1
|
Bennett G, Yang S, Bardon LA, Timon CM, Gibney ER. Expansion and Assessment of a Web-Based 24-Hour Dietary Recall Tool, Foodbook24, for Use Among Diverse Populations Living in Ireland: Comparative Analysis. Online J Public Health Inform 2025; 17:e52380. [PMID: 39919284 PMCID: PMC11845893 DOI: 10.2196/52380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 05/27/2024] [Accepted: 10/09/2024] [Indexed: 02/09/2025] Open
Abstract
BACKGROUND Currently, the methods used to collect dietary intake data in Ireland are inflexible to the needs of certain populations, who are poorly represented in nutrition and health data as a result. As the Irish population is becoming increasingly diverse, there is an urgent need to understand the habitual food intake and diet quality of multiple population subgroups, including different nationalities and ethnic minorities, in Ireland. Foodbook24 is an existing web-based 24-hour dietary recall tool, which has previously been validated for use within the general Irish adult population. Because of its design, Foodbook24 can facilitate the improved inclusion of dietary intake assessment in Ireland. OBJECTIVE We aimed to examine the suitability of expanding the Foodbook24 tool, improving the reliability and accuracy of dietary intake data collected among prominent nationalities in Ireland. METHODS This study consisted of three distinct parts: (1) expansion of Foodbook24, (2) testing its usability (ie, acceptability study), and (3) examining the accuracy (ie, comparison study) of the updated Foodbook24 tool. To expand Foodbook24, national survey data from Brazil and Poland were reviewed and commonly consumed food items were added to the food list. All foods were translated into Polish and Portuguese. The acceptability study used a qualitative approach whereby participants provided a visual record of their habitual diet. The comparison study consisted of one 24-hour dietary recall using Foodbook24 and one interviewer-led recall completed on the same day, repeated again 2 weeks later. Comparison study data were analyzed using Spearman rank correlations, Mann-Whitney U tests, and κ coefficients. RESULTS The expansion of the Foodbook24 food list resulted in 546 additional foods. The acceptability study reported that 86.5% (302/349) of foods listed by participants were available in the updated food list. From the comparison study, strong and positive correlations across 8 food groups (44% of a total of 18 food groups) and 15 nutrients (58% of a total of 26 nutrients) were identified (r=0.70-0.99). Only intakes of potatoes and potato dishes and nuts, herbs, and seeds significantly differed across methods of assessment, where correlations across these food groups were low (r=0.56 and r=0.47, respectively). The incidence of food omissions varied across samples, with Brazilian participants omitting a higher percentage of foods in self-administered recalls than other samples (6/25, 24% among the Brazilian vs 5/38, 13% among the Irish cohort). CONCLUSIONS The updated food list is representative of most foods consumed by Brazilian, Irish, and Polish adults in Ireland. Dietary intake data reported in Foodbook24 are not largely different from food groups and nutrient intakes reported via traditional methods. This study has demonstrated that Foodbook24 may be appropriate for use in future research investigating the dietary intakes of Brazilian, Irish, and Polish groups in Ireland.
Collapse
Affiliation(s)
- Grace Bennett
- UCD Institute of Food and Health, University College Dublin, Dublin, Ireland
| | - Shuhua Yang
- UCD Institute of Food and Health, University College Dublin, Dublin, Ireland
| | - Laura A Bardon
- Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom
| | - Claire M Timon
- School of Population Health, Royal College of Surgeons, Dublin, Ireland
| | - Eileen R Gibney
- UCD Institute of Food and Health, University College Dublin, Dublin, Ireland
| |
Collapse
|
2
|
Patt M, Karkossa I, Krieg L, Massier L, Makki K, Tabei S, Karlas T, Dietrich A, Gericke M, Stumvoll M, Blüher M, von Bergen M, Schubert K, Kovacs P, Chakaroun RM. FGF21 and its underlying adipose tissue-liver axis inform cardiometabolic burden and improvement in obesity after metabolic surgery. EBioMedicine 2024; 110:105458. [PMID: 39608059 PMCID: PMC11638646 DOI: 10.1016/j.ebiom.2024.105458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/20/2024] [Accepted: 11/04/2024] [Indexed: 11/30/2024] Open
Abstract
BACKGROUND This research investigates the determinants of circulating FGF21 levels in a cohort reflecting metabolic disease progression, examining the associations of circulating FGF21 with morphology and function of adipose tissue (AT), and with metabolic adjustments following metabolic surgery. METHODS We measured serum FGF21 in 678 individuals cross-sectionally and in 189 undergoing metabolic surgery longitudinally. Relationships between FGF21 levels, AT histology, transcriptomes and proteomes, cardiometabolic risk factors, and post-surgery metabolic adjustments were assessed using univariate and multivariate analyses, causal mediation analysis, and network integration of AT transcriptomes and proteomes. FINDINGS FGF21 levels were linked to central adiposity, subclinical inflammation, insulin resistance, and cardiometabolic risk, and were driven by circulating leptin and liver enzymes. Higher FGF21 were linked with AT dysfunction reflected in fibro-inflammatory and lipid dysmetabolism pathways. Specifically, visceral AT inflammation was tied to both FGF21 elevation and liver dysfunction. Post-surgery, FGF21 peaked transitorily at three months. Mediation analysis highlighted an underlying increased AT catabolic state with elevated free fatty acids (FFA), contributing to higher liver stress and FGF21 levels (total effect of free fatty acids on FGF21 levels: 0.38, p < 0.01; proportion mediation via liver 32%, p < 0.01). In line with this, histological AT fibrosis linked with less pronounced FGF21 responses and reduced fat loss post-surgery (FFA and visceral AT fibrosis: rho = -0.31, p = 0.030; FFA and fat-mass loss: rho = 0.17, p = 0.020). INTERPRETATION FGF21 reflects the liver's disproportionate metabolic stress response in both central adiposity and after metabolic surgery, with its dynamics reflecting an AT-liver crosstalk. FUNDING This work was supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) through CRC 1052, project number 209933838, CRC1382 and a Walther-Benjamin Fellowship and by a junior research grant by the Medical Faculty, University of Leipzig, and by the Federal Ministry of Education and Research (BMBF), Germany, FKZ: 01EO1501. Part of this work was supported by the European Union's Seventh Framework Program for research, technological development and demonstration under grant agreement HEALTH-F4-2012-305312 and by the CRC1382 and the Novo Nordisk Foundation and by the Deutsche Forschungsgemeinschaft (DFG, German Research foundation) project number 530364326.
Collapse
Affiliation(s)
- Marie Patt
- University of Leipzig Medical Centre, Medical Department III-Endocrinology, Nephrology, Rheumatology, Leipzig, Germany
| | - Isabel Karkossa
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Laura Krieg
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Lucas Massier
- University of Leipzig Medical Centre, Medical Department III-Endocrinology, Nephrology, Rheumatology, Leipzig, Germany; Department of Medicine (H7), Karolinska Institutet, Stockholm, Sweden
| | - Kassem Makki
- INSERM U1060, INRAE UMR1397, Université de Lyon, France
| | - Shirin Tabei
- Institute of Endocrinology and Diabetes, University of Lübeck, Lübeck, Germany; Centre of Brain, Behaviour, and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Thomas Karlas
- Division of Gastroenterology, Medical Department II, University of Leipzig Medical Centre, Leipzig, Germany
| | - Arne Dietrich
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University of Leipzig Medical Centre, Leipzig, Germany
| | - Martin Gericke
- Leipzig University, Institute of Anatomy, Leipzig, Germany
| | - Michael Stumvoll
- University of Leipzig Medical Centre, Medical Department III-Endocrinology, Nephrology, Rheumatology, Leipzig, Germany; Helmholtz Institute for Metabolic Obesity and Vascular Research (HI-MAG), Helmholtz Zentrum München, University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Matthias Blüher
- University of Leipzig Medical Centre, Medical Department III-Endocrinology, Nephrology, Rheumatology, Leipzig, Germany; Helmholtz Institute for Metabolic Obesity and Vascular Research (HI-MAG), Helmholtz Zentrum München, University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany; Institute of Biochemistry, Leipzig University, Leipzig, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Kristin Schubert
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Peter Kovacs
- University of Leipzig Medical Centre, Medical Department III-Endocrinology, Nephrology, Rheumatology, Leipzig, Germany; Deutsches Zentrum für Diabetesforschung e.V., 85764, Neuherberg, Germany
| | - Rima M Chakaroun
- University of Leipzig Medical Centre, Medical Department III-Endocrinology, Nephrology, Rheumatology, Leipzig, Germany; Wallenberg Laboratory, Department of Molecular and Clinical Medicine and Sahlgrenska Centre for Cardiovascular and Metabolic Research, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
3
|
Fabre O, Bailly S, Mithieux G, Legrand R, Costentin C, Astrup A, Pépin JL. Long-term trajectories of weight loss and health outcomes: protocol of the SCOOP-RNPC nationwide observational study. BMJ Open 2024; 14:e082575. [PMID: 38991672 PMCID: PMC11243209 DOI: 10.1136/bmjopen-2023-082575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 06/17/2024] [Indexed: 07/13/2024] Open
Abstract
INTRODUCTION Behavioural weight loss programmes are generally accepted as being beneficial in reducing cardiometabolic risk and improving patient-reported outcomes. However, prospective data from large real-world cohorts are scarce concerning the mid-term and long-term impact of such interventions. The objective of this large prospective cohort study (n>10 000 participants) is to demonstrate the effectiveness of the standardised Nutritional and Psycho-Behavioural Rehabilitation programme (RNPC Programme) in reducing the percentage of subjects requiring insulin and/or other diabetes drug therapy, antihypertensive drugs, lipid-lowering therapies and continuous positive airway pressure therapy for obstructive sleep apnoea after the end of the intervention. The rate of remission of hypertension, type 2 diabetes and sleep apnoea will also be prospectively assessed. METHODS This is a prospective multicentre observational study carried out in 92 RNPC centres in France. Participants will follow the standardised RNPC Programme. The prospective dataset will include clinical, anthropometric and biochemical data, comorbidities, medications, body composition, patient-reported outcome questionnaire responses, sleep study data with objective measurements of sleep apnoea severity and surrogate markers of cardiovascular risk (ie, blood pressure and arterial stiffness). About 10 000 overweight or obese participants will be included over 2 years with a follow-up duration of up to 5 years. ETHICS AND DISSEMINATION Ethical approval for this study has been granted by the Ethics Committee (Comité de protection des personnes Sud-Est I) of Saint-Etienne University Hospital, France (SI number: 23.00174.000237). Results will be submitted for publication in peer-review journals, presented at conferences and inform the design of a future randomised controlled trial in the specific population identified as good responders to the RNPC Programme. TRIAL REGISTRATION NUMBER NCT05857319.
Collapse
Affiliation(s)
- Odile Fabre
- SARL Groupe Ethique & Santé, Marseille, Provence-Alpes-Côte d'Azur, France
| | - Sébastien Bailly
- University Grenoble Alpes, Grenoble, France
- Grenoble Alpes University Hospital, Grenoble, France
| | | | - Rémy Legrand
- SARL Groupe Ethique & Santé, Marseille, Provence-Alpes-Côte d'Azur, France
| | - Charlotte Costentin
- INSERM U1209/CNRS UMR 5309, University Grenoble Alpes, Grenoble, France
- University Clinic of Hepato-Gastroenterology, Grenoble Alpes University Hospital, Grenoble, France
| | - Arne Astrup
- Department of Obesity and Nutritional Sciences, Novo Nordisk Foundation, Hellerup, Denmark
| | - Jean-Louis Pépin
- University Grenoble Alpes, Grenoble, France
- Grenoble Alpes University Hospital, Grenoble, France
| |
Collapse
|
4
|
Steinbach E, Belda E, Alili R, Adriouch S, Dauriat CJG, Donatelli G, Dumont JL, Pacini F, Tuszynski T, Pelloux V, Jacques F, Creusot L, Coles E, Taillandier P, Vazquez Gomez M, Masi D, Mateo V, André S, Kordahi M, Rouault C, Zucker JD, Sokol H, Genser L, Chassaing B, Le Roy T, Clément K. Comparative analysis of the duodenojejunal microbiome with the oral and fecal microbiomes reveals its stronger association with obesity and nutrition. Gut Microbes 2024; 16:2405547. [PMID: 39679619 DOI: 10.1080/19490976.2024.2405547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/24/2024] [Accepted: 09/10/2024] [Indexed: 12/17/2024] Open
Abstract
The intestinal microbiota is increasingly recognized as a crucial player in the development and maintenance of various chronic conditions, including obesity and associated metabolic diseases. While most research focuses on the fecal microbiota due to its easier accessibility, the small intestine, as a major site for nutrient sensing and absorption, warrants further investigation to determine its microbiota composition and functions. Here, we conducted a clinical research project in 30 age- and sex-matched participants with (n = 15) and without (n = 15) obesity. Duodenojejunal fluid was obtained by aspiration during endoscopy. Phenotyping included clinical variables related to metabolic status, lifestyle, and psychosocial factors using validated questionnaires. We performed metagenomic analyses of the oral, duodenojejunal, and fecal microbiome, alongside metabolomic data from duodenojejunal fluid and feces, integrating these data with clinical and lifestyle information. Our results highlight significant associations between duodenojejunal microbiota composition and usual dietary intake, as well as clinical phenotypes, with larger effect sizes than the associations between these variables and fecal microbiota. Notably, we found that the duodenojejunal microbiota of patients with obesity exhibited higher diversity and showed distinct differences in the abundance of several duodenojejunal microbiota species compared with individuals without obesity. Our findings support the relevance of studying the role of the small intestinal microbiota in the pathogenesis of nutrition-related diseases.
