1
|
Vakili K, Fathi M, Ebrahimi R, Ahmadian S, Moafi M, Ebrahimi MJ, Tafazolimoghadam A, Davoodi A, Eghbaldoost A, Eyvani K, Ghayyem H, Jashni Pour M, Kosari M, Niknejad S, Sanaye Abbasi A, Zarebidoki A, Andrew M, Trenaman S, Batool Z, Sayehmiri F, Ebrahimzadeh K. Use of Drugs Affecting GABA A Receptors and the Risk of Developing Alzheimer's Disease and Dementia: a Meta-Analysis and Literature Review. Mol Neurobiol 2025:10.1007/s12035-025-04821-9. [PMID: 40108057 DOI: 10.1007/s12035-025-04821-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 03/05/2025] [Indexed: 03/22/2025]
Abstract
The gamma-aminobutyric acid (GABA) system is known for its role in cognitive functions and memory processes. However, the activity of GABAA receptors and their associated pathways influence the accumulation of β-amyloid peptide (Aβ), a key hallmark in the development and prognosis of research examining the relationship between the use of drugs affecting GABAA receptors and the risk of developing Alzheimer's disease (AD) and dementia. This study aimed to examine the association between GABAA receptor-affecting drugs and the risk of AD and dementia, focusing on benzodiazepines, zolpidem, and anesthetics. This meta-analysis included all English articles on AD, dementia, and GABAA receptor agonist medications published before May 2024. The articles were identified through searches conducted on PubMed and Scopus databases. The extracted data were analyzed using STATA software (version 14.2). Q statistics and the I2 index were used to evaluate heterogeneity, while Egger's test and funnel plot were utilized to detect publication bias. A total of 19 articles (10 case-control and 9 cohort articles) were eligible for the analysis, involving 2,953,980 patients. The use of GABA agonists was found to have a statistically significant relationship with the development of dementia (RR = 1.15, 95% CI: 1.02-1.29, I2 = 87.6%) and AD (RR = 1.21, 95% CI: 1.04-1.40, I2 = 97.6%). In the drug-based subgroup, we observed that zolpidem consumption was associated with an increased incidence of AD and dementia (RR = 1.28, 95% CI: 1.08-1.52, I2 = 24.3%), similar to the effects of benzodiazepines (BZDs; RR = 1.11, 95% CI: 1.04-1.18, I2 = 87.2%). Meta-regression analysis showed that the duration of follow-up, which ranged from 5 to 11 years across the studies, was significantly associated with heterogeneity (P = 0.036). Our findings indicate that the use of zolpidem and BZD is associated with an increased risk of dementia and AD.
Collapse
Affiliation(s)
- Kimia Vakili
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mobina Fathi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rasoul Ebrahimi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sarina Ahmadian
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, 73461, Iran
| | - Maral Moafi
- Cell Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Javad Ebrahimi
- Cell Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Ali Davoodi
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, 7461686688, Iran
| | - Amirreza Eghbaldoost
- Student Research Committee, Golestan University of Medical Sciences, Gorgan, 4361844981, Iran
| | - Kimia Eyvani
- School of Medicine, Guilan University of Medical Sciences, Rasht, 4193833697, Iran
- Harvard Medical School, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Hani Ghayyem
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehraeen Jashni Pour
- Educational and Scientific Centre, Institute of Biology and Medicine of Taras, Shevchenko National University of Kyiv, Kiev, 01033, Ukraine
| | - Mohammadreza Kosari
- MBBS, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sepideh Niknejad
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, 7461686688, Iran
| | - Ali Sanaye Abbasi
- School of Medicine, Guilan University of Medical Sciences, Rasht, 4193833697, Iran
| | - Ameneh Zarebidoki
- Student Research Committee, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Melissa Andrew
- Department of Medicine (Geriatrics), Dalhousie University, Halifax, Canada
| | - Shanna Trenaman
- College of Pharmacy, Faculty of Health, Dalhousie University, Halifax, Canada
| | - Zehra Batool
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Fatemeh Sayehmiri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Kaveh Ebrahimzadeh
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Sinclair D, Canty AJ, Ziebell JM, Woodhouse A, Collins JM, Perry S, Roccati E, Kuruvilla M, Leung J, Atkinson R, Vickers JC, Cook AL, King AE. Experimental laboratory models as tools for understanding modifiable dementia risk. Alzheimers Dement 2024; 20:4260-4289. [PMID: 38687209 PMCID: PMC11180874 DOI: 10.1002/alz.13834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/29/2024] [Accepted: 03/18/2024] [Indexed: 05/02/2024]
Abstract
Experimental laboratory research has an important role to play in dementia prevention. Mechanisms underlying modifiable risk factors for dementia are promising targets for dementia prevention but are difficult to investigate in human populations due to technological constraints and confounds. Therefore, controlled laboratory experiments in models such as transgenic rodents, invertebrates and in vitro cultured cells are increasingly used to investigate dementia risk factors and test strategies which target them to prevent dementia. This review provides an overview of experimental research into 15 established and putative modifiable dementia risk factors: less early-life education, hearing loss, depression, social isolation, life stress, hypertension, obesity, diabetes, physical inactivity, heavy alcohol use, smoking, air pollution, anesthetic exposure, traumatic brain injury, and disordered sleep. It explores how experimental models have been, and can be, used to address questions about modifiable dementia risk and prevention that cannot readily be addressed in human studies. HIGHLIGHTS: Modifiable dementia risk factors are promising targets for dementia prevention. Interrogation of mechanisms underlying dementia risk is difficult in human populations. Studies using diverse experimental models are revealing modifiable dementia risk mechanisms. We review experimental research into 15 modifiable dementia risk factors. Laboratory science can contribute uniquely to dementia prevention.
Collapse
Affiliation(s)
- Duncan Sinclair
- Wicking Dementia Research and Education Centre, University of TasmaniaHobartTasmaniaAustralia
| | - Alison J. Canty
- Wicking Dementia Research and Education Centre, University of TasmaniaHobartTasmaniaAustralia
- Global Brain Health Institute, Trinity CollegeDublinIreland
| | - Jenna M. Ziebell
- Wicking Dementia Research and Education Centre, University of TasmaniaHobartTasmaniaAustralia
| | - Adele Woodhouse
- Wicking Dementia Research and Education Centre, University of TasmaniaHobartTasmaniaAustralia
| | - Jessica M. Collins
- Wicking Dementia Research and Education Centre, University of TasmaniaHobartTasmaniaAustralia
| | - Sharn Perry
- Wicking Dementia Research and Education Centre, University of TasmaniaHobartTasmaniaAustralia
| | - Eddy Roccati
- Wicking Dementia Research and Education Centre, University of TasmaniaHobartTasmaniaAustralia
| | - Maneesh Kuruvilla
- Wicking Dementia Research and Education Centre, University of TasmaniaHobartTasmaniaAustralia
| | - Jacqueline Leung
- Wicking Dementia Research and Education Centre, University of TasmaniaHobartTasmaniaAustralia
| | - Rachel Atkinson
- Wicking Dementia Research and Education Centre, University of TasmaniaHobartTasmaniaAustralia
| | - James C. Vickers
- Wicking Dementia Research and Education Centre, University of TasmaniaHobartTasmaniaAustralia
| | - Anthony L. Cook
- Wicking Dementia Research and Education Centre, University of TasmaniaHobartTasmaniaAustralia
| | - Anna E. King
- Wicking Dementia Research and Education Centre, University of TasmaniaHobartTasmaniaAustralia
| |
Collapse
|
3
|
Canet G, Rocaboy E, Laliberté F, Boscher E, Guisle I, Diego-Diaz S, Fereydouni-Forouzandeh P, Whittington RA, Hébert SS, Pernet V, Planel E. Temperature-induced Artifacts in Tau Phosphorylation: Implications for Reliable Alzheimer's Disease Research. Exp Neurobiol 2023; 32:423-440. [PMID: 38196137 PMCID: PMC10789175 DOI: 10.5607/en23025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/10/2023] [Accepted: 12/19/2023] [Indexed: 01/11/2024] Open
Abstract
In preclinical research on Alzheimer's disease and related tauopathies, tau phosphorylation analysis is routinely employed in both cellular and animal models. However, recognizing the sensitivity of tau phosphorylation to various extrinsic factors, notably temperature, is vital for experimental accuracy. Hypothermia can trigger tau hyperphosphorylation, while hyperthermia leads to its dephosphorylation. Nevertheless, the rapidity of tau phosphorylation in response to unintentional temperature variations remains unknown. In cell cultures, the most significant temperature change occurs when the cells are removed from the incubator before harvesting, and in animal models, during anesthesia prior to euthanasia. In this study, we investigate the kinetics of tau phosphorylation in N2a and SH-SY5Y neuronal cell lines, as well as in mice exposed to anesthesia. We observed changes in tau phosphorylation within the few seconds upon transferring cell cultures from their 37°C incubator to room temperature conditions. However, cells placed directly on ice post-incubation exhibited negligible phosphorylation changes. In vivo, isoflurane anesthesia rapidly resulted in tau hyperphosphorylation within the few seconds needed to lose the pedal withdrawal reflex in mice. These findings emphasize the critical importance of preventing temperature variation in researches focused on tau. To ensure accurate results, we recommend avoiding anesthesia before euthanasia and promptly placing cells on ice after removal from the incubator. By controlling temperature fluctuations, the reliability and validity of tau phosphorylation studies can be significantly enhanced.
