1
|
Langford JB, Ahmed E, Fang M, Cupp-Sutton K, Smith K, Wu S. Strategies for Top-Down Hydrogen Deuterium Exchange-Mass Spectrometry: A Mini Review and Perspective. JOURNAL OF MASS SPECTROMETRY : JMS 2024; 59:e5097. [PMID: 39402881 PMCID: PMC11736408 DOI: 10.1002/jms.5097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/09/2024] [Accepted: 09/16/2024] [Indexed: 01/16/2025]
Abstract
Hydrogen deuterium-exchange mass spectrometry (HDX-MS) is commonly used in the study of protein dynamics and protein interactions. By measuring the isotopic exchange of backbone amide hydrogens in solution, HDX-MS offers valuable structural insights into challenging biological systems. Traditional HDX-MS approaches utilize bottom-up (BU) proteomics, in which deuterated proteins are digested before MS analysis. BU-HDX enables the characterization of proteins with various sizes in simple protein mixtures or complex biological samples such as cell lysates. However, BU methods are inherently limited by the inability to resolve protein sub-populations arising from different protein conformations, such as those arising from post-translational modifications (PTMs). Alternatively, top-down (TD) HDX-MS detects the global deuterium uptake at the intact proteoform level, allowing direct probing of structural changes due to protein-protein interactions, PTMs, or conformational changes. Combining TD-HDX-MS with electron-based fragmentation techniques, such as electron capture dissociation (ECD) and electron transfer dissociation (ETD), has demonstrated the feasibility of studying intact protein interactions with amino acid-level resolution. Here, we present a brief overview of methodologies, limitations, and applications of TD-HDX-MS using direct infusion techniques and LC-based approaches. Furthermore, we conclude with a perspective on the future directions for TD-HDX-MS.
Collapse
Affiliation(s)
- Joel B. Langford
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019
| | - Elizabeth Ahmed
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019
| | - Mulin Fang
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019
| | - Kellye Cupp-Sutton
- Department of Chemistry and Biochemistry, University of Alabama, 250 Hackberry ln, Tuscaloosa, AL 35487, USA
| | - Kenneth Smith
- Department of Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Si Wu
- Department of Chemistry and Biochemistry, University of Alabama, 250 Hackberry ln, Tuscaloosa, AL 35487, USA
| |
Collapse
|
2
|
Limpikirati PK, Mongkoltipparat S, Denchaipradit T, Siwasophonpong N, Pornnopparat W, Ramanandana P, Pianpaktr P, Tongchusak S, Tian MT, Pisitkun T. Basic regulatory science behind drug substance and drug product specifications of monoclonal antibodies and other protein therapeutics. J Pharm Anal 2024; 14:100916. [PMID: 39035218 PMCID: PMC11259812 DOI: 10.1016/j.jpha.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/04/2023] [Accepted: 12/07/2023] [Indexed: 07/23/2024] Open
Abstract
In this review, we focus on providing basics and examples for each component of the protein therapeutic specifications to interested pharmacists and biopharmaceutical scientists with a goal to strengthen understanding in regulatory science and compliance. Pharmaceutical specifications comprise a list of important quality attributes for testing, references to use for test procedures, and appropriate acceptance criteria for the tests, and they are set up to ensure that when a drug product is administered to a patient, its intended therapeutic benefits and safety can be rendered appropriately. Conformance of drug substance or drug product to the specifications is achieved by testing an article according to the listed tests and analytical methods and obtaining test results that meet the acceptance criteria. Quality attributes are chosen to be tested based on their quality risk, and consideration should be given to the merit of the analytical methods which are associated with the acceptance criteria of the specifications. Acceptance criteria are set forth primarily based on efficacy and safety profiles, with an increasing attention noted for patient-centric specifications. Discussed in this work are related guidelines that support the biopharmaceutical specification setting, how to set the acceptance criteria, and examples of the quality attributes and the analytical methods from 60 articles and 23 pharmacopeial monographs. Outlooks are also explored on process analytical technologies and other orthogonal tools which are on-trend in biopharmaceutical characterization and quality control.
Collapse
Affiliation(s)
- Patanachai K. Limpikirati
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
- Pharmaceutical Sciences and Technology (PST) Graduate Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
- Center of Excellence in Systems Biology (CUSB), Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| | - Sorrayut Mongkoltipparat
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| | - Thinnaphat Denchaipradit
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| | - Nathathai Siwasophonpong
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| | - Wudthipong Pornnopparat
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| | - Parawan Ramanandana
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
- Pharmaceutical Sciences and Technology (PST) Graduate Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
- Center of Excellence in Systems Biology (CUSB), Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Huachiew Chalermprakiet University, Bang Phli, Samut Prakan, 10540, Thailand
| | - Phumrapee Pianpaktr
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
- Pharmaceutical Sciences and Technology (PST) Graduate Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
- Center of Excellence in Systems Biology (CUSB), Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| | - Songsak Tongchusak
- Center of Excellence in Systems Biology (CUSB), Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| | - Maoxin Tim Tian
- Center of Excellence in Systems Biology (CUSB), Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| | - Trairak Pisitkun
- Center of Excellence in Systems Biology (CUSB), Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
- Division of Research Affairs, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| |
Collapse
|
3
|
High level production of stable human serum albumin in Pichia pastoris and characterization of the recombinant product. Bioprocess Biosyst Eng 2022; 45:409-424. [PMID: 34999948 DOI: 10.1007/s00449-021-02670-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 11/21/2021] [Indexed: 12/19/2022]
Abstract
Human serum albumin (HSA) is an important therapeutic used in clinical settings for restoration of blood volume and treatment of chemotherapy induced neutropenia. Currently sourced from human serum, it carries the risk of contamination with viruses. The production of stable extracellular recombinant (r)HSA was achieved at nearly 1 g/L at shake-flask level in Pichia pastoris (syn. Komagataella phaffii) containing a three-copy containing HSA expression cassette, prepared in vitro. The HSA specific transcripts were increased by 1.82- to 2.46-fold in the three-copy containing clones indicating increased transcript levels to result in enhanced production of extracellular rHSA. The purified rHSA displayed secondary structure, zeta potential, size distribution and biological efficacy that matched with that of the commercial HSA. Cultivation strategy was developed at bioreactor level for the single HSA expression cassette containing recombinant which led to productivity of 300 mg/L/d of rHSA with minimum proteolytic cleavage.
Collapse
|
4
|
James EI, Murphree TA, Vorauer C, Engen JR, Guttman M. Advances in Hydrogen/Deuterium Exchange Mass Spectrometry and the Pursuit of Challenging Biological Systems. Chem Rev 2021; 122:7562-7623. [PMID: 34493042 PMCID: PMC9053315 DOI: 10.1021/acs.chemrev.1c00279] [Citation(s) in RCA: 154] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
![]()
Solution-phase hydrogen/deuterium
exchange (HDX) coupled to mass
spectrometry (MS) is a widespread tool for structural analysis across
academia and the biopharmaceutical industry. By monitoring the exchangeability
of backbone amide protons, HDX-MS can reveal information about higher-order
structure and dynamics throughout a protein, can track protein folding
pathways, map interaction sites, and assess conformational states
of protein samples. The combination of the versatility of the hydrogen/deuterium
exchange reaction with the sensitivity of mass spectrometry has enabled
the study of extremely challenging protein systems, some of which
cannot be suitably studied using other techniques. Improvements over
the past three decades have continually increased throughput, robustness,
and expanded the limits of what is feasible for HDX-MS investigations.
To provide an overview for researchers seeking to utilize and derive
the most from HDX-MS for protein structural analysis, we summarize
the fundamental principles, basic methodology, strengths and weaknesses,
and the established applications of HDX-MS while highlighting new
developments and applications.
