1
|
Yang R, Meng X, Zhao W, Xu SQ, Wang SY, Li MM, Guan W, Chen QS, Zhang LL, Kuang HX, Li H, Yang BY, Liu Y. Phenylpropanoids of Eleutherococcus senticosus (Rupr. & maxim.) maxim. Alleviate oxidative stress in Alzheimer's disease in vitro and in vivo models by regulating Mst1 and affecting the Nrf2/Sirt3 pathway. Bioorg Chem 2025; 159:108347. [PMID: 40081261 DOI: 10.1016/j.bioorg.2025.108347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/20/2025] [Accepted: 03/03/2025] [Indexed: 03/15/2025]
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disorder, and oxidative stress plays a significant role in its progression. Owing to its nourishing effects, Eleutherococcus senticosus (Rupr. & maxim.) maxim. (ES) has gained widespread popularity globally as a functional food and long-term consumption has been shown to enhance memory. The phenylpropanoid components extracted from Eleutherococcus senticosus (Rupr. & maxim.) maxim. (ESP) exhibit a diverse array of bioactivities and are commonly employed in the treatment of central nervous system (CNS) disorders. Nonetheless, the exact mechanisms by which ESP alleviates oxidative stress in AD models require further investigation. Therefore, this study utilized SAMP8 mice as models for AD and employed L-glutamate (L-Glu)-induced HT22 cells to establish an in vitro AD model. The effects of ESP on cognitive function were evaluated using the Morris water maze (MWM) test. Additionally, various techniques such as pathology, immunofluorescence staining (IF), ROS staining, cellular thermal shift assay (CETSA), Mst1 inhibitor analysis, and western blotting (WB) were conducted to further investigate the pharmacological efficacy and potential molecular mechanisms of ESP. In vivo, ESP was found to improve cognitive function in SAMP8 mice and alleviate AD-like pathological features. In vitro, ESP reduced intracellular ROS levels. Mechanistically, CETSA analysis confirmed the binding affinity between ESP and Mst1, demonstrated that ESP modulated the Mst1 signaling pathway to mitigate oxidative stress and decrease ROS levels. These findings suggested that ESP holded significant potential for developing therapeutic strategies for AD.
Collapse
Affiliation(s)
- Rui Yang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Xin Meng
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Wei Zhao
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Shi-Qi Xu
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Si-Yi Wang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Meng-Meng Li
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Wei Guan
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Qing-Shan Chen
- Traditional Chinese medicine biological genetics (Heilongjiang province double first-class construction interdiscipline, College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Li-Li Zhang
- Traditional Chinese medicine biological genetics (Heilongjiang province double first-class construction interdiscipline, College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Hai-Xue Kuang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Hua Li
- Fujian University of Traditional Chinese Medicine, Fujian 350122, China
| | - Bing-You Yang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150040, China.
| | - Yan Liu
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150040, China.
| |
Collapse
|
2
|
Wang L, Zhang T, Yang X, Mo Q, Ran M, Li R, Yang B, Shen H, Li Q, Li Z, Jiang N, Zeng J, Xie X, He S, Huang F, Zhang C, Luo J, Wu J. Multimodal discovery of bavachinin A: A natural FLT3 agonist for treating thrombocytopenia. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 140:156597. [PMID: 40058315 DOI: 10.1016/j.phymed.2025.156597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 11/25/2024] [Accepted: 02/28/2025] [Indexed: 03/25/2025]
Abstract
BACKGROUND Radiation-induced thrombocytopenia (RIT) poses a serious risk to patients with cancer undergoing radiotherapy and leads to hemorrhage and mortality. Unfortunately, effective treatment options for RIT are currently limited. PURPOSE This study aimed to discover active compound from Fructus Psoraleae, a traditional Chinese medicine recognized for its hemostatic properties, and to elucidate its mechanism of action in the treatment of RIT. METHODS The efficacy of Fructus Psoraleae in treating thrombocytopenia was assessed using network pharmacology. A drug-screening model was built using a naive Bayes algorithm to determine the effective compounds in Fructus Psoraleae. Giemsa staining and flow cytometry were used to evaluate the effects of bavachinin A on megakaryocytes (MK) differentiation. RIT and thrombopoietin (TPO) receptor (c-MPL) knockout (c-MPL-/-) mice were used to assess the therapeutic efficacy of bavachinin A in mitigating thrombocytopenia. Tg (cd41:eGFP) zebrafish were used to investigate the effect of bavachinin A on thrombopoiesis. RNA sequencing (RNA-seq), molecular docking simulations, molecular dynamics simulations, drug affinity responsive target stability assay (DARTS), and biolayer interferometry (BLI) were used to elucidate the molecular mechanisms of action of bavachinin A against thrombocytopenia. RESULTS In silico analysis using a drug screening model identified bavachinin A as promising candidate compound derived from Fructus Psoraleae. In vitro experiments demonstrated that Bavachinin A induced MK differentiation. In vivo experiments revealed that bavachinin A augmented platelet levels and improved coagulation in RIT mice, facilitated megakaryopoiesis and platelet levels in c-MPL-/- mice, and accelerated thrombopoiesis in zebrafish. Furthermore, RNA-seq, molecular docking simulations, molecular dynamics simulations, DARTS, and BLI demonstrated that bavachinin A bound directly to fms-like tyrosine kinase 3 (FLT3). Notably, blocking FLT3 or phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) pathway hindered bavachinin-A-induced MK differentiation. However, repressing the TPO/c-MPL signaling pathway had no significant effect. CONCLUSION Bavachinin A promotes MK differentiation and thrombopoiesis by directly binding to FLT3 and activating PI3K/Akt signaling. Importantly, this effect was not dependent on the conventional TPO/c-MPL signaling pathway. This study underscores the translational potential of bavachinin A as a promising novel therapeutic for thrombocytopenia, offering novel insights into TPO-independent mechanisms of thrombopoiesis and establishing a robust multimodal approach for drug discovery.
Collapse
Affiliation(s)
- Long Wang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Ting Zhang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Xin Yang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Qi Mo
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Mei Ran
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Rong Li
- Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, 646000, China; Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, The School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Bo Yang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Hongping Shen
- Clinical Trial Center, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Qinyao Li
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Zhichao Li
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Nan Jiang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Jing Zeng
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Xiang Xie
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Siyu He
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Feihong Huang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Chunxiang Zhang
- Education Ministry Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, Sichuan, 646000, China.
| | - Jiesi Luo
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, 646000, China.
| | - Jianming Wu
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China; School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, 646000, China; Education Ministry Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, Sichuan, 646000, China.
| |
Collapse
|
3
|
Liu TT, Zeng KW. Recent advances in target identification technology of natural products. Pharmacol Ther 2025; 269:108833. [PMID: 40015520 DOI: 10.1016/j.pharmthera.2025.108833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 02/13/2025] [Accepted: 02/23/2025] [Indexed: 03/01/2025]
Abstract
Natural products, characterized by their structural diversity, broad spectrum of biological activities, and safe yet effective therapeutic potential, have become pivotal resources in drug research and development. However, the target proteins of many natural products remain unidentified, a significant challenge that impedes their development into viable drug candidates. Therefore, the target identification is crucial for elucidating the pharmacological mechanisms of natural products and facilitating their therapeutic applications. In this review, we present a comprehensive overview of recent advancements in methodologies for target identification of natural products. Additionally, we predict future developments in new technologies for target discovery. Collectively, this review establishes a methodological framework for uncovering the cellular targets and pharmacological mechanisms of natural products, thereby advancing the development of innovative natural product-based drugs.
Collapse
Affiliation(s)
- Ting-Ting Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Ke-Wu Zeng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| |
Collapse
|
4
|
Ahmed KAA, Al-Qaisi TS, A J Jabbar A, Ismail PAS, Hussein M Raouf MM, Althagbi HI, Wahab BAA, Hassan RR, Abdulla MA, Al-Dabhawi AH, Saleh MI. A flavonoid Ombuin ameliorates thioacetamide-mediated liver cirrhosis in vivo: biochemical, immunohistochemical, inflammatory approaches. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04147-2. [PMID: 40304746 DOI: 10.1007/s00210-025-04147-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 04/04/2025] [Indexed: 05/02/2025]
Abstract
Liver cirrhosis is posing a global public health concern despite improvements in early diagnosis and therapeutic innovations. The present work evaluates the acute toxicity and prophylactic effects of an O-methylated flavonoid (Ombuin) in thioacetamide (TAA)-induced liver injury in rats and its underlying mechanisms. Thirty Sprague-Dawley rats were aligned into five cages and treated for two months as follows: group A ingested orally 1% CMC + distilled water (i.p.); group B had 1% CMC + 200 mg/kg TAA i.p. (three times weekly); group C had 50 mg/kg silymarin + 200 mg/kg TAA; group D had 30 mg/kg Ombuin + TAA; group E had 60 mg/kg Ombuin + mg/kg TAA. The non-toxic effects of Ombuin were evidenced by the lack of any toxicity incidence in rats ingested with up to 500 mg/kg. The TAA inoculation provoked significant hepatic intoxication confirmed by histopathological indications, alteration of tissue architecture, cellular proliferation, endothelial injury, enlarged hepatic nucleus, cytoplasmic vacuolation, collagen deposition, and elevated necrotizing tissues. The oxidative stress and inflammation process was noticeably initiated following TAA delivery to rats evidenced by down-regulation of SOD, CAT, GPx, and IL- 10, while, up-regulating the MDA and TNF-α and IL- 6 cytokines. TAA injection stimulated cellular proliferation and apoptotic actions in injured liver tissues, indicated by increased proliferating cell nuclear antigen (PCNA) and elevated expression of Bcl- 2-associated X (Bax) proteins. Ombuin supplementation showed significant resistance against TAA-mediated hepatotoxicity, reversed those cellular alterations, and restored liver functions. These results demonstrate significant ameliorative effects of Ombuin in TAA hepatotoxic rats, which could be attributed to its anti-apoptotic, antioxidant, and anti-inflammatory potentials, making it a possible viable hepatoprotective agent for inflammatory-related hepatitis.
