1
|
He Y, Tang Z, Zhu G, Cai L, Chen C, Guan MX. Deafness-associated mitochondrial 12S rRNA mutation reshapes mitochondrial and cellular homeostasis. J Biol Chem 2025; 301:108124. [PMID: 39716492 PMCID: PMC11791119 DOI: 10.1016/j.jbc.2024.108124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/09/2024] [Accepted: 12/17/2024] [Indexed: 12/25/2024] Open
Abstract
Human mitochondrial 12S ribosomal RNA (rRNA) 1555A>G mutation has been associated with aminoglycoside-induced and nonsyndromic deafness in many families worldwide. Our previous investigation revealed that the m.1555A>G mutation impaired mitochondrial translation and oxidative phosphorylation (OXPHOS). However, the mechanisms by which mitochondrial dysfunctions induced by m.1555A>G mutation regulate intracellular signaling for mitochondrial and cellular integrity remain poorly understood. Here, we demonstrated that the m.1555A>G mutation downregulated the expression of nucleus-encoded subunits of complexes I and IV but upregulated the expression of assemble factors for OXPHOS complexes, using cybrids derived from one hearing-impaired Chinese subject bearing the m.1555A>G mutation and from one hearing normal control lacking the mutation. These alterations resulted in the aberrant assembly, instability, and reduced activities of respiratory chain enzyme complexes I, IV, and V, rate of oxygen consumption, and diminished ATP production. Furthermore, the mutant cell lines carrying the m.1555A>G mutation exhibited decreased membrane potential and increased the production of reactive oxygen species. The aberrant assembly and biogenesis of OXPHOS impacted mitochondrial quality controls, including the imbalance of mitochondrial dynamics via increasing fission with abnormal mitochondrial morphology and impaired mitophagy. Strikingly, the cells bearing the m.1555A>G mutation revealed the upregulation of both ubiquitin-dependent and independent mitophagy pathways, evidenced by increasing levels of Parkin, Pink, BNIP3 and NIX, respectively. The m.1555A>G mutation-induced deficiencies ameliorate the cell homeostasis via elevating the autophagy process and upregulating apoptotic pathways. Our findings provide new insights into pathophysiology of mitochondrial deafness arising from reshaping mitochondrial and cellular homeostasis due to 12S rRNA 1555A>G mutation.
Collapse
Affiliation(s)
- Yunfan He
- Center for Mitochondrial Biomedicine and Department of Otolaryngology-Head and Neck Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China; Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, Zhejiang, China; Center for Genetic Medicine, Zhejiang University International Institute of Medicine, Yiwu, Zhejiang, China
| | - Zhining Tang
- Clinical Laboratory, Huzhou Central Hospital, Affiliated Central Hospital of Huzhou University, Huzhou, Zhejiang, China
| | - Gao Zhu
- Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, Zhejiang, China
| | - Luhang Cai
- Center for Mitochondrial Biomedicine and Department of Otolaryngology-Head and Neck Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China; Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, Zhejiang, China
| | - Chao Chen
- Center for Mitochondrial Biomedicine and Department of Otolaryngology-Head and Neck Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China; Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, Zhejiang, China
| | - Min-Xin Guan
- Center for Mitochondrial Biomedicine and Department of Otolaryngology-Head and Neck Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China; Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, Zhejiang, China; Center for Genetic Medicine, Zhejiang University International Institute of Medicine, Yiwu, Zhejiang, China; Joint Institute of Genetics and Genomic Medicine Between Zhejiang University and University of Toronto, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
Van Haute L, Páleníková P, Tang JX, Nash PA, Simon MT, Pyle A, Oláhová M, Powell CA, Rebelo-Guiomar P, Stover A, Champion M, Deshpande C, Baple EL, Stals KL, Ellard S, Anselem O, Molac C, Petrilli G, Loeuillet L, Grotto S, Attie-Bitach T, Abdenur JE, Taylor RW, Minczuk M. Pathogenic PDE12 variants impair mitochondrial RNA processing causing neonatal mitochondrial disease. EMBO Mol Med 2025; 17:193-210. [PMID: 39567835 PMCID: PMC11729904 DOI: 10.1038/s44321-024-00172-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 10/18/2024] [Accepted: 10/29/2024] [Indexed: 11/22/2024] Open
Abstract
Pathogenic variants in either the mitochondrial or nuclear genomes are associated with a diverse group of human disorders characterized by impaired mitochondrial function. Within this group, an increasing number of families have been identified, where Mendelian genetic disorders implicate defective mitochondrial RNA biology. The PDE12 gene encodes the poly(A)-specific exoribonuclease, involved in the quality control of mitochondrial non-coding RNAs. Here, we report that disease-causing PDE12 variants in three unrelated families are associated with mitochondrial respiratory chain deficiencies and wide-ranging clinical presentations in utero and within the neonatal period, with muscle and brain involvement leading to marked cytochrome c oxidase (COX) deficiency in muscle and severe lactic acidosis. Whole exome sequencing of affected probands revealed novel, segregating bi-allelic missense PDE12 variants affecting conserved residues. Patient-derived primary fibroblasts demonstrate diminished steady-state levels of PDE12 protein, whilst mitochondrial poly(A)-tail RNA sequencing (MPAT-Seq) revealed an accumulation of spuriously polyadenylated mitochondrial RNA, consistent with perturbed function of PDE12 protein. Our data suggest that PDE12 regulates mitochondrial RNA processing and its loss results in neurological and muscular phenotypes.
Collapse
Affiliation(s)
- Lindsey Van Haute
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Petra Páleníková
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jia Xin Tang
- Mitochondrial Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Pavel A Nash
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Mariella T Simon
- CHOC Children's Division of Metabolic Disorders, Orange, CA, USA
| | - Angela Pyle
- Department of Applied Sciences, Faculty of Health & Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Monika Oláhová
- Mitochondrial Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Department of Applied Sciences, Faculty of Health & Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | | | - Pedro Rebelo-Guiomar
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
- Department of Biochemistry, University of Cambridge, Tennis Court Road, CB1 2GA, Cambridge, UK
| | - Alexander Stover
- CHOC Children's Division of Metabolic Disorders, Orange, CA, USA
| | - Michael Champion
- Department of Children's Inherited Metabolic Diseases, Evelina London Children's Hospital, Guy's & St Thomas' Hospital NHS Foundation Trust, London, UK
| | - Charulata Deshpande
- Manchester Centre for Genomic Medicine, Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK
- Department of Clinical Genetics, Guy's Hospital, Guy's & St Thomas' Hospital NHS Foundation Trust, London, UK
| | - Emma L Baple
- Genomics Laboratory, Royal Devon University Healthcare NHS Foundation Trust, Exeter, UK
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Exeter, UK
- Peninsula Clinical Genetics Service, Royal Devon University Healthcare NHS Foundation Trust, Exeter, UK
| | - Karen L Stals
- Genomics Laboratory, Royal Devon University Healthcare NHS Foundation Trust, Exeter, UK
| | - Sian Ellard
- Genomics Laboratory, Royal Devon University Healthcare NHS Foundation Trust, Exeter, UK
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Exeter, UK
| | - Olivia Anselem
- Maternité Port-Royal, Département de Gynécologie-Obstétrique, Hôpital Cochin Broca Hôtel-Dieu, APHP, Paris, France
| | - Clémence Molac
- Maternité Port-Royal, Département de Gynécologie-Obstétrique, Hôpital Cochin Broca Hôtel-Dieu, APHP, Paris, France
| | - Giulia Petrilli
- Service de Médecine Génomique des Maladies Rares, Hôpital Necker-Enfants Malades, APHP, Paris, France
| | - Laurence Loeuillet
- Service de Médecine Génomique des Maladies Rares, Hôpital Necker-Enfants Malades, APHP, Paris, France
| | - Sarah Grotto
- UF de Génétique Clinique, Centre de Référence Anomalies du Développement et Syndromes Malformatifs, Hôpital Trousseau, APHP, Paris, France
| | - Tania Attie-Bitach
- Service de Médecine Génomique des Maladies Rares, Hôpital Necker-Enfants Malades, APHP, Paris, France
- INSERM UMR 1163, Imagine Institute, Genetics and Development of the Cerebral Cortex, Université Paris Cité, Paris, France
| | - Jose E Abdenur
- CHOC Children's Division of Metabolic Disorders, Orange, CA, USA
- University of California, Irvine, Department of Pediatrics, Irvine, CA, USA
| | - Robert W Taylor
- Mitochondrial Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.