Collapse
Affiliation(s)
- Ellie I James
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Taylor A Murphree
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Clint Vorauer
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - John R Engen
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Miklos Guttman
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
5
|
O’Flaherty R, Bergin A, Flampouri E, Mota LM, Obaidi I, Quigley A, Xie Y, Butler M. Mammalian cell culture for production of recombinant proteins: A review of the critical steps in their biomanufacturing. Biotechnol Adv 2020; 43:107552. [DOI: 10.1016/j.biotechadv.2020.107552] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/28/2020] [Accepted: 05/05/2020] [Indexed: 12/28/2022]
|
6
|
Liu XR, Zhang MM, Gross ML. Mass Spectrometry-Based Protein Footprinting for Higher-Order Structure Analysis: Fundamentals and Applications. Chem Rev 2020; 120:4355-4454. [PMID: 32319757 PMCID: PMC7531764 DOI: 10.1021/acs.chemrev.9b00815] [Citation(s) in RCA: 151] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Proteins adopt different higher-order structures (HOS) to enable their unique biological functions. Understanding the complexities of protein higher-order structures and dynamics requires integrated approaches, where mass spectrometry (MS) is now positioned to play a key role. One of those approaches is protein footprinting. Although the initial demonstration of footprinting was for the HOS determination of protein/nucleic acid binding, the concept was later adapted to MS-based protein HOS analysis, through which different covalent labeling approaches "mark" the solvent accessible surface area (SASA) of proteins to reflect protein HOS. Hydrogen-deuterium exchange (HDX), where deuterium in D2O replaces hydrogen of the backbone amides, is the most common example of footprinting. Its advantage is that the footprint reflects SASA and hydrogen bonding, whereas one drawback is the labeling is reversible. Another example of footprinting is slow irreversible labeling of functional groups on amino acid side chains by targeted reagents with high specificity, probing structural changes at selected sites. A third footprinting approach is by reactions with fast, irreversible labeling species that are highly reactive and footprint broadly several amino acid residue side chains on the time scale of submilliseconds. All of these covalent labeling approaches combine to constitute a problem-solving toolbox that enables mass spectrometry as a valuable tool for HOS elucidation. As there has been a growing need for MS-based protein footprinting in both academia and industry owing to its high throughput capability, prompt availability, and high spatial resolution, we present a summary of the history, descriptions, principles, mechanisms, and applications of these covalent labeling approaches. Moreover, their applications are highlighted according to the biological questions they can answer. This review is intended as a tutorial for MS-based protein HOS elucidation and as a reference for investigators seeking a MS-based tool to address structural questions in protein science.
Collapse
Affiliation(s)
| | | | - Michael L. Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA, 63130
| |
Collapse
|
7
|
Kaltashov IA, Bobst CE, Pawlowski J, Wang G. Mass spectrometry-based methods in characterization of the higher order structure of protein therapeutics. J Pharm Biomed Anal 2020; 184:113169. [PMID: 32092629 DOI: 10.1016/j.jpba.2020.113169] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/06/2020] [Accepted: 02/11/2020] [Indexed: 12/31/2022]
Abstract
Higher order structure of protein therapeutics is an important quality attribute, which dictates both potency and safety. While modern experimental biophysics offers an impressive arsenal of state-of-the-art tools that can be used for the characterization of higher order structure, many of them are poorly suited for the characterization of biopharmaceutical products. As a result, these analyses were traditionally carried out using classical techniques that provide relatively low information content. Over the past decade, mass spectrometry made a dramatic debut in this field, enabling the characterization of higher order structure of biopharmaceuticals as complex as monoclonal antibodies at a level of detail that was previously unattainable. At present, mass spectrometry is an integral part of the analytical toolbox across the industry, which is critical not only for quality control efforts, but also for discovery and development.
Collapse
Affiliation(s)
- Igor A Kaltashov
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, MA, USA.
| | - Cedric E Bobst
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, MA, USA
| | - Jake Pawlowski
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, MA, USA
| | - Guanbo Wang
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu Province, PR China
| |
Collapse
|
8
|
Atakay M, Aksakal F, Bozkaya U, Salih B, Wesdemiotis C. Conformational Characterization of Polyelectrolyte Oligomers and Their Noncovalent Complexes Using Ion Mobility-Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:441-449. [PMID: 32031387 DOI: 10.1021/jasms.9b00135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Poly-l-lysine (PLL), polystyrenesulfonate (PSS), and a mixture of these polyelectrolytes were investigated by electrospray ionization ion mobility mass spectrometry. The IM step confirmed the formation of noncovalent (i.e., supramolecular) complexes between these polyelectrolytes, which were detected in various charge states and stoichiometries in the presence of their constituents. Experimental and theoretical collision cross sections (CCSs) were derived for both PLL and PSS oligomers as well as their noncovalent assemblies. PSS chains showed higher compactness with increasing size as compared to PLL chains, indicating that the intrinsic conformations of the polyelectrolytes depend on the nature of the functional groups on their side chains. The CCS data for the noncovalent complexes further revealed that assemblies with higher PLL content have higher CCS values than other compositions of similar mass and that PLL-PSS complex formation is accompanied by significant size contraction.
Collapse
Affiliation(s)
- Mehmet Atakay
- Department of Chemistry , Hacettepe University , 06800 Ankara , Turkey
| | - Fatma Aksakal
- Department of Chemistry , Hacettepe University , 06800 Ankara , Turkey
| | - Uğur Bozkaya
- Department of Chemistry , Hacettepe University , 06800 Ankara , Turkey
| | - Bekir Salih
- Department of Chemistry , Hacettepe University , 06800 Ankara , Turkey
| | - Chrys Wesdemiotis
- Department of Chemistry , The University of Akron , Akron , Ohio 44325 , United States
| |
Collapse
|
9
|
Limpikirati P, Hale JE, Hazelbaker M, Huang Y, Jia Z, Yazdani M, Graban EM, Vaughan RC, Vachet RW. Covalent labeling and mass spectrometry reveal subtle higher order structural changes for antibody therapeutics. MAbs 2019; 11:463-476. [PMID: 30636503 PMCID: PMC6512938 DOI: 10.1080/19420862.2019.1565748] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 12/24/2018] [Accepted: 01/03/2019] [Indexed: 01/26/2023] Open
Abstract
Monoclonal antibodies are among the fastest growing therapeutics in the pharmaceutical industry. Detecting higher-order structure changes of antibodies upon storage or mishandling, however, is a challenging problem. In this study, we describe the use of diethylpyrocarbonate (DEPC)-based covalent labeling (CL) - mass spectrometry (MS) to detect conformational changes caused by heat stress, using rituximab as a model system. The structural resolution obtained from DEPC CL-MS is high enough to probe subtle conformation changes that are not detectable by common biophysical techniques. Results demonstrate that DEPC CL-MS can detect and identify sites of conformational changes at the temperatures below the antibody melting temperature (e.g., 55 ᴼC). The observed labeling changes at lower temperatures are validated by activity assays that indicate changes in the Fab region. At higher temperatures (e.g., 65 ᴼC), conformational changes and aggregation sites are identified from changes in CL levels, and these results are confirmed by complementary biophysical and activity measurements. Given the sensitivity and simplicity of DEPC CL-MS, this method should be amenable to the structural investigations of other antibody therapeutics.
Collapse
Affiliation(s)
| | | | - Mark Hazelbaker
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, USA
| | - Yongbo Huang
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, USA
| | - Zhiguang Jia
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA, USA
| | - Mahdieh Yazdani
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA, USA
| | | | - Robert C. Vaughan
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, USA
| | - Richard W. Vachet
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA, USA
| |
Collapse
|
10
|
Liyanage OT, Brantley MR, Calixte EI, Solouki T, Shuford KL, Gallagher ES. Characterization of Electrospray Ionization (ESI) Parameters on In-ESI Hydrogen/Deuterium Exchange of Carbohydrate-Metal Ion Adducts. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:235-247. [PMID: 30353291 DOI: 10.1007/s13361-018-2080-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 10/04/2018] [Indexed: 05/25/2023]
Abstract
The conformations of glycans are crucial for their biological functions. In-electrospray ionization (ESI) hydrogen/deuterium exchange-mass spectrometry (HDX-MS) is a promising technique for studying carbohydrate conformations since rapidly exchanging functional groups, e.g., hydroxyls, can be labeled on the timeframe of ESI. However, regular application of in-ESI HDX to characterize carbohydrates requires further analysis of the in-ESI HDX methodology. For instance, in this method, HDX occurs concurrently to the analyte transitioning from solution to gas-phase ions. Therefore, there is a possibility of sampling both gas-phase and solution-phase conformations of the analyte. Herein, we differentiate in-ESI HDX of metal-adducted carbohydrates from gas-phase HDX and illustrate that this method analyzes solvated species. We also systematically examine the effects of ESI parameters, including spray solvent composition, auxiliary gas flow rate, sheath gas flow rate, sample infusion rate, sample concentration, and spray voltage, and discuss their effects on in-ESI HDX. Further, we model the structural changes of a trisaccharide, melezitose, and its intramolecular and intermolecular hydrogen bonding in solvents with different compositions of methanol and water. These molecular dynamic simulations support our experimental results and illustrate how an individual ESI parameter can alter the conformations we sample by in-ESI HDX. In total, this work illustrates how the fundamental processes of ESI alter the magnitude of HDX for carbohydrates and suggest parameters that should be considered and/or optimized prior to performing experiments with this in-ESI HDX technique. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- O Tara Liyanage
- Department of Chemistry & Biochemistry, Baylor University, One Bear Place #97348, Waco, TX, 76798, USA
| | - Matthew R Brantley
- Department of Chemistry & Biochemistry, Baylor University, One Bear Place #97348, Waco, TX, 76798, USA
| | - Emvia I Calixte
- Department of Chemistry & Biochemistry, Baylor University, One Bear Place #97348, Waco, TX, 76798, USA
| | - Touradj Solouki
- Department of Chemistry & Biochemistry, Baylor University, One Bear Place #97348, Waco, TX, 76798, USA
| | - Kevin L Shuford
- Department of Chemistry & Biochemistry, Baylor University, One Bear Place #97348, Waco, TX, 76798, USA
| | - Elyssia S Gallagher
- Department of Chemistry & Biochemistry, Baylor University, One Bear Place #97348, Waco, TX, 76798, USA.
