response through regulating endoplasmic reticulum stress. In this study, patients with perennial allergic rhinitis were recruited. AIT was conducted for the patients. An allergic rhinitis (AR) mouse model was established with mite extracts as allergens. We found that AIT modulated the endoplasmic reticulum stress status in peripheral CD4+ T cells in patients with allergic rhinitis. The intensity of endoplasmic reticulum stress associated the PERK (protein kinase RNA-like endoplasmic reticulum kinase)-eIF2a (eukaryotic translation initiation factor 2a) axis in CD4+ T cells was upregulated by AIT, which was closely associated with the improvement in allergic rhinitis response after AIT. eIF2a interacted with GATA3 to downregulate the IL4 gene transcription in CD4+ T cells. High doses of aluminium hydroxide (alum) in AIT vaccines enhanced the activity of XBP1 to suppress eIF2a in CD4+ T cells. AIT containing a low dose of alum effectively mitigated the experimental allergic rhinitis, while the AIT without alum or a high dose of alum exacerbated the experimental allergic rhinitis. In conclusion, the alum adjuvant in allergen vaccines can regulate the activity of eIF2a to regulate the expression of Th2 cytokines in CD4+ T cells. Manipulating the alum dose in AIT vaccines has the potential to enhance the therapeutic effects of AIT.
Collapse
Affiliation(s)
- Yan Feng
- Department of Otolaryngology, Head & Neck Surgery, First Hospital, Shanxi Medical University, Taiyuan, China
| | - Zhishou Zhang
- Department of Otolaryngology, Head & Neck Surgery, Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Hui Huangfu
- Department of Otolaryngology, Head & Neck Surgery, First Hospital, Shanxi Medical University, Taiyuan, China
| | - Haiyang Han
- Department of Otolaryngology, Head & Neck Surgery, First Hospital, Shanxi Medical University, Taiyuan, China
- Guangdong Provincial Regional Disease Key Laboratory, Shenzhen, China
- Institute of Allergy & Immunology of Shenzhen University, State Key Laboratory of Respiratory Diseases Division at Shenzhen University, Shenzhen, China
| | - Bailing Xie
- Department of Otolaryngology, Head & Neck Surgery, First Hospital, Shanxi Medical University, Taiyuan, China
- Guangdong Provincial Regional Disease Key Laboratory, Shenzhen, China
- Institute of Allergy & Immunology of Shenzhen University, State Key Laboratory of Respiratory Diseases Division at Shenzhen University, Shenzhen, China
| | - Shuo Song
- Guangdong Provincial Regional Disease Key Laboratory, Shenzhen, China
- Institute of Allergy & Immunology of Shenzhen University, State Key Laboratory of Respiratory Diseases Division at Shenzhen University, Shenzhen, China
- Department General Practice Medicine, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Tao Liu
- Department of Otolaryngology, Head & Neck Surgery, First Hospital, Shanxi Medical University, Taiyuan, China
| | - Yunfang An
- Department of Otolaryngology, Head & Neck Surgery, Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Pingchang Yang
- Department of Otolaryngology, Head & Neck Surgery, Second Hospital, Shanxi Medical University, Taiyuan, China
- Guangdong Provincial Regional Disease Key Laboratory, Shenzhen, China
| |
Collapse
|
3
|
Liao Y, Li M, Song S, Xu X, Xiao X, Liu Y, Yang G, Yang P. The Immunosuppressive Functions of Eosinophils Are Compromised in Patients With Allergic Rhinitis, Particularly Concerning Rab27a Expression. Immun Inflamm Dis 2024; 12:e70091. [PMID: 39679991 PMCID: PMC11648009 DOI: 10.1002/iid3.70091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/14/2024] [Accepted: 11/20/2024] [Indexed: 12/17/2024] Open
Abstract
BACKGROUND Eosinophils have been acknowledged to be involved in the induction of numerous inflammatory disorders. There is still a lack of knowledge about whether eosinophils play a role in immune regulation. The aim of this study is to uncover the immune regulatory functions of eosinophils. METHODS Blood samples were collected from patients with allergic rhinitis (AR) and healthy control subjects. Peripheral blood mononuclear cells (PBMCs) were isolated from blood samples. Eosinophils were purified from PBMCs using flow cytometry cell sorting and analyzed using immunological approaches. RESULTS The results showed that eosinophils from healthy subjects had immune regulatory functions on T cell proliferation and cytokine release. Impairment of eosinophil immune regulatory functions was found in AR patients, which was associated with AR responses. Elevated Rab27a expression in eosinophils was associated with their impaired immune regulatory functions and the increased AR responses. Rab27a controlled the release of mediators from eosinophils. Low concentrations of Eosinophil mediators could trigger immune regulatory responses, while high concentrations could trigger inflammatory responses. Regulating Rab27a restored the immune regulatory functions of eosinophils of AR patients. CONCLUSIONS Eosinophils have immune regulatory functions, which are controlled by the expression of Rab27a. Regulation of Rab27a can improve the immune regulatory functions of eosinophils. The data suggest that inhibition of Rab27a can be a drug candidate for the treatment of eosinophil-related disorders.
Collapse
Grants
- This study was supported by the National Natural Science Foundation of China (32090052, 82371122, 82405301), Shenzhen Key Medical Discipline Construction Fund (SZXK062), Shenzhen Longgang Scientific & Technological Funds (LGKCYWS2020002), Shenzhen Science, Technology, and Innovation Committee (KQTD20170331145453160), China Postdoctoral Science Foundation (2023M740837, 2024M750659), and Shenzhen Medical Research Fund (A2403058).
Collapse
Affiliation(s)
- Yun Liao
- Department of OtolaryngologyLonggang Central HospitalShenzhenChina
| | - Minyao Li
- Department of General Practice MedicineThird Affiliated Hospital of Shenzhen UniversityShenzhenChina
| | - Shuo Song
- Department of General Practice MedicineThird Affiliated Hospital of Shenzhen UniversityShenzhenChina
| | - Xuejie Xu
- Institute of Allergy & Immunology of Shenzhen University, State Key Laboratory of Respiratory Diseases Allergy Division at Shenzhen University and Shenzhen Key Laboratory of Allergy & ImmunologyShenzhenChina
| | - Xiaojun Xiao
- Institute of Allergy & Immunology of Shenzhen University, State Key Laboratory of Respiratory Diseases Allergy Division at Shenzhen University and Shenzhen Key Laboratory of Allergy & ImmunologyShenzhenChina
| | - Yu Liu
- Department of General Practice MedicineThird Affiliated Hospital of Shenzhen UniversityShenzhenChina
| | - Gui Yang
- Department of OtolaryngologyLonggang Central HospitalShenzhenChina
| | - Pingchang Yang
- Department of General Practice MedicineThird Affiliated Hospital of Shenzhen UniversityShenzhenChina
| |
Collapse
|
4
|
Mao G, Zhu Q, Zeng Y, Cong L, Ye J, Kong X. Exosomal LncRNA and CircRNA Regulate Peripheral Blood Mononuclear Cell Function through a Competitive Endogenous RNA Mechanism in Allergic Rhinitis. Int Arch Allergy Immunol 2024:1-13. [PMID: 39571545 DOI: 10.1159/000542695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/15/2024] [Indexed: 12/19/2024] Open
Abstract
INTRODUCTION Peripheral blood mononuclear cells (PBMCs) dysfunction is involved in the pathogenesis and progression of allergic rhinitis (AR). This study aims to investigate the competing endogenous RNA (ceRNA) networks in PBMCs influenced by differentially expressed long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) found in plasma exosomes induced by AR. METHODS All subjects were from the Affiliated Taizhou People's Hospital of Nanjing Medical University. Differential expression of messenger RNA (mRNAs) in PBMCs and lncRNAs/circRNAs in plasma exosomes was analyzed using high-throughput sequencing. Differentially expressed lncRNAs and circRNAs that target mRNAs were identified using bioinformatics methods. The predicted target mRNAs were intersected with the differentially expressed mRNAs in PBMCs to construct ceRNA networks. The subcellular localizations of lncRNAs and circRNAs within the ceRNA networks were determined using RNA fluorescence in situ hybridization or bioinformatics methods. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses of differentially expressed mRNAs in PBMCs were conducted using the clusterProfiler R package. Quantitative reverse transcription polymerase chain reaction was used to validate the expression levels of each molecule within the constructed ceRNA networks in clinical samples, along with receiver operating characteristic (ROC) curve analysis to assess diagnostic value. Further validation was performed using in vitro cultured PBMCs and dual-luciferase reporter assays. RESULTS Five differentially expressed circRNAs and 31 differentially expressed lncRNAs were identified in exosomes. In PBMCs, 130 differentially expressed mRNAs were identified. Six ceRNA networks were constructed, affecting PBMCs chemorepellent activity, JAK-STAT signaling pathway, and other functions or pathways. The expression level of ENST00000650850 in plasma exosomes was significantly lower in AR patients, suggesting its potential diagnostic value. The expression level of ENST00000650850 in plasma exosomes was positively correlated with the expression levels of ENST00000650850 and IL6 mRNA in PBMCs. PBMCs from healthy individuals were stimulated with plasma exosomes isolated from AR patients, leading to a reduction in IL6R mRNA expression levels in the PBMCs. CONCLUSION Differentially expressed lncRNA (ENST00000650850) in plasma-derived exosomes of AR patients may regulate IL6R mRNA expression in PBMCs via miR-6747-3p, thereby influencing PBMC function and contributing to the pathogenesis and progression of AR.