Collapse
Affiliation(s)
- Khaled Abdul-Aziz Ahmed
- Department of Basic Dental Sciences, Faculty of Dentistry, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - Talal Salem Al-Qaisi
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, P.O. Box 59911, Abu Dhabi, United Arab Emirates
| | - Ahmed A J Jabbar
- Department of Medical Laboratory Technology, Erbil Technical Health and Medical College, Erbil Polytechnic University, Erbil, 44001, Iraq.
| | | | - Mohammed M Hussein M Raouf
- Department of Biomedical Sciences, College of Science, Cihan University-Erbil, Kurdistan Region, Erbil, 44001, Iraq
| | | | - Bassam Ali Abed Wahab
- Department of Physiology, Biochemistry and Pharmacology, Faculty of Vet Medicine, University of Kufa, Kufa, Iraq
| | - Rawaz Rizgar Hassan
- Department of Medical Laboratory Science, College of Science, Knowledge University, Kirkuk Road, Erbil, 44001, Iraq
| | - Mahmood Ameen Abdulla
- Department of Medical Analysis, Faculty of Applied Science, Tishk International University, Erbil, Iraq
| | | | - Musher Ismael Saleh
- Department of Chemistry, Faculty of Science and Health, Koya University, Koya KOY45, Kurdistan Region, Erbil, 44001, Iraq
| |
Collapse
|
5
|
Shang DF, Xu WQ, Zhao Q, Zhao CL, Wang SY, Han YL, Li HG, Liu MH, Zhao WX. Molecular mechanisms of pyroptosis in non-alcoholic steatohepatitis and feasible diagnosis and treatment strategies. Pharmacol Res 2025; 216:107754. [PMID: 40306603 DOI: 10.1016/j.phrs.2025.107754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/11/2025] [Accepted: 04/27/2025] [Indexed: 05/02/2025]
Abstract
Pyroptosis is a distinct form of cell death that plays a critical role in intensifying inflammatory responses. It primarily occurs via the classical pathway, non-classical pathway, caspase-3/6/7/8/9-mediated pathways, and granzyme-mediated pathways. Key effector proteins involved in the pyroptosis process include gasdermin family proteins and pannexin-1 protein. Pyroptosis is intricately linked to the onset and progression of non-alcoholic steatohepatitis (NASH). During the development of NASH, factors such as pyroptosis, innate immunity, lipotoxicity, endoplasmic reticulum stress, and gut microbiota imbalance interact and interweave, collectively driving disease progression. This review analyzes the molecular mechanisms of pyroptosis and its role in the pathogenesis of NASH. Furthermore, it explores potential diagnostic and therapeutic strategies targeting pyroptosis, offering new avenues for improving the diagnosis and treatment of NASH.
Collapse
Affiliation(s)
- Dong-Fang Shang
- Henan University of CM, Zhengzhou 450000, China; The First Affiliated Hospital of Henan University of CM, Zhengzhou 450003, China
| | - Wen-Qian Xu
- Henan University of CM, Zhengzhou 450000, China
| | - Qing Zhao
- The First Affiliated Hospital of Henan University of CM, Zhengzhou 450003, China
| | - Chen-Lu Zhao
- The First Affiliated Hospital of Henan University of CM, Zhengzhou 450003, China
| | - Si-Ying Wang
- The First Affiliated Hospital of Henan University of CM, Zhengzhou 450003, China
| | - Yong-Li Han
- The First Affiliated Hospital of Henan University of CM, Zhengzhou 450003, China
| | - He-Guo Li
- The First Affiliated Hospital of Henan University of CM, Zhengzhou 450003, China.
| | - Ming-Hao Liu
- The First Affiliated Hospital of Henan University of CM, Zhengzhou 450003, China.
| | - Wen-Xia Zhao
- The First Affiliated Hospital of Henan University of CM, Zhengzhou 450003, China.
| |
Collapse
|
6
|
Sun W, Zhang C, Xu J, Zhao M, Li P. Natural small-molecule compounds targeting Helicobacter pylori virulence factors: A promising strategy for overcoming antibiotic resistance. Biochem Biophys Res Commun 2025; 768:151877. [PMID: 40334425 DOI: 10.1016/j.bbrc.2025.151877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/15/2025] [Accepted: 04/22/2025] [Indexed: 05/09/2025]
Abstract
Helicobacter pylori (H. pylori) infection is an important causal factor of gastritis, peptic ulcer, and gastric cancer. High infection rates and the increasing challenge of antibiotic resistance worldwide have prompted an urgent need to develop novel therapeutic options and antimicrobial agents. This review focuses on the potential of natural small-molecule compounds as novel anti-H. pylori agents-a promising approach that mitigates the risk of resistance development and maintains the microbiome's ecological balance. We detail how H. pylori virulence factors, including urease, CagA, VacA, and biofilm, contribute to pathogenicity and underline the reassuring fact that naturally derived compounds sourced from plants and microorganisms have shown remarkable efficacy in inhibiting these virulence factors. Some compounds also exhibit synergistic effects with conventional antibiotics, potentially overcoming challenges associated with resistant strains. Furthermore, we discuss recent advancements in identifying novel drug targets within the H. pylori virulence spectrum, offering insights into future directions for research and development in H. pylori therapy.
Collapse
Affiliation(s)
- Wenjing Sun
- School of Clinical Medicine, Shandong Second Medical University, Weifang, China; State Key Laboratory of Digestive Health, Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing, 100050, China
| | - Congen Zhang
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, 100050 Beijing, China
| | - Junxuan Xu
- State Key Laboratory of Digestive Health, Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing, 100050, China.
| | - Mengran Zhao
- State Key Laboratory of Digestive Health, Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing, 100050, China.
| | - Peng Li
- School of Clinical Medicine, Shandong Second Medical University, Weifang, China; State Key Laboratory of Digestive Health, Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing, 100050, China.
| |
Collapse
|
7
|
Ma D, Liu X, Zhang X, Hong Y, Wang Y, Zhang F, Du L, Zhao J, Wang Q, Chang C, Liu W, Lou Y, Liu X. Discovery of the 2,3-Dihydrobenzopyrane-4-one as a Potent FTO Inhibitor against Obesity-Related Metabolic Diseases. J Med Chem 2025; 68:7421-7440. [PMID: 40152179 DOI: 10.1021/acs.jmedchem.4c03124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
The involvement of the fat mass and obesity-associated gene (FTO) in the development and advancement of metabolic disorders is widely recognized. However, the existing FTO inhibitor entacapone has been limited in clinical application due to its low potency and short plasma elimination half-life. Here, through drug library screening and in depth structure-activity relationship analysis, title compound 40, eriodictyol was identified as a potent FTO inhibitor, and showed good binding to FTO by surface plasmon resonance (SPR) and Microscale thermophoresis (MST) detection. The residues Arg96, Tyr108, Ser229, Asp233, and Glu234 of FTO are essential for binding. Meanwhile, eriodictyol attenuated obesity-related metabolic diseases by enhancing glucose metabolism pathways via the FTO-FOXO1-G6PC/PCK1 axis and increasing adipose tissue heat production for weight loss via the FTO-FOXO1-Ucp1 axis in vivo. Surprisingly, eriodictyol showed good pharmacokinetic properties and no obvious toxicity. These results could provide the reference for design of new FTO inhibitors against obesity-related metabolic diseases.
Collapse
Affiliation(s)
- Duo Ma
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, P. R. China
| | - Xianan Liu
- Faculty of Science, The University of Hong Kong, Pokfulam, Kowloon, Hong Kong 999077, P. R. China
| | - Xingxing Zhang
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, P. R. China
| | - Yaling Hong
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, P. R. China
| | - Yumeng Wang
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, P. R. China
| | - Famin Zhang
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, P. R. China
| | - Leran Du
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, P. R. China
| | - Junjie Zhao
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, P. R. China
| | - Quan Wang
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, P. R. China
| | - Cui Chang
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, P. R. China
| | - Wenhu Liu
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, P. R. China
| | - Yan Lou
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, P. R. China
| | - Xinhua Liu
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, P. R. China
| |
Collapse
|
8
|
Tu J, Cheng W, Ban Z, Ning J, Tan X. Discovery of farnesoid X receptor antagonists from Salvia miltiorrhiza based on virtual screening and activity verification. Bioorg Med Chem Lett 2025; 123:130222. [PMID: 40199406 DOI: 10.1016/j.bmcl.2025.130222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 03/27/2025] [Accepted: 04/03/2025] [Indexed: 04/10/2025]
Abstract
The farnesoid X receptor (FXR) is a promising therapeutic target for the treatment of non-alcoholic fatty liver disease (NAFLD). Salvia miltiorrhiza, a traditional Chinese medicine, has demonstrated significant efficacy in the prevention and treatment of liver diseases. Consequently, investigating the potential effects of Salvia miltiorrhiza on FXR could provide new insights for NAFLD treatment. This study explores whether active ingredients from Salvia miltiorrhiza can target FXR and serve as therapeutic agents for treating NAFLD. The findings revealed that cynaroside and lithospermic acid displayed strong FXR antagonistic activity, with IC50 values of 5.41 ± 1.08 μM and 16.92 ± 2.68 μM, respectively. Salvianolic acid A also showed moderate activity (IC50 = 56.35 ± 4.54 μM). MTT assays demonstrated that these three compounds were non-toxic to HepG2 and LO2 cells at a concentration of 200 μM. Molecular dynamics simulations were conducted to elucidate the interaction mechanisms of cynaroside and lithospermic acid with FXR. These results suggest that cynaroside and lithospermic acid from Salvia miltiorrhiza may be potential candidates for targeting FXR in treating NAFLD.
