1
|
Wang X, Zhang J, Xia X, Fang Y, Yang L, Zhou Y, Hu S, Jiang L, Xiong K, Wang J. Sodium alginate alleviated isoniazid-induced liver injury by modulating fecal metabolites and gut microbiota. Int J Biol Macromol 2025; 305:141149. [PMID: 39961567 DOI: 10.1016/j.ijbiomac.2025.141149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/06/2025] [Accepted: 02/14/2025] [Indexed: 02/21/2025]
Abstract
Previous studies found that sodium alginate (SA) was protective against several liver diseases. However, the effect of SA on drug-induced liver injury is not clear. This study investigated the effect and mechanism of SA on isoniazid (INH)-induced liver injury in mice. Twenty-one male BALB/c mice were randomly divided into three groups: the control (AIN-93 M diet), the INH (AIN-93 M diet with 0.66 g INH/kg diet) and the SA group (AIN-93 M diet with 0.66 g INH/kg diet and 0.8 g SA/kg diet). After 10 weeks, the liver function indices, histopathological changes, fecal metabolites, and gut microbiota compositions were measured. Compared with the INH group, the SA group had significantly reduced alanine aminotransferase (ALT) and histopathological liver injury. Also, the SA treatment significantly reduced the content of several fecal metabolites including the indole, phenylalanine, and tyrosine derivatives. In addition, the SA treatment significantly increased the content of seven gut bacteria including Dorea, Eubacterium xylanophilum group, and Papillibacter and reduced the content of 11 gut bacteria including Alloprevotella. The changes in fecal metabolites and gut bacteria were associated with those in serum ALT and histopathological liver injury. In conclusion, SA alleviated INH-induced liver injury in mice by modulating fecal metabolites and gut bacteria.
Collapse
Affiliation(s)
- Xinfang Wang
- Institute of Nutrition and Health, School of Public Health, Qingdao University, Qingdao, Shandong, China
| | - Jingkai Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Qingdao University, Qingdao, Shandong, China
| | - Xin Xia
- Institute of Nutrition and Health, School of Public Health, Qingdao University, Qingdao, Shandong, China
| | - Yuanyuan Fang
- Institute of Nutrition and Health, School of Public Health, Qingdao University, Qingdao, Shandong, China
| | - Leyu Yang
- Institute of Nutrition and Health, School of Public Health, Qingdao University, Qingdao, Shandong, China
| | - Yarui Zhou
- Institute of Nutrition and Health, School of Public Health, Qingdao University, Qingdao, Shandong, China
| | - Shouna Hu
- Institute of Nutrition and Health, School of Public Health, Qingdao University, Qingdao, Shandong, China
| | - Lan Jiang
- Institute of Nutrition and Health, School of Public Health, Qingdao University, Qingdao, Shandong, China
| | - Ke Xiong
- Institute of Nutrition and Health, School of Public Health, Qingdao University, Qingdao, Shandong, China
| | - Jinyu Wang
- Institute of Nutrition and Health, School of Public Health, Qingdao University, Qingdao, Shandong, China.
| |
Collapse
|
2
|
Yang J, Ren H, Cao J, Fu J, Wang J, Su Z, Lu S, Sheng K, Wang Y. Gut commensal Lachnospiraceae bacteria contribute to anti-colitis effects of Lactiplantibacillus plantarum exopolysaccharides. Int J Biol Macromol 2025; 309:142815. [PMID: 40187461 DOI: 10.1016/j.ijbiomac.2025.142815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 03/20/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
The probiotic Lactiplantibacillus plantarum (L. plantarum) could ameliorate colitis. Alterations in the composition of gut microbiota (GM) have been proved in cases of colitis. The exopolysaccharides from L. plantarum HMPM2111 (LPE) could be effective in colitis through altering the composition of the GM. These effects were linked to inhibiting intestinal inflammation, regulating the TXNIP/NLRP3 inflammasome axis, and attenuating colonic barrier dysfunction. The combination of fecal microbiota transplantation (FMT) and antibiotic inducement showed that gut bacteria susceptible to vancomycin were inversely associated with colitis features and were necessary for the anti-inflammatory effects of LPE. The elevated abundances of gut commensal Lachnospiraceae bacteria were associated with the restoration of colitis treated by LPE. Metabolomics analysis showed that colitis mice treated with LPE had higher levels of propionate and tryptophan metabolites generated from gut bacteria. The administration of these metabolites protected colitis and resulted in a reduction in inflammatory responses. The outcomes of our investigation emerge the significance of the GM in controlling the protective implications of LPE against colitis. Lachnospiraceae bacteria, together with downstream metabolites, contribute substantially to protection. This work elucidates the essential function of the GM-metabolite axis in producing comprehensive protection versus colitis and identifies prospective treatment targets.
Collapse
Affiliation(s)
- Jian Yang
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China
| | - Huijuan Ren
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China
| | - Jialing Cao
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China
| | - Jingjing Fu
- Department of Pharmacy, Anhui No.2 Provincial People's Hospital, Hefei 230041, Anhui, China; Anhui No.2 Provincial People's Hospital Clinical College, Anhui Medical University, Hefei 230032, Anhui, China
| | - Junhui Wang
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China
| | - Ziwei Su
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China
| | - Shiqi Lu
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China
| | - Kangliang Sheng
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China.
| | - Yongzhong Wang
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China.
| |
Collapse
|
3
|
Dai S, Long J, Han W, Zhang L, Chen B. Alleviative effect of probiotics and prebiotics on dry eye in type 2 diabetic mice through the gut-eye axis. Ocul Surf 2025; 36:244-260. [PMID: 39922458 DOI: 10.1016/j.jtos.2025.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 02/05/2025] [Accepted: 02/05/2025] [Indexed: 02/10/2025]
Abstract
Diabetes Mellitus (DM) is a metabolic disease that manifests as a state of "chronic low-grade inflammation". Patients with DM have a disorder of intestinal flora. There is a discernible correlation between this disorder of intestinal flora and the onset and progression of eye diseases, which offers novel insights into treating eye diseases through the modulation of intestinal flora. Here, we demonstrated that a high-fat diet and streptozotocin injection-induced intestinal microbiota dysbiosis can lead to dry eye-like manifestations in T2DM mice. Probiotic and prebiotic treatments not only alleviated intestinal inflammation and barrier disruption, but also mitigated damage to the lacrimal barrier and suppressed immune cell infiltration and inflammatory responses. Additional mechanism investigation found that probiotics and prebiotics inhibited the TLR4/NF-κB signaling pathway and its downstream pro-inflammatory products both in the lacrimal gland and colon. 16S RNA sequencing identified a reduction in the bacterial genera Akkermansia and Lactobacillus in the fecal samples of DM mice. By contrast, treatment with probiotics and prebiotics led to a reshaping of the intestinal microbial community and a reduction in bile acid metabolites, such as taurocholic acid and deoxycholic acid. Our current study demonstrates that probiotic and prebiotic treatments can ameliorate dry eye-like symptoms and associated pathological changes in T2DM mice. Moreover, we proved that a high-fat diet and STZ-induced microbiota dysbiosis were involved in diabetic dry eye through the gut-eye axis.
Collapse
Affiliation(s)
- Shirui Dai
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China.
| | - Jianfeng Long
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China.
| | - Wentao Han
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China.
| | - Liwei Zhang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China.
| | - Baihua Chen
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China.
| |
Collapse
|
4
|
Luo J, Yang Q, Jiang W, Liu Y, Hu Q, Peng X. The interaction between Angelica sinensis polysaccharide ASP-2pb and specific gut bacteria alleviates rheumatoid arthritis in rats. Int J Biol Macromol 2025; 301:140473. [PMID: 39889994 DOI: 10.1016/j.ijbiomac.2025.140473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/07/2025] [Accepted: 01/27/2025] [Indexed: 02/03/2025]
Abstract
Angelica sinensis polysaccharide (ASP) alleviated Rheumatoid arthritis (RA), but whether the relief was attributed to ASP itself or its microbial metabolites remained unclear. We characterized the main fraction of ASP (ASP-2pb) as a polysaccharide with molecular weight of 92.02 kDa. It contained approximately 48 repeating units of →6)-β-D-Galp-(1 → 3)-4-OMe-β-D-Galp-(1 → 4)-α-D-GalpA-(1 → 6)-β-D-Galp-(1 → 3)-4-OMe-β-D-Galp-(1→3)-β-D-Galp-(1 → 3)-β-D-Galp-(1 → 3)-β-D-Galp-(1 → with branches of Araf and Galp. Using ASP-2pb as intervention, the symptoms of RA in rats including joint swelling and inflammation were alleviated. Pseudo-germ-free animal test confirmed the necessity of specific gut bacteria during this alleviation. Bacteria such as Candidatus_Saccharimonas, Lactobacillus, Bifidobacterium, Faecalibaculum, Parvibacter, Ruminococcus_torques_group, Fournierella and Alloprevotella ought to be the key bacteria. Metabolites generated by these gut bacteria such as myristoleic acid, cuminaldehyde, 4-deoxypyridoxine and galactosylhydroxylysine, should be the key to RA remission. Therefore, specific metabolites were the consequence of the interaction between ASP-2pb and specific intestinal bacteria, and were responsible for the RA improvement.
Collapse
Affiliation(s)
- Jianming Luo
- Department of Food Science and Engineering, Jinan University, 601 Huangpu Avenue, Guangzhou, Guangdong 510632, China.
| | - Qianyi Yang
- Department of Food Science and Engineering, Jinan University, 601 Huangpu Avenue, Guangzhou, Guangdong 510632, China
| | - Wenwen Jiang
- Department of Food Science and Engineering, Jinan University, 601 Huangpu Avenue, Guangzhou, Guangdong 510632, China
| | - Yanghanxiu Liu
- Department of Food Science and Engineering, Jinan University, 601 Huangpu Avenue, Guangzhou, Guangdong 510632, China
| | - Qing Hu
- Department of Food Science and Engineering, Jinan University, 601 Huangpu Avenue, Guangzhou, Guangdong 510632, China
| | - Xichun Peng
- Department of Food Science and Engineering, Jinan University, 601 Huangpu Avenue, Guangzhou, Guangdong 510632, China.
| |
Collapse
|
5
|
Song W, Zhu L, Yang C, Su K, Miao Y, Hu J, Chen B, Li L, Cui X, Luo Y, Sheng Q, Yue T. Ergosterol originated from Auricularia auricula attenuates high fat diet-induced obesity and cognitive impairment in mice. Food Funct 2025; 16:2780-2792. [PMID: 40084554 DOI: 10.1039/d4fo04817b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Excessive intake of a high fat diet (HFD) leads to accumulation of fat and obesity. Ergosterol (ERG) is a characteristic sterol of fungi with various bioactive functions; however, there are few studies on the ERG function of ameliorating obesity and following cognitive impairment. It was previously found that Zhashui Auricularia auricula (AA) is rich in ERG; therefore it was selected to enrich ERG through the intervention of exogenous inducers of rice bran oil (RBO), methyl jasmonate (Me JA) and salicylic acid (SA). The accumulated ERG was used to investigate alleviative effects on mouse obesity and cognitive impairment. According to LEfSe analysis of intestinal flora species, ERG reduced the abundance of obesity or inflammation-related intestinal microbial genera, while increasing the relative abundance of beneficial bacteria. The ERG sourced from AA significantly ameliorated HFD-induced mouse obesity by reducing lipid levels and liver oxidative stress, recovering memory and learning abilities of the mice by restoring the hippocampus function and downregulating inflammatory factors.
