1
|
Ishmatov A. Age, gender, and race differences in nasal morphology: Linking air conditioning and filtration efficiency to disparities in air pollution health outcomes and COVID-19 mortality. CHEMOSPHERE 2025; 377:144358. [PMID: 40153988 DOI: 10.1016/j.chemosphere.2025.144358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 03/17/2025] [Accepted: 03/22/2025] [Indexed: 04/01/2025]
Abstract
COVID-19 mortality disparities underscore the critical role of environmental factors, age, sex, and racial demographics. This study investigates how individual variations in nasal morphology - specifically its air conditioning (temperature and humidity regulation) and filtration functions - may influence respiratory health and contribute to differential COVID-19 outcomes. Analysis reveals significant differences in nasal structure and function across racial, sex, and age groups, demonstrating associations with disparities in respiratory vulnerability to environmental stressors such as air pollution, infectious aerosols, and climatic conditions. Specifically, wider nasal cavities (more common in certain populations), larger male nasal passages, and age-related changes like mucosal atrophy and increased endonasal volume impair air conditioning and filtration efficiency. These morphological variations influence the nose's protective capacity, which is critical for shielding the middle and lower airways from environmental exposures. Populations with inherently reduced nasal filtration and conditioning efficiency demonstrate higher vulnerability, aligning with U.S. mortality patterns for both COVID-19 and air pollution across demographic groups. This suggests a direct link between nasal anatomy and population-level health disparities. These findings provide novel insights into the role of nasal anatomy in mediating respiratory health disparities by modulating individual responses to environmental exposures, air pollution, and pathogens. They highlight the need to address critical gaps in understanding how airway characteristics influence susceptibility to environmental stressors and to develop targeted interventions aimed at reducing health disparities.
Collapse
Affiliation(s)
- Alexander Ishmatov
- Institute for Engineering and Environmental Safety, Togliatti State University, Belorusskaya St, 14, Togliatti, 445020, Russia.
| |
Collapse
|
2
|
Benlarbi M, Kenfack DD, Dionne K, Côté-Chenette M, Beaudoin-Bussières G, Bélanger É, Ding S, Goni OH, Ngoume YF, Tauzin A, Medjahed H, Ghedin E, Duerr R, Finzi A, Tongo M. Longitudinal humoral immunity against SARS-CoV-2 Spike following infection in individuals from Cameroon. Virology 2025; 605:110467. [PMID: 40037139 PMCID: PMC11937844 DOI: 10.1016/j.virol.2025.110467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/10/2025] [Accepted: 02/24/2025] [Indexed: 03/06/2025]
Abstract
In May 2023 the World Health Organization (WHO) declared the end of COVID-19 as a public health emergency. Seroprevalence studies performed in African countries, such as Cameroon, depicted a much higher COVID-19 burden than reported by the WHO. To better understand humoral responses kinetics following infection, we enrolled 333 participants from Yaoundé, Cameroon between March 2020 and January 2022. We measured the levels of antibodies targeting the SARS-CoV-2 receptor-binding-domain (RBD) and the Spike glycoproteins of Delta, Omicron BA.1 and BA.4/5 and the common cold coronavirus HCoV-OC43. We also evaluated plasma capacity to neutralize authentic SARS-CoV-2 virus and to mediate Antibody-Dependent Cellular Cytotoxicity (ADCC). Most individuals mounted a strong antibody response against SARS-CoV-2 Spike. Plasma neutralization waned faster than anti-Spike binding and ADCC. We observed differences in humoral responses by age and circulating variants. Altogether, we show a global overview of antibody dynamics and functionality against SARS-CoV-2 in Cameroon.