Collapse
Affiliation(s)
- Guangyao Mao
- Department of Central Laboratory, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China,
| | - Qian Zhu
- Nanjing Medical University, Nanjing, China
| | - Yiyun Zeng
- Nanjing Medical University, Nanjing, China
| | | | - Jun Ye
- Department of Central Laboratory, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China
| | - Xuhui Kong
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China
| |
Collapse
|
5
|
Liu JY, Qiao YL, Jiao WE, Tao ZZ, Xu S, Chen SM. Changes in Circulating CD44+CD62L- Treg Subsets and CD44-CD62L+ Treg Subsets Reflect the Clinical Status of Patients with Allergic Rhinitis. Int Arch Allergy Immunol 2024; 186:120-132. [PMID: 39226877 DOI: 10.1159/000540536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 07/18/2024] [Indexed: 09/05/2024] Open
Abstract
INTRODUCTION This study clarified the expression changes and clinical significance of CD44+CD62L- Treg and CD44-CD62L+ Treg subsets in the peripheral blood of patients with allergic rhinitis (AR). METHODS The peripheral blood of 39 patients with AR and 42 healthy controls was collected. Clinical data, such as sex, age, IgE titer, allergen screening information and visual analogue scale (VAS) score, were recorded. Changes in serum IL-2, IL-4, IL-6, IL-10, TNF-α, and IFN-γ were detected using the cytometric bead array method. Flow cytometry was used to detect the proportions of Th1, Th2, Th17, TFH, and Th9 cells and the proportions of CD44+CD62L- Treg and CD44-CD62L+ Treg subsets. Correlation analysis was performed between the CD44+CD62L- Treg subsets and the CD44-CD62L+ Treg subsets with clinical indicators (VAS score, total IgE titer), cytokines (IL-2, IL-4, IL-6, IL-10, TNF-α, IFN-γ), and Th1/Th2/Th17/TFH/Th9 cell proportions. RESULTS Compared to the control group, the proportion of total Treg cells and CD44+CD62L- Treg cells in the AR group decreased, and the proportion of CD44-CD62L+ Treg cells increased (p < 0.05). The proportions of CD44+CD62L- Treg cells significantly negatively correlated with Th2 cells (R = -0.5270, p < 0.05) and positively correlated with Treg cytokine IL-10 (R = 0.6447, p < 0.05). In addition, CD44+CD62L- Treg cells negatively correlated with the VAS score (R = -0.4956, p < 0.05), total IgE level (R = -0.4177, p < 0.05) and Th2 cytokine IL-6 level (R = -0.3034, p < 0.05) but positively correlated with the Th1 cytokine IL-2 (R = 0.4331, p < 0.05). In contrast, the proportion of CD44+CD62L- Treg cells significantly positively correlated with the Th2 cells (R = 0.6187, p < 0.05). Moreover, the proportion of CD44-CD62L+ Treg cells positively correlated with the VAS score (R = 0.4060, p < 0.05), total IgE level (R = 0.5224, p < 0.05) and Th2 cytokine IL-4 (R = 0.2647, p < 0.05) and IL-6 levels (R = 0.3824, p < 0.05) but negatively correlated with Th1 cytokine IL-2 (R = -0.3451, p < 0.05) and IL-10 (R = -0.3277, p < 0.05). CONCLUSION A greater proportion of CD44+CD62L- Tregs correlated with better reversal of the Th1/Th2 imbalance and milder clinical symptoms in AR patients. The presence of more CD44-CD62L+ Tregs correlated with a weaker immunosuppressive effect on Th2 cells and more severe clinical symptoms in AR patients. These findings provide new perspectives for the treatment and disease monitoring of AR.
Collapse
Affiliation(s)
- Jia-Yu Liu
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yue-Long Qiao
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Wo-Er Jiao
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ze-Zhang Tao
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shan Xu
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shi-Ming Chen
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
6
|
Liu S, Xiao Y, Xiao K. Clinical effectiveness of focused ultrasound combined with plasma radiofrequency ablation technique in the treatment of persistent strain rhinitis. Medicine (Baltimore) 2024; 103:e38538. [PMID: 38941395 PMCID: PMC11466151 DOI: 10.1097/md.0000000000038538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 05/20/2024] [Indexed: 06/30/2024] Open
Abstract
Examine the effects of focused ultrasound in combination with plasma radiofrequency ablation technology on the physiological stability and postoperative recovery of persistent strain rhinitis. For a control experiment, 90 patients with persistent strain rhinitis were chosen and split into two groups: the control group (CG) and the experimental group (EG). The CG used conventional radiofrequency ablation technology, while the EG used focused ultrasound technology combined with radiofrequency ablation technology to treat persistent strain rhinitis. Between the EG and the CG, compare and contrast the recovery of nasal symptoms, nasal signs, postoperative discomfort, and postoperative respiratory status. One quarter after surgery, there was a substantial difference in physical sign ratings between the EG and the CG, and a particularly significant difference was seen after six months of treatment. One year following surgery, there was a statistical difference between the EG and the CG in the comparison of effective rates at various intervals, with a P value of .013. At 6 months following surgery, the MTT times in the EG and CG for the comparison of nasal function were 12.63 2.65 and 17.68 2.84, respectively, with statistically significant differences. The difference between the EG and the CG in the MTR comparison is statistically significant. In the comparison of NNO values between the EG and the CG after different treatment times. The nitric oxide value of the EG patients decreased over time, with statistical significance one month after surgery and one year after surgery. It is evident from the comparison of various symptom efficacy rates that the EG has a higher treatment effectiveness rate than the CG, and the total treatment effect difference following surgery has statistical significance. Indicators for PONV, PA, directional ability, respiratory recovery, and olfactory recovery performed better in the EG than in the CG, and the differences were statistically significant. Focused ultrasound and plasma radiofrequency ablation technology have a good therapeutic impact in the treatment of persistent strain rhinitis and can significantly reduce MTT. This technology can effectively improve symptoms such as nasal congestion, nasal flow, and headache in patients, and the therapeutic effect is long-lasting. The hospitalization time after treatment is significantly shortened.
Collapse
Affiliation(s)
- Shuhua Liu
- Department of Otolaryngology Head and Neck surgery, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, China
| | - Yan Xiao
- Department of Otolaryngology Head and Neck surgery, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, China
| | - Kailan Xiao
- Department of Ultrasound Diagnosis, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, China
| |
Collapse
|
7
|
Xu X, Mo L, Liao Y, Zhang KS, Zhang H, Liu L, Liu Y, Tang A, Yang P, Liu X. An association between elevated telomerase reverse transcriptase expression and the immune tolerance disruption of dendritic cells. Cell Commun Signal 2024; 22:284. [PMID: 38783329 PMCID: PMC11112790 DOI: 10.1186/s12964-024-01650-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND To elucidate the mechanism of dysfunction of tolerogenic dendritic cells (DCs) is of significance. Telomerase involves the regulation of the cell fate and activities. The objective of this study is to investigate the role of telomerase reverse transcriptase (TERT) in regulating the tolerogenic feature of DCs. METHODS The telomerase was assessed in DCs, which were collected from patients with allergic rhinitis (AR), healthy control (HC) subjects, and mice. RNAs were extracted from DCs, and analyzed by RNA sequencing (RNAseq), real-time quantitative RT-PCR, and Western blotting. RESULTS The results showed that expression of TERT was higher in peripheral DCs of AR patients. The expression of IL10 in DCs was negatively correlated with the levels of TERT expression. Importantly, the levels of TERT mRNA in DCs were associated with the AR response in patients with AR. Endoplasmic reticulum (ER) stress promoted the expression of Tert in DCs. Sensitization with the ovalbumin-aluminum hydroxide protocol increased the expression of Tert in DCs by exacerbating ER stress. TERT interacting with c-Maf (the transcription factor of IL-10) inducing protein (CMIP) in DCs resulted in CMIP ubiquitination and degradation, and thus, suppressed the production of IL-10. Inhibition of Tert in DCs mitigated experimental AR. CONCLUSIONS Elevated amounts of TERT were detected in DCs of patients with AR. The tolerogenic feature of DCs was impacted by TERT. Inhibited TERT attenuated experimental AR.