Collapse
Affiliation(s)
- Emilie Steinbach
- Sorbonne Université, Inserm, Nutrition and Obesities: Systemic Approaches, NutriOmics Research Unit, Sorbonne Université, Paris, France
| | - Eugeni Belda
- Sorbonne Université, Inserm, Nutrition and Obesities: Systemic Approaches, NutriOmics Research Unit, Sorbonne Université, Paris, France
- Unité de Modélisation Mathématique et Informatique des Systèmes Complexes, UMMISCO, Sorbonne Université, Institut de Recherche pour le Développement (IRD), Paris, France
| | - Rohia Alili
- Sorbonne Université, Inserm, Nutrition and Obesities: Systemic Approaches, NutriOmics Research Unit, Sorbonne Université, Paris, France
| | - Solia Adriouch
- Sorbonne Université, Inserm, Nutrition and Obesities: Systemic Approaches, NutriOmics Research Unit, Sorbonne Université, Paris, France
| | - Charlène J G Dauriat
- Microbiome-Host Interactions, Institut Pasteur, Université Paris Cité, INSERM, Paris, France
- Mucosal Microbiota in Chronic Inflammatory Diseases, INSERM, CNRS UMR8104, Université de Paris, Paris, France
| | - Gianfranco Donatelli
- Sorbonne Université, Inserm, Nutrition and Obesities: Systemic Approaches, NutriOmics Research Unit, Sorbonne Université, Paris, France
- Endoscopy Department, Peupliers Hospital, Ramsay-Santé, Paris, France
| | - Jean-Loup Dumont
- Endoscopy Department, Peupliers Hospital, Ramsay-Santé, Paris, France
| | - Filippo Pacini
- Endoscopy Department, Peupliers Hospital, Ramsay-Santé, Paris, France
| | - Thierry Tuszynski
- Endoscopy Department, Peupliers Hospital, Ramsay-Santé, Paris, France
| | - Véronique Pelloux
- Sorbonne Université, Inserm, Nutrition and Obesities: Systemic Approaches, NutriOmics Research Unit, Sorbonne Université, Paris, France
| | - Flavien Jacques
- Sorbonne Université, Inserm, Nutrition and Obesities: Systemic Approaches, NutriOmics Research Unit, Sorbonne Université, Paris, France
| | - Laura Creusot
- Sorbonne Université, INSERM UMRS-938, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Paris, France
- Paris Center for Microbiome Medicine, Fédération Hospitalo-Universitaire, Paris, France
| | - Emavieve Coles
- Sorbonne Université, Inserm, Nutrition and Obesities: Systemic Approaches, NutriOmics Research Unit, Sorbonne Université, Paris, France
| | - Paul Taillandier
- Sorbonne Université, Inserm, Nutrition and Obesities: Systemic Approaches, NutriOmics Research Unit, Sorbonne Université, Paris, France
| | - Marta Vazquez Gomez
- Sorbonne Université, Inserm, Nutrition and Obesities: Systemic Approaches, NutriOmics Research Unit, Sorbonne Université, Paris, France
| | - Davide Masi
- Sorbonne Université, Inserm, Nutrition and Obesities: Systemic Approaches, NutriOmics Research Unit, Sorbonne Université, Paris, France
- Department of Experimental Medicine, Section of Medical Physiopathology, Food Science and Endocrinology, Sapienza University of Rome, Rome, Italy
| | - Véronique Mateo
- Sorbonne Université, Inserm, Nutrition and Obesities: Systemic Approaches, NutriOmics Research Unit, Sorbonne Université, Paris, France
| | - Sébastien André
- Sorbonne Université, Inserm, Nutrition and Obesities: Systemic Approaches, NutriOmics Research Unit, Sorbonne Université, Paris, France
| | - Melissa Kordahi
- Microbiome-Host Interactions, Institut Pasteur, Université Paris Cité, INSERM, Paris, France
- Mucosal Microbiota in Chronic Inflammatory Diseases, INSERM, CNRS UMR8104, Université de Paris, Paris, France
| | - Christine Rouault
- Sorbonne Université, Inserm, Nutrition and Obesities: Systemic Approaches, NutriOmics Research Unit, Sorbonne Université, Paris, France
| | - Jean-Daniel Zucker
- Sorbonne Université, Inserm, Nutrition and Obesities: Systemic Approaches, NutriOmics Research Unit, Sorbonne Université, Paris, France
- Unité de Modélisation Mathématique et Informatique des Systèmes Complexes, UMMISCO, Sorbonne Université, Institut de Recherche pour le Développement (IRD), Paris, France
| | - Harry Sokol
- Sorbonne Université, INSERM UMRS-938, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Paris, France
- Paris Center for Microbiome Medicine, Fédération Hospitalo-Universitaire, Paris, France
- INRAE, UMR1319 Micalis & AgroParisTech, Jouy en Josas, France
| | - Laurent Genser
- Sorbonne Université, Inserm, Nutrition and Obesities: Systemic Approaches, NutriOmics Research Unit, Sorbonne Université, Paris, France
- Sorbonne Université, Department of Hepato-Biliary and Pancreatic Surgery, Assistance Publique-Hôpitaux de Paris, AP-HP, Pitié-Salpêtrière University Hospital, Paris, France
| | - Benoit Chassaing
- Microbiome-Host Interactions, Institut Pasteur, Université Paris Cité, INSERM, Paris, France
- Mucosal Microbiota in Chronic Inflammatory Diseases, INSERM, CNRS UMR8104, Université de Paris, Paris, France
| | - Tiphaine Le Roy
- Sorbonne Université, Inserm, Nutrition and Obesities: Systemic Approaches, NutriOmics Research Unit, Sorbonne Université, Paris, France
| | - Karine Clément
- Sorbonne Université, Inserm, Nutrition and Obesities: Systemic Approaches, NutriOmics Research Unit, Sorbonne Université, Paris, France
- Assistance Publique Hôpitaux de Paris, Nutrition Department, Pitié-Salpêtrière Hospital, Paris, France
| |
Collapse
|
5
|
Andrikopoulos P, Aron-Wisnewsky J, Chakaroun R, Myridakis A, Forslund SK, Nielsen T, Adriouch S, Holmes B, Chilloux J, Vieira-Silva S, Falony G, Salem JE, Andreelli F, Belda E, Kieswich J, Chechi K, Puig-Castellvi F, Chevalier M, Le Chatelier E, Olanipekun MT, Hoyles L, Alves R, Helft G, Isnard R, Køber L, Coelho LP, Rouault C, Gauguier D, Gøtze JP, Prifti E, Froguel P, Zucker JD, Bäckhed F, Vestergaard H, Hansen T, Oppert JM, Blüher M, Nielsen J, Raes J, Bork P, Yaqoob MM, Stumvoll M, Pedersen O, Ehrlich SD, Clément K, Dumas ME. Evidence of a causal and modifiable relationship between kidney function and circulating trimethylamine N-oxide. Nat Commun 2023; 14:5843. [PMID: 37730687 PMCID: PMC10511707 DOI: 10.1038/s41467-023-39824-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 06/30/2023] [Indexed: 09/22/2023] Open
Abstract
The host-microbiota co-metabolite trimethylamine N-oxide (TMAO) is linked to increased cardiovascular risk but how its circulating levels are regulated remains unclear. We applied "explainable" machine learning, univariate, multivariate and mediation analyses of fasting plasma TMAO concentration and a multitude of phenotypes in 1,741 adult Europeans of the MetaCardis study. Here we show that next to age, kidney function is the primary variable predicting circulating TMAO, with microbiota composition and diet playing minor, albeit significant, roles. Mediation analysis suggests a causal relationship between TMAO and kidney function that we corroborate in preclinical models where TMAO exposure increases kidney scarring. Consistent with our findings, patients receiving glucose-lowering drugs with reno-protective properties have significantly lower circulating TMAO when compared to propensity-score matched control individuals. Our analyses uncover a bidirectional relationship between kidney function and TMAO that can potentially be modified by reno-protective anti-diabetic drugs and suggest a clinically actionable intervention for decreasing TMAO-associated excess cardiovascular risk.
Collapse
Affiliation(s)
- Petros Andrikopoulos
- Section of Biomolecular Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
- Section of Genomic & Environmental Medicine, National Heart & Lung Institute, Imperial College London, London, UK.
| | - Judith Aron-Wisnewsky
- Sorbonne Université, INSERM, Nutrition and obesities; systemic approaches (NutriOmics), Paris, France
- Assistance Publique Hôpitaux de Paris, Pitie-Salpêtrière Hospital, Paris, France
| | - Rima Chakaroun
- Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Antonis Myridakis
- Section of Biomolecular Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Environmental Research Group, MRC Centre for Environment and Health, School of Public Health, Imperial College London, 86 Wood Lane, London, W12 0BZ, UK
| | - Sofia K Forslund
- Structural and Computational Biology, European Molecular Biology Laboratory, Heidelberg, Germany
- Experimental and Clinical Research Center, a cooperation of Charité-Universitätsmedizin and the Max-Delbrück Center, Berlin, Germany
- Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
- Charité University Hospital, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Trine Nielsen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Solia Adriouch
- Sorbonne Université, INSERM, Nutrition and obesities; systemic approaches (NutriOmics), Paris, France
| | | | - Julien Chilloux
- Section of Biomolecular Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Sara Vieira-Silva
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
- Center for Microbiology, VIB, Leuven, Belgium
- Institute of Medical Microbiology and Hygiene and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Institute of Molecular Biology (IMB), Mainz, Germany
| | - Gwen Falony
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
- Center for Microbiology, VIB, Leuven, Belgium
- Institute of Medical Microbiology and Hygiene and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Institute of Molecular Biology (IMB), Mainz, Germany
| | - Joe-Elie Salem
- Assistance Publique Hôpitaux de Paris, Pitie-Salpêtrière Hospital, Paris, France
| | - Fabrizio Andreelli
- Sorbonne Université, INSERM, Nutrition and obesities; systemic approaches (NutriOmics), Paris, France
- Assistance Publique Hôpitaux de Paris, Pitie-Salpêtrière Hospital, Paris, France
| | - Eugeni Belda
- Sorbonne Université, INSERM, Nutrition and obesities; systemic approaches (NutriOmics), Paris, France
- Sorbonne Université, IRD, Unité de Modélisation Mathématique et Informatique des Systèmes Complexes, UMMISCO, F-93143, Bondy, France
| | - Julius Kieswich
- Diabetic Kidney Disease Centre, Renal Unit, Barts Health National Health Service Trust, The Royal London Hospital, London, UK
- Centre for Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Kanta Chechi
- Section of Biomolecular Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Section of Genomic & Environmental Medicine, National Heart & Lung Institute, Imperial College London, London, UK
| | - Francesc Puig-Castellvi
- European Genomics Institute for Diabetes, EGENODIA, INSERM U1283, CNRS UMR8199, Institut Pasteur de Lille, Lille University Hospital, University of Lille, Lille, France
| | - Mickael Chevalier
- European Genomics Institute for Diabetes, EGENODIA, INSERM U1283, CNRS UMR8199, Institut Pasteur de Lille, Lille University Hospital, University of Lille, Lille, France
| | | | - Michael T Olanipekun
- Section of Biomolecular Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Lesley Hoyles
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Renato Alves
- Structural and Computational Biology, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Gerard Helft
- Assistance Publique Hôpitaux de Paris, Pitie-Salpêtrière Hospital, Paris, France
- Institute of Cardiometabolism and Nutrition, ICAN, INSERM, 1166, Paris, France
| | - Richard Isnard
- Sorbonne Université, INSERM, Nutrition and obesities; systemic approaches (NutriOmics), Paris, France
- Assistance Publique Hôpitaux de Paris, Pitie-Salpêtrière Hospital, Paris, France
| | - Lars Køber
- Department of Cardiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Luis Pedro Coelho
- Structural and Computational Biology, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Christine Rouault
- Sorbonne Université, INSERM, Nutrition and obesities; systemic approaches (NutriOmics), Paris, France
| | - Dominique Gauguier
- INSERM UMR 1124, Université de Paris, 45 rue des Saint-Pères, 75006, Paris, France
- McGill Genome Centre, McGill University, 740 Doctor Penfield Avenue, Montreal, QC, H3A 0G1, Canada
| | - Jens Peter Gøtze
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Edi Prifti
- Sorbonne Université, INSERM, Nutrition and obesities; systemic approaches (NutriOmics), Paris, France
- Sorbonne Université, IRD, Unité de Modélisation Mathématique et Informatique des Systèmes Complexes, UMMISCO, F-93143, Bondy, France
| | - Philippe Froguel
- European Genomics Institute for Diabetes, EGENODIA, INSERM U1283, CNRS UMR8199, Institut Pasteur de Lille, Lille University Hospital, University of Lille, Lille, France
- Section of Genetics and Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, W12 0NN, UK
| | - Jean-Daniel Zucker
- Sorbonne Université, INSERM, Nutrition and obesities; systemic approaches (NutriOmics), Paris, France
- Sorbonne Université, IRD, Unité de Modélisation Mathématique et Informatique des Systèmes Complexes, UMMISCO, F-93143, Bondy, France
| | - Fredrik Bäckhed
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Vestergaard
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Medicine, Bornholms Hospital, Rønne, Denmark
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jean-Michel Oppert
- Assistance Publique Hôpitaux de Paris, Pitie-Salpêtrière Hospital, Paris, France
| | - Matthias Blüher
- Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Jeroen Raes
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
- Center for Microbiology, VIB, Leuven, Belgium
| | - Peer Bork
- Structural and Computational Biology, European Molecular Biology Laboratory, Heidelberg, Germany
- Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
- Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany
- Yonsei Frontier Lab (YFL), Yonsei University, Seoul, 03722, South Korea
| | - Muhammad M Yaqoob
- Diabetic Kidney Disease Centre, Renal Unit, Barts Health National Health Service Trust, The Royal London Hospital, London, UK
- Centre for Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Michael Stumvoll
- Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Oluf Pedersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Center for Clinical Metabolic Research, Gentofte University Hospital, Copenhagen, Denmark
| | - S Dusko Ehrlich
- Department of Clinical and Movement Neurosciences, University College London, London, NW3 2PF, UK
| | - Karine Clément
- Sorbonne Université, INSERM, Nutrition and obesities; systemic approaches (NutriOmics), Paris, France.
