1
|
Yao Q, Wang R, Wang H, Yuan D, Yuan C. Total saponins from Panax japonicus alleviate insulin resistance via exosomal miR204/Elovl6-mediated adipocyte-macrophage crosstalk. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 142:156748. [PMID: 40253742 DOI: 10.1016/j.phymed.2025.156748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 04/03/2025] [Accepted: 04/08/2025] [Indexed: 04/22/2025]
Abstract
BACKGROUND Insulin resistance (IR) is a key factor in the development of type 2 diabetes, and M2-like macrophages are important in maintaining normal glucose homeostasis. Our previous research has demonstrated that the total saponins from Panax japonicus (TSPJ) reduce IR in adipocytes and promote the M2 polarization of macrophages, but the molecular mechanism is unclear. PURPOSE In the study, we aimed to elucidate whether TSPJ mitigate IR by enhancing the intercellular communication between adipocytes and macrophages and describe how the exosomes from bone marrow-derived macrophages (BMDMs) modulate the insulin sensitivity of adipocytes via miR204. METHODS We used both in vitro and in vivo models to study the effects of TSPJ on IR, with a particular emphasis on the exosomes from M2-type BMDMs. Furthermore, we investigated the mechanisms by which exosomal miR204 and its downstream target Elovl6 influence IR in an obese mouse model, as well as in adipocytes with double inhibition of miR204 and Elovl6. RESULTS In the animal model, TSPJ significantly increased miR204 expression in BMDMs-derived exosomes and decreased the level of Elovl6 in adipocytes. However, when the C75BL/6 mice had miR204 ablation, TSPJ became less capable of enhancing insulin sensitivity, and the expressions of Irs1, Insr, and Slc2a4 in the adipose tissue decreased. In the cell model where the macrophages carried miR204 ablation and the adipocytes had Elovl6 knockdown, the expressions of IR-related genes increased in the adipocytes. CONCLUSIONS TSPJ mitigated IR through adipocyte-BMDM crosstalk mediated by exosomes via the miR204/Elovl6 pathway.
Collapse
Affiliation(s)
- Qianqian Yao
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China; College of Basic Medical Science, China Three Gorges University, Yichang 443002, China; Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China
| | - Rui Wang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China; College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
| | - Hailin Wang
- College of Medicine and Health Science, China Three Gorges University, Yichang 443002, China
| | - Ding Yuan
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China
| | - Chengfu Yuan
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China; College of Basic Medical Science, China Three Gorges University, Yichang 443002, China; Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China.
| |
Collapse
|
2
|
Han L, Yang J, Yan P, Wang M. An integrated investigation of major environmental stressors on the Pacific white shrimp Litopenaeus vannamei. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2025; 166:105361. [PMID: 40101849 DOI: 10.1016/j.dci.2025.105361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/09/2025] [Accepted: 03/16/2025] [Indexed: 03/20/2025]
Abstract
Ammonia, nitrite and sulfide are major environmental stressors in aquaculture. They can injury tissue structure, interfere with the immune system, impair growth and development, and make aquatic animals more vulnerable to infections. In the present study, four groups were set up as Control group (no treatment), Ammonia group (30 mg/L ammonia-N), Nitrite group (60 mg/L nitrite-N) and Sulfide group (4 mg/L sulfide), so as to examine the effects of different environmental stressors on histopathology, immune indices and transcriptome of Litopenaeus vannamei. After 48 h stimulation, the results showed that all the three environmental stressors caused damage to the hepatopancreas, midgut, muscle and gill tissues of the shrimp, and that the hepatopancreas and midgut were the most seriously damaged and the muscle was the least affected. Superoxide dismutase (SOD) activity increased and total antioxidant capacity (T-AOC) activity decreased in all the three treatment groups. Glutathione peroxidase (GSH-PX) activity decreased significantly in Sulfide group and alkaline phosphatase (AKP) activity increased significantly in Ammonia and Nitrite groups. In the hepatopancreas of the Ammonia, Nitrite, and Sulfide groups, transcriptome analysis revealed 709, 715 and 289 differential expressed gene (DEGs), respectively. GO and KEGG enrichment demonstrated that the three environmental stressors had an impact on the shrimp's immune response, metabolic processes, growth and development. The combination of histopathology, immune indicators, and transcriptome yielded that the Nitrite group had the most serious impact on the shrimp, followed by Ammonia group, while Sulfide group had the least impact.