Collapse
Affiliation(s)
- Mehdi Benlarbi
- Centre de Recherche du CHUM, Montréal, Québec, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Dell-Dylan Kenfack
- Center of Research for Emerging and Re-Emerging Diseases (CREMER), Institute of Medical Research and Study of Medicinal Plants (IMPM), Yaoundé, Cameroon
| | - Katrina Dionne
- Centre de Recherche du CHUM, Montréal, Québec, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Maxime Côté-Chenette
- Centre de Recherche du CHUM, Montréal, Québec, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Guillaume Beaudoin-Bussières
- Centre de Recherche du CHUM, Montréal, Québec, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Étienne Bélanger
- Centre de Recherche du CHUM, Montréal, Québec, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Shilei Ding
- Centre de Recherche du CHUM, Montréal, Québec, Canada
| | - Oumarou H Goni
- Center of Research for Emerging and Re-Emerging Diseases (CREMER), Institute of Medical Research and Study of Medicinal Plants (IMPM), Yaoundé, Cameroon
| | - Yannick F Ngoume
- Center of Research for Emerging and Re-Emerging Diseases (CREMER), Institute of Medical Research and Study of Medicinal Plants (IMPM), Yaoundé, Cameroon
| | - Alexandra Tauzin
- Centre de Recherche du CHUM, Montréal, Québec, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Halima Medjahed
- Centre de Recherche du CHUM, Montréal, Québec, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Elodie Ghedin
- Systems Genomics Section, Laboratory of Parasitic Diseases, NIAID, National Institutes of Health, Bethesda, MD, USA
| | - Ralf Duerr
- Vaccine Center, NYU Grossman School of Medicine, New York, USA; Department of Medicine, NYU Grossman School of Medicine, New York, USA; Department of Microbiology, NYU Grossman School of Medicine, New York, USA
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montréal, Québec, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada.
| | - Marcel Tongo
- Center of Research for Emerging and Re-Emerging Diseases (CREMER), Institute of Medical Research and Study of Medicinal Plants (IMPM), Yaoundé, Cameroon; HIV Pathogenesis Program, The Doris Duke Medical Research Institute, University of KwaZulu Natal, Durban, South Africa.
| |
Collapse
|
3
|
Xie X, Zhang Y, Fang Y, Wu J, Li Q. Molecular Basis of High-Blood-Pressure-Enhanced and High-Fever-Temperature-Weakened Receptor-Binding Domain/Peptidase Domain Binding: A Molecular Dynamics Simulation Study. Int J Mol Sci 2025; 26:3250. [PMID: 40244099 PMCID: PMC11989460 DOI: 10.3390/ijms26073250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 03/21/2025] [Accepted: 03/30/2025] [Indexed: 04/18/2025] Open
Abstract
The entry and infection of the Severe Acute Respiratory Syndrome Coronavirus 2 virus (SARS-CoV-2) involve recognition and binding of the receptor-binding domain (RBD) of the virus surface spike protein to the peptidase domain (PD) of the host cellular Angiotensin-Converting Enzyme-2 (ACE2) receptor. ACE2 is also involved in normal blood pressure control. An association between hypertension and COVID-19 severity and fatality is evident, but how hypertension predisposes patients diagnosed with COVID-19 to unfavorable outcomes remains unclear. High temperature early during SARS-CoV-2 infection impairs binding to human cells and retards viral progression. Low body temperature can prelude poor prognosis. In this study, all-atom molecular dynamics simulations were performed to examine the effects of high pressure and temperature on RBD/PD binding. A high blood pressure of 940 mmHg enhanced RBD/PD binding. A high temperature above 315 K significantly weakened RBD/PD binding, while a low temperature of 305 K enhanced binding. The curvature of the PD α1-helix and proximity of the PD β3β4-hairpin tip to the RBM motif affected the compactness of the binding interface and, hence, binding affinity. These findings provide novel insights into the underlying mechanisms by which hypertension predisposes patients to unfavorable outcomes in COVID-19 and how an initial high temperature retards viral progression.