| |
Collapse
|
11
|
Trabjerg E, Nazari ZE, Rand KD. Conformational analysis of complex protein states by hydrogen/deuterium exchange mass spectrometry (HDX-MS): Challenges and emerging solutions. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.06.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
12
|
Limpikirati P, Liu T, Vachet RW. Covalent labeling-mass spectrometry with non-specific reagents for studying protein structure and interactions. Methods 2018; 144:79-93. [PMID: 29630925 PMCID: PMC6051898 DOI: 10.1016/j.ymeth.2018.04.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 04/03/2018] [Accepted: 04/04/2018] [Indexed: 12/13/2022] Open
Abstract
Using mass spectrometry (MS) to obtain information about a higher order structure of protein requires that a protein's structural properties are encoded into the mass of that protein. Covalent labeling (CL) with reagents that can irreversibly modify solvent accessible amino acid side chains is an effective way to encode structural information into the mass of a protein, as this information can be read-out in a straightforward manner using standard MS-based proteomics techniques. The differential reactivity of proteins under two or more conditions can be used to distinguish protein topologies, conformations, and/or binding sites. CL-MS methods have been effectively used for the structural analysis of proteins and protein complexes, particularly for systems that are difficult to study by other more traditional biochemical techniques. This review provides an overview of the non-specific CL approaches that have been combined with MS with a particular emphasis on the reagents that are commonly used, including hydroxyl radicals, carbenes, and diethylpyrocarbonate. We describe the reagent and protein factors that affect the reactivity of amino acid side chains. We also include details about experimental design and workflow, data analysis, recent applications, and some future prospects of CL-MS methods.
Collapse
Affiliation(s)
| | - Tianying Liu
- Department of Chemistry, University of Massachusetts Amherst, MA 01003, United States
| | - Richard W Vachet
- Department of Chemistry, University of Massachusetts Amherst, MA 01003, United States.
| |
Collapse
|
13
|
Characterization of product-related low molecular weight impurities in therapeutic monoclonal antibodies using hydrophilic interaction chromatography coupled with mass spectrometry. J Pharm Biomed Anal 2018; 154:468-475. [DOI: 10.1016/j.jpba.2018.03.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/13/2018] [Accepted: 03/15/2018] [Indexed: 11/21/2022]
|
14
|
MS-based conformation analysis of recombinant proteins in design, optimization and development of biopharmaceuticals. Methods 2018; 144:134-151. [PMID: 29678586 DOI: 10.1016/j.ymeth.2018.04.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/10/2018] [Accepted: 04/12/2018] [Indexed: 01/18/2023] Open
Abstract
Mass spectrometry (MS)-based methods for analyzing protein higher order structures have gained increasing application in the field of biopharmaceutical development. The predominant methods used in this area include native MS, hydrogen deuterium exchange-MS, covalent labeling, cross-linking and limited proteolysis. These MS-based methods will be briefly described in this article, followed by a discussion on how these methods contribute at different stages of discovery and development of protein therapeutics.
Collapse
|
15
|
Bonnington L, Lindner I, Gilles U, Kailich T, Reusch D, Bulau P. Application of Hydrogen/Deuterium Exchange-Mass Spectrometry to Biopharmaceutical Development Requirements: Improved Sensitivity to Detection of Conformational Changes. Anal Chem 2017; 89:8233-8237. [DOI: 10.1021/acs.analchem.7b01670] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Lea Bonnington
- Pharma Technical Development, Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany
| | - Ingo Lindner
- Pharma Technical Development, Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany
| | - Ulrich Gilles
- Pharma Technical Development, Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany
| | - Tobias Kailich
- Pharma Technical Development, Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany
| | - Dietmar Reusch
- Pharma Technical Development, Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany
| | - Patrick Bulau
- Pharma Technical Development, Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany
| |
Collapse
|
16
|
Muneeruddin K, Bobst CE, Frenkel R, Houde D, Turyan I, Sosic Z, Kaltashov IA. Characterization of a PEGylated protein therapeutic by ion exchange chromatography with on-line detection by native ESI MS and MS/MS. Analyst 2017; 142:336-344. [DOI: 10.1039/c6an02041k] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Detailed profiling of both enzymatic (e.g., glycosylation) and non-enzymatic (e.g., oxidation and deamidation) post-translational modifications (PTMs) is frequently required for the quality assessment of protein-based drugs.
Collapse
Affiliation(s)
- K. Muneeruddin
- Department of Chemistry
- University of Massachusetts Amherst
- Amherst
- USA
| | - C. E. Bobst
- Department of Chemistry
- University of Massachusetts Amherst
- Amherst
- USA
| | - R. Frenkel
- Analytical Development
- Biogen
- Cambridge
- USA
| | - D. Houde
- Analytical Development
- Biogen
- Cambridge
- USA
| | - I. Turyan
- Analytical Development
- Biogen
- Cambridge
- USA
| | - Z. Sosic
- Analytical Development
- Biogen
- Cambridge
- USA
| | - I. A. Kaltashov
- Department of Chemistry
- University of Massachusetts Amherst
- Amherst
- USA
| |
Collapse
|
17
|
Pan LY, Salas-Solano O, Valliere-Douglass JF. Localized conformational interrogation of antibody and antibody-drug conjugates by site-specific carboxyl group footprinting. MAbs 2016; 9:307-318. [PMID: 27929747 DOI: 10.1080/19420862.2016.1268306] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Establishing and maintaining conformational integrity of monoclonal antibodies (mAbs) and antibody-drug conjugates (ADCs) during development and manufacturing is critical for ensuring their clinical efficacy. As presented here, we applied site-specific carboxyl group footprinting (CGF) for localized conformational interrogation of mAbs. The approach relies on covalent labeling that introduces glycine ethyl ester tags onto solvent-accessible side chains of protein carboxylates. Peptide mapping is used to monitor the labeling kinetics of carboxyl residues and the labeling kinetics reflects the conformation or solvent-accessibility of side chains. Our results for two case studies are shown here. The first study was aimed at defining the conformational changes of mAbs induced by deglycosylation. We found that two residues in CH2 domain (D268 and E297) show significantly enhanced side chain accessibility upon deglycosylation. This site-specific result highlighted the advantage of monitoring the labeling kinetics at the amino acid level as opposed to the peptide level, which would result in averaging out of highly localized conformational differences. The second study was designed to assess conformational effects brought on by conjugation of mAbs with drug-linkers. All 59 monitored carboxyl residues displayed similar solvent-accessibility between the ADC and mAb under native conditions, which suggests the ADC and mAb share similar side chain conformation. The findings are well correlated and complementary with results from other assays. This work illustrated that site-specific CGF is capable of pinpointing local conformational changes in mAbs or ADCs that might arise during development and manufacturing. The methodology can be readily implemented within the industry to provide comprehensive conformational assessment of these molecules.
