1
|
Shen W, Yan Y, Zhang W, Xu J, Li Z, Yang L. Esketamine mitigates systemic inflammation via modulating phenotypic transformation of monocytes in patients undergoing thoracic surgery. Life Sci 2025; 371:123594. [PMID: 40164333 DOI: 10.1016/j.lfs.2025.123594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 03/24/2025] [Accepted: 03/27/2025] [Indexed: 04/02/2025]
Abstract
AIM To assess esketamine's anti-inflammatory effects during thoracic surgery and its modulation of immune responses. MATERIAL AND METHODS In a randomized trial, 64 of 73 patients undergoing thoracic surgery were allocated into the Control (not receiving esketamine) or the ES-KTM group (intraoperative esketamine infusion). Blood routine tests were conducted one day before (T0) and one day after the surgery (T3). Plasma levels of tumor necrosis factor-α (TNF-α) and interleukine-10 (IL-10) were analyzed by ELISA, and cell surface markers including CD14, CD16, CD163, CD40, CX3CR1, CD206 were tested by cytometry at the entry to the surgical room (T1) and the skin closure (T2). For the in vitro study, esketamine at 10 μM was employed to treat the lipopolysaccharide (LPS) stimulated macrophage cell line-Raw264.7, and its effects were tested by cytometry and RNA sequencing analysis. KEY FINDINGS Esketamine application reduces the count of neutrophils and monocytes, neutrophil to lymphocyte ratio (NLR), platelet to lymphocyte ratio (PLR) and systemic inflammatory index (SII), and enhances the lymphocyte counting and lymphocyte to monocyte ratio (LMR). Then, esketamine application decreases the plasma TNF-α levels, while maintaining the IL-10 level in comparison with the Control group. Additionally, esketamine reduced the proportion of intermediate monocytes, downregulates the expressions of CD16, CD40 and CX3CR1, while upregulates the CD206 expression. Finally, in the in-vitro study, esketamine inhibits the M1 pro-inflammatory markers in LPS-challenged macrophages, and downregulates multiple immune-related pathways. SIGNIFICANCE Esketamine mitigates surgery-triggered inflammation by suppressing monocyte/macrophage proinflammatory activity and TNF-α release, offering dual anesthetic and immunomodulatory benefits.
Collapse
Affiliation(s)
- Weiyun Shen
- Department of Anesthesiology, Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China; Hunan Anesthesia Clinical Medical Care Technology Research Center, Changsha, Hunan Province, China
| | - Yan Yan
- Department of Anesthesiology, Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China; Hunan Anesthesia Clinical Medical Care Technology Research Center, Changsha, Hunan Province, China; Department of Anesthesiology, Xiamen Cardiovascular Hospital, Xiamen University, China
| | - Wenjuan Zhang
- Department of Laboratory, Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Junmei Xu
- Department of Anesthesiology, Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China; Hunan Anesthesia Clinical Medical Care Technology Research Center, Changsha, Hunan Province, China
| | - Zhijian Li
- Department of Anesthesiology, Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China; Hunan Anesthesia Clinical Medical Care Technology Research Center, Changsha, Hunan Province, China.
| | - Lin Yang
- Department of Anesthesiology, Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China; Hunan Anesthesia Clinical Medical Care Technology Research Center, Changsha, Hunan Province, China.
| |
Collapse
|
2
|
Chen X, Wu C, Tang F, Zhou J, Mo L, Li Y, He J. The Immune Microenvironment: New Therapeutic Implications in Organ Fibrosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e05067. [PMID: 40391706 DOI: 10.1002/advs.202505067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 04/28/2025] [Indexed: 05/22/2025]
Abstract
Fibrosis, characterized by abnormal deposition of structural proteins, is a major cause of tissue dysfunction in chronic diseases. The disease burden associated with progressive fibrosis is substantial, and currently approved drugs are unable to effectively reverse it. Immune cells are increasingly recognized as crucial regulators in the pathological process of fibrosis by releasing effector molecules, such as cytokines, chemokines, extracellular vesicles, metabolites, proteases, or intercellular contact. Therefore, targeting the immune microenvironment can be a potential strategy for fibrosis reduction and reversion. This review summarizes the recent advances in the understanding of the immune microenvironment in fibrosis including phenotypic and functional transformations of immune cells and the interaction of immune cells with other cells. The novel opportunities for the discovery and development of drugs for immune microenvironment remodeling and their associated challenges are also discussed.
Collapse
Affiliation(s)
- Xiangqi Chen
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chuan Wu
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fei Tang
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jingyue Zhou
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Li Mo
- Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yanping Li
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jinhan He
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
3
|
Stephan JK, Knerr T, Wells CK, Gu Z, Johnson S, Jobe TK, Isaacs WS, Hill BG, Wysoczynski M. G-CSF-Induced Emergency Granulopoiesis Modulates Neutrophil Effector Function in Mice. Stem Cell Rev Rep 2025; 21:1113-1126. [PMID: 40299198 DOI: 10.1007/s12015-025-10885-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2025] [Indexed: 04/30/2025]
Abstract
Neutrophils function as first responders of the immune system by deploying cytotoxic armaments and orchestrating local inflammation. Their functionality is programmed during daily production in the bone marrow through granulopoiesis. During severe inflammation, increased neutrophil demand is met through activation of emergency granulopoiesis. The effect of emergency granulopoiesis on neutrophil functionality remains cryptic. In the present study, we assessed neutrophil function in mice injected with G-CSF (100 µg/kg/d for 3 days) to activate emergency granulopoiesis. We found that emergency granulopoiesis neutrophils exhibit impaired ROS production (n = 6, P = 0.003) and NETosis (n = 5, P < 0.01), but increase neutrophil elastase secretion (n = 9, P < 0.0001) and LPS-induced Tnfa, Il1b, Il1a, Il12a, and Ccl2 expression (n = 13, P < 0.01). To test the impact of emergency granulopoiesis neutrophils on the inflammatory response in vivo, we pre-treated mice with G-CSF and challenged them with zymosan to induce peritonitis. At 4 h post-zymosan injection, peritoneal neutrophils from G-CSF treated mice exhibit increased expression of Ccl2 (n = 3, P < 0.05). Subsequently, we observed enhanced peritoneal macrophage accumulation at 48 h post-zymosan administration in G-CSF-treated mice (n = 5, P < 0.05). These data indicate that emergency granulopoiesis programs neutrophils to have an enhanced immunomodulatory function that orchestrates the subsequent macrophage response in local tissue inflammation.
Collapse
Affiliation(s)
- Jonah K Stephan
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, University of Louisville School of Medicine, 580 South Preston Street - Rm 204B, Louisville, KY, USA
| | - Taylor Knerr
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, University of Louisville School of Medicine, 580 South Preston Street - Rm 204B, Louisville, KY, USA
| | - Collin K Wells
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, University of Louisville School of Medicine, 580 South Preston Street - Rm 204B, Louisville, KY, USA
| | - Zhen Gu
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, University of Louisville School of Medicine, 580 South Preston Street - Rm 204B, Louisville, KY, USA
| | - Sidney Johnson
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, University of Louisville School of Medicine, 580 South Preston Street - Rm 204B, Louisville, KY, USA
| | - Tyler K Jobe
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, University of Louisville School of Medicine, 580 South Preston Street - Rm 204B, Louisville, KY, USA
| | - William S Isaacs
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, University of Louisville School of Medicine, 580 South Preston Street - Rm 204B, Louisville, KY, USA
| | - Bradford G Hill
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, University of Louisville School of Medicine, 580 South Preston Street - Rm 204B, Louisville, KY, USA
| | - Marcin Wysoczynski
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, University of Louisville School of Medicine, 580 South Preston Street - Rm 204B, Louisville, KY, USA.