Collapse
Affiliation(s)
- Lulu Han
- MOE Key Laboratory of Marine Genetics and Breeding, Shandong Key Laboratory of Marine Seed Industry (preparatory), and Qingdao Institute of Maritime Silk Road (Qingdao Institute of Blue Seed Industry), Ocean University of China, Qingdao, 266003, China; Hainan Key Laboratory of Tropical Aquatic Germplasm, Sanya Oceanographic Institution, Ocean University of China, Sanya, 572024, China
| | - Jinyu Yang
- MOE Key Laboratory of Marine Genetics and Breeding, Shandong Key Laboratory of Marine Seed Industry (preparatory), and Qingdao Institute of Maritime Silk Road (Qingdao Institute of Blue Seed Industry), Ocean University of China, Qingdao, 266003, China; Hainan Key Laboratory of Tropical Aquatic Germplasm, Sanya Oceanographic Institution, Ocean University of China, Sanya, 572024, China
| | - Peiyu Yan
- MOE Key Laboratory of Marine Genetics and Breeding, Shandong Key Laboratory of Marine Seed Industry (preparatory), and Qingdao Institute of Maritime Silk Road (Qingdao Institute of Blue Seed Industry), Ocean University of China, Qingdao, 266003, China; Hainan Key Laboratory of Tropical Aquatic Germplasm, Sanya Oceanographic Institution, Ocean University of China, Sanya, 572024, China.
| | - Mengqiang Wang
- MOE Key Laboratory of Marine Genetics and Breeding, Shandong Key Laboratory of Marine Seed Industry (preparatory), and Qingdao Institute of Maritime Silk Road (Qingdao Institute of Blue Seed Industry), Ocean University of China, Qingdao, 266003, China; Hainan Key Laboratory of Tropical Aquatic Germplasm, Sanya Oceanographic Institution, Ocean University of China, Sanya, 572024, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
| |
Collapse
|
3
|
Xu K, Yang M, Guan L, Yang C, Qiao L, Li Y, Lin J, Li X. Therapeutic Potential of Mesenchymal Stem Cells in Niemann-Pick Disease. Mol Biotechnol 2025:10.1007/s12033-025-01435-3. [PMID: 40281376 DOI: 10.1007/s12033-025-01435-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 04/03/2025] [Indexed: 04/29/2025]
Abstract
Niemann-Pick disease (NPD) is a rare autosomal recessive neurodegenerative disease characterized by hepatosplenomegaly, neuropathy, and a significantly shortened lifespan. Lipid metabolism disorder is the main pathological feature of NPD. Currently, the exact pathogenesis of NPD remains unclear, and drug therapy is largely palliative, focusing on symptom management, but it has side effects. Mesenchymal stem cells (MSCs) possess several advantageous properties, including their differentiation potential, wide availability, low immunogenicity, and the ability to secrete regulatory factors, which have led to their extensive application in basic research targeting neurodegenerative diseases. Studies have demonstrated that transplantation of MSCs from different sources into animal models of NPD can delay the loss of Purkinje cells in the cerebellum, reduce lipid deposition, improve motor coordination, slow the rate of weight loss, and extend lifespan. This review explores the therapeutic potential of MSCs in the treatment of NPD, highlighting their emerging role in addressing this challenging condition.
Collapse
Affiliation(s)
- Keli Xu
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Minlin Yang
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Lihong Guan
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, Henan, China
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Ciqing Yang
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, Henan, China
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Liang Qiao
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, Henan, China
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Yonghai Li
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, Henan, China
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Juntang Lin
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, Henan, China.
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, 453003, Henan, China.
- Henan International Joint Laboratory of Stem Cell Medicine, School of Medical Engineering, Xinxiang Medical University, Xinxiang, 453003, Henan, China.
| | - Xiaoying Li
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, Henan, China.