| | - Michal Minczuk
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK.
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
| |
Collapse
|
3
|
Wang C, Zhang L, Nie Z, Liang M, Liu H, Yi Q, Wang C, Ai C, Zhang J, Gao Y, Ji Y, Guan MX. Mutation of CRYAB encoding a conserved mitochondrial chaperone and antiapoptotic protein causes hereditary optic atrophy. JCI Insight 2024; 10:e182209. [PMID: 39561005 PMCID: PMC11721302 DOI: 10.1172/jci.insight.182209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 11/13/2024] [Indexed: 11/20/2024] Open
Abstract
The degeneration of retinal ganglion cells (RGC) due to mitochondrial dysfunctions manifests optic neuropathy. However, the molecular components of RGC linked to optic neuropathy manifestations remain largely unknown. Here, we identified a potentially novel optic atrophy-causative CRYAB gene encoding a highly conserved major lens protein acting as mitochondrial chaperone and possessing antiapoptotic activities. The heterozygous CRYAB mutation (c.313G>A, p. Glu105Lys) was cosegregated with autosomal dominant inheritance of optic atrophy in 3 Chinese families. The p.E105K mutation altered the structure and function of CRYAB, including decreased stability, reduced formation of oligomers, and decreased chaperone activity. Coimmunoprecipitation indicated that the p.E105K mutation reduced the interaction of CRYAB with apoptosis-associated cytochrome c and voltage-dependent anion channel protein. The cell lines carrying the p.E105K mutation displayed promotion of apoptosis and defective assembly, stability, and activities of oxidative phosphorylation system as well as imbalance of mitochondrial dynamics. Involvement of CRYAB in optic atrophy was confirmed by phenotypic evaluations of Cryabp.E105K-knockin mice. These mutant mice exhibited ocular lesions that included alteration of intraretinal layers, degeneration of RGCs, photoreceptor deficits, and abnormal retinal vasculature. Furthermore, Cryab-deficient mice displayed elevated apoptosis and mitochondrial dysfunctions. Our findings provide insight of pathophysiology of optic atrophy arising from RGC degeneration caused by CRYAB deficiency-induced elevated apoptosis and mitochondrial dysfunctions.
Collapse
Affiliation(s)
- Chenghui Wang
- Center for Mitochondrial Biomedicine and Department of Ophthalmology, the Fourth Affiliated Hospital
- Department of Genetics, and
- Center for Genetic Medicine, Zhejiang University International Institute of Medicine, Yiwu, Zhejiang, China
| | | | - Zhipeng Nie
- Center for Mitochondrial Biomedicine and Department of Ophthalmology, the Fourth Affiliated Hospital
- Department of Genetics, and
- Center for Genetic Medicine, Zhejiang University International Institute of Medicine, Yiwu, Zhejiang, China
| | - Min Liang
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | | | | | | | - Cheng Ai
- Center for Mitochondrial Biomedicine and Department of Ophthalmology, the Fourth Affiliated Hospital
- Department of Genetics, and
- Center for Genetic Medicine, Zhejiang University International Institute of Medicine, Yiwu, Zhejiang, China
| | - Juanjuan Zhang
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yinglong Gao
- Department of Genetics, and
- Division of Medical Genetics and Genomics, The Children’s Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Yanchun Ji
- Department of Genetics, and
- Division of Medical Genetics and Genomics, The Children’s Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Min-Xin Guan
- Center for Mitochondrial Biomedicine and Department of Ophthalmology, the Fourth Affiliated Hospital
- Department of Genetics, and
- Center for Genetic Medicine, Zhejiang University International Institute of Medicine, Yiwu, Zhejiang, China
- Joint Institute of Genetics and Genomic Medicine between Zhejiang University and University of Toronto, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Jin L, Gan D, He W, Wu N, Xiang S, Wei Y, Eriani G, Ji Y, Guan M, Wang M. Mitochondrial tRNA Glu 14693A > G Mutation, an "Enhancer" to the Phenotypic Expression of Leber's Hereditary Optic Neuropathy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401856. [PMID: 39264244 PMCID: PMC11538713 DOI: 10.1002/advs.202401856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 08/12/2024] [Indexed: 09/13/2024]
Abstract
Leber's hereditary optic neuropathy (LHON), a maternally inherited ocular disease, is predominantly caused by mitochondrial DNA (mtDNA) mutations. Mitochondrial tRNA variants are hypothesized to amplify the pathogenic impact of three primary mutations. However, the exact mechanisms remained unclear. In the present study, the synergistic effect of the tRNAGlu 14693A > G and ND6 14484T > C mutations in three Chinese families affected by LHON is investigated. The m.14693A > G mutation nearly abolishes the pseudouridinylation at position 55 of tRNAGlu, leading to structural abnormalities, decreased stability, aberrant mitochondrial protein synthesis, and increased autophagy. In contrast, the ND6 14484T > C mutation predominantly impairs complex I function, resulting in heightened apoptosis and virtually no induction of mitochondrial autophagy compared to control cell lines. The presence of dual mutations in the same cell lines exhibited a coexistence of both upregulated cellular stress responses to mitochondrial damage, indicating a scenario of autophagy and mutation dysregulation within these dual-mutant cell lines. The data proposes a novel hypothesis that mitochondrial tRNA gene mutations generally lead to increased mitochondrial autophagy, while mutations in genes encoding mitochondrial proteins typically induce apoptosis, shedding light on the intricate interplay between different genetic factors in the manifestation of LHON.