| |
Collapse
|
4
|
Kato A, Kita H. The immunology of asthma and chronic rhinosinusitis. Nat Rev Immunol 2025:10.1038/s41577-025-01159-0. [PMID: 40240657 DOI: 10.1038/s41577-025-01159-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2025] [Indexed: 04/18/2025]
Abstract
Asthma and chronic rhinosinusitis (CRS) are common chronic inflammatory diseases of the respiratory tract that have increased in prevalence over the past five decades. The clinical relationship between asthma and CRS has been well recognized, suggesting a common pathogenesis between these diseases. Both diseases are driven by complex airway epithelial cell and immune cell interactions that occur in response to environmental triggers such as allergens, microorganisms and irritants. Advances, including a growing understanding of the biology of the cells involved in the disease, the application of multiomics technologies and the performance of large-scale clinical studies, have led to a better understanding of the pathophysiology and heterogeneity of asthma and CRS. This research has promoted the concept that these diseases consist of several endotypes, in which airway epithelial cells, innate lymphoid cells, T cells, B cells, granulocytes and their mediators are distinctly involved in the immunopathology. Identification of the disease heterogeneity and immunological markers has also greatly improved the protocols for biologic therapies and the clinical outcomes in certain subsets of patients. However, many clinical and research questions remain. In this Review, we discuss recent advances in characterizing the immunological mechanisms of asthma and CRS, with a focus on the main cell types and molecules involved in these diseases.
Collapse
Affiliation(s)
- Atsushi Kato
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Hirohito Kita
- Division of Allergy, Asthma, and Clinical Immunology, Mayo Clinic Arizona, Scottsdale, AZ, USA.
- Department of Immunology, Mayo Clinic Arizona, Scottsdale, AZ, USA.
| |
Collapse
|
5
|
Renò F, Pagano CA, Bignotto M, Sabbatini M. Neutrophil Heterogeneity in Wound Healing. Biomedicines 2025; 13:694. [PMID: 40149670 PMCID: PMC11940162 DOI: 10.3390/biomedicines13030694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/06/2025] [Accepted: 03/08/2025] [Indexed: 03/29/2025] Open
Abstract
Neutrophils are the most abundant type of immune cells and also the most underestimated cell defenders in the human body. In fact, their lifespan has also been extensively revised in recent years, going from a half-life of 8-10 h to a longer lifespan of up to 5.4 days in humans; it has been discovered that their mechanisms of defense are multiple and finely modulated, and it has been suggested that the heterogeneity of neutrophils occurs as well as in other immune cells. Neutrophils also play a critical role in the wound healing process, and their involvement is not limited to the initial stages of defense against pathogens, but extends to the inflammatory phase of tissue reconstruction. Neutrophil heterogeneity has recently been reported at the presence of distinct subtypes expressing different functional states, which contribute uniquely to the different phases of innate immunity and wound healing. This heterogeneity can be induced by the local microenvironment, by the presence of specific cytokines and by the type of injury. The different functional states of neutrophils enable a finely tuned response to injury and stress, which is essential for effective healing. Understanding the functional heterogeneity of neutrophils in wound healing can unveil potential pathological profiles and therapeutic targets. Moreover, the understanding of neutrophil heterogeneity dynamics could help in designing strategies to manage excessive inflammation or impaired healing processes. This review highlights the complexity of neutrophil heterogeneity and its critical roles throughout the phases of wound healing.
Collapse
Affiliation(s)
- Filippo Renò
- Health Sciences Department (DiSS), San Paolo Hospital, Università di Milano, Via A. di Rudini 8, 20142 Milano, Italy; (F.R.); (M.B.)
| | - Corinna Anais Pagano
- Department of Science and Innovation Technology (DISIT), Università del Piemonte Orientale, Via T. Michel 11, 15121 Alessandria, Italy;
| | - Monica Bignotto
- Health Sciences Department (DiSS), San Paolo Hospital, Università di Milano, Via A. di Rudini 8, 20142 Milano, Italy; (F.R.); (M.B.)
| | - Maurizio Sabbatini
- Department of Science and Innovation Technology (DISIT), Università del Piemonte Orientale, Via T. Michel 11, 15121 Alessandria, Italy;
| |
Collapse
|
6
|
Matarazzo L, Costa C, Porte R, Saliou JM, Figeac M, Delahaye F, Bonnefond A, Kloeckner B, Silvin A, Ginhoux F, Faveeuw C, Baldry M, Carnoy C, Sirard JC. Neutrophil subsets enhance the efficacy of host-directed therapy in pneumococcal pneumonia. Mucosal Immunol 2025; 18:257-268. [PMID: 39592068 DOI: 10.1016/j.mucimm.2024.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 11/16/2024] [Accepted: 11/21/2024] [Indexed: 11/28/2024]
Abstract
Host-directed therapy, using nasal administration of the Toll-like receptor 5 agonist flagellin in combination with antibiotics, has proven effective against pneumococcal pneumonia. In this study, we investigated the immune mechanisms underlying the therapy-induced protective effects. Transcriptomic analysis of lung tissue during infection revealed that flagellin not only enhanced pathways associated with myeloid cell infiltration into the airways and antimicrobial functions, but also promoted the early and transient mobilization of neutrophils and inflammatory monocytes. Neutrophils were identified as crucial for the protective effects of flagellin. The adjunct activity of flagellin correlated with the increased recruitment of neutrophils into airways, their localization at the periphery of bronchi, alveoli, and lung vessels, along with alterations in phagocytic activity. Clustering analysis identified seven neutrophil subsets; notably, flagellin adjunct treatment expanded clusters involved in recruitment and antibacterial activity, and primed augmented functionality. In conclusion, this study highlights specific neutrophil subsets as a promising target for host-directed therapy in infection.
Collapse
Affiliation(s)
- Laura Matarazzo
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Charlotte Costa
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Rémi Porte
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Jean-Michel Saliou
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 - UAR 2014 - PLBS - Plateformes Lilloises de Biologie & Santé, F-59000 Lille, France
| | - Martin Figeac
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 - UAR 2014 - PLBS - Plateformes Lilloises de Biologie & Santé, F-59000 Lille, France
| | - Fabien Delahaye
- Univ. Lille, Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, CHU de Lille, 1 place de Verdun, F-59000, Lille, France
| | - Amélie Bonnefond
- Univ. Lille, Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, CHU de Lille, 1 place de Verdun, F-59000, Lille, France
| | - Benoit Kloeckner
- Gustave Roussy Cancer Campus, INSERM, Team Myeloid Cell Development, F-94800 Villejuif, France
| | - Aymeric Silvin
- Gustave Roussy Cancer Campus, INSERM, Team Myeloid Cell Development, F-94800 Villejuif, France
| | - Florent Ginhoux
- Gustave Roussy Cancer Campus, INSERM, Team Myeloid Cell Development, F-94800 Villejuif, France
| | - Christelle Faveeuw
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Mara Baldry
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Christophe Carnoy
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France.
| | - Jean-Claude Sirard
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France.