Collapse
Affiliation(s)
- Wei Song
- College of Food Science and Technology, Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Research Center of Food Safety Risk Assessment and Control, Northwest University, No. 229, North Taibai Road, Beilin District, Xi'an 710069, China.
| | - Lina Zhu
- College of Food Science and Technology, Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Research Center of Food Safety Risk Assessment and Control, Northwest University, No. 229, North Taibai Road, Beilin District, Xi'an 710069, China.
| | - Chunyan Yang
- College of Food Science and Technology, Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Research Center of Food Safety Risk Assessment and Control, Northwest University, No. 229, North Taibai Road, Beilin District, Xi'an 710069, China.
| | - Kaixin Su
- College of Food Science and Technology, Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Research Center of Food Safety Risk Assessment and Control, Northwest University, No. 229, North Taibai Road, Beilin District, Xi'an 710069, China.
| | - Yaxing Miao
- College of Food Science and Technology, Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Research Center of Food Safety Risk Assessment and Control, Northwest University, No. 229, North Taibai Road, Beilin District, Xi'an 710069, China.
| | - Jinhong Hu
- College of Food Science and Technology, Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Research Center of Food Safety Risk Assessment and Control, Northwest University, No. 229, North Taibai Road, Beilin District, Xi'an 710069, China.
| | - Bing Chen
- College of Food Science and Technology, Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Research Center of Food Safety Risk Assessment and Control, Northwest University, No. 229, North Taibai Road, Beilin District, Xi'an 710069, China.
| | - Lingling Li
- College of Food Science and Technology, Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Research Center of Food Safety Risk Assessment and Control, Northwest University, No. 229, North Taibai Road, Beilin District, Xi'an 710069, China.
| | - Xiaole Cui
- College of Food Science and Technology, Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Research Center of Food Safety Risk Assessment and Control, Northwest University, No. 229, North Taibai Road, Beilin District, Xi'an 710069, China.
| | - Yane Luo
- College of Food Science and Technology, Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Research Center of Food Safety Risk Assessment and Control, Northwest University, No. 229, North Taibai Road, Beilin District, Xi'an 710069, China.
| | - Qinglin Sheng
- College of Food Science and Technology, Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Research Center of Food Safety Risk Assessment and Control, Northwest University, No. 229, North Taibai Road, Beilin District, Xi'an 710069, China.
| | - Tianli Yue
- College of Food Science and Technology, Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Research Center of Food Safety Risk Assessment and Control, Northwest University, No. 229, North Taibai Road, Beilin District, Xi'an 710069, China.
| |
Collapse
|
6
|
Wang S, Liu JX, Sun C, Li YG, Jiang HX, Jiang SL, Liang J, Wang WF, Kuang HX, Xia YG. Auricularia auricula polysaccharides alleviate experimental silicosis by targeting EGFR through the "gut-lung axis". Int J Biol Macromol 2025; 309:142541. [PMID: 40147652 DOI: 10.1016/j.ijbiomac.2025.142541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 03/03/2025] [Accepted: 03/24/2025] [Indexed: 03/29/2025]
Abstract
Silicosis is a major public health problem and remains a challenge for clinicians. There is an urgent need to find new drugs to minimize disease progression and deterioration. Auricularia auricula-juade is a traditional folk medicine that is used for nourishing lung functions. The aim of this study is to investigate the pharmacological action and potential mechanism of polysaccharides in Auricularia auricula for silicosis treatment. The results indicated that the Auricularia auricula polysaccharide (AAP) effectively improved silicosis induced by silica (SiO2) in mice. The preliminary screening of differentially expressed proteins (DEPs) in the lung and intestinal tissues after AAP intervention was performed using tandem mass tag (TMT) quantitative proteomics. A common differential protein of the intestine and lungs, i.e., epidermal growth factor receptor (EGFR), was focused on using a combination of current proteomics data and a network disease database. After further validation, the use of an intestinal-lung co-culture model confirmed that AAP had the ability to attenuate the secretion of EGFR ligands (i.e., TGF-α, EGF and AREG) and modulate signaling between the intestine and lungs. This effectively inhibited the EGFR/JNK signaling pathway in lung tissues, thereby achieving therapeutic efficacy against silicosis. This study provides a solid experimental foundation of the use of AAP for silicosis treatment.
Collapse
Affiliation(s)
- Shu Wang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, 24 Heping Road, Harbin 150040, China
| | - Jun-Xi Liu
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, 24 Heping Road, Harbin 150040, China
| | - Chao Sun
- Heilongjiang Chamgree Pharmaceutical Co, Ltd., Qing an 152400, China
| | - Ya-Ge Li
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, 24 Heping Road, Harbin 150040, China
| | - Hong-Xiang Jiang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, 24 Heping Road, Harbin 150040, China
| | - Si-Liang Jiang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, 24 Heping Road, Harbin 150040, China
| | - Jun Liang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, 24 Heping Road, Harbin 150040, China.
| | - Wen-Fei Wang
- Bio-pharmaceutical Lab, College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Hai-Xue Kuang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, 24 Heping Road, Harbin 150040, China
| | - Yong-Gang Xia
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, 24 Heping Road, Harbin 150040, China.
| |
Collapse
|
7
|
Chu D, Zhang H, Shang Z, Liu N, Fu H, Yuan S. Gut Microecology of Four Sympatric Desert Rodents Varies by Diet. Ecol Evol 2025; 15:e70992. [PMID: 40027415 PMCID: PMC11868701 DOI: 10.1002/ece3.70992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 01/12/2025] [Accepted: 01/31/2025] [Indexed: 03/05/2025] Open
Abstract
The gut microbiome can be one pathway by which a host rapidly acclimates and adapts to its ecological environment. Exploring how the microbiome has evolved to differ between hosts with different diets provides insights into the profound interactions between hosts and microbes within these systems. In this study, we used DNA metabarcoding techniques and macrogenomic prediction techniques to study the gut microbes of four desert rodent species with different feeding strategies in the same habitat. One species is herbivorous (Spermophilus alashanicu)s, one is granivorous (Phodopus roborovskii), another is omnivorous (Dipus sagitta), and the last (Orientallactaga sibirica) has a diet with a relatively high proportion of insects. Diets rich in plants and insects can be challenging to digest due to the abundance of indigestible fiber and stable chitin, respectively. Out of the species studied, the herbivorous Spermophilus alashanicus has the highest density of UCG-005 genes and the highest predicted abundance of genes related to digestive complexity. The composition of Phodopus roborovskii's microbiome has the highest variation between individuals, yet Phodopus roborovskii has the highest predicted abundance of genes associated with simple sugars-reflecting this species' potential adaptability to the starch within plant seeds and its constraints brought about by its smaller body size. The most insectivorous species, Orientallactaga sibirica, exhibits the highest predicted abundance of genes related to chitin degradation. This study has enhanced our understanding of the gut microbiota in the intestines of rodents as they adapt to various dietary strategies.
Collapse
Affiliation(s)
- Dongyang Chu
- College of Grassland, Resources and EnvironmentInner Mongolia Agricultural UniversityHohhotChina
- Key Laboratory of Grassland Rodent Ecology and Rodent Pest Control at Universities of Inner Mongolia AutonomousHohhotChina
- Key Laboratory of Grassland Resources of the Ministry of EducationHohhotChina
| | - Haoting Zhang
- College of Grassland, Resources and EnvironmentInner Mongolia Agricultural UniversityHohhotChina
- Key Laboratory of Grassland Rodent Ecology and Rodent Pest Control at Universities of Inner Mongolia AutonomousHohhotChina
- Key Laboratory of Grassland Resources of the Ministry of EducationHohhotChina
| | - Zhenghaoni Shang
- College of Grassland, Resources and EnvironmentInner Mongolia Agricultural UniversityHohhotChina
- Key Laboratory of Grassland Rodent Ecology and Rodent Pest Control at Universities of Inner Mongolia AutonomousHohhotChina
- Key Laboratory of Grassland Resources of the Ministry of EducationHohhotChina
| | - Nan Liu
- College of Grassland, Resources and EnvironmentInner Mongolia Agricultural UniversityHohhotChina
- Key Laboratory of Grassland Rodent Ecology and Rodent Pest Control at Universities of Inner Mongolia AutonomousHohhotChina
- Key Laboratory of Grassland Resources of the Ministry of EducationHohhotChina
| | - Heping Fu
- College of Grassland, Resources and EnvironmentInner Mongolia Agricultural UniversityHohhotChina
- Key Laboratory of Grassland Rodent Ecology and Rodent Pest Control at Universities of Inner Mongolia AutonomousHohhotChina
- Key Laboratory of Grassland Resources of the Ministry of EducationHohhotChina
| | - Shuai Yuan
- College of Grassland, Resources and EnvironmentInner Mongolia Agricultural UniversityHohhotChina
- Key Laboratory of Grassland Rodent Ecology and Rodent Pest Control at Universities of Inner Mongolia AutonomousHohhotChina
- Key Laboratory of Grassland Resources of the Ministry of EducationHohhotChina
| |
Collapse
|
8
|
Tadese DA, Mwangi J, Luo L, Zhang H, Huang X, Michira BB, Zhou S, Kamau PM, Lu Q, Lai R. The microbiome's influence on obesity: mechanisms and therapeutic potential. SCIENCE CHINA. LIFE SCIENCES 2025; 68:657-672. [PMID: 39617855 DOI: 10.1007/s11427-024-2759-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 10/16/2024] [Indexed: 01/03/2025]
Abstract
In 2023, the World Obesity Atlas Federation concluded that more than 50% of the world's population would be overweight or obese within the next 12 years. At the heart of this epidemic lies the gut microbiota, a complex ecosystem that profoundly influences obesity-related metabolic health. Its multifaced role encompasses energy harvesting, inflammation, satiety signaling, gut barrier function, gut-brain communication, and adipose tissue homeostasis. Recognizing the complexities of the cross-talk between host physiology and gut microbiota is crucial for developing cutting-edge, microbiome-targeted therapies to address the global obesity crisis and its alarming health and economic repercussions. This narrative review analyzed the current state of knowledge, illuminating emerging research areas and their implications for leveraging gut microbial manipulations as therapeutic strategies to prevent and treat obesity and related disorders in humans. By elucidating the complex relationship between gut microflora and obesity, we aim to contribute to the growing body of knowledge underpinning this critical field, potentially paving the way for novel interventions to combat the worldwide obesity epidemic.
Collapse
Affiliation(s)
- Dawit Adisu Tadese
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
- Kunming College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - James Mwangi
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
- Kunming College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lei Luo
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
- Kunming College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hao Zhang
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - Xiaoshan Huang
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
- Kunming College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Brenda B Michira
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
- Kunming College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shengwen Zhou
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
- Kunming College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Peter Muiruri Kamau
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
- Kunming College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiumin Lu
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - Ren Lai
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China.
- Kunming College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
9
|
Zhang L, Liu ZX, Liu YH, Chen Y, Chen J, Lu CH. Auricularia auriculaPolysaccharides Exert Anti-inflammatory Effects in Hepatic Fibrosis by the Gut-Liver Axis and Enhancing SCFA Metabolism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:4617-4629. [PMID: 39945558 PMCID: PMC11869285 DOI: 10.1021/acs.jafc.4c07952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 01/29/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025]
Abstract
Auricularia auricula, esteemed in Chinese culture for their culinary and medicinal properties, exhibits notable metabolic and immunomodulatory effects. The principal active constituents are indigestible fermentable polysaccharides, which not only exhibit anti-inflammatory activities but also facilitate the proliferation of beneficial gut microbiota. However, the influence of gut-derived components on liver-regulated metabolic products remains insufficiently understood. This item offers insights into the therapeutic potential of wood ear mushrooms for treating hepatic fibrosis and the associated mechanisms. Following 8 weeks of treatment, a substantial reduction in ECM deposition was recorded, linked to modulation of the NLRP3 inflammasome activation. This study aims to reveal the potential microbiome-mediated mechanisms behind its therapeutic effects. Insights from antibiotic combination treatments indicate that the protective effects against ECM deposition rely on the presence of specific gut microbiota. This fecal microbiota intervention enhances key physiological mechanisms, underscoring the contributions of Lactobacillales, Rikenellaceae, and Bacteroidaceae in potentially mitigating fibrosis. Collectively, these findings suggest that interventions utilizing wood ear mushrooms may reduce inflammation and ECM deposition, mediated by the TLR4/NF-κB pathway.
Collapse
Affiliation(s)
- Lu Zhang
- Department
Gastroenterology, Medical School of Nantong University, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Zhao-Xiu Liu
- Department
Gastroenterology, Medical School of Nantong University, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Yi-Heng Liu
- Department
Gastroenterology, Medical School of Nantong University, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Yuyan Chen
- Division
of Hepatobiliary and Transplantation Surgery, Department of General
Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical
School, Nanjing University, Nanjing 210008, China
| | - Jing Chen
- Department
Gastroenterology, Medical School of Nantong University, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Cui-Hua Lu
- Department
Gastroenterology, Medical School of Nantong University, Affiliated Hospital of Nantong University, Nantong 226001, China
| |
Collapse
|
10
|
Xia Y, Wang L, Qiu Y, Ge W. High-dose thiamine supplementation ameliorates obesity induced by a high-fat and high-fructose diet in mice by reshaping gut microbiota. Front Nutr 2025; 12:1532581. [PMID: 39990607 PMCID: PMC11842239 DOI: 10.3389/fnut.2025.1532581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 01/20/2025] [Indexed: 02/25/2025] Open
Abstract
Introduction Thiamine (vitamin B1) in the gut is crucial for maintaining intestinal homeostasis and host health. Our previous study identified significantly lower levels of fecal thiamine in individuals with obesity; however, its potential and mechanisms for alleviating obesity induced by a high-fat and high-fructose diet (HFFD) remain unclear. Therefore, in the present study, the effects of high-dose thiamine supplementation on HFFD-induced obesity and gut microbiota dysbiosis were investigated. Methods HFFD-fed mice were supplemented with high-dose thiamine for eight weeks. Biochemical analysis and histological analysis were conducted to assess phenotypic changes. Fecal 16S rRNA gene sequencing was performed to analyze alterations in the gut microbiota. Results The results showed that high-dose thiamine supplementation for eight weeks could significantly alleviate symptoms of HFFD-induced obesity and improve HFFD-induced intestinal epithelial barrier dysfunction by enhancing the tight junction function. Furthermore, oral administration of high-dose thiamine also regulated HFFD-induced gut microbiota dysbiosis by reshaping its structure and composition of gut microbiota, such as increasing the relative abundance of Actinobacteria and Bifidobacterium pseudolongum, and reducing the relative abundance of Proteobacteria and Ruminococcus gnavus, accompanied by decreased level of gut-derived endotoxin. Finally, significant correlations were found between obesity-related phenotypes and gut microbiota through correlation analysis. Conclusion Our findings suggest that the potential mechanism by which high-dose thiamine supplementation alleviated HFFD-induced obesity might involve reshaping gut microbiota and restoring the intestinal barrier, thereby ameliorating gut microbiota-related endotoxemia.