Collapse
Affiliation(s)
| | | | | | - Jianhua Wu
- Institute of Biomechanics, School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Panyu District, Guangzhou 510006, China; (X.X.); (Y.Z.); (Y.F.)
| | - Quhuan Li
- Institute of Biomechanics, School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Panyu District, Guangzhou 510006, China; (X.X.); (Y.Z.); (Y.F.)
| |
Collapse
|
4
|
Shaw Stewart PD. Will COVID-19 become mild, like a cold? Epidemiol Infect 2024; 152:e120. [PMID: 39370682 PMCID: PMC11488471 DOI: 10.1017/s0950268824001110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/15/2024] [Indexed: 10/08/2024] Open
Abstract
Several recent studies conclude that an increase in the pathogenicity of SARS-CoV-2 cannot be ruled out. However, it should be noted that SARS-CoV-2 is a 'direct' respiratory virus - meaning it is usually spread by the respiratory route but does not routinely pass through the lymphatics like measles and smallpox. Providing its tropism does not change, it will be unique if its pathogenicity does not decrease until it becomes similar to common cold viruses. Ewald noted in the 1980s that respiratory viruses may evolve mildness because their spread benefits from the mobility of their hosts. This review examines factors that usually lower respiratory viruses' severity, including heat sensitivity (which limits replication in the warmer lungs) and changes to the virus's surface proteins. Other factors may, however, increase pathogenicity, such as replication in the lymphatic system and spreading via solid surfaces or faecal matter. Furthermore, human activities and political events could increase the harmfulness of SARS-CoV-2, including the following: large-scale testing, especially when the results are delayed; transmission in settings where people are close together and not free to move around; poor hygiene facilities; and social, political, or cultural influences that encourage sick individuals to remain active, including crises such as wars. If we can avoid these eventualities, SARS-CoV-2 is likely to evolve to be milder, although the timescale is uncertain. Observations of influenza-like pandemics suggest it may take around two decades for COVID-19 to become as mild as seasonal colds.
Collapse
|
5
|
Benlarbi M, Ding S, Bélanger É, Tauzin A, Poujol R, Medjahed H, El Ferri O, Bo Y, Bourassa C, Hussin J, Fafard J, Pazgier M, Levade I, Abrams C, Côté M, Finzi A. Temperature-dependent Spike-ACE2 interaction of Omicron subvariants is associated with viral transmission. mBio 2024; 15:e0090724. [PMID: 38953636 PMCID: PMC11323525 DOI: 10.1128/mbio.00907-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/27/2024] [Indexed: 07/04/2024] Open
Abstract
The continued evolution of severe acute respiratory syndrome 2 (SARS-CoV-2) requires persistent monitoring of its subvariants. Omicron subvariants are responsible for the vast majority of SARS-CoV-2 infections worldwide, with XBB and BA.2.86 sublineages representing more than 90% of circulating strains as of January 2024. To better understand parameters involved in viral transmission, we characterized the functional properties of Spike glycoproteins from BA.2.75, CH.1.1, DV.7.1, BA.4/5, BQ.1.1, XBB, XBB.1, XBB.1.16, XBB.1.5, FD.1.1, EG.5.1, HK.3, BA.2.86 and JN.1. We tested their capacity to evade plasma-mediated recognition and neutralization, binding to angiotensin-converting enzyme 2 (ACE2), their susceptibility to cold inactivation, Spike processing, as well as the impact of temperature on Spike-ACE2 interaction. We found that compared to the early wild-type (D614G) strain, most Omicron subvariants' Spike glycoproteins evolved to escape recognition and neutralization by plasma from individuals who received a fifth dose of bivalent (BA.1 or BA.4/5) mRNA vaccine and improve ACE2 binding, particularly at low temperatures. Moreover, BA.2.86 had the best affinity for ACE2 at all temperatures tested. We found that Omicron subvariants' Spike processing is associated with their susceptibility to cold inactivation. Intriguingly, we found that Spike-ACE2 binding at low temperature was significantly associated with growth rates of Omicron subvariants in humans. Overall, we report that Spikes from newly emerged Omicron subvariants are relatively more stable and resistant to plasma-mediated neutralization, present improved affinity for ACE2 which is associated, particularly at low temperatures, with their growth rates.IMPORTANCEThe persistent evolution of SARS-CoV-2 gave rise to a wide range of variants harboring new mutations in their Spike glycoproteins. Several factors have been associated with viral transmission and fitness such as plasma-neutralization escape and ACE2 interaction. To better understand whether additional factors could be of importance in SARS-CoV-2 variants' transmission, we characterize the functional properties of Spike glycoproteins from several Omicron subvariants. We found that the Spike glycoprotein of Omicron subvariants presents an improved escape from plasma-mediated recognition and neutralization, Spike processing, and ACE2 binding which was further improved at low temperature. Intriguingly, Spike-ACE2 interaction at low temperature is strongly associated with viral growth rate, as such, low temperatures could represent another parameter affecting viral transmission.