Collapse
MESH Headings
- Optic Atrophy, Hereditary, Leber/blood
- Optic Atrophy, Hereditary, Leber/diagnosis
- Optic Atrophy, Hereditary, Leber/genetics
- RNA, Transfer, Glu/genetics
- RNA, Mitochondrial/genetics
- Mutation
- NADH Dehydrogenase/genetics
- RNA Stability/genetics
- Apoptosis/genetics
- Mitophagy/genetics
- Cell Line
- Visual Acuity/genetics
- Genome, Mitochondrial/genetics
- DNA Mutational Analysis
- Humans
- Male
- Child, Preschool
- Child
- Age of Onset
Collapse
Affiliation(s)
- Lihao Jin
- Center for Genetic Medicinethe Fourth Affiliated Hospital of School of Medicineand International School of MedicineInternational institutes of MedicineZhejiang UniversityYiwu322000China
- Division of Medical Genetics and GenomicsThe Children's HospitalZhejiang University School of Medicine and National Clinical Research Center for Child HealthHangzhou310058China
- Institute of GeneticsZhejiang University International School of MedicineHangzhou310058China
| | - Dingyi Gan
- Center for Genetic Medicinethe Fourth Affiliated Hospital of School of Medicineand International School of MedicineInternational institutes of MedicineZhejiang UniversityYiwu322000China
- Division of Medical Genetics and GenomicsThe Children's HospitalZhejiang University School of Medicine and National Clinical Research Center for Child HealthHangzhou310058China
- Institute of GeneticsZhejiang University International School of MedicineHangzhou310058China
| | - Wentao He
- Center for Genetic Medicinethe Fourth Affiliated Hospital of School of Medicineand International School of MedicineInternational institutes of MedicineZhejiang UniversityYiwu322000China
- Division of Medical Genetics and GenomicsThe Children's HospitalZhejiang University School of Medicine and National Clinical Research Center for Child HealthHangzhou310058China
- Institute of GeneticsZhejiang University International School of MedicineHangzhou310058China
| | - Na Wu
- Center for Genetic Medicinethe Fourth Affiliated Hospital of School of Medicineand International School of MedicineInternational institutes of MedicineZhejiang UniversityYiwu322000China
- Institute of GeneticsZhejiang University International School of MedicineHangzhou310058China
| | - Shuchenlu Xiang
- Center for Genetic Medicinethe Fourth Affiliated Hospital of School of Medicineand International School of MedicineInternational institutes of MedicineZhejiang UniversityYiwu322000China
- Institute of GeneticsZhejiang University International School of MedicineHangzhou310058China
| | - Yinsheng Wei
- Center for Genetic Medicinethe Fourth Affiliated Hospital of School of Medicineand International School of MedicineInternational institutes of MedicineZhejiang UniversityYiwu322000China
- Division of Medical Genetics and GenomicsThe Children's HospitalZhejiang University School of Medicine and National Clinical Research Center for Child HealthHangzhou310058China
- Institute of GeneticsZhejiang University International School of MedicineHangzhou310058China
| | - Gilbert Eriani
- Architecture et Réactivité de l'ARNUPR9002 Centre National de la Recherche ScientifiqueUniversité de StrasbourgInstitut de Biologie Moléculaire et Cellulaire2 allée Konrad RoentgenStrasbourg67084France
| | - Yanchun Ji
- Division of Medical Genetics and GenomicsThe Children's HospitalZhejiang University School of Medicine and National Clinical Research Center for Child HealthHangzhou310058China
- Institute of GeneticsZhejiang University International School of MedicineHangzhou310058China
| | - Min‐Xin Guan
- Center for Genetic Medicinethe Fourth Affiliated Hospital of School of Medicineand International School of MedicineInternational institutes of MedicineZhejiang UniversityYiwu322000China
- Division of Medical Genetics and GenomicsThe Children's HospitalZhejiang University School of Medicine and National Clinical Research Center for Child HealthHangzhou310058China
- Institute of GeneticsZhejiang University International School of MedicineHangzhou310058China
| | - Meng Wang
- Center for Genetic Medicinethe Fourth Affiliated Hospital of School of Medicineand International School of MedicineInternational institutes of MedicineZhejiang UniversityYiwu322000China
- Division of Medical Genetics and GenomicsThe Children's HospitalZhejiang University School of Medicine and National Clinical Research Center for Child HealthHangzhou310058China
- Institute of GeneticsZhejiang University International School of MedicineHangzhou310058China
| |
Collapse
|
5
|
Zhang J, Li W, Liu Z, Chen Y, Wei X, Peng L, Xu M, Ji Y. Defective post-transcriptional modification of tRNA disrupts mitochondrial homeostasis in Leber's hereditary optic neuropathy. J Biol Chem 2024; 300:107728. [PMID: 39214298 PMCID: PMC11421333 DOI: 10.1016/j.jbc.2024.107728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/31/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
Leber's Hereditary Optic Neuropathy (LHON) is a rare, maternally inherited eye disease, predominantly due to the degeneration of retinal ganglion cells (RGCs). It is associated with a mitochondrial DNA (mtDNA) point mutation. Our previous study identified that the m.15927G > A homoplasmic mutation damaged the highly conserved base pairing (28C-42G) in anticodon stem of tRNAThr, caused deficient t6A modification and significantly decreased efficiency in aminoacylation and steady-state levels of tRNAThr, and led to mitochondrial dysfunction. Meanwhile, mechanisms underlying mtDNA mutations regulate intracellular signaling related to mitochondrial and cellular integrity are less explored. Here, we manifested that defective nucleotide modification induced by the m.15927G > A mutation interfered with the expression of nuclear genes involved in cytoplasmic proteins essential for oxidative phosphorylation system (OXPHOS), thereby impacting the assemble and integrity of OXPHOS complexes. As a result of these mitochondrial dysfunctions, there was an imbalance in mitochondrial dynamics, particularly distinguished by an increased occurrence of mitochondrial fission. Excessive fission compromised the autophagy process, including the initiation phase, formation, and maturation of autophagosomes. Both Parkin-mediated mitophagy and receptor-dependent mitophagy were significantly impaired in cybrids haboring the m.15927G > A mutation. These changes facilitated intrinsic apoptosis, as indicated by increased cytochrome c release and elevated levels of apoptosis-associated proteins (e.g., BAK, BAX, cleaved caspase 9, cleaved caspase 3, and cleaved PARP) in the mutant cybrids. This study demonstrates that the m.15927G > A mutation contributes to LHON by dysregulating OXPHOS biogenesis, aberrant quality control, increased autophagy, inhibited mitophagy, and abnormal apoptosis.