Collapse
Affiliation(s)
- Geoffrey Canet
- Department of Psychiatry and Neurosciences, Faculty of Medicine, Laval University, Québec G1V 4G2, Canada
- Neurosciences Axis, Research Center of the CHU de Québec - Laval University, Québec G1V 4G2, Canada
| | - Emma Rocaboy
- Department of Psychiatry and Neurosciences, Faculty of Medicine, Laval University, Québec G1V 4G2, Canada
| | - Francis Laliberté
- Neurosciences Axis, Research Center of the CHU de Québec - Laval University, Québec G1V 4G2, Canada
| | - Emmanuelle Boscher
- Neurosciences Axis, Research Center of the CHU de Québec - Laval University, Québec G1V 4G2, Canada
| | - Isabelle Guisle
- Neurosciences Axis, Research Center of the CHU de Québec - Laval University, Québec G1V 4G2, Canada
| | - Sofia Diego-Diaz
- Department of Psychiatry and Neurosciences, Faculty of Medicine, Laval University, Québec G1V 4G2, Canada
| | | | - Robert A. Whittington
- Department of Anesthesiology and Perioperative Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Sébastien S. Hébert
- Department of Psychiatry and Neurosciences, Faculty of Medicine, Laval University, Québec G1V 4G2, Canada
- Neurosciences Axis, Research Center of the CHU de Québec - Laval University, Québec G1V 4G2, Canada
| | - Vincent Pernet
- Department of Psychiatry and Neurosciences, Faculty of Medicine, Laval University, Québec G1V 4G2, Canada
- Department of Neurology, Bern University Hospital, Bern 3010, Switzerland
| | - Emmanuel Planel
- Department of Psychiatry and Neurosciences, Faculty of Medicine, Laval University, Québec G1V 4G2, Canada
- Neurosciences Axis, Research Center of the CHU de Québec - Laval University, Québec G1V 4G2, Canada
| |
Collapse
|
4
|
Eun JD, Jimenez H, Adrien L, Wolin A, Marambaud P, Davies P, Koppel JL. Anesthesia promotes acute expression of genes related to Alzheimer's disease and latent tau aggregation in transgenic mouse models of tauopathy. Mol Med 2022; 28:83. [PMID: 35858831 PMCID: PMC9297560 DOI: 10.1186/s10020-022-00506-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/05/2022] [Indexed: 11/10/2022] Open
Abstract
Background Exposure to anesthesia in the elderly might increase the risk of dementia. Although the mechanism underlying the association is uncertain, anesthesia has been shown to induce acute tau hyperphosphorylation in preclinical models. We sought to investigate the impact of anesthesia on gene expression and on acute and long-term changes in tau biochemistry in transgenic models of tauopathy in order to better understand how anesthesia influences the pathophysiology of dementia. Methods We exposed mice with over-expressed human mutant tau (P301L and hyperdopaminergic COMTKO/P301L) to two hours of isoflurane and compared anesthetized mice to controls at several time points. We evaluated tau hyperphosphorylation with quantitative high-sensitivity enzyme-linked immunosorbent assay and performed differential expression and functional transcriptome analyses following bulk mRNA-sequencing. Results Anesthesia induced acute hyperphosphorylation of tau at epitopes related to Alzheimer’s disease (AD) in both P301L-based models. Anesthesia was associated with differential expression of genes in the neurodegenerative pathways (e.g., AD-risk genes ApoE and Trem2) and thermogenesis pathway, which is related to both mammalian hibernation and tau phosphorylation. One and three months after anesthesia, hyperphosphorylated tau aggregates were increased in the anesthetized mice. Conclusions Anesthesia may influence the expression of AD-risk genes and induce biochemical changes in tau that promote aggregation even after single exposure. Further preclinical and human studies are necessary to establish the relevance of our transcriptomic and biochemical findings in these preclinical models to the pathogenesis of dementia following anesthesia. Trial registration: Not applicable. Supplementary Information The online version contains supplementary material available at 10.1186/s10020-022-00506-4.
Collapse
Affiliation(s)
- John David Eun
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA.,Litwin-Zucker Research Center for the Study of Alzheimer's Disease, Feinstein Institutes for Medical Research, 350 Community Drive, 4th floor, Manhasset, NY, 11030, USA
| | - Heidy Jimenez
- Litwin-Zucker Research Center for the Study of Alzheimer's Disease, Feinstein Institutes for Medical Research, 350 Community Drive, 4th floor, Manhasset, NY, 11030, USA
| | - Leslie Adrien
- Litwin-Zucker Research Center for the Study of Alzheimer's Disease, Feinstein Institutes for Medical Research, 350 Community Drive, 4th floor, Manhasset, NY, 11030, USA
| | - Adam Wolin
- Litwin-Zucker Research Center for the Study of Alzheimer's Disease, Feinstein Institutes for Medical Research, 350 Community Drive, 4th floor, Manhasset, NY, 11030, USA
| | - Philippe Marambaud
- Litwin-Zucker Research Center for the Study of Alzheimer's Disease, Feinstein Institutes for Medical Research, 350 Community Drive, 4th floor, Manhasset, NY, 11030, USA
| | - Peter Davies
- Litwin-Zucker Research Center for the Study of Alzheimer's Disease, Feinstein Institutes for Medical Research, 350 Community Drive, 4th floor, Manhasset, NY, 11030, USA
| | - Jeremy L Koppel
- Litwin-Zucker Research Center for the Study of Alzheimer's Disease, Feinstein Institutes for Medical Research, 350 Community Drive, 4th floor, Manhasset, NY, 11030, USA. .,Zucker Hillside Hospital, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Great Neck, NY, USA.
| |
Collapse
|
5
|
Cascella M. Anesthetics and translational research. PERIOPERATIVE NEUROSCIENCE 2022:25-40. [DOI: 10.1016/b978-0-323-91003-3.00008-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
6
|
Xu DA, DeYoung TP, Kondoleon NP, Eckenhoff RG, Eckenhoff MF. Anesthetic Effects on the Progression of Parkinson Disease in the Rat DJ-1 Model. Anesth Analg 2021; 133:1140-1151. [PMID: 34673725 DOI: 10.1213/ane.0000000000005665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Parkinson disease is a chronic and progressive movement disorder characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc). The causes of Parkinson disease are not clear but may involve genetic susceptibilities and environmental factors. As in other neurodegenerative disorders, individuals predisposed to Parkinson disease may have an accelerated onset of symptoms following perioperative stress such as anesthesia, surgery, pain, and inflammation. We hypothesized that anesthesia alone accelerates the onset of Parkinson disease-like pathology and symptoms. METHODS A presymptomatic Parkinson rat model (the protein, DJ-1, encoded by the Park7 gene [DJ-1], PARK7 knockout) was exposed to a surgical plane of isoflurane or 20% oxygen balanced with nitrogen for 2 hours on 3 occasions between 6 and 7 months of age. Acute and long-term motor and neuropathological effects were examined from 7 to 12 months of age in male DJ-1 rats, using the ladder rung, rotarod, and novel object recognition assays, as well as the immunohistochemical localization of tyrosine hydroxylase in dopaminergic neurons in the substantia nigra and ionized calcium-binding adaptor protein-1 (Iba-1) microglial activation in the substantia nigra and hippocampus. RESULTS In the acute group, after the third anesthetic exposure at 7 months of age, the isoflurane group had a significant reduction in the density of dopaminergic neurons in the SNpc compared to controls. However, this reduction was not associated with increased microglial activation in the hippocampus or substantia nigra. With the ladder rung motor skills test, there was no effect of anesthetic exposure on the total number of foot faults or the ladder rung pattern in the acute group. The rotarod test also detected no differences before and after the third exposure in controls. For the long-term group, immunohistochemical analyses detected no differences in the density of dopaminergic neurons or microglial cells compared to unexposed DJ-1 rats from 8 to 12 months of age. The ladder rung test in the long-term group showed no differences in the total number of foot faults with time and exposure or between ladder rung patterns. The rotarod test detected no significant effect of exposure with time or between groups at any time point. The novel object recognition task in the long-term group revealed no differences in short- or long-term memory or in the number of rearings as a function of exposure. CONCLUSIONS Multiple isoflurane exposures in this rat model of Parkinson disease transiently enhanced dopaminergic neurodegeneration in the SNpc that resolved over time and had no effects on progression in this Parkinson disease-like phenotype.
Collapse
Affiliation(s)
- Daniel A Xu
- From the Department of Anesthesiology and Critical Care, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | | | | | | | | |
Collapse
|
7
|
Dominguini D, Steckert AV, Michels M, Spies MB, Ritter C, Barichello T, Thompson J, Dal-Pizzol F. The effects of anaesthetics and sedatives on brain inflammation. Neurosci Biobehav Rev 2021; 127:504-513. [PMID: 33992694 DOI: 10.1016/j.neubiorev.2021.05.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 04/27/2021] [Accepted: 05/09/2021] [Indexed: 12/17/2022]
Abstract
Microglia are involved in many dynamic processes in the central nervous system (CNS) including the development of inflammatory processes and neuromodulation. Several sedative, analgesic or anaesthetic drugs, such as opioids, ∝2-adrenergic agonists, ketamine, benzodiazepines and propofol can cause both neuroprotective and harmful effects on the brain. The purpose of this review is to present the main findings on the use of these drugs and the mechanisms involved in microglial activation. Alpha 2-adrenergic agonists, propofol and benzodiazepines have several pro- or anti-inflammatory effects on microglia. Long-term use of benzodiazepines and propofol causes neuroapoptotic effects and α2-adrenergic agonists may attenuate these effects. Conversely, morphine and fentanyl may have proinflammatory effects, causing behavioural changes in patients and changes in cell viability in vitro. Conversely, chronic administration of morphine induces CCL5 chemokine expression in microglial cells that promotes their survival.
Collapse
Affiliation(s)
- Diogo Dominguini
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Amanda V Steckert
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Monique Michels
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Mariana B Spies
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Cristiane Ritter
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Tatiana Barichello
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil; Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Neuroscience Graduate Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA
| | - Jonathan Thompson
- Department of Cardiovascular Sciences, Anaesthesia Critical Care and Pain Management Group, University Hospitals of Leicester NHS Trust and University of Leicester, Leicester, UK
| | - Felipe Dal-Pizzol
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil.
| |
Collapse
|
8
|
Liu PF, Gao T, Li TZ, Yang YT, Xu YX, Xu ZP, Mi WD. Repeated propofol exposure-induced neuronal damage and cognitive impairment in aged rats by activation of NF-κB pathway and NLRP3 inflammasome. Neurosci Lett 2020; 740:135461. [PMID: 33115643 DOI: 10.1016/j.neulet.2020.135461] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 09/25/2020] [Accepted: 10/20/2020] [Indexed: 11/26/2022]
Abstract
BACKGROUND Elderly patients receive propofol at regular intervals for sedation during gastrointestinal endoscopy. However, the link between cognition and intermittent propofol exposure remains unclear. Thus, we used aged rats to investigate the effect of propofol on cognition. METHODS The study included two parts. In the first part, aged (18-20 months old) male Sprague-Dawley rats underwent intermittent intraperitoneal injection of propofol (200 mg/kg) or intralipid, every 9 days or once a day. In the second part, some aged rats received intraperitoneal injection of Bay 11-7082 (1 mg/kg), a specific inhibitor of NF-κB, 30 min before propofol injection. Memory tests were performed to evaluate cognition 24 h after the entire treatment. The hippocampal neuronal damage was assessed by TUNEL staining. The hippocampal levels of p-NF-κB p65, NLRP3, caspase-1 p20, and cleaved caspase-3 were detected by western blotting. The hippocampal and serum levels of IL-1β, IL-6, and TNF-α were evaluated using ELISA. RESULTS There were no differences in the behavioral tests, hippocampal neuronal damage, and neuroinflammation between groups given intralipid and propofol treatment every 9 days. However, repeated propofol treatment once a day promoted activation of NF-κB and the NLRP3 inflammasome, inducing cognitive impairment and neuroinflammation. Interestingly, pretreatment with Bay-11-7082 not only inhibited NF-κB/NLRP3 inflammasome activation, but also attenuated neuronal damage and cognitive dysfunction in aged rats exposed to daily propofol treatment. CONCLUSIONS Intermittent propofol treatment every 9 days may be safe for aged rats. However, propofol treatment once a day could impair the cognition of aged rats, partly through the activation of the NF-κB pathway and NLRP3 inflammasome, which may be a potential targets for the treatment of cognitive impairment in elderly patients.