Collapse
Affiliation(s)
- Xuejie Xu
- Institute of Allergy & Immunology of Shenzhen University and State Key Laboratory of Respiratory Diseases Allergy Division, Shenzhen University, Xueyuan Blvd, Shenzhen, A7-511. 1066, 518500, China
| | - Lihua Mo
- Institute of Allergy & Immunology of Shenzhen University and State Key Laboratory of Respiratory Diseases Allergy Division, Shenzhen University, Xueyuan Blvd, Shenzhen, A7-511. 1066, 518500, China
- Department of General Medicine Practice, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Yun Liao
- Shenzhen Clinical College, Guangzhou University of Chinese Traditional Medicine & Pharmaceutics, Guangzhou, China
| | | | - Hanqing Zhang
- Institute of Allergy & Immunology of Shenzhen University and State Key Laboratory of Respiratory Diseases Allergy Division, Shenzhen University, Xueyuan Blvd, Shenzhen, A7-511. 1066, 518500, China
| | - Le Liu
- Institute of Allergy & Immunology of Shenzhen University and State Key Laboratory of Respiratory Diseases Allergy Division, Shenzhen University, Xueyuan Blvd, Shenzhen, A7-511. 1066, 518500, China
| | - Yu Liu
- Department of General Medicine Practice, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Aifa Tang
- Department of General Medicine Practice, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Pingchang Yang
- Institute of Allergy & Immunology of Shenzhen University and State Key Laboratory of Respiratory Diseases Allergy Division, Shenzhen University, Xueyuan Blvd, Shenzhen, A7-511. 1066, 518500, China.
| | - Xiaoyu Liu
- Institute of Allergy & Immunology of Shenzhen University and State Key Laboratory of Respiratory Diseases Allergy Division, Shenzhen University, Xueyuan Blvd, Shenzhen, A7-511. 1066, 518500, China.
| |
Collapse
|
8
|
Xu Z, Li R, Wang L, Wu Y, Tian Y, Su Y, Ma Y, Li R, Wei Y, Zhang C, Han S, Duan S, Peng H, Xue J. Pathogenic role of different phenotypes of immune cells in airway allergic diseases: a study based on Mendelian randomization. Front Immunol 2024; 15:1349470. [PMID: 38812518 PMCID: PMC11133742 DOI: 10.3389/fimmu.2024.1349470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/25/2024] [Indexed: 05/31/2024] Open
Abstract
Background Airway allergic disease (AAD) is a class of autoimmune diseases with predominantly Th2-type inflammation, mainly including allergic rhinitis (AR), allergic asthma (AS), and chronic sinusitis (CRS). There are very complex regulatory mechanisms between immune cells and AAD; however, previous reports found that the functions of the same immune cells in AAD are not identical. Objective The aim of this study was to explore the causal relationship between different phenotypic immune cells and their association with AAD. Method Utilizing the publicly available Genome-Wide Association Studies (GWAS) database, this study conducted a bidirectional Mendelian randomization (MR) to assess the causal relationship between immune cells of 731 different immunophenotypes and AAD. The primary assessment methods included inverse variance weighting, weighted median, and MR Egger. Additionally, sensitivity analyses such as MR-PRESSO, leave-one-out, and scatter plots were employed to eliminate the interference of heterogeneity and pleiotropy, ensuring the stability of the causal inference. Result A total of 38 immune cells with different immunophenotypes were found to be positively and causally associated with AR, of which 26 were protective factors and 12 were risk factors. Positive associations were found between 33 immune cells and AS, of which 14 were protective factors and 19 were risk factors, as well as between 39 immune cells and CRS, of which 22 were protective factors and 17 were risk factors. Finally, the results of all relevant immune cells for the three diseases were taken and intersected, and it was found that CD3 on CD39+-activated Treg (IVWAR = 0.001, IVWCRS = 0.043, IVWAS = 0.027) may be the key immune cell that inhibits the development of AAD (ORAR = 0.940, ORAS = 0.967, ORCRS = 0.976). Conclusion This study reveals that different immune phenotypes of immune cells are closely related to AAD at the genetic level, which provides a theoretical basis for future clinical studies.
Collapse
Affiliation(s)
- Zhihan Xu
- Department of Otolaryngology, Head and Neck Surgery, Second Hospital, Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Rapid Diagnosis and Precision Treatment of Airway Allergic Diseases, Head & Neck Surgery, Second Hospital, Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Airway Inflammatory Diseases Neuroimmunity Laboratory, Head & Neck Surgery, Second Hospital, Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ren Li
- Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Leigang Wang
- Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yisha Wu
- Department of Otolaryngology, Head and Neck Surgery, Second Hospital, Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Rapid Diagnosis and Precision Treatment of Airway Allergic Diseases, Head & Neck Surgery, Second Hospital, Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Airway Inflammatory Diseases Neuroimmunity Laboratory, Head & Neck Surgery, Second Hospital, Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yuhe Tian
- Department of Otolaryngology, Head and Neck Surgery, Second Hospital, Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Rapid Diagnosis and Precision Treatment of Airway Allergic Diseases, Head & Neck Surgery, Second Hospital, Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Airway Inflammatory Diseases Neuroimmunity Laboratory, Head & Neck Surgery, Second Hospital, Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yilin Su
- Department of Otolaryngology, Head and Neck Surgery, Second Hospital, Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Rapid Diagnosis and Precision Treatment of Airway Allergic Diseases, Head & Neck Surgery, Second Hospital, Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Airway Inflammatory Diseases Neuroimmunity Laboratory, Head & Neck Surgery, Second Hospital, Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yuqiang Ma
- Department of Otolaryngology, Head and Neck Surgery, Second Hospital, Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Rapid Diagnosis and Precision Treatment of Airway Allergic Diseases, Head & Neck Surgery, Second Hospital, Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Airway Inflammatory Diseases Neuroimmunity Laboratory, Head & Neck Surgery, Second Hospital, Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ruiying Li
- Department of Otolaryngology, Head and Neck Surgery, Second Hospital, Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Rapid Diagnosis and Precision Treatment of Airway Allergic Diseases, Head & Neck Surgery, Second Hospital, Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Airway Inflammatory Diseases Neuroimmunity Laboratory, Head & Neck Surgery, Second Hospital, Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yao Wei
- Department of Otolaryngology, Head and Neck Surgery, Second Hospital, Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Rapid Diagnosis and Precision Treatment of Airway Allergic Diseases, Head & Neck Surgery, Second Hospital, Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Airway Inflammatory Diseases Neuroimmunity Laboratory, Head & Neck Surgery, Second Hospital, Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Medical University, Taiyuan, Shanxi, China
| | - Chen Zhang
- Department of Otolaryngology, Head and Neck Surgery, Second Hospital, Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Rapid Diagnosis and Precision Treatment of Airway Allergic Diseases, Head & Neck Surgery, Second Hospital, Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Airway Inflammatory Diseases Neuroimmunity Laboratory, Head & Neck Surgery, Second Hospital, Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Medical University, Taiyuan, Shanxi, China
| | - Shikai Han
- Department of Otolaryngology, Head and Neck Surgery, Second Hospital, Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Rapid Diagnosis and Precision Treatment of Airway Allergic Diseases, Head & Neck Surgery, Second Hospital, Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Airway Inflammatory Diseases Neuroimmunity Laboratory, Head & Neck Surgery, Second Hospital, Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Medical University, Taiyuan, Shanxi, China
| | - Siyu Duan
- Department of Otolaryngology, Head and Neck Surgery, Second Hospital, Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Rapid Diagnosis and Precision Treatment of Airway Allergic Diseases, Head & Neck Surgery, Second Hospital, Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Airway Inflammatory Diseases Neuroimmunity Laboratory, Head & Neck Surgery, Second Hospital, Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Medical University, Taiyuan, Shanxi, China
| | - Haiyi Peng
- Department of Otolaryngology, Head and Neck Surgery, Second Hospital, Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Rapid Diagnosis and Precision Treatment of Airway Allergic Diseases, Head & Neck Surgery, Second Hospital, Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Airway Inflammatory Diseases Neuroimmunity Laboratory, Head & Neck Surgery, Second Hospital, Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jinmei Xue
- Department of Otolaryngology, Head and Neck Surgery, Second Hospital, Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Rapid Diagnosis and Precision Treatment of Airway Allergic Diseases, Head & Neck Surgery, Second Hospital, Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Airway Inflammatory Diseases Neuroimmunity Laboratory, Head & Neck Surgery, Second Hospital, Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
9
|
Zemelka-Wiacek M, Agache I, Akdis CA, Akdis M, Casale TB, Dramburg S, Jahnz-Różyk K, Kosowska A, Matricardi PM, Pfaar O, Shamji MH, Jutel M. Hot topics in allergen immunotherapy, 2023: Current status and future perspective. Allergy 2024; 79:823-842. [PMID: 37984449 DOI: 10.1111/all.15945] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/10/2023] [Accepted: 11/04/2023] [Indexed: 11/22/2023]
Abstract
The importance of allergen immunotherapy (AIT) is multifaceted, encompassing both clinical and quality-of-life improvements and cost-effectiveness in the long term. Key mechanisms of allergen tolerance induced by AIT include changes in memory type allergen-specific T- and B-cell responses towards a regulatory phenotype with decreased Type 2 responses, suppression of allergen-specific IgE and increased IgG1 and IgG4, decreased mast cell and eosinophil numbers in allergic tissues and increased activation thresholds. The potential of novel patient enrolment strategies for AIT is taking into account recent advances in biomarkers discoveries, molecular allergy diagnostics and mobile health applications contributing to a personalized approach enhancement that can increase AIT efficacy and compliance. Artificial intelligence can help manage and interpret complex and heterogeneous data, including big data from omics and non-omics research, potentially predict disease subtypes, identify biomarkers and monitor patient responses to AIT. Novel AIT preparations, such as synthetic compounds, innovative carrier systems and adjuvants, are also of great promise. Advances in clinical trial models, including adaptive, complex and hybrid designs as well as real-world evidence, allow more flexibility and cost reduction. The analyses of AIT cost-effectiveness show a clear long-term advantage compared to pharmacotherapy. Important research questions, such as defining clinical endpoints, biomarkers of patient selection and efficacy, mechanisms and the modulation of the placebo effect and alternatives to conventional field trials, including allergen exposure chamber studies are still to be elucidated. This review demonstrates that AIT is still in its growth phase and shows immense development prospects.