Collapse
Affiliation(s)
- Jiaojiao Tu
- Guangxi Key Laboratory of Drug Discovery and Optimization, College of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Wa Cheng
- Guangxi Key Laboratory of Drug Discovery and Optimization, College of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Zhenghu Ban
- Guangxi Key Laboratory of Drug Discovery and Optimization, College of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Jiayi Ning
- Guangxi Key Laboratory of Drug Discovery and Optimization, College of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Xiangduan Tan
- Guangxi Key Laboratory of Drug Discovery and Optimization, College of Pharmacy, Guilin Medical University, Guilin 541199, China.
| |
Collapse
|
9
|
Tang R, Zha H, Liu R, Lv J, Cao D, Li L. Sodium butyrate attenuates liver fibrogenesis via promoting H4K8 crotonylation. Mol Cell Biochem 2025:10.1007/s11010-025-05274-3. [PMID: 40180786 DOI: 10.1007/s11010-025-05274-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 03/27/2025] [Indexed: 04/05/2025]
Abstract
Sodium butyrate (NaB), a histone deacetylase (HDAC) inhibitor derived from dietary sources, demonstrates its potential in improving liver fibrosis in mice. This study explored NaB's impact on liver fibrosis through histone crotonylation. In vitro, NaB significantly inhibited the growth of TGF-β-stimulated LX2 hepatic stellate cells and reduced the expression of fibrotic markers ACTA2, the encoding gene of αSMA, and COL1A1 proportionally to the dosage. In vivo, NaB treatment of CCl4-induced ICR mice led to notable gains in liver function and a marked suppression in liver fibrosis. NaB inhibited Hdac2 and Hdac3 expression leading to increased H4K8 crotonylation, and modulated key fibrosis-related genes, providing a mechanistic basis for its therapeutic potential. Trichostatin A (TSA) exhibited similar effects to NaB, supporting the importance of HDAC inhibition in modulating these pathways. Overall, NaB's modulation of HDAC activity and histone crotonylation reveals a novel mechanism underlying its impact on liver fibrosis, highlighting its promise as a treatment for liver disease.
Collapse
Affiliation(s)
- Ruiqi Tang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou, 310003, China
| | - Hua Zha
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou, 310003, China
| | - Rongrong Liu
- Center of Pediatric Hematology-oncology, Pediatric Leukemia Diagnostic, Therapeutic Technology Research Center of Zhejiang Province, National Clinical Research Center for Child Health, Children's Hospital, Zhejiang University School of Medicine, 57 Zhuganxiang Rd., Yan-an St., Hangzhou, 310003, China
| | - Jiawen Lv
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou, 310003, China
| | - Dan Cao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou, 310003, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou, 310003, China.
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou, 310003, China.
| |
Collapse
|
10
|
Ma Q, Huang S, Li MY, Luo QH, Chen FM, Hong CL, Yan HH, Qiu J, Zhao KL, Du Y, Zhao JK, Zhou LQ, Lou DY, Efferth T, Li CY, Qiu P. Dihydromyricetin regulates the miR-155-5p/SIRT1/VDAC1 pathway to promote liver regeneration and improve alcohol-induced liver injury. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 139:156522. [PMID: 39986231 DOI: 10.1016/j.phymed.2025.156522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 02/05/2025] [Accepted: 02/15/2025] [Indexed: 02/24/2025]
Abstract
BACKGROUND Alcohol-related liver disease (ALD) has become an increasingly serious global health issue. In recent years, growing evidence has highlighted the restoration of liver regenerative capacity as an effective therapeutic strategy for improving ALD. Previous studies have demonstrated the protective effect of dihydromyricetin (DMY) in alcohol-induced liver injury, but its pharmacological role in ALD-related liver regeneration impairment remains poorly understood. OBJECTIVE This study aims to explore the therapeutic potential and molecular mechanisms of DMY in the context of liver regeneration impairment in ALD. METHODS The classic Lieber-DeCarli alcohol liquid diet was used to establish an ALD model in vivo. DMY (75 and 150 mg/kg/day) and silybin (200 mg/kg) were administered for 7 weeks to assess the hepatoprotective effects of DMY. First, biochemical markers and liver histopathology were used to evaluate liver inflammation and steatosis in ALD mice. Second, we explored the potential molecular mechanisms by which DMY improves ALD through serum untargeted metabolomics, hepatic transcriptomics, and single-cell sequencing data. Furthermore, in vivo and in vitro experiments, combined with Western blotting, dual-luciferase reporter assays, and immunofluorescence, were conducted to elucidate the protective mechanisms underlying DMY's effects on ALD. RESULTS In vivo studies showed that DMY significantly ameliorated ALT/AST abnormalities, liver inflammation, and steatosis in ALD mice. Multi-omics and bioinformatics analyses revealed that DMY may exert its anti-ALD effects by regulating the miR-155-5p/SIRT1/VDAC1 pathway, thereby mitigating cellular senescence. Notably, knockdown of miR-155 provided partial protection against ethanol-induced liver damage. Additionally, clinical ALD samples and in vivo and in vitro experiments further confirmed that excessive alcohol exposure induces the production of miR-155-5p in liver Kupffer cells. miR-155-5p targets and inhibits SIRT1, promoting the expression of mitochondrial VDAC1, leading to mitochondrial DNA leakage, thereby accelerating hepatocyte senescence and inflammation. However, DMY improved the disruption of the miR-155-5p/SIRT1/VDAC1 pathway and hepatocyte senescence, thereby restoring liver regenerative function and exerting anti-ALD effects. CONCLUSION In this study, we provide the first evidence that DMY improves liver inflammation and cellular senescence by regulating the miR-155-5p/SIRT1/VDAC1 positive feedback loop, promoting liver regeneration to improve ALD. In summary, our work provides important research evidence and theoretical support for DMY as a promising candidate drug for the prevention and treatment of ALD.
Collapse
Affiliation(s)
- Qing Ma
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China; School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Shuo Huang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310000, China
| | - Mei-Ya Li
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qi-Han Luo
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310000, China
| | - Fang-Ming Chen
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chun-Lan Hong
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310000, China
| | - Hong-Hao Yan
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jiang Qiu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Kang-Lu Zhao
- Zhejiang Rehabilitation Medical Center, Rehabilitation Hospital Area of the Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou Zhejiang, China; The Fourth Affiliated Hospital Zhejiang University, School of Medicine, Yiwu Zhejiang, China
| | - Yu Du
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310000, China
| | - Jin-Kai Zhao
- Zhuji People's Hospital of Zhejiang Province, Shaoxing 311800, China
| | - Li-Qin Zhou
- Zhuji People's Hospital of Zhejiang Province, Shaoxing 311800, China
| | - Da-Yong Lou
- Zhuji People's Hospital of Zhejiang Province, Shaoxing 311800, China
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany.
| | - Chang-Yu Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310000, China; Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Ping Qiu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China; School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310000, China.
| |
Collapse
|
11
|
Ma X, Huang T, Chen X, Li Q, Liao M, Fu L, Huang J, Yuan K, Wang Z, Zeng Y. Molecular mechanisms in liver repair and regeneration: from physiology to therapeutics. Signal Transduct Target Ther 2025; 10:63. [PMID: 39920130 PMCID: PMC11806117 DOI: 10.1038/s41392-024-02104-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 09/02/2024] [Accepted: 12/12/2024] [Indexed: 02/09/2025] Open
Abstract
Liver repair and regeneration are crucial physiological responses to hepatic injury and are orchestrated through intricate cellular and molecular networks. This review systematically delineates advancements in the field, emphasizing the essential roles played by diverse liver cell types. Their coordinated actions, supported by complex crosstalk within the liver microenvironment, are pivotal to enhancing regenerative outcomes. Recent molecular investigations have elucidated key signaling pathways involved in liver injury and regeneration. Viewed through the lens of metabolic reprogramming, these pathways highlight how shifts in glucose, lipid, and amino acid metabolism support the cellular functions essential for liver repair and regeneration. An analysis of regenerative variability across pathological states reveals how disease conditions influence these dynamics, guiding the development of novel therapeutic strategies and advanced techniques to enhance liver repair and regeneration. Bridging laboratory findings with practical applications, recent clinical trials highlight the potential of optimizing liver regeneration strategies. These trials offer valuable insights into the effectiveness of novel therapies and underscore significant progress in translational research. In conclusion, this review intricately links molecular insights to therapeutic frontiers, systematically charting the trajectory from fundamental physiological mechanisms to innovative clinical applications in liver repair and regeneration.