Collapse
|
18
|
Elviri L, Bergonzi C, Bianchera A, Bettini R. Mapping insulin non-covalent interactions with natural polysaccharides by hydrogen/deuterium exchange mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2016; 30:2323-2330. [PMID: 27495851 DOI: 10.1002/rcm.7708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 07/01/2016] [Accepted: 07/29/2016] [Indexed: 06/06/2023]
Abstract
RATIONALE Drug development efforts involving therapeutic peptides or proteins strongly lead optimization of drug delivery, drug stability, solubility and functionality. The key feature of controlled drug delivery is the use of biocompatible polymers able to interact via non-covalent bonds with an active principle through multiple functional groups. Here amide hydrogen/deuterium exchange (HDX) mass spectrometry was employed to localize insulin dynamics induced by interactions with three natural polysaccharides, i.e. chitosan (CH), sodium alginate (ALG) and chondroitin sulfate (CS). METHODS LTQ-Orbitap continuous-labelling mass spectra were collected by diluting insulin stock solution (10 mM in 0.1% formic acid) to a final concentration of 0.1 mM in D2 O containing 1 mM deuterated ammonium acetate (final pH .6) (insulin:polysaccharide ratio 1:2, w/w). For peptide mapping, deuterated samples were quenched after 0.5, 30, 60, 120 minutes exchange by adding HCl (pH ) and digested with pepsin before LC-MS/MS analysis. RESULTS Differences in the insulin backbone dynamics in the presence of the three polysaccharides were highlighted by monitoring peptic peptides at different time points. No significant differences were observed in the presence of CH, whereas the negatively charged ALG and CS were able to induce significant conformational variations at the B-chain level resulting in more protection against H/D exchange. The A-chain interacted only with CS reducing the protein mobility on a long time scale (120 min). HDX data evidenced heterogeneous insulin dynamics in the presence of ALG and CS. CONCLUSIONS The studies reported here demonstrated the capabilities of mass spectrometry techniques and HDX methods to obtain useful information toward the flexibility and the behavior of native insulin in the presence of natural polysaccharides, and could provide insights to study the behavior of pharmaceutical formulations. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Lisa Elviri
- Department of Pharmacy, University of Parma, Parco Area delle Scienze 27/A, 43124, Parma, Italy.
| | - Carlo Bergonzi
- Department of Pharmacy, University of Parma, Parco Area delle Scienze 27/A, 43124, Parma, Italy
| | - Annalisa Bianchera
- Interdepartmental Centre Biopharmanet-Tec, University of Parma, Parco Area delle Scienze 27/A, 43124, Parma, Italy
| | - Ruggero Bettini
- Department of Pharmacy, University of Parma, Parco Area delle Scienze 27/A, 43124, Parma, Italy
| |
Collapse
|
19
|
E. Nazari Z, van de Weert M, Bou-Assaf G, Houde D, Weiskopf A, D. Rand K. Rapid Conformational Analysis of Protein Drugs in Formulation by Hydrogen/Deuterium Exchange Mass Spectrometry. J Pharm Sci 2016; 105:3269-3277. [DOI: 10.1016/j.xphs.2016.07.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 06/29/2016] [Accepted: 07/12/2016] [Indexed: 01/21/2023]
|
20
|
Polymorphic distribution of proteins in solution by mass spectrometry: The analysis of insulin analogues. Biologicals 2016; 45:69-77. [PMID: 28341309 DOI: 10.1016/j.biologicals.2016.09.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 09/08/2016] [Accepted: 09/22/2016] [Indexed: 11/20/2022] Open
Abstract
The characterization of conformational and oligomeric distribution of proteins is of paramount importance for the understanding of the correlation between structure and function. Among the bioanalytical approaches currently available, the electrospray ionization-mass spectrometry (ESI-MS) coupled to ion mobility spectrometry (IMS) is the best suited for high resolution identification with high sensitivity, allowing the in situ separation of oligomeric and conformational species. We tested the performance of the ESI-MS technique along with the IMS separation approach on a broad variety of insulin and insulin analogues with distinct oligomeric distribution pattern. The measurement of commercial insulin allowed the identification of species ranging from monomers to hexamers and their complexes with zinc ions. Dissimilar distribution profile for regular insulin as a function of formulation component and among the insulin analogues were observed by ESI-IMS-MS but not by ESI-MS along, crystallographic assays or size-exclusion chromatography. These data suggest the additional suitability of ESI-IMS-MS in conformational and oligomeric profiling of biomacromolecules and biopharmaceuticals. The easiness of the technique provides further motivation for its application in the characterization of both raw and formulated protein biopharmaceuticals in routine and comparability exercises.
Collapse
|
21
|
Mastrangeli R, Iozzino L, Lanzoni L, Angiuoni G, Ferrao C, Izzo A, Fiumi S, Camerini F, Mascia M, Palinsky W, Bierau H. Biological Functions of Interferon β-1a Are Enhanced By Deamidation. J Interferon Cytokine Res 2016; 36:534-41. [DOI: 10.1089/jir.2016.0025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Renato Mastrangeli
- Analytical Development Biotech Products, Merck Serono SpA, an affiliate of Merck KgaA, Darmstadt, Germany, Rome, Italy
| | - Luisa Iozzino
- Analytical Development Biotech Products, Merck Serono SpA, an affiliate of Merck KgaA, Darmstadt, Germany, Rome, Italy
| | - Ludovica Lanzoni
- Analytical Development Biotech Products, Merck Serono SpA, an affiliate of Merck KgaA, Darmstadt, Germany, Rome, Italy
| | - Gabriella Angiuoni
- Analytical Development Biotech Products, Merck Serono SpA, an affiliate of Merck KgaA, Darmstadt, Germany, Rome, Italy
| | - Cristian Ferrao
- Analytical Development Biotech Products, Merck Serono SpA, an affiliate of Merck KgaA, Darmstadt, Germany, Rome, Italy
| | - Anna Izzo
- Analytical Development Biotech Products, Merck Serono SpA, an affiliate of Merck KgaA, Darmstadt, Germany, Rome, Italy
| | - Sabrina Fiumi
- Analytical Development Biotech Products, Merck Serono SpA, an affiliate of Merck KgaA, Darmstadt, Germany, Rome, Italy
| | - Fabio Camerini
- Analytical Development Biotech Products, Merck Serono SpA, an affiliate of Merck KgaA, Darmstadt, Germany, Rome, Italy
| | - Michele Mascia
- Analytical Development Biotech Products, Merck Serono SpA, an affiliate of Merck KgaA, Darmstadt, Germany, Rome, Italy
| | - Wolf Palinsky
- Biotech Development Program, Merck Biopharma, an affiliate of Merck KgaA, Darmstadt, Germany, Aubonne, Switzerland
| | - Horst Bierau
- Biotech Development Program, CMC Sciences & Intelligence, Merck Serono SpA, an affiliate of Merck KgaA, Darmstadt, Germany, Rome, Italy
| |
Collapse
|
22
|
Quanico J, Franck J, Salzet M, Fournier I. On-tissue Direct Monitoring of Global Hydrogen/Deuterium Exchange by MALDI Mass Spectrometry: Tissue Deuterium Exchange Mass Spectrometry (TDXMS). Mol Cell Proteomics 2016; 15:3321-3330. [PMID: 27512083 DOI: 10.1074/mcp.o116.059832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Indexed: 11/06/2022] Open
Abstract
Hydrogen/deuterium exchange mass spectrometric (H/DXMS) methods for protein structural analysis are conventionally performed in solution. We present Tissue Deuterium Exchange Mass Spectrometry (TDXMS), a method to directly monitor deuterium uptake on tissue, as a means to better approximate the deuterium exchange behavior of proteins in their native microenvironment. Using this method, a difference in deuterium uptake behavior was observed when the same proteins were monitored in solution and on tissue. The higher maximum deuterium uptake at equilibrium for all proteins analyzed in solution suggests a more open conformation in the absence of interacting partners normally observed on tissue. We also demonstrate a difference in the deuterium uptake behavior of a few proteins across different morphological regions of the same tissue section. Modifications of the total number of hydrogens exchanged, as well as the kinetics of exchange, were both observed. These results provide information on the implication of protein interactions with partners as well as on the conformational changes related to these interactions, and illustrate the importance of examining protein deuterium exchange behavior in the presence of its specific microenvironment directly at the level of tissues.