Collapse
Affiliation(s)
| | - Ioana Agache
- Faculty of Medicine, Transylvania University, Brasov, Romania
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University Zurich, Davos, Switzerland
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University Zurich, Davos, Switzerland
| | - Thomas B Casale
- Departments of Medicine and Pediatrics and Division of Allergy and Immunology, Joy McCann Culverhouse Clinical Research Center, University of South Florida, Tampa, Florida, USA
| | - Stephanie Dramburg
- Department of Pediatric Respiratory Care, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Karina Jahnz-Różyk
- Department of Internal Diseases, Pneumonology, Allergology and Clinical Immunology, Military Institute of Medicine-National Research Institute, Warsaw, Poland
| | - Anna Kosowska
- Department of Clinical Immunology, Wroclaw Medical University, Wroclaw, Poland
- ALL-MED Medical Research Institute, Wroclaw, Poland
| | - Paolo M Matricardi
- Department of Pediatric Respiratory Care, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Oliver Pfaar
- Section of Rhinology and Allergy, Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Marburg, Philipps-Universität Marburg, Marburg, Germany
| | - Mohamed H Shamji
- Allergy and Clinical Immunology, National Heart and Lung Institute, Imperial College London, London, UK
| | - Marek Jutel
- Department of Clinical Immunology, Wroclaw Medical University, Wroclaw, Poland
- ALL-MED Medical Research Institute, Wroclaw, Poland
| |
Collapse
|
10
|
Zeng X, Li J, Liu J, Mo L, Liu Y, Zhang A, Yang P, Kong H. Nasal mucosal fibroblasts produce IL-4 to induce Th2 response. Innate Immun 2024; 30:55-65. [PMID: 38725177 PMCID: PMC11165659 DOI: 10.1177/17534259241254623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 04/27/2024] [Indexed: 06/13/2024] Open
Abstract
Th2 polarization is essential for the pathogenesis of allergic rhinitis (AR). Th2 polarization's mechanism requires further understanding. IL-4 is the primary cytokine involved in Th2 response. Fibroblasts play a role in immune regulation. This study aims to elucidate the role of nasal mucosal fibroblast-derived IL-4 in the induction of Th2 responses. Nasal mucosal tissues were obtained from surgically removed samples from patients with nasal polyps, whether with or without AR. Fibroblasts were isolated from the tissues by flow cytometry cell sorting, and analyzed by RNA sequencing (RNAseq). The data from RNAseq showed that nasal fibroblasts expressed genes of GATA3, CD80, CD83, CD86, STAT6, IL2, IL4, IL5, IL6, IL13 and costimulatory factor. The data were verified by RT-qPCR. The level of gene activity was positively correlated with those of AR-related cytokines present in nasal secretions. Nasal fibroblasts release IL-4 upon activation. Nasal fibroblasts had the ability to transform naive CD4+ T cells into Th2 cells, which can be eliminated by inhibiting IL-4 receptor or CD28 in CD4+ T cells. To sum up, nasal mucosal fibroblasts produce IL-4, which can induce Th2 cell development. The data implicate that nasal fibroblasts are involved in the pathogenesis of nasal allergy.
Collapse
Affiliation(s)
- Xianhai Zeng
- Department of Otorhinolaryngology, Second Affiliated Hospital of Dalian Medical University, Dalian, China
- Department of Otolaryngology, Longgang ENT Hospital & Shenzhen ENT Institute, Shenzhen, China
| | - Juanjuan Li
- Department of Otolaryngology, Longgang ENT Hospital & Shenzhen ENT Institute, Shenzhen, China
| | - Jiangqi Liu
- Department of Otolaryngology, Longgang ENT Hospital & Shenzhen ENT Institute, Shenzhen, China
| | - Lihua Mo
- Institute of Allergy & Immunology and State Key Laboratory of Respiratory Diseases Allergy Division, Shenzhen University, Shenzhen, China
- Department of General Practice Medicine, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Yu Liu
- Department of General Practice Medicine, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Aizhi Zhang
- Department of Critical Care Medicine, Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Pingchang Yang
- Department of Otolaryngology, Longgang ENT Hospital & Shenzhen ENT Institute, Shenzhen, China
- Institute of Allergy & Immunology and State Key Laboratory of Respiratory Diseases Allergy Division, Shenzhen University, Shenzhen, China
| | - Hui Kong
- Department of Otorhinolaryngology, Second Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
11
|
Kumar B, Deshmukh R. A Review on Novel Therapeutic Modalities and Evidence-based Drug Treatments against Allergic Rhinitis. Curr Pharm Des 2024; 30:887-901. [PMID: 38486383 DOI: 10.2174/0113816128295952240306072100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/20/2024] [Indexed: 06/21/2024]
Abstract
Allergic rhinitis (AR) is an IgE-mediated atopic disease that occurs due to inhaled antigens in the immediate phase. Misdiagnosis, insufficient treatment, or no treatment at all are frequent problems associated with the widespread condition known as chronic allergic rhinitis. AR symptoms include runny, itchy, stuffy, and sneezing noses. Asthma and nasal polyps, for example, sometimes occur simultaneously in patients. In order for people living with AR to be as comfortable and productive as possible, treatment should center on reducing their symptoms. The online sources and literature, such as Pubmed, ScienceDirect, and Medline, were reviewed to gather information regarding therapeutic modalities of AR and evidence-based treatments for the disease as the objectives of the present study. An increasing number of people are suffering from AR, resulting in a heavy financial and medical burden on healthcare systems around the world. Undertreating AR frequently results in a decline in quality of life. Treatment compliance is a critical challenge in the administration of AR. Innovative therapies are needed for RA to provide patients with symptom alleviation that is less expensive, more effective, and longer duration of action. Evidence-based guidelines are helpful for managing AR illness. Treating AR according to evidence-based standards can help in disease management. AR treatment includes allergen avoidance, drug therapy, immunotherapy, patient education, and follow-up. However, AR treatment with intranasal corticosteroids is more popular. Hence, in this review article, treatment options for AR are discussed in depth. We also discussed the incidence, causes, and new treatments for this clinical condition.
Collapse
Affiliation(s)
- Bhupendra Kumar
- Department of Pharmaceutics, Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Rohitas Deshmukh
- Department of Pharmaceutics, Institute of Pharmaceutical Research, GLA University, Mathura, India
| |
Collapse
|
12
|
Geng X, Xue J, Zheng H, Suo L, Zeng H, Zhao M, Song S, Liu Y, Zhao C, Yang P. The association between CD46 expression in B cells and the pathogenesis of airway allergy. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166845. [PMID: 37579982 DOI: 10.1016/j.bbadis.2023.166845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/05/2023] [Accepted: 08/08/2023] [Indexed: 08/16/2023]
Abstract
CD46 can facilitate the production of IgE. Activation of CD46 may contribute to the pathogenesis of allergic diseases. The aim of this study is to elucidate the association between CD46 expression in B cells and the pathogenesis of airway allergy. In this study, peripheral B cells were collected from a group of patients suffering from allergic rhinitis (AR). An AR mouse model was established to test the role of CD46 in the development of airway allergy. The results showed elevated amounts of IGE in peripheral CD46+ B cells of AR patients. CD46+ B cells of AR patients showed high reticulum endoplasmic (ER) stress status. The expression of CD46 in peripheral B cells was positively associated with the AR response in patients. The production of IgE in mice with airway allergy was prevented by ablating CD46 expression in B cells. Exposure to aluminum hydroxide up regulated the expression of Cd46 in B cells through exacerbating ER stress. Administration of Cd46 shRNA carrying nanoparticles attenuated experimental airway allergy. In conclusion, peripheral B cells in AR patients display elevated CD46 expression. Cd46 ablation in B cells can mitigate the production of IgE in mice and attenuate experimental airway allergy.