Collapse
MESH Headings
- Optic Atrophy, Hereditary, Leber/metabolism
- Optic Atrophy, Hereditary, Leber/genetics
- Optic Atrophy, Hereditary, Leber/pathology
- Humans
- Mitochondria/metabolism
- Mitochondria/genetics
- Mitochondria/pathology
- Mitophagy
- Homeostasis
- RNA Processing, Post-Transcriptional
- DNA, Mitochondrial/metabolism
- DNA, Mitochondrial/genetics
- Oxidative Phosphorylation
- RNA, Transfer, Thr/metabolism
- RNA, Transfer, Thr/genetics
- Mitochondrial Dynamics
- Apoptosis
- Point Mutation
- Autophagy
- Ubiquitin-Protein Ligases/metabolism
- Ubiquitin-Protein Ligases/genetics
Collapse
Affiliation(s)
- Juanjuan Zhang
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China; Attardi Institute of Mitochondrial Biomedicine, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Wenxu Li
- Attardi Institute of Mitochondrial Biomedicine, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhen Liu
- Attardi Institute of Mitochondrial Biomedicine, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yingqi Chen
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaoyang Wei
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lu Peng
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Man Xu
- Attardi Institute of Mitochondrial Biomedicine, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China; Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yanchun Ji
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
6
|
Chen X, Meng F, Chen C, Li S, Chou Z, Xu B, Mo JQ, Guo Y, Guan MX. Deafness-associated tRNA Phe mutation impaired mitochondrial and cellular integrity. J Biol Chem 2024; 300:107235. [PMID: 38552739 PMCID: PMC11046301 DOI: 10.1016/j.jbc.2024.107235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/06/2024] [Accepted: 03/18/2024] [Indexed: 04/23/2024] Open
Abstract
Defects in mitochondrial RNA metabolism have been linked to sensorineural deafness that often occurs as a consequence of damaged or deficient inner ear hair cells. In this report, we investigated the molecular mechanism underlying a deafness-associated tRNAPhe 593T > C mutation that changed a highly conserved uracil to cytosine at position 17 of the DHU-loop. The m.593T > C mutation altered tRNAPhe structure and function, including increased melting temperature, resistance to S1 nuclease-mediated digestion, and conformational changes. The aberrant tRNA metabolism impaired mitochondrial translation, which was especially pronounced by decreases in levels of ND1, ND5, CYTB, CO1, and CO3 harboring higher numbers of phenylalanine. These alterations resulted in aberrant assembly, instability, and reduced activities of respiratory chain enzyme complexes I, III, IV, and intact supercomplexes overall. Furthermore, we found that the m.593T > C mutation caused markedly diminished membrane potential, and increased the production of reactive oxygen species in the mutant cell lines carrying the m.593T > C mutation. These mitochondrial dysfunctions led to the mitochondrial dynamic imbalance via increasing fission with abnormal mitochondrial morphology. Excessive fission impaired the process of autophagy including the initiation phase, formation, and maturation of the autophagosome. In particular, the m.593T > C mutation upregulated the PARKIN-dependent mitophagy pathway. These alterations promoted an intrinsic apoptotic process for the removal of damaged cells. Our findings provide critical insights into the pathophysiology of maternally inherited deafness arising from tRNA mutation-induced defects in mitochondrial and cellular integrity.
Collapse
Affiliation(s)
- Xiaowan Chen
- Department of Otolaryngology-Head and Neck Surgery, Lanzhou University First Hospital, Lanzhou, Gansu, China; Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, Zhejiang, China
| | - Feilong Meng
- Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, Zhejiang, China; Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chao Chen
- Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, Zhejiang, China; Center for Mitochondrial Biomedicine, The Fourth Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shujuan Li
- Department of Otolaryngology-Head and Neck Surgery, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Zhiqiang Chou
- Department of Otolaryngology-Head and Neck Surgery, Lanzhou University First Hospital, Lanzhou, Gansu, China
| | - Baicheng Xu
- Department of Otolaryngology-Head and Neck Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Jun Q Mo
- Department of Pathology, Rady Children's Hospital, University of California School of Medicine, San Diego, California, USA
| | - Yufen Guo
- Department of Otolaryngology-Head and Neck Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Min-Xin Guan
- Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, Zhejiang, China; Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Center for Mitochondrial Biomedicine, The Fourth Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Zhejiang Provincial Lab of Genetics and Genomics, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
7
|
Zhang T, Su R, Xiang W, Wang W. Maternally inherited non-syndromic hearing loss is linked with a novel mitochondrial ND6 gene mutation. Ir J Med Sci 2024; 193:937-943. [PMID: 37561388 DOI: 10.1007/s11845-023-03484-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/26/2023] [Indexed: 08/11/2023]
Abstract
BACKGROUND Maternally inherited non-syndromic hearing loss is linked with mitochondrial DNA mutations. AIM This investigation demonstrates the features of a Chinese pedigree suffering from maternally inherited non-syndromic hearing loss. METHODS Biochemical characterizations included the measurements ofprotein synthesis levels, membrane potential, and the synthesis of reactive oxygen species (ROS) and adenosine triphosphate (ATP) using cybrid cell lines derived from an affected matrilineal subject and control subject. RESULTS Non-congenital early or late-onset/development hearing impairment has been observed in 4 of 9 in a family (matrilineal), with different degrees of hearing impairment, ranging from normal to severe. A pedigree's whole mitochondrial genome sequence analysis revealed the homoplasmic m.14502 T > C (I58V) mutation at ND6's isoleucine location-58, and specific mitocchondrial DNA polymorphisms set haplogroups M10 were highly conserved. In vitro models indicated that m.14502 T > C mutation-derived respiratory deficiency decreases ND6 protein synthesis, mitochondrial membrane potential, and ATP synthesis. These mitochondrial dysregulations enhance the generation of ROS in the mutant cells. Identifying nuclear modifiers is essential for elucidating hearing loss's pathogenesis and furnishing novel therapeutic interventions. CONCLUSIONS The m.14502 T > C mutation should be considered an inherited risk factor that can help diagnose. The data of this investigation help counsel families of individuals with hearing loss.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Clinical Laboratory, The Affiliated Wenling Hospital, Wenzhou Medical University, Wenling, 317500, Zhejiang, China
| | - Renjie Su
- ENT Department, The First People's Hospital of Wenling, Taizhou University, Taizhou, China
- ENT Department, The Affiliated Wenling Hospital of Wenzhou Medical University, Taizhou, China
| | - Wen Xiang
- ENT Department, The First People's Hospital of Wenling, Taizhou University, Taizhou, China
- ENT Department, The Affiliated Wenling Hospital of Wenzhou Medical University, Taizhou, China
| | - Wenbin Wang
- ENT Department, The First People's Hospital of Wenling, Taizhou University, Taizhou, China.
- ENT Department, The Affiliated Wenling Hospital of Wenzhou Medical University, Taizhou, China.
- The First People's Hospital of Wenling, Taizhou University, 333 Chuanannan Road, Taizhou, 317500, China.
| |
Collapse
|
8
|
He Y, Zhu G, Li X, Zhou M, Guan MX. Deficient tRNA posttranscription modification dysregulated the mitochondrial quality controls and apoptosis. iScience 2024; 27:108883. [PMID: 38318358 PMCID: PMC10838789 DOI: 10.1016/j.isci.2024.108883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 10/26/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
Mitochondria are dynamic organelles in cellular metabolism and physiology. Mitochondrial DNA (mtDNA) mutations are associated with a broad spectrum of clinical abnormalities. However, mechanisms underlying mtDNA mutations regulate intracellular signaling related to the mitochondrial and cellular integrity are less explored. Here, we demonstrated that mt-tRNAMet 4435A>G mutation-induced nucleotide modification deficiency dysregulated the expression of nuclear genes involved in cytosolic proteins involved in oxidative phosphorylation system (OXPHOS) and impaired the assemble and integrity of OXPHOS complexes. These dysfunctions caused mitochondrial dynamic imbalance, thereby increasing fission and decreasing fusion. Excessive fission impaired the process of autophagy including initiation phase, formation, and maturation of autophagosome. Strikingly, the m.4435A>G mutation upregulated the PARKIN dependent mitophagy pathways but downregulated the ubiquitination-independent mitophagy. These alterations promoted intrinsic apoptotic process for the removal of damaged cells. Our findings provide new insights into mechanism underlying deficient tRNA posttranscription modification regulated intracellular signaling related to the mitochondrial and cellular integrity.