Collapse
Affiliation(s)
- Jusal Quanico
- From the ‡Univ. Lille, INSERM, U1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000 Lille, France
| | - Julien Franck
- From the ‡Univ. Lille, INSERM, U1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000 Lille, France
| | - Michel Salzet
- From the ‡Univ. Lille, INSERM, U1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000 Lille, France
| | - Isabelle Fournier
- From the ‡Univ. Lille, INSERM, U1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000 Lille, France
| |
Collapse
|
23
|
Guttman M, Wales TE, Whittington D, Engen JR, Brown JM, Lee KK. Tuning a High Transmission Ion Guide to Prevent Gas-Phase Proton Exchange During H/D Exchange MS Analysis. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:662-8. [PMID: 26810432 PMCID: PMC4829384 DOI: 10.1007/s13361-015-1330-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 12/16/2015] [Accepted: 12/22/2015] [Indexed: 05/21/2023]
Abstract
Hydrogen/deuterium exchange (HDX) mass spectrometry (MS) for protein structural analysis has been adopted for many purposes, including biopharmaceutical development. One of the benefits of examining amide proton exchange by mass spectrometry is that it can readily resolve different exchange regimes, as evidenced by either binomial or bimodal isotope patterns. By careful analysis of the isotope pattern during exchange, more insight can be obtained on protein behavior in solution. However, one must be sure that any observed bimodal isotope patterns are not artifacts of analysis and are reflective of the true behavior in solution. Sample carryover and certain stationary phases are known as potential sources of bimodal artifacts. Here, we describe an additional undocumented source of deuterium loss resulting in artificial bimodal patterns for certain highly charged peptides. We demonstrate that this phenomenon is predominantly due to gas-phase proton exchange between peptides and bulk solvent within the initial stages of high-transmission conjoined ion guides. Minor adjustments of the ion guide settings, as reported here, eliminate the phenomenon without sacrificing signal intensity. Such gas-phase deuterium loss should be appreciated for all HDX-MS studies using such ion optics, even for routine studies not focused on interpreting bimodal spectra. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Miklos Guttman
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, 98195, USA.
| | - Thomas E Wales
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, 02115, USA
| | - Dale Whittington
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - John R Engen
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, 02115, USA
| | | | - Kelly K Lee
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
24
|
Beck A, Terral G, Debaene F, Wagner-Rousset E, Marcoux J, Janin-Bussat MC, Colas O, Van Dorsselaer A, Cianférani S. Cutting-edge mass spectrometry methods for the multi-level structural characterization of antibody-drug conjugates. Expert Rev Proteomics 2016; 13:157-83. [PMID: 26653789 DOI: 10.1586/14789450.2016.1132167] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Antibody drug conjugates (ADCs) are highly cytotoxic drugs covalently attached via conditionally stable linkers to monoclonal antibodies (mAbs) and are among the most promising next-generation empowered biologics for cancer treatment. ADCs are more complex than naked mAbs, as the heterogeneity of the conjugates adds to the inherent microvariability of the biomolecules. The development and optimization of ADCs rely on improving their analytical and bioanalytical characterization by assessing several critical quality attributes, namely the distribution and position of the drug, the amount of naked antibody, the average drug to antibody ratio, and the residual drug-linker and related product proportions. Here brentuximab vedotin (Adcetris) and trastuzumab emtansine (Kadcyla), the first and gold-standard hinge-cysteine and lysine drug conjugates, respectively, were chosen to develop new mass spectrometry (MS) methods and to improve multiple-level structural assessment protocols.
Collapse
Affiliation(s)
- Alain Beck
- a Centre d'Immunologie Pierre-Fabre (CIPF) , Saint-Julien-en-Genevois , France
| | - Guillaume Terral
- b BioOrganic Mass Spectrometry Laboratory (LSMBO), IPHC, Analytical Sciences Department , Université de Strasbourg , Strasbourg , France.,c IPHC, Analytical Sciences Department, CNRS, UMR7178 , Strasbourg , France
| | - François Debaene
- b BioOrganic Mass Spectrometry Laboratory (LSMBO), IPHC, Analytical Sciences Department , Université de Strasbourg , Strasbourg , France.,c IPHC, Analytical Sciences Department, CNRS, UMR7178 , Strasbourg , France
| | - Elsa Wagner-Rousset
- a Centre d'Immunologie Pierre-Fabre (CIPF) , Saint-Julien-en-Genevois , France
| | - Julien Marcoux
- b BioOrganic Mass Spectrometry Laboratory (LSMBO), IPHC, Analytical Sciences Department , Université de Strasbourg , Strasbourg , France.,c IPHC, Analytical Sciences Department, CNRS, UMR7178 , Strasbourg , France
| | | | - Olivier Colas
- a Centre d'Immunologie Pierre-Fabre (CIPF) , Saint-Julien-en-Genevois , France
| | - Alain Van Dorsselaer
- b BioOrganic Mass Spectrometry Laboratory (LSMBO), IPHC, Analytical Sciences Department , Université de Strasbourg , Strasbourg , France.,c IPHC, Analytical Sciences Department, CNRS, UMR7178 , Strasbourg , France
| | - Sarah Cianférani
- b BioOrganic Mass Spectrometry Laboratory (LSMBO), IPHC, Analytical Sciences Department , Université de Strasbourg , Strasbourg , France.,c IPHC, Analytical Sciences Department, CNRS, UMR7178 , Strasbourg , France
| |
Collapse
|
25
|
Gallagher ES, Hudgens JW. Mapping Protein–Ligand Interactions with Proteolytic Fragmentation, Hydrogen/Deuterium Exchange-Mass Spectrometry. Methods Enzymol 2016; 566:357-404. [DOI: 10.1016/bs.mie.2015.08.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
26
|
Interferon Beta: From Molecular Level to Therapeutic Effects. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 326:343-72. [DOI: 10.1016/bs.ircmb.2016.06.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
27
|
Abstract
The structural analysis of viruses is often a complex task. In many cases, the details of the viral architecture, especially for enveloped viruses, are limited to low-resolution techniques such as electron microscopy. These structural proteins and assemblies of viruses often populate multiple conformational states and undergo dramatic structural changes, making them difficult to study by most structural methods. They also frequently include highly dynamic regions that are of key functional importance. Many viruses present large surface glycoproteins, which have also proved to be challenging for structural biology due to the intrinsic flexibility and heterogeneity of the glycan decorations. Over the past two decades, hydrogen deuterium exchange coupled to mass spectrometry (HDX-MS) has provided a wealth of information on many diverse viral proteins, glycoproteins, and complexes, in many cases, in multiple conformational states. Here, we describe the methodology for using HDX-MS to investigate the rich structural dynamics of viral systems, and we briefly review the type of systems that have been examined through this type of approach. Though the technique is relatively simple, several potential pitfalls exist at both the sample preparation and the data analysis stage that investigators should be aware of for obtaining reliable data.
Collapse
Affiliation(s)
- Miklos Guttman
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington, USA.
| | - Kelly K Lee
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington, USA.
| |
Collapse
|
28
|
Zhang J, Banks DD, He F, Treuheit MJ, Becker GW. Effects of Sucrose and Benzyl Alcohol on GCSF Conformational Dynamics Revealed by Hydrogen Deuterium Exchange Mass Spectrometry. J Pharm Sci 2015; 104:1592-600. [DOI: 10.1002/jps.24384] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 01/12/2015] [Accepted: 01/21/2015] [Indexed: 12/22/2022]
|
29
|
Wiesner J, Resemann A, Evans C, Suckau D, Jabs W. Advanced mass spectrometry workflows for analyzing disulfide bonds in biologics. Expert Rev Proteomics 2015; 12:115-23. [DOI: 10.1586/14789450.2015.1018896] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
30
|
Valliere-Douglass JF, Hengel SM, Pan LY. Approaches to Interchain Cysteine-Linked ADC Characterization by Mass Spectrometry. Mol Pharm 2014; 12:1774-83. [PMID: 25474122 DOI: 10.1021/mp500614p] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Therapeutic antibody-drug conjugates (ADCs) harness the cell-killing potential of cytotoxic agents and the tumor targeting specificity of monoclonal antibodies to selectively kill tumor cells. Recent years have witnessed the development of several promising modalities that follow the same basic principles of ADC based therapies but which employ unique cytotoxic agents and conjugation strategies in order to realize therapeutic benefit. The complexity and heterogeneity of ADCs present a challenge to some of the conventional analytical methods that industry has relied upon for biologics characterization. This current review will highlight some of the more recent methodological approaches in mass spectrometry that have bridged the gap that is created when conventional analytical techniques provide an incomplete picture of ADC product quality. Specifically, we will discuss mass spectrometric approaches that preserve and/or capture information about the native structure of ADCs and provide unique insights into the higher order structure (HOS) of these therapeutic molecules.