Collapse
Affiliation(s)
- Yu Xia
- Department of Pharmacy, China Pharmaceutical University Nanjing Drum Tower Hospital, Nanjing, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Lulu Wang
- Department of Pharmacy, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yanyan Qiu
- Department of Pediatrics, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| | - Weihong Ge
- Department of Pharmacy, China Pharmaceutical University Nanjing Drum Tower Hospital, Nanjing, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Department of Pharmacy, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
11
|
Chen Z, Zhou J, Zheng X, Xie H, Hao H. Metabolic insights into gut microbiota in the pharmacology of natural medicines. Chin J Nat Med 2025; 23:158-168. [PMID: 39986692 DOI: 10.1016/s1875-5364(25)60820-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/12/2024] [Accepted: 10/24/2024] [Indexed: 02/24/2025]
Abstract
Natural medicines (NMs) demonstrate distinct advantages in the clinical management of chronic diseases. Recent years have seen growing recognition of the gut microbiota's role in the efficacy and synergy of NMs, providing new impetus for elucidating the material basis and mechanisms of NMs and their path toward modernization. A fundamental question that has emerged is how NM-microbiota interactions integrate into the multi-target holistic mechanisms of NMs, the answer to which may also illuminate new avenues for drug discovery. Metabolic regulation via small-molecule metabolites has been increasingly implicated in host-microbe interaction. This review presents an integral metabolic perspective on NMs-microbiota interaction in host health and disease. It highlights the emerging understanding of gut microbiota-related metabolic signals implicated in NM components' local and systemic actions. Additionally, it discusses key issues and prospects related to drug development and the translational study of NMs.
Collapse
Affiliation(s)
- Zixin Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Laboratory of Metabolic Regulation and Drug Target Discovery, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Junchi Zhou
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Laboratory of Metabolic Regulation and Drug Target Discovery, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiao Zheng
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Laboratory of Metabolic Regulation and Drug Target Discovery, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Hao Xie
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Laboratory of Metabolic Regulation and Drug Target Discovery, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Haiping Hao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Laboratory of Metabolic Regulation and Drug Target Discovery, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
12
|
Feng X, Qin Y, Ma S, Ming S, Weng Z, Xuan Y, Gong S, Fan F, Chen P, Chu Q, Li Z. Liubao tea extract restrains obesity-related hyperlipidemia via regulation of AMPK/p38/NF-κB pathway and intestinal microbiota. Food Chem 2025; 464:141910. [PMID: 39522375 DOI: 10.1016/j.foodchem.2024.141910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/22/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Liubao tea, a traditional dark tea, has gained widespread recognition for various health benefits. In this study, the effects of Liubao tea extract (LTE) on obesity-related hyperlipidemia and the potential mechanism involved were explored. Anti-obesity compounds such as tricetin, isovitexin, tiliroside, etc. in LTE were identified. In high-fat diet mouse models, LTE effectively reduced tissues, organs, and body weight growth, and restored abnormal serum lipid levels. LTE could reverse adipocyte enlargement, lipid accumulation, and hepatic microstructure abnormalities. Notably, LTE reshaped gut microbiota by boosting beneficial bacteria (e.g., Bacteroides, Akkermansia, Psychrobacter) and suppressing harmful bacteria (e.g., Dubosiella, Faecalibaculum). Spearman correlation analysis unveiled significant associations between serum lipid levels, weight gain, LTE dosage, and gut microbiota, underlining the modulatory effects of LTE on metabolic disorders via the regulation of intestinal microbiota. Collectively, LTE could serve as a potential therapy for obesity-related hyperlipidemia prevention.
Collapse
Affiliation(s)
- Xinyu Feng
- Wuzhou Gongren Hospital, The Seventh Affiliated Hospital of Guangxi Medical University, Wuzhou, China; Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Yuechao Qin
- Wuzhou Gongren Hospital, The Seventh Affiliated Hospital of Guangxi Medical University, Wuzhou, China
| | - Shicheng Ma
- Wuzhou Liubao Tea Research Association, Wuzhou, China
| | - Shengjin Ming
- Wuzhou Gongren Hospital, The Seventh Affiliated Hospital of Guangxi Medical University, Wuzhou, China
| | - Zhihang Weng
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Yuqi Xuan
- Cangwu County Liuwang Forestry Industry Development Co., Ltd, China
| | - Shuying Gong
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Fangyuan Fan
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Ping Chen
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Qiang Chu
- Tea Research Institute, Zhejiang University, Hangzhou, China.
| | - Zhongxia Li
- Wuzhou Gongren Hospital, The Seventh Affiliated Hospital of Guangxi Medical University, Wuzhou, China
| |
Collapse
|
13
|
Wang Y, Xue Y, Xu H, Zhu Q, Qin K, He Z, Huang A, Mu M, Tao X. Pediococcus acidilactici Y01 reduces HFD-induced obesity via altering gut microbiota and metabolomic profiles and modulating adipose tissue macrophage M1/M2 polarization. Food Funct 2025; 16:554-569. [PMID: 39699275 DOI: 10.1039/d4fo04301d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Obesity-related metabolic syndrome is intimately associated with infiltrated adipose tissue macrophages (ATMs), gut microbiota, and metabolic disorders. Pediococcus acidilactici holds the potential to mitigate obesity; however, there exist strain-specific functionalities and diverse mechanisms, which deserve extensive exploration. This study aims to explore the potential of P. acidilactici Y01, isolated from traditional sour whey, in alleviating HFD-induced metabolic syndrome in mice and elucidating its underlying mechanism. The results showed that P. acidilactici Y01 could inhibit the increase of body weight gain, the deposition of fat, lipid disorders and chronic low-grade inflammation, improve glucose tolerance and insulin resistance, and could reduce adipose tissue inflammation by decreasing M1-type ATMs and increasing M2-type ATMs. Meanwhile, P. acidilactici Y01 significantly increased the abundance of potentially beneficial intestinal bacteria, such as Akkermansia, Alistipes, Bifidobacterium, Lachnospiraceae_NK4A136_group, Lactobacillus, norank_f__Muribaculaceae, and Parabacteroides, and partially restored the levels of metabolites, such as phosphatidylcholines, glycerophosphocholines, sphingolipids and unsaturated fatty acids. The fecal microbiota transplantation experiment demonstrated that P. acidilactici Y01 ameliorated obesity-related metabolic syndrome by modulating the polarization of M1/M2 ATMs mediated by gut microbiota. Overall, as a dietary supplement, P. acidilactici Y01 has good potential in the prevention and treatment of obesity.
Collapse
Affiliation(s)
- Yujing Wang
- Joint Research Center for Occupational Medicine and Health of IHM, Anhui University of Science and, Technology, Huainan 232000, China.
- School of Public Health, Anhui University of Science and Technology, Hefei 231131, China
- Key Laboratory of Industrial Dust Prevention and Control, Occupational Safety and Health, Ministry of Education, Anhui University of Science and Technology, Huainan 232001, China
- Anhui Institute of Occupational Safety and Health, Anhui University of Science and Technology, Hefei, China
| | - Yu Xue
- School of Medicine, Department of Medical Frontier Experimental Center, Anhui University of Science and Technology, Huainan 232001, China
| | - Huan Xu
- Joint Research Center for Occupational Medicine and Health of IHM, Anhui University of Science and, Technology, Huainan 232000, China.
- School of Public Health, Anhui University of Science and Technology, Hefei 231131, China
- Key Laboratory of Industrial Dust Prevention and Control, Occupational Safety and Health, Ministry of Education, Anhui University of Science and Technology, Huainan 232001, China
- Anhui Institute of Occupational Safety and Health, Anhui University of Science and Technology, Hefei, China
| | - Qian Zhu
- School of Public Health, Anhui University of Science and Technology, Hefei 231131, China
| | - Kaili Qin
- Joint Research Center for Occupational Medicine and Health of IHM, Anhui University of Science and, Technology, Huainan 232000, China.
- School of Public Health, Anhui University of Science and Technology, Hefei 231131, China
- Key Laboratory of Industrial Dust Prevention and Control, Occupational Safety and Health, Ministry of Education, Anhui University of Science and Technology, Huainan 232001, China
- Anhui Institute of Occupational Safety and Health, Anhui University of Science and Technology, Hefei, China
| | - Zhonglei He
- School of Public Health, Anhui University of Science and Technology, Hefei 231131, China
- Key Laboratory of Industrial Dust Prevention and Control, Occupational Safety and Health, Ministry of Education, Anhui University of Science and Technology, Huainan 232001, China
| | - Aixiang Huang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Min Mu
- Joint Research Center for Occupational Medicine and Health of IHM, Anhui University of Science and, Technology, Huainan 232000, China.
- School of Public Health, Anhui University of Science and Technology, Hefei 231131, China
- Key Laboratory of Industrial Dust Prevention and Control, Occupational Safety and Health, Ministry of Education, Anhui University of Science and Technology, Huainan 232001, China
- Anhui Institute of Occupational Safety and Health, Anhui University of Science and Technology, Hefei, China
| | - Xinrong Tao
- Joint Research Center for Occupational Medicine and Health of IHM, Anhui University of Science and, Technology, Huainan 232000, China.
- School of Public Health, Anhui University of Science and Technology, Hefei 231131, China
- Key Laboratory of Industrial Dust Prevention and Control, Occupational Safety and Health, Ministry of Education, Anhui University of Science and Technology, Huainan 232001, China
- Anhui Institute of Occupational Safety and Health, Anhui University of Science and Technology, Hefei, China
| |
Collapse
|
14
|
Zhao MQ, Fan MY, Cui MY, Chen SM, Wang JJ, Lu YY, Jiang QL. Profile of intestinal fungal microbiota in acute pancreatitis patients and healthy individuals. Gut Pathog 2025; 17:1. [PMID: 39780261 PMCID: PMC11716059 DOI: 10.1186/s13099-024-00675-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 12/24/2024] [Indexed: 01/11/2025] Open
Abstract
OBJECTIVE The gut is involved in the development of acute pancreatitis (AP). Increased focus is being given to the role of gut microbiota in the pathogenesis of AP. Nevertheless, there is currently no available evidence regarding the composition of fungal microorganisms in the intestines of patients with AP. METHODS In this study, we sequenced ITS rRNA gene amplicons and examined the intestinal fungal microbiota in feces from 11 AP patients (the test group) and 15 healthy people (the control group). Additionally, we examined the relationship between fungus and clinical and biochemical markers. RESULTS Results showed a decline in alpha diversity in AP patients. The overall fungal microbiota in the test group was significantly different from that of the control group (P < 0.05). In both groups, the fecal fungal microbiota was dominated by Ascomycota and Basidiomycota phyla. At the genus level, the abundance of Candida was significantly higher in the test group and the abundances of Penicillium, Auricularia, unclassified Eurotiomycetes, Epicoccum and Vishniacozyma were significantly lower. Furthermore, AP patients had a significant decrease in the GMHI score and a significant increase in the MDI index. The co-abundance networks of gut fungus in AP patients showed more interactions and mostly positive correlations than in the control group. There was a strong positive link between Aspergillus and WBC counts, while There was a strong link between unclassified Rozellomycota and IL-6. CONCLUSION Our study provides the first empirical evidence that AP patients have different fecal fungal microbiota, which raises the possibility that mycobiota contribute to the etiology and progression of AP.
Collapse
Affiliation(s)
- Meng-Qi Zhao
- Department of Gastroenterology, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 800 Huangjiahuayuan Road, Shanghai, 201803, China
- Department of Gastroenterology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 201620, China
- Shanghai Key Laboratory of Pancreatic Diseases, Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
| | - Miao-Yan Fan
- Department of Gastroenterology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 201620, China
- Shanghai Key Laboratory of Pancreatic Diseases, Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
| | - Meng-Yan Cui
- Department of Gastroenterology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 201620, China
- Shanghai Key Laboratory of Pancreatic Diseases, Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
| | - Su-Min Chen
- Department of Gastroenterology, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 800 Huangjiahuayuan Road, Shanghai, 201803, China
| | - Jing-Jing Wang
- Shanghai Key Laboratory of Pancreatic Diseases, Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
| | - Ying-Ying Lu
- Department of Gastroenterology, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 800 Huangjiahuayuan Road, Shanghai, 201803, China.