Collapse
Affiliation(s)
- Yunfan He
- Center for Mitochondrial Biomedicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
- Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, Zhejiang, China
- Center for Genetic Medicine, Zhejiang University International Institute of Medicine, Yiwu, Zhejiang, China
| | - Gao Zhu
- Center for Mitochondrial Biomedicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
- Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, Zhejiang, China
- Center for Genetic Medicine, Zhejiang University International Institute of Medicine, Yiwu, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Hangzhou, Zhejiang, China
| | - Xincheng Li
- Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, Zhejiang, China
| | - Mi Zhou
- Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, Zhejiang, China
| | - Min-Xin Guan
- Center for Mitochondrial Biomedicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
- Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, Zhejiang, China
- Center for Genetic Medicine, Zhejiang University International Institute of Medicine, Yiwu, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Hangzhou, Zhejiang, China
- Key Lab of Reproductive Genetics, Ministry of Education of PRC, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
9
|
Wang J, Ji Y, Ai C, Chen JR, Gan D, Zhang J, Mo JQ, Guan MX. Optimized allotopic expression of mitochondrial ND6 transgene restored complex I and apoptosis deficiencies caused by LHON-linked ND6 14484T > C mutation. J Biomed Sci 2023; 30:63. [PMID: 37537557 PMCID: PMC10399063 DOI: 10.1186/s12929-023-00951-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 07/11/2023] [Indexed: 08/05/2023] Open
Abstract
BACKGROUND Leber's hereditary optic neuropathy (LHON) is a maternally inherited eye disease due to mutations in mitochondrial DNA. However, there is no effective treatment for this disease. LHON-linked ND6 14484T > C (p.M64V) mutation caused complex I deficiency, diminished ATP production, increased production of reactive oxygen species (ROS), elevated apoptosis, and impaired mitophagy. Here, we investigated if the allotopic expression of human mitochondrial ND6 transgene corrected the mitochondrial dysfunctions due to LHON-associated m.14484T > C mutation. METHODS Nucleus-versions of ND6 was generated by changing 6 non-universal codons with universal codons and added to mitochondrial targeting sequence of COX8. Stable transfectants were generated by transferring human ND6 cDNA expressed in a pCDH-puro vector into mutant cybrids carrying the m.14484T > C mutation and control cybrids. The effect of allotopic expression of ND6 on oxidative phosphorylation (OXPHOS) was evaluated using Blue Native gel electrophoresis and extracellular flux analyzer. Assessment of ROS production in cell lines was performed by flow cytometry with MitoSOX Red reagent. Analyses for apoptosis and mitophagy were undertaken via flow cytometry, TUNEL and immunofluorescence assays. RESULTS The transfer of human ND6 into the cybrids carrying the m.14484T > C mutation raised the levels of ND6, ND1 and ND4L but did not change the levels of other mitochondrial proteins. The overexpression of ND6 led to 20~23% increases in the assembly and activity of complex I, and ~ 53% and ~ 33% increases in the levels of mitochondrial ATP and ΔΨm in the mutant cybrids bearing m.14484T > C mutation. Furthermore, mutant cybrids with overexpression of ND6 exhibited marked reductions in the levels of mitochondrial ROS. Strikingly, ND6 overexpression markedly inhibited the apoptosis process and restored impaired mitophagy in the cells carrying m.14484T > C mutation. However, overexpression of ND6 did not affect the ND6 level and mitochondrial functions in the wild-type cybrids, indicating that this ND6 level appeared to be the maximum threshold level to maintain the normal cell function. CONCLUSION We demonstrated that allotopic expression of nucleus-versions of ND6 restored complex I, apoptosis and mitophagy deficiencies caused by the m.14484T > C mutation. The restoration of m.14484T > C mutation-induced mitochondrial dysfunctions by overexpression of ND6 is a step toward therapeutic interventions for LHON and mitochondrial diseases.
Collapse
Affiliation(s)
- Jing Wang
- Center for Mitochondrial Biomedicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
- Institute of Genetics, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang, China
| | - Yanchun Ji
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
- Institute of Genetics, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang, China
| | - Cheng Ai
- Institute of Genetics, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang, China
| | - Jia-Rong Chen
- Center for Mitochondrial Biomedicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
- Institute of Genetics, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang, China
| | - Dingyi Gan
- Institute of Genetics, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang, China
| | - Juanjuan Zhang
- Institute of Genetics, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang, China
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jun Q Mo
- Department of Pathology, Rady Children's Hospital, University of California at San Diego School of Medicine, San Diego, California, USA
| | - Min-Xin Guan
- Center for Mitochondrial Biomedicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China.
- Institute of Genetics, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang, China.
- Zhejiang Provincial Key Laboratory of Genetic and Developmental Disorders, Hangzhou, Zhejiang, China.
- Key Lab of Reproductive Genetics, Ministry of Education of PRC, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
10
|
Meng F, Jia Z, Zheng J, Ji Y, Wang J, Xiao Y, Fu Y, Wang M, Ling F, Guan MX. A deafness-associated mitochondrial DNA mutation caused pleiotropic effects on DNA replication and tRNA metabolism. Nucleic Acids Res 2022; 50:9453-9469. [PMID: 36039763 PMCID: PMC9458427 DOI: 10.1093/nar/gkac720] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 08/09/2022] [Indexed: 12/24/2022] Open
Abstract
In this report, we investigated the molecular mechanism underlying a deafness-associated m.5783C > T mutation that affects the canonical C50-G63 base-pairing of TΨC stem of tRNACys and immediately adjacent to 5' end of light-strand origin of mitochondrial DNA (mtDNA) replication (OriL). Two dimensional agarose gel electrophoresis revealed marked decreases in the replication intermediates including ascending arm of Y-fork arcs spanning OriL in the mutant cybrids bearing m.5783C > T mutation. mtDNA replication alterations were further evidenced by decreased levels of PolγA, Twinkle and SSBP1, newly synthesized mtDNA and mtDNA contents in the mutant cybrids. The m.5783C > T mutation altered tRNACys structure and function, including decreased melting temperature, conformational changes, instability and deficient aminoacylation of mutated tRNACys. The m.5783C > T mutation impaired the 5' end processing efficiency of tRNACys precursors and reduced the levels of tRNACys and downstream tRNATyr. The aberrant tRNA metabolism impaired mitochondrial translation, which was especially pronounced effects in the polypeptides harboring higher numbers of cysteine and tyrosine codons. These alterations led to deficient oxidative phosphorylation including instability and reduced activities of the respiratory chain enzyme complexes I, III, IV and intact supercomplexes overall. Our findings highlight the impact of mitochondrial dysfunction on deafness arising from defects in mitochondrial DNA replication and tRNA metabolism.
