1
|
Vaz‐Rodrigues R, de la Fuente J. Is Zebrafish a Good Model for the Alpha-Gal Syndrome? FASEB J 2025; 39:e70602. [PMID: 40317760 PMCID: PMC12047429 DOI: 10.1096/fj.202500687r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/04/2025] [Accepted: 04/24/2025] [Indexed: 05/07/2025]
Abstract
The alpha-Gal syndrome (AGS) is an underdiagnosed tick-borne allergy characterized by both immediate and delayed IgE-mediated anaphylactic reactions to the galactose-alpha-1,3-galactose (alpha-Gal) epitope. Common manifestations include gastrointestinal, cutaneous, and respiratory symptoms appearing 2-6 h after the consumption of mammalian meat or derived products. Zebrafish (Danio rerio) are emerging as essential animal models in biomedical studies, due to their anatomical, genetic, and physiological similarities to humans, with significant applications in toxicology, behavioral research, oncology, and inflammation studies. The mechanisms associated with AGS are sustained by studies in the humanized α1,3GalT-KO C57BL/6 mouse (Mus musculus) and zebrafish animal models for the production of anti-alpha-Gal antibodies in response to tick saliva, the development of allergic reactions in animals sensitized with tick protein extracts following mammalian meat consumption, and the identification of immune mechanisms. The immune mechanisms characterized in both models are associated with a skewed type 2 immune response, triggering Toll-Like receptor (TLR) signaling pathways, IL-4 production, and humoral activity. These results support the use of both models rather than a single one for a more comprehensive characterization of AGS-associated immune mechanisms. In this study, we focused on the use of zebrafish as a model for biomedicine research in immunity, infectious, and allergic diseases, with a particular emphasis on the AGS and the identification of candidate therapeutic interventions. Based on insights from multiple studies, we concluded that zebrafish is a suitable model for studying the AGS, considering the addressed limitations and in combination with the α1,3GalT-KO mouse model.
Collapse
Affiliation(s)
- Rita Vaz‐Rodrigues
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC‐CSIC‐UCLM‐JCCMCiudad RealSpain
| | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC‐CSIC‐UCLM‐JCCMCiudad RealSpain
- Department of Veterinary Pathobiology, College of Veterinary MedicineOklahoma State UniversityStillwaterOklahomaUSA
| |
Collapse
|
2
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2021-2022. MASS SPECTROMETRY REVIEWS 2025; 44:213-453. [PMID: 38925550 PMCID: PMC11976392 DOI: 10.1002/mas.21873] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/05/2024] [Accepted: 02/12/2024] [Indexed: 06/28/2024]
Abstract
The use of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry for the analysis of carbohydrates and glycoconjugates is a well-established technique and this review is the 12th update of the original article published in 1999 and brings coverage of the literature to the end of 2022. As with previous review, this review also includes a few papers that describe methods appropriate to analysis by MALDI, such as sample preparation, even though the ionization method is not MALDI. The review follows the same format as previous reviews. It is divided into three sections: (1) general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, quantification and the use of computer software for structural identification. (2) Applications to various structural types such as oligo- and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals, and (3) other general areas such as medicine, industrial processes, natural products and glycan synthesis where MALDI is extensively used. Much of the material relating to applications is presented in tabular form. MALDI is still an ideal technique for carbohydrate analysis, particularly in its ability to produce single ions from each analyte and advancements in the technique and range of applications show little sign of diminishing.
Collapse
|
3
|
Jappe U, Kolaly T, de Vries MS, Gülsen A, Homann A. Connecting Diagnostics and Clinical Relevance of the α-Gal Syndrome-Individual Sensitization Patterns of Patients with Suspected α-Gal-Associated Allergy. Nutrients 2025; 17:1541. [PMID: 40362849 PMCID: PMC12073179 DOI: 10.3390/nu17091541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Revised: 04/27/2025] [Accepted: 04/28/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND/OBJECTIVES Sensitization to the carbohydrate antigen α-Gal is associated with allergic reactions against different types of food that contain α-Gal (e.g., mammalian meat). This form of allergy is termed α-Gal syndrome (AGS), and the diagnosis is challenging due to delayed symptom onset and cross-reactivity with multiple mammalian products. It is estimated that AGS is underdiagnosed, pointing to an unmet need for patient care. METHODS Sera from patients with suspected AGS based on clinical history were analyzed by ImmunoCAP and the IgE cross-reactivity immune profiling (ICRIP) system specifically developed by us. IgE from patient sera against different forms of α-Gal was analyzed using α-Gal-containing analytes and negative controls. RESULTS Sera from 33 patients with suspected AGS were analyzed. Sera from 22 patients yielded a clearly positive signal (>0.35 kU/L) for IgE against α-Gal in ImmunoCAP. For 7 of the remaining 11 patients with negative or ambiguous (IgE level between 0.1 and 0.35 kU/L) results in ImmunoCAP, ICRIP analyses supported the suspected association of the allergy symptoms with IgE against α-Gal components. This component-resolved analysis helps the allergist to provide an individual diagnosis for each patient. CONCLUSIONS The diagnosis of AGS is challenging. An interplay between clinical history and lab analysis via ImmunoCAP and the specifically developed ICRIP system helps patients and allergists in establishing the correct diagnosis, thereby preventing accidental exposure and recurrent AGS episodes.
Collapse
Affiliation(s)
- Uta Jappe
- Division of Clinical and Molecular Allergology, Priority Research Area Chronic Lung Diseases, Research Center Borstel, Leibniz Lung Center, Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), 23845 Borstel, Germany (A.G.); (A.H.)
- Interdisciplinary Allergy Outpatient Clinic, Department of Pneumology, UKSH Campus Lübeck, University of Lübeck, 23538 Lübeck, Germany
| | - Tahmina Kolaly
- Division of Clinical and Molecular Allergology, Priority Research Area Chronic Lung Diseases, Research Center Borstel, Leibniz Lung Center, Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), 23845 Borstel, Germany (A.G.); (A.H.)
| | - Mareike S. de Vries
- Division of Clinical and Molecular Allergology, Priority Research Area Chronic Lung Diseases, Research Center Borstel, Leibniz Lung Center, Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), 23845 Borstel, Germany (A.G.); (A.H.)
| | - Askin Gülsen
- Division of Clinical and Molecular Allergology, Priority Research Area Chronic Lung Diseases, Research Center Borstel, Leibniz Lung Center, Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), 23845 Borstel, Germany (A.G.); (A.H.)
- Interdisciplinary Allergy Outpatient Clinic, Department of Pneumology, UKSH Campus Lübeck, University of Lübeck, 23538 Lübeck, Germany
- Division of Cardiology, Pulmonary Diseases, Vascular Medicine, University Hospital Duesseldorf, 40225 Düsseldorf, Germany
| | - Arne Homann
- Division of Clinical and Molecular Allergology, Priority Research Area Chronic Lung Diseases, Research Center Borstel, Leibniz Lung Center, Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), 23845 Borstel, Germany (A.G.); (A.H.)
| |
Collapse
|
4
|
Muratore A, Barnes EL, Long MD, Herfarth HH, McGill S. Alpha Guy? No, Alpha Gal-Important to Remember in Patients with IBD in Endemic Areas. Dig Dis Sci 2025; 70:111-114. [PMID: 39589464 DOI: 10.1007/s10620-024-08697-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 10/14/2024] [Indexed: 11/27/2024]
Affiliation(s)
- Alicia Muratore
- University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Edward L Barnes
- University of North Carolina at Chapel Hill, Chapel Hill, USA.
- Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill, Campus Box #7080, 130 Mason Farm Road, Chapel Hill, NC, 27599-7080, USA.
| | - Millie D Long
- University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Hans H Herfarth
- University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Sarah McGill
- University of North Carolina at Chapel Hill, Chapel Hill, USA
| |
Collapse
|
5
|
Perusko M, Grundström J, Eldh M, Reinhardt A, Fuhrmann V, Düzakin M, Hamsten C, Starkhammar M, Apostolovic D, van Hage M. Allergenic potency of various foods of mammalian origin in patients with α-Gal syndrome. Allergy 2025; 80:181-192. [PMID: 39007417 PMCID: PMC11724243 DOI: 10.1111/all.16235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 05/23/2024] [Accepted: 06/19/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND The α-Gal syndrome (AGS) is an emerging allergy to mammalian food caused by IgE-mediated reactions to the carbohydrate galactose-α-1,3-galactose (α-Gal). Mammalian food sources contain α-Gal, but the amount differs. The objective of this study was to investigate the allergenic potency of various foods of mammalian origin among AGS patients. METHODS Twenty-six AGS patients were included. Food extracts from innards, lean meats, processed meat products, milk, and whey were analyzed. Immunoblot, ELISA, immunofluorescence, and basophil activation test were used to determine the α-Gal content, characterize IgE binding, and assess foods' allergenicity. RESULTS The determined amount of α-Gal, IgE reactivity to food extracts, and food extract potencies to activate patients' basophils correlated well with each other. Pork and beef kidney showed the highest allergenicity. Beef liver and bacon showed allergenicity comparable to that of lean meats. Game meat seemed to have a higher allergenic potency than meats from farm-raised animals. The processed meat products liver pâté and black pudding, despite lower α-Gal content, demonstrated moderate allergenicity. Milk showed the lowest allergenicity. IgE reactivity to food extracts was highly similar for all patients and strongly dominated by the α-Gal epitope. CONCLUSIONS The allergenic potency of mammalian meat depends on the origin of the meat, the different cuts, and type of processing, with innards posing the greatest risk to AGS patients. Even processed mammalian meat constitutes a risk. Dairy products show the lowest risk. This study highlights the importance of analyzing even more foods to improve the management of AGS.
Collapse
Affiliation(s)
- Marija Perusko
- Division of Immunology and Allergy, Department of Medicine SolnaKarolinska Institutet and Karolinska University HospitalStockholmSweden
- Center for Molecular Medicine, Karolinska InstitutetStockholmSweden
- Innovative Centre of the Faculty of Chemistry, University of BelgradeBelgradeSerbia
| | - Jeanette Grundström
- Division of Immunology and Allergy, Department of Medicine SolnaKarolinska Institutet and Karolinska University HospitalStockholmSweden
- Center for Molecular Medicine, Karolinska InstitutetStockholmSweden
| | - Maria Eldh
- Division of Immunology and Allergy, Department of Medicine SolnaKarolinska Institutet and Karolinska University HospitalStockholmSweden
- Center for Molecular Medicine, Karolinska InstitutetStockholmSweden
| | - Annika Reinhardt
- Division of Immunology and Allergy, Department of Medicine SolnaKarolinska Institutet and Karolinska University HospitalStockholmSweden
- Center for Molecular Medicine, Karolinska InstitutetStockholmSweden
| | - Verena Fuhrmann
- Division of Immunology and Allergy, Department of Medicine SolnaKarolinska Institutet and Karolinska University HospitalStockholmSweden
- Center for Molecular Medicine, Karolinska InstitutetStockholmSweden
| | - Meltem Düzakin
- Department of Internal MedicineSödersjukhusetStockholmSweden
| | - Carl Hamsten
- Division of Immunology and Allergy, Department of Medicine SolnaKarolinska Institutet and Karolinska University HospitalStockholmSweden
- Center for Molecular Medicine, Karolinska InstitutetStockholmSweden
| | | | - Danijela Apostolovic
- Division of Immunology and Allergy, Department of Medicine SolnaKarolinska Institutet and Karolinska University HospitalStockholmSweden
- Center for Molecular Medicine, Karolinska InstitutetStockholmSweden
| | - Marianne van Hage
- Division of Immunology and Allergy, Department of Medicine SolnaKarolinska Institutet and Karolinska University HospitalStockholmSweden
- Center for Molecular Medicine, Karolinska InstitutetStockholmSweden
| |
Collapse
|
6
|
Sharma SR, Hussain S, Choudhary SK, Commins SP, Karim S. Identification of Alpha-Gal glycolipids in saliva of Lone-Star Tick (Amblyomma americanum). Ticks Tick Borne Dis 2024; 15:102384. [PMID: 39053323 DOI: 10.1016/j.ttbdis.2024.102384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/11/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
Alpha-Gal Syndrome (AGS) is a delayed allergic reaction triggered by IgE antibodies targeting galactose-α-1,3-galactose (α-gal), prevalent in red meat. Its global significance has increased, with over 450,000 estimated cases in the United States alone. AGS is linked to tick bites, causing sensitization and elevated α-gal specific IgE levels. However, the precise mechanisms and tick intrinsic factors contributing to AGS development post-tick bites remain unclear. This study aims to characterize the alpha-gal conjugated lipid antigens in Amblyomma americanum (Am. americanum) salivary glands and saliva. Nanospray ionization mass spectrometry (NSI-MS) analysis revealed the identification of α-gal bound lipid antigens in Am. americanum saliva. Additionally, the activation of basophils by extracted alpha-gal bound lipids and proteins provides evidence of their antigenic capabilities.
Collapse
Affiliation(s)
- Surendra Raj Sharma
- School of Biological, Environment and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Sabir Hussain
- School of Biological, Environment and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS 39406, USA; Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Shailesh K Choudhary
- Department of Medicine & Pediatrics, Division of Allergy & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Scott P Commins
- Department of Medicine & Pediatrics, Division of Allergy & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Institute for Global Health and Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Shahid Karim
- School of Biological, Environment and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS 39406, USA.
| |
Collapse
|
7
|
Chakrapani N, Swiontek K, Hübschen JM, Fischer J, Ruiz‐Castell M, Codreanu‐Morel F, Hannachi F, Morisset M, Ollert M, Kuehn A, Muller CP, Hilger C. Recurrent tick bites induce high IgG1 antibody responses to α-Gal in sensitized and non-sensitized forestry employees in Luxembourg. Clin Transl Allergy 2024; 14:e12396. [PMID: 39397273 PMCID: PMC11471575 DOI: 10.1002/clt2.12396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 05/27/2024] [Accepted: 09/16/2024] [Indexed: 10/15/2024] Open
Abstract
BACKGROUND The α-Gal syndrome (AGS) is characterized by the presence of specific IgE-antibodies to the carbohydrate galactose-α-1,3-galactose (α-Gal). Sensitization to α-Gal has been associated with tick bites and individuals exposed to ticks have an elevated risk of sensitization. The aim of this study was to analyze IgG and IgE antibody responses to α-Gal in a high-risk cohort of forestry employees (FE) in Luxembourg. METHODS Questionnaires and serum samples of FE from Luxembourg (n = 219) were retrospectively analyzed. α-Gal specific IgE was quantified by ImmunoCAP, α-Gal specific IgG and subclasses IgG1-4 were determined by ELISA. Additionally, sera from population-based controls (n = 150) and two groups of food-allergic patients, patients with AGS (n = 45) and fish-allergic patients (n = 22) were assessed for IgG antibody responses to α-Gal and cod extract. RESULTS Twenty-one percent of FE was sensitized to α-Gal (sIgE ≥ 0.1 kUA/L). Both sensitized and non-sensitized FE exhibited high levels of α-Gal specific IgG, IgG1 and IgG3 compared with controls, indicating a stimulation of IgG responses by recurrent tick bites, independent of the sensitization status. AGS patients had the highest levels of IgG1 and IgG2 antibodies, whereas the profile of fish-allergic patients was similar to the profile of the controls for which anti-α-Gal responses were dominated by IgG2 antibodies. α-Gal sIgG4 levels were either very low or undetectable in all groups. CONCLUSION Our study provides evidence for a continuous stimulation of α-Gal related immune responses by repeated tick bites, translating into highly elevated levels of IgG1 antibodies directed against α-Gal.