- Department of Gastroenterology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 201620, China.
| | - Qiao-Li Jiang
- Department of Gastroenterology, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 800 Huangjiahuayuan Road, Shanghai, 201803, China.
| |
Collapse
|
15
|
Guo L, Xu L, Nie Y, Liu L, Liu Z, Yang Y. Murine gut microbial interactions exert antihyperglycemic effects. THE ISME JOURNAL 2025; 19:wraf028. [PMID: 39961020 PMCID: PMC11896791 DOI: 10.1093/ismejo/wraf028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/10/2024] [Accepted: 02/11/2025] [Indexed: 03/14/2025]
Abstract
The correlations between gut microbiota and host metabolism have been studied extensively, whereas little relevant work has been done to investigate the impact of gut microbial interactions on host metabolism. With the use of a bacteriocin-targeting strategy, we aimed to identify the gut microbes associated with glucose and lipid metabolism by adjusting the gut microbial composition of mice fed a high-fat diet. To fulfill this goal, a Listeria monocytogenes (Lmo)-derived bacteriocin Lmo2776 secretion module was constructed and integrated into the genome of Escherichia coli Nissle 1917 (EcN), yielding the Lmo2776-secreting strain EcN-2776. In high-fat diet-fed mice, EcN-2776 administration decreased blood glucose and increased serum triglyceride, and gene amplicon sequencing of 16S rRNA in these mice indicated that intestinal secretion of Lmo2776 led to adjustment of the gut microbial composition. Specifically, Lmo2776 restricted the growth of Ligilactobacillus murinus, thus alleviating its inhibitory impact towards Faecalibaculum rodentium. Further analyses indicated that F. rodentium administration decreased the fasting blood glucose of high-fat diet-fed mice, an effect that may be attributable to the intestinal consumption of glucose by F. rodentium. In this study, we identified the gut microbes associated with glucose metabolism, uncovered their interactions, and deciphered the impact of these gut microbial interactions on the host glucose metabolism. Our findings may pave the way for the treatment of hyperglycemia from the perspective of gut microbial interactions.
Collapse
Affiliation(s)
- Liying Guo
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China
| | - Libing Xu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China
| | - Yanhong Nie
- Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai 201602, China
- Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Lu Liu
- Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai 201602, China
- Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Zongping Liu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China
| | - Yunpeng Yang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China
- Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai 201602, China
- Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
16
|
Li K, Ran X, Han J, Ding H, Wang X, Li Y, Guo W, Li X, Guo W, Fu S, Bi J. Astragalus polysaccharide alleviates mastitis disrupted by Staphylococcus aureus infection by regulating gut microbiota and SCFAs metabolism. Int J Biol Macromol 2025; 286:138422. [PMID: 39647752 DOI: 10.1016/j.ijbiomac.2024.138422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/25/2024] [Accepted: 12/03/2024] [Indexed: 12/10/2024]
Abstract
Polysaccharides, key bioactive compounds derived from Chinese herbs, are increasingly recognized for their therapeutic potential in modulating gut microbiota to treat various diseases. However, their efficacy in alleviating mammary inflammation and oxidative stress and protecting the blood-milk barrier (BMB) compromised by Staphylococcus aureus (S. au) infection remains uncertain. As evidence for the gut-mammary axis grows, identifying natural prebiotic components that affect this axis is crucial. This study reveals that Astragalus polysaccharide (APS), the primary active constituent of Astragalus, effectively mitigates S. au infection in murine mammary glands, suppresses inflammatory responses, reduces oxidative stress, and restores BMB integrity. The involvement of APS in modulating gut microbiota was substantiated through gut microbial depletion experiments and fecal microbiota transplantation (FMT). Notably, APS uniquely enriched Ruminococcus bromii (R. bromii) in the gut, facilitating the metabolism of short-chain fatty acids (SCFAs), particularly acetate and butyrate, which are pivotal to APS's protective effects. Collectively, these results propose a novel therapeutic approach for the treatment and prevention of S. au-induced mastitis, leveraging APS and R. bromii as prebiotics and probiotics, respectively.
Collapse
Affiliation(s)
- Kefei Li
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan 650201, China; State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xin Ran
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Jiaxi Han
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Huiping Ding
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xiaoxuan Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yutao Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Weiwei Guo
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xinyi Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Wenjin Guo
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Shoupeng Fu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Junlong Bi
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan 650201, China.
| |
Collapse
|
17
|
Chang YT, Huang KC, Pranata R, Chen YL, Chen SN, Cheng YH, Chen RJ. Evaluation of the protective effects of chondroitin sulfate oligosaccharide against osteoarthritis via inactivation of NLRP3 inflammasome by in vivo and in vitro studies. Int Immunopharmacol 2024; 142:113148. [PMID: 39276449 DOI: 10.1016/j.intimp.2024.113148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/12/2024] [Accepted: 09/08/2024] [Indexed: 09/17/2024]
Abstract
Osteoarthritis (OA) is the most prevalent degenerative arthritis disease linked to aging, obesity, diet, and accumulation of octacalcium phosphate (OCP) crystals in joints. Current research has focused on inflammation and chondrocytes apoptosis as underlying OA mechanisms. Inflammatory cytokines like IL-1β activate matrix metalloproteinase-13 (MMP-13) and aggrecanase (the member of A Disintegrin and Metalloproteinase with Thrombospondin motifs family, ADAMTS), leading to cartilage matrix degradation. The NLRP3 inflammasome also contributes to OA pathogenesis by maturing IL-1β. Natural products like chondroitin sulfate oligosaccharides (oligo-CS) show promise in OA treatment by inhibiting inflammation. Our study evaluates the protective effects of oligo-CS against OA by targeting NLRP3 inflammation. Stimulating human SW1353 chondrocytes and human mononuclear macrophage THP-1 cells with OCP showed increased NLRP3 inflammation initiation, NF-κB pathway activation, and the production of inflammatory cytokines (IL-1β, IL-6) and the metabolic index (MMP-13, ADAMTS-5), leading to cartilage matrix degradation. However, oligo-CS treatment significantly reduced inflammation. In a 28-day in vivo study with C57BL/6 female mice, OCP was injected into their right knee and oligo-CS was orally administered. The OCP group exhibited significant joint space narrowing and chondrocyte loss, while the oligo-CS group maintained cartilage integrity. Oligo-CS groups also regulated gut microbiota composition to a healthier state. Taken together, our findings suggest that oligo-CS can be considered as a protective compound against OA.
Collapse
Affiliation(s)
- Yu-Ting Chang
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kuo-Ching Huang
- Division of Nephrology, Department of Internal Medicine, Chi Mei Hospital, Liouying District, Tainan, Taiwan; Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Rosita Pranata
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yen-Lin Chen
- Bioresource Collection and Research Center (BCRC), Food Industry Research and Development Institute, Hsinchu 300, Taiwan.
| | - Ssu-Ning Chen
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yung-Hsuan Cheng
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Rong-Jane Chen
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
18
|
Zheng M, Chao X, Zheng Y, Hong T, Wu W, Zhu Y, Ni H, Jiang Z. A polysaccharide from edible red seaweed Bangia fusco-purpurea prevents obesity in high-fat diet-induced C57BL/6 mice. Int J Biol Macromol 2024; 283:137545. [PMID: 39542298 DOI: 10.1016/j.ijbiomac.2024.137545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/26/2024] [Accepted: 11/09/2024] [Indexed: 11/17/2024]
Abstract
The study aimed to investigate the impacts of a polysaccharide (BFP) from Bangia fusco-purpurea on high-fat diet (HFD)-induced obesity in C57BL/6 mice, as well as its underlying mechanisms. Our results showed that orally administrated BFP was more effective than inulin (INU) in reducing body weight and fat accumulation in obese mice, indicating its anti-obesity effect. BFP effectively improved the compositions and metabolites of intestinal microbiota in obese mice, leading to enhanced energy metabolism and lipid metabolism, thus contributing to its anti-obesity effect. Notably, the better anti-obesity effect of BFP compared to INU was attributed to their varying degrees of modulation of specific intestinal microbial taxa, such as Clostridium and Aerococcus, as well as the regulation of differential metabolites (including biotin, piperine, G6P, etc.) also varied. Also, both in vitro (3T3-L1 preadipocytes) and in vivo (HFD-induced obese mice) models confirmed that BFP achieved anti-obesity effect attributed to enhance energy metabolism, promote lipolysis, increase fatty acid oxidation, and inhibit adipogenesis via activating the AMP-activated protein kinase and Acetyl-CoA carboxylase signaling pathways and suppressing the peroxisome proliferator-activated receptor γ expression. Our findings suggest that BFP has the potential to be used as prebiotics, dietary agents, and nutritional supplements against obesity.
Collapse
Affiliation(s)
- Mingjing Zheng
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, Fujian 361021, China
| | - Xiaoling Chao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China
| | - Yajun Zheng
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China
| | - Tao Hong
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, Fujian 361021, China
| | - Weijing Wu
- Laboratory of nutrition and food safety, Xiamen Medical College, Xiamen, Fujian 361023, China.
| | - Yanbing Zhu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, Fujian 361021, China
| | - Hui Ni
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, Fujian 361021, China; Xiamen Ocean Vocational College, Xiamen, Fujian 361102, China
| | - Zedong Jiang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, Fujian 361021, China.
| |
Collapse
|
19
|
Zhong Q, Wu W, Xie J, Wang JL, Xu K, Ren Y, Chen J, Xie P. Limosilactobacillus-related 3-OMDP as a potential therapeutic target for depression. Ann Med 2024; 56:2417179. [PMID: 39421970 PMCID: PMC11492388 DOI: 10.1080/07853890.2024.2417179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/02/2024] [Accepted: 05/21/2024] [Indexed: 10/19/2024] Open
Abstract
OBJECTIVE Gut microbiota was closely involved in the pathogenesis of depression, but the underlying molecular mechanisms in depression remained unclear. This study was conducted to investigate the relationship between neurotransmitters/inflammatory factors and gut microbiota in depressed mice. MATERIALS AND METHODS A chronic social defeat stress (CSDS) depression model was established. Gut microbial composition was detected in faeces, neurotransmitters were detected in faeces, colon, blood and hippocampus, and inflammatory factors were detected in hippocampus. After a key neurotransmitter was identified, intervention experiment was conducted to explore whether it could improve depressive-like behaviours. RESULTS Six differential genera in faeces, 14 differential neurotransmitters in gut-brain axis, and two differential inflammatory factors (interleukin-1 beta (IL-1β) and interleukin-6 (IL-6)) in hippocampus were identified in depressed mice. There were significant correlations among differential genera, differential neurotransmitters and IL-1β/IL-6. Among these differential neurotransmitters, 3-O-Methyldopa (3-OMDP) was found to be consistently decreased in faeces, colon, blood and hippocampus, and 3-OMDP was significantly correlated to Limosilactobacillus and IL-1β. After receiving 3-OMDP, the depressive-like behaviours in depressed mice were improved and the increased IL-1β/IL-6 levels were reversed. CONCLUSIONS These results indicated that gut microbiota might affect host's inflammation levels in brain through regulating neurotransmitters, eventually leading to the onset of depression. 'Limosilactobacillus-3-OMDP-IL-1β/IL-6' might be a potential pathway in the crosstalk of gut and brain, and 3-OMDP held the promise as a therapeutic target for depression.
Collapse
Affiliation(s)
- Qi Zhong
- Institute of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Wentao Wu
- Institute of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Jing Xie
- Chongqing Emergency Medical Center, Central Hospital of Chongqing University, Chongqing, China
| | - Jiao-lin Wang
- Institute of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Ke Xu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yi Ren
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jianjun Chen
- Institute of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Peng Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
20
|
Chen Y, Li H, Lai F, Min T, Wu H, Zhan Q. The Influence and Mechanisms of Natural Plant Polysaccharides on Intestinal Microbiota-Mediated Metabolic Disorders. Foods 2024; 13:3882. [PMID: 39682954 DOI: 10.3390/foods13233882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/20/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Natural plant polysaccharides are renowned for their broad spectrum of biological activities, making them invaluable in both the pharmaceutical and food industries. Their safety, characterized by low toxicity and minimal side effects, coupled with their potential therapeutic properties, positions them as crucial elements in health-related applications. The functional effectiveness of these polysaccharides is deeply connected to their structural attributes, including molecular weight, monosaccharide components, and types of glycosidic bonds. These structural elements influence how polysaccharides interact with the gut microbiota, potentially alleviating various metabolic and inflammatory disorders such as inflammatory bowel disease, diabetes, liver-associated pathologies, obesity, and kidney diseases. The polysaccharides operate through a range of biological mechanisms. They enhance the formation of short-chain fatty acids, which are pivotal in keeping intestinal health and metabolic balance. Additionally, they strengthen the intestinal mucosal barrier, crucial for deterring the ingress of pathogens and toxins into the host system. By modulating the immune responses within the gut, they help in managing immune-mediated disorders, and their role in activating specific cellular signaling pathways further underscores their therapeutic potential. The review delves into the intricate structure-activity relationships of various natural polysaccharides and their interactions with the intestinal flora. By understanding these relationships, the scientific community can develop targeted strategies for the use of polysaccharides in therapeutics, potentially leading to innovative treatments for a range of diseases. Furthermore, the insights gained can drive the advancement of research in natural polysaccharide applications, providing direction for novel dietary supplements and functional foods designed to support gut health and overall well-being.