| |
Collapse
|
7
|
Raudszus L, Bahreini F, Allan S, Kalies KU, Caldwell CC, Kalies K. Nanoparticles containing intracellular proteins modulate neutrophil functional and phenotypic heterogeneity. Front Immunol 2025; 15:1494400. [PMID: 39911575 PMCID: PMC11794831 DOI: 10.3389/fimmu.2024.1494400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/04/2024] [Indexed: 02/07/2025] Open
Abstract
Neutrophils are rapidly recruited to sites of infection, injury, or to immune complexes. Upon arrival, they initiate degranulation, release reactive oxygen species (ROS), and/or nuclear extracellular traps (NETs) to eliminate invading microorganisms, clear debris, or remove abnormal immunoglobulins. While these processes ideally trigger healing and a return to balance, overshooting neutrophil function can lead to life-threatening infections such as sepsis or persistent inflammation observed in various autoimmune diseases. However, recent evidence highlights a phenotypic and functional heterogeneity of neutrophils that extends well beyond their traditional - potentially harmful- role as first responders. For example, neutrophils regulate ongoing inflammation by modulating macrophage function through efferocytosis, T cell responses by antigen presentation and the release of cytokines. The factors that induce neutrophil differentiation into activating or regulatory phenotypes remain poorly defined. Here, we hypothesize that intracellular components that have been released into the extracellular space could contribute to the phenotypic heterogeneity of neutrophils. To find out, we used nanoparticles composed of intracellular proteins (cell-derived nanoparticles, CDNPs) and analyzed their effects on cultured murine bone marrow neutrophils (BMN). We observed that CDNPs activate BMN transiently with an increase in the expression of CD11b without triggering classical effector functions. Additionally, CDNPs induce the secretion of IL-10, shift PMA-induced cell death toward apoptosis, and increase the expression of CD80. Mechanistically, our findings indicate that 26% of BMNs ingest CDNPs. These BMNs preferentially express CD54+, fail to migrate toward CXCL12, exhibit diminished responses to LPS, and undergo apoptosis. These data identify CDNPs as biomaterials that modulate neutrophil behavior by fine-tuning the expression of CD11b and CD80.
Collapse
Affiliation(s)
| | - Farbod Bahreini
- Institute of Anatomy, University of Luebeck, Luebeck, Germany
| | - Susanne Allan
- Institute of Biology, University of Luebeck, Luebeck, Germany
| | - Kai-Uwe Kalies
- Institute of Biology, University of Luebeck, Luebeck, Germany
| | - Charles C. Caldwell
- Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Kathrin Kalies
- Institute of Anatomy, University of Luebeck, Luebeck, Germany
| |
Collapse
|
8
|
Chen J, Song S, Li Y. Prevalence of neutropenia in the U.S. among reproductive-aged women: a population-based analysis of NHANES 2013-2020. BMC Public Health 2025; 25:181. [PMID: 39819597 PMCID: PMC11740553 DOI: 10.1186/s12889-025-21330-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 01/06/2025] [Indexed: 01/19/2025] Open
Abstract
BACKGROUND Infertility is one of the prominent public health concerns nationwide. Neutrophils, despite their established significance as vital players in both inflammatory and immune processes, have been studied scarcely in terms of their effect on female infertility. The present study aimed to determine the prevalence of neutropenia among women of reproductive age in the U.S. to contribute valuable insights to the broader context of reproductive health. METHODS The present study was designed as a cross-sectional investigation. The data of 5,250 female participants aged 18-45 years were obtained from the National Health and Nutrition Examination Survey (NHANES) conducted between the years 2013 and 2020. The representativeness of the population was ensured by conducting statistical assessments based on NHANES weights. A logistic regression model was established to assess the hematologic parameters across the distinct populations stratified according to age, ethnicity, smoking status, and infertility. Multivariate logistic regression was performed next, and weighted odds ratios along with the 95% confidence interval values were calculated, which assisted in predicting the prevalence of neutropenia among the female participants. RESULTS The data of a total of 5,250 female participants, representing a multiracial population of 51.17 million in the United States, were analyzed in the present study. Meanwhile, the estimated neutropenia incidence was 7.09% (95% CI: 6.16-8.01%), which indicated a prevalence among approximately 36.2 million U.S. citizens. In comparison to white subjects, black subjects exhibited a significantly lower average leukocyte count, with a mean difference (MD) of 1.16 × 109/L (P < 0.001), along with a lower neutrophil count (MD: 1.09 × 109/L; P < 0.001). It is noteworthy that a substantial decrease was noted in the distribution graphs of both neutrophil and leukocyte counts among the black subjects. Moreover, compared to non-smokers in the racial populations, including white, Mexican American, and black people, the smokers exhibited significantly elevated mean leukocyte count and mean neutrophil count. The logistic regression analysis indicated an elevated risk of neutropenia among black individuals and females with infertility. CONCLUSIONS Neutropenia appears to have a higher prevalence in the general population compared to that acknowledged previously. The findings of the present study indicated association between neutropenia and infertility. This highlighted the importance of directing increased attention toward neutropenia in the context of both research and clinical practice.
Collapse
Affiliation(s)
- Junfeng Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Shuangna Song
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Yiran Li
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
9
|
Ghimire L, Luo HR. Balancing immune response: SHP1 controls neutrophil activation in inflamed lungs. J Clin Invest 2024; 134:e187056. [PMID: 39680457 DOI: 10.1172/jci187056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024] Open
Abstract
Following respiratory infection or injury, neutrophil hyperactivation can damage surrounding lung tissue by releasing harmful compounds. In this issue of the JCI, Moussavi-Harami and colleagues identified tyrosine phosphatase SHP1 as a key negative regulator of neutrophil activation in acute respiratory distress syndrome (ARDS). Neutrophil-specific Shp1 disruption leads to hyperinflammation, pulmonary hemorrhage, and increased mortality in both sterile and pathogen-induced acute lung injury (ALI). Large intravascular neutrophil clusters and excessive PAD4-independent neutrophil extracellular traps (NETs) were identified as key features of lung injury. Mechanistically, Shp1 deficiency resulted in uncontrolled SYK kinase activation, driving chaotic neutrophil hyperactivation and inflammation.
Collapse
|
10
|
Wang Y, Zhang J, Shao C. Cytological changes in radiation-induced lung injury. Life Sci 2024; 358:123188. [PMID: 39481833 DOI: 10.1016/j.lfs.2024.123188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/20/2024] [Accepted: 10/27/2024] [Indexed: 11/03/2024]
Abstract
Radiation-induced lung injury (RILI) is a prevalent complication associated with radiotherapy for thoracic tumors. Based on the pathological progression, it can be categorized into two stages: early radiation pneumonitis and late radiation pulmonary fibrosis. The occurrence of RILI not only constrains the therapeutic dose that can be administered to the tumor target area but also significantly impairs patients' health and quality of life, thereby limiting the efficacy and applicability of radiotherapy. To effectively prevent and mitigate the development of RILI, it is crucial to disclose its underlying mechanisms. This review aims to elucidate the specific mechanisms involved in RILI and to examine the roles of various cell types, including lung parenchymal cells and different immune cells. The functions and interactions of lung epithelial cells, pulmonary vascular endothelial cells, a variety of immune cells, and fibroblasts during different stages of inflammation, tissue repair, and fibrosis following radiation-induced lung injury are analyzed. A comprehensive understanding of the dynamic changes in these cellular components is anticipated to offer new strategies for the prevention of RILI.
Collapse
Affiliation(s)
- Yun Wang
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, No. 2094 Xie-Tu Road, Shanghai 200032, China
| | - Jianghong Zhang
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, No. 2094 Xie-Tu Road, Shanghai 200032, China
| | - Chunlin Shao
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, No. 2094 Xie-Tu Road, Shanghai 200032, China.
| |
Collapse
|
11
|
Yam AO, Jakovija A, Gatt C, Chtanova T. Neutrophils under the microscope: neutrophil dynamics in infection, inflammation, and cancer revealed using intravital imaging. Front Immunol 2024; 15:1458035. [PMID: 39439807 PMCID: PMC11493610 DOI: 10.3389/fimmu.2024.1458035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/13/2024] [Indexed: 10/25/2024] Open
Abstract
Neutrophils rapidly respond to inflammation resulting from infection, injury, and cancer. Intravital microscopy (IVM) has significantly advanced our understanding of neutrophil behavior, enabling real-time visualization of their migration, interactions with pathogens, and coordination of immune responses. This review delves into the insights provided by IVM studies on neutrophil dynamics in various inflammatory contexts. We also examine the dual role of neutrophils in tumor microenvironments, where they can either facilitate or hinder cancer progression. Finally, we highlight how computational modeling techniques, especially agent-based modeling, complement experimental data by elucidating neutrophil kinetics at the level of individual cells as well as their collective behavior. Understanding the role of neutrophils in health and disease is essential for developing new strategies for combating infection, inflammation and cancer.