Collapse
Affiliation(s)
- Xiaorui Geng
- Department of Otolaryngology, Longgang ENT Hospital and Shenzhen ENT Institute, Shenzhen, China
| | - Jinmei Xue
- Department of Otolaryngology, Head & Neck Surgery, Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Haoyue Zheng
- Shenzhen Clinical School of Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China; Institute of Allergy & Immunology of Shenzhen University, State Key Laboratory of Respiratory Diseases Allergy Division at Shenzhen University, Shenzhen, China
| | - Limin Suo
- Department of Otolaryngology, Head & Neck Surgery, Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Haotao Zeng
- Department of Otolaryngology, Longgang ENT Hospital and Shenzhen ENT Institute, Shenzhen, China
| | - Miao Zhao
- Department of Otolaryngology, Longgang ENT Hospital and Shenzhen ENT Institute, Shenzhen, China
| | - Shuo Song
- Institute of Allergy & Immunology of Shenzhen University, State Key Laboratory of Respiratory Diseases Allergy Division at Shenzhen University, Shenzhen, China; Department of General Practical Medicine, Third Affiliated Hospital, Shenzhen University, Shenzhen, China
| | - Yu Liu
- Institute of Allergy & Immunology of Shenzhen University, State Key Laboratory of Respiratory Diseases Allergy Division at Shenzhen University, Shenzhen, China.
| | - Changqing Zhao
- Department of Otolaryngology, Head & Neck Surgery, Second Hospital, Shanxi Medical University, Taiyuan, China.
| | - Pingchang Yang
- Shenzhen Clinical School of Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China.
| |
Collapse
|
13
|
Deng B, Deng L, Liu M, Zhao Z, Huang H, Tu X, Liang E, Tian R, Wang X, Wang R, Lin H, Yu Y, Peng A, Xu P, Bao K, He M. Elevated circulating CD19 +CD24 hiCD38 hi B cells display pro-inflammatory phenotype in idiopathic membranous nephropathy. Immunol Lett 2023; 261:58-65. [PMID: 37553031 DOI: 10.1016/j.imlet.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 07/13/2023] [Accepted: 08/03/2023] [Indexed: 08/10/2023]
Abstract
CD19+CD24hiCD38hi regulatory B cells exert immunosuppressive functions by producing IL-10, but their role in idiopathic membranous nephropathy (IMN) remains elusive. Here, we investigated the frequency and functional changes of circulating CD19+CD24hiCD38hi B cells and evaluated the correlation of CD19+CD24hiCD38hi B cells with clinical features and T helper cell subsets in IMN patients. Compared with healthy controls (HCs), IMN patients showed an increased frequency of CD19+CD24hiCD38hi B cells, but a significant reduction in the percentage of CD19+CD24hiCD38hi B cells was observed 4 weeks after cyclophosphamide treatment. The frequency of CD19+CD24hiCD38hi B cells was positively correlated with the levels of 24h urinary protein, but negatively correlated with serum total protein and serum albumin, respectively. CD19+CD24hiCD38hi B cells in IMN patients displayed a skewed pro-inflammatory cytokine profile with a higher level of IL-6 and IL-12, but a lower concentration of IL-10 than their healthy counterparts. Accompanied by upregulation of Th2 and Th17 cells in IMN patients, the percentage of CD19+CD24hiCD38hi B cell subset was positively associated with Th17 cell frequency. In conclusion, CD19+CD24hiCD38hi B cells were expanded but functionally impaired in IMN patients. Their altered pro-inflammatory cytokine profile may contribute to the pathogenesis of IMN.
Collapse
Affiliation(s)
- Bishun Deng
- Department of Laboratory Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Li Deng
- Department of Laboratory Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Miao Liu
- Department of Laboratory Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ziling Zhao
- Department of Laboratory Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huijie Huang
- Department of Laboratory Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoxin Tu
- Department of Laboratory Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Enyu Liang
- Department of Laboratory Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ruimin Tian
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Nephrology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaowan Wang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Nephrology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Rongrong Wang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Nephrology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haibiao Lin
- Department of Laboratory Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yongyi Yu
- Department of Laboratory Medicine, Kaiping Central Hospital, JiangMen, China
| | - Anping Peng
- Department of Laboratory Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Peng Xu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Nephrology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Kun Bao
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Nephrology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Min He
- Department of Laboratory Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
14
|
Satitsuksanoa P, Iwasaki S, Boersma J, Bel Imam M, Schneider SR, Chang I, van de Veen W, Akdis M. B cells: The many facets of B cells in allergic diseases. J Allergy Clin Immunol 2023; 152:567-581. [PMID: 37247640 DOI: 10.1016/j.jaci.2023.05.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 03/30/2023] [Accepted: 05/16/2023] [Indexed: 05/31/2023]
Abstract
B cells play a key role in our immune system through their ability to produce antibodies, suppress a proinflammatory state, and contribute to central immune tolerance. We aim to provide an in-depth knowledge of the molecular biology of B cells, including their origin, developmental process, types and subsets, and functions. In allergic diseases, B cells are well known to induce and maintain immune tolerance through the production of suppressor cytokines such as IL-10. Similarly, B cells protect against viral infections such as severe acute respiratory syndrome coronavirus 2 that caused the recent coronavirus disease 2019 pandemic. Considering the unique and multifaceted functions of B cells, we hereby provide a comprehensive overview of the current knowledge of B-cell biology and its clinical applications in allergic diseases, organ transplantation, and cancer.
Collapse
Affiliation(s)
- Pattraporn Satitsuksanoa
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland.
| | - Sayuri Iwasaki
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland; Wageningen University & Research, Wageningen, The Netherlands
| | - Jolien Boersma
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland; Wageningen University & Research, Wageningen, The Netherlands
| | - Manal Bel Imam
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
| | - Stephan R Schneider
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
| | - Iris Chang
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland; Sean N. Parker Centre for Allergy and Asthma Research, Department of Medicine, Stanford University, Palo Alto, Calif
| | - Willem van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland.
| |
Collapse
|
15
|
Zeng Y, Xiao H, Gao S, Li J, Yang C, Zeng Q, Luo X, Luo R, Chen X, Liu W. Efficacy and immunological changes of sublingual immunotherapy in pediatric allergic rhinitis. World Allergy Organ J 2023; 16:100803. [PMID: 37520614 PMCID: PMC10382672 DOI: 10.1016/j.waojou.2023.100803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 05/11/2023] [Accepted: 07/07/2023] [Indexed: 08/01/2023] Open
Abstract
Background Allergen-specific immunotherapy, including subcutaneous immunotherapy (SCIT) and sublingual immunotherapy (SLIT), improves the disease progression of allergic rhinitis (AR). SCIT and SLIT exhibit similar efficacy, but SLIT has less systemic reactions. However, few studies have investigated the underlying mechanisms of SLIT treatment. In this study, we explored the efficacy of SLIT under different treatment durations and immunological changes. Methods This retrospective study was conducted from August 2017 to August 2022 in our hospital. A total of 314 children who underwent SLIT were divided into the following groups based on their treatment duration: the 1 year group (6 months-1 year), the 2 years group (1-2 years), and the 3 years group (2-3 years). The treatment efficacy was confirmed using a combined symptom and medication score (SMS). Multiple serum cytokines were measured using Luminex. Various immune cells in PBMCs were determined using flow cytometry. Results The total nasal symptom score (TNSS), rescue medication score (RMS), and SMS of the 3 years group was significantly different from those of the 1 years and 2 years groups. At the end of the 2 years following cessation of SLIT, the following results were observed in the 3 years group: 1) the TNSS, RMS, and SMS had significantly improved, 2) the serum IL-10, TGF-beta, and IL-35 levels had increased significantly, and 3) the percentages of regulatory T cell, regulatory B cell, and follicular regulatory T cell increased significantly. Conclusion Our results suggest that 3 years of SLIT is necessary for long-term effects and continued immunological changes.