Collapse
Affiliation(s)
- Mehdi Benlarbi
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Shilei Ding
- Centre de Recherche du CHUM, Montréal, Québec, Canada
| | - Étienne Bélanger
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Alexandra Tauzin
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Raphaël Poujol
- Montreal Heart Institute, Research Center, Montreal, Quebec, Canada
| | | | - Omar El Ferri
- Department of Biochemistry, Microbiology and Immunology, Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Ontario, Canada
| | - Yuxia Bo
- Department of Biochemistry, Microbiology and Immunology, Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Ontario, Canada
| | | | - Julie Hussin
- Montreal Heart Institute, Research Center, Montreal, Quebec, Canada
- Département de Médecine, Université de Montréal, Montréal, Québec, Canada
- Mila—Quebec AI institute, Montreal, Quebec, Canada
| | - Judith Fafard
- Laboratoire de Santé Publique du Québec, Institut National de Santé Publique du Québec, Sainte-Anne-de-Bellevue, Québec, Canada
| | - Marzena Pazgier
- Infectious Disease Division, Department of Medicine of Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Inès Levade
- Laboratoire de Santé Publique du Québec, Institut National de Santé Publique du Québec, Sainte-Anne-de-Bellevue, Québec, Canada
| | - Cameron Abrams
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Marceline Côté
- Department of Biochemistry, Microbiology and Immunology, Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Ontario, Canada
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
6
|
Limaheluw J, Dollmann S, Folpmers S, Beltrán Beut L, Lazarakou A, Vermeulen LC, de Roda Husman AM. Associations between meteorological factors and COVID-19: a global scoping review. Front Public Health 2024; 12:1183706. [PMID: 39091528 PMCID: PMC11291467 DOI: 10.3389/fpubh.2024.1183706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/08/2024] [Indexed: 08/04/2024] Open
Abstract
Background Many respiratory viruses and their associated diseases are sensitive to meteorological factors. For SARS-CoV-2 and COVID-19, evidence on this sensitivity is inconsistent. Understanding the influence of meteorological factors on SARS-CoV-2 transmission and COVID-19 epidemiology can help to improve pandemic preparedness. Objectives This review aimed to examine the recent evidence about the relation between meteorological factors and SARS-CoV-2/COVID-19. Methods We conducted a global scoping review of peer-reviewed studies published from January 2020 up to January 2023 about the associations between temperature, solar radiation, precipitation, humidity, wind speed, and atmospheric pressure and SARS-CoV-2/COVID-19. Results From 9,156 initial records, we included 474 relevant studies. Experimental studies on SARS-CoV-2 provided consistent evidence that higher temperatures and solar radiation negatively affect virus viability. Studies on COVID-19 (epidemiology) were mostly observational and provided less consistent evidence. Several studies considered interactions between meteorological factors or other variables such as demographics or air pollution. None of the publications included all determinants holistically. Discussion The association between short-term meteorological factors and SARS-CoV-2/COVID-19 dynamics is complex. Interactions between environmental and social components need further consideration. A more integrated research approach can provide valuable insights to predict the dynamics of respiratory viruses with pandemic potential.