Collapse
Affiliation(s)
- Andrew O. Yam
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, NSW, Australia
- Immune Biotherapeutics Program, Garvan Institute of Medical Research, Sydney, NSW, Australia
- St Vincent’s School of Medicine, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
- The Kinghorn Cancer Centre, St Vincent’s Hospital, Sydney, NSW, Australia
| | - Arnolda Jakovija
- St Vincent’s School of Medicine, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Catherine Gatt
- St Vincent’s School of Medicine, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Tatyana Chtanova
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, NSW, Australia
- St Vincent’s School of Medicine, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
12
|
Strickland E, Pan D, Godfrey C, Kim JS, Hopke A, Ji W, Degrange M, Villavicencio B, Mansour MK, Zerbe CS, Irimia D, Amir A, Weiner OD. Self-extinguishing relay waves enable homeostatic control of human neutrophil swarming. Dev Cell 2024; 59:2659-2671.e4. [PMID: 38971157 PMCID: PMC11461132 DOI: 10.1016/j.devcel.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/16/2024] [Accepted: 06/07/2024] [Indexed: 07/08/2024]
Abstract
Neutrophils collectively migrate to sites of injury and infection. How these swarms are coordinated to ensure the proper level of recruitment is unknown. Using an ex vivo model of infection, we show that human neutrophil swarming is organized by multiple pulsatile chemoattractant waves. These waves propagate through active relay in which stimulated neutrophils trigger their neighbors to release additional swarming cues. Unlike canonical active relays, we find these waves to be self-terminating, limiting the spatial range of cell recruitment. We identify an NADPH-oxidase-based negative feedback loop that is needed for this self-terminating behavior. We observe near-constant levels of neutrophil recruitment over a wide range of starting conditions, revealing surprising robustness in the swarming process. This homeostatic control is achieved by larger and more numerous swarming waves at lower cell densities. We link defective wave termination to a broken recruitment homeostat in the context of human chronic granulomatous disease.
Collapse
Affiliation(s)
- Evelyn Strickland
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA; Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Deng Pan
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Christian Godfrey
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Julia S Kim
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Alex Hopke
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Shriners Burns Hospital, Boston, MA 02114, USA
| | - Wencheng Ji
- Department of Physics of Complex Systems, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Maureen Degrange
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | | | - Michael K Mansour
- Harvard Medical School, Boston, MA, USA; Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Christa S Zerbe
- Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Daniel Irimia
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Shriners Burns Hospital, Boston, MA 02114, USA
| | - Ariel Amir
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA; Department of Physics of Complex Systems, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Orion D Weiner
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA; Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
13
|
Wang H, Kim SJ, Lei Y, Wang S, Wang H, Huang H, Zhang H, Tsung A. Neutrophil extracellular traps in homeostasis and disease. Signal Transduct Target Ther 2024; 9:235. [PMID: 39300084 PMCID: PMC11415080 DOI: 10.1038/s41392-024-01933-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/25/2024] [Accepted: 07/16/2024] [Indexed: 09/22/2024] Open
Abstract
Neutrophil extracellular traps (NETs), crucial in immune defense mechanisms, are renowned for their propensity to expel decondensed chromatin embedded with inflammatory proteins. Our comprehension of NETs in pathogen clearance, immune regulation and disease pathogenesis, has grown significantly in recent years. NETs are not only pivotal in the context of infections but also exhibit significant involvement in sterile inflammation. Evidence suggests that excessive accumulation of NETs can result in vessel occlusion, tissue damage, and prolonged inflammatory responses, thereby contributing to the progression and exacerbation of various pathological states. Nevertheless, NETs exhibit dual functionalities in certain pathological contexts. While NETs may act as autoantigens, aggregated NET complexes can function as inflammatory mediators by degrading proinflammatory cytokines and chemokines. The delineation of molecules and signaling pathways governing NET formation aids in refining our appreciation of NETs' role in immune homeostasis, inflammation, autoimmune diseases, metabolic dysregulation, and cancer. In this comprehensive review, we delve into the multifaceted roles of NETs in both homeostasis and disease, whilst discussing their potential as therapeutic targets. Our aim is to enhance the understanding of the intricate functions of NETs across the spectrum from physiology to pathology.
Collapse
Affiliation(s)
- Han Wang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Susan J Kim
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Yu Lei
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shuhui Wang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hui Wang
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hai Huang
- Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Hongji Zhang
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA.
| | - Allan Tsung
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
14
|
Mihlan M, Wissmann S, Gavrilov A, Kaltenbach L, Britz M, Franke K, Hummel B, Imle A, Suzuki R, Stecher M, Glaser KM, Lorentz A, Carmeliet P, Yokomizo T, Hilgendorf I, Sawarkar R, Diz-Muñoz A, Buescher JM, Mittler G, Maurer M, Krause K, Babina M, Erpenbeck L, Frank M, Rambold AS, Lämmermann T. Neutrophil trapping and nexocytosis, mast cell-mediated processes for inflammatory signal relay. Cell 2024; 187:5316-5335.e28. [PMID: 39096902 DOI: 10.1016/j.cell.2024.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 04/10/2024] [Accepted: 07/08/2024] [Indexed: 08/05/2024]
Abstract
Neutrophils are sentinel immune cells with essential roles for antimicrobial defense. Most of our knowledge on neutrophil tissue navigation derived from wounding and infection models, whereas allergic conditions remained largely neglected. Here, we analyzed allergen-challenged mouse tissues and discovered that degranulating mast cells (MCs) trap living neutrophils inside them. MCs release the attractant leukotriene B4 to re-route neutrophils toward them, thus exploiting a chemotactic system that neutrophils normally use for intercellular communication. After MC intracellular trap (MIT) formation, neutrophils die, but their undigested material remains inside MC vacuoles over days. MCs benefit from MIT formation, increasing their functional and metabolic fitness. Additionally, they are more pro-inflammatory and can exocytose active neutrophilic compounds with a time delay (nexocytosis), eliciting a type 1 interferon response in surrounding macrophages. Together, our study highlights neutrophil trapping and nexocytosis as MC-mediated processes, which may relay neutrophilic features over the course of chronic allergic inflammation.