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, 453003, Henan, China.
| |
Collapse
|
4
|
Kume H, Kazama K, Sato R, Sato Y. Possible Involvement of Lysophospholipids in Severe Asthma as Novel Lipid Mediators. Biomolecules 2025; 15:182. [PMID: 40001485 PMCID: PMC11852450 DOI: 10.3390/biom15020182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/25/2024] [Accepted: 01/02/2025] [Indexed: 02/27/2025] Open
Abstract
In severe asthma, symptoms are unstable despite intensive treatment based on high doses of inhaled corticosteroids and on-demand use of oral corticosteroids. Although, recently, various biological agents related to Th2 cytokines have been added to intensive controller medications for severe asthma, a significant progress has not been observed in the management for symptoms (dyspnea, wheezing and cough). Medical treatment focused on Type 2 inflammation is probably insufficient to maintain good long-term management for severe asthma. Airway eosinophilia and decreased reversibility in forced expiratory volume in 1 second (FEV1) are listed as major predictors for exacerbation-prone asthma. However, it is generally considered that asthma is complex and heterogeneous. It is necessary to establish precision medicine using treatable traits based on a multidimensional approach related to asthma. Since phospholipids generate lysophospholipids and arachidonic acid by phospholipases, lysophospholipids can be associated with the pathogenesis of this disease via action on smooth muscle, endothelium, and epithelium in the airways. Lysophosphatidic acid (LPA), lysophosphatidylcholine (LPC), and sphingosine 1-phosphate (S1P) are increased in bronchoalveolar fluid after allergen challenge. LPA, LPC, and S1P recruit eosinophils to the lungs and cause β2-adrenergic desensitization. LAP and S1P cause contraction and hyperresponsiveness in airway smooth muscle. Moreover, lysophosphatidylserine and S1P are associated with the allergic reaction related to IgE/FcεRI in mast cells. Lysophospholipid action is probably comprised of corticosteroid resistance and is independent of Type 2 inflammation, and may be corelated with oxidative stress. Lysophospholipids may be a novel molecular target in advancing the management and treatment of asthma. This review discusses the clinical relevance of lysophospholipids in asthma.
Collapse
Affiliation(s)
- Hiroaki Kume
- Department of Infectious Diseases and Respiratory Medicine, Fukushima Medical University Aizu Medical Center, 21-2 Maeda, Tanisawa, Kawahigashi, Aizuwakamatsu 969-3492, Japan; (K.K.); (R.S.); (Y.S.)
| | | | | | | |
Collapse
|
5
|
Guo J, Xue S, Wang X, Wang L, Wen SY. Emerging insights on the role of Elovl6 in human diseases: Therapeutic challenges and opportunities. Life Sci 2025; 361:123308. [PMID: 39675554 DOI: 10.1016/j.lfs.2024.123308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/19/2024] [Accepted: 12/11/2024] [Indexed: 12/17/2024]
Abstract
ELOVL6, elongation-of-very-long-chain-fatty acids 6, a crucial enzyme in lipid metabolism, primarily responsible for the elongation of carbon chains of C12-C16 saturated fatty acids. It plays a significant role in various human diseases, particularly those associated with metabolic disorders related to fatty acid synthesis, such as insulin resistance, non-alcoholic fatty liver disease, cancer, and cardiovascular diseases. Emerging research also links ELOVL6 to kidney diseases, neurological conditions such as epilepsy, and pulmonary fibrosis. The enzyme's expression is regulated by various factors including diet, oxidative stress, and circadian rhythms. For instance, a high-carbohydrate diet can promote an increase in ELOVL6 expression. This abnormality leads to an accumulation of long-chain fatty acids and lipid deposition, ultimately resulting in pathological consequences across multiple systems in the body. As a biological target, ELOVL6 holds promise for diagnostic and therapeutic applications, with future research expected to uncover its mechanisms and therapeutic potential, paving the way for novel interventions in multiple disease areas. Here, the expression regulation and function of ELOVL6 in various human diseases are reviewed. This review underscores ELOVL6 as a significant therapeutic target for human diseases, with its potential for diagnostic and therapeutic applications anticipated to drive future research and enable innovative interventions in various pathological conditions.