Collapse
Affiliation(s)
- Neera Chakrapani
- Department of Infection and ImmunityLuxembourg Institute of HealthEsch‐sur‐AlzetteLuxembourg
- Faculty of Science, Technology and MedicineUniversity of LuxembourgEsch‐sur‐AlzetteLuxembourg
- Present address:
ALK‐Global researchHoersholmDenmark.
| | - Kyra Swiontek
- Department of Infection and ImmunityLuxembourg Institute of HealthEsch‐sur‐AlzetteLuxembourg
| | - Judith M. Hübschen
- Department of Infection and ImmunityLuxembourg Institute of HealthEsch‐sur‐AlzetteLuxembourg
| | - Jörg Fischer
- Faculty of MedicineDepartment of DermatologyEberhard Karls University of TübingenTübingenGermany
- Present address:
Dermatology & AllergologyUniversity HospitalAugsburgGermany.
| | - Maria Ruiz‐Castell
- Department of Precision HealthLuxembourg Institute of HealthStrassenLuxembourg
| | | | - Farah Hannachi
- The Immunology–Allergology UnitCenter Hospitalier LuxembourgLuxembourgLuxembourg
| | - Martine Morisset
- The Immunology–Allergology UnitCenter Hospitalier LuxembourgLuxembourgLuxembourg
- Present address:
Allergy UnitAngers University HospitalAngersFrance.
| | - Markus Ollert
- Department of Infection and ImmunityLuxembourg Institute of HealthEsch‐sur‐AlzetteLuxembourg
- Department of Dermatology and Allergy CenterOdense Research Center for AnaphylaxisUniversity of Southern DenmarkOdenseDenmark
| | - Annette Kuehn
- Department of Infection and ImmunityLuxembourg Institute of HealthEsch‐sur‐AlzetteLuxembourg
| | - Claude P. Muller
- Department of Infection and ImmunityLuxembourg Institute of HealthEsch‐sur‐AlzetteLuxembourg
| | - Christiane Hilger
- Department of Infection and ImmunityLuxembourg Institute of HealthEsch‐sur‐AlzetteLuxembourg
| |
Collapse
|
8
|
Vaz-Rodrigues R, Mazuecos L, Villar M, Contreras M, González-García A, Bonini P, Scimeca RC, Mulenga A, de la Fuente J. Tick salivary proteome and lipidome with low glycan content correlate with allergic type reactions in the zebrafish model. Int J Parasitol 2024; 54:649-659. [PMID: 39074655 DOI: 10.1016/j.ijpara.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/01/2024] [Accepted: 07/24/2024] [Indexed: 07/31/2024]
Abstract
Ticks, as hematophagous ectoparasites, can manipulate host immune and metabolic processes, causing tick-borne allergies such as α-Gal syndrome (AGS). Glycolipids with bound galactose-alpha-1-3-galactose (α-Gal) are potential allergenic molecules associated with AGS. Nevertheless, proteins and lipids lacking α-Gal modifications may contribute to tick salivary allergies and be linked to AGS. In this study, we characterized the effect of deglycosylated tick salivary proteins without lipids on treated zebrafish fed with dog food formulated with mammalian (beef, lamb, pork) meat by quantitative proteomics analysis of intestinal samples. The characterization and functional annotations of tick salivary lipids with low representation of glycolipids was conducted using a lipidomics approach. Results showed a significant effect of treatment with saliva and saliva deglycosylated protein fraction on zebrafish abnormal or no feeding (p < 0.005). Treatment with this fraction affected multiple metabolic pathways, defense responses to pathogens and protein metabolism, which correlated with abnormal or no feeding. Lipidomics analysis identified 23 lipid classes with low representation of glycolipids (0.70% of identified lipids). The lipid class with highest representation was phosphatidylcholine (PC; 26.66%) and for glycolipids it corresponded to diacylglycerol (DG; 0.48%). Qualitative analysis of PC antibodies revealed that individuals bitten by ticks were more likely to produce PC-IgG antibodies (p < 0.001). DG levels were significantly higher in tick salivary glands (p < 0.05) compared with tick saliva and salivary fractions. The α-Gal content was higher in tick saliva than in deglycosylated saliva and lipid fractions. These results support a possible role for tick salivary proteins and lipids without α-Gal modifications in AGS.
Collapse
Affiliation(s)
- Rita Vaz-Rodrigues
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC, CSIC-UCLM-JCCM), Ronda de Toledo 12, 13071 Ciudad Real, Spain
| | - Lorena Mazuecos
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC, CSIC-UCLM-JCCM), Ronda de Toledo 12, 13071 Ciudad Real, Spain
| | - Margarita Villar
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC, CSIC-UCLM-JCCM), Ronda de Toledo 12, 13071 Ciudad Real, Spain; Biochemistry Section, Faculty of Science and Chemical Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Marinela Contreras
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC, CSIC-UCLM-JCCM), Ronda de Toledo 12, 13071 Ciudad Real, Spain
| | - Almudena González-García
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC, CSIC-UCLM-JCCM), Ronda de Toledo 12, 13071 Ciudad Real, Spain
| | - Paolo Bonini
- oloBion SL, Av. Dr. Marañón 8, 08028Barcelona, Spain
| | - Ruth C Scimeca
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - Albert Mulenga
- Department of Veterinary Pathobiology, School of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC, CSIC-UCLM-JCCM), Ronda de Toledo 12, 13071 Ciudad Real, Spain; Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA.
| |
Collapse
|
9
|
Saunders MN, Rival CM, Mandal M, Cramton K, Rad LM, Janczak KW, Williams LA, Angadi AR, O’Konek JJ, Shea LD, Erickson LD. Immunotherapy with biodegradable nanoparticles encapsulating the oligosaccharide galactose-alpha-1,3-galactose enhance immune tolerance against alpha-gal sensitization in a murine model of alpha-gal syndrome. FRONTIERS IN ALLERGY 2024; 5:1437523. [PMID: 39183976 PMCID: PMC11341473 DOI: 10.3389/falgy.2024.1437523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/11/2024] [Indexed: 08/27/2024] Open
Abstract
IgE antibodies against the mammalian oligosaccharide allergen galactose-α-1,3-galactose (αGal) can result in a severe allergic disease known as alpha-gal syndrome (AGS). This syndrome, acquired by tick bites that cause αGal sensitization, leads to allergic reactions after ingestion of non-primate mammalian meat and mammalian-derived products that contain αGal. Allergen-specific immunotherapies for this tickborne allergic syndrome are understudied, as are the immune mechanisms of allergic desensitization that induce clinical tolerance to αGal. Here, we reveal that prophylactic administration of αGal glycoprotein-containing nanoparticles to mice prior to tick protein-induced αGal IgE sensitization blunts the production of Th2 cytokines IL-4, IL-5, and IL-13 in an αGal-dependent manner. Furthermore, these effects correlated with suppressed production of αGal-specific IgE and hypersensitivity reactions, as measured by reduced basophil activation and histamine release and the systemic release of mast cell protease-1 (MCPT-1). Therapeutic administration of two doses of αGal-containing nanoparticles to mice sensitized to αGal had partial efficacy by reducing the Th2 cytokine production, αGal-specific IgE production, and MCPT-1 release without reducing basophil activation or histamine release. These data identify nanoparticles carrying encapsulated αGal glycoprotein as a potential strategy for augmenting αGal-specific immune tolerance and reveal diverse mechanisms by which αGal nanoparticles modify immune responses for established αGal-specific IgE-mediated allergic reactions.