Collapse
Affiliation(s)
- Yong Chen
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- College of Chemical and Biological Engineering, Guangxi Minzu Normal University, Chongzuo 532200, China
| | - Hui Li
- Culinary Institute, Shunde Polytechnic, Foshan 528000, China
| | - Furao Lai
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Tian Min
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Hui Wu
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Qiping Zhan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
21
|
Zhang H, Yang X, Chen J, Jiang Q, Yao S, Chen L, Xiang X. Investigation of the mechanism by which Tegillarca granosa polysaccharide regulates non-alcoholic fatty liver disease in mice by modulating Lactobacillus Johnsonii. Int J Biol Macromol 2024; 282:137259. [PMID: 39522897 DOI: 10.1016/j.ijbiomac.2024.137259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/22/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD), a prevalent chronic liver disease, is marked by excessive lipid deposition in the liver without alcohol abuse. Scapharca subcrenatum, a major Chinese farmed bivalve, yields S. subcrenatum polysaccharide (TGP), an active substance with known biological activity. Previous studies revealed TGP's significant regulatory effect on a high-fat diet (HFD)-induced NAFLD in mice. However, the precise mechanisms, particularly involving gut microbiota, remain unclear. In the current study, an antibiotic-treated mouse model was established to determine the mechanistic role of the gut microbiota in the observed anti-obesity effects of TGP. In addition, 16S rRNA genomic and metagenome-derived taxonomic analyses were performed to assess the gut microbial populations. The results showed that TGP selectively enhanced the number of the eosinophilic bacterium Lactobacillus johnsonii, which was reduced in HFD mice. Of note, the oral administration of L. johnsonii formulations to HFD mice alleviated NAFLD, and this was related to regulating lipid metabolism and the accumulation of lipids in the liver. Therefore, the current study uncovered a potential pathway for developing NAFLD treatment strategies based on the interaction between TGP and the gut microbiota.
Collapse
Affiliation(s)
- Hanwen Zhang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Xingwen Yang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Jinyu Chen
- Eco-Industrial Innovation Institute ZJUT, Quzhou 324400, Zhejiang, China
| | - Qihong Jiang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Shiwei Yao
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Lin Chen
- Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Xingwei Xiang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
22
|
Chang S, Lei X, Xu W, Guan F, Ge J, Nian F. Preparation and characterization of Tobacco polysaccharides and its modulation on hyperlipidemia in high-fat-diet-induced mice. Sci Rep 2024; 14:26860. [PMID: 39500936 PMCID: PMC11538525 DOI: 10.1038/s41598-024-77514-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 10/23/2024] [Indexed: 11/08/2024] Open
Abstract
This study aimed to investigate the structural properties of tobacco polysaccharide (TP) and its mechanism of modulating hyperlipidemia in high-fat diet-induced mice. The structural properties of TP were characterized by FT-IR, 1HNMR, SEM, AFM and thermogravimetric analysis. And the regulatory mechanism of TP on lipid metabolism was investigated in hyperlipidemia mice. These results showed that TP had a high composition of reducing monosaccharide and the glycosidic bond type was α-glycosidic bond. The intervention by TP resulted in a significant reduction of body weight and improvement in lipid accumulation. And the modulation mechanism by which TP ameliorated the abnormalities of lipid metabolism was associated with the expression levels of lipid metabolism-related genes and serum exosomes miRNA-128-3p, as well as the modulation of structure and abundance of the gut microbiota in mice. In addition, TP treatment significantly increased the content of short-chain fatty acids (SCFAs) in mice feces. The results of molecular docking and dual-luciferase assay exhibited a good interaction between propionic acid and PPAR-α, and it was hypothesized that the interaction might further ameliorate the hyperlipidemia. Therefore, TP can regulate the expression levels of lipid metabolism-related genes through miRNAs from serum exosomes and SCFAs from gut microbiota.
Collapse
Affiliation(s)
- Shuaishuai Chang
- China Jiliang University School of Life Sciences, Hangzhou, 310018, China
| | - Xuanhao Lei
- China Jiliang University School of Life Sciences, Hangzhou, 310018, China
| | - Weijia Xu
- China Jiliang University School of Life Sciences, Hangzhou, 310018, China
| | - Feng Guan
- China Jiliang University School of Life Sciences, Hangzhou, 310018, China
| | - Jian Ge
- China Jiliang University School of Life Sciences, Hangzhou, 310018, China.
| | - Fuzhao Nian
- Yunnan Agricultural University School of Tobacco Science, Kunming, 650201, China
| |
Collapse
|
23
|
Song R, Jiang Y, Zhang B, Jiao Z, Yang X, Zhang N. Effects of Hypericum attenuatum Choisy extract on the immunologic function and intestinal microflora of broilers under oxidative stress. Poult Sci 2024; 103:104189. [PMID: 39191003 PMCID: PMC11395763 DOI: 10.1016/j.psj.2024.104189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/19/2024] [Accepted: 08/03/2024] [Indexed: 08/29/2024] Open
Abstract
This study investigated the impact of Hypericum attenuatum Choisy extract (HYG) on immunological function and the cecum microflora in broilers. A total of 240 one-day-old AA broilers were randomly divided into 5 groups with 6 replicates of 8 broilers each: 1) the CN group, in which broilers were injected with saline and fed a basal diet; 2) the PC group, in which broilers were injected with lipolyaccharide (LPS) and fed a basal diet; 3) the HYG1 group, in which broilers were injected with LPS and fed a 400 mg/kg HYG-supplemented diet; 4) the HYG2 group, in which broilers were injected with LPS and fed a 800 mg/kg HYG-supplemented diet; 5) the HYG3 group, in which broilers were injected with LPS and fed a 1,200 mg/kg HYG-supplemented diet. Broilers were injected with 1 mg/kg LPS or the same amount saline 12 hours before sampling on d 21 and 42. The results revealed that dietary 400 mg/kg HYG supplementation alleviated spleen index and thymus index abnormalities, balanced the disturbance of serum immunoglobulin (Ig)M and IgA levels, and regulated the cytokine balance in the serum, liver, spleen and jejunum tissues included induced by LPS. Dietary supplementation with 400 mg/kg HYG also downregulated the relative expression of the inhibitor of kappa B kinase alpha (IKKα) and interleukin (IL)-6 mRNAs in the liver and upregulated the relative expression of the inhibitor kappa B alpha (IκBα) and IL-10 mRNAs in the spleen. Dietary HYG improved the cecal microflora balance at 42 d by increasing the relative abundance of beneficial bacteria, such as Alistipes and Phascolarctobacterium, while reducing the relative abundance of harmful bacteria, such as Helicobacter and Colidextribacter. Spearman correlation analysis revealed a negative correlation between activation of the NF-κB inhibitory pathway in the liver and the presence of Phascolarctobacterium, Erysipelatoclostridium, Subdoligranulum and Parabacteroides. Conclusions: The incorporation of 400 mg/kg HYG into the diet was optimal in improving broiler immunological function.
Collapse
Affiliation(s)
- Rui Song
- College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, Jilin Agricultural University, Changchun 130118, China; Agricultural Technology Extension Center, Shuyang County Agriculture and Rural Affairs Bureau, Shuyang 223600, China
| | - Yanzhen Jiang
- College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, Jilin Agricultural University, Changchun 130118, China
| | - Bo Zhang
- College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, Jilin Agricultural University, Changchun 130118, China
| | - Zimeng Jiao
- College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, Jilin Agricultural University, Changchun 130118, China
| | - Xing Yang
- College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, Jilin Agricultural University, Changchun 130118, China
| | - Nanyi Zhang
- College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
24
|
Zhang Z, Cui Y, Zhang X, Hu X, Li S, Li T. Gut microbiota combined with serum metabolites to reveal the effect of Morchella esculenta polysaccharides on lipid metabolism disordered in high-fat diet mice. Int J Biol Macromol 2024; 281:136380. [PMID: 39389515 DOI: 10.1016/j.ijbiomac.2024.136380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/25/2024] [Accepted: 10/05/2024] [Indexed: 10/12/2024]
Abstract
The ameliorating effects and mechanisms of Morchella esculenta polysaccharides (MEP-1) on lipid metabolism were investigated in high-fat diet (HFD) mice. The results showed that MEP-1 intervention significantly reduced serum TC, TG, LDL-C, and inflammatory factors (TNF-α, IL-1β and IL-6) in HFD mice in a dose-dependent manner, and high-dose (400 mg/kg/d) exhibited the most significant reductive effects. In addition, MEP-1 significantly recovered the gut microbiota disorders caused by HFD, especially decreasing the ratio of Firmicutes and Bacteroidetes (F/B) and increasing the dominant bacterial of Muribaculaceae_genus, Bacteroides, Alistipes and Enterococcus. Moreover, MEP-1 promoted the production of SCFAs and increased the expression levels of Occludin, Claudin and Muc2, also regulated lipid metabolism disorder and inflammation by inhibiting TLR4/MyD88/NF-κB via the gut-liver axis. In addition, serum metabolomic analysis revealed that l-phenylalanine, l-arginine and acetylcholine were significantly upregulated with MEP-1 intervention, and were negatively correlated with blood lipid level, in which l-arginine could activate NO/PPARα/CPT1A pathway to ameliorate lipid metabolism disorders. Such results demonstrated that gut microbiota, amino acid metabolic and insulin secretion pathways might be the important factors that mediated the regulation of MEP-1 in lipid metabolism. The results also provided new evidence and strategies for the application of MEP-1 as functional foods.
Collapse
Affiliation(s)
- Zuoyi Zhang
- College of Food Science, Shenyang Agricultural University, Shenyang 110161, China
| | - Yanmin Cui
- College of Food Science, Shenyang Agricultural University, Shenyang 110161, China
| | - Xiushan Zhang
- College of Food Science, Shenyang Agricultural University, Shenyang 110161, China
| | - Xiaopei Hu
- College of Food Science, Shenyang Agricultural University, Shenyang 110161, China.
| | - Suhong Li
- College of Food Science, Shenyang Agricultural University, Shenyang 110161, China
| | - Tuoping Li
- College of Food Science, Shenyang Agricultural University, Shenyang 110161, China.
| |
Collapse
|
25
|
Jin L, Li K, Li Z, Huang X, Wang L, Wang X, Di S, Cui S, Xu Y. Investigation into Critical Gut Microbes Influencing Intramuscular Fat Deposition in Min Pigs. Animals (Basel) 2024; 14:3123. [PMID: 39518846 PMCID: PMC11545367 DOI: 10.3390/ani14213123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/19/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
To determine the pivotal microorganisms affecting intramuscular fat (IMF) accumulation in Min pigs and to discern the extent of the influence exerted by various intestinal segments on IMF-related traits, we sequenced 16S rRNA from the contents of six intestinal segments from a high IMF group (Group H) and a low IMF group (Group L) of Min pigs weighing 90 ± 1 kg. We then compared their diversity and disparities in bacterial genera. Group H exhibited considerably higher α diversity in the jejunum and colon than Group L (p < 0.05). When 95% confidence levels were considered, the main β diversity components for the ileum, caecum, and colon within Groups H and L exhibited absolute segregation. Accordingly, 31 differentially abundant genera across Group H were pinpointed via LEfSe and the Wilcoxon test (p < 0.05) and subsequently scrutinised based on their distribution and abundance across distinct intestinal segments and their correlation with IMF phenotypes. The abundances of Terrisporobacter, Acetitomaculum, Bacteroides, Fibrobacter, Treponema, Akkermansia, Blautia, Clostridium sensu stricto 1, Turicibacter, Subdoligranulum, the [Eubacterium] siraeum group, and dgA 11 gut groups were positively correlated with IMF content (p < 0.05), whereas those of Bacillus, the Lachnospiraceae NK4A136 group, Streptococcus, Roseburia, Solobacterium, Veillonella, Lactobacillus, the Rikenellaceae RC9 gut group, Anaerovibrio, and the Lachnospiraceae AC2044 group were negatively associated with IMF content (p < 0.05). Employing PICRUSt2 for predicting intergenic metabolic pathways that differ among intestinal microbial communities revealed that within the 95% confidence interval the colonic microbiome was enriched with the most metabolic pathways, including those related to lipid metabolism. The diversity results, bacterial genus distributions, and metabolic pathway disparities revealed the colonic segment as an influential region for IMF deposition.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Shiquan Cui
- College of Animal Science and Technology, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin 150030, China; (L.J.); (K.L.); (Z.L.); (X.H.); (L.W.); (X.W.); (S.D.)