Collapse
Affiliation(s)
- Michael Mihlan
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany; Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Münster 48149, Germany.
| | - Stefanie Wissmann
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany; Institute for Biomechanics, ETH Zürich, Zürich 8092, Switzerland
| | - Alina Gavrilov
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany; Roche Pharma Research and Early Development (pRED), Cardiovascular, Metabolism, Immunology, Infectious Diseases and Ophthalmology (CMI2O), Roche Innovation Center, Basel 4070, Switzerland
| | - Lukas Kaltenbach
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Marie Britz
- Department of Dermatology, Universitätsklinikum Münster, Münster 48149, Germany
| | - Kristin Franke
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Berlin 12203, Germany; Charité-Universitätsmedizin Berlin, Institute of Allergology, Berlin 12203, Germany
| | - Barbara Hummel
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Andrea Imle
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg 69117, Germany
| | - Ryo Suzuki
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Manuel Stecher
- Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Münster 48149, Germany
| | - Katharina M Glaser
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany; Institut Curie, PSL Research University, INSERM U932, Paris 75005, France
| | - Axel Lorentz
- Institute of Nutritional Medicine, University of Hohenheim, Stuttgart 70593, Germany
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, VIB, Leuven 3000, Belgium; Center for Biotechnology, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Takehiko Yokomizo
- Department of Biochemistry, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Ingo Hilgendorf
- Department of Cardiology and Angiology, University Heart Center and Faculty of Medicine, University of Freiburg, Freiburg 79106, Germany
| | - Ritwick Sawarkar
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany; Medical Research Council (MRC) Toxicology Unit and Department of Genetics, University of Cambridge, Cambridge CB21QR, UK
| | - Alba Diz-Muñoz
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg 69117, Germany
| | - Joerg M Buescher
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Gerhard Mittler
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Marcus Maurer
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Berlin 12203, Germany; Charité-Universitätsmedizin Berlin, Institute of Allergology, Berlin 12203, Germany
| | - Karoline Krause
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Berlin 12203, Germany; Charité-Universitätsmedizin Berlin, Institute of Allergology, Berlin 12203, Germany
| | - Magda Babina
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Berlin 12203, Germany; Charité-Universitätsmedizin Berlin, Institute of Allergology, Berlin 12203, Germany
| | - Luise Erpenbeck
- Department of Dermatology, Universitätsklinikum Münster, Münster 48149, Germany
| | - Marcus Frank
- Medical Biology and Electron Microscopy Center, Rostock University Medical Center, Rostock 18057, Germany; Department Life, Light and Matter, Rostock University, Rostock 18051, Germany
| | - Angelika S Rambold
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Tim Lämmermann
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany; Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Münster 48149, Germany.
| |
Collapse
|
15
|
Atia A, Atmani-Kilani D, Atmani D, Ayouni K, Belkhir S, Benloukil M, Saidene N, Moulaoui K, Kasmi S, Medjahed Z, Boussebaa W, Atmani D. Wound healing potential of a formula based on Populus nigra L. flower buds extract with anti-inflammatory activity. JOURNAL OF ETHNOPHARMACOLOGY 2024; 331:118319. [PMID: 38729538 DOI: 10.1016/j.jep.2024.118319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/05/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Wound healing is a complex and dysnamic process supported by a myriad of cellular events that are tightly coordinated to repair efficiently damaged tissue. Populus nigra L. (Salicaceae) flower buds are traditionally used in the treatment of dermatitis, upper respiratory tract infections, rheumatism and wounds. AIM OF THE STUDY The aim of this study was to assess the wound healing potential of black poplar ointment containing 10 or 20 % of Populus nigra ethanolic flower buds extract using the excision model in rats. MATERIALS AND METHODS Two ointments (10 and 20 %) were prepared from Populus nigra flower buds ethanolic extract and topically applied on the area of excised skin of the rats for either 14 or 20 days. Morphological, macroscopic, histological and biochemical parameters were evaluated. RESULTS The results showed that the extract contained high amounts of total phenols (89.5 ± 7.7 mg caffeic acid equivalent/g of extract) and hydrolysable tannins (142.05 ± 2.55 mg tannic acid equivalent/g of extract), in correlation with strong DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging activity and beta-carotene bleaching with values of 96.31 ± 3.42 and 85.27 ± 1.79 %, respectively. Anti-inflammatory potential was illustrated by lipoxygenase and cyclooxygenase inhibition (52.80 ± 0.2 and 53.88 ± 2.55 %, respectively). Treatment with Populus nigra ointment (10 and 20 %) promoted wound contraction of 97.37 ± 1.19 and 97.28 ± 0.91 %, respectively. The antioxidant marker enzymes, catalase (0.10 ± 0.001; 0.08 ± 0.003 U/mg protein) and superoxide dismutase (363.34 ± 24.37; 317.82 ± 53.83 U/mg protein) activities in the granulation tissues were upgraded with respective treatments of 10 or 20 % ointment. Concurrently, the myeloperoxidase activity (2.21 ± 1.01; 2.13 ± 0.75 U/mg protein) was repressed, indicating anti-inflammatory potential, when compared to untreated, standard and excipient groups. Moreover, a significant increase in respective levels of hydroxyproline (p < 0.001) (28.05 ± 1.20; 25.29 ± 1.17 μg/mg tissue) and hexosamine (p < 0.05) (20.18 ± 1.21; 18.95 ± 1.98 μg/mg tissue) was triggered, reflecting a high regeneration of collagen in the scarred tissue. Histological examination of treated skin tissue revealed higher rates of re-epithelialization, lower neutrophils infiltration and re-vascularization in comparison to the control group. CONCLUSION Given that the 10 % ointment was the optimal concentration, our findings offer an efficient drug formula for wound healing.
Collapse
Affiliation(s)
- Amina Atia
- Université de Bejaia, Faculté des Sciences de la Nature et de la Vie, Laboratoire de Biochimie Appliquée, 06000, Bejaia, Algeria.
| | - Dina Atmani-Kilani
- Université de Bejaia, Faculté des Sciences de la Nature et de la Vie, Laboratoire de Biochimie Appliquée, 06000, Bejaia, Algeria.
| | - Djebbar Atmani
- Université de Bejaia, Faculté des Sciences de la Nature et de la Vie, Laboratoire de Biochimie Appliquée, 06000, Bejaia, Algeria
| | - Karima Ayouni
- Université de Bejaia, Faculté des Sciences de la Nature et de la Vie, Laboratoire de Biochimie Appliquée, 06000, Bejaia, Algeria
| | - Sarra Belkhir
- Université de Bejaia, Faculté des Sciences de la Nature et de la Vie, Laboratoire de Biochimie Appliquée, 06000, Bejaia, Algeria
| | - Malika Benloukil
- Université de Bejaia, Faculté des Sciences de la Nature et de la Vie, Laboratoire de Biochimie Appliquée, 06000, Bejaia, Algeria
| | - Naima Saidene
- Université de Bejaia, Faculté des Sciences de la Nature et de la Vie, Laboratoire de Biochimie Appliquée, 06000, Bejaia, Algeria
| | - Kenza Moulaoui
- Université de Bejaia, Faculté des Sciences de la Nature et de la Vie, Laboratoire de Biochimie Appliquée, 06000, Bejaia, Algeria
| | - Souad Kasmi
- Université de Bejaia, Faculté des Sciences de la Nature et de la Vie, Laboratoire de Biochimie Appliquée, 06000, Bejaia, Algeria
| | - Zineb Medjahed
- Université de Jijel, Faculté des Sciences de la Nature et de la Vie, Laboratoire de Toxicologie Moléculaire, 18000, Jijel, Algeria
| | - Walid Boussebaa
- Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques CRAPC, Alger, Algeria
| | - Djamila Atmani
- Centre de Développement des Technologies Avancées, 16081, Alger, Algeria
| |
Collapse
|
16
|
Peh HY, Nshimiyimana R, Brüggemann TR, Duvall MG, Nijmeh J, Serhan CN, Levy BD. 15-epi-lipoxin A 5 promotes neutrophil exit from exudates for clearance by splenic macrophages. FASEB J 2024; 38:e23807. [PMID: 38989570 PMCID: PMC11344644 DOI: 10.1096/fj.202400610r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/10/2024] [Accepted: 06/26/2024] [Indexed: 07/12/2024]
Abstract
Specialized proresolving mediators (SPMs) promote local macrophage efferocytosis but excess leukocytes early in inflammation require additional leukocyte clearance mechanism for resolution. Here, neutrophil clearance mechanisms from localized acute inflammation were investigated in mouse dorsal air pouches. 15-HEPE (15-hydroxy-5Z,8Z,11Z,13E,17Z-eicosapentaenoic acid) levels were increased in the exudates. Activated human neutrophils converted 15-HEPE to lipoxin A5 (5S,6R,15S-trihydroxy-7E,9E,11Z,13E,17Z-eicosapentaenoic acid), 15-epi-lipoxin A5 (5S,6R,15R-trihydroxy-7E,9E,11Z,13E,17Z-eicosapentaenoic acid), and resolvin E4 (RvE4; 5S,15S-dihydroxy-6E,8Z,11Z,13E,17Z-eicosapentaenoic acid). Exogenous 15-epi-lipoxin A5, 15-epi-lipoxin A4 and a structural lipoxin mimetic significantly decreased exudate neutrophils and increased local tissue macrophage efferocytosis, with comparison to naproxen. 15-epi-lipoxin A5 also cleared exudate neutrophils faster than the apparent local capacity for stimulated macrophage efferocytosis, so the fate of exudate neutrophils was tracked with CD45.1 variant neutrophils. 15-epi-lipoxin A5 augmented the exit of adoptively transferred neutrophils from the pouch exudate to the spleen, and significantly increased splenic SIRPa+ and MARCO+ macrophage efferocytosis. Together, these findings demonstrate new systemic resolution mechanisms for 15-epi-lipoxin A5 and RvE4 in localized tissue inflammation, which distally engage the spleen to activate macrophage efferocytosis for the clearance of tissue exudate neutrophils.