Collapse
Affiliation(s)
- Xiao Ma
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Tengda Huang
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Xiangzheng Chen
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Qian Li
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Mingheng Liao
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Li Fu
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Jiwei Huang
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Kefei Yuan
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Zhen Wang
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| | - Yong Zeng
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
12
|
Liu X, Ji Y, Lv H, Lv Z, Guo Y, Nie W. Microbiome and metabolome reveal beneficial effects of baicalin on broiler growth performance and intestinal health. Poult Sci 2025; 104:104678. [PMID: 39721274 PMCID: PMC11732485 DOI: 10.1016/j.psj.2024.104678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/13/2024] [Accepted: 12/15/2024] [Indexed: 12/28/2024] Open
Abstract
Normal function and health of the intestinal tract were necessary for the growth and development of broilers. Baicalin (BA) possessed a variety of biological activities. The objective of this study was to examine the impact of BA on the growth performance, intestinal barrier function, intestinal microbiota, and mucosal metabolism in broilers. A total of 720 21-day-old broilers were randomly allocated into 3 groups and fed with either basal diet (Con group) or basal diet supplemented with 6 or 12 mg/kg baicalin (BA6 and BA12 groups) for a continuous feeding period of 40 days. Results showed that BA had a trend towards improving (P = 0.086) the 60-day body weight of broilers, and the BA12 group exhibited significantly higher (P < 0.05) average daily gain from day 39 to 60 compared to the Con group. Additionally, in the BA12 group, the ratio of villus height to crypt depth and the expression levels of tight junction protein-related genes significantly increased (P < 0.05), while intestinal permeability significantly decreased (P < 0.05). Supplementation with 12 mg/kg BA significantly enhanced antioxidant capacity, promoted (P < 0.05) crypt proliferation, increased (P < 0.05) immunoglobulin levels, upregulated (P < 0.05) IL-2 and IL-8 mRNA levels, and downregulated (P < 0.05) IL-4 and TGF-β2 mRNA levels. Metabolomics analysis revealed that BA improved the metabolic characteristics of intestinal mucosa, significantly upregulating pathways associated with ascorbate and aldarate metabolism, glyoxylate and dicarboxylate metabolism, phosphatidylinositol signaling system, alpha-linolenic acid metabolism, and galactose metabolism. 16S rRNA sequencing results indicated that BA increased the richness of intestinal microbiota community and the relative abundance of Actinobacteria phylum, while reducing the relative abundance of contains mobile elements, potentially pathogenic, and facultatively anaerobic. Overall, 12 mg/kg BA improved intestinal health by modulating intestinal barrier function, antioxidant capacity, immunity, intestinal microbiota, and intestinal mucosal metabolism levels, ultimately enhancing broiler growth performance.
Collapse
Affiliation(s)
- Xingbo Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yunru Ji
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Huiyuan Lv
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Zengpeng Lv
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China; Beijing Centre Biology Co., Ltd., Beijing, 102600, China
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Wei Nie
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
13
|
Qin W, Ding Y, Zhang W, Sun L, Weng J, Zheng X, Luo S. Small molecule-driven LKB1 deacetylation is responsible for the inhibition of hepatic lipid response in NAFLD. J Lipid Res 2025; 66:100740. [PMID: 39755206 PMCID: PMC11808498 DOI: 10.1016/j.jlr.2024.100740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 12/07/2024] [Accepted: 12/30/2024] [Indexed: 01/06/2025] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a progressive condition characterized by ectopic fat accumulation in the liver, for which no FAD-approved drugs currently exist. Emerging evidence highlights the role of liver kinase B1 (LKB1), a key metabolic regulator, has been proposed in NAFLD, particularly in response to excessive nutrient levels. However, few agents have been identified that can prevent the progression of nonalcoholic steatohepatitis (NASH) by targeting LKB1 deacetylation. Through comprehensive screening of our in-house chemical library, we identified tranilast, a small molecule with remarkable inhibitory efficacy against lipid deposition induced by palmitic acid/oleic acid (PO). In this study, we investigated the novel biological function and mechanism of tranilast in regulating hepatic lipid response in NAFLD, focusing on its role in LKB1 deacetylation within hepatocytes. Our findings demonstrate that tranilast effectively reduced hepatic steatosis, inflammation, and fibrosis in NASH models induced by high-fat and high-cholesterol (HFHC) and methionine choline-deficient (MCD) diets. Mechanistic analysis using RNA sequencing revealed that tranilast mitigated hepatic lipid response by promoting LKB1 deacetylation and activating AMPK. Notably, in vivo experiments showed that the beneficial effects of tranilast in MCD diet-induced NASH model were reversed by the compound C (C-C), a known AMPK inhibitor, confirming that tranilast's effects on hepatic lipid response are mediated through the AMPK pathway. In summary, tranilast inhibits hepatic lipid response in NAFLD through LKB1 deacetylation, providing robust experimental evidence for the role of LKB1 in NAFLD. These findings position tranilast as a promising therapeutic candidate for the pharmacological management of metabolic diseases.
Collapse
Affiliation(s)
- Weiwei Qin
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, China; Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yu Ding
- Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wenhao Zhang
- Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Lu Sun
- Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jianping Weng
- Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xueying Zheng
- Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Sihui Luo
- Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
14
|
Zeng JL, Lan JX, Dai W, Liu SL, Huang H, Shu GZ, Huang LJ, Kang SS, Chen B, Hou W. A Review of Bavachinin and Its Derivatives as Multi-Therapeutic Agents. Chem Biodivers 2025:e202402762. [PMID: 39874061 DOI: 10.1002/cbdv.202402762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/27/2025] [Accepted: 01/28/2025] [Indexed: 01/30/2025]
Abstract
Extracting natural active ingredients from plants is an effective way to develop and screen modern drugs. Psoralea corylifolia (PC) is a leguminous plant whose seeds have long been used as a Traditional Chinese Medicine to treat psoriasis, rheumatism, dermatitis, and other diseases. To date, several main compounds, including coumarins, flavonoids, monoterpene phenols, and benzofurans, have been identified from the seeds of PC. Among them, bavachinin is a type of flavonoid with various biological activities. In this article, the biological activities and mechanisms of action of bavachinin and its derivatives are reviewed. It includes the pharmacokinetic characteristics of bavachinin and its derivatives, as well as its prominent anti-inflammatory, antitumor, antibacterial, and antiviral pharmacological activities and related metabolic studies. Bavachinin displayed these activities through different receptors, such as peroxisome proliferator-activated receptors (PPARs), as well as multiple signaling pathways and enzyme systems. In summary, bavachinin and its derivatives have potential drug development value in many fields, such as anti-inflammatory, antitumor, nervous system disease, and diabetes. We believe that this review will lay a foundation for bavachinin-based drug development throughout the world.
Collapse
Affiliation(s)
- Jun Lin Zeng
- Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, National Engineering Research Center for Modernization of Traditional Chinese Medicine-Hakka Medical Resources Branch, School of Pharmacy, Gannan Medical University, Ganzhou, P. R. China
- HuanKui Academy, Nanchang University, Nanchang, P. R. China
| | - Jin Xia Lan
- Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, National Engineering Research Center for Modernization of Traditional Chinese Medicine-Hakka Medical Resources Branch, School of Pharmacy, Gannan Medical University, Ganzhou, P. R. China
| | - Wei Dai
- Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, National Engineering Research Center for Modernization of Traditional Chinese Medicine-Hakka Medical Resources Branch, School of Pharmacy, Gannan Medical University, Ganzhou, P. R. China
| | - Sheng Lan Liu
- Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, National Engineering Research Center for Modernization of Traditional Chinese Medicine-Hakka Medical Resources Branch, School of Pharmacy, Gannan Medical University, Ganzhou, P. R. China
| | - Hao Huang
- Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, National Engineering Research Center for Modernization of Traditional Chinese Medicine-Hakka Medical Resources Branch, School of Pharmacy, Gannan Medical University, Ganzhou, P. R. China
| | - Guang Zhao Shu
- Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, National Engineering Research Center for Modernization of Traditional Chinese Medicine-Hakka Medical Resources Branch, School of Pharmacy, Gannan Medical University, Ganzhou, P. R. China
| | - Le Jun Huang
- Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, National Engineering Research Center for Modernization of Traditional Chinese Medicine-Hakka Medical Resources Branch, School of Pharmacy, Gannan Medical University, Ganzhou, P. R. China
| | - Si Shuang Kang
- Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, National Engineering Research Center for Modernization of Traditional Chinese Medicine-Hakka Medical Resources Branch, School of Pharmacy, Gannan Medical University, Ganzhou, P. R. China
| | - Bin Chen
- Department of Chinese Medicine, Jiangxi Management Vocational College, Nanchang, P. R. China
| | - Wen Hou
- Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, National Engineering Research Center for Modernization of Traditional Chinese Medicine-Hakka Medical Resources Branch, School of Pharmacy, Gannan Medical University, Ganzhou, P. R. China
| |
Collapse
|
15
|
Li Y, Li H, Sun M, Chen H, Xiao Y, Wang J, Zhang Y, Fang S, Kou J. Silibinin alleviates acute liver failure by modulating AKT/GSK3β/Nrf2/GPX4 pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-024-03760-x. [PMID: 39779605 DOI: 10.1007/s00210-024-03760-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 12/22/2024] [Indexed: 01/11/2025]
Abstract
Silibinin (Sil) is a major bioactive component of silymarin, extracted from the fruit and seeds of Silybum marianum. Silibinin meglumine (SM) is a water-soluble derivative of silibinin that has shown significant potential in liver fibrosis. However, the potential effects and underlying mechanisms of SM on acute liver failure (ALF) are still not fully understood. This study aims to find the likely mechanism. An ALF mouse model and a cell model were established with GalN/LPS. SM was administered to mice via the tail vein or to a hepatocyte line (alpha mouse liver 12, AML12). The results showed that SM particularly lowered the mortality and improved liver pathological lesions in ALF mice. Meanwhile, SM improved the levels of GSH, SOD, TNF-α, IL-6, IL-1β, and IL-10 in the liver tissues and serum. Additionally, SM enhanced cell viability and reduced oxidative stress in vitro. In the AKT/GSK3β/Nrf2/GPX4 pathway, the subpathway of AKT/GSK3β was inhibited, and the subpathway of Nrf2/GPX4 was activated by SM both in vivo and in vitro. In addition, ferrostatin-1, a ferroptosis inhibitor, and the silencing of AKT using siRNA weakened the protective effect of SM, indicating that this process is mediated in an AKT-dependent manner. All the results suggested that SM inhibits inflammation and oxidative stress by modulating the AKT/GSK3β/Nrf2/GPX4 pathway.