| | - Yuan Xu
- College of Animal Science and Technology, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin 150030, China; (L.J.); (K.L.); (Z.L.); (X.H.); (L.W.); (X.W.); (S.D.)
| |
Collapse
|
26
|
Wang G, Xie B, Yang X, Wang R, Zhong G, Gao L, Chen X, Lin M, Huang Q, Zhang C, Huang H, Li T, Xu J, Deng W. The "crosstalk" between gut microbiota, metabolites and genes in diet-induced hepatic steatosis mice intervened with Cordyceps guangdongensis polysaccharides. Int J Biol Macromol 2024; 277:134607. [PMID: 39127294 DOI: 10.1016/j.ijbiomac.2024.134607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/20/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
Cordyceps guangdongensis, a novel edible mushroom in China, has shown many positive health effects. In this study, we extracted the C. guangdongensis polysaccharides (CGP) from the fruiting bodies, and investigated the mechanism for CGP improved high-fat diet-induced (HFDI) metabolic diseases. We found that CGP notably reduced fat mass, improved blood lipid levels and hepatic damage, and restored the gut microbiota dysbiosis induced by high-fat diet (HFD). Metabolome analyses showed that CGP changed the composition of bile acids, and regulated HFDI metabolic disorder in hepatic tissue. Transcriptome comparison showed that the improvement of hepatic steatosis for CGP was mainly related to lipid and carbohydrate metabolism. Association analysis result revealed that Odoribacter, Bifidobacterium and Bi. pseudolongum were negatively correlated to fat and blood lipid indicators, and were significantly associated with genes and metabolites related to carbohydrate and lipid metabolism. Collectively, these results indicate that CGP may be a promising supplement for the treatment of obesity and related metabolic diseases.
Collapse
Affiliation(s)
- Gangzheng Wang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China.
| | - Bojun Xie
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xinyu Yang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China; College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Ruijuan Wang
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Guorui Zhong
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Liang Gao
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xiangnv Chen
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Min Lin
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Qiuju Huang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Chenghua Zhang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Hao Huang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Taihui Li
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jianping Xu
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Wangqiu Deng
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China.
| |
Collapse
|
27
|
Zhang H, He Z, Chen Y, Chao J, Cheng X, Mao J, Chen Y, Li B, Yu J, Yan M, Chen S, Lv G, Su J. Cordyceps polysaccharide improves polycystic ovary syndrome by inhibiting gut-derived LPS/TLR4 pathway to attenuates insulin resistance. Int J Biol Macromol 2024; 280:135844. [PMID: 39326591 DOI: 10.1016/j.ijbiomac.2024.135844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024]
Abstract
Polycystic ovary syndrome (PCOS) is an endocrine disorder marked by aberrant glucose metabolism and reproductive dysfunction. It is characterized by polycystic ovaries, ovulatory dysfunction, and hyperandrogenemia. PCOS patients often experience a persistent, mild inflammation linked to various metabolic issues and insulin resistance (IR). Cordyceps polysaccharide (CP), extracted from the asexual form of the fungus Cordyceps gunnii, Hirsutella sinensis, is a bioactive crude polysaccharide with triple helix structure. CP was a spherical molecular polymer composed of rhamnose, arabinose, aminoglucose hydrochloride, galactose, glucose, and mannose, and has two molecular weights, 156.511 and 27.298 kDa. Our results corroborated that CP improve polycystic lesions in ovarian tissue and regulates hormone levels and the estrous cycle in rats with PCOS. However, the mechanism of action of this therapy in the treatment of polycystic ovary syndrome is not clear. In the present study, CP was found to modulates disturbances in glucose-lipid metabolism in model rats. In addition, it modulated gut microbiota by decreasing abundance of Gram-negative bacteria (norank_f__Desulfovibrionaceae, Helicobacter), hereby inhibiting the production and transfer of LPS into the systemic circulation. This suppressed the TLR4/MyD88/NF-κB inflammatory pathway in the liver and adipose tissue and restored insulin signaling, which improved IR in PCOS rats. Our findings demonstrate that based on the regulation of gut microbiota disorders and the repair of intestinal barrier damage, CP inhibited the gut-derived LPS/TLR4 inflammatory pathway in liver to attenuated IR, which led to the improvement of ovarian polycystic lesions. In addition, this study tapped into the role of Cordyceps polysaccharides in improving female reproductive function, expanding its clinical application in women with PCOS, which is innovative and offers valuable insights into the therapeutic potential of CP for treating PCOS.
Collapse
Affiliation(s)
- Huiwen Zhang
- School of Pharmaceutical Sciences, No. 548, Binwen Road, Binjiang District, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310014, China
| | - Ziwen He
- School of Pharmaceutical Sciences, No. 548, Binwen Road, Binjiang District, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310014, China
| | - Yigong Chen
- School of Pharmaceutical Sciences, No. 548, Binwen Road, Binjiang District, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310014, China
| | - Jingtong Chao
- School of Pharmaceutical Sciences, No. 548, Binwen Road, Binjiang District, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310014, China
| | - Xiamei Cheng
- School of Pharmaceutical Sciences, No. 548, Binwen Road, Binjiang District, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310014, China
| | - Jiayin Mao
- School of Pharmaceutical Sciences, No. 548, Binwen Road, Binjiang District, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310014, China
| | - Yulan Chen
- School of Pharmaceutical Sciences, No. 548, Binwen Road, Binjiang District, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310014, China
| | - Bo Li
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, No. 18, Chaowang Road, Xiacheng District, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Jingjing Yu
- School of Pharmaceutical Sciences, No. 548, Binwen Road, Binjiang District, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310014, China
| | - Meiqiu Yan
- School of Pharmaceutical Sciences, No. 548, Binwen Road, Binjiang District, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310014, China
| | - Suhong Chen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, No. 18, Chaowang Road, Xiacheng District, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.
| | - Guiyuan Lv
- School of Pharmaceutical Sciences, No. 548, Binwen Road, Binjiang District, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310014, China.
| | - Jie Su
- School of Pharmaceutical Sciences, No. 548, Binwen Road, Binjiang District, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310014, China.
| |
Collapse
|
28
|
Tang J, He Z, Zhang B, Cheng J, Qiu W, Chen X, Chang C, Wang Q, Hu J, Cai C, Meng Y. Structural properties, bioactivities, structure-activity relationships and bio-applications of polysaccharides from Auricularia auricula: A review. Int J Biol Macromol 2024; 280:135941. [PMID: 39326616 DOI: 10.1016/j.ijbiomac.2024.135941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 05/12/2024] [Accepted: 09/20/2024] [Indexed: 09/28/2024]
Abstract
Auricularia auricula (A. auricula), is a medicinal and edible fungus in China for thousands of years with rich nutrition and delicious taste. The main active ingredient of A. auricula is polysaccharide, which has antitumor, hypoglycemic, antioxidant, and immune regulation bioactivities. It is widely recognized that the biological activity of polysaccharides is closely related to the chemical structure and advanced structure. In terms of polysaccharides extracted from A. auricula (AAPs), there were distinguished structures reported due to the different original resources and extraction methods, leading to various bioactivities. However, the structure-activity relationship of AAPs has scarcely been reviewed till now. In addition, polysaccharides were found to have specific self-assembly properties recently, together with their bioactivities, endowing them with unique physicochemical properties. Nowadays, an increasing number of polysaccharides, such as cellulose, chitin, and pectin, have been used to construct various functional materials in the fields of food, cosmetics, and biomedical materials. Therefore, the construction of functional materials by AAPs is of great research significance. This article aims to provide a systematic review of the structure-activity relationship of AAPs and summarize the functional materials constructed based on AAPs to provide theoretical references for further research and application of AAPs.
Collapse
Affiliation(s)
- Jun Tang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Zihan He
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Baohui Zhang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Jingjing Cheng
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Wenxiu Qiu
- Institute of Biology and Medicine, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Xinyan Chen
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Cong Chang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Qi Wang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Junjie Hu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China.
| | - Chao Cai
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - Yan Meng
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; Center of Traditional Chinese Medicine Modernization for Liver Diseases, Hubei University of Chinese Medicine, Wuhan 430065, China; Hubei Shizhen Laboratory, Wuhan 430065, China.
| |
Collapse
|
29
|
Yang Y, Fan G, Lan J, Li X, Li X, Liu R. Polysaccharide-mediated modulation of gut microbiota in the treatment of liver diseases: Promising approach with significant challenges. Int J Biol Macromol 2024:135566. [PMID: 39270901 DOI: 10.1016/j.ijbiomac.2024.135566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/15/2024]
Abstract
Liver disease represents a significant global health burden, with an increasing prevalence and a lack of efficient treatment options. The microbiota-gut-liver axis involves bidirectional communication between liver function and intestinal microorganisms. A balanced gut flora protects intestinal homeostasis, while imbalances contribute to the development of liver diseases. Distinct alterations in the structure of gut flora during illness are crucial in the management of various liver diseases. Polysaccharides derived from herbal products, fungi, and other sources have been identified to possess diverse biological activities and are well-tolerated in the treatment of liver diseases. This review provides updates on the therapeutic effects of polysaccharides on liver diseases, including fatty liver diseases, acute liver injuries and liver cancers. It also summarizes advancements in understanding the mechanisms involved, particularly from the perspective of gut microbiota and metabolites, by highlighting the changes in the composition of potentially beneficial and harmful bacteria and their correlation with the therapeutic effects of polysaccharides. Additionally, by exploring the structure-activity relationship, our review provides valuable insights for the structural modification of polysaccharides and expanding their applications. In conclusion, this review offers theoretical support and novel perspectives on developing polysaccharides-based therapeutic approaches for the treatment of liver diseases.
Collapse
Affiliation(s)
- Yang Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing 100029, China
| | - Guifang Fan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing 100029, China
| | - Jianhang Lan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing 100029, China
| | - Xin Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing 100029, China
| | - Xiaojiaoyang Li
- School of Life Sciences, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing 100029, China
| | - Runping Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing 100029, China.
| |
Collapse
|
30
|
Pi Y, Fang M, Li Y, Cai L, Han R, Sun W, Jiang X, Chen L, Du J, Zhu Z, Li X. Interactions between Gut Microbiota and Natural Bioactive Polysaccharides in Metabolic Diseases: Review. Nutrients 2024; 16:2838. [PMID: 39275156 PMCID: PMC11397228 DOI: 10.3390/nu16172838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/16/2024] [Accepted: 08/22/2024] [Indexed: 09/16/2024] Open
Abstract
The gut microbiota constitutes a complex ecosystem, comprising trillions of microbes that have co-evolved with their host over hundreds of millions of years. Over the past decade, a growing body of knowledge has underscored the intricate connections among diet, gut microbiota, and human health. Bioactive polysaccharides (BPs) from natural sources like medicinal plants, seaweeds, and fungi have diverse biological functions including antioxidant, immunoregulatory, and metabolic activities. Their effects are closely tied to the gut microbiota, which metabolizes BPs into health-influencing compounds. Understanding how BPs and gut microbiota interact is critical for harnessing their potential health benefits. This review provides an overview of the human gut microbiota, focusing on its role in metabolic diseases like obesity, type II diabetes mellitus, non-alcoholic fatty liver disease, and cardiovascular diseases. It explores the basic characteristics of several BPs and their impact on gut microbiota. Given their significance for human health, we summarize the biological functions of these BPs, particularly in terms of immunoregulatory activities, blood sugar, and hypolipidemic effect, thus providing a valuable reference for understanding the potential benefits of natural BPs in treating metabolic diseases. These properties make BPs promising agents for preventing and treating metabolic diseases. The comprehensive understanding of the mechanisms by which BPs exert their effects through gut microbiota opens new avenues for developing targeted therapies to improve metabolic health.