Collapse
Affiliation(s)
- Hong Yong Peh
- Pulmonary and Critical Care Medicine Division, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Robert Nshimiyimana
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Thayse R. Brüggemann
- Pulmonary and Critical Care Medicine Division, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Melody G. Duvall
- Pulmonary and Critical Care Medicine Division, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Julie Nijmeh
- Pulmonary and Critical Care Medicine Division, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Charles N. Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Bruce D. Levy
- Pulmonary and Critical Care Medicine Division, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
17
|
Siwicki MR, Kubes P. Varied roles for LGR6 in the immune response. Blood 2024; 144:352-354. [PMID: 39052274 DOI: 10.1182/blood.2024025017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024] Open
|
18
|
Golenkina EA, Viryasova GM, Galkina SI, Iakushkina IV, Gaponova TV, Romanova YM, Sud’ina GF. ATP and Formyl Peptides Facilitate Chemoattractant Leukotriene-B4 Synthesis and Drive Calcium Fluxes, Which May Contribute to Neutrophil Swarming at Sites of Cell Damage and Pathogens Invasion. Biomedicines 2024; 12:1184. [PMID: 38927391 PMCID: PMC11201259 DOI: 10.3390/biomedicines12061184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/16/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Here, we demonstrate that human neutrophil interaction with the bacterium Salmonella typhimurium fuels leukotriene B4 synthesis induced by the chemoattractant fMLP. In this work, we found that extracellular ATP (eATP), the amount of which increases sharply during tissue damage, can effectively regulate fMLP-induced leukotriene B4 synthesis. The vector of influence strongly depends on the particular stage of sequential stimulation of neutrophils by bacteria and on the stage at which fMLP purinergic signaling occurs. Activation of 5-lipoxygenase (5-LOX), key enzyme of leukotriene biosynthesis, depends on an increase in the cytosolic concentration of Ca2+. We demonstrate that eATP treatment prior to fMLP, by markedly reducing the amplitude of the fMLP-induced Ca2+ transient jump, inhibits leukotriene synthesis. At the same time, when added with or shortly after fMLP, eATP effectively potentiates arachidonic acid metabolism, including by Ca2+ fluxes stimulation. Flufenamic acid, glibenclamide, and calmodulin antagonist R24571, all of which block calcium signaling in different ways, all suppressed 5-LOX product synthesis in our experimental model, indicating the dominance of calcium-mediated mechanisms in eATP regulatory potential. Investigation into the adhesive properties of neutrophils revealed the formation of cell clusters when adding fMLP to neutrophils exposed to the bacterium Salmonella typhimurium. eATP added simultaneously with fMLP supported neutrophil polarization and clustering. A cell-derived chemoattractant such as leukotriene B4 plays a crucial role in the recruitment of additional neutrophils to the foci of tissue damage or pathogen invasion, and eATP, through the dynamics of changes in [Ca2+]i, plays an important decisive role in fMLP-induced leukotrienes synthesis during neutrophil interactions with the bacterium Salmonella typhimurium.
Collapse
Affiliation(s)
- Ekaterina A. Golenkina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (E.A.G.); (G.M.V.); (S.I.G.); (I.V.I.)
| | - Galina M. Viryasova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (E.A.G.); (G.M.V.); (S.I.G.); (I.V.I.)
| | - Svetlana I. Galkina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (E.A.G.); (G.M.V.); (S.I.G.); (I.V.I.)
| | - Iuliia V. Iakushkina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (E.A.G.); (G.M.V.); (S.I.G.); (I.V.I.)
| | - Tatjana V. Gaponova
- National Research Center for Hematology, Russia Federation Ministry of Public Health, 125167 Moscow, Russia;
| | - Yulia M. Romanova
- Department of Genetics and Molecular Biology, Gamaleya National Research Centre of Epidemiology and Microbiology, 123098 Moscow, Russia;
| | - Galina F. Sud’ina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (E.A.G.); (G.M.V.); (S.I.G.); (I.V.I.)
| |
Collapse
|
19
|
Wang Y, Wang X, Zhang X, Zhang B, Meng X, Qian D, Xu Y, Yu L, Yan X, He Z. Inflammation and Acinar Cell Dual-Targeting Nanomedicines for Synergistic Treatment of Acute Pancreatitis via Ca 2+ Homeostasis Regulation and Pancreas Autodigestion Inhibition. ACS NANO 2024; 18:11778-11803. [PMID: 38652869 DOI: 10.1021/acsnano.4c00218] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Severe acute pancreatitis (AP) is a life-threatening pancreatic inflammatory disease with a high mortality rate (∼40%). Existing pharmaceutical therapies in development or in clinical trials showed insufficient treatment efficacy due to their single molecular therapeutic target, poor water solubility, short half-life, limited pancreas-targeting specificity, etc. Herein, acid-responsive hollow mesoporous Prussian blue nanoparticles wrapped with neutrophil membranes and surface modified with the N,N-dimethyl-1,3-propanediamine moiety were developed for codelivering membrane-permeable calcium chelator BAPTA-AM (BA) and trypsin activity inhibitor gabexate mesylate (Ga). In the AP mouse model, the formulation exhibited efficient recruitment at the inflammatory endothelium, trans-endothelial migration, and precise acinar cell targeting, resulting in rapid pancreatic localization and higher accumulation. A single low dose of the formulation (BA: 200 μg kg-1, Ga: 0.75 mg kg-1) significantly reduced pancreas function indicators to close to normal levels at 24 h, effectively restored the cell redox status, reduced apoptotic cell proportion, and blocked the systemic inflammatory amplified cascade, resulting in a dramatic increase in the survival rate from 58.3 to even 100%. Mechanistically, the formulation inhibited endoplasmic reticulum stress (IRE1/XBP1 and ATF4/CHOP axis) and restored impaired autophagy (Beclin-1/p62/LC3 axis), thereby preserving dying acinar cells and restoring the cellular "health status". This formulation provides an upstream therapeutic strategy with clinical translation prospects for AP management through synergistic ion homeostasis regulation and pancreatic autodigestion inhibition.