Collapse
Affiliation(s)
- Yue Li
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, P. R. China
| | - Hailan Li
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, P. R. China
| | - Minhui Sun
- The Public Laboratory Platform, China Pharmaceutical University, Nanjing, 211198, Jiangsu, China
| | - Hong Chen
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, P. R. China
| | - Yao Xiao
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, P. R. China
| | - Jieman Wang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, P. R. China
| | - Yuanyuan Zhang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, P. R. China
| | - Shuhua Fang
- Department of Pharmacy, Nanjing Lishui People's Hospital, Zhongda Hospital Lishui Branch Southeast University, Nanjing, 211200, China.
| | - Junping Kou
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, P. R. China.
| |
Collapse
|
16
|
Seker U, Uyar E, Gokdemir GS, Kavak DE, Irtegun‐Kandemir S. The M1/M2 Macrophage Polarization and Hepatoprotective Activity of Quercetin in Cyclophosphamide-Induced Experimental Liver Toxicity. Vet Med Sci 2025; 11:e70183. [PMID: 39792066 PMCID: PMC11720735 DOI: 10.1002/vms3.70183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/28/2024] [Accepted: 12/08/2024] [Indexed: 01/12/2025] Open
Abstract
BACKGROUND Chemotherapy drugs may lead to hepatic injury, which is considered one of the limitations of these drugs. OBJECTIVES The aim of this study was to evaluate the effect of quercetin (QUE) on M1/M2 macrophage polarization and hepatoprotective effect in cyclophosphamide (CTX)-induced liver toxicity. METHODS Twenty-four mice were divided into four groups (Control, QUE, CTX, CTX + QUE). The CTX and CTX + QUE groups received 200 mg/kg CTX. The animals in the QUE and CTX + QUE groups received 50 mg/kg QUE. All animals were sacrificed, and serum and liver samples were used for laboratory analyses. RESULTS Examinations indicated that CTX exposure led to disruption of liver functions and morphological degenerations. Tissue pro-apoptotic Bax and caspase 3, pro-inflammatory TNF-α and IL-1β, transcription factor NF-κB, and M1 macrophage polarization marker CD86 were upregulated significant (p < 0.05) in this group. In addition, CTX exposure led to significantly (p < 0.05) upregulation of the Bax/Bcl-2 mRNA ratio and DNA fragmentations. The PCNA-positive hepatic cell ratio and anti-apoptotic Bcl-2 expression are remarkably suppressed (p < 0.05). Immunohistochemical analyses are also indicated that M2 macrophage polarization marker CD163 is slightly but remarkably (p < 0.05) downregulated in the CTX group compared to the Control and QUE groups. The morphological and biochemical disruptions were alleviated in QUE-treated animals in the CTX + QUE group. Liver function test results, apoptosis, inflammatory, transcription factor NF-κB, regeneration/proliferation, and apoptotic index results in this group were similar (p > 0.05) to the control and QUE groups. The M1 cell surface marker expression of CD86 is significantly (p < 0.05) downregulated, and M2 macrophage polarization marker expression of CD163 is upregulated significantly (p < 0.05) compared to the CTX group. CONCLUSIONS This study indicates that QUE has the potential to downregulate CTX-induced hepatic injury and regulate M1/M2 macrophage polarization to the M2 side, which indirectly demonstrates activation of anti-inflammatory signalling and tissue repair.
Collapse
Affiliation(s)
- Ugur Seker
- Department of Histology and EmbryologyFaculty of MedicineMardin Artuklu UniversityMardinTurkey
| | - Emre Uyar
- Department of Medical PharmacologyFaculty of MedicineUskudar UniversityIstanbulTurkey
| | - Gul Sahika Gokdemir
- Department of PhysiologyFaculty of MedicineMardin Artuklu UniversityMardinTurkey
| | - Deniz Evrim Kavak
- Department of Medical Biology and GeneticsFaculty of MedicineDokuz Eylul UniversityIzmirTurkey
| | | |
Collapse
|
17
|
Wei Z, Liu J, Wang N, Wei K. Kidney function mediates the association of per- and poly-fluoroalkyl substances (PFAS) and heavy metals with hepatic fibrosis risk. ENVIRONMENTAL RESEARCH 2024; 263:120092. [PMID: 39357638 DOI: 10.1016/j.envres.2024.120092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/26/2024] [Accepted: 09/29/2024] [Indexed: 10/04/2024]
Abstract
Heavy metals and per- and polyfluoroalkyl substances (PFAS) are significantly associated with the risk of hepatic fibrosis. However, the potential mediating effect of kidney function in the relationship between heavy metals, PFAS, and hepatic fibrosis risk remains unexplored. This research gap limits the development of hepatic fibrosis prevention and treatment strategies. To address this, this study conducts a cross-sectional analysis based on data from 10,870 participants in NHANES 2005-2018 to explore the relationship between heavy metals, PFAS, and the risk of hepatic fibrosis, as well as the mediating effect of kidney function. Participants with a Fibrosis-4 index <1.45 are defined as not having hepatic fibrosis in this study. Results from generalized linear regression models and weighted quantile sum regression models indicate that both individual and combined exposures to heavy metals and PFAS are positively associated with the risk of hepatic fibrosis. Nonlinear exposure-response functions suggest that there may be a threshold for the relationship between heavy metals (except mercury) and PFAS with the risk of hepatic fibrosis. Furthermore, heavy metals and PFAS increase the risk of kidney function impairment. After stratification by kidney function stage, the relationship between heavy metals (except lead) and proteinuria is not significant, while PFAS show a significant negative association with proteinuria. The decline in kidney function has a significant mediating effect in the relationship between heavy metals and PFAS and the risk of hepatic fibrosis, with mediation effect proportions all above 20%. The findings suggest that individual or combined exposure to heavy metals and PFAS does not increase the risk of hepatic fibrosis until a certain threshold is reached, and the mediating role of declining kidney function is very important. These results highlight the need to consider kidney function in the context of hepatic fibrosis risk assessment and management.
Collapse
Affiliation(s)
- Zhengqi Wei
- School of Public Health, Guilin Medical University, Guilin, Guangxi, 541199, China
| | - Jincheng Liu
- Huazhong University of Science and Technology Tongji Medical College, Wuhan, Hubei, 430000, China
| | - Na Wang
- School of Public Health, Guilin Medical University, Guilin, Guangxi, 541199, China.
| | - Keke Wei
- Huazhong University of Science and Technology Tongji Medical College, Wuhan, Hubei, 430000, China.
| |
Collapse
|
18
|
Xie B, Li J, Lou Y, Chen Q, Yang Y, Zhang R, Liu Z, He L, Cheng Y. Reprogramming macrophage metabolism following myocardial infarction: A neglected piece of a therapeutic opportunity. Int Immunopharmacol 2024; 142:113019. [PMID: 39217876 DOI: 10.1016/j.intimp.2024.113019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/15/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Given the global prevalence of myocardial infarction (MI) as the leading cause of mortality, there is an urgent need to devise novel strategies that target reducing infarct size, accelerating cardiac tissue repair, and preventing detrimental left ventricular (LV) remodeling. Macrophages, as a predominant type of innate immune cells, undergo metabolic reprogramming following MI, resulting in alterations in function and phenotype that significantly impact the progression of MI size and LV remodeling. This article aimed to delineate the characteristics of macrophage metabolites during reprogramming in MI and elucidate their targets and functions in cardioprotection. Furthermore, we summarize the currently proposed regulatory mechanisms of macrophage metabolic reprogramming and identify the regulators derived from endogenous products and natural small molecules. Finally, we discussed the challenges of macrophage metabolic reprogramming in the treatment of MI, with the goal of inspiring further fundamental and clinical research into reprogramming macrophage metabolism and validating its potential therapeutic targets for MI.