Collapse
Affiliation(s)
- Peng-Fei Liu
- Anesthesia and Operation Center, the First Medical Center, Chinese PLA General Hospital, 28th Fuxing Road, Haidian District, Beijing 100853, China; Department of Anesthesiology, Beijing Shijitan Hospital, Capital Medical University, 10th Tieyi Road, Haidian District, Beijing, 100038, China
| | - Teng Gao
- Department of Anesthesiology, Beijing Shijitan Hospital, Capital Medical University, 10th Tieyi Road, Haidian District, Beijing, 100038, China
| | - Tian-Zuo Li
- Department of Anesthesiology, Beijing Shijitan Hospital, Capital Medical University, 10th Tieyi Road, Haidian District, Beijing, 100038, China
| | - Yi-Tian Yang
- Anesthesia and Operation Center, the First Medical Center, Chinese PLA General Hospital, 28th Fuxing Road, Haidian District, Beijing 100853, China
| | - Yong-Xing Xu
- Department of Nephrology, Chinese PLA Strategic Support Force Characteristic Medical Center, 9th AnXiangBeiLi Road, Beijing, 100101, China
| | - Zhi-Peng Xu
- Anesthesia and Operation Center, the First Medical Center, Chinese PLA General Hospital, 28th Fuxing Road, Haidian District, Beijing 100853, China.
| | - Wei-Dong Mi
- Anesthesia and Operation Center, the First Medical Center, Chinese PLA General Hospital, 28th Fuxing Road, Haidian District, Beijing 100853, China.
| |
Collapse
|
9
|
Yu Q, Dai CL, Zhang Y, Chen Y, Wu Z, Iqbal K, Liu F, Gong CX. Intranasal Insulin Increases Synaptic Protein Expression and Prevents Anesthesia-Induced Cognitive Deficits Through mTOR-eEF2 Pathway. J Alzheimers Dis 2020; 70:925-936. [PMID: 31306126 DOI: 10.3233/jad-190280] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
General anesthesia increases the risk for cognitive impairment and Alzheimer's disease (AD) in vulnerable individuals such as the elderly. We previously reported that prior administration of insulin through intranasal delivery can prevent the anesthesia-induced cognitive impairment and biochemical changes in the brain. However, little is known about the underlying molecular mechanisms. Here, we report that general anesthesia resulted in downregulation of mammalian/mechanistic target of rapamycin (mTOR) and eukaryotic elongation factor 2 (eEF2) in the brain along with reduction of presynaptic proteins and brain-derived neurotrophic factor and cognitive impairment in aged mice. Prior administration of intranasal insulin prevented these anesthesia-induced changes. These results suggest the involvement of the mTOR-eEF2 signaling pathway in the anesthesia-induced brain changes and cognitive impairment and in the prevention of these changes with insulin. Correlation analyses and the use of eEF2 kinase inhibitor further support our conclusions. These studies shed light on the molecular mechanism by which anesthesia and insulin could act on synaptic proteins and cognitive function.
Collapse
Affiliation(s)
- Qian Yu
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA.,Department of Orthopedics, Qianfoshan Hospital, Shandong University, Jinan, China
| | - Chun-Ling Dai
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Yongli Zhang
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Yanxing Chen
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA.,Department of Neurology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhe Wu
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA.,Department of Cell Biology and Genetics, School of Basic Medical College, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Khalid Iqbal
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Fei Liu
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Cheng-Xin Gong
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| |
Collapse
|
10
|
Li X, Run X, Wei Z, Zeng K, Liang Z, Huang F, Ke D, Wang Q, Wang JZ, Liu R, Zhang B, Wang X. Intranasal Insulin Prevents Anesthesia-induced Cognitive Impairments in Aged Mice. Curr Alzheimer Res 2020; 16:8-18. [PMID: 30381076 DOI: 10.2174/1567205015666181031145045] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 09/16/2018] [Accepted: 10/15/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Preclinical and clinical evidence suggests that elderly individuals are at increased risk of cognitive decline after general anesthesia. General anesthesia is also believed to be a risk factor for Postoperative Cognitive Dysfunction (POCD) and Alzheimer's Disease (AD). Intranasal administration of insulin, which delivers the drug directly into the brain, improves memory and cognition in both animal studies and small clinical trials. However, how insulin treatment improves cognitive function is poorly understood. METHODS Aged mice were pretreated with intranasal insulin or saline before anesthesia. Propofol was added intraperitoneally to the mice from 7th day of insulin/saline treatment, and general anesthesia was induced and maintained for 2 hours/day for 5 consecutive days. Mice were evaluated at 26th day when the mice were continued on insulin or saline administration for another 15 days. RESULTS We found that intranasal insulin treatment prevented anesthesia-induced cognitive impairments, as measured by novel object recognition test and contextual-dependent fear conditioning test. Insulin treatment also increased the expression level of Post-synaptic Density Protein 95 (PSD95), as well as upregulated Microtubule-associated Protein-2 (MAP-2) in the dentate gyrus of the hippocampus. Furthermore, we found that insulin treatment restored insulin signaling disturbed by anesthesia via activating PI3K/PDK1/AKT pathway, and attenuated anesthesia-induced hyperphosphorylation of tau at multiple AD-associated sites. We found the attenuation of tau hyperphosphorylation occurred by increasing the level of GSK3β phosphorylated at Ser9, which leads to inactivation of GSK-3β. CONCLUSION Intranasal insulin administration might be a promising therapy to prevent anesthesiainduced cognitive deficit in elderly individuals.
Collapse
Affiliation(s)
- Xing Li
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaoqin Run
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhen Wei
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Kuan Zeng
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhihou Liang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Huang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Dan Ke
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qun Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jian-Zhi Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS 226001, China
| | - Rong Liu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Xiaochuan Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS 226001, China
| |
Collapse
|
11
|
Eckenhoff RG, Maze M, Xie Z, Culley DJ, Goodlin SJ, Zuo Z, Wei H, Whittington RA, Terrando N, Orser BA, Eckenhoff MF. Perioperative Neurocognitive Disorder: State of the Preclinical Science. Anesthesiology 2020; 132:55-68. [PMID: 31834869 PMCID: PMC6913778 DOI: 10.1097/aln.0000000000002956] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The purpose of this article is to provide a succinct summary of the different experimental approaches that have been used in preclinical postoperative cognitive dysfunction research, and an overview of the knowledge that has accrued. This is not intended to be a comprehensive review, but rather is intended to highlight how the many different approaches have contributed to our understanding of postoperative cognitive dysfunction, and to identify knowledge gaps to be filled by further research. The authors have organized this report by the level of experimental and systems complexity, starting with molecular and cellular approaches, then moving to intact invertebrates and vertebrate animal models. In addition, the authors' goal is to improve the quality and consistency of postoperative cognitive dysfunction and perioperative neurocognitive disorder research by promoting optimal study design, enhanced transparency, and "best practices" in experimental design and reporting to increase the likelihood of corroborating results. Thus, the authors conclude with general guidelines for designing, conducting and reporting perioperative neurocognitive disorder rodent research.
Collapse
Affiliation(s)
- Roderic G Eckenhoff
- From Anesthesiology and Critical Care, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania (R.G.E., H.W., M.F.E.) Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, California (M.M.) Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts (Z.X.) Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, Massachusetts (D.J.C.) Harvard Medical School, Boston, Massachusetts (Z.X., D.J.C.) Department of Medicine, Oregon Health and Science University and Veterans Administration Portland Health Care System, Portland, Oregon (S.J.G.) Department of Anesthesiology, University of Virginia School of Medicine, Charlottesville, Virginia (Z.Z.) Department of Anesthesiology, Columbia University Irving Medical Center, New York, New York (R.A.W.) Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina (N.T.) Department of Anesthesia, University of Toronto, Toronto, Canada (B.A.O.)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Belrose JC, Noppens RR. Anesthesiology and cognitive impairment: a narrative review of current clinical literature. BMC Anesthesiol 2019; 19:241. [PMID: 31881996 PMCID: PMC6933922 DOI: 10.1186/s12871-019-0903-7] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 12/03/2019] [Indexed: 12/14/2022] Open
Abstract
Background The impact of general anesthesia on cognitive impairment is controversial and complex. A large body of evidence supports the association between exposure to surgery under general anesthesia and development of delayed neurocognitive recovery in a subset of patients. Existing literature continues to debate whether these short-term effects on cognition can be attributed to anesthetic agents themselves, or whether other variables are causative of the observed changes in cognition. Furthermore, there is conflicting data on the relationship between anesthesia exposure and the development of long-term neurocognitive disorders, or development of incident dementia in the patient population with normal preoperative cognitive function. Patients with pre-existing cognitive impairment present a unique set of anesthetic considerations, including potential medication interactions, challenges with cooperation during assessment and non-general anesthesia techniques, and the possibility that pre-existing cognitive impairment may impart a susceptibility to further cognitive dysfunction. Main body This review highlights landmark and recent studies in the field, and explores potential mechanisms involved in perioperative cognitive disorders (also known as postoperative cognitive dysfunction, POCD). Specifically, we will review clinical and preclinical evidence which implicates alterations to tau protein, inflammation, calcium dysregulation, and mitochondrial dysfunction. As our population ages and the prevalence of Alzheimer’s disease and other forms of dementia continues to increase, we require a greater understanding of potential modifiable factors that impact perioperative cognitive impairment. Conclusions Future research should aim to further characterize the associated risk factors and determine whether certain anesthetic approaches or other interventions may lower the potential risk which may be conferred by anesthesia and/or surgery in susceptible individuals.
Collapse
Affiliation(s)
- Jillian C Belrose
- Department of Anesthesia & Perioperative Medicine, Western University, London Health Sciences Center, 339 Windermere Rd, London, ON, N6A 5A5, Canada
| | - Ruediger R Noppens
- Department of Anesthesia & Perioperative Medicine, Western University, London Health Sciences Center, 339 Windermere Rd, London, ON, N6A 5A5, Canada.
| |
Collapse
|
13
|
Joseph DJ, Liu C, Peng J, Liang G, Wei H. Isoflurane mediated neuropathological and cognitive impairments in the triple transgenic Alzheimer's mouse model are associated with hippocampal synaptic deficits in an age-dependent manner. PLoS One 2019; 14:e0223509. [PMID: 31600350 PMCID: PMC6786564 DOI: 10.1371/journal.pone.0223509] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 09/22/2019] [Indexed: 12/17/2022] Open
Abstract
Many in vivo studies suggest that inhalational anesthetics can accelerate or prevent the progression of neuropathology and cognitive impairments in Alzheimer Disease (AD), but the synaptic mechanisms mediating these ambiguous effects are unclear. Here, we show that repeated exposures of neonatal and old triple transgenic AD (3xTg) and non-transgenic (NonTg) mice to isoflurane (Iso) distinctly increased neurodegeneration as measured by S100β levels, intracellular Aβ, Tau oligomerization, and apoptotic markers. Spatial cognition measured by reference and working memory testing in the Morris Water Maze (MWM) were altered in young NonTg and 3xTg. Field recordings in the cornu ammonis 1 (CA1) hippocampus showed that neonatal control 3xTg mice exhibited hypo-excitable synaptic transmission, reduced paired-pulse facilitation (PPF), and normal long-term potentiation (LTP) compared to NonTg controls. By contrast, the old control 3xTg mice exhibited hyper-excitable synaptic transmission, enhanced PPF, and unstable LTP compared to NonTg controls. Repeated Iso exposures reduced synaptic transmission and PPF in neonatal NonTg and old 3xTg mice. LTP was normalized in old 3xTg mice, but reduced in neonates. By contrast, LTP was reduced in old but not neonatal NonTg mice. Our results indicate that Iso-mediated neuropathologic and cognitive defects in AD mice are associated with synaptic pathologies in an age-dependent manner. Based on these findings, the extent of this association with age and, possibly, treatment paradigms warrant further study.