Collapse
Affiliation(s)
- Yanan Wang
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya 266003/572024, China
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266003, China
| | - Xinyuan Wang
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya 266003/572024, China
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266003, China
| | - Xue Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya 266003/572024, China
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266003, China
| | - Baomei Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya 266003/572024, China
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266003, China
| | - Xinlei Meng
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya 266003/572024, China
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266003, China
| | - Deyao Qian
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya 266003/572024, China
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266003, China
| | - Yatao Xu
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya 266003/572024, China
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266003, China
| | - Liangmin Yu
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya 266003/572024, China
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266003, China
| | - Xuefeng Yan
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya 266003/572024, China
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266003, China
| | - Zhiyu He
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya 266003/572024, China
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
20
|
Vellingiri V, Balaji Ragunathrao VA, Joshi JC, Akhter MZ, Anwar M, Banerjee S, Dudek S, Tsukasaki Y, Pinho S, Mehta D. Endothelial ERG programs neutrophil transcriptome for sustained anti-inflammatory vascular niche. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.02.591799. [PMID: 38746216 PMCID: PMC11092576 DOI: 10.1101/2024.05.02.591799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Neutrophils (PMNs) reside as a marginated pool within the vasculature, ready for deployment during infection. However, how endothelial cells (ECs) control PMN extravasation and activation to strengthen tissue homeostasis remains ill-defined. Here, we found that the vascular ETS-related gene (ERG) is a generalized mechanism regulating PMN activity in preclinical tissue injury models and human patients. We show that ERG loss in ECs rewired PMN-transcriptome, enriched for genes associated with the CXCR2-CXCR4 signaling. Rewired PMNs compromise mice survival after pneumonia and induced lung vascular inflammatory injury following adoptive transfer into naïve mice, indicating their longevity and inflammatory activity memory. Mechanistically, EC-ERG restricted PMN extravasation and activation by upregulating the deubiquitinase A20 and downregulating the NFκB-IL8 cascade. Rescuing A20 in EC-Erg -/- endothelium or suppressing PMN-CXCR2 signaling rescued EC control of PMN activation. Findings deepen our understanding of EC control of PMN-mediated inflammation, offering potential avenues for targeting various inflammatory diseases. Highlights ERG regulates trans-endothelial neutrophil (PMN) extravasation, retention, and activationLoss of endothelial (EC) ERG rewires PMN-transcriptomeAdopted transfer of rewired PMNs causes inflammation in a naïve mouse ERG transcribes A20 and suppresses CXCR2 function to inactivate PMNs. In brief/blurb The authors investigated how vascular endothelial cells (EC) control polymorphonuclear neutrophil (PMN) extravasation, retention, and activation to strengthen tissue homeostasis. They showed that EC-ERG controls PMN transcriptome into an anti-adhesive and anti-inflammatory lineage by synthesizing A20 and suppressing PMNs-CXCR2 signaling, defining EC-ERG as a target for preventing neutrophilic inflammatory injury.
Collapse
|
21
|
Suzuki R. [Mast Cell-Neutrophil Communication Regulates Allergic Diseases]. YAKUGAKU ZASSHI 2024; 144:483-488. [PMID: 38692921 DOI: 10.1248/yakushi.23-00154-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Allergic diseases (e.g., food allergies) are a growing problem, with increasing numbers of individuals experiencing them worldwide. Congruently, the adverse reactions (e.g., anaphylaxis) associated with the administration of vaccines against emerging infectious diseases such as coronavirus disease 2019 (COVID-19) have become a familiar problem. Allergic diseases, which have a wide variety of symptoms, are difficult to prevent or cure; treatment is currently limited to therapeutic drugs or allergen immunotherapy. Therefore, elucidating new allergic regulatory factors that control the allergic (i.e., mast cell) responses is important. While investigating the regulatory mechanisms of the wide range of allergic responses of mast cells, we found that the affinity of allergens to immunoglobin E (IgE) regulates allergic inflammation through the differences in the secretory responses of mast cells and the types and interactions of the cells infiltrating the tissues. Here, we present our recent findings regarding the affinity of allergens to IgE in regulating allergic inflammation, heterogeneous secretory granules inducing diverse secretory responses, and mast cells interacting with neutrophils, thereby regulating the various allergic responses.
Collapse
Affiliation(s)
- Ryo Suzuki
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University
| |
Collapse
|
22
|
Kumaresan V, Ingle TM, Kilgore N, Zhang G, Hermann BP, Seshu J. Cellular and transcriptome signatures unveiled by single-cell RNA-Seq following ex vivo infection of murine splenocytes with Borrelia burgdorferi. Front Immunol 2023; 14:1296580. [PMID: 38149246 PMCID: PMC10749944 DOI: 10.3389/fimmu.2023.1296580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/06/2023] [Indexed: 12/28/2023] Open
Abstract
Introduction Lyme disease, the most common tick-borne infectious disease in the US, is caused by a spirochetal pathogen Borrelia burgdorferi (Bb). Distinct host responses are observed in susceptible and resistant strains of inbred of mice following infection with Bb reflecting a subset of inflammatory responses observed in human Lyme disease. The advent of post-genomic methodologies and genomic data sets enables dissecting the host responses to advance therapeutic options for limiting the pathogen transmission and/or treatment of Lyme disease. Methods In this study, we used single-cell RNA-Seq analysis in conjunction with mouse genomics exploiting GFP-expressing Bb to sort GFP+ splenocytes and GFP- bystander cells to uncover novel molecular and cellular signatures that contribute to early stages of immune responses against Bb. Results These data decoded the heterogeneity of splenic neutrophils, macrophages, NK cells, B cells, and T cells in C3H/HeN mice in response to Bb infection. Increased mRNA abundance of apoptosis-related genes was observed in neutrophils and macrophages clustered from GFP+ splenocytes. Moreover, complement-mediated phagocytosis-related genes such as C1q and Ficolin were elevated in an inflammatory macrophage subset, suggesting upregulation of these genes during the interaction of macrophages with Bb-infected neutrophils. In addition, the role of DUSP1 in regulating the expression of Casp3 and pro-inflammatory cytokines Cxcl1, Cxcl2, Il1b, and Ccl5 in Bb-infected neutrophils were identified. Discussion These findings serve as a growing catalog of cell phenotypes/biomarkers among murine splenocytes that can be exploited for limiting spirochetal burden to limit the transmission of the agent of Lyme disease to humans via reservoir hosts.
Collapse
Affiliation(s)
- Venkatesh Kumaresan
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX, United States
- South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Taylor MacMackin Ingle
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX, United States
- South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Nathan Kilgore
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX, United States
- South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Guoquan Zhang
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX, United States
- South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Brian P. Hermann
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Janakiram Seshu
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX, United States
- South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, United States
| |
Collapse
|
23
|
Liu Y, Xiang C, Que Z, Li C, Wang W, Yin L, Chu C, Zhou Y. Neutrophil heterogeneity and aging: implications for COVID-19 and wound healing. Front Immunol 2023; 14:1201651. [PMID: 38090596 PMCID: PMC10715311 DOI: 10.3389/fimmu.2023.1201651] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/02/2023] [Indexed: 12/18/2023] Open
Abstract
Neutrophils play a critical role in the immune response to infection and tissue injury. However, recent studies have shown that neutrophils are a heterogeneous population with distinct subtypes that differ in their functional properties. Moreover, aging can alter neutrophil function and exacerbate immune dysregulation. In this review, we discuss the concept of neutrophil heterogeneity and how it may be affected by aging. We then examine the implications of neutrophil heterogeneity and aging for COVID-19 pathogenesis and wound healing. Specifically, we summarize the evidence for neutrophil involvement in COVID-19 and the potential mechanisms underlying neutrophil recruitment and activation in this disease. We also review the literature on the role of neutrophils in the wound healing process and how aging and neutrophil heterogeneity may impact wound healing outcomes. Finally, we discuss the potential for neutrophil-targeted therapies to improve clinical outcomes in COVID-19 and wound healing.