- Assistance Publique Hôpitaux de Paris, Pitie-Salpêtrière Hospital, Paris, France.
| | - Marc-Emmanuel Dumas
- Section of Biomolecular Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
- Section of Genomic & Environmental Medicine, National Heart & Lung Institute, Imperial College London, London, UK.
- European Genomics Institute for Diabetes, EGENODIA, INSERM U1283, CNRS UMR8199, Institut Pasteur de Lille, Lille University Hospital, University of Lille, Lille, France.
- McGill Genome Centre, McGill University, 740 Doctor Penfield Avenue, Montreal, QC, H3A 0G1, Canada.
| |
Collapse
|
6
|
Cui Q, Xia Y, Liu Y, Sun Y, Ye K, Li W, Wu Q, Chang Q, Zhao Y. Validity and reproducibility of a FFQ for assessing dietary intake among residents of northeast China: northeast cohort study of China. Br J Nutr 2023; 129:1252-1265. [PMID: 35912695 DOI: 10.1017/s0007114522002318] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The study was to evaluate the reproducibility and validity of the FFQ for residents of northeast China. A total of 131 participants completed two FFQ (FFQ1 and FFQ2) within a 3-month period, 125 participants completed 8-d weighed diet records (WDR) and 112 participants completed blood biomarker testing. Reproducibility was measured by comparing nutrient and food intake between FFQ1 and FFQ2. The validity of the FFQ was assessed by WDR and the triad method. The Spearman correlation coefficients (SCC) and intraclass correlation coefficients (ICC) for reproducibility ranged from 0·41 to 0·69 (median = 0·53) and from 0·18 to 0·68 (median = 0·53) for energy and nutrients and from 0·37 to 0·73 (median = 0·59) and from 0·33 to 0·86 (median = 0·60) for food groups, respectively. The classifications of same or adjacent quartiles ranged from 73·64 to 93·80 % for both FFQ. The crude SCC between the FFQ and WDR ranged from 0·27 to 0·55 (median = 0·46) for the energy and nutrients and from 0·26 to 0·70 (median = 0·52) for food groups, and classifications of the same or adjacent quartiles ranged from 65·32 to 86·29 %. The triad method indicated that validation coefficients for the FFQ were above 0·3 for most nutrients, which indicated a moderate or high level of validity. The FFQ that was developed for residents of northeast China for the Northeast Cohort Study of China is reliable and valid for assessing the intake of most foods and nutrients.
Collapse
Affiliation(s)
- Qi Cui
- Department of Clinical Epidemiology, Shengjing Hospital, China Medical University, Shenyang, People's Republic of China
| | - Yang Xia
- Department of Clinical Epidemiology, Shengjing Hospital, China Medical University, Shenyang, People's Republic of China
| | - Yashu Liu
- Department of Clinical Epidemiology, Shengjing Hospital, China Medical University, Shenyang, People's Republic of China
| | - Yifei Sun
- Department of Clinical Epidemiology, Shengjing Hospital, China Medical University, Shenyang, People's Republic of China
| | - Kang Ye
- Department of Clinical Epidemiology, Shengjing Hospital, China Medical University, Shenyang, People's Republic of China
| | - Wenjie Li
- The School of Public Health, China Medical University, Shenyang, People's Republic of China
| | - Qijun Wu
- Department of Clinical Epidemiology, Shengjing Hospital, China Medical University, Shenyang, People's Republic of China
| | - Qing Chang
- Department of Clinical Epidemiology, Shengjing Hospital, China Medical University, Shenyang, People's Republic of China
| | - Yuhong Zhao
- Department of Clinical Epidemiology, Shengjing Hospital, China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
7
|
Belda E, Voland L, Tremaroli V, Falony G, Adriouch S, Assmann KE, Prifti E, Aron-Wisnewsky J, Debédat J, Le Roy T, Nielsen T, Amouyal C, André S, Andreelli F, Blüher M, Chakaroun R, Chilloux J, Coelho LP, Dao MC, Das P, Fellahi S, Forslund S, Galleron N, Hansen TH, Holmes B, Ji B, Krogh Pedersen H, Le P, Le Chatelier E, Lewinter C, Mannerås-Holm L, Marquet F, Myridakis A, Pelloux V, Pons N, Quinquis B, Rouault C, Roume H, Salem JE, Sokolovska N, Søndertoft NB, Touch S, Vieira-Silva S, The MetaCardis Consortium, Galan P, Holst J, Gøtze JP, Køber L, Vestergaard H, Hansen T, Hercberg S, Oppert JM, Nielsen J, Letunic I, Dumas ME, Stumvoll M, Pedersen OB, Bork P, Ehrlich SD, Zucker JD, Bäckhed F, Raes J, Clément K. Impairment of gut microbial biotin metabolism and host biotin status in severe obesity: effect of biotin and prebiotic supplementation on improved metabolism. Gut 2022; 71:2463-2480. [PMID: 35017197 PMCID: PMC9664128 DOI: 10.1136/gutjnl-2021-325753] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 12/15/2021] [Indexed: 01/08/2023]
Abstract
OBJECTIVES Gut microbiota is a key component in obesity and type 2 diabetes, yet mechanisms and metabolites central to this interaction remain unclear. We examined the human gut microbiome's functional composition in healthy metabolic state and the most severe states of obesity and type 2 diabetes within the MetaCardis cohort. We focused on the role of B vitamins and B7/B8 biotin for regulation of host metabolic state, as these vitamins influence both microbial function and host metabolism and inflammation. DESIGN We performed metagenomic analyses in 1545 subjects from the MetaCardis cohorts and different murine experiments, including germ-free and antibiotic treated animals, faecal microbiota transfer, bariatric surgery and supplementation with biotin and prebiotics in mice. RESULTS Severe obesity is associated with an absolute deficiency in bacterial biotin producers and transporters, whose abundances correlate with host metabolic and inflammatory phenotypes. We found suboptimal circulating biotin levels in severe obesity and altered expression of biotin-associated genes in human adipose tissue. In mice, the absence or depletion of gut microbiota by antibiotics confirmed the microbial contribution to host biotin levels. Bariatric surgery, which improves metabolism and inflammation, associates with increased bacterial biotin producers and improved host systemic biotin in humans and mice. Finally, supplementing high-fat diet-fed mice with fructo-oligosaccharides and biotin improves not only the microbiome diversity, but also the potential of bacterial production of biotin and B vitamins, while limiting weight gain and glycaemic deterioration. CONCLUSION Strategies combining biotin and prebiotic supplementation could help prevent the deterioration of metabolic states in severe obesity. TRIAL REGISTRATION NUMBER NCT02059538.