Collapse
Affiliation(s)
- Jesse Limaheluw
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| | - Sophia Dollmann
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| | - Sofia Folpmers
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| | - Lola Beltrán Beut
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| | - Afroditi Lazarakou
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Lucie C. Vermeulen
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Ana Maria de Roda Husman
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
7
|
Otter CJ, Renner DM, Fausto A, Tan LH, Cohen NA, Weiss SR. Interferon signaling in the nasal epithelium distinguishes among lethal and common cold coronaviruses and mediates viral clearance. Proc Natl Acad Sci U S A 2024; 121:e2402540121. [PMID: 38758698 PMCID: PMC11127059 DOI: 10.1073/pnas.2402540121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/27/2024] [Indexed: 05/19/2024] Open
Abstract
All respiratory viruses establish primary infections in the nasal epithelium, where efficient innate immune induction may prevent dissemination to the lower airway and thus minimize pathogenesis. Human coronaviruses (HCoVs) cause a range of pathologies, but the host and viral determinants of disease during common cold versus lethal HCoV infections are poorly understood. We model the initial site of infection using primary nasal epithelial cells cultured at an air-liquid interface (ALI). HCoV-229E, HCoV-NL63, and human rhinovirus-16 are common cold-associated viruses that exhibit unique features in this model: early induction of antiviral interferon (IFN) signaling, IFN-mediated viral clearance, and preferential replication at nasal airway temperature (33 °C) which confers muted host IFN responses. In contrast, lethal SARS-CoV-2 and MERS-CoV encode antagonist proteins that prevent IFN-mediated clearance in nasal cultures. Our study identifies features shared among common cold-associated viruses, highlighting nasal innate immune responses as predictive of infection outcomes and nasally directed IFNs as potential therapeutics.
Collapse
Affiliation(s)
- Clayton J. Otter
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
- Penn Center for Research on Coronaviruses and Other Emerging Pathogens, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - David M. Renner
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
- Penn Center for Research on Coronaviruses and Other Emerging Pathogens, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Alejandra Fausto
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
- Penn Center for Research on Coronaviruses and Other Emerging Pathogens, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Li Hui Tan
- Department of Otorhinolaryngology-Head and Neck Surgery, Division of Rhinology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Noam A. Cohen
- Department of Otorhinolaryngology-Head and Neck Surgery, Division of Rhinology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
- Department of Surgery, Corporal Michael J. Crescenz Department of Veterans Affairs Medical Center, Philadelphia, PA19104
- Monell Chemical Senses Center, Philadelphia, PA19104
| | - Susan R. Weiss
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
- Penn Center for Research on Coronaviruses and Other Emerging Pathogens, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| |
Collapse
|
8
|
Dufloo J, Sanjuán R. Temperature impacts SARS-CoV-2 spike fusogenicity and evolution. mBio 2024; 15:e0336023. [PMID: 38411986 PMCID: PMC11005339 DOI: 10.1128/mbio.03360-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/29/2024] [Indexed: 02/28/2024] Open
Abstract
SARS-CoV-2 infects both the upper and lower respiratory tracts, which are characterized by different temperatures (33°C and 37°C, respectively). In addition, fever is a common COVID-19 symptom. SARS-CoV-2 has been shown to replicate more efficiently at low temperatures, but the effect of temperature on different viral proteins remains poorly understood. Here, we investigate how temperature affects the SARS-CoV-2 spike function and evolution. We first observed that increasing temperature from 33°C to 37°C or 39°C increased spike-mediated cell-cell fusion. We then experimentally evolved a recombinant vesicular stomatitis virus expressing the SARS-CoV-2 spike at these different temperatures. We found that spike-mediated cell-cell fusion was maintained during evolution at 39°C but was lost in a high proportion of viruses that evolved at 33°C or 37°C. Consistently, sequencing of the spikes evolved at 33°C or 37°C revealed the accumulation of mutations around the furin cleavage site, a region that determines cell-cell fusion, whereas this did not occur in spikes evolved at 39°C. Finally, using site-directed mutagenesis, we found that disruption of the furin cleavage site had a temperature-dependent effect on spike-induced cell-cell fusion and viral fitness. Our results suggest that variations in body temperature may affect the activity and diversification of the SARS-CoV-2 spike. IMPORTANCE When it infects humans, SARS-CoV-2 is exposed to different temperatures (e.g., replication site and fever). Temperature has been shown to strongly impact SARS-CoV-2 replication, but how it affects the activity and evolution of the spike protein remains poorly understood. Here, we first show that high temperatures increase the SARS-CoV-2 spike fusogenicity. Then, we demonstrate that the evolution of the spike activity and variants depends on temperature. Finally, we show that the functional effect of specific spike mutations is temperature-dependent. Overall, our results suggest that temperature may be a factor influencing the activity and adaptation of the SARS-CoV-2 spike in vivo, which will help understanding viral tropism, pathogenesis, and evolution.