Collapse
Affiliation(s)
- Donald J. Joseph
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Chunxia Liu
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
- Department of Anesthesiology, China-Japan Friendship Hospital, Beijing, China
| | - Jun Peng
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
- Department of Anesthesiology, sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ge Liang
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Huafeng Wei
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
- * E-mail:
| |
Collapse
|
14
|
Wu L, Zhao H, Weng H, Ma D. Lasting effects of general anesthetics on the brain in the young and elderly: "mixed picture" of neurotoxicity, neuroprotection and cognitive impairment. J Anesth 2019; 33:321-335. [PMID: 30859366 PMCID: PMC6443620 DOI: 10.1007/s00540-019-02623-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 02/04/2019] [Indexed: 12/22/2022]
Abstract
General anesthetics are commonly used in major surgery. To achieve the depth of anesthesia for surgery, patients are being subjected to a variety of general anesthetics, alone or in combination. It has been long held an illusory concept that the general anesthesia is entirely reversible and that the central nervous system is returned to its pristine state once the anesthetic agent is eliminated from the active site. However, studies indicate that perturbation of the normal functioning of these targets may result in long-lasting desirable or undesirable effects. This review focuses on the impact of general anesthetic exposure to the brain and summarizes the molecular and cellular mechanisms by which general anesthetics may induce long-lasting undesirable effects when exposed at the developing stage of the brain. The vulnerability of aging brain to general anesthetics, specifically in the context of cognitive disorders and Alzheimer’s disease pathogeneses are also discussed. Moreover, we will review emerging evidence regarding the neuroprotective property of xenon and anesthetic adjuvant dexmedetomidine in the immature and mature brains. In conclusion, “mixed picture” effects of general anesthetics should be well acknowledged and should be implemented into daily clinical practice for better patient outcome.
Collapse
Affiliation(s)
- Lingzhi Wu
- Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, UK
| | - Hailin Zhao
- Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, UK
| | - Hao Weng
- Department of Anesthesiology, Shanghai Fengxian District Central Hospital, Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus, Fengxian District, Shanghai, China
| | - Daqing Ma
- Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, UK.
| |
Collapse
|
15
|
Mardini F, Tang JX, Li JC, Arroliga MJ, Eckenhoff RG, Eckenhoff MF. Effects of propofol and surgery on neuropathology and cognition in the 3xTgAD Alzheimer transgenic mouse model. Br J Anaesth 2019; 119:472-480. [PMID: 28969319 DOI: 10.1093/bja/aew397] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2016] [Indexed: 11/12/2022] Open
Abstract
Background Previous work suggests that anaesthesia and surgery amplify the pathology and cognitive impairment of animals made vulnerable via age or specific transgenes. We hypothesized that surgery under propofol anaesthesia, a widely used i.v. general anaesthetic, has minimal delayed cognitive and neuroinflammatory sequelae in a vulnerable mouse transgenic model. Methods We conducted caecal ligation and excision surgery in cognitively presymptomatic (11-month-old) 3xTgAD mice under i.p. propofol anaesthesia. Age-matched 3xTgAD control mice received vehicle or propofol without surgery. Morris water maze testing was conducted 3 and 15 weeks later. Brains were examined with quantitative immunohistochemistry for amyloid β plaques, tau pathology, and microglial activation. Acute changes in neuroinflammatory cytokines were assessed in separate cohorts at 6 h. Results We detected no significant differences between groups in escape latencies at either 3 or 15 weeks, but detected a significant effect of surgery in the probe test at both 3 and 15 weeks. Spatial working memory was unaffected at 16 weeks in any group. No effects of either propofol alone or propofol with surgery were detected on plaque formation, tau aggregates, or neuroinflammation. Acute biochemical assays detected no effects in brain interleukin-10 or interleukin-6 concentrations. Conclusions Surgery in a vulnerable transgenic mouse under propofol anaesthesia was associated with minimal to no changes in short- and long-term behaviour and no changes in neuropathology. This suggests that propofol anaesthesia is associated with better cognitive outcomes in the aged, vulnerable brain compared with inhalation anaesthesia.
Collapse
Affiliation(s)
- F Mardini
- Department of Anesthesiology and Critical Care, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - J X Tang
- Department of Anesthesiology and Critical Care, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - J C Li
- Department of Anesthesiology and Critical Care, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - M J Arroliga
- Department of Anesthesiology and Critical Care, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - R G Eckenhoff
- Department of Anesthesiology and Critical Care, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - M F Eckenhoff
- Department of Anesthesiology and Critical Care, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
16
|
Motzko-Soares ACP, Vizin RCL, Martins TMS, Hungaro ARO, Sato JR, Almeida MC, Carrettiero DC. Thermoregulatory profile of neurodegeneration-induced dementia of the Alzheimer's type using intracerebroventricular streptozotocin in rats. Acta Physiol (Oxf) 2018; 224:e13084. [PMID: 29719119 DOI: 10.1111/apha.13084] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/21/2018] [Accepted: 04/24/2018] [Indexed: 01/18/2023]
Abstract
AIM Here, we have extensively investigated the relationship between thermoregulation and neurodegeneration-induced dementia of the Alzheimer's type using intracerebroventricular injections of streptozotocin (icv-STZ). METHODS Male Wistar rats were treated with bilateral injections of icv-STZ, and their thermoregulatory profiles (core body temperature, tail-skin temperature, cold and heat defence responses and thermal place preference) were evaluated. Spatial memory, locomotor activity, social interaction, brain ventricular volume, and Aβ1-42 and tau protein levels in the brain were analysed to characterize the effects of STZ on the brain and behaviour. RESULTS In addition to deficits in spatial memory, reduced social interaction and an increased brain ventricular volume, icv-STZ rats presented a pattern of hyperthermia, as demonstrated by an increased core body temperature. Hyperthermia was due to the activation of both autonomic heat conservation and behavioural cold avoidance, as STZ-treated rats presented tail-cutaneous vasoconstriction and an altered thermal preference. They also showed a distinct cold defence response when exposed to cold. CONCLUSION Our data bring evidence that icv-STZ in rats causes hyperthermia, with activation of both autonomic and behavioural thermoregulatory defence responses when challenged at colder temperatures, leading us to hypothesize that they are more efficient in preventing hypothermia. These data are relevant for a better understanding of neurodegenerative disease mechanisms.
Collapse
Affiliation(s)
- A. C. P. Motzko-Soares
- Graduate Program in Neuroscience and Cognition; Universidade Federal do ABC (UFABC); São Bernardo do Campo SP Brazil
| | - R. C. L. Vizin
- Graduate Program in Neuroscience and Cognition; Universidade Federal do ABC (UFABC); São Bernardo do Campo SP Brazil
| | - T. M. S. Martins
- Undergraduate Program in Science and Technology; Universidade Federal do ABC (UFABC); São Bernardo do Campo SP Brazil
| | - A. R. O. Hungaro
- Undergraduate Program in Science and Technology; Universidade Federal do ABC (UFABC); São Bernardo do Campo SP Brazil
| | - J. R. Sato
- Graduate Program in Neuroscience and Cognition; Universidade Federal do ABC (UFABC); São Bernardo do Campo SP Brazil
- Center for Mathematics Computation and Cognition (CMCC); Universidade Federal do ABC (UFABC); São Bernardo do Campo SP Brazil
| | - M. C. Almeida
- Graduate Program in Neuroscience and Cognition; Universidade Federal do ABC (UFABC); São Bernardo do Campo SP Brazil
- Center for Natural and Human Sciences (CCNH); Universidade Federal do ABC (UFABC); São Bernardo do Campo SP Brazil
| | - D. C. Carrettiero
- Graduate Program in Neuroscience and Cognition; Universidade Federal do ABC (UFABC); São Bernardo do Campo SP Brazil
- Center for Natural and Human Sciences (CCNH); Universidade Federal do ABC (UFABC); São Bernardo do Campo SP Brazil
| |
Collapse
|
17
|
Manatpon P, Kofke WA. Toxicity of inhaled agents after prolonged administration. J Clin Monit Comput 2018; 32:651-666. [PMID: 29098494 DOI: 10.1007/s10877-017-0077-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 10/28/2017] [Indexed: 11/24/2022]
Abstract
Inhaled anesthetics have been utilized mostly for general anesthesia in the operating room and oftentimes for sedation and for treatment of refractory status epilepticus and status asthmaticus in the intensive care unit. These contexts in the ICU setting are related to potential for prolonged administration wherein potential organ toxicity is a concern. Over the last decade, several clinical and animal studies of neurotoxicity attributable to inhaled anesthetics have been emerging, particularly in extremes of age. This review overviews potential for and potential mechanisms of neurotoxicity and systemic toxicity of prolonged inhaled anesthesia and clinical scenarios where inhaled anesthesia has been used in order to assess safety of possible prolonged use for sedation. High dose inhaled agents are associated with postoperative cognitive dysfunction (POCD) and other situations. However, thus far no strong indication of problematic neuro or organ toxicity has been demonstrated after prolonged use of low dose volatile anesthesia.
Collapse
Affiliation(s)
- Panumart Manatpon
- Department of Anesthesiology and Critical Care, Perelman School of Medicine at the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA.
| | - W Andrew Kofke
- Department of Anesthesiology and Critical Care, Perelman School of Medicine at the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA
| |
Collapse
|
18
|
Absence of Neuropathology With Prolonged Isoflurane Sedation in Healthy Adult Rats. J Neurosurg Anesthesiol 2018; 29:439-447. [PMID: 27653221 DOI: 10.1097/ana.0000000000000365] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The use of isoflurane sedation for prolonged periods in the critical care environment is increasing. However, isoflurane-mediated neurotoxicity has been widely reported. The goal of the present study was to determine whether long-term exposure to low-dose isoflurane in mechanically ventilated rodents is associated with evidence of neurodegeneration or neuroinflammation. METHODS Adult female Sprague-Dawley rats were used in this study. Experimental animals (n=11) were induced with 1.5% isoflurane, intubated, and given a neuromuscular blockade with α-cobratoxin. EEG electrodes were surgically implanted, subcutaneous precordial EKG Ag wire electrodes, and bladder, femoral artery, and femoral vein cannulas permanently placed. After these procedures, the isoflurane concentration was reduced to 0.5% and, in conjunction with the neuromuscular blockade, continued for 7 days. Arterial blood gases and chemistry were measured at 3 time points and core body temperature servoregulated and maintenance IV fluids were given during the 7 days. Experimental animals and untreated controls (n=9) were euthanized on day 7. RESULTS Immunohistochemical and cytochemical assays did not detect evidence of microgliosis, astrocytosis, neuronal apoptosis or necrosis, amyloidosis, or phosphorylated-tau accumulation. Blood glucose levels were significantly reduced on days 3/4 and 6/7 and partial pressure of oxygen was significantly reduced, but still within the normal range, on day 6/7. All other blood measurements were unchanged. CONCLUSIONS No neuropathologic changes consistent with neurotoxicity were detected in the brain after 1 week of continuous exposure to 0.5% isoflurane in healthy rats. These data suggest that even long exposures to low concentrations of isoflurane have no overt consequences on neuropathology.