Collapse
Affiliation(s)
| | - Shawna M Hengel
- Seattle Genetics, Inc., 21823 30th Drive SE, Bothell, Washington 98021, United States
| | - Lucy Y Pan
- Seattle Genetics, Inc., 21823 30th Drive SE, Bothell, Washington 98021, United States
| |
Collapse
|
31
|
Salisbury JP, Liu Q, Agar JN. QUDeX-MS: hydrogen/deuterium exchange calculation for mass spectra with resolved isotopic fine structure. BMC Bioinformatics 2014; 15:403. [PMID: 25495703 PMCID: PMC4274694 DOI: 10.1186/s12859-014-0403-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 12/01/2014] [Indexed: 12/25/2022] Open
Abstract
Background Hydrogen/deuterium exchange (HDX) coupled to mass spectrometry permits analysis of structure, dynamics, and molecular interactions of proteins. HDX mass spectrometry is confounded by deuterium exchange-associated peaks overlapping with peaks of heavy, natural abundance isotopes, such as carbon-13. Recent studies demonstrated that high-performance mass spectrometers could resolve isotopic fine structure and eliminate this peak overlap, allowing direct detection and quantification of deuterium incorporation. Results Here, we present a graphical tool that allows for a rapid and automated estimation of deuterium incorporation from a spectrum with isotopic fine structure. Given a peptide sequence (or elemental formula) and charge state, the mass-to-charge ratios of deuterium-associated peaks of the specified ion is determined. Intensities of peaks in an experimental mass spectrum within bins corresponding to these values are used to determine the distribution of deuterium incorporated. A theoretical spectrum can then be calculated based on the estimated distribution of deuterium exchange to confirm interpretation of the spectrum. Deuterium incorporation can also be detected for ion signals without a priori specification of an elemental formula, permitting detection of exchange in complex samples of unidentified material such as natural organic matter. A tool is also incorporated into QUDeX-MS to help in assigning ion signals from peptides arising from enzymatic digestion of proteins. MATLAB-deployable and standalone versions are available for academic use at qudex-ms.sourceforge.net and agarlabs.com. Conclusion Isotopic fine structure HDX-MS offers the potential to increase sequence coverage of proteins being analyzed through mass accuracy and deconvolution of overlapping ion signals. As previously demonstrated, however, the data analysis workflow for HDX-MS data with resolved isotopic fine structure is distinct. QUDeX-MS we hope will aid in the adoption of isotopic fine structure HDX-MS by providing an intuitive workflow and interface for data analysis.
Collapse
Affiliation(s)
- Joseph P Salisbury
- Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences and Barnett Institute of Chemical and Biological Analysis, Northeastern University, 360 Huntington Avenue, Boston, MA, 02115, USA.
| | - Qian Liu
- Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences and Barnett Institute of Chemical and Biological Analysis, Northeastern University, 360 Huntington Avenue, Boston, MA, 02115, USA.
| | - Jeffrey N Agar
- Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences and Barnett Institute of Chemical and Biological Analysis, Northeastern University, 360 Huntington Avenue, Boston, MA, 02115, USA.
| |
Collapse
|
32
|
Bobst CE, Kaltashov IA. Enhancing the quality of H/D exchange measurements with mass spectrometry detection in disulfide-rich proteins using electron capture dissociation. Anal Chem 2014; 86:5225-31. [PMID: 24820935 PMCID: PMC4051250 DOI: 10.1021/ac500904p] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
![]()
Hydrogen/deuterium exchange (HDX)
mass spectrometry (MS) has become
a potent technique to probe higher-order structures, dynamics, and
interactions of proteins. While the range of proteins amenable to
interrogation by HDX MS continues to expand at an accelerating pace,
there are still a few classes of proteins whose analysis with this
technique remains challenging. Disulfide-rich proteins constitute
one of such groups: since the reduction of thiol–thiol bonds
must be carried out under suboptimal conditions (to minimize the back-exchange),
it frequently results in incomplete dissociation of disulfide bridges
prior to MS analysis, leading to a loss of signal, inadequate sequence
coverage, and a dramatic increase in the difficulty of data analysis.
In this work, the dissociation of disulfide-linked peptide dimers
produced by peptic digestion of the 80 kDa glycoprotein transferrin
in the course of HDX MS experiments is carried out using electron
capture dissociation (ECD). ECD results in efficient cleavage of the
thiol–thiol bonds in the gas phase on the fast LC time scale
and allows the deuterium content of the monomeric constituents of
the peptide dimers to be measured individually. The measurements appear
to be unaffected by hydrogen scrambling, even when high collisional
energies are utilized. This technique will benefit HDX MS measurements
for any protein that contains one or more disulfides and the potential
gain in sequence coverage and spatial resolution would increase with
disulfide bond number.
Collapse
Affiliation(s)
- Cedric E Bobst
- Department of Chemistry, University of Massachusetts Amherst , Amherst, Massachusetts 01003, United States
| | | |
Collapse
|
33
|
Pan J, Borchers CH. Top-down mass spectrometry and hydrogen/deuterium exchange for comprehensive structural characterization of interferons: Implications for biosimilars. Proteomics 2014; 14:1249-58. [DOI: 10.1002/pmic.201300341] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 11/14/2013] [Accepted: 02/24/2014] [Indexed: 11/10/2022]
Affiliation(s)
- Jingxi Pan
- University of Victoria - Genome BC Proteomics Centre; University of Victoria; Victoria BC Canada
| | - Christoph H. Borchers
- University of Victoria - Genome BC Proteomics Centre; University of Victoria; Victoria BC Canada
- Department of Biochemistry and Microbiology; University of Victoria; Victoria BC Canada
| |
Collapse
|
34
|
Sandra K, Vandenheede I, Sandra P. Modern chromatographic and mass spectrometric techniques for protein biopharmaceutical characterization. J Chromatogr A 2014; 1335:81-103. [DOI: 10.1016/j.chroma.2013.11.057] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 11/27/2013] [Accepted: 11/29/2013] [Indexed: 10/25/2022]
|
35
|
Pan LY, Salas-Solano O, Valliere-Douglass JF. Conformation and dynamics of interchain cysteine-linked antibody-drug conjugates as revealed by hydrogen/deuterium exchange mass spectrometry. Anal Chem 2014; 86:2657-64. [PMID: 24512515 DOI: 10.1021/ac404003q] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Antibody-drug conjugates (ADCs) are protein therapeutics in which a target specific monoclonal antibody (mAb) is conjugated with drug molecules. The manufacturing of ADCs involves additional conjugation steps, which are carried out on the parent mAbs, and it is important to evaluate how the drug conjugation process impacts the conformation and dynamics of the mAb. Here, we present a comparative study of interchain cysteine linked IgG1 ADCs and the corresponding mAb by hydrogen/deuterium exchange mass spectrometry (HDX-MS). We found that ∼90% of the primary sequence of the ADC conjugated with either monomethyl auristatin E or F (vcMMAE/mcMMAF) displayed the same HDX kinetics as the mAb, indicating the ADCs and mAbs share very similar conformation and dynamics in solution. Minor increases in HDX kinetic rates were observed in two Fc regions in the ADCs relative to the mAb which indicated that both regions become more structurally dynamic and/or more solvent-accessible in the ADCs. The findings led to a subsequent inquiry into whether the local conformational changes were due to the presence of drugs on the interchain cysteine residues or the absence of intact interchain disulfides or both. To address this question, a side-by-side HDX comparison of ADCs, mAbs, reduced mAbs (containing 8 reduced interchain cysteine thiols), and partially reduced mAbs (conjugation process intermediate) was performed. Our results indicated that the slight increase in conformational dynamics detected at the two regions in the ADCs was due to the absence of intact interchain disulfide bonds and not the presence of vcMMAE or mcMMAF on the alkylated interchain cysteine residues. These results highlight the utility of HDX-MS for interrogating the higher-order structure of ADCs and other protein therapeutics.
Collapse
Affiliation(s)
- Lucy Yan Pan
- Seattle Genetics, Inc., 21823 30th Drive SE, Bothell, Washington 98021, United States
| | | | | |
Collapse
|
36
|
Konermann L, Rodriguez AD, Sowole MA. Type 1 and Type 2 scenarios in hydrogen exchange mass spectrometry studies on protein–ligand complexes. Analyst 2014; 139:6078-87. [DOI: 10.1039/c4an01307g] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Ligand binding to a protein can elicit a wide range of responses when studied by HDX mass spectrometry.