Collapse
Affiliation(s)
- Michael N. Saunders
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI, United States
| | - Claudia M. Rival
- Beirne Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, United States
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, United States
| | - Mahua Mandal
- Beirne Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, United States
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, United States
| | - Kayla Cramton
- Beirne Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, United States
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, United States
| | - Laila M. Rad
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Katarzyna W. Janczak
- Mary H. Weiser Food Allergy Center, Michigan Medicine, Ann Arbor, MI, United States
| | - Laura A. Williams
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Amogh R. Angadi
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Jessica J. O’Konek
- Mary H. Weiser Food Allergy Center, Michigan Medicine, Ann Arbor, MI, United States
| | - Lonnie D. Shea
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, United States
- Department of Surgery, University of Michigan, Ann Arbor, MI, United States
| | - Loren D. Erickson
- Beirne Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, United States
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
10
|
Erban T, Sopko B. Understanding bacterial pathogen diversity: A proteogenomic analysis and use of an array of genome assemblies to identify novel virulence factors of the honey bee bacterial pathogen Paenibacillus larvae. Proteomics 2024; 24:e2300280. [PMID: 38742951 DOI: 10.1002/pmic.202300280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 03/07/2024] [Accepted: 04/08/2024] [Indexed: 05/16/2024]
Abstract
Mass spectrometry proteomics data are typically evaluated against publicly available annotated sequences, but the proteogenomics approach is a useful alternative. A single genome is commonly utilized in custom proteomic and proteogenomic data analysis. We pose the question of whether utilizing numerous different genome assemblies in a search database would be beneficial. We reanalyzed raw data from the exoprotein fraction of four reference Enterobacterial Repetitive Intergenic Consensus (ERIC) I-IV genotypes of the honey bee bacterial pathogen Paenibacillus larvae and evaluated them against three reference databases (from NCBI-protein, RefSeq, and UniProt) together with an array of protein sequences generated by six-frame direct translation of 15 genome assemblies from GenBank. The wide search yielded 453 protein hits/groups, which UpSet analysis categorized into 50 groups based on the success of protein identification by the 18 database components. Nine hits that were not identified by a unique peptide were not considered for marker selection, which discarded the only protein that was not identified by the reference databases. We propose that the variability in successful identifications between genome assemblies is useful for marker mining. The results suggest that various strains of P. larvae can exhibit specific traits that set them apart from the established genotypes ERIC I-V.
Collapse
Affiliation(s)
- Tomas Erban
- Proteomics and Metabolomics Laboratory, Crop Research Institute, Prague, Czechia
| | - Bruno Sopko
- Proteomics and Metabolomics Laboratory, Crop Research Institute, Prague, Czechia
| |
Collapse
|
11
|
Wilson JM, Erickson L, Levin M, Ailsworth SM, Commins SP, Platts-Mills TAE. Tick bites, IgE to galactose-alpha-1,3-galactose and urticarial or anaphylactic reactions to mammalian meat: The alpha-gal syndrome. Allergy 2024; 79:1440-1454. [PMID: 38193233 PMCID: PMC11142869 DOI: 10.1111/all.16003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/10/2024]
Abstract
The recent recognition of a syndrome of tick-acquired mammalian meat allergy has transformed the previously held view that mammalian meat is an uncommon allergen. The syndrome, mediated by IgE antibodies against the oligosaccharide galactose-alpha-1,3-galactose (alpha-gal), can also involve reactions to visceral organs, dairy, gelatin and other products, including medications sourced from non-primate mammals. Thus, fittingly, this allergic disorder is now called the alpha-gal syndrome (AGS). The syndrome is strikingly regional, reflecting the important role of tick bites in sensitization, and is more common in demographic groups at risk of tick exposure. Reactions in AGS are delayed, often by 2-6 h after ingestion of mammalian meat. In addition to classic allergic symptomatology such as urticaria and anaphylaxis, AGS is increasingly recognized as a cause of isolated gastrointestinal morbidity and alpha-gal sensitization has also been linked with cardiovascular disease. The unusual link with tick bites may be explained by the fact that allergic cells and mediators are mobilized to the site of tick bites and play a role in resistance against ticks and tick-borne infections. IgE directed to alpha-gal is likely an incidental consequence of what is otherwise an adaptive immune strategy for host defense against endo- and ectoparasites, including ticks.
Collapse
Affiliation(s)
- Jeffrey M. Wilson
- Division of Allergy and Immunology, University of Virginia, Charlottesville, Virginia, USA
| | - Loren Erickson
- Department of Microbiology, Immunology, and Cancer Biology and Beirne Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia, USA
| | | | - Samuel M. Ailsworth
- Division of Allergy and Immunology, University of Virginia, Charlottesville, Virginia, USA
| | - Scott P. Commins
- Division of Rheumatology, Allergy and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
| | | |
Collapse
|
12
|
Ruiz-Valdepeñas Montiel V, Gamella M, Blázquez-García M, Serafín V, Molina E, Pingarrón JM, Benedé S, Campuzano S. Electrochemical bioplatform to manage alpha-gal syndrome by tracking the carbohydrate allergen in meat. Talanta 2024; 273:125851. [PMID: 38447339 DOI: 10.1016/j.talanta.2024.125851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/05/2024] [Accepted: 02/28/2024] [Indexed: 03/08/2024]
Abstract
This work presents the first bioplatform described to date for the determination of galactose-α-1,3-galactose (α-Gal), a non-primate mammalian oligosaccharide responsible for almost all cases of red meat allergy. The bioplatform is based on the implementation of an indirect competitive immunoassay and enzymatic labeling with the enzyme horseradish peroxidase (HRP) built on the surface of magnetic microparticles (MBs) and amperometric transduction on screen-printed carbon electrodes (SPCEs) using the H2O2/hydroquinone (HQ) system. The target α-Gal competed with biotinylated α-Gal immobilized on the surface of neutravidin-modified MBs for the limited immunorecognition sites of a detection antibody enzymatically labeled with an HRP-conjugated secondary antibody. The resulting magnetic immunoconjugates were trapped on the surface of the SPCE working electrode and amperometric transduction was performed, providing a cathodic current variation inversely proportional to the concentration of α-Gal in the analyzed sample. The developed biotool was optimized, characterized and applied with satisfactory results to the determination of the target allergen in different samples of raw and processed meats.