Collapse
|
19
|
Woodhouse A, Fernandez-Martos CM, Atkinson RAK, Hanson KA, Collins JM, O'Mara AR, Terblanche N, Skinner MW, Vickers JC, King AE. Repeat propofol anesthesia does not exacerbate plaque deposition or synapse loss in APP/PS1 Alzheimer's disease mice. BMC Anesthesiol 2018; 18:47. [PMID: 29699479 PMCID: PMC5921792 DOI: 10.1186/s12871-018-0509-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 04/13/2018] [Indexed: 12/14/2022] Open
Abstract
Background There is increasing interest in whether anesthetic agents affect the risk or progression of Alzheimer’s disease (AD). To mitigate many of the methodological issues encountered in human retrospective cohort studies we have used a transgenic model of AD to investigate the effect of propofol on AD pathology. Methods Six month-old amyloid precursor protein/presenilin 1 (APP/PS1) transgenic AD mice and control mice were exposed to 3 doses of propofol (200 mg/kg) or vehicle, delivered at monthly intervals. Results There was no difference in the extent of β-amyloid (Aβ) immunolabeled plaque deposition in APP/PS1 mice in vehicle versus propofol treatment groups. We also detected no difference in plaque-associated synapse loss in APP/PS1 mice following repeat propofol exposure relative to vehicle. Western blotting indicated that there was no difference in post-synaptic density protein 95, synaptophysin or glutamic acid decarboxylase 65/67 expression in control or APP/PS1 mice subjected to repeat propofol treatment relative to vehicle. Conclusions These data suggest that repeat propofol anesthesia may not exacerbate plaque deposition or associated synapse loss in AD. Interestingly, this data also provides some of the first evidence suggesting that repeat propofol exposure in adult wild-type mice does not result in robust long-term alterations in the levels of key excitatory and inhibitory synaptic markers. Electronic supplementary material The online version of this article (10.1186/s12871-018-0509-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Adele Woodhouse
- Wicking Dementia Research and Education Centre , University of Tasmania, Hobart, Australia.
| | | | | | - Kelsey Anne Hanson
- Wicking Dementia Research and Education Centre , University of Tasmania, Hobart, Australia
| | - Jessica Marie Collins
- Wicking Dementia Research and Education Centre , University of Tasmania, Hobart, Australia
| | - Aidan Ryan O'Mara
- Wicking Dementia Research and Education Centre , University of Tasmania, Hobart, Australia
| | - Nico Terblanche
- Tasmanian Health Service, Royal Hobart Hospital, Hobart, Australia.,Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia.,School of Medicine, University of Tasmania, Hobart, Australia
| | - Marcus Welby Skinner
- Department of Health and Human Services Tasmania, Royal Hobart Hospital, Hobart, Australia.,School of Medicine, University of Tasmania, Hobart, Australia
| | - James Clement Vickers
- Wicking Dementia Research and Education Centre , University of Tasmania, Hobart, Australia
| | - Anna Elizabeth King
- Wicking Dementia Research and Education Centre , University of Tasmania, Hobart, Australia
| |
Collapse
|
20
|
Anestesia e doença de Alzheimer – Percepções atuais. Braz J Anesthesiol 2018; 68:174-182. [DOI: 10.1016/j.bjan.2017.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 04/17/2017] [Accepted: 09/27/2017] [Indexed: 11/23/2022] Open
|
21
|
Marques AFVDSF, Lapa TASC. Anesthesia and Alzheimer disease – Current perceptions. BRAZILIAN JOURNAL OF ANESTHESIOLOGY (ENGLISH EDITION) 2018. [PMID: 29137871 PMCID: PMC9391716 DOI: 10.1016/j.bjane.2017.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Background and objectives It has been speculated that the use of anesthetic agents may be a risk factor for the development of Alzheimer disease. The objective of this review is to describe and discuss pre-clinical and clinical data related to anesthesia and this disease. Content Alzheimer disease affects about 5% of the population over 65 years old, with age being the main risk factor and being associated with a high morbidity. Current evidence questions a possible association between anesthesia, surgery, and long-term cognitive effects, including Alzheimer disease. Although data from some animal studies suggest an association between anesthesia and neurotoxicity, this link remains inconclusive in humans. We performed a review of the literature in which we selected scientific articles in the PubMed database, published between 2005 and 2016 (one article from 1998 due to its historical relevance), in English, which address the possible relationship between anesthesia and Alzheimer disease. 49 articles were selected. Conclusion The possible relationship between anesthetic agents, cognitive dysfunction, and Alzheimer disease remains to be clarified. Prospective cohort studies or randomized clinical trials for a better understanding of this association will be required.
Collapse
|
22
|
Almeida MC, Carrettiero DC. Hypothermia as a risk factor for Alzheimer disease. HANDBOOK OF CLINICAL NEUROLOGY 2018; 157:727-735. [PMID: 30459036 DOI: 10.1016/b978-0-444-64074-1.00044-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Alzheimer disease (AD), which is associated with chronic and progressive neurodegeneration, is the most prevalent cause of dementia linked to aging. Among the risk factors for AD, age stands as the greatest one, with the vast majority of people with AD being 65 years of age or older. Nevertheless, the pathophysiologic mechanisms underlying the link between aging and the development of AD, although not completely understood, might reveal important aspects for the understanding of this pathology. Thus, there is significant evidence that the impaired thermal homeostasis associated with normal aging leads to a variety of metabolic changes that could be associated with AD development. In this chapter, we assess the clinical and biochemical evidence implicating hypothermia as a risk factor for the development of AD and the impact of hypothermia on the two pathologic hallmarks of AD: accumulation of senile plaques of amyloid-beta and neurofibrillary tangles of aberrant hyperphosphorylated tau protein.
Collapse
Affiliation(s)
- Maria Camila Almeida
- Natural and Human Sciences Center, Federal University of ABC, São Bernardo do Campo, SP, Brazil.
| | | |
Collapse
|
23
|
Pikwer A, Castegren M, Namdar S, Blennow K, Zetterberg H, Mattsson N. Effects of surgery and propofol-remifentanil total intravenous anesthesia on cerebrospinal fluid biomarkers of inflammation, Alzheimer's disease, and neuronal injury in humans: a cohort study. J Neuroinflammation 2017; 14:193. [PMID: 28962579 PMCID: PMC5622541 DOI: 10.1186/s12974-017-0950-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 08/27/2017] [Indexed: 11/10/2022] Open
Abstract
Background Surgery and anesthesia have been linked to postoperative cognitive disturbance and increased risk of Alzheimer’s disease. It is not clear by which mechanisms this increased risk for cognitive disease is mediated. Further, amyloid β production has been suggested to depend on the sleep-wake cycle and neuronal activity. The aim of the present study was to examine if cerebrospinal fluid (CSF) concentrations of a number of biomarkers for Alzheimer’s disease-related processes, including amyloid β, neuronal injury, and inflammation, changed over time during intravenous anesthesia in surgical patients. Methods We included patients scheduled for hysterectomy via laparotomy during general anesthesia with intravenous propofol and remifentanil. CSF samples were obtained before, during, and after surgery (5 h after induction) and tested for 27 biomarkers. Changes over time were tested with linear mixed effects models. Results A total of 22 patients, all females, were included. The mean age was 50 years (± 9 SD). The mean duration of the anesthesia was 145 min (± 40 SD). Interleukin (IL)-6, IL-8, monocyte chemoattractant protein 1, and vascular endothelial growth factor A increased over time. IL-15 and IL-7 decreased slightly over time. Macrophage inflammatory protein 1β and placental growth factor also changed significantly. There were no significant effects on amyloid β (Aβ) or tau biomarkers. Conclusions Surgery and general anesthesia with intravenous propofol and remifentanil induce, during and in the short term after the procedure, a neuroinflammatory response which is dominated by monocyte attractants, without biomarker signs of the effects on Alzheimer’s disease pathology or neuronal injury. Electronic supplementary material The online version of this article (10.1186/s12974-017-0950-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andreas Pikwer
- Centre for Clinical Research Sörmland, Uppsala University, Uppsala, Sweden. .,Department of Anesthesia, Mälarsjukhuset, Eskilstuna, Sweden.
| | - Markus Castegren
- Perioperative medicine and intensive care (PMI), Karolinska University Hospital and Clintec, Karolinska Institute, Stockholm, Sweden
| | - Sijal Namdar
- Centre for Clinical Research Sörmland, Uppsala University, Uppsala, Sweden.,Department of Anesthesia, Mälarsjukhuset, Eskilstuna, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Möndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Möndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK
| | - Niklas Mattsson
- Clinical Memory Research Unit, Faculty of Medicine, Lund University, Lund, Sweden.,Department of Neurology, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
24
|
Vutskits L, Xie Z. Lasting impact of general anaesthesia on the brain: mechanisms and relevance. Nat Rev Neurosci 2017; 17:705-717. [PMID: 27752068 DOI: 10.1038/nrn.2016.128] [Citation(s) in RCA: 360] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
General anaesthesia is usually considered to safely induce a reversible brain state allowing the performance of surgery under optimal conditions. An increasing number of clinical and experimental observations, however, suggest that anaesthetic drugs, especially when they are administered at the extremes of age, can trigger long-term morphological and functional alterations in the brain. Here, we review available mechanistic data linking general-anaesthesia exposure to impaired cognitive performance in both young and mature nervous systems. We also provide a critical appraisal of the translational value of animal models and highlight the important challenges that need to be addressed to strengthen the link between laboratory work and clinical investigations in the field of anaesthesia-neurotoxicity research.
Collapse
Affiliation(s)
- Laszlo Vutskits
- Department of Anesthesiology, Pharmacology and Intensive Care, University Hospitals of Geneva, 4 rue Gabrielle-Perret-Gentil, 1205 Geneva 4, Switzerland.,Department of Basic Neuroscience, University of Geneva Medical School, 1 rue Michel Servet, 1211 Geneva 4, Switzerland
| | - Zhongcong Xie
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, 149 13th Street, Room 4310, Charlestown, Massachusetts 02129, USA
| |
Collapse
|
25
|
Chen Y, Dai CL, Wu Z, Iqbal K, Liu F, Zhang B, Gong CX. Intranasal Insulin Prevents Anesthesia-Induced Cognitive Impairment and Chronic Neurobehavioral Changes. Front Aging Neurosci 2017; 9:136. [PMID: 28539885 PMCID: PMC5424543 DOI: 10.3389/fnagi.2017.00136] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 04/24/2017] [Indexed: 11/26/2022] Open
Abstract
General anesthesia increases the risk for cognitive impairment post operation, especially in the elderly and vulnerable individuals. Recent animal studies on the impact of anesthesia on postoperative cognitive impairment have provided some valuable insights, but much remains to be understood. Here, by using mice of various ages and conditions, we found that anesthesia with propofol and sevoflurane caused significant deficits in spatial learning and memory, as tested using Morris Water Maze (MWM) 2–6 days after anesthesia exposure, in aged (17–18 months old) wild-type (WT) mice and in adult (7–8 months old) 3xTg-AD mice (a triple transgenic mouse model of Alzheimer’s disease (AD)), but not in adult WT mice. Anesthesia resulted in long-term neurobehavioral changes in the fear conditioning task carried out 65 days after exposure to anesthesia in 3xTg-AD mice. Importantly, daily intranasal administration of insulin (1.75 U/mouse/day) for only 3 days prior to anesthesia completely prevented the anesthesia-induced deficits in spatial learning and memory and the long-term neurobehavioral changes tested 65 days after exposure to anesthesia in 3xTg-AD mice. These results indicate that aging and AD-like brain pathology increase the vulnerability to cognitive impairment after anesthesia and that intranasal treatment with insulin can prevent anesthesia-induced cognitive impairment.