Collapse
Affiliation(s)
- Eugeni Belda
- Nutrition and Obesities: Systemic Approaches, NutriOmics, Research Unit, Sorbonne Université, INSERM, Paris, France,Integrative Phenomics, Paris, France
| | - Lise Voland
- Nutrition and Obesities: Systemic Approaches, NutriOmics, Research Unit, Sorbonne Université, INSERM, Paris, France
| | - Valentina Tremaroli
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Sahlgrenska Center for Cardiovascular and Metabolic Research, University of Gothenburg, Goteborg, Sweden
| | - Gwen Falony
- Center for Microbiology, VIB, Leuven, Belgium,Vlaams Instituut voor Biotechnologie, VIB-KU Leuven, Heverlee, Flanders, Belgium
| | - Solia Adriouch
- Nutrition and Obesities: Systemic Approaches, NutriOmics, Research Unit, Sorbonne Université, INSERM, Paris, France
| | - Karen E Assmann
- Nutrition and Obesities: Systemic Approaches, NutriOmics, Research Unit, Sorbonne Université, INSERM, Paris, France
| | - Edi Prifti
- Unité de Modélisation Mathématique et Informatique des Systèmes Complexes, UMMISCO, Sorbonne Université, IRD, Bondy, France
| | - Judith Aron-Wisnewsky
- Nutrition and Obesities: Systemic Approaches, NutriOmics, Research Unit, Sorbonne Université, INSERM, Paris, France,Department of Nutrition, Pitié-Salpêtrière Hospital, Assistance Publique - Hopitaux de Paris, Paris, France
| | - Jean Debédat
- Nutrition and Obesities: Systemic Approaches, NutriOmics, Research Unit, Sorbonne Université, INSERM, Paris, France
| | - Tiphaine Le Roy
- Nutrition and Obesities: Systemic Approaches, NutriOmics, Research Unit, Sorbonne Université, INSERM, Paris, France
| | - Trine Nielsen
- Center for Basic Metabolic Research, Novo Nordisk Foundation, University of Copenhagen, Kobenhavn, Denmark
| | - Chloé Amouyal
- Nutrition and Obesities: Systemic Approaches, NutriOmics, Research Unit, Sorbonne Université, INSERM, Paris, France
| | - Sébastien André
- Nutrition and Obesities: Systemic Approaches, NutriOmics, Research Unit, Sorbonne Université, INSERM, Paris, France
| | - Fabrizio Andreelli
- Nutrition and Obesities: Systemic Approaches, NutriOmics, Research Unit, Sorbonne Université, INSERM, Paris, France
| | - Matthias Blüher
- Medical Department III - Endocrinology, Nephrology, Rheumatology - Medical Center, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Rima Chakaroun
- Medical Department III - Endocrinology, Nephrology, Rheumatology - Medical Center, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Julien Chilloux
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London Faculty of Medicine, London, UK
| | - Luis Pedro Coelho
- Structural and Computational Biology, European Molecular Biology Laboratory, Heidelberg, Germany,Molecular Medicine Partnership Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Maria Carlota Dao
- Nutrition and Obesities: Systemic Approaches, NutriOmics, Research Unit, Sorbonne Université, INSERM, Paris, France
| | - Promi Das
- Department of Biology, Chalmers University of Technology, Goteborg, Sweden
| | - Soraya Fellahi
- Functional Unit, Biochemistry and Hormonology Department, enon Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France,Saint-Antoine Research Center, Sorbonne Université, INSERM, Paris, France
| | - Sofia Forslund
- Max Delbrück Center for Molecular Medicine, MDC, Berlin-Buch, Germany
| | - Nathalie Galleron
- MetaGenoPolis, Université Paris-Saclay, INRAE, Jouy-en-Josas, France
| | - Tue H Hansen
- Center for Basic Metabolic Research, Novo Nordisk Foundation, University of Copenhagen, Kobenhavn, Denmark
| | - Bridget Holmes
- Centre Daniel Carasso, Global Nutrition Department, Danone Nutricia Research, Palaiseau, France
| | - Boyang Ji
- Department of Biology, Chalmers University of Technology, Goteborg, Sweden
| | - Helle Krogh Pedersen
- Center for Basic Metabolic Research, Novo Nordisk Foundation, University of Copenhagen, Kobenhavn, Denmark
| | - Phuong Le
- Nutrition and Obesities: Systemic Approaches, NutriOmics, Research Unit, Sorbonne Université, INSERM, Paris, France
| | | | | | - Louise Mannerås-Holm
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Sahlgrenska Center for Cardiovascular and Metabolic Research, University of Gothenburg, Goteborg, Sweden
| | - Florian Marquet
- Nutrition and Obesities: Systemic Approaches, NutriOmics, Research Unit, Sorbonne Université, INSERM, Paris, France
| | - Antonis Myridakis
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Veronique Pelloux
- Nutrition and Obesities: Systemic Approaches, NutriOmics, Research Unit, Sorbonne Université, INSERM, Paris, France
| | - Nicolas Pons
- MetaGenoPolis, Université Paris-Saclay, INRAE, Jouy-en-Josas, France
| | - Benoit Quinquis
- MetaGenoPolis, Université Paris-Saclay, INRAE, Jouy-en-Josas, France
| | - Christine Rouault
- Nutrition and Obesities: Systemic Approaches, NutriOmics, Research Unit, Sorbonne Université, INSERM, Paris, France
| | - Hugo Roume
- MetaGenoPolis, Université Paris-Saclay, INRAE, Jouy-en-Josas, France
| | - Joe-Elie Salem
- Department of Pharmacology and CIC-1421, Assistance Publique-Hôpitaux de Paris, AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Nataliya Sokolovska
- Nutrition and Obesities: Systemic Approaches, NutriOmics, Research Unit, Sorbonne Université, INSERM, Paris, France
| | - Nadja B Søndertoft
- Center for Basic Metabolic Research, Novo Nordisk Foundation, University of Copenhagen, Kobenhavn, Denmark
| | - Sothea Touch
- Nutrition and Obesities: Systemic Approaches, NutriOmics, Research Unit, Sorbonne Université, INSERM, Paris, France
| | - Sara Vieira-Silva
- Center for Microbiology, VIB, Leuven, Belgium,Vlaams Instituut voor Biotechnologie, VIB-KU Leuven, Heverlee, Flanders, Belgium
| | | | - Pilar Galan
- Nutritional Epidemiology Unit, INSERM, INRAE, CNAM, Paris 13 University, Bobigny, France
| | - Jens Holst
- Center for Basic Metabolic Research, Novo Nordisk Foundation, University of Copenhagen, Kobenhavn, Denmark
| | - Jens Peter Gøtze
- Department of Clinical Biochemistry, Rigshospitalet, Kobenhavn, Denmark
| | - Lars Køber
- Department of Cardiology, Rigshospitalet, Kobenhavn, Denmark
| | - Henrik Vestergaard
- Center for Basic Metabolic Research, Novo Nordisk Foundation, University of Copenhagen, Kobenhavn, Denmark,Steno Diabetes Center, Copenhagen, Gentofte, Denmark
| | - Torben Hansen
- Center for Basic Metabolic Research, Novo Nordisk Foundation, University of Copenhagen, Kobenhavn, Denmark,Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Serge Hercberg
- Nutritional Epidemiology Unit, INSERM, INRAE, CNAM, Paris 13 University, Bobigny, France
| | - Jean-Michel Oppert
- Department of Nutrition, Pitié-Salpêtrière Hospital, Assistance Publique - Hopitaux de Paris, Paris, France
| | - Jens Nielsen
- Department of Biology, Chalmers University of Technology, Goteborg, Sweden
| | | | - Marc-Emmanuel Dumas
- Department of Surgery and Cancer, Section of Computational and Systems Medicine, Imperial College London, London, UK,National Heart & Lung Institute, Section of Genomic & Environmental Medicine, Imperial College London, London, UK
| | - Michael Stumvoll
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München, University of Leipzig Faculty of Medicine, Leipzig, Germany
| | - Oluf Borbye Pedersen
- Center for Basic Metabolic Research, Novo Nordisk Foundation, University of Copenhagen, Kobenhavn, Denmark
| | - Peer Bork
- Structural and Computational Biology, European Molecular Biology Laboratory, Heidelberg, Germany,Molecular Medicine Partnership Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Stanislav Dusko Ehrlich
- MetaGenoPolis, Université Paris-Saclay, INRAE, Jouy-en-Josas, France,Center for Host Microbiome Interactions, King's College London Dental Institute, London, UK
| | - Jean-Daniel Zucker
- Nutrition and Obesities: Systemic Approaches, NutriOmics, Research Unit, Sorbonne Université, INSERM, Paris, France,Unité de Modélisation Mathématique et Informatique des Systèmes Complexes, UMMISCO, Sorbonne Université, IRD, Bondy, France
| | - Fredrik Bäckhed
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Sahlgrenska Center for Cardiovascular and Metabolic Research, University of Gothenburg, Goteborg, Sweden
| | - Jeroen Raes
- Center for Microbiology, VIB, Leuven, Belgium,Vlaams Instituut voor Biotechnologie, VIB-KU Leuven, Heverlee, Flanders, Belgium
| | - Karine Clément
- Nutrition and Obesities: Systemic Approaches, NutriOmics, Research Unit, Sorbonne Université, INSERM, Paris, France .,Department of Nutrition, Pitié-Salpêtrière Hospital, Assistance Publique - Hopitaux de Paris, Paris, France
| |
Collapse
|
8
|
Evaluation of paper-based and web-based food frequency questionnaires for 7-year-old children in Singapore. Br J Nutr 2022; 128:1626-1637. [PMID: 34776027 DOI: 10.1017/s0007114521004517] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Advances in technology enabled the development of a web-based, pictorial FFQ to collect parent-report dietary intakes of 7-year-old children in the Growing Up in Singapore Towards healthy Outcomes study. This study aimed to compare intakes estimated from a paper-FFQ and a web-FFQ and examine the relative validity of both FFQ against 3-d diet records (3DDR). Ninety-two mothers reported food intakes of their 7-year-old child on a paper-FFQ, a web-FFQ and a 3DDR. A usability questionnaire collected participants' feedback on the web-FFQ. Correlations and agreement in energy, nutrients and food groups intakes between the dietary assessments were evaluated using Pearson's correlation, Lin's concordance, Bland-Altman plots, Cohen's κ and tertile classification. The paper- and web-FFQ had good correlations (≥ 0·50) and acceptable-good agreement (Lin's concordance ≥ 0·30; Cohen's κ ≥ 0·41; ≥ 50 % correct and ≤ 10 % misclassification into same or extreme tertiles). Compared with 3DDR, both FFQ showed poor agreement (< 0·30) in assessing absolute intakes except micronutrients (web-FFQ had acceptable-good agreement), but showed acceptable-good ability to classify children into tertiles (κ ≥ 0·21; ≥ 40 % and ≤ 15 % correct or misclassification). Bland-Altman plots suggest good agreement between web-FFQ and 3DDR in assessing micronutrients and several food groups. The web-FFQ was well-received, and majority (81 %) preferred the web-FFQ over the paper-FFQ. The newly developed web-FFQ produced intake estimates comparable to the paper-FFQ, has acceptable-good agreement with 3DDR in assessing absolute micronutrients intakes and has acceptable-good ability to classify children according to categories of intakes. The positive acceptance of the web-FFQ makes it a feasible tool for future dietary data collection.
Collapse
|
9
|
El Mesmoudi N, Al Dhaheri AS, Feehan J, Stojanovska L, Ali HI. Validation of a quantitative web-based food frequency questionnaire to assess dietary intake in the adult Emirati population. PLoS One 2022; 17:e0262150. [PMID: 35085272 PMCID: PMC8794217 DOI: 10.1371/journal.pone.0262150] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 12/17/2021] [Indexed: 12/12/2022] Open
Abstract
Background and objective A culture-specific web-based food frequency questionnaire (FFQ) to assess dietary intake in the United Arab Emirates (UAE) adult population was developed using data from the 2009–2010 national nutrition survey. The objective of this study was to assess the relative validity of the newly developed FFQ for use in the adult Emirati population (AE-FFQ), which contained a list of 139 food lines. Methods A convenient sample of 60 (36 females and 24 males) adult Emiratis completed 3 non-consecutive 24HRs over a period of one month, followed by the AE-FFQ, which assessed the intake over the previous month. Relative validity was evaluated by comparing nutrient and food group intakes from the AE-FFQ with the average three 24HRs using Wilcoxon signed-rank tests, Spearman’s correlation coefficients (CC), Bland-Altman analysis, and cross-classification. Results The AE-FFQ overestimated energy and most nutrients and food groups. Bland–Altman analysis showed significant proportional bias between the 2 methods. Deattenuated energy-adjusted Spearman correlation coefficients were poor to good ranging from 0.06 (iron) to 0.62 (fiber) for nutrients, 0.39 median value, and from –0.01 (cruciferous vegetables) to 0.64 (eggs) for food groups, 0.41 median value. A fairly acceptable agreement was obtained, with correct classification into the same or adjacent quartile ranging from 34% (vitamin B12) to 78% (pyridoxine), median 69% for nutrients and from 55% (diet soft drinks) to 87% (soft drinks), median 67% for food groups. Conclusions The AE-FFQ is an acceptable tool for ranking UAE adults (aged 18 to 50) according to their dietary intake to investigate the role of Emirati dietary patterns on health and disease. Caution is needed for assessing absolute intake, however, given the bias observed in assessing group-level agreement.
Collapse
Affiliation(s)
- Najoua El Mesmoudi
- Department of Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ayesha S. Al Dhaheri
- Department of Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Jack Feehan
- The Department of Medicine–Western Health, The University of Melbourne, Melbourne, Australia
- The Institute for Health and Sport, Victoria University, Melbourne Australia
| | - Lily Stojanovska
- Department of Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- The Institute for Health and Sport, Victoria University, Melbourne Australia
| | - Habiba I. Ali
- Department of Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- * E-mail:
| |
Collapse
|
10
|
Combinatorial, additive and dose-dependent drug-microbiome associations. Nature 2021; 600:500-505. [PMID: 34880489 DOI: 10.1038/s41586-021-04177-9] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 10/22/2021] [Indexed: 01/04/2023]
Abstract
During the transition from a healthy state to cardiometabolic disease, patients become heavily medicated, which leads to an increasingly aberrant gut microbiome and serum metabolome, and complicates biomarker discovery1-5. Here, through integrated multi-omics analyses of 2,173 European residents from the MetaCardis cohort, we show that the explanatory power of drugs for the variability in both host and gut microbiome features exceeds that of disease. We quantify inferred effects of single medications, their combinations as well as additive effects, and show that the latter shift the metabolome and microbiome towards a healthier state, exemplified in synergistic reduction in serum atherogenic lipoproteins by statins combined with aspirin, or enrichment of intestinal Roseburia by diuretic agents combined with beta-blockers. Several antibiotics exhibit a quantitative relationship between the number of courses prescribed and progression towards a microbiome state that is associated with the severity of cardiometabolic disease. We also report a relationship between cardiometabolic drug dosage, improvement in clinical markers and microbiome composition, supporting direct drug effects. Taken together, our computational framework and resulting resources enable the disentanglement of the effects of drugs and disease on host and microbiome features in multimedicated individuals. Furthermore, the robust signatures identified using our framework provide new hypotheses for drug-host-microbiome interactions in cardiometabolic disease.