Collapse
Affiliation(s)
| | - María Gamella
- Dept. Analytical Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Marina Blázquez-García
- Dept. Analytical Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Verónica Serafín
- Dept. Analytical Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Elena Molina
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM, Nicolás Cabrera, 9, 28049, Madrid, Spain
| | - José M Pingarrón
- Dept. Analytical Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Sara Benedé
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM, Nicolás Cabrera, 9, 28049, Madrid, Spain; Dept. Immunology, Ophthalmology and ORL, Faculty of Medicine, Universidad Complutense de Madrid, 28040, Madrid, Spain.
| | - Susana Campuzano
- Dept. Analytical Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, 28040, Madrid, Spain.
| |
Collapse
|
13
|
Aiuto B, Cirrincione S, Giuffrida MG, Cavallarin L, Portesi C, Rossi AM, Borreani G, Rolla G, Geuna M, Nicola S, Quinternetto A, Alessi L, Saracco E, Brussino L, Lamberti C. Milk Fat Globule Proteins Are Relevant Bovine Milk Allergens in Patients with α‐Gal Syndrome. Mol Nutr Food Res 2024; 68:e2300796. [PMID: 38704747 DOI: 10.1002/mnfr.202300796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/15/2024] [Indexed: 05/07/2024]
Abstract
Alpha-gal syndrome (AGS) is a mammalian meat allergy associated with tick bites and specific IgE to the oligosaccharide galactose-α-1,3-galactose (α-gal). Recent studies have shown that 10-20% of AGS patients also react to the dairy proteins. Considering the already described role of the meat lipid fraction in AGS manifestations, the aim of this work has been to investigate whether the milk fat globule proteins (MFGPs) could be involved in AGS. The MFGPs are extracted and their recognition by the IgE of AGS patients is proved through immunoblotting experiments. The identification of the immunoreactive proteins by LC-HRMS analysis allows to demonstrate for the first time that butyrophillin, lactadherin, and xanthine oxidase (XO) are α-gal glycosylated. The role of xanthine oxidase seems to be prevalent since it is highly recognized by both the anti-α-gal antibody and AGS patient sera. The results obtained in this study provide novel insights in the characterization of α-Gal carrying glycoproteins in bovine milk, supporting the possibility that milk, especially in its whole form, may give reactions in AGS patients. Although additional factors are probably associated with the clinical manifestations, the avoidance of milk and milk products should be considered in individuals with AGS showing symptoms related to milk consumption.
Collapse
Affiliation(s)
- Beatrice Aiuto
- Institute of the Science of Food Production (ISPA) - National Research Council, Largo Braccini 2, Grugliasco, TO, 10095, Italy
- Politecnico di Torino, Corso Castelfilardo 39, Torino, 10129, Italy
| | - Simona Cirrincione
- Institute of the Science of Food Production (ISPA) - National Research Council, Largo Braccini 2, Grugliasco, TO, 10095, Italy
| | - Maria Gabriella Giuffrida
- Institute of the Science of Food Production (ISPA) - National Research Council, Largo Braccini 2, Grugliasco, TO, 10095, Italy
| | - Laura Cavallarin
- Institute of the Science of Food Production (ISPA) - National Research Council, Largo Braccini 2, Grugliasco, TO, 10095, Italy
| | - Chiara Portesi
- National Institute of Metrological Research (INRIM), Strada delle Cacce 91, Torino, 10135, Italy
| | - Andrea Mario Rossi
- National Institute of Metrological Research (INRIM), Strada delle Cacce 91, Torino, 10135, Italy
| | - Giorgio Borreani
- Department of Agriculture, Forestry and Food Sciences (DISAFA), University of Turin, Grugliasco, 10095, TO, Italy
| | - Giovanni Rolla
- Department of Medical Sciences, Allergy and Clinical Immunology Unit, University of Torino & Mauriziano Hospital, Torino, 10128, Italy
| | - Massimo Geuna
- Department of Medical Sciences, Allergy and Clinical Immunology Unit, University of Torino & Mauriziano Hospital, Torino, 10128, Italy
| | - Stefania Nicola
- Department of Medical Sciences, Allergy and Clinical Immunology Unit, University of Torino & Mauriziano Hospital, Torino, 10128, Italy
| | - Anna Quinternetto
- Department of Medical Sciences, Allergy and Clinical Immunology Unit, University of Torino & Mauriziano Hospital, Torino, 10128, Italy
| | - Lucrezia Alessi
- Department of Medical Sciences, Allergy and Clinical Immunology Unit, University of Torino & Mauriziano Hospital, Torino, 10128, Italy
| | - Elena Saracco
- Department of Medical Sciences, Allergy and Clinical Immunology Unit, University of Torino & Mauriziano Hospital, Torino, 10128, Italy
| | - Luisa Brussino
- Department of Medical Sciences, Allergy and Clinical Immunology Unit, University of Torino & Mauriziano Hospital, Torino, 10128, Italy
| | - Cristina Lamberti
- Institute of the Science of Food Production (ISPA) - National Research Council, Largo Braccini 2, Grugliasco, TO, 10095, Italy
| |
Collapse
|
14
|
Hils M, Hoffard N, Iuliano C, Kreft L, Chakrapani N, Swiontek K, Fischer K, Eberlein B, Köberle M, Fischer J, Hilger C, Ohnmacht C, Kaesler S, Wölbing F, Biedermann T. IgE and anaphylaxis specific to the carbohydrate alpha-gal depend on IL-4. J Allergy Clin Immunol 2024; 153:1050-1062.e6. [PMID: 38135009 PMCID: PMC10997276 DOI: 10.1016/j.jaci.2023.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 11/23/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023]
Abstract
BACKGROUND Alpha-gal (Galα1-3Galβ1-4GlcNAc) is a carbohydrate with the potential to elicit fatal allergic reactions to mammalian meat and drugs of mammalian origin. This type of allergy is induced by tick bites, and therapeutic options for this skin-driven food allergy are limited to the avoidance of the allergen and treatment of symptoms. Thus, a better understanding of the immune mechanisms resulting in sensitization through the skin is crucial, especially in the case of a carbohydrate allergen for which underlying immune responses are poorly understood. OBJECTIVE We aimed to establish a mouse model of alpha-gal allergy for in-depth immunologic analyses. METHODS Alpha-galactosyltransferase 1-deficient mice devoid of alpha-gal glycosylations were sensitized with the alpha-gal-carrying self-protein mouse serum albumin by repetitive intracutaneous injections in combination with the adjuvant aluminum hydroxide. The role of basophils and IL-4 in sensitization was investigated by antibody-mediated depletion. RESULTS Alpha-gal-sensitized mice displayed increased levels of alpha-gal-specific IgE and IgG1 and developed systemic anaphylaxis on challenge with both alpha-gal-containing glycoproteins and glycolipids. In accordance with alpha-gal-allergic patients, we detected elevated numbers of basophils at the site of sensitization as well as increased numbers of alpha-gal-specific B cells, germinal center B cells, and B cells of IgE and IgG1 isotypes in skin-draining lymph nodes. By depleting IL-4 during sensitization, we demonstrated for the first time that sensitization and elicitation of allergy to alpha-gal and correspondingly to a carbohydrate allergen is dependent on IL-4. CONCLUSION These findings establish IL-4 as a potential target to interfere with alpha-gal allergy elicited by tick bites.