Collapse
Affiliation(s)
- Yanxing Chen
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhou, China.,Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental DisabilitiesNew York, NY, USA
| | - Chun-Ling Dai
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental DisabilitiesNew York, NY, USA
| | - Zhe Wu
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental DisabilitiesNew York, NY, USA.,Department of Cell Biology and Genetics, School of Basic Medicine, Hubei University of Science and TechnologyXianning, China
| | - Khalid Iqbal
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental DisabilitiesNew York, NY, USA
| | - Fei Liu
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental DisabilitiesNew York, NY, USA
| | - Baorong Zhang
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhou, China
| | - Cheng-Xin Gong
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental DisabilitiesNew York, NY, USA
| |
Collapse
|
26
|
Long-term dantrolene treatment reduced intraneuronal amyloid in aged Alzheimer triple transgenic mice. Alzheimer Dis Assoc Disord 2016; 29:184-191. [PMID: 25650693 DOI: 10.1097/wad.0000000000000075] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In this study, we investigated the long-term treatment of dantrolene on amyloid and tau neuropathology, brain volume, and cognitive function in aged triple transgenic Alzheimer (3xTg-AD) mice. Fifteen-month old 3xTg-AD mice and wild-type controls were treated with oral dantrolene (5 mg/kg) or vehicle control twice a week for 6 months. Learning and memory were examined using the Morris Water Maze at 21 and 22 months of age. After the behavioral testing, hippocampal and cortical brain volumes were calculated with magnetic resonance imaging and motor function was evaluated using the rotorod. The amyloid burden and tau neurofibrillary tangles in the hippocampus were determined using immunohistochemistry. We found that dantrolene significantly decreased the intraneuronal amyloid accumulation by as much as 76% compared with its corresponding vehicle control, together with a trend to reduce phosphorylated tau in the hippocampus. No significant differences could be detected in hippocampal or cortical brain volume, motor function or cognition among all experimental groups, indicating that the mice were still presymptomatic for Alzheimer disease. Thus, presymptomatic and long-term dantrolene treatment significantly decreased the intraneuronal amyloid burden in aged 3xTg-AD mice before significant changes in brain volume, or cognition.
Collapse
|
27
|
Liebert AD, Chow RT, Bicknell BT, Varigos E. Neuroprotective Effects Against POCD by Photobiomodulation: Evidence from Assembly/Disassembly of the Cytoskeleton. J Exp Neurosci 2016; 10:1-19. [PMID: 26848276 PMCID: PMC4737522 DOI: 10.4137/jen.s33444] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 12/09/2015] [Accepted: 12/15/2015] [Indexed: 02/07/2023] Open
Abstract
Postoperative cognitive dysfunction (POCD) is a decline in memory following anaesthesia and surgery in elderly patients. While often reversible, it consumes medical resources, compromises patient well-being, and possibly accelerates progression into Alzheimer's disease. Anesthetics have been implicated in POCD, as has neuroinflammation, as indicated by cytokine inflammatory markers. Photobiomodulation (PBM) is an effective treatment for a number of conditions, including inflammation. PBM also has a direct effect on microtubule disassembly in neurons with the formation of small, reversible varicosities, which cause neural blockade and alleviation of pain symptoms. This mimics endogenously formed varicosities that are neuroprotective against damage, toxins, and the formation of larger, destructive varicosities and focal swellings. It is proposed that PBM may be effective as a preconditioning treatment against POCD; similar to the PBM treatment, protective and abscopal effects that have been demonstrated in experimental models of macular degeneration, neurological, and cardiac conditions.
Collapse
Affiliation(s)
| | - Roberta T. Chow
- Brain and Mind Institute, University of Sydney, Sydney, NSW, Australia
| | | | | |
Collapse
|
28
|
Effects of isoflurane-induced anaesthesia on cognitive performance in a mouse model of Alzheimer's disease: A randomised trial in transgenic APP23 mice. Eur J Anaesthesiol 2015; 30:605-11. [PMID: 23274617 DOI: 10.1097/eja.0b013e32835b824b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Results from in-vitro experiments suggest that inhalational anaesthetics may have a detrimental effect on the course and incidence of Alzheimer's disease. However, case-control studies in humans show no negative impact of anaesthetics on the course of Alzheimer's disease. OBJECTIVE To test the hypothesis that 2 h of general anaesthesia with 1 MAC isoflurane changes learning abilities of young and old transgenic Alzheimer's mice (APP23 mice). DESIGN Randomised controlled double-blinded study in mice. SETTING Animal laboratory and operating theatre in the Klinik für Anästhesiologie, Technische Universität München, Germany ANIMALS Ninety-six male mice divided in four groups: young (4 months) APP23 mice and corresponding wild-type mice; old (14 to 16 months) APP23 and corresponding wild-type mice. INTERVENTION Mice were either anaesthetised for 2 h with 1 MAC isoflurane or sham-anaesthetised ('isoflurane' or 'control'). MAIN OUTCOME MEASURES Learning and locomotor activity during the following 8 days using the modified Hole Board Test for mice. Results are median (interquartile range) and median difference (95% confidence interval). RESULTS Young mice, [1.0 (1.3)] as assessed by the number of omission errors, learned better than old [1.8 (1.8); age: P = 0.004, median difference 0.5 (0.2 to 1.0)]. Anaesthetised animals [0.8 (1.5)] learned better than controls [1.6 (1.7); anaesthesia: P = 0.010, median difference 0.5 (0.1 to 0.9)]. This was accompanied by higher locomotor activity in young compared to old mice as assessed by number of line crossings per minute [10 (5) min(-1) vs. 7 (3) min(-1), P < 0.001, median difference 3 (2 to 4) min(-1)]. Anaesthesia and genotype Alzheimer's disease had no impact on locomotor activity. CONCLUSION Isoflurane may have protective, rather than detrimental, effects on cognition in Alzheimer's disease.
Collapse
|
29
|
Carrettiero DC, Santiago FE, Motzko-Soares ACP, Almeida MC. Temperature and toxic Tau in Alzheimer's disease: new insights. Temperature (Austin) 2015; 2:491-8. [PMID: 27227069 PMCID: PMC4843920 DOI: 10.1080/23328940.2015.1096438] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 09/15/2015] [Accepted: 09/15/2015] [Indexed: 12/31/2022] Open
Abstract
Alzheimer's disease (AD), the most common dementia in the elderly, is characterized by cognitive impairment and severe autonomic symptoms such as disturbance in core body temperature (Tc), which may be predictors or early events in AD onset. Inclusions of phosphorylated Tau (p-Tau) are a hallmark of AD and other neurodegenerative disorders called “Tauopathies.” Animal and human studies show that anesthesia augments p-Tau levels through reduction of Tc, with implications for AD. Additionally, hypothermia impairs memory and cognitive function. The molecular networks related to Tc that are associated with AD remain poorly characterized. Under physiological conditions, Tau binds microtubules, promoting their assembly and stability. The dynamically regulated Tau-microtubule interaction plays an important role in structural remodeling of the cytoskeleton, having important functions in neuronal plasticity and memory in the hippocampus. Hypothermia-induced increases in p-Tau levels are significant, with an 80% increase for each degree Celsius below normothermic conditions. Although the effects of temperature on Tau phosphorylation are evident, its effects on p-Tau degradation remain poorly understoodWe review information concerning the mechanisms of Tau regulation of neuron plasticity via its effects on microtubule dynamics, with focus on pathways regulating the abundance of phosphorylated Tau species. We highlight the effects of temperature on molecular mechanisms influencing the development of Tau-related diseases. Specifically, we argue that cold might preferentially affects central nervous system structures that are highly reliant upon plasticity, such as the hippocampus, and that the effect of cold on Tau phosphorylation may constitute a pathology-initiating trigger leading to neurodegeneration.
Collapse
Affiliation(s)
- Daniel Carneiro Carrettiero
- Graduate Program in Neuroscience and Cognition; Universidade Federal do ABC; São Bernardo do Campo, Brasil; Center for Natural Sciences and Humanities; Universidade Federal do ABC; São Bernardo do Campo, Brasil
| | - Fernando Enrique Santiago
- Graduate Program in Neuroscience and Cognition; Universidade Federal do ABC; São Bernardo do Campo , Brasil
| | | | - Maria Camila Almeida
- Graduate Program in Neuroscience and Cognition; Universidade Federal do ABC; São Bernardo do Campo, Brasil; Center for Natural Sciences and Humanities; Universidade Federal do ABC; São Bernardo do Campo, Brasil
| |
Collapse
|
30
|
Abstract
Exposure to anesthesia and surgery has been hypothesized to increase the risk of developing Alzheimer's disease (AD). While the exact pathogenesis of AD remains unknown, it potentially involves specific proteins (eg, amyloid beta and tau) and neuroinflammation. A growing body of preclinical evidence also suggests that anesthetic agents interact with the components that mediate AD neuropathology at multiple levels. However, it remains unclear whether anesthesia and surgery are associated with an increased risk of AD in humans. To date, there have not been randomized controlled trials to provide evidence for such a causal relationship. Besides, observational studies showed inconsistent results. A meta-analysis of 15 case-control studies revealed no statistically significant association between general anesthesia and the development of AD (pooled odds ratio [OR] =1.05; P=0.43). However, a few retrospective cohort studies have demonstrated that exposure to anesthesia and surgery is associated with an increased risk of AD. Thus, well-designed studies with longer follow-up periods are still needed to define the role of anesthesia in relation to the development of AD.
Collapse
Affiliation(s)
- Chih-Wen Yang
- Department of Neurology, National Yang-Ming University Hospital, Ilan, Taipei, Taiwan, Republic of China ; National Yang-Ming University School of Medicine, Taipei, Taiwan, Republic of China
| | - Jong-Ling Fuh
- National Yang-Ming University School of Medicine, Taipei, Taiwan, Republic of China ; Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan, Republic of China
| |
Collapse
|
31
|
Lim MM, Gerstner JR, Holtzman DM. The sleep-wake cycle and Alzheimer's disease: what do we know? Neurodegener Dis Manag 2015; 4:351-62. [PMID: 25405649 DOI: 10.2217/nmt.14.33] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Sleep-wake disturbances are a highly prevalent and often disabling feature of Alzheimer's disease (AD). A cardinal feature of AD includes the formation of amyloid plaques, associated with the extracellular accumulation of the amyloid-β (Aβ) peptide. Evidence from animal and human studies suggests that Aβ pathology may disrupt the sleep-wake cycle, in that as Aβ accumulates, more sleep-wake fragmentation develops. Furthermore, recent research in animal and human studies suggests that the sleep-wake cycle itself may influence Alzheimer's disease onset and progression. Chronic sleep deprivation increases amyloid plaque deposition, and sleep extension results in fewer plaques in experimental models. In this review geared towards the practicing clinician, we discuss possible mechanisms underlying the reciprocal relationship between the sleep-wake cycle and AD pathology and behavior, and present current approaches to therapy for sleep disorders in AD.