Collapse
Affiliation(s)
- Baoping Xie
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Chinese Medicine Guangdong Laboratory, Guangdong, Hengqin, China; Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Jiangxi Provincial Key Laboratory of Tissue Engineering, Gannan Medical University, Ganzhou 341000, China
| | - Jiahua Li
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Chinese Medicine Guangdong Laboratory, Guangdong, Hengqin, China
| | - Yanmei Lou
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Chinese Medicine Guangdong Laboratory, Guangdong, Hengqin, China
| | - Qi Chen
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Chinese Medicine Guangdong Laboratory, Guangdong, Hengqin, China
| | - Ying Yang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Chinese Medicine Guangdong Laboratory, Guangdong, Hengqin, China
| | - Rong Zhang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Chinese Medicine Guangdong Laboratory, Guangdong, Hengqin, China
| | - Zhongqiu Liu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Chinese Medicine Guangdong Laboratory, Guangdong, Hengqin, China.
| | - Liu He
- Department of Endocrinology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong 510006, China.
| | - Yuanyuan Cheng
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Chinese Medicine Guangdong Laboratory, Guangdong, Hengqin, China.
| |
Collapse
|
19
|
Wang Y, Wang F, Liu W, Geng Y, Shi Y, Tian Y, Zhang B, Luo Y, Sun X. New drug discovery and development from natural products: Advances and strategies. Pharmacol Ther 2024; 264:108752. [PMID: 39557343 DOI: 10.1016/j.pharmthera.2024.108752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/20/2024]
Abstract
Natural products (NPs) have a long history as sources for drug discovery, more than half of approved drugs are related to NPs, which also exhibit multifaceted advantages in the clinical treatment of complex diseases. However, bioactivity screening of NPs, target identification, and design optimization require continuously improved strategies, the complexity of drug mechanism of action and the limitations of technological strategies pose numerous challenges to the development of new drugs. This review begins with an overview of bioactivity- and target-based drug development patterns for NPs, advances in NP screening and derivatization, and the advantages and problems of major targets such as genes and proteins. Then, target-based drugs as well as identification and validation methods are further discussed to elucidate their mechanism of action. Subsequently, the current status and development trend of the application of traditional and emerging technologies in drug discovery and development of NPs are systematically described. Finally, the collaborative strategy of multi-technology integration and multi-disciplinary intersection is emphasized for the challenges faced in the identification, optimization, activity evaluation, and clinical application of NPs. It is hoped to provide a systematic overview and inspiration for exploring new drugs from natural resources in the future.
Collapse
Affiliation(s)
- Yixin Wang
- Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China
| | - Fan Wang
- Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China
| | - Wenxiu Liu
- Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China
| | - Yifei Geng
- Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China
| | - Yahong Shi
- Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China
| | - Yu Tian
- Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China
| | - Bin Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China.
| | - Yun Luo
- Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China.
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China.
| |
Collapse
|
20
|
He SJ, Li J, Zhou JC, Yang ZY, Liu X, Ge YW. Chemical proteomics accelerates the target discovery of natural products. Biochem Pharmacol 2024; 230:116609. [PMID: 39510194 DOI: 10.1016/j.bcp.2024.116609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
More than half of the global novel drugs are directly or indirectly derived from natural products (NPs) because of their better selectivity towards proteins. Traditional medicines perform multiple bioactivities through various NPs binding to drug targets, which highlights the opportunities of target discovery for drug development. However, detecting the binding relationship between NPs and targets remains challenging. Chemical proteomics, an interdisciplinary field of chemistry, proteomics, biology, and bioinformatics, has emerged as a potential approach for uncovering drug-target interactions. This review summarizes the principles and characteristics of the current widely applied chemical proteomic technologies, while delving into their latest applications in the target discovery of natural medicine. These endeavours demonstrate the potential of chemical proteomics for target discovery to supply dependable methodologies for the target elucidation of NPs.
Collapse
Affiliation(s)
- Shu-Jie He
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Innovative Team of Research on Effective Substances of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jun Li
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Innovative Team of Research on Effective Substances of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jie-Chun Zhou
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Innovative Team of Research on Effective Substances of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhi-You Yang
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Institute of Nutrition and Marine Drugs, Guangdong Ocean University, Zhanjiang, China
| | - Xi Liu
- School of Medical Information Engineering, Guangdong Pharmaceutical University, Guangzhou, China.
| | - Yue-Wei Ge
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Innovative Team of Research on Effective Substances of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China.
| |
Collapse
|
21
|
Liu X, Ji Y, Miao Z, Lv H, Lv Z, Guo Y, Nie W. Effects of baicalin and chlorogenic acid on growth performance, slaughter performance, antioxidant capacity, immune function and intestinal health of broilers. Poult Sci 2024; 103:104251. [PMID: 39244784 PMCID: PMC11407039 DOI: 10.1016/j.psj.2024.104251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/17/2024] [Accepted: 08/19/2024] [Indexed: 09/10/2024] Open
Abstract
This study aimed to investigate the effects of baicalin and chlorogenic acid (BC) on growth performance, intestinal barrier function, antioxidant capacity, intestinal microbiota, and mucosal metabolism in broilers. A total of 720 twenty-one-day-old broilers were randomly allocated into 3 groups, with 6 replicates per group and 40 chickens per replicate. They were fed a basal diet (Con group) or a basal diet supplemented with 250 or 400 mg/kg BC (BC250 and BC400 groups) for 40 consecutive days. The results revealed that 250 mg/kg BC significantly increased 60-d body weight and average daily gain during 39 to 60 d (P < 0.05). Furthermore, Supplementation with 250 mg/kg BC improved the antioxidant capacity and immunity of broilers, as evidenced by increased (P < 0.05) superoxide dismutase and decreased (P < 0.05) malondialdehyde levels in serum and ileum, as well as increased (P < 0.05) immunoglobulin G levels. Supplementation with 250 mg/kg BC enhanced intestinal development by improving intestinal morphology and promoting the proliferation of intestinal crypts. Moreover, Supplementation with 250 mg/kg BC improved (P < 0.05) intestinal permeability, up-regulated (P < 0.05) the expression of tight junction-related genes (Occludin and ZO-1), and down-regulated (P < 0.05) the expression of pro-inflammatory genes (IL-2, IL-8, and IFN-γ). 16S rRNA sequencing revealed significant enrichment of Microbacteriaceae, Micromonosporaceae, Anaerovoracaceae, and Coriobacteriaceae in the BC250 group. Metabolomics showed that 250 mg/kg BC up-regulated the lysosome, foxo signaling pathway, glycosylphosphatidylinositol (GPI)-anchor biosynthesis, and oxidative phosphorylation pathways, while down-regulating the biosynthesis of cofactors pathway. In conclusion, supplementing diets with 250 mg/kg BC is recommended to modulate intestinal microbiota, mucosal metabolism, and antioxidant capacity, thereby improving broiler growth performance and intestinal health.
Collapse
Affiliation(s)
- Xingbo Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yunru Ji
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Zhiguo Miao
- College of Animal Science and Veterinary Medicine, Henan institute of Science and Technology, Xinxiang 453003,China
| | - Huiyuan Lv
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China; Beijing Centre Biology Co., Ltd., Beijing 102218, China
| | - Zengpeng Lv
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Wei Nie
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
22
|
Pan Y, Sun X, Tian Y, Yu M, Luo Y, Sun X. L-NRB alleviates amyotrophic lateral sclerosis by regulating P11-Htr4 signaling pathway. Biomed Pharmacother 2024; 180:117588. [PMID: 39427550 DOI: 10.1016/j.biopha.2024.117588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/03/2024] [Accepted: 10/14/2024] [Indexed: 10/22/2024] Open
Abstract
INTRODUCTION L-NRB is a compound formed as a ring cleavage product of butylphthalide and borneol in a molar ratio 1:2. This study aimed to explore the therapeutic effect of L-NRB on amyotrophic lateral sclerosis (ALS) and its possible mechanism. METHODS SOD1-G93A mice were used as an ALS model. Behavioral tests, histopathological staining, Nissl staining, immunohistochemistry, enzyme-linked immunosorbent assays, and Western blotting were used to analyze the therapeutic effect. The underlying mechanism of L-NRB in treating ALS was investigated using transcriptomic analyses. RESULTS It was found that L-NRB alleviated motor dysfunction, pathological changes in the gastrocnemius muscle, and motor neuron injuries. The results indicated that L-NRB had a neuroprotective function associated with the inhibition of neuroinflammation. The anti-apoptotic effect of L-NRB was found to be related to the regulation of the P11-Htr4 signaling pathway. CONCLUSION In summary, the results demonstrated the therapeutic effect of L-NRB on ALS and suggest a promising new therapeutic candidate for ALS.
Collapse
Affiliation(s)
- Yunfeng Pan
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Key Laboratory of new drug discovery based on Classic Chinese medicine prescription, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiao Sun
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Key Laboratory of new drug discovery based on Classic Chinese medicine prescription, Chinese Academy of Medical Sciences, Beijing, China
| | - Yu Tian
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Key Laboratory of new drug discovery based on Classic Chinese medicine prescription, Chinese Academy of Medical Sciences, Beijing, China
| | - Miao Yu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Key Laboratory of new drug discovery based on Classic Chinese medicine prescription, Chinese Academy of Medical Sciences, Beijing, China
| | - Yun Luo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Key Laboratory of new drug discovery based on Classic Chinese medicine prescription, Chinese Academy of Medical Sciences, Beijing, China.
| | - Xiaobo Sun
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Key Laboratory of new drug discovery based on Classic Chinese medicine prescription, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
23
|
Yang Z, Kang X, Li J, Li L, Ye X, Liu X, Chen K, Deng Y, Peng C, Ren B, Cao Z, Fang Y. A novel LD-targeting cysteine-activated fluorescent probe for diagnosis of APAP-induced liver injury and its application in food analysis. Food Chem 2024; 456:140064. [PMID: 38878548 DOI: 10.1016/j.foodchem.2024.140064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/07/2024] [Accepted: 06/09/2024] [Indexed: 07/24/2024]
Abstract
Cysteine (Cys) not only plays an indispensable role in maintaining the redox balance in organisms, but is also an important nutrient in the food industry. Fluorescence-based detection systems have emerged as an effective method to track the locations and concentrations of different species. To achieve efficient monitoring of Cys in both food samples and biological systems, a novel lipid droplet (LD) targeted fluorescent probe (namely NIT-Cys) was constructed for the turn-on detection of Cys, characterized by a large Stokes shift (142 nm), a short response time (<8 min), and a low Cys detection limit (39 nM). Furthermore, the NIT-Cys probe has been successfully used not only to quantify the amounts of Cys in selected food samples, but also to enable the visualization of endogenous Cys in acetaminophen (APAP)-induced drug-induced liver injury cells, zebrafish larvae and mice models. Consequently, the work presented here provides an efficient tool for monitoring Cys.