Collapse
Affiliation(s)
- Yu Pi
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Miaoyu Fang
- Nutrilite Health Institute, Amway (Shanghai) Innovation & Science Co., Ltd., Shanghai 201203, China
| | - Yanpin Li
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Long Cai
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ruyi Han
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wenjuan Sun
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xianren Jiang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Liang Chen
- Nutrilite Health Institute, Amway (Shanghai) Innovation & Science Co., Ltd., Shanghai 201203, China
| | - Jun Du
- Nutrilite Health Institute, Amway (Shanghai) Innovation & Science Co., Ltd., Shanghai 201203, China
| | - Zhigang Zhu
- Nutrilite Health Institute, Amway (Shanghai) Innovation & Science Co., Ltd., Shanghai 201203, China
| | - Xilong Li
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
31
|
He G, Yan J, Liang L, Liu W, Chen S, Chen P. Characterization and biological activities of polysaccharides extracted from Auricularia auricula with different extraction methods. Prep Biochem Biotechnol 2024; 54:859-871. [PMID: 38149618 DOI: 10.1080/10826068.2023.2297689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Polysaccharides derived from Auricularia auricula exhibit diverse biological activities and hold significant potential for commercial utilization as functional food ingredients. In this investigation, polysaccharides from A. auricula were obtained using six extraction techniques (ammonium oxalate solution extraction, sodium hydroxide solution extraction, hot water extraction, pectinase and cellulase-assisted extraction, ultrasonic-assisted extraction, and microwave-assisted extraction). Subsequently, a comprehensive comparison was conducted to evaluate their physicochemical properties and biological functionalities. The ammonium oxalate solution extraction method yielded a higher extraction rate (11.76%) and polysaccharide content (84.12%), as well as a higher uronic acid content (10.13%). Although the six Auricularia polysaccharides had different molecular weight distributions, monosaccharide molar ratios, similar monosaccharide compositions, and characteristic functional groups of polysaccharides, they exhibited different surface morphology. In vitro assays showed that polysaccharides extracted by ammonium oxalate solution possessed good scavenging ability against DPPH free radical, hydroxyl free radical and superoxide anion free radical as well as reduction power of iron ion. At the same time, both polysaccharides extracted by ammonium oxalate solution and sodium hydroxide solution promoted NO production in mouse macrophages along with the secretion of cytokines TNF-α, IL-1β, and IL-6. These results indicated significant differences in the structure and characteristics among Auricularia polysaccharides prepared by various extraction methods, which may be related to the variety or origin of A. auricula; furthermore, their bioactivities varied accordingly in vitro assays where the ammonium oxalate solution extraction method was found more beneficial for obtaining high-quality bioactive Auricularia polysaccharides.
Collapse
Affiliation(s)
- Gang He
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, China
| | - Jun Yan
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, China
| | - Li Liang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, China
| | - Wei Liu
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, China
| | - Sizhu Chen
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, China
| | - Peng Chen
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, China
| |
Collapse
|
32
|
Ma G, Li X, Tao Q, Ma S, Du H, Hu Q, Xiao H. Impacts of preparation technologies on biological activities of edible mushroom polysaccharides - novel insights for personalized nutrition achievement. Crit Rev Food Sci Nutr 2024:1-23. [PMID: 38821105 DOI: 10.1080/10408398.2024.2352796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
Edible mushroom polysaccharides (EMPs) as a natural macromolecular carbohydrate have a very complex structure and composition. EMPs are considered ideal candidates for developing healthy products and functional foods and have received significant research attention due to their unique physiological activities such as immunomodulatory, anti-inflammatory, anti-tumor/cancer, gut microbiota regulation, metabolism improvement, and nervous system protection. The structure and monosaccharide composition of edible mushroom polysaccharides have an unknown relationship with their functional activity, which has not been widely studied. Therefore, we summarized the preparation techniques of EMPs and discussed the association between functional activity, preparation methods, structure and composition of EMPs, laying a theoretical foundation for the personalized nutritional achievements of EMP. We also establish the foundation for the further investigation and application of EMPs as novel functional foods and healthy products.
Collapse
Affiliation(s)
- Gaoxing Ma
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing, People's Republic of China
| | - Xinyi Li
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing, People's Republic of China
| | - Qi Tao
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing, People's Republic of China
| | - Sai Ma
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing, People's Republic of China
| | - Hengjun Du
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Qiuhui Hu
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing, People's Republic of China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
33
|
Li D, Li Q, Ma X, Wang H, Wang C, Wang H, Liu Z, Li T, Ma Y. Prickly ash seeds can promote healthy production of sheep by regulating the rumen microbial community. Front Microbiol 2024; 15:1364517. [PMID: 38832114 PMCID: PMC11144891 DOI: 10.3389/fmicb.2024.1364517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 05/06/2024] [Indexed: 06/05/2024] Open
Abstract
This study aimed to investigate the effect of prickly ash seeds (PAS) on the microbial community found in rumen microbes of Hu sheep by adding different percentages of prickly ash seeds and to carry out research on the relation between rumen flora and production performance. Twenty-seven male lambs of Hu sheep were classified into three groups based on the content of prickly ash seeds (PAS) fed for 90 days, i.e., 0%, 3%, and 6%. At the end of the feeding trial, rumen fluid samples were collected from six sheep in each group for 16S amplicon sequencing. The results showed that the addition of prickly ash seeds significantly increased both Chao1 and ACE indices (P < 0.05), and the differences between groups were greater than those within groups. The relative content of Bacteriodota decreased, and the relative content of Fusobacteriota, Proteobacteria, Acidobacteriota, and Euryarchaeota increased. The relative content of Papillibacter and Saccharofermentans was increased at the genus level, and the relative content of Bacteroides and Ruminococcus was decreased. The test group given 3% of prickly ash seeds was superior to the test group given 6% of prickly ash seeds. In addition, the addition of 3% of prickly ash seeds improved the metabolism or immunity of sheep. Fusobacteriota and Acidobacteriota were positively correlated with total weight, dressing percentage, and average daily gain (ADG) and negatively correlated with average daily feed intake (ADFI), feed-to-gain ratio (F/G), and lightness (L*). Methanobrevibacter and Saccharofermentans were positively correlated with ADG and negatively correlated with ADFI and L*. In conclusion, under the present experimental conditions, the addition of prickly ash seeds increased the abundance and diversity of rumen microorganisms in Hu sheep and changed the relative abundance of some genera. However, the addition of 6% prickly ash seeds may negatively affect the digestive and immune functions in sheep rumen.
Collapse
Affiliation(s)
- Dengpan Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Qiao Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Xueyi Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Huihui Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Chunhui Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Haoyu Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Zhanjing Liu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Tianzhu County Animal Disease Prevention and Control Center, Wuwei, China
| | - Taotao Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Youji Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| |
Collapse
|
34
|
Xiao J, Chen C, Fu Z, Wang S, Luo F. Assessment of the Safety and Probiotic Properties of Enterococcus faecium B13 Isolated from Fermented Chili. Microorganisms 2024; 12:994. [PMID: 38792822 PMCID: PMC11123876 DOI: 10.3390/microorganisms12050994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Enterococcus faecium B13, selected from fermentation chili, has been proven to promote animal growth by previous studies, but it belongs to opportunistic pathogens, so a comprehensive evaluation of its probiotic properties and safety is necessary. In this study, the probiotic properties and safety of B13 were evaluated at the genetic and phenotype levels in vitro and then confirmed in vivo. The genome of B13 contains one chromosome and two plasmids. The average nucleotide identity indicated that B13 was most closely related to the fermentation-plant-derived strain. The strain does not carry the major virulence genes of the clinical E. faecium strains but contains aac(6')-Ii, ant (6)-Ia, msrC genes. The strain had a higher tolerance to acid at pH 3.0, 4.0, and 0.3% bile salt and a 32.83% free radical DPPH clearance rate. It can adhere to Caco-2 cells and reduce the adhesion of E. coli to Caco-2 cells. The safety assessment revealed that the strain showed no hemolysis and did not exhibit gelatinase, ornithine decarboxylase, lysine decarboxylase, or tryptophanase activity. It was sensitive to twelve antibiotics but was resistant to erythromycin, rifampicin, tetracycline, doxycycline, and minocycline. Experiments in vivo have shown that B13 can be located in the ileum and colon and has no adverse effects on experiment animals. After 28 days of feeding, B13 did not remarkable change the α-diversity of the gut flora or increase the virulence genes. Our study demonstrated that E. faecium B13 may be used as a probiotic candidate.
Collapse
Affiliation(s)
- Jingmin Xiao
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu 610041, China; (J.X.); (C.C.); (Z.F.)
| | - Cai Chen
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu 610041, China; (J.X.); (C.C.); (Z.F.)
| | - Zhuxian Fu
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu 610041, China; (J.X.); (C.C.); (Z.F.)
| | - Shumin Wang
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China;
| | - Fan Luo
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China;
| |
Collapse
|
35
|
Xu W, Han S, Wang W, Luo Z, Wang X, Shi C, Shan J. Analysis of gut microbiota metabolites of platycodin D and activity verification. J Pharm Biomed Anal 2024; 242:116016. [PMID: 38367521 DOI: 10.1016/j.jpba.2024.116016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/01/2024] [Accepted: 02/04/2024] [Indexed: 02/19/2024]
Abstract
As the main saponin component of Platycodon grandiflorum A.DC, Platycodin D has been reported to have an anti-obesity effect. Due to poor oral absorption, the intestinal microflora usually transforms saponins into potential bioactive substances. In this study, we profiled the metabolic changes of platycodin D by incubating it with intestinal microflora extracted from mice feces subjected to either a standard control diet or a high-fat diet. A UPLC-LTQ-Orbitrap-MS method was used for rapid analysis of the metabolic profile of platycodin D. A total of 10 compounds were identified 9 of which were assessed to be metabolized by intestinal microflora. Dehydroxylation and deglycosylation were the major metabolic process of platycodin D. The metabolic profile of platycodin D biotransformed by intestinal microflora was elucidated based on the metabolite information. Platycodin D and its metabolites had anti-inflammatory effects in LPS-stimulated RAW 264.7 cells. Only platycodin D could alleviate lipid accumulation in FFA-treated HepG2 cells.
Collapse
Affiliation(s)
- Weichen Xu
- Institute of Pediatrics, Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China; Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Shasha Han
- Institute of Pediatrics, Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China; Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Wenying Wang
- Institute of Pediatrics, Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China; Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Zichen Luo
- Institute of Pediatrics, Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China; Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xuan Wang
- Institute of Pediatrics, Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China; Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China; School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Chen Shi
- Institute of Pediatrics, Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China; Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China; School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.
| | - Jinjun Shan
- Institute of Pediatrics, Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China; Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.
| |
Collapse
|
36
|
Zheng P, Gao W, Cong S, Leng L, Wang T, Shi L. High-Energy Supplemental Feeding Shifts Gut Microbiota Composition and Function in Red Deer ( Cervus elaphus). Animals (Basel) 2024; 14:1428. [PMID: 38791646 PMCID: PMC11117297 DOI: 10.3390/ani14101428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Winter supplemental feeding (SF) is commonly used to improve the survival of captive wildlife. To investigate the impact of winter supplementation on the gut microbiota of wildlife, we assessed changes in the gut microbiota of red deer (Cervus elaphus) during the supplementary and non-supplementary feeding (NSF) groups using 16S rRNA sequencing technology. We found no significant differences in the diversity of the gut microbiota between SF and NSF except for the Simpson's index. However, the relative abundance of Bacteroidetes, Lentisphaerae, and Proteobacteria in the gut microbiota was significantly higher during SF. Further, genera such as Intestinimonas, Rikenella, Lawsonibacter, Muribaculum, and Papillibacter were more abundant during SF. Beta diversity analysis showed significant differences between SF and NSF. The microbes detected during SF were primarily associated with lipid metabolism, whereas those detected during NSF were linked to fiber catabolism. High-energy feed affects the gut microbial composition and function in red deer. During SF, the gut microbes in red deer were enriched in microorganisms associated with butyrate and lipid metabolism, such as R. microfusus, M. intestinale, and Papillibacter cinnamivorans. These gut microbes may be involved in ameliorating obesity associated with high-energy diets. In summary, SF is a reasonable and effective management strategy.
Collapse
Affiliation(s)
- Peng Zheng
- College of Animal Sciences, Xinjiang Agricultural University, Urumqi 830052, China; (P.Z.); (W.G.)
- Key Laboratory of Ecological Adaptation and Evolution of Extreme Environment Biology in Xinjiang, College of Life Sciences, Xinjiang Agricultural University, Urumqi 830052, China; (L.L.); (T.W.)
| | - Weizhen Gao
- College of Animal Sciences, Xinjiang Agricultural University, Urumqi 830052, China; (P.Z.); (W.G.)
- Key Laboratory of Ecological Adaptation and Evolution of Extreme Environment Biology in Xinjiang, College of Life Sciences, Xinjiang Agricultural University, Urumqi 830052, China; (L.L.); (T.W.)
| | - Shaobo Cong
- Xinjiang Tianshan Wildlife Park, Urumqi 830039, China;
| | - Lin Leng
- Key Laboratory of Ecological Adaptation and Evolution of Extreme Environment Biology in Xinjiang, College of Life Sciences, Xinjiang Agricultural University, Urumqi 830052, China; (L.L.); (T.W.)
| | - Tao Wang
- Key Laboratory of Ecological Adaptation and Evolution of Extreme Environment Biology in Xinjiang, College of Life Sciences, Xinjiang Agricultural University, Urumqi 830052, China; (L.L.); (T.W.)
| | - Lei Shi
- College of Animal Sciences, Xinjiang Agricultural University, Urumqi 830052, China; (P.Z.); (W.G.)