Collapse
|
11
|
Burlui AM, Cardoneanu A, Macovei LA, Rezus C, Boiculese LV, Graur M, Rezus E. Diet in Scleroderma: Is There a Need for Intervention? Diagnostics (Basel) 2021; 11:2118. [PMID: 34829464 PMCID: PMC8620611 DOI: 10.3390/diagnostics11112118] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 01/10/2023] Open
Abstract
UNLABELLED Systemic sclerosis (SSc) patients exhibit a plethora of risk factors for nutritional decline, including the presence of chronic inflammation and the progressive nature of disease-related multisystem involvement. The prevalence and consequences of nutritional decline in scleroderma are frequently underestimated, its management currently remaining a subject of debate. The main objective of the present study was to perform a detailed assessment of scleroderma patients' diet as well as their eating habits and to describe the relationships with weight loss and malnutrition risk in the absence of professional nutritional counseling. METHODS We used a translated and validated version of the EPIC-Norfolk FFQ (European Prospective Investigation into Cancer and Nutrition Norfolk Food Frequency Questionnaire) to evaluate the patients' diet and MUST (Malnutrition Universal Screening Tool) to investigate the risk of malnutrition. Disease activity was estimated using the EUSTAR-AI (European Scleroderma Trials and Research group Activity Index). RESULTS We included 69 patients with SSc, of which 42 underwent a detailed dietary assessment. Dietary factors were connected to body composition and digestive symptoms. We found high sodium intake and frequent suboptimal energy consumption in our study group, including patients with cardiopulmonary involvement. Liver transaminases were inversely correlated with the consumption of nuts and seeds. Malnutrition and weight loss were significantly associated with pulmonary hypertension, heart failure, albumin levels, and the extent of skin fibrosis, but not advanced age. Although the patients with EUSTAR-AI ≥ 2.5 were more frequently included in the moderate and high malnutrition risk categories, these results did not reach statistical significance. CONCLUSIONS Currently, there is an unmet need for longitudinal and interventional research focusing on the long-term significance, ramifications, and management of nutritional impairment in SSc patients with various clinical manifestations. Our results indicate that scleroderma patients could benefit from personalized nutritional counseling in an interdisciplinary setting.
Collapse
Affiliation(s)
- Alexandra Maria Burlui
- Department of Rheumatology and Rehabilitation, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.C.); (L.A.M.); (E.R.)
| | - Anca Cardoneanu
- Department of Rheumatology and Rehabilitation, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.C.); (L.A.M.); (E.R.)
| | - Luana Andreea Macovei
- Department of Rheumatology and Rehabilitation, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.C.); (L.A.M.); (E.R.)
| | - Ciprian Rezus
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Lucian Vasile Boiculese
- Department of Preventive Medicine and Interdisciplinarity, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Mariana Graur
- Department of Diabetes, Nutrition and Metabolic Diseases, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Elena Rezus
- Department of Rheumatology and Rehabilitation, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.C.); (L.A.M.); (E.R.)
| |
Collapse
|
12
|
Cui Q, Xia Y, Wu Q, Chang Q, Niu K, Zhao Y. Validity of the food frequency questionnaire for adults in nutritional epidemiological studies: A systematic review and meta-analysis. Crit Rev Food Sci Nutr 2021; 63:1670-1688. [PMID: 34520300 DOI: 10.1080/10408398.2021.1966737] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
As the most widely used tool for assessing dietary intake, the validity of food frequency questionnaires (FFQs) should be evaluated before application. A comprehensive search of the PubMed and Web of Science databases was conducted for publications from January 2000 to April 1, 2020. Pooled estimates were calculated for correlation coefficients and mean differences for energy and 61 nutrients between FFQs and standard methods. The literature search identified 130 articles that included 21,494 participants. Subgroup analyses according to the number of administrations of the reference method, sample size, administration methods, FFQ items, reference periods, quality of the studies, gender, and regions were also performed. We conducted a meta-analysis by summarizing the available evidence to comprehensively assess the validity of FFQs stratified by the reference method type (24-hour recall (24HRs) and food records (FRs). We also performed subgroup analyses to examine the impact on the final summary estimates. After a meta-analysis of the FFQs' validity correlation coefficients of the included studies, this study showed that the range (median) of the validity coefficients of the 24HRs as reference methods was 0.220-0.770 (0.416), and for the FRs, it was 0.173-0.735 (0.373), which indicated that FFQs were suitable to assess the overall dietary intake in nutritional epidemiological studies. The results of the subgroup analysis showed that the number of administrations of the reference method, administration mode, number of items, reference periods, sample size, and gender mainly affected the validity correlation of FFQs.Supplemental data for this article is available online at https://doi.org/10.1080/10408398.2021.1966737 .
Collapse
Affiliation(s)
- Qi Cui
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yang Xia
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qijun Wu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qing Chang
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Kaijun Niu
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Yuhong Zhao
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
13
|
Protein Intake, Metabolic Status and the Gut Microbiota in Different Ethnicities: Results from Two Independent Cohorts. Nutrients 2021; 13:nu13093159. [PMID: 34579043 PMCID: PMC8465773 DOI: 10.3390/nu13093159] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/18/2021] [Accepted: 08/27/2021] [Indexed: 12/30/2022] Open
Abstract
Background: Protein intake has been associated with the development of pre-diabetes (pre-T2D) and type 2 diabetes (T2D). The gut microbiota has the capacity to produce harmful metabolites derived from dietary protein. Furthermore, both the gut microbiota composition and metabolic status (e.g., insulin resistance) can be modulated by diet and ethnicity. However, to date most studies have predominantly focused on carbohydrate and fiber intake with regards to metabolic status and gut microbiota composition. Objectives: To determine the associations between dietary protein intake, gut microbiota composition, and metabolic status in different ethnicities. Methods: Separate cross-sectional analysis of two European cohorts (MetaCardis, n = 1759; HELIUS, n = 1528) including controls, patients with pre-T2D, and patients with T2D of Caucasian/non-Caucasian origin with nutritional data obtained from Food Frequency Questionnaires and gut microbiota composition. Results: In both cohorts, animal (but not plant) protein intake was associated with pre-T2D status and T2D status after adjustment for confounders. There was no significant association between protein intake (total, animal, or plant) with either gut microbiota alpha diversity or beta diversity, regardless of ethnicity. At the species level, we identified taxonomical signatures associated with animal protein intake that overlapped in both cohorts with different abundances according to metabolic status and ethnicity. Conclusions: Animal protein intake is associated with pre-T2D and T2D status but not with gut microbiota beta or alpha diversity, regardless of ethnicity. Gut microbial taxonomical signatures were identified, which could function as potential modulators in the association between dietary protein intake and metabolic status.
Collapse
|
14
|
Yáñez F, Soler Z, Oliero M, Xie Z, Oyarzun I, Serrano-Gómez G, Manichanh C. Integrating Dietary Data into Microbiome Studies: A Step Forward for Nutri-Metaomics. Nutrients 2021; 13:2978. [PMID: 34578856 PMCID: PMC8468122 DOI: 10.3390/nu13092978] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/04/2021] [Accepted: 08/25/2021] [Indexed: 12/18/2022] Open
Abstract
Diet is recognised as the main driver of changes in gut microbiota. However, linking habitual dietary intake to microbiome composition and activity remains a challenge, leaving most microbiome studies with little or no dietary information. To fill this knowledge gap, we conducted two consecutive studies (n = 84: a first pilot study (n = 40) to build a web-based, semi-quantitative simplified FFQ (sFFQ) based on three 24-h dietary recalls (24HRs); a second study (n = 44) served to validate the newly developed sFFQ using three 24HRs as reference method and to relate gut microbiome profiling (16S rRNA gene) with the extracted dietary and lifestyle data. Relative validation analysis provided acceptable classification and agreement for 13 out of 24 (54%) food groups and 20 out of 29 nutrients (69%) based on intraclass correlation coefficient, cross-classification, Spearman's correlation, Wilcoxon test, and Bland-Altman. Microbiome analysis showed that higher diversity was positively associated with age, vaginal birth, and intake of fruit. In contrast, microbial diversity was negatively associated with BMI, processed meats, ready-to-eat meals, sodium, and saturated fat. Our analysis also revealed a correlation between food groups or nutrients and microbial composition. Overall, we provide the first dietary assessment tool to be validated and correlated with microbiome data for population studies.
Collapse
Affiliation(s)
- Francisca Yáñez
- Gut Microbiome Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Zaida Soler
- Gut Microbiome Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Manon Oliero
- Gut Microbiome Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Zixuan Xie
- Gut Microbiome Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Iñigo Oyarzun
- Gut Microbiome Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Gerard Serrano-Gómez
- Gut Microbiome Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Chaysavanh Manichanh
- Gut Microbiome Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
- Gut Microbiome Group, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
| |
Collapse
|
15
|
Avery EG, Bartolomaeus H, Maifeld A, Marko L, Wiig H, Wilck N, Rosshart SP, Forslund SK, Müller DN. The Gut Microbiome in Hypertension: Recent Advances and Future Perspectives. Circ Res 2021; 128:934-950. [PMID: 33793332 DOI: 10.1161/circresaha.121.318065] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The pathogenesis of hypertension is known to involve a diverse range of contributing factors including genetic, environmental, hormonal, hemodynamic and inflammatory forces, to name a few. There is mounting evidence to suggest that the gut microbiome plays an important role in the development and pathogenesis of hypertension. The gastrointestinal tract, which houses the largest compartment of immune cells in the body, represents the intersection of the environment and the host. Accordingly, lifestyle factors shape and are modulated by the microbiome, modifying the risk for hypertensive disease. One well-studied example is the consumption of dietary fibers, which leads to the production of short-chain fatty acids and can contribute to the expansion of anti-inflammatory immune cells, consequently protecting against the progression of hypertension. Dietary interventions such as fasting have also been shown to impact hypertension via the microbiome. Studying the microbiome in hypertensive disease presents a variety of unique challenges to the use of traditional model systems. Integrating microbiome considerations into preclinical research is crucial, and novel strategies to account for reciprocal host-microbiome interactions, such as the wildling mouse model, may provide new opportunities for translation. The intricacies of the role of the microbiome in hypertensive disease is a matter of ongoing research, and there are several technical considerations which should be accounted for moving forward. In this review we provide insights into the host-microbiome interaction and summarize the evidence of its importance in the regulation of blood pressure. Additionally, we provide recommendations for ongoing and future research, such that important insights from the microbiome field at large can be readily integrated in the context of hypertension.
Collapse
Affiliation(s)
- Ellen G Avery
- Experimental and Clinical Research Center, a cooperation of Charité-Universitätsmedizin Berlin and Max Delbruck Center for Molecular Medicine, Berlin, Germany (E.G.A.,H.B.,A.M.,L.M.,N.W.,S.K.F.,D.N.M.).,For Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (E.G.A.,H.B., N.W., S.K.F., D.N.M.).,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany (E.G.A., H.B., A.M., L.M., N.W., S.K.F., D.N.M.).,Freie Universität Berlin, Department of Biology, Chemistry, Pharmacy, Berlin, Germany (E.G.A.)
| | - Hendrik Bartolomaeus
- Experimental and Clinical Research Center, a cooperation of Charité-Universitätsmedizin Berlin and Max Delbruck Center for Molecular Medicine, Berlin, Germany (E.G.A.,H.B.,A.M.,L.M.,N.W.,S.K.F.,D.N.M.).,Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany (H.B., A.M., L.M., N.W., S.K.F., D.N.M.).,For Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (E.G.A.,H.B., N.W., S.K.F., D.N.M.).,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany (E.G.A., H.B., A.M., L.M., N.W., S.K.F., D.N.M.)
| | - Andras Maifeld
- Experimental and Clinical Research Center, a cooperation of Charité-Universitätsmedizin Berlin and Max Delbruck Center for Molecular Medicine, Berlin, Germany (E.G.A.,H.B.,A.M.,L.M.,N.W.,S.K.F.,D.N.M.).,Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany (H.B., A.M., L.M., N.W., S.K.F., D.N.M.).,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany (E.G.A., H.B., A.M., L.M., N.W., S.K.F., D.N.M.)
| | - Lajos Marko
- Experimental and Clinical Research Center, a cooperation of Charité-Universitätsmedizin Berlin and Max Delbruck Center for Molecular Medicine, Berlin, Germany (E.G.A.,H.B.,A.M.,L.M.,N.W.,S.K.F.,D.N.M.).,Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany (H.B., A.M., L.M., N.W., S.K.F., D.N.M.).,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany (E.G.A., H.B., A.M., L.M., N.W., S.K.F., D.N.M.)
| | - Helge Wiig
- Department of Biomedicine, University of Bergen, Norway (H.W.)
| | - Nicola Wilck
- Experimental and Clinical Research Center, a cooperation of Charité-Universitätsmedizin Berlin and Max Delbruck Center for Molecular Medicine, Berlin, Germany (E.G.A.,H.B.,A.M.,L.M.,N.W.,S.K.F.,D.N.M.).,Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany (H.B., A.M., L.M., N.W., S.K.F., D.N.M.).,For Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (E.G.A.,H.B., N.W., S.K.F., D.N.M.).,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany (E.G.A., H.B., A.M., L.M., N.W., S.K.F., D.N.M.).,For Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany (N.W.)
| | - Stephan P Rosshart
- Medical Center-University of Freiburg, Department of Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases, Freiburg, Germany (S.P.R.)