Collapse
Affiliation(s)
- Lars Konermann
- Department of Chemistry
- The University of Western Ontario
- London, Canada
| | | | | |
Collapse
|
37
|
Wei H, Mo J, Tao L, Russell RJ, Tymiak AA, Chen G, Iacob RE, Engen JR. Hydrogen/deuterium exchange mass spectrometry for probing higher order structure of protein therapeutics: methodology and applications. Drug Discov Today 2014; 19:95-102. [PMID: 23928097 DOI: 10.1016/j.drudis.2013.07.019.hydrogen/deuterium] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Revised: 07/19/2013] [Accepted: 07/29/2013] [Indexed: 05/25/2023]
Abstract
The higher order structure of protein therapeutics can be interrogated with hydrogen/deuterium exchange mass spectrometry (HDX-MS). HDX-MS is now a widely used tool in the structural characterization of protein therapeutics. In this review, HDX-MS based workflows designed for protein therapeutic discovery and development processes are presented, focusing on the specific applications of epitope mapping for protein/drug interactions and biopharmaceutical comparability studies. Future trends in the application of HDX-MS in protein therapeutics characterization are also described.
Collapse
Affiliation(s)
- Hui Wei
- Bioanalytical and Discovery Analytical Sciences, Research and Development, Bristol-Myers Squibb, Princeton, NJ, USA
| | - Jingjie Mo
- Bioanalytical and Discovery Analytical Sciences, Research and Development, Bristol-Myers Squibb, Princeton, NJ, USA
| | - Li Tao
- Biologics Manufacturing and Process Development, Global Manufacturing and Supply, Bristol-Myers Squibb, Hopewell, NJ, USA
| | - Reb J Russell
- Biologics Manufacturing and Process Development, Global Manufacturing and Supply, Bristol-Myers Squibb, Bloomsbury, NJ, USA
| | - Adrienne A Tymiak
- Bioanalytical and Discovery Analytical Sciences, Research and Development, Bristol-Myers Squibb, Princeton, NJ, USA
| | - Guodong Chen
- Bioanalytical and Discovery Analytical Sciences, Research and Development, Bristol-Myers Squibb, Princeton, NJ, USA.
| | - Roxana E Iacob
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA, USA
| | - John R Engen
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA, USA.
| |
Collapse
|
38
|
|
39
|
Palmieri LC, Melo-Ferreira B, Braga CA, Fontes GN, Mattos LJ, Lima LMT. Stepwise oligomerization of murine amylin and assembly of amyloid fibrils. Biophys Chem 2013; 180-181:135-44. [DOI: 10.1016/j.bpc.2013.07.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 07/26/2013] [Accepted: 07/27/2013] [Indexed: 01/15/2023]
|
40
|
Abzalimov RR, Bobst CE, Kaltashov IA. A new approach to measuring protein backbone protection with high spatial resolution using H/D exchange and electron capture dissociation. Anal Chem 2013; 85:9173-80. [PMID: 23978257 DOI: 10.1021/ac401868b] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Inadequate spatial resolution remains one of the most serious limitations of hydrogen/deuterium exchange-mass spectrometry (HDX-MS), especially when applied to larger proteins (over 30 kDa). Supplementing proteolytic fragmentation of the protein in solution with ion dissociation in the gas phase has been used successfully by several groups to obtain near-residue level resolution. However, the restrictions imposed by the LC-MS/MS mode of operation on the data acquisition time frame makes it difficult in many cases to obtain a signal-to-noise ratio adequate for reliable assignment of the backbone amide protection levels at individual residues. This restriction is lifted in the present work by eliminating the LC separation step from the workflow and taking advantage of the high resolving power and dynamic range of a Fourier transform ion cyclotron resonance-mass spectrometer (FTICR-MS). A residue-level resolution is demonstrated for a peptic fragment of a 37 kDa recombinant protein (N-lobe of human serum transferrin), using electron-capture dissociation as an ion fragmentation tool. The absence of hydrogen scrambling in the gas phase prior to ion dissociation is verified using redundant HDX-MS data generated by FTICR-MS. The backbone protection pattern generated by direct HDX-MS/MS is in excellent agreement with the known crystal structure of the protein but also provides information on conformational dynamics, which is not available from the static X-ray structure.
Collapse
Affiliation(s)
- Rinat R Abzalimov
- Department of Chemistry, University of Massachusetts-Amherst , Amherst, MA 01003, United States
| | | | | |
Collapse
|
41
|
Sowole MA, Alexopoulos JA, Cheng YQ, Ortega J, Konermann L. Activation of ClpP protease by ADEP antibiotics: insights from hydrogen exchange mass spectrometry. J Mol Biol 2013; 425:4508-19. [PMID: 23948506 DOI: 10.1016/j.jmb.2013.08.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 07/27/2013] [Accepted: 08/06/2013] [Indexed: 10/26/2022]
Abstract
The bacterial protease ClpP consists of 14 subunits that assemble into two stacked heptameric rings. The central degradation chamber can be accessed via axial pores. In free ClpP, these pores are obstructed by the N-terminal regions of the seven subunits at either end of the barrel. Acyldepsipeptides (ADEPs) are antibacterial compounds that bind in hydrophobic clefts surrounding the pore region, causing the pores to open up. The ensuing uncontrolled degradation of intracellular proteins is responsible for the antibiotic activity of ADEPs. Recently published X-ray structures yielded conflicting models regarding the conformation adopted by the N-terminal regions in the open state. Here, we use hydrogen/deuterium exchange (HDX) mass spectrometry to obtain complementary insights into the ClpP behavior with and without ADEP1. Ligand binding causes rigidification of the equatorial belt, accompanied by destabilization in the vicinity of the binding clefts. The N-terminal regions undergo rapid deuteration with only minor changes after ADEP1 binding, revealing a lack of stable H-bonding. Our data point to a mechanism where the pore opening mechanism is mediated primarily by changes in the packing of N-terminal nonpolar side chains. We propose that a "hydrophobic plug" causes pore blockage in ligand-free ClpP. ADEP1 binding provides new hydrophobic anchor points that nonpolar N-terminal residues can interact with. In this way, ADEP1 triggers the transition to an open conformation, where nonpolar moieties are clustered around the rim of the pore. This proposed mechanism helps reconcile the conflicting models that had been put forward earlier.
Collapse
Affiliation(s)
- Modupeola A Sowole
- Department of Chemistry, The University of Western Ontario, London, Ontario, N6A 5B7, Canada
| | | | | | | | | |
Collapse
|
42
|
Wei H, Mo J, Tao L, Russell RJ, Tymiak AA, Chen G, Iacob RE, Engen JR. Hydrogen/deuterium exchange mass spectrometry for probing higher order structure of protein therapeutics: methodology and applications. Drug Discov Today 2013; 19:95-102. [PMID: 23928097 DOI: 10.1016/j.drudis.2013.07.019] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Revised: 07/19/2013] [Accepted: 07/29/2013] [Indexed: 10/26/2022]
Abstract
The higher order structure of protein therapeutics can be interrogated with hydrogen/deuterium exchange mass spectrometry (HDX-MS). HDX-MS is now a widely used tool in the structural characterization of protein therapeutics. In this review, HDX-MS based workflows designed for protein therapeutic discovery and development processes are presented, focusing on the specific applications of epitope mapping for protein/drug interactions and biopharmaceutical comparability studies. Future trends in the application of HDX-MS in protein therapeutics characterization are also described.
Collapse
Affiliation(s)
- Hui Wei
- Bioanalytical and Discovery Analytical Sciences, Research and Development, Bristol-Myers Squibb, Princeton, NJ, USA
| | - Jingjie Mo
- Bioanalytical and Discovery Analytical Sciences, Research and Development, Bristol-Myers Squibb, Princeton, NJ, USA
| | - Li Tao
- Biologics Manufacturing and Process Development, Global Manufacturing and Supply, Bristol-Myers Squibb, Hopewell, NJ, USA
| | - Reb J Russell
- Biologics Manufacturing and Process Development, Global Manufacturing and Supply, Bristol-Myers Squibb, Bloomsbury, NJ, USA
| | - Adrienne A Tymiak
- Bioanalytical and Discovery Analytical Sciences, Research and Development, Bristol-Myers Squibb, Princeton, NJ, USA
| | - Guodong Chen
- Bioanalytical and Discovery Analytical Sciences, Research and Development, Bristol-Myers Squibb, Princeton, NJ, USA.
| | - Roxana E Iacob
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA, USA
| | - John R Engen
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA, USA.
| |
Collapse
|
43
|
Kaltashov IA, Bobst CE, Nguyen SN, Wang S. Emerging mass spectrometry-based approaches to probe protein-receptor interactions: focus on overcoming physiological barriers. Adv Drug Deliv Rev 2013; 65:1020-30. [PMID: 23624418 DOI: 10.1016/j.addr.2013.04.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 04/15/2013] [Accepted: 04/17/2013] [Indexed: 01/10/2023]
Abstract
Physiological barriers, such as the blood-brain barrier and intestinal epithelial barrier, remain significant obstacles towards wider utilization of biopharmaceutical products. Receptor-mediated transcytosis has long been viewed as an attractive means of crossing such barriers, but successful exploitation of this route requires better understanding of the interactions between the receptors and protein-based therapeutics. Detailed characterization of such processes at the molecular level is challenging due to the very large physical size and heterogeneity of these species, which makes use of many state-of-the art analytical techniques, such as high-resolution NMR and X-ray crystallography impractical. Mass spectrometry has emerged in the past decade as a powerful tool to study protein-receptor interactions, although its applications to investigate interaction of biopharmaceuticals with their physiological partners are still limited. We highlight the potential of this technique by considering several recent examples where it had been instrumental for understanding molecular mechanisms critical for receptor-mediated transcytosis of transferrin-based therapeutics.