Collapse
Affiliation(s)
- Jérémy Dufloo
- Institute for Integrative Systems Biology, Consejo Superior de Investigaciones Científicas-Universitat de València, Paterna, València, Spain
| | - Rafael Sanjuán
- Institute for Integrative Systems Biology, Consejo Superior de Investigaciones Científicas-Universitat de València, Paterna, València, Spain
| |
Collapse
|
9
|
Fournelle D, Mostefai F, Brunet-Ratnasingham E, Poujol R, Grenier JC, Gálvez JH, Pagliuzza A, Levade I, Moreira S, Benlarbi M, Beaudoin-Bussières G, Gendron-Lepage G, Bourassa C, Tauzin A, Grandjean Lapierre S, Chomont N, Finzi A, Kaufmann DE, Craig M, Hussin JG. Intra-Host Evolution Analyses in an Immunosuppressed Patient Supports SARS-CoV-2 Viral Reservoir Hypothesis. Viruses 2024; 16:342. [PMID: 38543708 PMCID: PMC10974702 DOI: 10.3390/v16030342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/17/2024] [Accepted: 02/20/2024] [Indexed: 05/23/2024] Open
Abstract
Throughout the SARS-CoV-2 pandemic, several variants of concern (VOCs) have been identified, many of which share recurrent mutations in the spike glycoprotein's receptor-binding domain (RBD). This region coincides with known epitopes and can therefore have an impact on immune escape. Protracted infections in immunosuppressed patients have been hypothesized to lead to an enrichment of such mutations and therefore drive evolution towards VOCs. Here, we present the case of an immunosuppressed patient that developed distinct populations with immune escape mutations throughout the course of their infection. Notably, by investigating the co-occurrence of substitutions on individual sequencing reads in the RBD, we found quasispecies harboring mutations that confer resistance to known monoclonal antibodies (mAbs) such as S:E484K and S:E484A. These mutations were acquired without the patient being treated with mAbs nor convalescent sera and without them developing a detectable immune response to the virus. We also provide additional evidence for a viral reservoir based on intra-host phylogenetics, which led to a viral substrain that evolved elsewhere in the patient's body, colonizing their upper respiratory tract (URT). The presence of SARS-CoV-2 viral reservoirs can shed light on protracted infections interspersed with periods where the virus is undetectable, and potential explanations for long-COVID cases.
Collapse
Affiliation(s)
- Dominique Fournelle
- Research Centre Montreal Heart Institute, Montréal, QC H1T 1C8, Canada; (D.F.); (F.M.); (R.P.); (J.-C.G.)
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Fatima Mostefai
- Research Centre Montreal Heart Institute, Montréal, QC H1T 1C8, Canada; (D.F.); (F.M.); (R.P.); (J.-C.G.)
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Elsa Brunet-Ratnasingham
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada; (E.B.-R.); (A.P.); (M.B.); (G.B.-B.); (G.G.-L.); (C.B.); (A.T.); (S.G.L.); (N.C.); (D.E.K.)
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Raphaël Poujol
- Research Centre Montreal Heart Institute, Montréal, QC H1T 1C8, Canada; (D.F.); (F.M.); (R.P.); (J.-C.G.)
| | - Jean-Christophe Grenier
- Research Centre Montreal Heart Institute, Montréal, QC H1T 1C8, Canada; (D.F.); (F.M.); (R.P.); (J.-C.G.)
| | - José Héctor Gálvez
- Canadian Centre for Computational Genomics, Montréal, QC H3A 0G1, Canada;
| | - Amélie Pagliuzza
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada; (E.B.-R.); (A.P.); (M.B.); (G.B.-B.); (G.G.-L.); (C.B.); (A.T.); (S.G.L.); (N.C.); (D.E.K.)