| | - Sofia K Forslund
- Experimental and Clinical Research Center, a cooperation of Charité-Universitätsmedizin Berlin and Max Delbruck Center for Molecular Medicine, Berlin, Germany (E.G.A.,H.B.,A.M.,L.M.,N.W.,S.K.F.,D.N.M.).,Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany (H.B., A.M., L.M., N.W., S.K.F., D.N.M.).,For Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (E.G.A.,H.B., N.W., S.K.F., D.N.M.).,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany (E.G.A., H.B., A.M., L.M., N.W., S.K.F., D.N.M.)
| | - Dominik N Müller
- Experimental and Clinical Research Center, a cooperation of Charité-Universitätsmedizin Berlin and Max Delbruck Center for Molecular Medicine, Berlin, Germany (E.G.A.,H.B.,A.M.,L.M.,N.W.,S.K.F.,D.N.M.).,Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany (H.B., A.M., L.M., N.W., S.K.F., D.N.M.).,For Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (E.G.A.,H.B., N.W., S.K.F., D.N.M.).,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany (E.G.A., H.B., A.M., L.M., N.W., S.K.F., D.N.M.)
| |
Collapse
|
16
|
The Effect of FGF21 and Its Genetic Variants on Food and Drug Cravings, Adipokines and Metabolic Traits. Biomedicines 2021; 9:biomedicines9040345. [PMID: 33805553 PMCID: PMC8065804 DOI: 10.3390/biomedicines9040345] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/27/2022] Open
Abstract
Fibroblast growth factor 21 (FGF21) is a regulator of addictive behavior. Increasing evidence suggests an impact of FGF21 on eating behavior, food and drug cravings and on other adipokines like insulin-like growth factor 1 (IGF-1) or adiponectin. We investigated the association of serum FGF21 and genetic variants with aspects of food and drug craving and obesity related metabolic parameters including serum adipokine levels. Standardized questionnaires, blood samples and anthropometric data of the Sorbs cohort (n = 1046) were analyzed using SPSS. For genetic analyses, the FGF21-locus ±10 kb was genotyped and analyzed using PLINK. Validation was conducted in a second independent cohort (n = 704). FGF21 was significantly associated with alcohol and coffee consumption, smoking and eating behavior (disinhibition). We confirmed correlations of FGF21 serum levels with IGF-1, adiponectin, pro-enkephalin, adipocyte fatty-acid-binding protein, chemerin and progranulin. FGF21 genetic variants were associated with anthropometric and metabolic parameters, adipokines, food and drug craving while strongest evidence was seen with low-density lipoprotein cholesterol (LDL-C). We highlight the potential role of FGF21 in food and drug cravings and provide new insights regarding the link of FGF21 with other adipokines as well as with metabolic traits, in particular those related to lipid metabolism (LDL-C).
Collapse
|
17
|
Amenyah SD, Murphy J, Fenge LA. Evaluation of a health-related intervention to reduce overweight, obesity and increase employment in France and the United Kingdom: a mixed-methods realist evaluation protocol. BMC Public Health 2021; 21:582. [PMID: 33761929 PMCID: PMC7987742 DOI: 10.1186/s12889-021-10523-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 03/01/2021] [Indexed: 12/03/2022] Open
Abstract
Background Obesity, overweight and unemployment are interlinked, with debilitating effects on mortality, health, wellbeing and quality of life. Existing interventions to reduce overweight, obesity and unemployment have addressed these challenges independent of each other with limited success. The Adding to Social capital and individual Potential In disadvantaged REgions (ASPIRE) project will develop an innovative model using a combination of skills training and health and wellbeing interventions to improve health, wellbeing, quality of life and reduce overweight, obesity and unemployment in England and France. The aim of this paper is to outline the protocol for evaluating the ASPIRE project to examine the effectiveness of the intervention and clarify the mechanisms and contextual factors which interact to achieve outcomes. Methods A mixed-method realist evaluation using a single-group before-and-after design will be used. The evaluation will consist of development of an initial programme theory, theory validation and refinement using quantitative and qualitative data to understand the causal mechanisms, contexts of implementation and their interactions that result in outcomes observed in ASPIRE. Primary outcomes that will be assessed are change in body weight and body mass index, reemployment and a rise on the ASPIRE participation ladder. The ASPIRE participation ladders consists of a series of 5 steps to engage participants in the project. The first step on the ladder is joining an ASPIRE hub with paid employment as the final step on the ladder. Secondary outcomes will be physical activity, diet quality, self-efficacy and health-related quality of life. Both quantitative and qualitative approaches are appropriate in this study because the use of validated questionnaires and objective measures will demonstrate how much the intervention addressed outcomes related to weight loss and reemployment and the qualitative data (photovoice) will provide insights into the contexts and experiences that are unique to participants in the project. Discussion The results from this evaluation will provide an understanding of how a model of health-related interventions which improve health, wellbeing and maintenance of a healthy lifestyle could reduce overweight, obesity and unemployment. The findings will enable the adaptation of this model for effective implementation in different contexts and circumstances. Trial registration ISRCTN registry: Study ID: ISRCTN17609001, 24th February 2021 (Retrospectively registered). Supplementary Information The online version contains supplementary material available at 10.1186/s12889-021-10523-3.
Collapse
Affiliation(s)
- Sophia D Amenyah
- Faculty of Health and Social Sciences, 5th Floor, Bournemouth Gateway Building, Bournemouth University, St Paul's Lane, Bournemouth, BH8 8GP, UK.
| | - Jane Murphy
- Faculty of Health and Social Sciences, 5th Floor, Bournemouth Gateway Building, Bournemouth University, St Paul's Lane, Bournemouth, BH8 8GP, UK
| | - Lee-Ann Fenge
- Faculty of Health and Social Sciences, 5th Floor, Bournemouth Gateway Building, Bournemouth University, St Paul's Lane, Bournemouth, BH8 8GP, UK
| |
Collapse
|
18
|
Alawadhi B, Fallaize R, Franco RZ, Hwang F, Lovegrove J. Web-Based Dietary Intake Estimation to Assess the Reproducibility and Relative Validity of the EatWellQ8 Food Frequency Questionnaire: Validation Study. JMIR Form Res 2021; 5:e13591. [PMID: 33650974 PMCID: PMC7967232 DOI: 10.2196/13591] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 06/08/2020] [Accepted: 11/16/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The web-based EatWellQ8 food frequency questionnaire (FFQ) was developed as a dietary assessment tool for healthy adults in Kuwait. Validation against reliable instruments and assessment of its reproducibility are required to ensure the accuracy of the EatWellQ8 FFQ in computing nutrient intake. OBJECTIVE This study aims to assess the reproducibility and relative validity of the EatWellQ8 146-item FFQ, which included images of food portion sizes based on The Composition of Foods by McCance and Widdowson and food composition tables from Kuwait and the Kingdom of Bahrain, against a paper-based FFQ (PFFQ) and a 4-day weighed food record (WFR). METHODS Reproducibility of the EatWellQ8 FFQ was assessed using a test-retest methodology. Participants were required to complete the FFQ at 2 time points, 4 weeks apart. To assess the relative validity of the EatWellQ8 FFQ, a subset of the participants were asked to complete a PFFQ or a 4-day WFR 1 week after the administration of the EatWellQ8 FFQ. The level of agreement between nutrient and food group intakes was estimated by repeated EatWellQ8 FFQ administration. The EatWellQ8 FFQ, PFFQ, and 4-day WFR were also evaluated using the Bland-Altman methodology and classified into quartiles of daily intake. Crude unadjusted correlation coefficients were also calculated for nutrients and food groups. RESULTS A total of 99 Kuwaiti participants (64/99, 65% female and 35/99, 35% male) completed the study-53 participated in the reproducibility study and the 4-day WFR validity study (mean age 37.1 years, SD 9.9) and 46 participated in the PFFQ validity study (mean age 36.2 years, SD 8.3). Crude unadjusted correlations for repeated EatWellQ8 FFQs ranged from 0.37 to 0.93 (mean r=0.67, SD 0.14; 95% CI 0.11-0.95) for nutrients and food groups (P=.01). Mean cross-classification into exact agreement plus adjacent was 88% for nutrient intakes and 86% for food groups, and Bland-Altman plots showed good agreement for energy-adjusted macronutrient intakes. The association between the EatWellQ8 FFQ and PFFQ varied, with crude unadjusted correlations ranging from 0.42 to 0.73 (mean r=0.46, SD 0.12; 95% CI -0.02 to 0.84; P=.046). Mean cross-classification into exact agreement plus adjacent was 84% for nutrient intake and 74% for food groups. Bland-Altman plots showed moderate agreement for both energy and energy-controlled nutrient intakes. Crude unadjusted correlations for the EatWellQ8 FFQ and the 4-day WFR ranged from 0.40 to 0.88 (mean r=0.58, SD 0.13; 95% CI 0.01-0.58; P=.01). Mean cross-classification into exact agreement plus adjacent was 85% for nutrient intake and 83% for food groups. Bland-Altman plots showed moderate agreement for energy-adjusted macronutrient intakes. CONCLUSIONS The results indicate that the web-based EatWellQ8 FFQ is reproducible for assessing nutrient and food group intake and has moderate agreement compared with a PFFQ and a 4-day WFR for measuring energy and nutrient intakes.
Collapse
Affiliation(s)
- Balqees Alawadhi
- Hugh Sinclair Unit of Human Nutrition and Institute for Cardiovascular and Metabolic Research, Department of Food and Nutritional Sciences, University of Reading, Reading, United Kingdom
| | - Rosalind Fallaize
- Hugh Sinclair Unit of Human Nutrition and Institute for Cardiovascular and Metabolic Research, Department of Food and Nutritional Sciences, University of Reading, Reading, United Kingdom.,School of Life and Medical Science, University of Hertfordshire, Hertfordshire, United Kingdom
| | - Rodrigo Zenun Franco
- Biomedical Engineering Section, School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Faustina Hwang
- Biomedical Engineering Section, School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Julie Lovegrove
- Hugh Sinclair Unit of Human Nutrition and Institute for Cardiovascular and Metabolic Research, Department of Food and Nutritional Sciences, University of Reading, Reading, United Kingdom
| |
Collapse
|
19
|
Molinaro A, Bel Lassen P, Henricsson M, Wu H, Adriouch S, Belda E, Chakaroun R, Nielsen T, Bergh PO, Rouault C, André S, Marquet F, Andreelli F, Salem JE, Assmann K, Bastard JP, Forslund S, Le Chatelier E, Falony G, Pons N, Prifti E, Quinquis B, Roume H, Vieira-Silva S, Hansen TH, Pedersen HK, Lewinter C, Sønderskov NB, Køber L, Vestergaard H, Hansen T, Zucker JD, Galan P, Dumas ME, Raes J, Oppert JM, Letunic I, Nielsen J, Bork P, Ehrlich SD, Stumvoll M, Pedersen O, Aron-Wisnewsky J, Clément K, Bäckhed F. Imidazole propionate is increased in diabetes and associated with dietary patterns and altered microbial ecology. Nat Commun 2020; 11:5881. [PMID: 33208748 PMCID: PMC7676231 DOI: 10.1038/s41467-020-19589-w] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 10/22/2020] [Indexed: 12/13/2022] Open
Abstract
Microbiota-host-diet interactions contribute to the development of metabolic diseases. Imidazole propionate is a novel microbially produced metabolite from histidine, which impairs glucose metabolism. Here, we show that subjects with prediabetes and diabetes in the MetaCardis cohort from three European countries have elevated serum imidazole propionate levels. Furthermore, imidazole propionate levels were increased in subjects with low bacterial gene richness and Bacteroides 2 enterotype, which have previously been associated with obesity. The Bacteroides 2 enterotype was also associated with increased abundance of the genes involved in imidazole propionate biosynthesis from dietary histidine. Since patients and controls did not differ in their histidine dietary intake, the elevated levels of imidazole propionate in type 2 diabetes likely reflects altered microbial metabolism of histidine, rather than histidine intake per se. Thus the microbiota may contribute to type 2 diabetes by generating imidazole propionate that can modulate host inflammation and metabolism. Gut microbial metabolism of nutrients contributes to metabolic diseases, and the histidine metabolite imidazole propionate (ImP) is produced by type 2 diabetes (T2D) associated microbiome. Here the authors report that circulating ImP levels are increased in subjects with prediabetes or T2D in three European populations, and this increase associates with altered gut microbiota rather than dietary histidine.