Collapse
Affiliation(s)
| | | | - Jing Zheng
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China,Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China,Zhejiang Provincial Key Lab of Genetic and Developmental Disorder, Hangzhou, Zhejiang, China
| | - Yanchun Ji
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China,Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China,Zhejiang Provincial Key Lab of Genetic and Developmental Disorder, Hangzhou, Zhejiang, China
| | - Jing Wang
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yun Xiao
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yong Fu
- Division of Otolaryngology-Head and Neck Surgery, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Meng Wang
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China,Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China,Zhejiang Provincial Key Lab of Genetic and Developmental Disorder, Hangzhou, Zhejiang, China
| | - Feng Ling
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, Hirosawa 2-1, Wako, Saitama, Japan
| | - Min-Xin Guan
- To whom correspondence should be addressed. Tel: +86 571 88206916; Fax: +86 571 88982377;
| |
Collapse
|
11
|
Nie Z, Wang C, Chen J, Ji Y, Zhang H, Zhao F, Zhou X, Guan MX. Abnormal morphology and function in retinal ganglion cells derived from patients-specific iPSCs generated from individuals with Leber's hereditary optic neuropathy. Hum Mol Genet 2022; 32:231-243. [PMID: 35947995 PMCID: PMC9840204 DOI: 10.1093/hmg/ddac190] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/11/2022] [Accepted: 08/07/2022] [Indexed: 01/19/2023] Open
Abstract
Leber's hereditary optic neuropathy (LHON) is a maternally inherited eye disease that results from degeneration of retinal ganglion cells (RGC). Mitochondrial ND4 11778G > A mutation, which affects structural components of complex I, is the most prevalent LHON-associated mitochondrial DNA (mtDNA) mutation worldwide. The m.11778G > A mutation is the primary contributor underlying the development of LHON and X-linked PRICKLE3 allele (c.157C > T, p.Arg53Trp) linked to biogenesis of ATPase interacts with m.11778G > A mutation to cause LHON. However, the lack of appropriate cell and animal models of LHON has been significant obstacles for deep elucidation of disease pathophysiology, specifically the tissue-specific effects. Using RGC-like cells differentiated from induced pluripotent stem cells (iPSCs) from members of one Chinese family (asymptomatic subjects carrying only m.11778G > A mutation or PRICKLE3 p.Arg53Trp mutation, symptomatic individuals bearing both m.11778G > A and PRICKLE3 p.Arg53Trp mutations and control lacking these mutations), we demonstrated the deleterious effects of mitochondrial dysfunctions on the morphology and functions of RGCs. Notably, iPSCs bearing only m.11778G > A or p.Arg53Trp mutation exhibited mild defects in differentiation to RGC-like cells. The RGC-like cells carrying only m.11778G > A or p.Arg53Trp mutation displayed mild defects in RGC morphology, including the area of soma and numbers of neurites, electrophysiological properties, ATP contents and apoptosis. Strikingly, those RGC-like cells derived from symptomatic individuals harboring both m.11778G > A and p.Arg53Trp mutations displayed greater defects in the development, morphology and functions than those in cells bearing single mutation. These findings provide new insights into pathophysiology of LHON arising from RGC deficiencies caused by synergy between m.11778G > A and PRICKLE3 p.Arg53Trp mutation.
Collapse
Affiliation(s)
| | | | | | - Yanchun Ji
- Division of Medical Genetics and Genomics, The Children’s Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China,Institute of Genetics and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Hongxing Zhang
- Department of Ophthalmology, The First Affiliated Hospital, Shandong First Medical University, Jinan, Shandong, China
| | - Fuxin Zhao
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiangtian Zhou
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Min-Xin Guan
- To whom correspondence should be addressed at: Institute of Genetics, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China. Tel: 86-571-88206916; Fax: 86-571-88982377;
| |
Collapse
|
12
|
Ji Y, Zhang J, Liang M, Meng F, Zhang M, Mo JQ, Wang M, Guan MX. Mitochondrial tRNA variants in 811 Chinese probands with Leber's hereditary optic neuropathy. Mitochondrion 2022; 65:56-66. [PMID: 35623556 DOI: 10.1016/j.mito.2022.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/26/2022] [Accepted: 05/22/2022] [Indexed: 11/27/2022]
Abstract
Leber's hereditary optic neuropathy (LHON) is the maternal inheritance of eye disorder. LHON-linked mitochondrial DNA (mtDNA) mutations affect the ND1, ND4 or ND6 genes encoding essential subunits of complex I. However, the role of mitochondrial tRNA defects in the pathogenesis of LHON is poorly understood. In this report, Sanger sequence analysis of 22 mitochondrial tRNA genes identified 139 variants in a cohort of 811 Han Chinese probands and 485 control Chinese subjects. Among these, 32 (4 known and 28 novel/putative) tRNA variants in 69 probands may contribute to pathogenesis of LHON, as these exhibited (1) present in <1% of controls; (2) evolutionary conservation; (3) potential and significance of structural and functional modifications. Such variants may have potentially compromised structural and functional aspects in the processing of tRNAs, structure stability, tRNA charging, or codon-anticodon interactions during translation. These 32 variants presented either singly or with multiple mutations, with the primary LHON-linked ND1 3640G>A, ND4 11778G>A or ND6 14484T>C mutations in the probands. The thirty-eight pedigrees carrying only one of tRNA variants exhibited relatively low penetrances of LHON, ranging from 5.7% to 42.9%, with an average of 19%. Strikingly, the average penetrances of optic neuropathy among 33 Chinese families carrying both a known/putative tRNA variant and a primary LHON-associated mtDNA mutation were 40.1%. These findings suggested that mitochondrial tRNA variants represent a significant causative factor for LHON, accounting for 8.75% cases in this cohort. These new insights may lead to beneficial applications in the pathophysiology, disease management, and genetic counseling of LHON.
Collapse
Affiliation(s)
- Yanchun Ji
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310058, China; Institute of Genetics, Zhejiang University, School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Juanjuan Zhang
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Min Liang
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Feilong Meng
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310058, China; Institute of Genetics, Zhejiang University, School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Minglian Zhang
- Department of Ophthalmology, Hebei Provincial Eye Hospital, Xingtai, Hebei 051730, China
| | - Jun Q Mo
- Department of Pathology, Rady Children's Hospital, University of California at San Diego School of Medicine, San Diego, California 92123, USA
| | - Meng Wang
- Institute of Genetics, Zhejiang University, School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Min-Xin Guan
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310058, China; Institute of Genetics, Zhejiang University, School of Medicine, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Zhejiang University, Hangzhou, Zhejiang 310058, China; Division of Mitochondrial Biomedicine, Joint Institute of Genetics and Genome Medicine between Zhejiang University and University of Toronto, Hangzhou, Zhejiang, China.