Collapse
Affiliation(s)
- Jiao Guo
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Shulan Xue
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Xiaohui Wang
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Li Wang
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China.
| | - Shi-Yuan Wen
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
6
|
He X, Zhang H, Zhong J, Wang J, Wu K, Wen X. Regulatory mechanism of Elovl6 in lipid metabolism, antioxidant capacity, and immune function in Scylla paramamosain revealed by Ap-1. Int J Biol Macromol 2024; 283:137700. [PMID: 39551296 DOI: 10.1016/j.ijbiomac.2024.137700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/13/2024] [Accepted: 11/13/2024] [Indexed: 11/19/2024]
Abstract
In mammals, elongation of very long-chain fatty acids protein 6 (ELOVL6) play a role in both the elongation of fatty acids and the development of associated inflammation. However, the function and transcriptional regulatory mechanisms of Elovl6 in invertebrates are poorly understood. This study aimed to examine the function of Elovl6 and its transcriptional regulatory mechanism in Scylla paramamosain. RNA interference experiments showed that elovl6 knockdown significantly affected the synthesis and catabolism of hepatopancreatic lipids, leading to an increase in triglyceride levels and saturated fatty acid content, and a decrease in polyunsaturated fatty acid content. Notably, antioxidant capacity and immune function were also impaired, with decreased activity of antioxidant enzymes and immune-related genes. To investigate the transcription regulation of elovl6, a 2212-bp promoter fragment upstream of elovl6 was cloned and characterized. Analysis of the luciferase reporter showed that Ap-1 regulates elovl6 transcription via the -353 to -343 binding site. In vivo injection of the Ap-1 inhibitor T-5224 verified its inhibitory effect on elovl6 expression, with results similar to those of elovl6 knockdown, indicating that Ap-1 regulates lipid metabolism, antioxidant capacity, and immune function via Elovl6.
Collapse
Affiliation(s)
- Xianda He
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Haoran Zhang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou 510642, China
| | - Juncheng Zhong
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Jiawei Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Kun Wu
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou 510642, China.
| | - Xiaobo Wen
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
7
|
Cui L, Wu Y, Chen Z, Li B, Cai J, Chang Z, Xiao W, Wang Y, Yang N, Wang Y, Yu Z, Yao L, Ma R, Wang X, Chen Y, Chen Q, Mei H, Lan Z, Yu Y, Chen R, Wu X, Yu Q, Lu J, Yu N, Zhang X, Liu J, Zhang L, Lai Y, Gao S, Gao Y, Guo C, Shi Y. N6-methyladenosine modification-tuned lipid metabolism controls skin immune homeostasis via regulating neutrophil chemotaxis. SCIENCE ADVANCES 2024; 10:eadp5332. [PMID: 39356764 PMCID: PMC11446281 DOI: 10.1126/sciadv.adp5332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 08/27/2024] [Indexed: 10/04/2024]
Abstract
Disrupted N6-methyladenosine (m6A) modification modulates various inflammatory disorders. However, the role of m6A in regulating cutaneous inflammation remains elusive. Here, we reveal that the m6A and its methyltransferase METTL3 are down-regulated in keratinocytes in inflammatory skin diseases. Inducible deletion of Mettl3 in murine keratinocytes results in spontaneous skin inflammation and increases susceptibility to cutaneous inflammation with activation of neutrophil recruitment. Therapeutically, restoration of m6A alleviates the disease phenotypes in mice and suppresses inflammation in human biopsy specimens. We support a model in which m6A modification stabilizes the mRNA of the lipid-metabolizing enzyme ELOVL6 via the m6A reader IGF2BP3, leading to a rewiring of fatty acid metabolism with a reduction in palmitic acid accumulation and, consequently, suppressing neutrophil chemotaxis in cutaneous inflammation. Our findings highlight a previously unrecognized epithelial-intrinsic m6A modification-lipid metabolism pathway that is essential for maintaining epidermal and immune homeostasis and lay the basis for potential therapeutic targeting of m6A modulators to attenuate inflammatory skin diseases.