Collapse
Affiliation(s)
- Miriam Hils
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University of Munich, Munich, Germany
| | - Nils Hoffard
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University of Munich, Munich, Germany
| | - Caterina Iuliano
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University of Munich, Munich, Germany
| | - Luisa Kreft
- Center of Allergy and Environment (ZAUM) and Institute of Allergy Research, Technical University of Munich, School of Medicine, and Helmholtz Center Munich, Research Center for Environmental Health, Neuherberg, Germany
| | - Neera Chakrapani
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg; Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Kyra Swiontek
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Konrad Fischer
- Department of Livestock Biotechnology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Bernadette Eberlein
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University of Munich, Munich, Germany
| | - Martin Köberle
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University of Munich, Munich, Germany
| | - Jörg Fischer
- Department of Dermatology, Faculty of Medicine, Eberhard Karls University Tübingen, Tübingen, Germany; Department of Dermatology and Allergology, University Hospital Augsburg, Augsburg, Germany
| | - Christiane Hilger
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Caspar Ohnmacht
- Center of Allergy and Environment (ZAUM) and Institute of Allergy Research, Technical University of Munich, School of Medicine, and Helmholtz Center Munich, Research Center for Environmental Health, Neuherberg, Germany
| | - Susanne Kaesler
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University of Munich, Munich, Germany
| | - Florian Wölbing
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University of Munich, Munich, Germany
| | - Tilo Biedermann
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University of Munich, Munich, Germany.
| |
Collapse
|
15
|
Bartha I, Almulhem N, Santos AF. Feast for thought: A comprehensive review of food allergy 2021-2023. J Allergy Clin Immunol 2024; 153:576-594. [PMID: 38101757 PMCID: PMC11096837 DOI: 10.1016/j.jaci.2023.11.918] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/19/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023]
Abstract
A review of the latest publications in food allergy over the past couple of years confirmed that food allergy is a major public health concern, affecting about 8% of children and 10% of adults in developed countries. The prevalence of food allergy varies around the world, with the increase being driven mainly by environmental factors, possibly together with genetic susceptibility to environmental changes. A precise diagnosis of food allergy is extremely important. Both new tests (eg, the basophil activation test) and improved optimization of information provided by existing tests (eg, the skin prick test and measurement of specific IgE level) can contribute to improving the accuracy and patients' comfort of food allergy diagnosis. Understanding the underlying immune mechanisms is fundamental to designing allergen-specific treatments that can be safe and effective in the long term. New discoveries of the immune response to food allergens, including T-cell and B-cell responses, have emerged. Novel therapeutic approaches are being trialed at various stages of development as attempts to allow for more active intervention to treat food allergy. Prevention is key to reducing the increase in prevalence. Early introduction of allergenic foods seems to be the most effective intervention, but others are being studied, and will, it is hoped, lead to modification of the epidemiologic trajectory of food allergy over time.
Collapse
Affiliation(s)
- Irene Bartha
- Children's Allergy Service, Evelina London Children's Hospital, Guy's and St Thomas' Hospital, London, United Kingdom; Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, School of Immunology and Microbial Sciences King's College London, London, United Kingdom
| | - Noorah Almulhem
- Children's Allergy Service, Evelina London Children's Hospital, Guy's and St Thomas' Hospital, London, United Kingdom; Department of Otolaryngology Head and Neck Surgery, King Fahad Hospital of the University, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Alexandra F Santos
- Children's Allergy Service, Evelina London Children's Hospital, Guy's and St Thomas' Hospital, London, United Kingdom; Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, School of Immunology and Microbial Sciences King's College London, London, United Kingdom; Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences King's College London, London, United Kingdom.
| |
Collapse
|
16
|
Peterson H, Wells DA, Marjoncu D, Holman K. Use of antithymocyte globulin (rabbit) in a patient with known alpha-gal syndrome undergoing allogenic stem cell transplantation. J Oncol Pharm Pract 2024; 30:417-421. [PMID: 37936368 DOI: 10.1177/10781552231212648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
INTRODUCTION Alpha-gal syndrome (AGS) is a hypersensitivity disorder in which tick bites-most commonly from the lone star tick (Ambylomma americanum)-trigger immunoglobulin E-mediated hypersensitivity reaction upon exposure to oligosaccharide galactosse-alpha-1,3-galactose (α-gal). α-gal is most notorious for being found in "red meat" products but is present in mammalian meats such as beef, pork, lamb, rabbit, and others. Manifestations of AGS hypersensitivity are variable. There is currently no in vivo data describing allergic reactions against rabbit products in patients with AGS. CASE REPORT Here, we describe a case of a 44-year-old male with myelodysplastic syndrome and a known history of AGS undergoing allogeneic hematopoietic cell transplantation (allo-HSCT) with the use of rabbit antithymocyte globulin (rATG) for graft-versus-host disease (GVHD) prophylaxis. MANAGEMENT AND OUTCOME The risk of cross-reactivity against rATG in our patient with AGS could not be ruled out and, therefore, a test dose was administered. The patient tolerated the test dose with no signs of anaphylaxis. After demonstrating tolerance to the test dose, rATG was utilized for GVHD prophylaxis. DISCUSSION Due to the heterogeneity of AGS manifestations in patients, the use of rATG in patients with known AGS should be considered on a case-by-case basis. The administration of a test dose may help predict the occurrence of severe hypersensitivity reactions. The limited data surrounding the risk of AGS with rabbit-containing products and the various indications for the use of rATG warrants more in-depth study of the reactivity of this medication in this population.
Collapse
Affiliation(s)
- Hannah Peterson
- Department of Pharmacy, Methodist Le Bonheur Healthcare - University Hospital, Memphis, TN, USA
| | - Drew A Wells
- Department of Pharmacy, Methodist Le Bonheur Healthcare - University Hospital, Memphis, TN, USA
- Department of Clinical Pharmacy and Translational Science, The University of Tennessee Health Science Center College of Pharmacy, Memphis, TN, USA
| | - Dennis Marjoncu
- Department of Pharmacy, Methodist Le Bonheur Healthcare - University Hospital, Memphis, TN, USA
| | - Kori Holman
- Department of Pharmacy, Methodist Le Bonheur Healthcare - University Hospital, Memphis, TN, USA
| |
Collapse
|
17
|
Iglesia EGA, Kwan M, Virkud YV, Iweala OI. Management of Food Allergies and Food-Related Anaphylaxis. JAMA 2024; 331:510-521. [PMID: 38349368 PMCID: PMC11060332 DOI: 10.1001/jama.2023.26857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Importance An estimated 7.6% of children and 10.8% of adults have IgE-mediated food-protein allergies in the US. IgE-mediated food allergies may cause anaphylaxis and death. A delayed, IgE-mediated allergic response to the food-carbohydrate galactose-α-1,3-galactose (alpha-gal) in mammalian meat affects an estimated 96 000 to 450 000 individuals in the US and is currently a leading cause of food-related anaphylaxis in adults. Observations In the US, 9 foods account for more than 90% of IgE-mediated food allergies-crustacean shellfish, dairy, peanut, tree nuts, fin fish, egg, wheat, soy, and sesame. Peanut is the leading food-related cause of fatal and near-fatal anaphylaxis in the US, followed by tree nuts and shellfish. The fatality rate from anaphylaxis due to food in the US is estimated to be 0.04 per million per year. Alpha-gal syndrome, which is associated with tick bites, is a rising cause of IgE-mediated food anaphylaxis. The seroprevalence of sensitization to alpha-gal ranges from 20% to 31% in the southeastern US. Self-injectable epinephrine is the first-line treatment for food-related anaphylaxis. The cornerstone of IgE-food allergy management is avoidance of the culprit food allergen. There are emerging immunotherapies to desensitize to one or more foods, with one current US Food and Drug Administration-approved oral immunotherapy product for treatment of peanut allergy. Conclusions and Relevance IgE-mediated food allergies, including delayed IgE-mediated allergic responses to red meat in alpha-gal syndrome, are common in the US, and may cause anaphylaxis and rarely, death. IgE-mediated anaphylaxis to food requires prompt treatment with epinephrine injection. Both food-protein allergy and alpha-gal syndrome management require avoiding allergenic foods, whereas alpha-gal syndrome also requires avoiding tick bites.