Collapse
Affiliation(s)
- Zhiqiang Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xin Kang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Longxuan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiaoping Ye
- Department of Oncology and Ultrasound, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiaoya Liu
- Department of Oncology and Ultrasound, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| | - Kun Chen
- Department of Urology, Traditional Chinese Medicine Hospital of Pidu District, Chengdu 611730, China
| | - Yun Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Bo Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Zhixing Cao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yuyu Fang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Sichuan New Green Pharmaceutical Technology Development Co. Ltd., Chengdu 611930, China.
| |
Collapse
|
24
|
Yan M, Man S, Ma L, Guo L, Huang L, Gao W. Immunological mechanisms in steatotic liver diseases: An overview and clinical perspectives. Clin Mol Hepatol 2024; 30:620-648. [PMID: 38988278 PMCID: PMC11540396 DOI: 10.3350/cmh.2024.0315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 07/12/2024] Open
Abstract
Steatotic liver diseases (SLD) are the principal worldwide cause of cirrhosis and end-stage liver cancer, affecting nearly a quarter of the global population. SLD includes metabolic dysfunction-associated alcoholic liver disease (MetALD) and metabolic dysfunction-associated steatotic liver disease (MASLD), resulting in asymptomatic liver steatosis, fibrosis, cirrhosis and associated complications. The immune processes include gut dysbiosis, adiposeliver organ crosstalk, hepatocyte death and immune cell-mediated inflammatory processes. Notably, various immune cells such as B cells, plasma cells, dendritic cells, conventional CD4+ and CD8+ T cells, innate-like T cells, platelets, neutrophils and macrophages play vital roles in the development of MetALD and MASLD. Immunological modulations targeting hepatocyte death, inflammatory reactions and gut microbiome include N-acetylcysteine, selonsertib, F-652, prednisone, pentoxifylline, anakinra, JKB-121, HA35, obeticholic acid, probiotics, prebiotics, antibiotics and fecal microbiota transplantation. Understanding the immunological mechanisms underlying SLD is crucial for advancing clinical therapeutic strategies.
Collapse
Affiliation(s)
- Mengyao Yan
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Shuli Man
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Lanping Guo
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Weijin Road, Tianjin, China
| |
Collapse
|
25
|
Gu S, Wang J, Yu S, Zhang S, Gao T, Yan D, Xie R, Gu M, Yu M, Zhang Z, Lou Z, Ding X, Chen Y, Li C. Berberine ameliorates nonalcoholic fatty liver disease-induced bone loss by inhibiting ferroptosis. Bone 2024; 185:117114. [PMID: 38723878 DOI: 10.1016/j.bone.2024.117114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/05/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) may contribute to osteoporosis. Berberine is a traditional Chinese medicine and was recently shown to be beneficial in NAFLD. However, little is known about its impact on bone loss induced by NAFLD. AIM We aimed to explore the role of berberine in bone loss and determine its underlying mechanisms in NAFLD. METHODS C57BL/6 mice were fed a high-fat high-fructose high-glucose diet (HFFGD) for 16 weeks to establish a NAFLD mouse model. The mice were administered berberine (300 mg/kg/d) by gavage, and fatty liver levels and bone loss indicators were tested. RESULTS Berberine significantly improved HFFGD-induced weight gain, hepatic lipid accumulation and increases in serum liver enzymes, thereby alleviating NAFLD. Berberine increased trabecular number (Tb. N), trabecular thickness (Tb. Th), bone volume to tissue volume ratio (BV/TV), and decreased trabecular separation (Tb. Sp) and restored bone loss in NAFLD. Mechanistically, berberine significantly inhibited ferroptosis and 4-hydroxynonenal (4-HNE), prostaglandin-endoperoxide synthase 2 (PTGS2), and transferrin (TF) levels and increased ferritin heavy chain (FTH) levels in the femurs of HFFGD-fed mice. Moreover, berberine also activated the solute carrier family 7 member 11 (SLC7A11)/glutathione (GSH)/glutathione peroxidase 4 (GPX4) signaling pathway. CONCLUSION Berberine significantly ameliorates bone loss induced by NAFLD by activating the SLC7A11/GSH/GPX4 signaling pathway and inhibiting ferroptosis. Therefore, berberine may serve as a therapeutic agent for NAFLD-induced bone loss.
Collapse
Affiliation(s)
- Shaobo Gu
- Department of Orthopedics, Ningbo No. 2 Hospital, Ningbo 315010, China
| | - Junzhuo Wang
- Department of Gastroenterology, the First Affiliated Hospital of Ningbo University,Ningbo 315010, China
| | - Siyi Yu
- Department of Gastroenterology, the First Affiliated Hospital of Ningbo University,Ningbo 315010, China
| | - Shunyao Zhang
- Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Ting Gao
- Department of Gastroenterology, the First Affiliated Hospital of Ningbo University,Ningbo 315010, China
| | - Deyi Yan
- Department of Orthopedics, Ningbo No. 2 Hospital, Ningbo 315010, China
| | - Runxiang Xie
- Department of Gastroenterology, the First Affiliated Hospital of Ningbo University,Ningbo 315010, China
| | - Mengli Gu
- Department of Gastroenterology, the First Affiliated Hospital of Ningbo University,Ningbo 315010, China
| | - Mengli Yu
- Department of Gastroenterology, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China
| | - Zongkai Zhang
- Department of Orthopedics, Ningbo No. 2 Hospital, Ningbo 315010, China
| | - Zhongze Lou
- Central Laboratory of the Medical Research Center, the First Affiliated Hospital of Ningbo University, Ningbo 315010, China; Department of Psychosomatic Medicine, the First Affiliated Hospital of Ningbo University, Ningbo 315010, China
| | - Xiaoyun Ding
- Department of Gastroenterology, the First Affiliated Hospital of Ningbo University,Ningbo 315010, China.
| | - Yi Chen
- Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China.
| | - Chunxiao Li
- Department of Gastroenterology, the First Affiliated Hospital of Ningbo University,Ningbo 315010, China.
| |
Collapse
|
26
|
Li J, Li J, Ullah A, Shi X, Zhang X, Cui Z, Lyu Q, Kou G. Tangeretin Enhances Muscle Endurance and Aerobic Metabolism in Mice via Targeting AdipoR1 to Increase Oxidative Myofibers. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:16687-16699. [PMID: 38990695 DOI: 10.1021/acs.jafc.3c09386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Slow oxidative myofibers play an important role in improving muscle endurance performance and maintaining body energy homeostasis. However, the targets and means to regulate slow oxidative myofibers proportion remain unknown. Here, we show that tangeretin (TG), a natural polymethoxylated flavone, significantly activates slow oxidative myofibers-related gene expression and increases type I myofibers proportion, resulting in improved endurance performance and aerobic metabolism in mice. Proteomics, molecular dynamics, cellular thermal shift assay (CETSA) and drug affinity responsive target stability (DARTS) investigations revealed that TG can directly bind to adiponectin receptor 1 (AdipoR1). Using AdipoR1-knockdown C2C12 cells and muscle-specific AdipoR1-knockout mice, we found that the positive effect of TG on regulating slow oxidative myofiber related markers expression is mediated by AdipoR1 and its downstream AMPK/PGC-1α pathway. Together, our data uncover TG as a natural compound that regulates the identity of slow oxidative myofibers via targeting the AdipoR1 signaling pathway. These findings further unveil the new function of TG in increasing the proportion of slow oxidative myofibers and enhancing skeletal muscle performance.