Collapse
Affiliation(s)
- Antonio Molinaro
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine and Sahlgrenska Center for Cardiovascular and Metabolic Research, University of Gothenburg, 413 45, Gothenburg, Sweden.,Department of Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Pierre Bel Lassen
- INSERM, Nutrition and Obesities; Systemic Approaches (NutriOmics), Sorbonne Université, Paris, France.,Assistance Publique Hôpitaux de Paris, Pitie-Salpêtrière Hospital, Nutrition department, CRNH Ile de France, Paris, France
| | - Marcus Henricsson
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine and Sahlgrenska Center for Cardiovascular and Metabolic Research, University of Gothenburg, 413 45, Gothenburg, Sweden
| | - Hao Wu
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine and Sahlgrenska Center for Cardiovascular and Metabolic Research, University of Gothenburg, 413 45, Gothenburg, Sweden
| | - Solia Adriouch
- INSERM, Nutrition and Obesities; Systemic Approaches (NutriOmics), Sorbonne Université, Paris, France
| | - Eugeni Belda
- INSERM, Nutrition and Obesities; Systemic Approaches (NutriOmics), Sorbonne Université, Paris, France.,Integromics Unit, Institute of Cardiometabolism and Nutrition, 75013, Paris, France
| | - Rima Chakaroun
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Trine Nielsen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Per-Olof Bergh
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine and Sahlgrenska Center for Cardiovascular and Metabolic Research, University of Gothenburg, 413 45, Gothenburg, Sweden
| | - Christine Rouault
- INSERM, Nutrition and Obesities; Systemic Approaches (NutriOmics), Sorbonne Université, Paris, France
| | - Sébastien André
- INSERM, Nutrition and Obesities; Systemic Approaches (NutriOmics), Sorbonne Université, Paris, France
| | - Florian Marquet
- INSERM, Nutrition and Obesities; Systemic Approaches (NutriOmics), Sorbonne Université, Paris, France
| | - Fabrizio Andreelli
- INSERM, Nutrition and Obesities; Systemic Approaches (NutriOmics), Sorbonne Université, Paris, France
| | - Joe-Elie Salem
- Assistance Publique Hôpitaux de Paris, Clinical Investigation Center Paris East, 75013, Paris, France
| | - Karen Assmann
- INSERM, Nutrition and Obesities; Systemic Approaches (NutriOmics), Sorbonne Université, Paris, France
| | - Jean-Philippe Bastard
- Assistance Publique Hôpitaux de Paris, Biochemistry and Hormonology Department, Tenon Hospital, 75020, Paris, France
| | - Sofia Forslund
- Experimental and Clinical Research Center, A Cooperation of Charité-Universitätsmedizin and the Max-Delbrück Center, Berlin, Germany
| | | | - Gwen Falony
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium.,Center for Microbiology, VIB, Leuven, Belgium
| | - Nicolas Pons
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Paris, France
| | - Edi Prifti
- Integromics Unit, Institute of Cardiometabolism and Nutrition, 75013, Paris, France.,Unité de Modélisation Mathématique et Informatique des Systèmes Complexes, UMMISCO, 93143, Bondy, France
| | - Benoit Quinquis
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Paris, France
| | - Hugo Roume
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Paris, France
| | - Sara Vieira-Silva
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium.,Center for Microbiology, VIB, Leuven, Belgium
| | - Tue H Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Helle Krogh Pedersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Christian Lewinter
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Nadja B Sønderskov
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | | | - Lars Køber
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Henrik Vestergaard
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Jean-Daniel Zucker
- Unité de Modélisation Mathématique et Informatique des Systèmes Complexes, UMMISCO, 93143, Bondy, France
| | - Pilar Galan
- Sorbonne Paris Cité Epidemiology and Statistics Research Centre (CRESS), U1153 Inserm, U1125, Inra, Cnam, University of Paris 13, Nutritional Epidemiology Research Team (EREN), 93017, Bobigny, France
| | - Marc-Emmanuel Dumas
- Computational and Systems Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK.,Genomic and Environmental Medicine, National Heart & Lung Institute, Faculty of Medicine, Imperial College London, London, SW3 6KY, UK
| | - Jeroen Raes
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Paris, France.,Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Jean-Michel Oppert
- Assistance Publique Hôpitaux de Paris, Pitie-Salpêtrière Hospital, Nutrition department, CRNH Ile de France, Paris, France
| | - Ivica Letunic
- Biobyte Solutions GmbH, Bothestr. 142, 69117, Heidelberg, Germany
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE41128, Gothenburg, Sweden
| | - Peer Bork
- Structural and Computational Biology, European Molecular Biology Laboratory, Heidelberg, Germany.,Molecular Medicine Partnership Unit, University of Heidelberg and European Molecular Biology Laboratory, Heidelberg, Germany
| | - S Dusko Ehrlich
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Paris, France
| | - Michael Stumvoll
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Oluf Pedersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Judith Aron-Wisnewsky
- INSERM, Nutrition and Obesities; Systemic Approaches (NutriOmics), Sorbonne Université, Paris, France.,Assistance Publique Hôpitaux de Paris, Pitie-Salpêtrière Hospital, Nutrition department, CRNH Ile de France, Paris, France
| | - Karine Clément
- INSERM, Nutrition and Obesities; Systemic Approaches (NutriOmics), Sorbonne Université, Paris, France. .,Assistance Publique Hôpitaux de Paris, Pitie-Salpêtrière Hospital, Nutrition department, CRNH Ile de France, Paris, France.
| | - Fredrik Bäckhed
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine and Sahlgrenska Center for Cardiovascular and Metabolic Research, University of Gothenburg, 413 45, Gothenburg, Sweden. .,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark. .,Department of Clinical Physiology, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden.
| |
Collapse
|
20
|
Neyrinck AM, Nazare JA, Rodriguez J, Jottard R, Dib S, Sothier M, Berghe LVD, Alligier M, Alexiou H, Maquet V, Vinoy S, Bischoff SC, Walter J, Laville M, Delzenne NM. Development of a Repertoire and a Food Frequency Questionnaire for Estimating Dietary Fiber Intake Considering Prebiotics: Input from the FiberTAG Project. Nutrients 2020; 12:nu12092824. [PMID: 32942686 PMCID: PMC7551723 DOI: 10.3390/nu12092824] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 12/13/2022] Open
Abstract
Most official food composition tables and food questionnaires do not provide enough data to assess fermentable dietary fibers (DF) that can exert a health effect through their interaction with the gut microbiota. The aim of this study was to develop a database and a food frequency questionnaire (FFQ) allowing detailed DF intake estimation including prebiotic (oligo)saccharides. A repertoire of DF detailing total, soluble DF, insoluble DF and prebiotic (oligo)saccharides (inulin-type fructans, fructo-oligosaccharides and galacto-oligosaccharides) in food products consumed in Europe has been established. A 12 month FFQ was developed and submitted to 15 healthy volunteers from the FiberTAG study. Our data report a total DF intake of 38 g/day in the tested population. Fructan and fructo-oligosaccharides intake, linked notably to condiments (garlic and onions) ingestion, reached 5 and 2 g/day, respectively, galacto-oligosaccharides intake level being lower (1 g/day). We conclude that the FiberTAG repertoire and FFQ are major tools for the evaluation of the total amount of DF including prebiotics. Their use can be helpful in intervention or observational studies devoted to analyze microbiota–nutrient interactions in different pathological contexts, as well as to revisit DF intake recommendations as part of healthy lifestyles considering specific DF.
Collapse
Affiliation(s)
- Audrey M. Neyrinck
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, 1200 Sint-Lambrechts-Woluwe, Belgium; (A.M.N.); (J.R.); (R.J.); (S.D.)
| | - Julie-Anne Nazare
- Centre de Recherche en Nutrition Humaine Rhône-Alpes, Université-Lyon, CarMeN Laboratory, Université Claude Bernard Lyon1, Hospices Civils de Lyon, 69310 Pierre Bénite, France; (J.-A.N.); (M.S.); (L.V.D.B.); (M.A.); (M.L.)
| | - Julie Rodriguez
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, 1200 Sint-Lambrechts-Woluwe, Belgium; (A.M.N.); (J.R.); (R.J.); (S.D.)
| | - Romain Jottard
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, 1200 Sint-Lambrechts-Woluwe, Belgium; (A.M.N.); (J.R.); (R.J.); (S.D.)
| | - Sarah Dib
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, 1200 Sint-Lambrechts-Woluwe, Belgium; (A.M.N.); (J.R.); (R.J.); (S.D.)
| | - Monique Sothier
- Centre de Recherche en Nutrition Humaine Rhône-Alpes, Université-Lyon, CarMeN Laboratory, Université Claude Bernard Lyon1, Hospices Civils de Lyon, 69310 Pierre Bénite, France; (J.-A.N.); (M.S.); (L.V.D.B.); (M.A.); (M.L.)
| | - Laurie Van Den Berghe
- Centre de Recherche en Nutrition Humaine Rhône-Alpes, Université-Lyon, CarMeN Laboratory, Université Claude Bernard Lyon1, Hospices Civils de Lyon, 69310 Pierre Bénite, France; (J.-A.N.); (M.S.); (L.V.D.B.); (M.A.); (M.L.)
| | - Maud Alligier
- Centre de Recherche en Nutrition Humaine Rhône-Alpes, Université-Lyon, CarMeN Laboratory, Université Claude Bernard Lyon1, Hospices Civils de Lyon, 69310 Pierre Bénite, France; (J.-A.N.); (M.S.); (L.V.D.B.); (M.A.); (M.L.)
| | - Hélène Alexiou
- Haute Ecole Léonard de Vinci, Institut Paul Lambin, 1200 Brussels, Belgium;
| | | | - Sophie Vinoy
- Mondelez Int. R&D, Nutrition Research, 91400 Saclay, France;
| | - Stephan C. Bischoff
- Institute of Nutritional Medicine, University of Hohenheim, 70593 Stuttgart, Germany;
| | - Jens Walter
- Department of Agricultural, Food & Nutritional Science and Department of Biological Sciences, University of Alberta, Edmonton, AB T5J4P6, Canada;
- APC Microbiome Ireland, School of Microbiology, and Department of Medicine, University College Cork, T12 YT20 Cork, Ireland
| | - Martine Laville
- Centre de Recherche en Nutrition Humaine Rhône-Alpes, Université-Lyon, CarMeN Laboratory, Université Claude Bernard Lyon1, Hospices Civils de Lyon, 69310 Pierre Bénite, France; (J.-A.N.); (M.S.); (L.V.D.B.); (M.A.); (M.L.)
| | - Nathalie M. Delzenne
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, 1200 Sint-Lambrechts-Woluwe, Belgium; (A.M.N.); (J.R.); (R.J.); (S.D.)
- Correspondence: ; Tel.: +32-2-764-73-69
| |
Collapse
|
21
|
Katz DL, Rhee LQ, Katz CS, Aronson DL, Frank GC, Gardner CD, Willett WC, Dansinger ML. Dietary assessment can be based on pattern recognition rather than recall. Med Hypotheses 2020; 140:109644. [PMID: 32131036 DOI: 10.1016/j.mehy.2020.109644] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 12/26/2022]
Abstract
Diet is the leading predictor of health status, including all-cause mortality, in the modern world, yet is rarely measured; whereas virtually every adult in a developed country knows their approximate blood pressure, hardly any knows their objective diet quality. Leading authorities have called for the inclusion of nutrition in every electronic health record as one of the many remedial steps required to give dietary quality the routine attention it warrants. Existing tools to capture dietary intake are based on either real-time journaling or recall. Journaling, or logging, is time and labor intensive. Recall is notoriously unreliable, as humans are notably bad at remembering detail. Even allowing for the challenge of recall, these dietary intake methods are labor and time intensive, and require analysis at the n-of-1 level. We hypothesize that dietary intake assessment can be "reverse engineered"-predicating assessment on the recognition of fully formed dietary patterns-rather than endeavoring to assemble such a representation one food, meal, dish, or day at a time. This pattern recognition-based method offers potential advantages over existing methods, including speed, efficiency, cost, and applicability. We have developed and provisionally tested such a system, and the results thus far support our hypothesis. We are convinced that leveraging pattern recognition to make dietary assessment quick, user-friendly, economical, and scalable can allow for the conversion of dietary quality into a universally measured and routinely managed vital sign. In this paper, we present the supporting case.