Collapse
Affiliation(s)
- Yinhui Zeng
- Department of Otolaryngology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| | - Haiqing Xiao
- Department of Otolaryngology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| | - Shengli Gao
- Department of Otolaryngology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| | - Jinyuan Li
- Department of Otolaryngology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| | - Chao Yang
- Department of Otolaryngology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| | - Qingxiang Zeng
- Department of Otolaryngology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| | - Xi Luo
- Department of Otolaryngology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| | - Renzhong Luo
- Department of Otolaryngology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| | - Xi Chen
- Department of Anesthesiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| | - Wenlong Liu
- Department of Otolaryngology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| |
Collapse
|
16
|
Bai J, Tan BK. B Lineage Cells and IgE in Allergic Rhinitis and CRSwNP and the Role of Omalizumab Treatment. Am J Rhinol Allergy 2023; 37:182-192. [PMID: 36848269 PMCID: PMC10830379 DOI: 10.1177/19458924221147770] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
BACKGROUND Allergic rhinitis (AR) and chronic rhinosinusitis (CRS) are two prevalent nasal diseases where both type 2 inflammation and immunoglobulin E (IgE) may play important roles. Although they can exist independently or comorbidly, subtle but important differences exist in immunopathogenesis. OBJECTIVE To summarize current knowledge of pathophysiological roles of B lineage cells and IgE in AR and CRS with nasal polyps (CRSwNP). METHODS Searched PubMed database, reviewed AR and CRSwNP-related literature, and discussed disease diagnosis, comorbidity, epidemiology, pathophysiology, and treatment. Similarities and differences in B-cell biology and IgE are compared in the 2 conditions. RESULTS Both AR and CRSwNP have evidence for pathological type 2 inflammation, B-cell activation and differentiation, and IgE production. However, distinctions exist in the clinical and serological profiles at diagnosis, as well as treatments utilized. B-cell activation in AR may more frequently be regulated in the germinal center of lymphoid follicles, whereas CRSwNP may occur via extrafollicular pathways although controversies remain in these initial activating events. Oligoclonal and antigen-specific IgE maybe predominate in AR, but polyclonal and antigen-nonspecific IgE may predominate in CRSwNP. Omalizumab has been shown efficacious in treating both AR and CRSwNP in multiple clinical trials but is the only Food and Drug Administration-approved anti-IgE biologic to treat CRSwNP or allergic asthma. Staphylococcus aureus frequently colonizes the nasal airway and has the ability to activate type two responses including B-cell responses although the extent to which it modulates AR and CRSwNP disease severity is being investigated. CONCLUSION This review highlights current knowledge of the roles of B cells and IgE in the pathogenesis of AR and CRSwNP and a small comparison between the 2 diseases. More systemic studies should be done to elevate the understanding of these diseases and their treatment.
Collapse
Affiliation(s)
- Junqin Bai
- Department of Otolaryngology, 12244Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Bruce K Tan
- Department of Otolaryngology, 12244Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Division of Allergy and Immunology, Department of Medicine, 12244Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
17
|
Agache I, Zemelka-Wiącek M, Shamji MH, Jutel M. Immunotherapy: State-of-the-art review of therapies and theratypes. J Allergy Clin Immunol 2022; 150:1279-1288. [PMID: 36328808 DOI: 10.1016/j.jaci.2022.10.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/02/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022]
Abstract
Through its disease-modifying potential, immunotherapy is the keystone to curing allergic diseases. Allergen immunotherapy, applied for more than a century, is currently supported by novel modalities such as mAb-based therapies or small molecules targeting the key nodes of the allergic inflammation network. In this review, a summary of the most significant advances in immunotherapy is presented, addressing not only novel approaches to stratifying patients but also major controlled clinical trials and real-world evidence that strengthen the role of immunotherapy in the treatment of allergies.
Collapse
Affiliation(s)
- Ioana Agache
- Faculty of Medicine, Transylvania University, Brasov, Romania.
| | | | - Mohamed H Shamji
- National Heart and Lung Institute, Imperial College London, London, United Kingdom; NIHR Imperial Biomedical Research Centre, London, United Kingdom
| | - Marek Jutel
- Department of Clinical Immunology, Wroclaw Medical University, Wroclaw, Poland; ALL-MED Medical Research Institute, Wroclaw, Poland
| |
Collapse
|
18
|
Luo X, Mo L, Wang X, Zhang S, Liu H, Wu G, Huang Q, Liu D, Yang P. Rnf20 inhibition enhances immunotherapy by improving regulatory T cell generation. Cell Mol Life Sci 2022; 79:588. [PMID: 36371755 PMCID: PMC11802951 DOI: 10.1007/s00018-022-04613-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/06/2022] [Accepted: 10/26/2022] [Indexed: 11/14/2022]
Abstract
BACKGROUND Allergic disorders are common all over the world. The pathogenesis of allergy is unclear. Therapies for allergic disorders require improvement. Endoplasmic reticulum (ER) stress is one of the factors influencing immune response. The purpose of this study is to improve the effectiveness of immunotherapy for experimental respiratory allergy by targeting the ER stress signal pathway. METHODS Committed CD4+ T cells were isolated from blood samples collected from patients with allergic rhinitis (AR) and TCR ovalbumin transgenic mice. The effects of TCR engagement and 3-methyl-4-nitrophenol (MNP) on inducing ER stress in committed CD4+ T cells were evaluated. RESULTS ER stress was detected in antigen-specific CD4+ T cells (sCD4+ T cells) of AR patients. The environmental pollutant MNP increased the expression of the X-binding protein-1 (XBP1) in the committed CD4+ T cells during the TCR engagement. XBP1 mediated the effects of MNP on inhibiting regulatory T cell (Treg) generation. The effects of MNP on induction of protein 20 (Rnf20) in CD4+ T cells were mediated by XBP1. Inhibition of Rnf20 rescued the Treg development from MNP-primed sCD4+ T cells. The ablation of Rnf20 improved the immunotherapy of AR through the restoration of the Treg generation. CONCLUSIONS ER stress can be detected in CD4+ T cells in TCR engagement. Exposure to MNP exacerbates ER stress in committed CD4+ T cells. Regulation of the ER stress-related Rnf20 expression can restore the generation of Treg from CD4+ T cells of subjects with allergic diseases.
Collapse
Affiliation(s)
- Xiangqian Luo
- Department of Pediatric Otolaryngology, Shenzhen Hospital, Southern Medial University, 1333 Xinhu Road, Shenzhen, 518055, China
| | - Lihua Mo
- Department of Pediatric Otolaryngology, Shenzhen Hospital, Southern Medial University, 1333 Xinhu Road, Shenzhen, 518055, China
| | - Xinxin Wang
- Guangdong Provincial Regional Disease Key Laboratory, Room A7-509, 1066 Xueyuan Blvd, Shenzhen, 518055, China
- Institute of Allergy, State Key Laboratory of Respiratory Diseases Allergy Division, Immunology of Shenzhen University, Shenzhen University, Room A7-509, 1066 Xueyuan Blvd, Shenzhen, 518055, China
| | - Shuang Zhang
- Guangdong Provincial Regional Disease Key Laboratory, Room A7-509, 1066 Xueyuan Blvd, Shenzhen, 518055, China
- Institute of Allergy, State Key Laboratory of Respiratory Diseases Allergy Division, Immunology of Shenzhen University, Shenzhen University, Room A7-509, 1066 Xueyuan Blvd, Shenzhen, 518055, China
| | - Huazhen Liu
- Guangdong Provincial Regional Disease Key Laboratory, Room A7-509, 1066 Xueyuan Blvd, Shenzhen, 518055, China
- Institute of Allergy, State Key Laboratory of Respiratory Diseases Allergy Division, Immunology of Shenzhen University, Shenzhen University, Room A7-509, 1066 Xueyuan Blvd, Shenzhen, 518055, China
| | - Gaohui Wu
- Department of Respirology, Third Affiliated Hospital of Shenzhen University, Room A7-509, 1066 Xueyuan Blvd, Shenzhen, 518055, China
| | - Qinmiao Huang
- Department of Respirology, Third Affiliated Hospital of Shenzhen University, Room A7-509, 1066 Xueyuan Blvd, Shenzhen, 518055, China.
| | - Dabo Liu
- Department of Pediatric Otolaryngology, Shenzhen Hospital, Southern Medial University, 1333 Xinhu Road, Shenzhen, 518055, China.
| | - Pingchang Yang
- Guangdong Provincial Regional Disease Key Laboratory, Room A7-509, 1066 Xueyuan Blvd, Shenzhen, 518055, China.