| |
Collapse
|
13
|
Liang M, Ji C, Zhang L, Wang X, Hu C, Zhang J, Zhu Y, Mo JQ, Guan MX. Leber's hereditary optic neuropathy (LHON)-associated ND6 14 484 T > C mutation caused pleiotropic effects on the complex I, RNA homeostasis, apoptosis and mitophagy. Hum Mol Genet 2022; 31:3299-3312. [PMID: 35567411 DOI: 10.1093/hmg/ddac109] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/25/2022] [Accepted: 05/09/2022] [Indexed: 11/12/2022] Open
Abstract
Leber's hereditary optic neuropathy (LHON) is a maternally inherited eye disease due to mitochondrial DNA (mtDNA) mutations. LHON-linked ND6 14 484 T > C (p.M64V) mutation affected structural components of complex I but its pathophysiology is poorly understood. The structural analysis of complex I revealed that the M64 forms a nonpolar interaction Y59 in the ND6, Y59 in the ND6 interacts with E34 of ND4L, and L60 of ND6 interacts with the Y114 of ND1. These suggested that the m.14484 T > C mutation may perturb the structure and function of complex I. Mutant cybrids constructed by transferring mitochondria from lymphoblastoid cell lines of one Chinese LHON family into mtDNA-less (ρo) cells revealed decreases in the levels of ND6, ND1 and ND4L. The m.14484 T > C mutation may affect mitochondrial mRNA homeostasis, supported by reduced levels of SLIRP and SUPV3L1 involved in mRNA degradation and increasing expression of ND6, ND1 and ND4L genes. These alterations yielded decreased activity of complex I, respiratory deficiency, diminished mitochondrial ATP production and reduced membrane potential, and increased production of reactive oxygen species in the mutant cybrids. Furthermore, the m.14484 T > C mutation promoted apoptosis, evidenced by elevating Annexin V-positive cells, release of cytochrome c into cytosol, levels in apoptotic proteins BAX, caspases 3, 7, 9 and decreasing levels in anti-apoptotic protein Bcl-xL in the mutant cybrids. Moreover, the cybrids bearing the m.14484 T > C mutation exhibited the reduced levels of autophagy protein LC3, increased levels of substrate P62 and impaired PINK1/Parkin-dependent mitophagy. Our findings highlighted the critical role of m.14484 T > C mutation in the pathogenesis of LHON.
Collapse
Affiliation(s)
- Min Liang
- Department of Medical Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.,Attardi Institute of Mitochondrial Biomedicine, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.,Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Chun Ji
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, and National Clinic Research Center for Child Health, Hangzhou, Zhejiang 310058, China
| | - Liyao Zhang
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Xuan Wang
- Attardi Institute of Mitochondrial Biomedicine, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Cuifang Hu
- Attardi Institute of Mitochondrial Biomedicine, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Juanjuan Zhang
- Attardi Institute of Mitochondrial Biomedicine, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.,School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yiwei Zhu
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Jun Q Mo
- Department of Pathology, Rady Children's Hospital, University of California at San Diego School of Medicine, San Diego, California 92123, USA
| | - Min-Xin Guan
- Attardi Institute of Mitochondrial Biomedicine, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.,Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, and National Clinic Research Center for Child Health, Hangzhou, Zhejiang 310058, China.,Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
14
|
Zhao LJ, Zhang ZL, Fu Y. Novel m.4268T>C mutation in the mitochondrial tRNA Ile gene is associated with hearing loss in two Chinese families. World J Clin Cases 2022; 10:205-216. [PMID: 35071519 PMCID: PMC8727281 DOI: 10.12998/wjcc.v10.i1.205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/23/2021] [Accepted: 11/29/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Herein, we report the genetic, clinical, molecular and biochemical features of two Han Chinese pedigrees with suggested maternally transmitted non-syndromic hearing loss.
AIM To investigate the pathophysiology of hearing loss associated with mitochondrial tRNA mutations.
METHODS Sixteen subjects from two Chinese families with hearing loss underwent clinical, genetic, molecular, and biochemical evaluations. Biochemical characterizations included the measurements of tRNA levels using lymphoblastoid cell lines derived from five affected matrilineal relatives of these families and three control subjects.
RESULTS Three of the 16 matrilineal relatives in these families exhibited a variable seriousness and age-at-onset (8 years) of deafness. Analysis of mtDNA mutation identified the novel homoplasmic tRNAIle 4268T>C mutation in two families both belonging to haplogroup D4j. The 4268T>C mutation is located in a highly conserved base pairing (6U–67A) of tRNAIle. The elimination of 6U–67A base-pairing may change the tRNAIle metabolism. Functional mutation was supported by an approximately 64.6% reduction in the level of tRNAIle observed in the lymphoblastoid cell lines with the 4268T>C mutation, in contrast to the wild-type cell lines. The reduced level of tRNA was below the proposed threshold for normal respiration in lymphoblastoid cells. However, genotyping analysis did not detect any mutations in the prominent deafness-causing gene GJB2 in any members of the family.
CONCLUSION These data show that the novel tRNAIle 4268T>C mutation was involved in maternally transmitted deafness. However, epigenetic, other genetic, or environmental factors may be attributed to the phenotypic variability. These findings will be useful for understanding families with maternally inherited deafness.
Collapse
Affiliation(s)
- Li-Jing Zhao
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
| | - Zhi-Li Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Yong Fu
- Department of Otorhinolaryngology Head and Neck Surgery, The Children’s Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
| |
Collapse
|
15
|
Jiang Z, Cai X, Kong J, Zhang R, Ding Y. Maternally transmitted diabetes mellitus may be associated with mitochondrial ND5 T12338C and tRNA Ala T5587C variants. Ir J Med Sci 2022; 191:2625-2633. [PMID: 34993838 DOI: 10.1007/s11845-021-02911-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/25/2021] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Mutations/variants in mitochondrial genomes are found to be associated with type 2 diabetes mellitus (T2DM), but the pathophysiology of this disease remains largely unknown. AIM The aim of this study is to investigate the relationship between mitochondrial DNA (mtDNA) variants and T2DM. METHODOLOGY A maternally inherited T2DM pedigree is underwent clinical, genetic, and molecular assessment. Moreover, the complete mitochondrial genomes of the matrilineal relatives of this family are PCR amplified and sequenced. We also utilize the phylogenetic conservation analysis, haplogroup classification, and the pathogenicity scoring system to determine the T2DM-associated potential pathogenic mtDNA variants. RESULT Four of seven matrilineal relatives of this pedigree suffered from T2DM with variable ages of onset. Screening for the entire mtDNA genes of matrilineal members reveals co-existence of ND5 T12338C and tRNAAla T5587C variants, as well as 21 genetic polymorphisms which belong to East Asian haplogroup F2. Interestingly, the T12338C variant causes the alternation of first amino acid Met to Thr, shortened two amino acids of ND5 protein. Furthermore, T5587C variant is located at position 73 in the 3'end of mt-tRNAAla and may have structural and functional consequences. CONCLUSIONS The co-occurrence of ND5 T12338C and tRNAAla T5587C variants may impair the mitochondrial function, which are associated with the development of T2DM in this family.
Collapse
Affiliation(s)
- Zhaochang Jiang
- Department of Pathology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaobo Cai
- Department of Pathology, Taizhou Central Hospital, Taizhou University Hospital, Taizhou, China
| | - Jing Kong
- Department of Endocrinology and Metabolism, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Ruyi Zhang
- Department of Pathology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yu Ding
- Central Laboratory, Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
16
|
Shaukat AN, Kaliatsi EG, Stamatopoulou V, Stathopoulos C. Mitochondrial tRNA-Derived Fragments and Their Contribution to Gene Expression Regulation. Front Physiol 2021; 12:729452. [PMID: 34539450 PMCID: PMC8446549 DOI: 10.3389/fphys.2021.729452] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/09/2021] [Indexed: 01/14/2023] Open
Abstract
Mutations in human mitochondrial tRNAs (mt-tRNAs) are responsible for several and sometimes severe clinical phenotypes, classified among mitochondrial diseases. In addition, post-transcriptional modifications of mt-tRNAs in correlation with several stress signals can affect their stability similarly to what has been described for their nuclear-encoded counterparts. Many of the perturbations related to either point mutations or aberrant modifications of mt-tRNAs can lead to specific cleavage and the production of mitochondrial tRNA-derived fragments (mt-tRFs). Although mt-tRFs have been detected in several studies, the exact biogenesis steps and biological role remain, to a great extent, unexplored. Several mt-tRFs are produced because of the excessive oxidative stress which predominantly affects mitochondrial DNA integrity. In addition, mt-tRFs have been detected in various diseases with possible detrimental consequences, but also their production may represent a response mechanism to external stimuli, including infections from pathogens. Finally, specific point mutations on mt-tRNAs have been reported to impact the pool of the produced mt-tRFs and there is growing evidence suggesting that mt-tRFs can be exported and act in the cytoplasm. In this review, we summarize current knowledge on mitochondrial tRNA-deriving fragments and their possible contribution to gene expression regulation.