Collapse
Affiliation(s)
- Lian Cui
- Department of Dermatology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, China
| | - You Wu
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, China
| | - Zeyu Chen
- Department of Dermatology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, China
| | - Bingjie Li
- Department of Dermatology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, China
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jiangluyi Cai
- Department of Dermatology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, China
| | - Zhanhe Chang
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, China
| | - Weide Xiao
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yuanyuan Wang
- Department of Dermatology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, China
| | - Nan Yang
- Department of Dermatology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, China
| | - Yu Wang
- Department of Dermatology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, China
| | - Zengyang Yu
- Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, China
- Department of Dermatology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lingling Yao
- Department of Dermatology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, China
| | - Rui Ma
- Department of Dermatology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, China
| | - Xin Wang
- Department of Dermatology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, China
| | - Youdong Chen
- Department of Dermatology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, China
- Department of Dermatology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qianyu Chen
- Department of Dermatology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, China
| | - Hao Mei
- Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, China
- Department of Dermatology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhiyi Lan
- Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, China
- Department of Dermatology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yingyuan Yu
- Department of Dermatology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, China
| | - Rongfen Chen
- Department of Dermatology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, China
| | - Xingbiao Wu
- Department of Dermatology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qian Yu
- Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, China
- Department of Dermatology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiajing Lu
- Department of Dermatology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, China
| | - Ning Yu
- Department of Dermatology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, China
| | - Xilin Zhang
- Department of Dermatology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, China
| | - Jun Liu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Lingjuan Zhang
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Yuping Lai
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Shaorong Gao
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, China
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Tongji University, Shanghai, China
| | - Yawei Gao
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, China
| | - Chunyuan Guo
- Department of Dermatology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, China
| | - Yuling Shi
- Department of Dermatology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
8
|
Yoshida K, Morishima Y, Ishii Y, Mastuzaka T, Shimano H, Hizawa N. Abnormal saturated fatty acids and sphingolipids metabolism in asthma. Respir Investig 2024; 62:526-530. [PMID: 38640569 DOI: 10.1016/j.resinv.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/26/2024] [Accepted: 04/11/2024] [Indexed: 04/21/2024]
Abstract
Recent advances in fatty acid analysis have highlighted the links between lipid disruption and disease development. Lipid abnormalities are well-established risk factors for many of the most common chronic illnesses, and their involvement in asthma is also becoming clear. Here, we review research demonstrating the role of abnormal lipid metabolism in asthma, with a focus on saturated fatty acids and sphingolipids. High levels of palmitic acid, the most abundant saturated fatty acid in the human body, have been found in the airways of asthmatic patients with obesity, and were shown to worsen eosinophilic airway inflammation in asthma model mice on a high-fat diet. Aside from being a building block of longer-chain fatty acids, palmitic acid is also the starting point for de novo synthesis of ceramides, a class of sphingolipids. We outline the three main pathways for the synthesis of ceramides, which have been linked to the severity of asthma and act as precursors for the dynamic lipid mediator sphingosine 1-phosphate (S1P). S1P signaling is involved in allergen-induced eosinophilic inflammation, airway hyperresponsiveness, and immune-cell trafficking. A recent study of mice with mutations for the elongation of very long-chain fatty acid family member 6 (Elovl6), an enzyme that elongates fatty acid chains, has highlighted the potential role of palmitic acid composition, and thus lipid balance, in the pathophysiology of allergic airway inflammation. Elovl6 may be a potential therapeutic target in severe asthma.
Collapse
Affiliation(s)
- Kazufumi Yoshida
- Department of Pulmonary Medicine, Institute of Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8575, Japan.
| | - Yuko Morishima
- Department of Pulmonary Medicine, Institute of Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Yukio Ishii
- Department of Respiratory Medicine, National Hospital Organization Ibaraki Higashi National Hospital, 825 Terunuma, Tokai-Mura, Naka-Gun, Ibaraki, 319-1113, Japan
| | - Takashi Mastuzaka
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Hitoshi Shimano
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Nobuyuki Hizawa
- Department of Pulmonary Medicine, Institute of Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8575, Japan
| |
Collapse
|
9
|
Wang Y, Wu Y, Yang S, Gao R, Lv X, Yang Z, Jiao P, Zhang N, Loor JJ, Chen Z. m 6A Methylation Mediates the Function of the circRNA-08436/miR-195/ELOVL6 Axis in Regards to Lipid Metabolism in Dairy Goat Mammary Glands. Animals (Basel) 2024; 14:1715. [PMID: 38929334 PMCID: PMC11201019 DOI: 10.3390/ani14121715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
The nutritional value of goat milk is determined by the composition of its fatty acids, with particular importance placed on the role of unsaturated fatty acids in promoting human health. CircRNAs have been known to affect fatty acid metabolism through different pathways. In this study, high-throughput sequencing was employed to construct expression profiles of mammary tissue harvested during the dry period and peak lactation stages of dairy goats. Differentially expressed circRNAs and mRNAs were screened, revealing significantly higher expression levels of circRNA-08436 and ELOVL6 during the peak lactation period compared with the dry period. Thus, circRNA-08436 and ELOVL6 were chosen for subsequent studies. The findings demonstrated that circRNA-08436 not only promotes the synthesis of triglyceride (TAG) and cholesterol in goat mammary epithelial cells (GMECs), but also increases the concentrations of saturated fatty acids in the cells. Through the utilization of software prediction, the dual luciferase reporter system, and qRT-PCR, it was observed that circRNA-08436 binds to miR-195, with its overexpression reducing the expression levels of miR-195 and inhibiting TAG synthesis. In addition, circRNA-08436 upregulated the expression levels of the miR-195 target gene ELOVL6. The data also revealed that YTHDC1 facilitated the transport of circRNA-08436 from the nucleus to the cytoplasm, while YTHDC2 in the cytoplasm functioned as a "reader" to identify and degrade circRNA-08436. Taken together, these findings contribute to a better understanding of the molecular regulation of fatty acid metabolism in the mammary glands of dairy goats, thus offering a sound theoretical basis for the production of high-quality goat milk.