Collapse
Affiliation(s)
- D L Katz
- Diet ID, Inc, Detroit, MI, United States.
| | - L Q Rhee
- Diet ID, Inc, Detroit, MI, United States
| | - C S Katz
- Diet ID, Inc, Detroit, MI, United States
| | | | - G C Frank
- Department of Family and Consumer Sciences, California State University, Long Beach, United States
| | - C D Gardner
- Stanford Prevention Research Center, Department of Medicine, Stanford University Medical School, Stanford, CA, United States
| | - W C Willett
- Harvard T.H. Chan School of Public Health, Harvard Medical School, Boston, MA, United States
| | - M L Dansinger
- Boston Heart Diagnostics, Framingham, MA, United States
| |
Collapse
|
22
|
Affret A, El Fatouhi D, Dow C, Correia E, Boutron-Ruault MC, Fagherazzi G. Relative Validity and Reproducibility of a New 44-Item Diet and Food Frequency Questionnaire Among Adults: Online Assessment. J Med Internet Res 2018; 20:e227. [PMID: 29980502 PMCID: PMC6053608 DOI: 10.2196/jmir.9113] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 02/01/2018] [Accepted: 02/18/2018] [Indexed: 12/29/2022] Open
Abstract
Background Dietary questionnaires currently available which can assess the habitual diet are timely, costly, or not adapted well to the modern diet; thus, there is a need for a shorter food frequency e-Questionnaire (FFeQ) adapted to Western diets, in order to properly estimate energy and macronutrient intakes or rank individuals according to food and nutrient intakes. Objective The aim of this study was to evaluate the relative validity and reproducibility of a 30-minute and 44-item FFeQ in a sample of adults obtained from the general population. Methods A sample of French adults was recruited through social media and an advertising campaign. A total of 223 volunteers completed the FFeQ twice at one-year intervals and were included in the reproducibility study. During that interval, 92 participants completed three-to-six 24-hour recalls and were included in the validity study. Nutrient and dietary intakes were computed for all validity and reproducibility participants. The level of agreement between the two methods was evaluated for nutrient and food group intakes using classification into quintiles of daily intake, correlation coefficients and Bland-Altman plots. Results For relative validity, correlation coefficients ranged from 0.09 to 0.88 (unadjusted correlation coefficients, median: 0.48) and 0.02 to 0.68 (deattenuated and energy adjusted correlation coefficients, median: 0.50) for food group and nutrient intakes, respectively. The median proportion of subjects classified into the same or adjacent quintile was 73% and 66% for food and nutrient intakes, respectively. Bland-Altman plots showed good agreement across the range of intakes. Regarding reproducibility, intraclass correlation coefficients ranged from 0.33 to 0.72 (median: 0.60) and 0.55 to 0.73 (median: 0.64), for food and nutrient intakes, respectively. Conclusions The FFeQ showed acceptable validity and reproducibility in a sample of adults based on their food and nutrient intakes. The FFeQ is a promising and low-cost tool that can be used in large-scale online epidemiological studies or clinical routines and could be integrated into evidence-based smartphone apps for assessing diet components.
Collapse
Affiliation(s)
- Aurélie Affret
- Inserm U1018, Center for Research in Epidemiology and Population Health, Villejuif, France.,Université Paris-Sud, Orsay, France.,Université de Versailles-Saint-Quentin-en-Yvelines, Versailles, France
| | - Douae El Fatouhi
- Inserm U1018, Center for Research in Epidemiology and Population Health, Villejuif, France.,Université Paris-Sud, Orsay, France.,Université de Versailles-Saint-Quentin-en-Yvelines, Versailles, France
| | - Courtney Dow
- Inserm U1018, Center for Research in Epidemiology and Population Health, Villejuif, France.,Université Paris-Sud, Orsay, France.,Université de Versailles-Saint-Quentin-en-Yvelines, Versailles, France
| | - Emmanuelle Correia
- Inserm U1018, Center for Research in Epidemiology and Population Health, Villejuif, France.,Université Paris-Sud, Orsay, France.,Université de Versailles-Saint-Quentin-en-Yvelines, Versailles, France
| | - Marie-Christine Boutron-Ruault
- Inserm U1018, Center for Research in Epidemiology and Population Health, Villejuif, France.,Université Paris-Sud, Orsay, France.,Université de Versailles-Saint-Quentin-en-Yvelines, Versailles, France
| | - Guy Fagherazzi
- Inserm U1018, Center for Research in Epidemiology and Population Health, Villejuif, France.,Université Paris-Sud, Orsay, France.,Université de Versailles-Saint-Quentin-en-Yvelines, Versailles, France
| |
Collapse
|
23
|
Gazan R, Vieux F, Darmon N, Maillot M. Structural Validation of a French Food Frequency Questionnaire of 94 Items. Front Nutr 2017; 4:62. [PMID: 29326941 PMCID: PMC5742348 DOI: 10.3389/fnut.2017.00062] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 11/28/2017] [Indexed: 02/05/2023] Open
Abstract
Background Food frequency questionnaires (FFQs) are used to estimate the usual food and nutrient intakes over a period of time. Such estimates can suffer from measurement errors, either due to bias induced by respondent’s answers or to errors induced by the structure of the questionnaire (e.g., using a limited number of food items and an aggregated food database with average portion sizes). The “structural validation” presented in this study aims to isolate and quantify the impact of the inherent structure of a FFQ on the estimation of food and nutrient intakes, independently of respondent’s perception of the questionnaire. Methods A semi-quantitative FFQ (n = 94 items, including 50 items with questions on portion sizes) and an associated aggregated food composition database (named the item-composition database) were developed, based on the self-reported weekly dietary records of 1918 adults (18–79 years-old) in the French Individual and National Dietary Survey 2 (INCA2), and the French CIQUAL 2013 food-composition database of all the foods (n = 1342 foods) declared as consumed in the population. Reference intakes of foods (“REF_FOOD”) and nutrients (“REF_NUT”) were calculated for each adult using the food-composition database and the amounts of foods self-reported in his/her dietary record. Then, answers to the FFQ were simulated for each adult based on his/her self-reported dietary record. “FFQ_FOOD” and “FFQ_NUT” intakes were estimated using the simulated answers and the item-composition database. Measurement errors (in %), spearman correlations and cross-classification were used to compare “REF_FOOD” with “FFQ_FOOD” and “REF_NUT” with “FFQ_NUT”. Results Compared to “REF_NUT,” “FFQ_NUT” total quantity and total energy intake were underestimated on average by 198 g/day and 666 kJ/day, respectively. “FFQ_FOOD” intakes were well estimated for starches, underestimated for most of the subgroups, and overestimated for some subgroups, in particular vegetables. Underestimation were mainly due to the use of portion sizes, leading to an underestimation of most of nutrients, except free sugars which were overestimated. Conclusion The “structural validation” by simulating answers to a FFQ based on a reference dietary survey is innovative and pragmatic and allows quantifying the error induced by the simplification of the method of collection.
Collapse
Affiliation(s)
- Rozenn Gazan
- MS-Nutrition, Marseille, France.,UMR NORT (Unité Mixte de Recherche - Nutrition, Obesity and Risk of Thrombosis), Aix-Marseille Université, INSERM, INRA 1260, Marseille, France
| | | | - Nicole Darmon
- UMR NORT (Unité Mixte de Recherche - Nutrition, Obesity and Risk of Thrombosis), Aix-Marseille Université, INSERM, INRA 1260, Marseille, France.,UMR MOISA (Markets, Organizations, Institutions and Stakeholders Strategies), INRA 1110, Université de Montpellier, France
| | | |
Collapse
|
24
|
Jereb G, Poljšak B, Eržen I. Contribution of Drinking Water Softeners to Daily Phosphate Intake in Slovenia. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:E1186. [PMID: 28984825 PMCID: PMC5664687 DOI: 10.3390/ijerph14101186] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 10/03/2017] [Accepted: 10/04/2017] [Indexed: 12/14/2022]
Abstract
The cumulative phosphate intake in a typical daily diet is high and, according to several studies, already exceeds recommended values. The exposure of the general population to phosphorus via drinking water is generally not known. One of the hidden sources of phosphorus in a daily diet is sodium polyphosphate, commonly used as a drinking water softener. In Slovenia, softening of drinking water is carried out exclusively within the internal (household) drinking water supply systems to prevent the accumulation of limescale. The aim of the study was to determine the prevalence of sodium phosphates in the drinking water in Slovenia in different types of buildings, to determine residents' awareness of the presence of chemical softeners in their drinking water, and to provide an exposure assessment on the phosphorus intake from drinking water. In the current study, the presence of phosphates in the samples of drinking water was determined using a spectrophotometric method with ammonium molybdate. In nearly half of the samples, the presence of phosphates as water softeners was confirmed. The measured concentrations varied substantially from 0.2 mg PO4/L to 24.6 mg PO4/L. Nearly 70% of the respondents were not familiar with the exact data on water softening in their buildings. It follows that concentrations of added phosphates should be controlled and the consumers should be informed of the added chemicals in their drinking water. The health risks of using sodium polyphosphate as a drinking water softener have not been sufficiently investigated and assessed. It is highly recommended that proper guidelines and regulations are developed and introduced to protect human health from adverse effects of chemicals in water intended for human consumption.
Collapse
Affiliation(s)
- Gregor Jereb
- Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, 1000 Ljubljana, Slovenia.
| | - Borut Poljšak
- Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, 1000 Ljubljana, Slovenia.
| | - Ivan Eržen
- Department of Environmental Health, National Institute of Public Health, Trubarjeva 2, 1000 Ljubljana, Slovenia.
| |
Collapse
|
25
|
Franco RZ, Alawadhi B, Fallaize R, Lovegrove JA, Hwang F. A Web-Based Graphical Food Frequency Assessment System: Design, Development and Usability Metrics. JMIR Hum Factors 2017; 4:e13. [PMID: 28483746 PMCID: PMC5440732 DOI: 10.2196/humanfactors.7287] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 04/04/2017] [Accepted: 04/06/2017] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Food frequency questionnaires (FFQs) are well established in the nutrition field, but there remain important questions around how to develop online tools in a way that can facilitate wider uptake. Also, FFQ user acceptance and evaluation have not been investigated extensively. OBJECTIVE This paper presents a Web-based graphical food frequency assessment system that addresses challenges of reproducibility, scalability, mobile friendliness, security, and usability and also presents the utilization metrics and user feedback from a deployment study. METHODS The application design employs a single-page application Web architecture with back-end services (database, authentication, and authorization) provided by Google Firebase's free plan. Its design and responsiveness take advantage of the Bootstrap framework. The FFQ was deployed in Kuwait as part of the EatWellQ8 study during 2016. The EatWellQ8 FFQ contains 146 food items (including drinks). Participants were recruited in Kuwait without financial incentive. Completion time was based on browser timestamps and usability was measured using the System Usability Scale (SUS), scoring between 0 and 100. Products with a SUS higher than 70 are considered to be good. RESULTS A total of 235 participants created accounts in the system, and 163 completed the FFQ. Of those 163 participants, 142 reported their gender (93 female, 49 male) and 144 reported their date of birth (mean age of 35 years, range from 18-65 years). The mean completion time for all FFQs (n=163), excluding periods of interruption, was 14.2 minutes (95% CI 13.3-15.1 minutes). Female participants (n=93) completed in 14.1 minutes (95% CI 12.9-15.3 minutes) and male participants (n=49) completed in 14.3 minutes (95% CI 12.6-15.9 minutes). Participants using laptops or desktops (n=69) completed the FFQ in an average of 13.9 minutes (95% CI 12.6-15.1 minutes) and participants using smartphones or tablets (n=91) completed in an average of 14.5 minutes (95% CI 13.2-15.8 minutes). The median SUS score (n=141) was 75.0 (interquartile range [IQR] 12.5), and 84% of the participants who completed the SUS classified the system either "good" (n=50) or "excellent" (n=69). Considering only participants using smartphones or tablets (n=80), the median score was 72.5 (IQR 12.5), slightly below the SUS median for desktops and laptops (n=58), which was 75.0 (IQR 12.5). No significant differences were found between genders or age groups (below and above the median) for the SUS or completion time. CONCLUSIONS Taking into account all the requirements, the deployment used professional cloud computing at no cost, and the resulting system had good user acceptance. The results for smartphones/tablets were comparable with desktops/laptops. This work has potential to promote wider uptake of online tools that can assess dietary intake at scale.
Collapse
Affiliation(s)
- Rodrigo Zenun Franco
- Biomedical Engineering, School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Balqees Alawadhi
- Hugh Sinclair Unit of Human Nutrition and Institute for Cardiovascular and Metabolic Research, Department of Food and Nutritional Sciences, University of Reading, Reading, United Kingdom
| | - Rosalind Fallaize
- Hugh Sinclair Unit of Human Nutrition and Institute for Cardiovascular and Metabolic Research, Department of Food and Nutritional Sciences, University of Reading, Reading, United Kingdom
| | - Julie A Lovegrove
- Hugh Sinclair Unit of Human Nutrition and Institute for Cardiovascular and Metabolic Research, Department of Food and Nutritional Sciences, University of Reading, Reading, United Kingdom
| | - Faustina Hwang
- Biomedical Engineering, School of Biological Sciences, University of Reading, Reading, United Kingdom
| |
Collapse
|