- Key Laboratory of Ecological Adaptation and Evolution of Extreme Environment Biology in Xinjiang, College of Life Sciences, Xinjiang Agricultural University, Urumqi 830052, China; (L.L.); (T.W.)
| |
Collapse
|
37
|
Cheng W, Di F, Li L, Pu C, Wang C, Zhang J. Anti-Photodamage Effect of Agaricus blazei Murill Polysaccharide on UVB-Damaged HaCaT Cells. Int J Mol Sci 2024; 25:4676. [PMID: 38731895 PMCID: PMC11083510 DOI: 10.3390/ijms25094676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
UVB radiation is known to induce photodamage to the skin, disrupt the skin barrier, elicit cutaneous inflammation, and accelerate the aging process. Agaricus blazei Murill (ABM) is an edible medicinal and nutritional fungus. One of its constituents, Agaricus blazei Murill polysaccharide (ABP), has been reported to exhibit antioxidant, anti-inflammatory, anti-tumor, and immunomodulatory effects, which suggests potential effects that protect against photodamage. In this study, a UVB-induced photodamage HaCaT model was established to investigate the potential reparative effects of ABP and its two constituents (A1 and A2). Firstly, two purified polysaccharides, A1 and A2, were obtained by DEAE-52 cellulose column chromatography, and their physical properties and chemical structures were studied. A1 and A2 exhibited a network-like microstructure, with molecular weights of 1.5 × 104 Da and 6.5 × 104 Da, respectively. The effects of A1 and A2 on cell proliferation, the mitochondrial membrane potential, and inflammatory factors were also explored. The results show that A1 and A2 significantly promoted cell proliferation, enhanced the mitochondrial membrane potential, suppressed the expression of inflammatory factors interleukin-1β (IL-1β), interleukin-8 (IL-8), interleukin-6 (IL-6), and tumor necrosis factor α (TNF-α), and increased the relative content of filaggrin (FLG) and aquaporin-3 (AQP3). The down-regulated JAK-STAT signaling pathway was found to play a role in the response to photodamage. These findings underscore the potential of ABP to ameliorate UVB-induced skin damage.
Collapse
Affiliation(s)
- Wenjing Cheng
- School of Light Industry Science and Engineering, Beijing Technology & Business University, Beijing 100048, China
- Beijing Key Lab of Plant Resource Research and Development, Beijing 100048, China
- Institute of Cosmetic Regulatory Science, Beijing 100048, China
| | - Feiqian Di
- School of Light Industry Science and Engineering, Beijing Technology & Business University, Beijing 100048, China
- Beijing Key Lab of Plant Resource Research and Development, Beijing 100048, China
- Institute of Cosmetic Regulatory Science, Beijing 100048, China
| | - Luyao Li
- School of Light Industry Science and Engineering, Beijing Technology & Business University, Beijing 100048, China
- Beijing Key Lab of Plant Resource Research and Development, Beijing 100048, China
- Institute of Cosmetic Regulatory Science, Beijing 100048, China
| | - Chunhong Pu
- School of Light Industry Science and Engineering, Beijing Technology & Business University, Beijing 100048, China
- Beijing Key Lab of Plant Resource Research and Development, Beijing 100048, China
- Institute of Cosmetic Regulatory Science, Beijing 100048, China
| | - Changtao Wang
- School of Light Industry Science and Engineering, Beijing Technology & Business University, Beijing 100048, China
- Beijing Key Lab of Plant Resource Research and Development, Beijing 100048, China
- Institute of Cosmetic Regulatory Science, Beijing 100048, China
| | - Jiachan Zhang
- School of Light Industry Science and Engineering, Beijing Technology & Business University, Beijing 100048, China
- Beijing Key Lab of Plant Resource Research and Development, Beijing 100048, China
- Institute of Cosmetic Regulatory Science, Beijing 100048, China
| |
Collapse
|
38
|
Shu Y, Wang H, Jiang H, Zhou S, Zhang L, Ding Z, Hong P, He J, Wu H. Pleurotus ostreatus polysaccharide-mediated modulation of skin damage caused by microcystin-LR in tadpoles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123440. [PMID: 38290654 DOI: 10.1016/j.envpol.2024.123440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/01/2024]
Abstract
In this study, we aimed to evaluate the effect of dietary supplementation with edible mushroom (Pleurotus ostreatus)-derived polysaccharides on microcystin leucine-arginine (MC-LR)-induced skin damage in Pelophylax nigromaculatus tadpoles. Tadpoles were exposed to 1 μg/L daily MC-LR, with or without 5.0 g/kg of dietary P. ostreatus polysaccharides, for 30 days. P. ostreatus polysaccharide supplementation significantly increased the dermal collagen fibrils, increased tight junction protein gene expression, decreased the amount of MC-LR accumulation in skin tissues, attenuated oxidative stress, downregulated apoptosis-associated gene transcription, decreased eosinophil numbers, and downregulated transcription of inflammation-related genes (e.g. TLR4, NF-κB, and TNF-α). The composition of the skin commensal microbiota of MC-LR-exposed tadpoles supplemented with P. ostreatus polysaccharides was similar to that of the no-treatment control group. Lipopolysaccharide (LPS) content was positively correlated with the abundance of Gram-negative bacteria, including Chryseobacterium and Thauera. Therefore, P. ostreatus polysaccharides may alleviate MC-LR-induced skin barrier damage in tadpoles in two ways: 1) attenuation of oxidative stress-mediated apoptosis mediated by increased glutathione (GSH) content and total superoxide dismutase activity; and 2) alteration of the skin commensal microbiota composition to attenuate the LPS/Toll-like receptor 4 inflammatory pathway response. Furthermore, P. ostreatus polysaccharides may increase skin GSH synthesis by promoting glycine production via the gut microbiota and may restore the MC-LR-damaged skin resistance to pathogenic bacteria by increasing antimicrobial peptide transcripts and lysozyme activity. This study highlights for the first time the potential application of P. ostreatus polysaccharides, an ecologically active substance, in mitigating the skin damage induced by MC-LR exposure, and may provide new insights for its further development in aquaculture.
Collapse
Affiliation(s)
- Yilin Shu
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Hui Wang
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China
| | - Huiling Jiang
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China
| | - Shiwen Zhou
- Department of Biomedical Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Liyuan Zhang
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China
| | - Zifang Ding
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China
| | - Pei Hong
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China
| | - Jun He
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China; Department of Pathology, Wannan Medical College, Wuhu, Anhui, 241002, China
| | - Hailong Wu
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China.
| |
Collapse
|
39
|
Wu M, Lyu Y, Xu H, Luo H, Yin X, Zheng H. Raspberry polysaccharides attenuate hepatic inflammation and oxidative stress in diet-induced obese mice by enhancing butyrate-mediated intestinal barrier function. Int J Biol Macromol 2024; 262:130007. [PMID: 38340928 DOI: 10.1016/j.ijbiomac.2024.130007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/02/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
Obesity and associated liver diseases are becoming global public health challenges. Raspberry (Rubus chingii Hu.), as a medicine food homology plant, possesses a series of health-promoting properties, but its protective effect on obesity-related liver injury and the potential mechanisms remain obscure. Herein high-fat diet (HFD)-fed mice were orally treated with raspberry polysaccharides (RCP) for 14 weeks. Treatment with RCP alleviated obesity and associated symptoms including hyperglycemia, hyperlipemia, endotoxemia, as well as hepatic inflammation and oxidant stress in HFD-induced obese mice. RCP restructured the gut microbiota and host metabolism especially by increasing the levels of Dubosiella and its metabolite butyrate. Besides, exogenous butyrate supplementation protected against intestinal barrier disruption, and thereby reduced inflow of lipopolysaccharide and mitigated inflammation and oxidative injury in the liver of obese mice. Therefore, we suggest that RCP can be utilized as a novel prebiotics to improve obesity-induced hepatic oxidative injury by enhancing butyrate-mediated intestinal barrier function.
Collapse
Affiliation(s)
- Mengjun Wu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yuxin Lyu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Hangying Xu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Hanqi Luo
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Xiaoli Yin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Hong Zheng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|
40
|
Wen X, Feng X, Xin F, An R, Huang H, Mao L, Liu P, Zhang J, Huang H, Liu X, Wang W. B. vulgatus ameliorates high-fat diet-induced obesity through modulating intestinal serotonin synthesis and lipid absorption in mice. Gut Microbes 2024; 16:2423040. [PMID: 39569932 PMCID: PMC11583587 DOI: 10.1080/19490976.2024.2423040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/12/2024] [Accepted: 10/24/2024] [Indexed: 11/22/2024] Open
Abstract
The consumption of high-fat diets (HFD) and an imbalance in gut microbiome are linked to obesity. However, the intricate connection between them and the underlying mechanisms involved in lipid digestion and absorption remain largely unclear. This study shows that after 12 weeks of HFD feeding, C57BL/6J mice exhibit two distinct metabolic phenotypes with significant differences in gut microbiota composition. The LOW and LOW FMT group mice with increased Bacteroides are protected from obesity, insulin resistance, and lipid accumulation. Supplementation with B. vulgatus or cholic acid (CA) alleviates HFD-induced obesity and metabolic dysfunction. This is due to the accumulation of lipid droplets and the retention of chyle particles in jejunal epithelial cells, which reduces chyle intake in the jejunal mesentery after HFD. Decreased 5-HT synthesis in the jejunal enterochromaffin cells of these mice, along with reduced chyle intake in the jejunal mesentery after HFD in Tph1△IEC, suggests that intestinal 5-HT is required for host lipid absorption. TRPV1, a calcium-permeable ion channel, mediates the basolateral 5-HT-induced increase of Isc and ion channel open probability. This study uncovers a novel signaling axis of microbiota-metabolite-5-HT and intracellular calcium-dependent lipid absorption, which may serve as the potential therapeutic targets for treating HFD-induced obesity.
Collapse
Affiliation(s)
- Xinxin Wen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xiaoyan Feng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Fang Xin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Rui An
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Huanwei Huang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Liyuan Mao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Ping Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Jin Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Haixia Huang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xicheng Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- Laboratory for Clinical Medicine, Beijing Key Laboratory for Tumor Invasion and Metastasis, Capital Medical University, Beijing, China
| | - Wei Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
41
|
Zhang Y, Lin Y, Wu K, Jiang M, Li L, Liu Y. Pleurotus abieticola Polysaccharide Alleviates Hyperlipidemia Symptoms via Inhibition of Nuclear Factor-κB/Signal Transducer and Activator of Transcription 3-Mediated Inflammatory Responses. Nutrients 2023; 15:4904. [PMID: 38068762 PMCID: PMC10708251 DOI: 10.3390/nu15234904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/19/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Hyperlipidemia (HLP) is a metabolic syndrome induced by obesity, which has been widely recognized as a significant threat to human health. Pleurotus abieticola, an edible lignin-degrading fungus, remains relatively understudied in terms of its bioactivity and medicinal properties. In this study, the lipid-lowering effect of Pleurotus abieticola polysaccharide (PAPS1) was systematically explored in high-fat diet (HFD)-induced HLP mice. The findings demonstrated that the administration of PAPS1 significantly inhibited bodyweight gain, ameliorated blood glucose and lipid levels, reduced fat accumulation, and mitigated hepatic injury in HLP mice. In addition, PAPS1 demonstrated the capability to increase the levels of three distinct fecal metabolites while simultaneously reducing the levels of eight other fecal metabolites in HLP mice. According to biological detection, PAPS1 reduced the hepatic level of reactive oxygen species (ROS) and pro-inflammatory factors, such as tumor necrosis factor (TNF)-α and interleukin (IL)-1β, -6, -17A, -22, and -23, and increased the expression of anti-inflammatory factor IL-10. Combined with proteomics, Western blot and immunohistochemistry analysis showed that PAPS1 exerted suppressive effects on inflammation and oxidative damage by inhibiting the nuclear factor-κB (NF-κB)/signal transducer and activator of transcription 3 (STAT3) signaling pathway in HLP mice. These findings offer evidence supporting the effectiveness of PAPS1 as a therapeutic agent in reducing lipid levels through its targeting of chronic inflammation.
Collapse
Affiliation(s)
- Yongfeng Zhang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; (Y.Z.); (Y.L.); (K.W.)
| | - Yingjie Lin
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; (Y.Z.); (Y.L.); (K.W.)
| | - Keyi Wu
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; (Y.Z.); (Y.L.); (K.W.)
| | - Ming Jiang
- College of Life Science and Technology, Mudanjiang Normal University, Mudanjiang 157011, China;
| | - Lanzhou Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; (Y.Z.); (Y.L.); (K.W.)
| | - Yang Liu
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; (Y.Z.); (Y.L.); (K.W.)
| |
Collapse
|