Collapse
Affiliation(s)
- Yu Wang
- Key Laboratory of Animal Biotechnology of Xinjiang, Institute of Biotechnology, Xinjiang Academy of Animal Science, Urumqi 830000, China; (Y.W.); (N.Z.)
- Key Laboratory of Genetics Breeding and Reproduction of Grass Feeding Livestock, Minisitry of Agriculture and Rural Affairs, Institute of Biotechnology, Xinjiang Academy of Animal Science, Urumqi 830000, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Y.W.); (S.Y.); (R.G.); (X.L.); (Z.Y.)
| | - Yanni Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Y.W.); (S.Y.); (R.G.); (X.L.); (Z.Y.)
| | - Sitian Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Y.W.); (S.Y.); (R.G.); (X.L.); (Z.Y.)
| | - Rui Gao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Y.W.); (S.Y.); (R.G.); (X.L.); (Z.Y.)
| | - Xiaoyang Lv
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Y.W.); (S.Y.); (R.G.); (X.L.); (Z.Y.)
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou 225009, China
| | - Zhangping Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Y.W.); (S.Y.); (R.G.); (X.L.); (Z.Y.)
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Peixin Jiao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China;
| | - Ning Zhang
- Key Laboratory of Animal Biotechnology of Xinjiang, Institute of Biotechnology, Xinjiang Academy of Animal Science, Urumqi 830000, China; (Y.W.); (N.Z.)
- Key Laboratory of Genetics Breeding and Reproduction of Grass Feeding Livestock, Minisitry of Agriculture and Rural Affairs, Institute of Biotechnology, Xinjiang Academy of Animal Science, Urumqi 830000, China
| | - Juan J. Loor
- Mammalian Nutrition Physiology Genomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA
| | - Zhi Chen
- Key Laboratory of Animal Biotechnology of Xinjiang, Institute of Biotechnology, Xinjiang Academy of Animal Science, Urumqi 830000, China; (Y.W.); (N.Z.)
- Key Laboratory of Genetics Breeding and Reproduction of Grass Feeding Livestock, Minisitry of Agriculture and Rural Affairs, Institute of Biotechnology, Xinjiang Academy of Animal Science, Urumqi 830000, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Y.W.); (S.Y.); (R.G.); (X.L.); (Z.Y.)