Collapse
Affiliation(s)
- Miranda M Lim
- Division of Hospital & Specialty Medicine, Sleep Disorders Laboratory, Portland Veterans Affairs Medical Center, Portland, OR 97239, USA
| | | | | |
Collapse
|
32
|
Jiang J, Jiang H. Effect of the inhaled anesthetics isoflurane, sevoflurane and desflurane on the neuropathogenesis of Alzheimer's disease (review). Mol Med Rep 2015; 12:3-12. [PMID: 25738734 PMCID: PMC4438950 DOI: 10.3892/mmr.2015.3424] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Accepted: 02/11/2015] [Indexed: 11/06/2022] Open
Abstract
The incidence of Alzheimer's disease (AD) in individuals >65 years of age is 13% and ~66 million individuals in this age group undergo surgery annually under anesthesia. It is therefore important to determine whether commonly used inhaled anesthetics induce cytotoxicity, which may lead to neurodegeneration. Findings from several studies suggest that the anesthetics, isoflurane, sevoflurane and desflurane, may activate caspases, increase the synthesis and accumulation of β-amyloid (Aβ) protein, and induce hyperphosphorylation of tau proteins, all of which are cellular responses consistent with the neuropathogenesis of AD. Other studies have arrived at different and occasionally contradictory conclusions. The present review attempts to resolve this discrepancy by reviewing previous studies, which have investigated the effects of commonly used inhaled anesthetics on the synthesis and accumulation of Aβ, tau pathology and cognitive function. The possible underlying mechanism was also reviewed. However, several aspects of this phenomenon remain to be elucidated. Further studies are required to fully examine anesthesia-induced neurotoxicity and elucidate the effect of inhaled anesthetics on the onset and progression of AD.
Collapse
Affiliation(s)
- Jue Jiang
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Hong Jiang
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| |
Collapse
|
33
|
Stetler RA, Leak RK, Gan Y, Li P, Zhang F, Hu X, Jing Z, Chen J, Zigmond MJ, Gao Y. Preconditioning provides neuroprotection in models of CNS disease: paradigms and clinical significance. Prog Neurobiol 2014; 114:58-83. [PMID: 24389580 PMCID: PMC3937258 DOI: 10.1016/j.pneurobio.2013.11.005] [Citation(s) in RCA: 158] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 11/18/2013] [Accepted: 11/18/2013] [Indexed: 12/14/2022]
Abstract
Preconditioning is a phenomenon in which brief episodes of a sublethal insult induce robust protection against subsequent lethal injuries. Preconditioning has been observed in multiple organisms and can occur in the brain as well as other tissues. Extensive animal studies suggest that the brain can be preconditioned to resist acute injuries, such as ischemic stroke, neonatal hypoxia/ischemia, surgical brain injury, trauma, and agents that are used in models of neurodegenerative diseases, such as Parkinson's disease and Alzheimer's disease. Effective preconditioning stimuli are numerous and diverse, ranging from transient ischemia, hypoxia, hyperbaric oxygen, hypothermia and hyperthermia, to exposure to neurotoxins and pharmacological agents. The phenomenon of "cross-tolerance," in which a sublethal stress protects against a different type of injury, suggests that different preconditioning stimuli may confer protection against a wide range of injuries. Research conducted over the past few decades indicates that brain preconditioning is complex, involving multiple effectors such as metabolic inhibition, activation of extra- and intracellular defense mechanisms, a shift in the neuronal excitatory/inhibitory balance, and reduction in inflammatory sequelae. An improved understanding of brain preconditioning should help us identify innovative therapeutic strategies that prevent or at least reduce neuronal damage in susceptible patients. In this review, we focus on the experimental evidence of preconditioning in the brain and systematically survey the models used to develop paradigms for neuroprotection, and then discuss the clinical potential of brain preconditioning.
Collapse
Affiliation(s)
- R Anne Stetler
- State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University, Shanghai Medical College, Shanghai 200032, China; Department of Neurology and Center of Cerebrovascular Disease Research, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA; Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA
| | - Rehana K Leak
- Division of Pharmaceutical Sciences, Mylan School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA
| | - Yu Gan
- State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University, Shanghai Medical College, Shanghai 200032, China; Department of Neurology and Center of Cerebrovascular Disease Research, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA
| | - Peiying Li
- State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University, Shanghai Medical College, Shanghai 200032, China; Department of Neurology and Center of Cerebrovascular Disease Research, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA
| | - Feng Zhang
- State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University, Shanghai Medical College, Shanghai 200032, China; Department of Neurology and Center of Cerebrovascular Disease Research, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA; Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA
| | - Xiaoming Hu
- Department of Neurology and Center of Cerebrovascular Disease Research, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA; Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA
| | - Zheng Jing
- Department of Neurology and Center of Cerebrovascular Disease Research, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA; Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA
| | - Jun Chen
- State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University, Shanghai Medical College, Shanghai 200032, China; Department of Neurology and Center of Cerebrovascular Disease Research, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA; Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA
| | - Michael J Zigmond
- State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University, Shanghai Medical College, Shanghai 200032, China; Department of Neurology and Center of Cerebrovascular Disease Research, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA
| | - Yanqin Gao
- State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University, Shanghai Medical College, Shanghai 200032, China.
| |
Collapse
|
34
|
Anesthesia, surgery, illness and Alzheimer's disease. Prog Neuropsychopharmacol Biol Psychiatry 2013; 47:162-6. [PMID: 22729032 PMCID: PMC3509241 DOI: 10.1016/j.pnpbp.2012.06.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 06/12/2012] [Accepted: 06/17/2012] [Indexed: 11/24/2022]
Abstract
Patients and their families have, for many decades, detected subtle changes in cognition subsequent to surgery, and only recently has this been subjected to scientific scrutiny. Through a combination of retrospective human studies, small prospective biomarker studies, and experiments in animals, it is now clear that durable consequences of both anesthesia and surgery occur, and that these intersect with the normal processes of aging, and the abnormal processes of chronic neurodegeneration. It is highly likely that inflammatory cascades are at the heart of this intersection, and if confirmed, this suggests a therapeutic strategy to mitigate enhanced neuropathology in vulnerable surgical patients.
Collapse
|
35
|
Whittington RA, Bretteville A, Dickler MF, Planel E. Anesthesia and tau pathology. Prog Neuropsychopharmacol Biol Psychiatry 2013; 47:147-55. [PMID: 23535147 PMCID: PMC3741335 DOI: 10.1016/j.pnpbp.2013.03.004] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Revised: 03/15/2013] [Accepted: 03/15/2013] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia and remains a growing worldwide health problem. As life expectancy continues to increase, the number of AD patients presenting for surgery and anesthesia will steadily rise. The etiology of sporadic AD is thought to be multifactorial, with environmental, biological and genetic factors interacting together to influence AD pathogenesis. Recent reports suggest that general anesthetics may be such a factor and may contribute to the development and exacerbation of this neurodegenerative disorder. Intra-neuronal neurofibrillary tangles (NFT), composed of hyperphosphorylated and aggregated tau protein are one of the main neuropathological hallmarks of AD. Tau pathology is important in AD as it correlates very well with cognitive dysfunction. Lately, several studies have begun to elucidate the mechanisms by which anesthetic exposure might affect the phosphorylation, aggregation and function of this microtubule-associated protein. Here, we specifically review the literature detailing the impact of anesthetic administration on aberrant tau hyperphosphorylation as well as the subsequent development of neurofibrillary pathology and degeneration.
Collapse
Affiliation(s)
- Robert A. Whittington
- Department of Anesthesiology, Columbia University, New York, NY 10032,Corresponding Author: Robert A. Whittington, MD, Columbia University, College of Physicians and Surgeons, Department of Anesthesiology, 622 West 168th Street PH 5, New York, NY 10032, Tel: 212-305-1567, Fax: 212-305-0777,
| | - Alexis Bretteville
- Centre de Recherche du CHU de Québec, Axe Neurosciences, Québec (QC), Canada, G1V 4G2
| | - Maya F. Dickler
- Centre de Recherche du CHU de Québec, Axe Neurosciences, Québec (QC), Canada, G1V 4G2
| | - Emmanuel Planel
- Centre de Recherche du CHU de Québec, Axe Neurosciences, Québec (QC), Canada, G1V 4G2,Université Laval, Département de Psychiatrie et Neurosciences, Québec (QC), Canada, G1V 0A6
| |
Collapse
|
36
|
Tang JX, Eckenhoff MF. Anesthetic effects in Alzheimer transgenic mouse models. Prog Neuropsychopharmacol Biol Psychiatry 2013; 47:167-71. [PMID: 22705294 PMCID: PMC3521854 DOI: 10.1016/j.pnpbp.2012.06.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 05/31/2012] [Accepted: 06/05/2012] [Indexed: 12/13/2022]
Abstract
Research has improved the diagnosis of Alzheimer's disease, and at earlier stages, but effective therapy continues to be elusive. Current effort is focused on delay. Environmental factors are thought to interact with genetics to modulate the progression of the disease, and one such environmental factor is exposure to general anesthetics. The possibility that some anesthetic effects have long-term consequences is of general interest and concern. The difficulty of studying a chronic, age-related disease in humans combined with the fact that anesthetics are rarely given without surgery, has led to a focus on animal models. Transgenic mouse models have been developed to mimic the hallmarks of Alzheimer's disease, including amyloid beta accumulation (plaque), neurofibrillary tangles, and cognitive dysfunction. While none of the models recapitulate the human disease with high fidelity, they allow a first look at anesthetic-Alzheimer interactions in a reasonable time frame. In studies found to date, none have concluded that anesthetics alone cause a significant change in cognitive decline, but rather an acceleration in Alzheimer neuropathology. Further studies are required to define the best anesthetic paradigm for our elderly population to mitigate changes in neuropathology and potentially cognition.
Collapse
|
37
|
Abstract
Although severe stress can elicit toxicity, mild stress often elicits adaptations. Here we review the literature on stress-induced adaptations versus stress sensitization in models of neurodegenerative diseases. We also describe our recent findings that chronic proteotoxic stress can elicit adaptations if the dose is low but that high-dose proteotoxic stress sensitizes cells to subsequent challenges. In these experiments, long-term, low-dose proteasome inhibition elicited protection in a superoxide dismutase-dependent manner. In contrast, acute, high-dose proteotoxic stress sensitized cells to subsequent proteotoxic challenges by eliciting catastrophic loss of glutathione. However, even in the latter model of synergistic toxicity, several defensive proteins were upregulated by severe proteotoxicity. This led us to wonder whether high-dose proteotoxic stress can elicit protection against subsequent challenges in astrocytes, a cell type well known for their resilience. In support of this new hypothesis, we found that the astrocytes that survived severe proteotoxicity became harder to kill. The adaptive mechanism was glutathione dependent. If these findings can be generalized to the human brain, similar endogenous adaptations may help explain why neurodegenerative diseases are so delayed in appearance and so slow to progress. In contrast, sensitization to severe stress may explain why defenses eventually collapse in vulnerable neurons.