Collapse
Affiliation(s)
- Jinjie Li
- Centre for Nutritional Ecology and Centre for Sport Nutrition and Health, Zhengzhou University, Zhengzhou 450001, China
| | - Jiangtao Li
- Centre for Nutritional Ecology and Centre for Sport Nutrition and Health, Zhengzhou University, Zhengzhou 450001, China
| | - Amin Ullah
- Department of Nutrition and Food Hygiene, School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaoyang Shi
- Centre for Nutritional Ecology and Centre for Sport Nutrition and Health, Zhengzhou University, Zhengzhou 450001, China
| | - Xinyuan Zhang
- Centre for Nutritional Ecology and Centre for Sport Nutrition and Health, Zhengzhou University, Zhengzhou 450001, China
| | - Zhenwei Cui
- Centre for Nutritional Ecology and Centre for Sport Nutrition and Health, Zhengzhou University, Zhengzhou 450001, China
| | - Quanjun Lyu
- Department of Nutrition and Food Hygiene, School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Guangning Kou
- Centre for Nutritional Ecology and Centre for Sport Nutrition and Health, Zhengzhou University, Zhengzhou 450001, China
- Department of Nutrition and Food Hygiene, School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
27
|
You L, Wang T, Li W, Zhang J, Zheng C, Zheng Y, Li S, Shang Z, Lin J, Wang F, Qian Y, Zhou Z, Kong X, Gao Y, Sun X. Xiaozhi formula attenuates non-alcoholic fatty liver disease by regulating lipid metabolism via activation of AMPK and PPAR pathways. JOURNAL OF ETHNOPHARMACOLOGY 2024; 329:118165. [PMID: 38588984 DOI: 10.1016/j.jep.2024.118165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/03/2024] [Accepted: 04/06/2024] [Indexed: 04/10/2024]
Abstract
BACKGROUND Xiaozhi formula (XZF) is a practical Chinese herbal formula for the treatment of non-alcoholic fatty liver disease (NAFLD), which possesses an authorized patent certificate issued by the State Intellectual Property Office of China (ZL202211392355.0). However, the underlying mechanism by which XZF treats NAFLD remains unclear. PURPOSE This study aimed to explore the main component of XZF and its mechanism of action in NAFLD treatment. METHODS UHPLC-Q-Orbitrap HRMS was used to identify the components of the XZF. A high-fat diet (HFD)-induced NAFLD mouse model was used to demonstrate the effectiveness of XZF. Body weight, liver weight, and white fat weight were recorded to evaluate the therapeutic efficacy of XZF. H&E and Oil Red O staining were applied to observe the extent of hepatic steatosis. Liver damage, lipid metabolism, and glucose metabolism were detected by relevant assay kits. Moreover, the intraperitoneal insulin tolerance test and the intraperitoneal glucose tolerance test were employed to evaluate the efficacy of XZF in insulin homeostasis. Hepatocyte oxidative damage markers were detected to assess the efficacy of XZF in preventing oxidative stress. Label-free proteomics was used to investigate the underlying mechanism of XZF in NAFLD. RT-qPCR was used to calculate the expression levels of lipid metabolism genes. Western blot analysis was applied to detect the hepatic protein expression of AMPK, p-AMPK, PPARɑ, CPT1, and PPARγ. RESULTS 120 compounds were preliminarily identified from XZF by UHPLC-Q-Orbitrap HRMS. XZF could alleviate HFD-induced obesity, white adipocyte size, lipid accumulation, and hepatic steatosis in mice. Additionally, XZF could normalize glucose levels, improve glucolipid metabolism disorders, and prevent oxidative stress damage induced by HFD. Furthermore, the proteomic analysis showed that the major pathways in fatty acid metabolism and the PPAR signaling pathway were significantly impacted by XZF treatment. The expression levels of several lipolytic and β-oxidation genes were up-regulated, while the expression of fatty acid synthesis genes declined in the HFD + XZF group. Mechanically, XZF treatment enhanced the expression of p-AMPK, PPARɑ, and CPT-1 and suppressed the expression of PPARγ in the livers of NAFLD mice, indicating that XZF could activate the AMPK and PPAR pathways to attenuate NALFD progression. CONCLUSION XZF could attenuate NAFLD by moderating lipid metabolism by activating AMPK and PPAR signaling pathways.
Collapse
Affiliation(s)
- Liping You
- Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China; Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China
| | - Tao Wang
- Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China; Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China
| | - Wenxuan Li
- Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China; Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China
| | - Jinghao Zhang
- Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China
| | - Chao Zheng
- Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China
| | - Yanxi Zheng
- Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China
| | - Suyin Li
- Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China; Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China
| | - Zhi Shang
- Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China; Pestilence Disease Laboratory of Integrated Chinese and Western Medicine, Shanghai Institute of Traditional Chinese Medicine, Shanghai, China
| | - Jiacheng Lin
- Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China
| | - Fang Wang
- Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China
| | - Yihan Qian
- Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China
| | - Zhijia Zhou
- Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China; Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China
| | - Xiaoni Kong
- Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China.
| | - Yueqiu Gao
- Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China; Pestilence Disease Laboratory of Integrated Chinese and Western Medicine, Shanghai Institute of Traditional Chinese Medicine, Shanghai, China.
| | - Xuehua Sun
- Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China.
| |
Collapse
|
28
|
Cao D, Zhang Z, Jiang X, Wu T, Xiang Y, Ji Z, Guo J, Zhang X, Xu K, Liu Z, Zhang Y. Psoralea corylifolia L. and its active component isobavachalcone demonstrate antibacterial activity against Mycobacterium abscessus. JOURNAL OF ETHNOPHARMACOLOGY 2024; 329:118142. [PMID: 38583730 DOI: 10.1016/j.jep.2024.118142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/19/2024] [Accepted: 03/31/2024] [Indexed: 04/09/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Psoralea corylifolia L. (Fabaceae) is a traditional medicinal herb used to treat various diseases, including kidney disease, asthma, psoriasis and vitiligo. AIM OF THE STUDY To explore the antibacterial activity of Psoralea corylifolia L. and its bioactive components against Mycobacterium abscessus (M. abscessus). MATERIALS AND METHODS Ultra high performance liquid chromatography was utilized to analyze the bioactive fractions and compounds present in 30%, 60%, and 90% ethanol extracts of Psoralea corylifolia L.. The antibacterial effects of Psoralea corylifolia L. and potential active ingredients were determined by minimum inhibitory concentration (MIC). The bactericidal activity of the active ingredient isobavachalcone was evaluated and then scanning electron microscopy was used to explore the bactericidal mechanism of isobavachalcone. RESULTS The 90% ethanol extracts of Psoralea corylifolia L. showed significant antibacterial activity against M. abscessus, with an MIC of 156 μg/mL. Isobavachalcone was identified as the bioactive ingredient, and testing of 118 clinical isolates of M. abscessus indicated their MICs ranged from 2 to 16 μg/mL, with an average MIC of 8 μg/mL. Furthermore, the minimum bactericidal concentration/MIC ratio and the time-kill test indicated rapid bactericidal activity of isobavachalcone against M. abscessus. Finally, we found that the bactericidal mechanism of isobavachalcone involved damage to the bacterial cell membrane, causing wrinkled and sunken cell surface and a noticeable reduction in bacterial length. CONCLUSION Psoralea corylifolia L. ethanol extracts as well as its active component isobavachalcone show promising antimicrobial activity against M. abscessus.
Collapse
Affiliation(s)
- Dan Cao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zunjing Zhang
- Lishui Traditional Chinese Medicine Hospital affiliated to the Zhejiang Chinese Medical University, Lishui, 323020, Zhejiang, China
| | - Xiuzhi Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tiantian Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanghui Xiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhongkang Ji
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Guo
- Lishui Traditional Chinese Medicine Hospital affiliated to the Zhejiang Chinese Medical University, Lishui, 323020, Zhejiang, China
| | - Xiaoqin Zhang
- Lishui Traditional Chinese Medicine Hospital affiliated to the Zhejiang Chinese Medical University, Lishui, 323020, Zhejiang, China
| | - Kaijin Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhongda Liu
- Lishui Traditional Chinese Medicine Hospital affiliated to the Zhejiang Chinese Medical University, Lishui, 323020, Zhejiang, China.
| | - Ying Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250117, China.
| |
Collapse
|
29
|
Makiyama T, Obama T, Watanabe Y, Chatani M, Azetsu Y, Kawaguchi K, Imanaka T, Itabe H. Behavior of intracellular lipid droplets during cell division in HuH7 hepatoma cells. Exp Cell Res 2023; 433:113855. [PMID: 37995922 DOI: 10.1016/j.yexcr.2023.113855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 11/16/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
Intracellular lipid droplets (LDs) are ubiquitous organelles found in many cell types. During mitosis, membranous organelles, including mitochondria, are divided into small pieces and transferred to daughter cells; however, the process of LD transfer to daughter cells is not fully elucidated. Herein, we investigated the behavior of LDs during mitosis in HuH7 human hepatoma cells. While fragments of the Golgi apparatus were scattered in the cytosol during mitosis, intracellular LDs retained their size and spherical morphology as they translocated to the two daughter cells. LDs were initially distributed throughout the cell during prophase but positioned outside the spindle in metaphase, aligning at the far sides of the centrioles. A similar distribution of LDs during mitosis was observed in another hepatocarcinoma HepG2 cells. When the spindle was disrupted by nocodazole treatment or never in mitosis gene A-related kinase 2A knockdown, LDs were localized in the area outside the chromosomes, suggesting that spindle formation is not necessary for LD localization at metaphase. The amount of major LD protein perilipin 2 reduced while LDs were enriched in perilipin 3 during mitosis, indicating the potential alteration of LD protein composition. Conclusively, the behavior of LDs during mitosis is distinct from that of other organelles in hepatocytes.
Collapse
Affiliation(s)
- Tomohiko Makiyama
- Department of Biological Chemistry, Showa University Graduate School of Pharmacy, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan.
| | - Takashi Obama
- Department of Biological Chemistry, Showa University Graduate School of Pharmacy, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan
| | - Yuichi Watanabe
- Department of Biological Chemistry, Showa University Graduate School of Pharmacy, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan
| | - Masahiro Chatani
- Department of Pharmacology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan; Pharmacological Research Center, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan
| | - Yuki Azetsu
- Department of Pharmacology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan; Pharmacological Research Center, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan
| | - Kosuke Kawaguchi
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Tsuneo Imanaka
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan; Faculty of Pharmaceutical Sciences, Hiroshima International University, 5-1-1 Hirokoshinkai, Kure City, Hiroshima, 737-0112, Japan
| | - Hiroyuki Itabe
- Department of Biological Chemistry, Showa University Graduate School of Pharmacy, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan
| |
Collapse
|