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou 225009, China
| |
Collapse
|
10
|
Rehman SU, Zhen Y, Ding L, Saleh AA, Zhang Y, Zhang J, He F, Husien HM, Zhou P, Wang M. Integrative Meta-Analysis: Unveiling Genetic Factors in Meat Sheep Growth and Muscular Development through QTL and Transcriptome Studies. Animals (Basel) 2024; 14:1679. [PMID: 38891726 PMCID: PMC11171046 DOI: 10.3390/ani14111679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
OBJECTIVE The study aimed to investigate the effects of castration on performance, carcass characteristics, and meat quality in sheep, as well as explore the expression of key genes related to metabolic pathways and muscle growth following castration. METHODS A meta-analysis approach was utilized to analyze data from multiple studies to compare the performance, carcass characteristics, and meat quality of castrated sheep (wethers) with intact rams. Additionally, protein-protein interaction (PPI) networks, differential gene expression (DEG) interactions, Gene Ontology (GO) terms, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were examined to identify molecular mechanisms associated with fat metabolism and muscle development in sheep tails. RESULTS The analysis revealed that castrated sheep (wethers) exhibited improved average daily gain, increased tenderness, lower backfat thickness, and a tendency for greater loin muscle area compared to intact rams. This suggests that castration promotes faster growth and results in leaner carcasses with potentially higher muscle content. Furthermore, the identification of downregulated DEGs like ACLY, SLC27A2, and COL1A1 and upregulated DEGs such as HOXA9, PGM2L1, and ABAT provides insights into the molecular mechanisms underlying fat deposition and muscle development in sheep. CONCLUSIONS The findings support the practice of castration in sheep production as it enhances growth performance, leads to leaner carcasses with higher muscle content, and improves meat tenderness. The identified changes in gene expression offer valuable insights for further research into understanding the impact of castration on muscle development and fat metabolism in sheep. This meta-analysis contributes to the knowledge of molecular mechanisms involved in fat deposition in sheep, opening avenues for future investigations in livestock fat metabolism research.
Collapse
Affiliation(s)
- Shahab Ur Rehman
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (S.U.R.); (L.D.); (F.H.)
| | - Yongkang Zhen
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (S.U.R.); (L.D.); (F.H.)
| | - Luoyang Ding
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (S.U.R.); (L.D.); (F.H.)
| | - Ahmed A. Saleh
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China;
- Animal and Fish Production Department, Faculty of Agriculture (Al-Shatby), Alexandria University, Alexandria City 11865, Egypt
| | - Yifan Zhang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (S.U.R.); (L.D.); (F.H.)
| | - Jinying Zhang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (S.U.R.); (L.D.); (F.H.)
| | - Feiyang He
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (S.U.R.); (L.D.); (F.H.)
| | - Hosameldeen Mohamed Husien
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (S.U.R.); (L.D.); (F.H.)
| | - Ping Zhou
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi 832000, China
| | - Mengzhi Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (S.U.R.); (L.D.); (F.H.)
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi 832000, China
| |
Collapse
|
11
|
Li T, Hu X, Fan L, Yang Y, He K. Myricanol improves metabolic profiles in dexamethasone induced lipid and protein metabolism disorders in mice. Biomed Pharmacother 2024; 174:116557. [PMID: 38583337 DOI: 10.1016/j.biopha.2024.116557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/27/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024] Open
Abstract
Myricanol (MY) is one of the main active components from bark of Myrica Rubra. It is demonstrated that MY rescues dexamethasone (DEX)-induced muscle dysfunction via activating silent information regulator 1 (SIRT1) and increasing adenosine 5'-monophosphate-activated protein kinase (AMPK) phosphorylation. Since SIRT1 and AMPK are widely involved in the metabolism of nutrients, we speculated that MY may exert beneficial effects on DEX-induced metabolic disorders. This study for the first time applied widely targeted metabolomics to investigate the beneficial effects of MY on glucose, lipids, and protein metabolism in DEX-induced metabolic abnormality in mice. The results showed that MY significantly reversed DEX-induced soleus and gastrocnemius muscle weight loss, muscle fiber damage, and muscle strength loss. MY alleviated DEX-induced metabolic disorders by increasing SIRT1 and glucose transporter type 4 (GLUT4) expressions. Additionally, myricanol prevented muscle cell apoptosis and atrophy by inhibiting caspase 3 cleavages and muscle ring-finger protein-1 (MuRF1) expression. Metabolomics showed that MY treatment reversed the serum content of carnitine ph-C1, palmitoleic acid, PS (16:0_17:0), PC (14:0_20:5), PE (P-18:1_16:1), Cer (t18:2/38:1(2OH)), four amino acids and their metabolites, and 16 glycerolipids in DEX mice. Kyoto encyclopedia of genes and genomes (KEGG) and metabolic set enrichment analysis (MSEA) analysis revealed that MY mainly affected metabolic pathways, glycerolipid metabolism, lipolysis, fat digestion and absorption, lipid and atherosclerosis, and cholesterol metabolism pathways through regulation of metabolites involved in glutathione, butanoate, vitamin B6, glycine, serine and threonine, arachidonic acid, and riboflavin metabolism. Collectively, MY can be used as an attractive therapeutic agent for DEX-induced metabolic abnormalities.