- Institute of Allergy, State Key Laboratory of Respiratory Diseases Allergy Division, Immunology of Shenzhen University, Shenzhen University, Room A7-509, 1066 Xueyuan Blvd, Shenzhen, 518055, China.
| |
Collapse
|
19
|
Wang C, Bao Y, Chen J, Chen X, Cheng L, Guo YS, Hao C, Lai H, Li H, Li J, Liu C, Liu Y, Liu Z, Lou H, Lv W, Nong G, Qiu Q, Ren X, Shao J, Shen YH, Shi L, Song XC, Song Y, Tang S, Wang H, Wang X, Wang X, Wang Z, Wei Q, Xie H, Xing Z, Xu R, Xu Y, Yang Q, Yao H, Ye J, You Y, Yu H, Yu Y, Zhang H, Zhang G, Zhang Y, Zhi Y, Zhou W, Zhu L, Zhu X, Chai R, Chen D, Guan K, Huang Z, Huang Y, Ma T, Ma Y, Meng Y, Ren L, Wang J, Wang N, Xian M, Xiang R, Zheng M, Zhang L. Chinese Guideline on Allergen Immunotherapy for Allergic Rhinitis: The 2022 Update. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2022; 14:604-652. [PMID: 36426395 PMCID: PMC9709690 DOI: 10.4168/aair.2022.14.6.604] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/23/2022] [Accepted: 11/06/2022] [Indexed: 09/16/2023]
Abstract
In the last few decades, there has been a progressive increase in the prevalence of allergic rhinitis (AR) in China, where it now affects approximately 250 million people. AR prevention and treatment include allergen avoidance, pharmacotherapy, allergen immunotherapy (AIT), and patient education, among which AIT is the only curative intervention. AIT targets the disease etiology and may potentially modify the immune system as well as induce allergen-specific immune tolerance in patients with AR. In 2017, a team of experts from the Chinese Society of Allergy (CSA) and the Chinese Allergic Rhinitis Collaborative Research Group (C2AR2G) produced the first English version of Chinese AIT guidelines for AR. Since then, there has been considerable progress in basic research of and clinical practice for AIT, especially regarding the role of follicular regulatory T (TFR) cells in the pathogenesis of AR and the use of allergen-specific immunoglobulin E (sIgE) in nasal secretions for the diagnosis of AR. Additionally, potential biomarkers, including TFR cells, sIgG4, and sIgE, have been used to monitor the incidence and progression of AR. Moreover, there has been a novel understanding of AIT during the coronavirus disease 2019 pandemic. Hence, there was an urgent need to update the AIT guideline for AR by a team of experts from CSA and C2AR2G. This document aims to serve as professional reference material on AIT for AR treatment in China, thus improving the development of AIT across the world.
Collapse
Affiliation(s)
- Chengshuo Wang
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Nasal Diseases and Beijing Laboratory of Allergic Diseases, Beijing Institute of Otorhinolaryngology, Beijing, China
- Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China
- Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| | | | - Jianjun Chen
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Xiaoyang Chen
- Department of Pulmonary and Critical Care Medicine, Second Affiliated Hospitial of Fujian Medical University, Respiratory Medicine Center of Fujian Province, Quanzhou, China
| | - Lei Cheng
- Department of Otorhinolaryngology & Clinical Allergy Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Yin Shi Guo
- Department of Allergy & Immunology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chuangli Hao
- Department of Respiratory Diseases, Children's Hospital of Soochow University, Suzhou, China
| | - He Lai
- Department of Allergy, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Huabin Li
- Department of Otolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Jing Li
- Department of Allergy and Clinical Immunology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Changshan Liu
- Department of Pediatrics, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yun Liu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zheng Liu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongfei Lou
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Wei Lv
- Department of Otorhinolaryngology, Peking Union Medical College Hospital, Beijing, China
| | - Guangmin Nong
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Qianhui Qiu
- Department of Otolaryngology-Head and Neck Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xiumin Ren
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jie Shao
- Department of Pediatrics, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi-Hong Shen
- Department of Respiratory Diseases, The First Affiliated Hospital of College of Medicine, Zhejiang University, Hangzhou, China
| | - Li Shi
- Department of Otolaryngology,The Second Hospital of Shandong University, Jinan, China
| | - Xi-Cheng Song
- Department of Otorhinolaryngology Head and Neck Surgery, Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Yuxin Song
- Department of Allergy, Harbin Children's Hospital, Harbin, China
| | - Suping Tang
- Department of Allergy, Fuzhou Children's Hospital Affiliated to Fujian Medical University, Fuzhou, China
| | - Hongtian Wang
- Department of Allergy, Beijing ShiJiTan Hospital, Capital Medical University, Beijing, China
| | - Xiangdong Wang
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Nasal Diseases and Beijing Laboratory of Allergic Diseases, Beijing Institute of Otorhinolaryngology, Beijing, China
| | - Xueyan Wang
- Department of Allergy, Beijing ShiJiTan Hospital, Capital Medical University, Beijing, China
| | - Zhenlin Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Qingyu Wei
- Department of Allergy, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hua Xie
- Department of Allergy, Northern Theatre General Hospital, Shenyang, China
| | - Zhimin Xing
- Department of Otolaryngology-Head and Neck Surgery, Peking University People's Hospital, Beijing, China
| | - Rui Xu
- Department of Allergy of Otorhinolaryngology Hospital, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yu Xu
- Department of Otorhinolaryngology Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qintai Yang
- Department of Otolaryngology-Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Hongmei Yao
- Department of Respiratory and Critical Care Medicine, Guizhou Provincial People's Hospital, Guiyang, China
| | - Jing Ye
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yiwen You
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Hongmeng Yu
- Department of Otolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Yongmei Yu
- Department of Otorhinolaryngology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Huanping Zhang
- Department of Allergy, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Gehua Zhang
- Department of Otolaryngology-Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yuan Zhang
- Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| | - Yuxiang Zhi
- Department of Allergy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Weikang Zhou
- Department of Allergy, Chongqing General Hospital, Chongqing, China
| | - Li Zhu
- Department of Otorhinolaryngology, The Third Hospital of Peking University, Beijing, China
| | - Xinhua Zhu
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ruonan Chai
- Department of Allergy, Northern Theatre General Hospital, Shenyang, China
| | - Dehua Chen
- Department of Allergy of Otorhinolaryngology Hospital, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Kai Guan
- Department of Allergy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zizhen Huang
- Department of Otolaryngology-Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yanran Huang
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| | - Tingting Ma
- Department of Allergy, Beijing ShiJiTan Hospital, Capital Medical University, Beijing, China
| | - Yuemei Ma
- Department of Allergy, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yifan Meng
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| | - Lei Ren
- Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| | - Jianxing Wang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Nan Wang
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mo Xian
- Department of Allergy and Clinical Immunology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Rong Xiang
- Department of Otorhinolaryngology Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ming Zheng
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| | - Luo Zhang
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
20
|
Zhang Y, Lan F, Zhang L. Update on pathomechanisms and treatments in allergic rhinitis. Allergy 2022; 77:3309-3319. [PMID: 35892225 DOI: 10.1111/all.15454] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 07/10/2022] [Accepted: 07/23/2022] [Indexed: 01/28/2023]
Abstract
Allergic rhinitis (AR) is a global health problem with increasing prevalence and association with an enormous medical and socioeconomic burden. New recognition of immune cells such as type 2 innate lymphocytes (ILC2s), T helper (Th2) 2 cells, follicular helper T cells, follicular regulatory T cells, regulatory T cells, B cells, dendritic cells, and epithelial cells in AR pathogenesis has been updated in this review paper. An in-depth understanding of the mechanisms underlying AR will aid the identification of biomarkers associated with disease and ultimately provide valuable parameters critical to guide personalized targeted therapy. As the only etiological treatment option for AR, allergen-specific immunotherapy (AIT) has attracted increasing attention, with evidence for effectiveness of AIT recently demonstrated in several randomized controlled trials and long-term real-life studies. The exploration of biologics as therapeutic options has only involved anti-IgE and anti-type 2 inflammatory agents; however, the cost-effectiveness of these agents remains to be elucidated precisely. In the midst of the currently on-going COVID-19 pandemic, a global life-threatening disease, although some studies have indicated that AR is not a risk factor for severity and mortality of COVID-19, this needs to be confirmed in multi-centre, real-life studies of AR patients from different parts of the world.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China.,Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| | - Feng Lan
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Luo Zhang
- Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China.,Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
21
|
Qiu S, Luo X, Mo L, Zhang S, Liao Y, Guan L, Yang L, Huang Q, Liu D, Yang P. TAFA4-IL-10 axis potentiate immunotherapy for airway allergy by induction of specific regulatory T cells. NPJ Vaccines 2022; 7:133. [PMID: 36316414 PMCID: PMC9622679 DOI: 10.1038/s41541-022-00559-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 10/13/2022] [Indexed: 11/07/2022] Open
Abstract
Allergen-specific immunotherapy (AIT) is the main treatment for allergic diseases. The therapeutic efficacy of AIT has to be improved. Neuropeptides, such as TAFA4, have immune-regulating features. The objective of this study is to promote the efficacy of AIT in experimental allergic rhinitis (AR) by the concurrent use of TAFA chemokine as a family member 4 (TAFA4). In this study, an AR mouse model was developed using ovalbumin (OVA) as the specific antigen. The AR response was assessed in mice after treatment with AIT or/and TAFA4. We found that exposure to TAFA4 activated dendritic cells (DCs) in the airway tissues. Activation of DC by TAFA4 resulted in the expression of IL-10. TAFA4 also promoted the activities of c-Maf inducing protein. The FPR1-MyD88-AKT signal pathway was associated with the TAFA4-induced Il10 expression in the DCs. Co-administration of AIT/TAFA4 attenuated the AR response in mice by inducing antigen-specific Tr1 cells. In conclusion, TAFA4 induces the expression of IL-10 in DCs. Acting as an adjuvant, TAFA4 significantly improves AIT’s therapeutic efficacy against AR by inducing antigen-specific Tr1 cells.