| | - Inès Levade
- Laboratoire de Santé Publique du Québec, Institut National de Santé Publique du Québec, Sainte-Anne-de-Bellevue, QC H9X 3R5, Canada; (I.L.)
| | - Sandrine Moreira
- Laboratoire de Santé Publique du Québec, Institut National de Santé Publique du Québec, Sainte-Anne-de-Bellevue, QC H9X 3R5, Canada; (I.L.)
| | - Mehdi Benlarbi
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada; (E.B.-R.); (A.P.); (M.B.); (G.B.-B.); (G.G.-L.); (C.B.); (A.T.); (S.G.L.); (N.C.); (D.E.K.)
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Guillaume Beaudoin-Bussières
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada; (E.B.-R.); (A.P.); (M.B.); (G.B.-B.); (G.G.-L.); (C.B.); (A.T.); (S.G.L.); (N.C.); (D.E.K.)
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Gabrielle Gendron-Lepage
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada; (E.B.-R.); (A.P.); (M.B.); (G.B.-B.); (G.G.-L.); (C.B.); (A.T.); (S.G.L.); (N.C.); (D.E.K.)
| | - Catherine Bourassa
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada; (E.B.-R.); (A.P.); (M.B.); (G.B.-B.); (G.G.-L.); (C.B.); (A.T.); (S.G.L.); (N.C.); (D.E.K.)
| | - Alexandra Tauzin
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada; (E.B.-R.); (A.P.); (M.B.); (G.B.-B.); (G.G.-L.); (C.B.); (A.T.); (S.G.L.); (N.C.); (D.E.K.)
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Simon Grandjean Lapierre
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada; (E.B.-R.); (A.P.); (M.B.); (G.B.-B.); (G.G.-L.); (C.B.); (A.T.); (S.G.L.); (N.C.); (D.E.K.)
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Nicolas Chomont
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada; (E.B.-R.); (A.P.); (M.B.); (G.B.-B.); (G.G.-L.); (C.B.); (A.T.); (S.G.L.); (N.C.); (D.E.K.)
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Andrés Finzi
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada; (E.B.-R.); (A.P.); (M.B.); (G.B.-B.); (G.G.-L.); (C.B.); (A.T.); (S.G.L.); (N.C.); (D.E.K.)
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Daniel E. Kaufmann
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada; (E.B.-R.); (A.P.); (M.B.); (G.B.-B.); (G.G.-L.); (C.B.); (A.T.); (S.G.L.); (N.C.); (D.E.K.)
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H3C 3J7, Canada
- Centre Hospitalier de l’Université de Montréal (CHUM), Montréal, QC H2X 0C1, Canada
- Division of Infectious Diseases, Department of Medicine, University Hospital and University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Morgan Craig
- Research Centre, Centre Hospitalier UniversitaireSainte-Justine, Montréal, QC H3T 1C5, Canada;
- Département de Mathématiques et de Statistique, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Julie G. Hussin
- Research Centre Montreal Heart Institute, Montréal, QC H1T 1C8, Canada; (D.F.); (F.M.); (R.P.); (J.-C.G.)