Collapse
|
44
|
Demartini DR, Pasquali G, Carlini CR. An overview of proteomics approaches applied to biopharmaceuticals and cyclotides research. J Proteomics 2013; 93:224-33. [PMID: 23777896 DOI: 10.1016/j.jprot.2013.06.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 06/03/2013] [Accepted: 06/06/2013] [Indexed: 01/22/2023]
Abstract
The evolution in proteomics approaches is notable, including quantitative proteomics and strategies for elucidation of post-translational modifications. Faster and more accurate mass spectrometers as well as cleverer bioinformatics tolls are making the difference in such advancement. Among the wide range of research in plant proteomics, biopharmaceutical production using plants as "biofactories" and the screening of new activities of new molecules, in this case, peptides, are quite important regarding translational proteomics. The present review is focused on "recombinant proteins and bioactive peptides", with biopharmaceuticals and cyclotides chosen as examples. Their application and challenges are focused on a "translational proteomics" point of view, in order to exemplify some new areas of research based on proteomics strategies. This article is part of a Special Issue entitled: Translational Plant Proteomics.
Collapse
Affiliation(s)
- Diogo Ribeiro Demartini
- Center of Biotechnology, Universidade Federal do Rio Grande do Sul., Av. Bento Gonçalves 9500, Prédio 43431, Sala 214, Porto Alegre, RS 91501-970, Brazil.
| | | | | |
Collapse
|
45
|
Balasubramaniam D, Komives EA. Hydrogen-exchange mass spectrometry for the study of intrinsic disorder in proteins. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1834:1202-9. [PMID: 23099262 PMCID: PMC3600394 DOI: 10.1016/j.bbapap.2012.10.009] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 10/11/2012] [Accepted: 10/15/2012] [Indexed: 12/14/2022]
Abstract
Amide hydrogen/deuterium exchange detected by mass spectrometry (HXMS) is seeing wider use for the identification of intrinsically disordered parts of proteins. In this review, we discuss examples of how discovery of intrinsically disordered regions and their removal can aid in structure determination, biopharmaceutical quality control, the characterization of how post-translational modifications affect weak structuring of disordered regions, the study of coupled folding and binding, and the characterization of amyloid formation. This article is part of a Special Issue entitled: Mass spectrometry in structural biology.
Collapse
Affiliation(s)
- Deepa Balasubramaniam
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0378
| | - Elizabeth A. Komives
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0378
| |
Collapse
|
46
|
Jones LM, Zhang H, Cui W, Kumar S, Sperry JB, Carroll JA, Gross ML. Complementary MS methods assist conformational characterization of antibodies with altered S-S bonding networks. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2013; 24:835-45. [PMID: 23483515 PMCID: PMC3651811 DOI: 10.1007/s13361-013-0582-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Revised: 01/02/2013] [Accepted: 01/03/2013] [Indexed: 05/11/2023]
Abstract
As therapeutic monoclonal antibodies (mAbs) become a major focus in biotechnology and a source of the next-generation drugs, new analytical methods or combination methods are needed for monitoring changes in higher order structure and effects of post-translational modifications. The complexity of these molecules and their vulnerability to structural change provide a serious challenge. We describe here the use of complementary mass spectrometry methods that not only characterize mutant mAbs but also may provide a general framework for characterizing higher order structure of other protein therapeutics and biosimilars. To frame the challenge, we selected members of the IgG2 subclass that have distinct disulfide isomeric structures as a model to evaluate an overall approach that uses ion mobility, top-down MS sequencing, and protein footprinting in the form of fast photochemical oxidation of proteins (FPOP). These three methods are rapid, sensitive, respond to subtle changes in conformation of Cys → Ser mutants of an IgG2, each representing a single disulfide isoform, and may be used in series to probe higher order structure. The outcome suggests that this approach of using various methods in combination can assist the development and quality control of protein therapeutics.
Collapse
Affiliation(s)
- Lisa M Jones
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63130, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Thompson NJ, Rosati S, Heck AJR. Performing native mass spectrometry analysis on therapeutic antibodies. Methods 2013; 65:11-7. [PMID: 23688935 DOI: 10.1016/j.ymeth.2013.05.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 04/29/2013] [Accepted: 05/01/2013] [Indexed: 12/11/2022] Open
Abstract
Since the introduction of "soft" ionization techniques, the role of mass spectrometry (MS) in the field of structural biology has increasingly expanded. With the incorporation of volatile buffers as electrospray ionization (ESI) solvents, non-covalent protein complexes could be efficiently transferred to the gas phase for mass analysis. While native MS has not become a technique used for standard characterization of therapeutic proteins in an industrial setting, it is increasingly used to probe the structural heterogeneity of these complex biomolecules. Here, we describe a detailed sample protocol for the analysis of monoclonal antibodies (mAbs) by native MS and highlight some recent applications of native MS in the analysis of intact mAbs and mAb-based therapeutics.
Collapse
Affiliation(s)
- Natalie J Thompson
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Sara Rosati
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| |
Collapse
|
48
|
High-resolution MS for structural characterization of protein therapeutics: advances and future directions. Bioanalysis 2013; 5:1299-313. [DOI: 10.4155/bio.13.80] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
High-resolution MS (HRMS) is a central analytical technique for the study of biomolecules and is widely used in the biopharmaceutical industry. This paper reviews recent advances in commonly used HRMS instrumentation and experimental strategies for HRMS-based structural characterization of protein therapeutics. An overview of protein higher order structural characterization using HRMS-based technologies is presented, including the use of hydrogen/deuterium exchange and hydroxyl radical footprinting methods for probing protein conformational dynamics and interactions in solution. Future directions in application of HRMS for characterizing protein therapeutics are also described.
Collapse
|
49
|
Federici M, Lubiniecki A, Manikwar P, Volkin DB. Analytical lessons learned from selected therapeutic protein drug comparability studies. Biologicals 2013; 41:131-47. [DOI: 10.1016/j.biologicals.2012.10.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 10/01/2012] [Accepted: 10/04/2012] [Indexed: 02/08/2023] Open
|
50
|
Nguyen SN, Bobst CE, Kaltashov IA. Mass spectrometry-guided optimization and characterization of a biologically active transferrin-lysozyme model drug conjugate. Mol Pharm 2013; 10:1998-2007. [PMID: 23534953 DOI: 10.1021/mp400026y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Transferrin is a promising drug carrier that has the potential to deliver metals, small organic molecules and therapeutic proteins to cancer cells and/or across physiological barriers (such as the blood-brain barrier). Despite this promise, very few transferrin-based therapeutics have been developed and reached clinical trials. This modest success record can be explained by the complexity and heterogeneity of protein conjugation products, which also pose great challenges to their analytical characterization. In this work, we use lysozyme conjugated to transferrin as a model therapeutic that targets the central nervous system (where its bacteriostatic properties may be exploited to control infection) and develop analytical protocols based on electrospray ionization mass spectrometry to characterize its structure and interactions with therapeutic targets and physiological partners critical for its successful delivery. Mass spectrometry has already become an indispensable tool facilitating all stages of the protein drug development process, and this work demonstrates the enormous potential of this technique in facilitating the development of a range of therapeutically effective protein-drug conjugates.
Collapse
Affiliation(s)
- Son N Nguyen
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | | | | |
Collapse
|