Collapse
Affiliation(s)
| | - Eleni G Kaliatsi
- Department of Biochemistry, School of Medicine, University of Patras, Patras, Greece
| | | | | |
Collapse
|
17
|
He Q, He X, Xiao Y, Zhao Q, Ye Z, Cui L, Chen Y, Guan MX. Tissue-specific expression atlas of murine mitochondrial tRNAs. J Biol Chem 2021; 297:100960. [PMID: 34265302 PMCID: PMC8342785 DOI: 10.1016/j.jbc.2021.100960] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 07/04/2021] [Accepted: 07/12/2021] [Indexed: 11/08/2022] Open
Abstract
Mammalian mitochondrial tRNA (mt-tRNA) plays a central role in the synthesis of the 13 subunits of the oxidative phosphorylation complex system (OXPHOS). However, many aspects of the context-dependent expression of mt-tRNAs in mammals remain unknown. To investigate the tissue-specific effects of mt-tRNAs, we performed a comprehensive analysis of mitochondrial tRNA expression across five mice tissues (brain, heart, liver, skeletal muscle, and kidney) using Northern blot analysis. Striking differences in the tissue-specific expression of 22 mt-tRNAs were observed, in some cases differing by as much as tenfold from lowest to highest expression levels among these five tissues. Overall, the heart exhibited the highest levels of mt-tRNAs, while the liver displayed markedly lower levels. Variations in the levels of mt-tRNAs showed significant correlations with total mitochondrial DNA (mtDNA) contents in these tissues. However, there were no significant differences observed in the 2-thiouridylation levels of tRNALys, tRNAGlu, and tRNAGln among these tissues. A wide range of aminoacylation levels for 15 mt-tRNAs occurred among these five tissues, with skeletal muscle and kidneys most notably displaying the highest and lowest tRNA aminoacylation levels, respectively. Among these tissues, there was a negative correlation between variations in mt-tRNA aminoacylation levels and corresponding variations in mitochondrial tRNA synthetases (mt-aaRS) expression levels. Furthermore, the variable levels of OXPHOS subunits, as encoded by mtDNA or nuclear genes, may reflect differences in relative functional emphasis for mitochondria in each tissue. Our findings provide new insight into the mechanism of mt-tRNA tissue-specific effects on oxidative phosphorylation.
Collapse
Affiliation(s)
- Qiufen He
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China; Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiao He
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China; Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yun Xiao
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qiong Zhao
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhenzhen Ye
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Limei Cui
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ye Chen
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China; Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Lab of Genetic and Developmental Disorders, Zhejiang Univrsity, Hangzhou, Zhejiang, China.
| | - Min-Xin Guan
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China; Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Lab of Genetic and Developmental Disorders, Zhejiang Univrsity, Hangzhou, Zhejiang, China; Key Lab of Reproductive Genetics, Center for Mitochondrial Genetics, Ministry of Education of PRC, Zhejiang University, Hangzhou, Zhejiang, China; Division of Mitochondrial Biomedicine, Zhejiang University-University of Toronto Joint Institute of Genetics and Genome Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
18
|
Zhang J, Ji Y, Chen J, Xu M, Wang G, Ci X, Lin B, Mo JQ, Zhou X, Guan MX. Assocation Between Leber's Hereditary Optic Neuropathy and MT-ND1 3460G>A Mutation-Induced Alterations in Mitochondrial Function, Apoptosis, and Mitophagy. Invest Ophthalmol Vis Sci 2021; 62:38. [PMID: 34311469 PMCID: PMC8322717 DOI: 10.1167/iovs.62.9.38] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Purpose To investigate the molecular mechanism underlying the Leber's hereditary optic neuropathy (LHON)-linked MT-ND1 3460G>A mutation. Methods Cybrid cell models were generated by fusing mitochondrial DNA-less ρ0 cells with enucleated cells from a patient carrying the m.3460G>A mutation and a control subject. The impact of m.3460G>A mutations on oxidative phosphorylation was evaluated using Blue Native gel electrophoresis, and measurements of oxygen consumption were made with an extracellular flux analyzer. Assessment of reactive oxygen species (ROS) production in cell lines was performed by flow cytometry with MitoSOX Red reagent. Assays for apoptosis and mitophagy were undertaken via immunofluorescence analysis. Results Nineteen Chinese Han pedigrees bearing the m.3460G>A mutation exhibited variable penetrance and expression of LHON. The m.3460G>A mutation altered the structure and function of MT-ND1, as evidenced by reduced MT-ND1 levels in mutant cybrids bearing the mutation. The instability of mutated MT-ND1 manifested as defects in the assembly and activity of complex I, respiratory deficiency, diminished mitochondrial adenosine triphosphate production, and decreased membrane potential, in addition to increased production of mitochondrial ROS in the mutant cybrids carrying the m.3460G>A mutation. The m.3460G>A mutation mediated apoptosis, as evidenced by the elevated release of cytochrome c into the cytosol and increasing levels of the apoptotic-associated proteins BAK, BAX, and PARP, as well as cleaved caspases 3, 7, and 9, in the mutant cybrids. The cybrids bearing the m.3460G>A mutation exhibited reduced levels of autophagy protein light chain 3, accumulation of autophagic substrate P62, and impaired PTEN-induced kinase 1/parkin-dependent mitophagy. Conclusions Our findings highlight the critical role of m.3460G>A mutation in the pathogenesis of LHON, manifested by mitochondrial dysfunction and alterations in apoptosis and mitophagy.
Collapse
Affiliation(s)
- Juanjuan Zhang
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Attardi Institute of Mitochondrial Biomedicine, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yanchun Ji
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Division of Medical Genetics and Genomics, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Jie Chen
- Attardi Institute of Mitochondrial Biomedicine, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Man Xu
- Attardi Institute of Mitochondrial Biomedicine, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Guoping Wang
- Attardi Institute of Mitochondrial Biomedicine, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaorui Ci
- Attardi Institute of Mitochondrial Biomedicine, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Bing Lin
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jun Q Mo
- Department of Pathology, Rady Children's Hospital, University of California at San Diego School of Medicine, San Diego, California, United States
| | - Xiangtian Zhou
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Attardi Institute of Mitochondrial Biomedicine, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Min-Xin Guan
- Attardi Institute of Mitochondrial Biomedicine, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Division of Medical Genetics and Genomics, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China.,Zhejiang Provincial Key Laboratory of Genetic and Developmental Disorders, Hangzhou, Zhejiang, China
| |
Collapse
|