Collapse
Affiliation(s)
| | | | | | | | - Wen Wang
- Department of Hematology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China; Medical Cosmetic Center, Chengdu Second People's Hospital; Minhang Hospital, Fudan University, Shanghai, China
| | - Lijuan Yin
- Department of Hematology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China; Medical Cosmetic Center, Chengdu Second People's Hospital; Minhang Hospital, Fudan University, Shanghai, China
| | - Chenyu Chu
- Department of Hematology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China; Medical Cosmetic Center, Chengdu Second People's Hospital; Minhang Hospital, Fudan University, Shanghai, China
| | - Yin Zhou
- Department of Hematology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China; Medical Cosmetic Center, Chengdu Second People's Hospital; Minhang Hospital, Fudan University, Shanghai, China
| |
Collapse
|
24
|
Ekstedt S, Lagebro V, Kumlien Georén S, Cardell LO. Prolonged inflammatory resolution in allergic asthma relates to dysfunctional interactions between neutrophils and airway epithelium. Ann Allergy Asthma Immunol 2023; 131:349-355.e3. [PMID: 37268244 DOI: 10.1016/j.anai.2023.05.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/17/2023] [Accepted: 05/17/2023] [Indexed: 06/04/2023]
Abstract
BACKGROUND Allergic asthma is a heterogeneous disorder involving chronic airway inflammation, reversible airflow limitation, and tissue remodeling, causing chronic airflow limitation. Most of the asthma research has been focused on elucidating the proinflammatory pathways underlying disease pathogenesis. Paradoxically, the necessity of appropriate termination and resolution of inflammation has not been recognized until recently. The latter has led to the concept of chronic inflammation developing as a result of lack of specific "stop" signals for the inflammatory process. OBJECTIVE To investigate the interaction between neutrophils and airway epithelium during inflammatory resolution in patients with allergic asthma. METHODS An in vitro scratch assay with cultured epithelial cells, based on live-imaging microscopy, was used to evaluate regeneration and the influence of neutrophils on resolution. Epithelial cells and autologous neutrophils were derived from healthy donors and patients with allergic asthma. Supernatants and cells were collected for enzyme-linked immunosorbent assay and transcriptional analyses at the end of the experiment. RESULTS Healthy epithelial cells regenerated faster than epithelial cells from patients with allergic asthma. Autologous neutrophils improved the regeneration of healthy epithelial cells but not asthmatic epithelial cells. Interleukin (IL)-8 and β-catenin were down-regulated in healthy epithelial cells after resolution, but not in allergic asthmatic epithelial cells. CONCLUSION The prolonged duration of inflammation in the respiratory tract in patients with allergic asthma could be due to the impaired healing pattern of epithelial cells and their compromised interactions with the neutrophils.
Collapse
Affiliation(s)
- Sandra Ekstedt
- Division of ENT Diseases, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Vilma Lagebro
- Division of ENT Diseases, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Susanna Kumlien Georén
- Division of ENT Diseases, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Lars Olaf Cardell
- Division of ENT Diseases, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden; Department of ENT Diseases, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
25
|
Jovisic M, Mambetsariev N, Singer BD, Morales-Nebreda L. Differential roles of regulatory T cells in acute respiratory infections. J Clin Invest 2023; 133:e170505. [PMID: 37463441 PMCID: PMC10348770 DOI: 10.1172/jci170505] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023] Open
Abstract
Acute respiratory infections trigger an inflammatory immune response with the goal of pathogen clearance; however, overexuberant inflammation causes tissue damage and impairs pulmonary function. CD4+FOXP3+ regulatory T cells (Tregs) interact with cells of both the innate and the adaptive immune system to limit acute pulmonary inflammation and promote its resolution. Tregs also provide tissue protection and coordinate lung tissue repair, facilitating a return to homeostatic pulmonary function. Here, we review Treg-mediated modulation of the host response to respiratory pathogens, focusing on mechanisms underlying how Tregs promote resolution of inflammation and repair of acute lung injury. We also discuss potential strategies to harness and optimize Tregs as a cellular therapy for patients with severe acute respiratory infection and discuss open questions in the field.
Collapse
Affiliation(s)
- Milica Jovisic
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
- Simpson Querrey Lung Institute for Translational Science
| | | | - Benjamin D. Singer
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
- Simpson Querrey Lung Institute for Translational Science
- Department of Biochemistry and Molecular Genetics, and
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Luisa Morales-Nebreda
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
- Simpson Querrey Lung Institute for Translational Science
| |
Collapse
|
26
|
Strickland E, Pan D, Godfrey C, Kim JS, Hopke A, Degrange M, Villavicencio B, Mansour MK, Zerbe CS, Irimia D, Amir A, Weiner OD. Self-extinguishing relay waves enable homeostatic control of human neutrophil swarming. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.27.546744. [PMID: 37425711 PMCID: PMC10327146 DOI: 10.1101/2023.06.27.546744] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Neutrophils exhibit self-amplified swarming to sites of injury and infection. How swarming is controlled to ensure the proper level of neutrophil recruitment is unknown. Using an ex vivo model of infection, we find that human neutrophils use active relay to generate multiple pulsatile waves of swarming signals. Unlike classic active relay systems such as action potentials, neutrophil swarming relay waves are self-extinguishing, limiting the spatial range of cell recruitment. We identify an NADPH-oxidase-based negative feedback loop that is needed for this self-extinguishing behavior. Through this circuit, neutrophils adjust the number and size of swarming waves for homeostatic levels of cell recruitment over a wide range of initial cell densities. We link a broken homeostat to neutrophil over-recruitment in the context of human chronic granulomatous disease.
Collapse
Affiliation(s)
- Evelyn Strickland
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Deng Pan
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Christian Godfrey
- BioMEMS Resource Center and Center for Surgery, Innovation and Bioengineering, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Julia S Kim
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
- Tetrad Graduate Program, UCSF, San Francisco, CA, USA
| | - Alex Hopke
- BioMEMS Resource Center and Center for Surgery, Innovation and Bioengineering, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Maureen Degrange
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | | | - Michael K Mansour
- Harvard Medical School, Boston, MA, USA
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Christa S Zerbe
- Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Daniel Irimia
- BioMEMS Resource Center and Center for Surgery, Innovation and Bioengineering, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Ariel Amir
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Department of Complex Systems, Faculty of Physics, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Orion D Weiner
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
27
|
Guo Y, Ma X, Nie Y, Kostallari E, Gao J. Editorial: Hepatic immune response underlying liver cirrhosis and portal hypertension. Front Immunol 2023; 14:1174562. [PMID: 36969230 PMCID: PMC10034766 DOI: 10.3389/fimmu.2023.1174562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 03/11/2023] Open
Affiliation(s)
- Yangkun Guo
- Lab of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiong Ma
- Division of Gastroenterology and Hepatology, National Healthy Commission (NHC) Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, Shanghai, China
- *Correspondence: Enis Kostallari, ; Yongzhan Nie, ; Xiong Ma, ; Jinhang Gao,
| | - Yongzhan Nie
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi’an, China
- *Correspondence: Enis Kostallari, ; Yongzhan Nie, ; Xiong Ma, ; Jinhang Gao,
| | - Enis Kostallari
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States
- *Correspondence: Enis Kostallari, ; Yongzhan Nie, ; Xiong Ma, ; Jinhang Gao,
| | - Jinhang Gao
- Lab of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Enis Kostallari, ; Yongzhan Nie, ; Xiong Ma, ; Jinhang Gao,
| |
Collapse
|