Collapse
Affiliation(s)
- Edward G A Iglesia
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Mildred Kwan
- Thurston Arthritis Research Center, Division of Rheumatology, Allergy, and Immunology, Department of Medicine, University of North Carolina School of Medicine, Chapel Hill
| | - Yamini V Virkud
- University of North Carolina Food Allergy Initiative, Division of Allergy and Immunology, Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill
| | - Onyinye I Iweala
- Thurston Arthritis Research Center, Division of Rheumatology, Allergy, and Immunology, Department of Medicine, University of North Carolina School of Medicine, Chapel Hill
- University of North Carolina Food Allergy Initiative, Division of Allergy and Immunology, Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill
| |
Collapse
|
18
|
Perusko M, Grundström J, Eldh M, Hamsten C, Apostolovic D, van Hage M. The α-Gal epitope - the cause of a global allergic disease. Front Immunol 2024; 15:1335911. [PMID: 38318181 PMCID: PMC10838981 DOI: 10.3389/fimmu.2024.1335911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/02/2024] [Indexed: 02/07/2024] Open
Abstract
The galactose-α-1,3-galactose (α-Gal) epitope is the cause of a global allergic disease, the α-Gal syndrome (AGS). It is a severe form of allergy to food and products of mammalian origin where IgE against the mammalian carbohydrate, α-Gal, is the cause of the allergic reactions. Allergic reactions triggered by parenterally administered α-Gal sources appear immediately, but those triggered via the oral route appear with a latency of several hours. The α-Gal epitope is highly immunogenic to humans, apes and old-world monkeys, all of which produce anti-α-Gal antibodies of the IgM, IgA and IgG subclasses. Strong evidence suggests that in susceptible individuals, class switch to IgE occurs after several tick bites. In this review, we discuss the strong immunogenic role of the α-Gal epitope and its structural resemblance to the blood type B antigen. We emphasize the broad abundance of α-Gal in different foods and pharmaceuticals and the allergenicity of various α-Gal containing molecules. We give an overview of the association of tick bites with the development of AGS and describe innate and adaptive immune response to tick saliva that possibly leads to sensitization to α-Gal. We further discuss a currently favored hypothesis explaining the mechanisms of the delayed effector phase of the allergic reaction to α-Gal. We highlight AGS from a clinical point of view. We review the different clinical manifestations of the disease and the prevalence of sensitization to α-Gal and AGS. The usefulness of various diagnostic tests is discussed. Finally, we provide different aspects of the management of AGS. With climate change and global warming, the tick density is increasing, and their geographic range is expanding. Thus, more people will be affected by AGS which requires more knowledge of the disease.
Collapse
Affiliation(s)
- Marija Perusko
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Innovative Centre of the Faculty of Chemistry, University of Belgrade, Belgrade, Serbia
| | - Jeanette Grundström
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Maria Eldh
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Carl Hamsten
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Danijela Apostolovic
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Marianne van Hage
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
19
|
Hale RC, Morais D, Chou J, Stowell SR. The role of glycosylation in clinical allergy and immunology. J Allergy Clin Immunol 2024; 153:55-66. [PMID: 37717626 PMCID: PMC10872775 DOI: 10.1016/j.jaci.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 09/19/2023]
Abstract
While glycans are among the most abundant macromolecules on the cell with widespread functions, their role in immunity has historically been challenging to study. This is in part due to difficulties assimilating glycan analysis into routine approaches used to interrogate immune cell function. Despite this, recent developments have illuminated fundamental roles for glycans in host immunity. The growing field of glycoimmunology continues to leverage new tools and approaches to uncover the function of glycans and glycan-binding proteins in immunity. Here we utilize clinical vignettes to examine key roles of glycosylation in allergy, inborn errors of immunity, and autoimmunity. We will discuss the diverse functions of glycans as epitopes, as modulators of antibody function, and as regulators of immune cell function. Finally, we will highlight immune modulatory therapies that harness the critical role of glycans in the immune system.
Collapse
Affiliation(s)
- Rebecca C Hale
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Mass; Department of Pathology, Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass
| | - Dominique Morais
- Department of Pathology, Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass
| | - Janet Chou
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Mass.
| | - Sean R Stowell
- Department of Pathology, Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass; Harvard Glycomics Center, Harvard Medical School, Boston, Mass.
| |
Collapse
|
20
|
Clinical Use of the ImmunoCAP Inhibition Test in the Diagnosis of Meat Allergy Caused by a Tick Bite in an Adult Male with No Previous Atopic History. Life (Basel) 2023; 13:life13030699. [PMID: 36983854 PMCID: PMC10056941 DOI: 10.3390/life13030699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/19/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
(1) Background: alpha-gal syndrome (AGS) is a serious, potentially life-threatening allergic reaction. This is a type of food allergy to red meat and other mammalian products (e.g., gelatin). In Poland, this problem seems to be rare or, more likely, very underdiagnosed. The diagnosis of AGS is difficult. It seems that the knowledge about this syndrome is insufficient. There are no effective diagnostic tools able to clearly diagnose this cross-reactive allergy. This paper presents the clinical application of a non-standard method in the diagnosis of a cross-reactive allergy using the example of AGS. (2) Methods: standard tests for in vitro allergy diagnostics and the non-standard ImmunoCAP inhibition test(IT) were carried out for serum collected from a patient with a red meat allergy. (3) Results: the serum concentration of anti-α-Gal IgE was very high (302 kUA/L), and IgE antibodies toanti-mammalian-meat allergens were found. The level of IgE antibodies to mammalian meat allergens decreased after blocking on α-GAL-CAP. The concentration of anti-α-Gal IgE decreased after blocking on CAPs coated with various mammalian meat allergens. Blocking with allergens of poultry meat did not affect the concentration of anti-α-Gal IgE. (4) Conclusions: the ImmunoCAP ITseems to be a useful tool in the diagnosis of cross-reactive allergies. Based on their clinical history and test results, the patient was diagnosed with AGS caused by a primary sensitization to α-Gal after a tick bite. This is the second case of AGS described in Poland and the first in Pomerania.
Collapse
|
21
|
Lis K, Ukleja-Sokołowska N, Karwowska K, Wernik J, Pawłowska M, Bartuzi Z. The Two-Sided Experimental Model of ImmunoCAP Inhibition Test as a Useful Tool for the Examination of Allergens Cross-Reactivity on the Example of α-Gal and Mammalian Meat Sensitization-A Preliminary Study. Curr Issues Mol Biol 2023; 45:1168-1182. [PMID: 36826022 PMCID: PMC9955645 DOI: 10.3390/cimb45020077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/25/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
Cross-reactivity of allergens is the cause of various, sometimes unexpected, clinical reactions. There are no standard methods to investigate cross-reactivity. We present an experimental model of a two-sided inhibition test (IT) on ImmunoCAP membranes (CAP). We constructed the described model based on the known cross-allergy syndrome to red meat developing in people bitten by ticks (α-Gal syndrome; AGS). Some individuals who are bitten by ticks develop IgE antibodies specific to the carbohydrate determinant, galactose-α-1,3-galactose (α-Gal), present in the tick's saliva. These antibodies can cross-react with α-Gal molecules expressed on mammalian meat proteins. The well-known property of anti-α-Gal IgE antibodies binding by various sources of this allergen was used by us in the proposed model of the two-sided inhibition test on ImmunoCAP membranes. We expected that anti-α-Gal IgE antibodies bind allergens from mammalian meat and blocking them abolishes this reactivity, and the two-sided inhibition test model we proposed on ImmunoCAP membranes allowed us to observe such a relationship. We conducted the experiment three times on biological material from people with different clinical manifestations of allergy to α-Gal, each time obtaining similar results. In conclusion, the model of bilateral inhibition on ImmunoCAP membranes proposed by us seems to be an attractive, simple tool for direct testing of allergic cross-reactivity.