Collapse
Affiliation(s)
- Tiandan Li
- Hunan Provincial Key Laboratory of Dong Medicine, Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Science, Hunan University of Medicine, Huaihua, Hunan 418000, China
| | - Xiaochao Hu
- Hunan Provincial Key Laboratory of Dong Medicine, Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Science, Hunan University of Medicine, Huaihua, Hunan 418000, China
| | - Lingyang Fan
- Hunan Provincial Key Laboratory of Dong Medicine, Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Science, Hunan University of Medicine, Huaihua, Hunan 418000, China
| | - Yong Yang
- chool of Pharmacy, Hunan University of Traditional Chinese Medicine, Changsha, Hunan 410208, China.
| | - Kai He
- Hunan Provincial Key Laboratory of Dong Medicine, Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Science, Hunan University of Medicine, Huaihua, Hunan 418000, China.
| |
Collapse
|
12
|
Lee-Sarwar KA, Fischer-Rasmussen K, Bønnelykke K, Bisgaard H, Chawes B, Kelly RS, Lasky-Su J, Zeiger RS, O’Connor GT, Bacharier LB, Carey VJ, Laranjo N, Litonjua AA, Weiss ST. Omega-3 Fatty Acids Interact with DPP10 Region Genotype in Association with Childhood Atopy. Nutrients 2023; 15:2416. [PMID: 37242299 PMCID: PMC10223962 DOI: 10.3390/nu15102416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/27/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
Associations of omega-3 fatty acids (n-3) with allergic diseases are inconsistent, perhaps in part due to genetic variation. We sought to identify and validate genetic variants that modify associations of n-3 with childhood asthma or atopy in participants in the Vitamin D Antenatal Asthma Reduction Trial (VDAART) and the Copenhagen Prospective Studies on Asthma in Childhood 2010 (COPSAC). Dietary n-3 was derived from food frequency questionnaires and plasma n-3 was measured via untargeted mass spectrometry in early childhood and children aged 6 years old. Interactions of genotype with n-3 in association with asthma or atopy at age 6 years were sought for six candidate genes/gene regions and genome-wide. Two SNPs in the region of DPP10 (rs958457 and rs1516311) interacted with plasma n-3 at age 3 years in VDAART (p = 0.007 and 0.003, respectively) and with plasma n-3 at age 18 months in COPSAC (p = 0.01 and 0.02, respectively) in associationwith atopy. Another DPP10 region SNP, rs1367180, interacted with dietary n-3 at age 6 years in VDAART (p = 0.009) and with plasma n-3 at age 6 years in COPSAC (p = 0.004) in association with atopy. No replicated interactions were identified for asthma. The effect of n-3 on reducing childhood allergic disease may differ by individual factors, including genetic variation in the DPP10 region.
Collapse
Affiliation(s)
- Kathleen A. Lee-Sarwar
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Kasper Fischer-Rasmussen
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Herlev and Gentofte Hospital, University of Copenhagen, 2820 Gentofte, Denmark
| | - Klaus Bønnelykke
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Herlev and Gentofte Hospital, University of Copenhagen, 2820 Gentofte, Denmark
| | - Hans Bisgaard
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Herlev and Gentofte Hospital, University of Copenhagen, 2820 Gentofte, Denmark
| | - Bo Chawes
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Herlev and Gentofte Hospital, University of Copenhagen, 2820 Gentofte, Denmark
| | - Rachel S. Kelly
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Jessica Lasky-Su
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Robert S. Zeiger
- Department of Clinical Science, Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, CA 91101, USA
| | - George T. O’Connor
- Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Leonard B. Bacharier
- Division of Pediatric Allergy, Immunology and Pulmonary Medicine, Department of Pediatrics, Monroe Carell Jr. Children’s Hospital at Vanderbilt, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Vincent J. Carey
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Nancy Laranjo
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Augusto A. Litonjua
- Division of Pediatric Pulmonary Medicine, Golisano Children’s Hospital at Strong, University of Rochester Medical Center, Rochester, NY 14612, USA
| | - Scott T. Weiss
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|