Collapse
Affiliation(s)
- Rehana K Leak
- Division of Pharmaceutical Sciences, Mylan School of Pharmacy, Duquesne University
| |
Collapse
|
38
|
Culley DJ, Cotran EK, Karlsson E, Palanisamy A, Boyd JD, Xie Z, Crosby G. Isoflurane affects the cytoskeleton but not survival, proliferation, or synaptogenic properties of rat astrocytes in vitro. Br J Anaesth 2013; 110 Suppl 1:i19-28. [PMID: 23722058 DOI: 10.1093/bja/aet169] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND More than half of the cells in the brain are glia and yet the impact of general anaesthetics on these cells is largely unexamined. We hypothesized that astroglia, which are strongly implicated in neuronal well-being and synapse formation and function, are vulnerable to adverse effects of isoflurane. METHODS Cultured rat astrocytes were treated with 1.4% isoflurane in air or air alone for 4 h. Viability, proliferation, and cytoskeleton were assessed by colorimetric assay, immunocytochemistry, or a migration assay at the end of treatment or 2 days later. Also, primary rat cortical neurones were treated for 4 days with conditioned medium from control [astrocyte-conditioned media (ACM)], or isoflurane-exposed astrocytes (Iso-ACM) and synaptic puncta were assessed by synapsin 1 and PSD-95 immunostaining. RESULTS By several measures, isoflurane did not kill astrocytes. Nor, based on incorporation of a thymidine analogue, did it inhibit proliferation. Isoflurane had no effect on F-actin but reduced expression of α-tubulin and glial fibrillary acidic protein both during exposure (P<0.05 and P<0.001, respectively) and 2 days later (P<0.01), but did not impair astrocyte motility. ACM increased formation of PSD-95 but not synapsin 1 positive puncta in neuronal cultures, and Iso-ACM was equally effective. CONCLUSIONS Isoflurane decreased expression of microtubule and intermediate filament proteins in astrocytes in vitro, but did not affect their viability, proliferation, motility, and ability to support synapses.
Collapse
Affiliation(s)
- D J Culley
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
OBJECTIVE Previous research suggests that a link between anesthetic exposure and Alzheimer disease exists. Because anesthetics are rarely given alone, we ask whether addition of surgery further modulates Alzheimer disease. BACKGROUND Cognitive dysfunction occurs after surgery in humans. Anesthesia alone produces cognitive decline in both older wild-type (WT) mice and rats, and the addition of surgery produces transient decline in young, adult WT mice. Because neuroinflammation has been implicated and occurs early in Alzheimer disease, we hypothesized that the neuroinflammatory stress associated with surgery would accelerate the progression of Alzheimer disease. METHODS Cecal ligation and excision were performed on presymptomatic 5- to 11-month-old triple-transgenic Alzheimer disease (3×TgAD) and C57BL/6 WT mice under desflurane anesthesia. Surgery animals were compared with aged-matched 3×TgAD and WT mice exposed to air or desflurane alone. Cognitive function was assessed via Morris water maze at 2 and 13 weeks postoperatively. Amyloid and tau pathology and inflammation and synaptic markers were quantified with immunohistochemistry, Luminex assay, enzyme-linked immunosorbent assay, or Western blot assays. RESULTS A significant cognitive impairment in 3×TgAD mice that underwent surgery compared with air or desflurane controls persisted to at least 14 weeks after surgery. Microglial activation, amyloidopathy, and tauopathy were enhanced by surgery as compared with desflurane alone. No differences between surgery, anesthetic, or air controls were detected in WT mice CONCLUSIONS Surgery causes a durable increment in Alzheimer pathogenesis, primarily through a transient activation of neuroinflammation.
Collapse
|
40
|
Abstract
BACKGROUND Aseptic surgical trauma provokes a homeostatic neuroinflammatory response to promote healing and protect the organism from further injury. When this response is dysregulated, harmful consequences can follow, including postoperative cognitive decline. SOURCES OF DATA We performed a comprehensive search on PubMed related to postoperative cognitive dysfunction (POCD). AREAS OF AGREEMENT Although the precise pathogenic mechanisms for POCD remain unclear, certain risk factors are known. AREAS OF CONTROVERSY The mechanisms that lead to exaggerated and persistent neuroinflammation and the best way to counteract it are still unknown. AREAS FOR DEVELOPING RESEARCH: It is imperative that we identify the underlying processes that increase the risk of cognitive decline in elderly surgical patients. In this review we explore non-resolution of inflammation as an underlying cause of developing exaggerated and persistent POCD. If interventions can be developed to promote resolution of neuroinflammation, the patient's postoperative recovery will be enhanced and long-term consequences can be prevented.
Collapse
Affiliation(s)
- Susana Vacas
- University of California San Francisco, 521 Parnassus Avenue, San Francisco, CA 94143-0648, USA
| | | | | | | |
Collapse
|
41
|
Clinical, methodological and theoretical issues in the assessment of cognition after anaesthesia and surgery: a review. Eur J Anaesthesiol 2012; 29:409-22. [PMID: 22828386 DOI: 10.1097/eja.0b013e328356bd6e] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
As people live longer, the burden of cognitive impairment to elderly patients, their families and society becomes increasingly common and important. The loss of independence, a reduction in the quality of life and increased mortality are possible correlates to the mental disintegration. Cognitive dysfunction following major surgery on the elderly is a significant problem which adds to other cognitive impairments caused by neurodegeneration, cerebrovascular impairments and other causes. There are challenges in reviewing the literature because of many methodological concerns. There is no standard definition; the diagnosis is made only by the results of neuropsychological tests which are not standardised for this purpose; test results are analysed by different statistical methods (some of them inappropriate); controls are often absent or poorly matched; and pre-existing mild cognitive impairment, which affects 10 to 20% of people older than 65 years and is similar to the subtle cognitive impairment following surgery, is not sought for and recognised. Reviews of the subject have varied from descriptions such as 'a well recognised and significant problem' to 'a hypothetical phenomenon for which there is no International Statistical Classification of Disease (ICD-9) code, and no Diagnostic and Statistical Manual of Mental Disorders (DSM-IV) code'. This article examines both sides of the spectrum in a detailed review which explains the necessary psychological 'jargon', discusses the methods used and points to areas of future research.
Collapse
|
42
|
Gender-specific differences in the central nervous system's response to anesthesia. Transl Stroke Res 2012; 4:462-75. [PMID: 24323342 DOI: 10.1007/s12975-012-0229-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 11/12/2012] [Indexed: 12/17/2022]
Abstract
Males and females are physiologically distinct in their responses to various anesthetic agents. The brain and central nervous system (CNS), the main target of anesthesia, are sexually dimorphic from birth and continue to differentiate throughout life. Accordingly, gender has a substantial impact on the influence of various anesthetic agents in the brain and CNS. Given the vast differences in the male and female CNS, it is surprising to find that females are often excluded from basic and clinical research studies of anesthesia. In animal research, males are typically studied to avoid the complication of breeding, pregnancy, and hormonal changes in females. In clinical studies, females are also excluded for the variations that occur in the reproductive cycle. Being that approximately half of the surgical population is female, the exclusion of females in anesthesia-related research studies leaves a huge knowledge gap in the literature. In this review, we examine the reported sex-specific differences in the central nervous system's response to anesthesia. Furthermore, we suggest that anesthesia researchers perform experiments on both sexes to further evaluate such differences. We believe a key goal of research studying the interaction of the brain and anesthesia should include the search for knowledge of sex-specific mechanisms that will improve anesthetic care and management in both sexes.
Collapse
|
43
|
Su D, Zhao Y, Xu H, Wang B, Chen X, Chen J, Wang X. Isoflurane exposure during mid-adulthood attenuates age-related spatial memory impairment in APP/PS1 transgenic mice. PLoS One 2012. [PMID: 23185565 PMCID: PMC3501473 DOI: 10.1371/journal.pone.0050172] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many in vitro findings suggest that isoflurane exposure might accelerate the process of Alzheimer Disease (AD); however, no behavioral evidence exists to support this theory. In the present study, we hypothesized that exposure of APP/PS1 transgenic mice to isoflurane during mid-adulthood, which is the pre-symptomatic phase of amyloid beta (Abeta) deposition, would alter the progression of AD. Seven-month-old Tg(APPswe,PSEN1dE9)85Dbo/J transgenic mice and their wild-type littermates were exposed to 1.1% isoflurane for 2 hours per day for 5 days. Learning and memory ability was tested 48 hours and 5 months following isoflurane exposure using the Morris Water Maze and Y maze, respectively. Abeta deposition and oligomers in the hippocampus were measured by immunohistochemistry or Elisa 5 months following isoflurane exposure. We found that the performance of both the transgenic and wild-type mice in the Morris Water Maze significantly improved 48 hours following isoflurane exposure. The transgenic mice made significantly fewer discrimination errors in the Y maze following isoflurane exposure, and no differences were found between wild-type littermates 5 months following isoflurane exposure. For the transgenic mice, the Abeta plaque and oligomers in the hippocampus was significantly decreased in the 5 months following isoflurane exposure. In summary, repeated isoflurane exposure during the pre-symptomatic phase not only improved spatial memory in both the APP/PS1 transgenic and wild-type mice shortly after the exposure but also prevented age-related decline in learning and memory and attenuated the Abeta plaque and oligomers in the hippocampus of transgenic mice.
Collapse
Affiliation(s)
- Diansan Su
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yanxing Zhao
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Huan Xu
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Beilei Wang
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Xuemei Chen
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jie Chen
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Xiangrui Wang
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- * E-mail:
| |
Collapse
|
44
|
Abstract
PURPOSE OF REVIEW To summarize key studies and recent thought on the role of neuroinflammation in chronic neurodegeneration, and whether it can be modulated by anesthesia and surgery. RECENT FINDINGS A large and growing body of evidence shows that neuroinflammation participates in the development of neurodegeneration associated with Alzheimer's disease. Modulation may be possible early in the pathogenesis, and less so when cognitive symptoms appear. A dysfunctional hypoinflammatory response may permit accelerated damage due to other mechanisms in late disease. The peripheral inflammatory response elicited by surgery itself appears to provoke a muted neuroinflammatory response, which enhances ongoing neurodegeneration in some models. Anesthetics have both anti-inflammatory and proinflammatory effects depending on the drug and concentration, but in general, appear to play a small role in neuroinflammation. Human studies at the intersection of chronic neurodegeneration, neuroinflammation, and surgery/anesthesia are rare. SUMMARY The perioperative period has the potential to modulate the progression of chronic neurodegenerative diseases. The growing number of elderly having surgery, combined with the expanding life expectancy, indicates the potential for this interaction to have considerable public health implications, and call for further research, especially in humans.
Collapse
Affiliation(s)
- Junxia X Tang
- Department of Anesthesiology and Critical Care, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|