Collapse
Affiliation(s)
- Shuyao Qiu
- grid.284723.80000 0000 8877 7471Department of Pediatric Otolaryngology, Shenzhen Hospital, Southern Medical University, Shenzhen, China ,grid.284723.80000 0000 8877 7471The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Xiangqian Luo
- grid.284723.80000 0000 8877 7471Department of Pediatric Otolaryngology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Lihua Mo
- grid.284723.80000 0000 8877 7471Department of Pediatric Otolaryngology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Shuang Zhang
- Guangdong Provincial Regional Disease Key Laboratory, Shenzhen, China ,grid.263488.30000 0001 0472 9649Institute of Allergy & Immunology of Shenzhen University, State Key Laboratory of Respiratory Diseases Allergy Division at Shenzhen University, Shenzhen, China
| | - Yun Liao
- Guangdong Provincial Regional Disease Key Laboratory, Shenzhen, China ,grid.263488.30000 0001 0472 9649Institute of Allergy & Immunology of Shenzhen University, State Key Laboratory of Respiratory Diseases Allergy Division at Shenzhen University, Shenzhen, China
| | - Li Guan
- grid.263488.30000 0001 0472 9649Department of Allergy & Respirology, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Liteng Yang
- grid.263488.30000 0001 0472 9649Department of Allergy & Respirology, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Qinmiao Huang
- grid.263488.30000 0001 0472 9649Department of Allergy & Respirology, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Dabo Liu
- grid.284723.80000 0000 8877 7471Department of Pediatric Otolaryngology, Shenzhen Hospital, Southern Medical University, Shenzhen, China ,grid.284723.80000 0000 8877 7471The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Pingchang Yang
- Guangdong Provincial Regional Disease Key Laboratory, Shenzhen, China ,grid.263488.30000 0001 0472 9649Institute of Allergy & Immunology of Shenzhen University, State Key Laboratory of Respiratory Diseases Allergy Division at Shenzhen University, Shenzhen, China
| |
Collapse
|
22
|
Yang G, Wu G, Yao W, Guan L, Geng X, Liu J, Liu Z, Yang L, Huang Q, Zeng X, Yang P. 5-HT is associated with the dysfunction of regulating T cells in patients with allergic rhinitis. Clin Immunol 2022; 243:109101. [PMID: 36029976 DOI: 10.1016/j.clim.2022.109101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/06/2022] [Accepted: 08/20/2022] [Indexed: 11/03/2022]
Abstract
The dysfunction of regulating T lymphocytes (Treg) is associated with the pathogenesis of many diseases. 5-hydroxytryptamine (5-HT) is capable of interacting with immune cells. The objective of the present study is to shed light on the role of 5-HT in regulating Treg activities. Blood samples were collected from patients with perennial allergic rhinitis (AR). Tregs were isolated from blood samples by magnetic cell sorting. The levels of 5-HT and other cytokines were determined by enzyme-linked immunosorbent assay. The results showed that serum 5-HT levels in patients with AR were higher than in healthy control (HC) subjects. A positive correlation was identified in the data between 5-HT concentrations and AR-related cytokine concentrations in the serum. A negative correlation was found between serum levels of 5-HT and the peripheral frequency of Treg. Exposure to 5-HT enhanced the expression of IL-6 and IL-21 in dendritic cells (DC). Co-culture of 5-HT-primed DCs with Tregs led to the conversion of Th17 cells. STAT3 blockade efficiently abolished the 5-HT-associated conversion of Th17 cells from Tregs. In summary, patients with AR exhibited higher serum concentrations of 5-HT. 5-HT-primed DCs could convert Tregs to Th17 cells.
Collapse
Affiliation(s)
- Gui Yang
- Department of Otolaryngology, Longgang Central Hospital, Shenzhen, China
| | - Gaohui Wu
- Departments of Respirology and Allergy, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Wenkai Yao
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen, China; Institute of Allergy & Immunology of Shenzhen University, State Key Laboratory of Respiratory Diseases Allergy Division at Shenzhen University, Shenzhen, China
| | - Li Guan
- Departments of Respirology and Allergy, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Xiaorui Geng
- Department of Otolaryngology, Longgang E.N.T Hospital & Shenzhen Key Laboratory of E.N.T, Institute of E.N.T, Shenzhen, China
| | - Jiangqi Liu
- Department of Otolaryngology, Longgang E.N.T Hospital & Shenzhen Key Laboratory of E.N.T, Institute of E.N.T, Shenzhen, China
| | - Zhiqiang Liu
- Department of Otolaryngology, Longgang E.N.T Hospital & Shenzhen Key Laboratory of E.N.T, Institute of E.N.T, Shenzhen, China
| | - Liteng Yang
- Departments of Respirology and Allergy, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Qinmiao Huang
- Departments of Respirology and Allergy, Third Affiliated Hospital of Shenzhen University, Shenzhen, China.
| | - Xianhai Zeng
- Department of Otolaryngology, Longgang E.N.T Hospital & Shenzhen Key Laboratory of E.N.T, Institute of E.N.T, Shenzhen, China.
| | - Pingchang Yang
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen, China; Institute of Allergy & Immunology of Shenzhen University, State Key Laboratory of Respiratory Diseases Allergy Division at Shenzhen University, Shenzhen, China.
| |
Collapse
|
23
|
Qiao YL, Jiao WE, Xu S, Kong YG, Deng YQ, Yang R, Hua QQ, Chen SM. Allergen immunotherapy enhances the immunosuppressive effects of Treg cells to alleviate allergic rhinitis by decreasing PU-1+ Treg cell numbers. Int Immunopharmacol 2022; 112:109187. [PMID: 36037652 DOI: 10.1016/j.intimp.2022.109187] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To investigate the role of Tregs and their subtypes in the treatment of allergic rhinitis with allergen immunotherapy (AIT) as well as the underlying mechanism. METHODS 1. Thirty-one healthy controls, 29 Allergic rhinitis (AR) patients and 16 AR patients treated with AIT were recruited. The total nasal symptom scores (TNSSs) were calculated. The serum levels of IgE, IL-2, TNF-α, IFN-γ, IL-4, IL-5, IL-6, IL-10 and IL-17 were measured. 2. Changes in the proportions of CD4+ T cells, Treg cells, Treg subtypes and Th1/Th2/Th9/Th17/Tfh cells in the peripheral blood of the subjects in the three groups were measured. 3. The correlations of Treg cells, Treg subtypes and TNSS with the levels of various cytokines in the AR group and AIT group were analysed. RESULTS 1. Compared with the control group, the TNSS and IgE, IL-5 and IL-6 levels in the AR group were significantly increased, while the IL-2, IFN-γ and IL-10 levels were significantly decreased (P < 0.05). Compared with the AR group, the TNSS and IgE, IL-5 and IL-6 levels in the AIT group were significantly decreased, while the IL-2, IFN-γ and IL-10 levels were significantly increased (P < 0.05). 2. Compared with the control group, the proportions of Tregs, GATA3+ Tregs and Th1 cells in the AR group were significantly reduced, while the proportions of PU-1+ Tregs, T-bet+ Tregs and Th2 cells were significantly increased (P < 0.05). Compared with the AR group, the proportions of Tregs and Th1 cells in the AIT group were significantly increased, while the proportions of PU-1+ Tregs and Th2 cells were decreased (P < 0.05). 3. Correlation analysis showed that Treg cell proportions were negatively correlated with the TNSS, sIgE levels, IL-5 levels and IL-6 levels but positively correlated with the IL-2 and IL-10 levels (P < 0.05). PU-1+ Treg cell proportions were positively correlated with the TNSS, sIgE levels, IL-5 levels and IL-6 levels but negatively correlated with the Treg cell proportions, IL-2 levels and IL-10 levels (P < 0.05). CONCLUSIONS AIT can reduce the proportions of PU-1+ Treg subtypes in AR patients. PU-1+ Treg cell numbers can potentially be used as an indicator to monitor the therapeutic effect of AIT on AR.
Collapse
Affiliation(s)
- Yue-Long Qiao
- Department of Otolaryngology-Head and Neck Surgery, Central Laboratory, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei 430060, PR China
| | - Wo-Er Jiao
- Department of Otolaryngology-Head and Neck Surgery, Central Laboratory, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei 430060, PR China
| | - Shan Xu
- Department of Otolaryngology-Head and Neck Surgery, Central Laboratory, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei 430060, PR China
| | - Yong-Gang Kong
- Department of Otolaryngology-Head and Neck Surgery, Central Laboratory, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei 430060, PR China
| | - Yu-Qin Deng
- Department of Otolaryngology-Head and Neck Surgery, Central Laboratory, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei 430060, PR China
| | - Rui Yang
- Department of Otolaryngology-Head and Neck Surgery, Central Laboratory, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei 430060, PR China
| | - Qing-Quan Hua
- Department of Otolaryngology-Head and Neck Surgery, Central Laboratory, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei 430060, PR China.
| | - Shi-Ming Chen
- Department of Otolaryngology-Head and Neck Surgery, Central Laboratory, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei 430060, PR China.
| |
Collapse
|