Collapse
Affiliation(s)
- Kinga Lis
- Department of Allergology, Clinical Immunology and Internal Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, ul. Ujejskiego 75, 85168 Bydgoszcz, Poland
- Correspondence:
| | - Natalia Ukleja-Sokołowska
- Department of Allergology, Clinical Immunology and Internal Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, ul. Ujejskiego 75, 85168 Bydgoszcz, Poland
| | - Kornelia Karwowska
- Department of Infectious Diseases and Hepatology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, ul. Świętego Floriana 12, 85030 Bydgoszcz, Poland
| | - Joanna Wernik
- Department of Infectious Diseases and Hepatology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, ul. Świętego Floriana 12, 85030 Bydgoszcz, Poland
| | - Małgorzata Pawłowska
- Department of Infectious Diseases and Hepatology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, ul. Świętego Floriana 12, 85030 Bydgoszcz, Poland
| | - Zbigniew Bartuzi
- Department of Allergology, Clinical Immunology and Internal Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, ul. Ujejskiego 75, 85168 Bydgoszcz, Poland
| |
Collapse
|
22
|
Weiler CR, Schrijvers R, Golden DBK. Anaphylaxis: Advances in the Past 10 Years. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:51-62. [PMID: 36162799 DOI: 10.1016/j.jaip.2022.09.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/06/2022] [Accepted: 09/12/2022] [Indexed: 01/11/2023]
Abstract
In the past 10 years, anaphylaxis has grown into its own special area of study within Allergy-Immunology, both at the bench and at the bedside. This review focuses on some of the most clinically relevant advances over the past decade. These include simplified and more inclusive diagnostic criteria for adults and children, uniform definition of biphasic anaphylaxis, and improved systems for objective severity grading. Studies reported in the past decade have led to improved understanding of normal and abnormal regulation of mast cell function, translating into better diagnostic and therapeutic approaches to patients with anaphylaxis. Research has provided improved recognition and treatment of mast cell disorders and has identified a new condition, hereditary α-tryptasemia, that may impact anaphylactic syndromes. We have learned to recognize new causes (α-gal), new pathways (Mas-related G protein-coupled receptor-X2), and many risk factors for severe anaphylaxis. The stability of epinephrine in autoinjectors was reported to be very good for several years after the labeled expiry date, and it can tolerate freezing and thawing. Repeated and prolonged exposure to excessive heat leads to degradation of epinephrine activity. New treatments to prevent severe anaphylaxis have been described, using new ways to block the IgE receptor or modulate intracellular signaling pathways.
Collapse
Affiliation(s)
| | - Rik Schrijvers
- Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, Leuven, Belgium
| | - David B K Golden
- Division of Allergy/Clinical Immunology, Johns Hopkins School of Medicine, Baltimore, Md.
| |
Collapse
|
23
|
Kreft L, Schepers A, Hils M, Swiontek K, Flatley A, Janowski R, Mirzaei MK, Dittmar M, Chakrapani N, Desai MS, Eyerich S, Deng L, Niessing D, Fischer K, Feederle R, Blank S, Schmidt-Weber CB, Hilger C, Biedermann T, Ohnmacht C. A novel monoclonal IgG1 antibody specific for Galactose-alpha-1,3-galactose questions alpha-Gal epitope expression by bacteria. Front Immunol 2022; 13:958952. [PMID: 35990627 PMCID: PMC9391071 DOI: 10.3389/fimmu.2022.958952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/18/2022] [Indexed: 11/23/2022] Open
Abstract
The alpha-Gal epitope (α-Gal) with the determining element galactose-α1,3-galactose can lead to clinically relevant allergic reactions and rejections in xenotransplantation. These immune reactions can develop because humans are devoid of this carbohydrate due to evolutionary loss of the enzyme α1,3-galactosyltransferase (GGTA1). In addition, up to 1% of human IgG antibodies are directed against α-Gal, but the stimulus for the induction of anti-α-Gal antibodies is still unclear. Commensal bacteria have been suggested as a causal factor for this induction as α-Gal binding tools such as lectins were found to stain cultivated bacteria isolated from the intestinal tract. Currently available tools for the detection of the definite α-Gal epitope, however, are cross-reactive, or have limited affinity and, hence, offer restricted possibilities for application. In this study, we describe a novel monoclonal IgG1 antibody (27H8) specific for the α-Gal epitope. The 27H8 antibody was generated by immunization of Ggta1 knockout mice and displays a high affinity towards synthetic and naturally occurring α-Gal in various applications. Using this novel tool, we found that intestinal bacteria reported to be α-Gal positive cannot be stained with 27H8 questioning whether commensal bacteria express the native α-Gal epitope at all.
Collapse
Affiliation(s)
- Luisa Kreft
- Center of Allergy and Environment (ZAUM) and Institute of Allergy Research, Technical University of Munich, School of Medicine, and Helmholtz Center Munich, Research Center for Environmental Health, Neuherberg, Germany
| | - Aloys Schepers
- Monoclonal Antibody Core Facility, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Miriam Hils
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University of Munich, Munich, Germany
| | - Kyra Swiontek
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Andrew Flatley
- Monoclonal Antibody Core Facility, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Robert Janowski
- Institute of Structural Biology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Mohammadali Khan Mirzaei
- Institute of Virology, Technical University of Munich and Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
- Chair of Prevention of Microbial Diseases, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Michael Dittmar
- Center of Allergy and Environment (ZAUM) and Institute of Allergy Research, Technical University of Munich, School of Medicine, and Helmholtz Center Munich, Research Center for Environmental Health, Neuherberg, Germany
| | - Neera Chakrapani
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Mahesh S. Desai
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
- Odense Research Center for Anaphylaxis, Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, Odense, Denmark
| | - Stefanie Eyerich
- Center of Allergy and Environment (ZAUM) and Institute of Allergy Research, Technical University of Munich, School of Medicine, and Helmholtz Center Munich, Research Center for Environmental Health, Neuherberg, Germany
| | - Li Deng
- Institute of Virology, Technical University of Munich and Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
- Chair of Prevention of Microbial Diseases, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Dierk Niessing
- Institute of Structural Biology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Konrad Fischer
- Chair of Livestock Biotechnology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Regina Feederle
- Monoclonal Antibody Core Facility, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Simon Blank
- Center of Allergy and Environment (ZAUM) and Institute of Allergy Research, Technical University of Munich, School of Medicine, and Helmholtz Center Munich, Research Center for Environmental Health, Neuherberg, Germany
| | - Carsten B. Schmidt-Weber
- Center of Allergy and Environment (ZAUM) and Institute of Allergy Research, Technical University of Munich, School of Medicine, and Helmholtz Center Munich, Research Center for Environmental Health, Neuherberg, Germany
- German Center of Lung Research (DZL), Munich, Germany
| | - Christiane Hilger
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Tilo Biedermann
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University of Munich, Munich, Germany
| | - Caspar Ohnmacht
- Center of Allergy and Environment (ZAUM) and Institute of Allergy Research, Technical University of Munich, School of Medicine, and Helmholtz Center Munich, Research Center for Environmental Health, Neuherberg, Germany
- *Correspondence: Caspar Ohnmacht,
| |
Collapse
|