- Département de Médecine, Université de Montréal, Montréal, QC H3C 3J7, Canada
- Mila-Quebec AI Institute, Montréal, QC H2S 3H1, Canada
| |
Collapse
|
10
|
de Souza AS, de Souza RF, Guzzo CR. Cooperative and structural relationships of the trimeric Spike with infectivity and antibody escape of the strains Delta (B.1.617.2) and Omicron (BA.2, BA.5, and BQ.1). J Comput Aided Mol Des 2023; 37:585-606. [PMID: 37792106 DOI: 10.1007/s10822-023-00534-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 09/11/2023] [Indexed: 10/05/2023]
Abstract
Herein, we conducted simulations of trimeric Spike from several SARS-CoV-2 variants of concern (Delta and Omicron sub-variants BA.2, BA.5, and BQ.1) and investigated the mechanisms by which specific mutations confer resistance to neutralizing antibodies. We observed that the mutations primarily affect the cooperation between protein domains within and between protomers. The substitutions K417N and L452R expand hydrogen bonding interactions, reducing their interaction with neutralizing antibodies. By interacting with nearby residues, the K444T and N460K mutations in the SpikeBQ.1 variant potentially reduces solvent exposure, thereby promoting resistance to antibodies. We also examined the impact of D614G, P681R, and P681H substitutions on Spike protein structure that may be related to infectivity. The D614G substitution influences communication between a glycine residue and neighboring domains, affecting the transition between up- and -down RBD states. The P681R mutation, found in the Delta variant, enhances correlations between protein subunits, while the P681H mutation in Omicron sub-variants weakens long-range interactions that may be associated with reduced fusogenicity. Using a multiple linear regression model, we established a connection between inter-protomer communication and loss of sensitivity to neutralizing antibodies. Our findings underscore the importance of structural communication between protein domains and provide insights into potential mechanisms of immune evasion by SARS-CoV-2. Overall, this study deepens our understanding of how specific mutations impact SARS-CoV-2 infectivity and shed light on how the virus evades the immune system.
Collapse
Affiliation(s)
- Anacleto Silva de Souza
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1374, Cidade Universitária, Sao Paulo, SP, 5508-900, Brazil.
| | - Robson Francisco de Souza
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1374, Cidade Universitária, Sao Paulo, SP, 5508-900, Brazil
| | - Cristiane Rodrigues Guzzo
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1374, Cidade Universitária, Sao Paulo, SP, 5508-900, Brazil.
| |
Collapse
|
11
|
Carrión F, Rammauro F, Olivero‐Deibe N, Fló M, Portela MM, Lima A, Durán R, Pritsch O, Bianchi S. Soluble SARS-CoV-2 RBD and human ACE2 peptidase domain produced in Drosophila S2 cells show functions evoking virus-cell interface. Protein Sci 2023; 32:e4721. [PMID: 37405395 PMCID: PMC10382795 DOI: 10.1002/pro.4721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/06/2023] [Accepted: 07/03/2023] [Indexed: 07/06/2023]
Abstract
The interaction between the receptor-binding domain (RBD) of the spike glycoprotein of SARS-CoV-2 and the peptidase domain of the human angiotensin-converting enzyme 2 (ACE2) allows the first specific contact at the virus-cell interface making it the main target of neutralizing antibodies. Here, we show a unique and cost-effective protocol using Drosophila S2 cells to produce both RBD and soluble human ACE2 peptidase domain (shACE2) as thermostable proteins, purified via Strep-tag with yields >40 mg L-1 in a laboratory scale. Furthermore, we demonstrate its binding with KD values in the lower nanomolar range (independently of Strep-tag removal) and its capability to be blocked by serum antibodies in a competition ELISA with Strep-Tactin-HRP as a proof-of-concept. In addition, we assess the capacity of RBD to bind native dimeric ACE2 overexpressed in human cells and its antigen properties with specific serum antibodies. Finally, for completeness, we analyzed RBD microheterogeneity associated with glycosylation and negative charges, with negligible effect on binding either with antibodies or shACE2. Our system represents an accessible and reliable tool for designing in-house surrogate virus neutralization tests (sVNTs), enabling the rapid characterization of neutralizing humoral responses elicited against vaccines or infection, especially in the absence of facilities to conduct virus neutralization tests. Moreover, our biophysical and biochemical characterization of RBD and shACE2 produced in S2 cells lays the groundwork for adapting to different variants of concern (VOCs) to study humoral responses elicited against different VOCs and vaccine formulations.
Collapse
Affiliation(s)
- Federico Carrión
- Laboratorio de InmunovirologíaInstitut Pasteur de MontevideoMontevideoUruguay
| | - Florencia Rammauro
- Laboratorio de InmunovirologíaInstitut Pasteur de MontevideoMontevideoUruguay
- Facultad de Medicina, Departamento de InmunobiologíaUniversidad de la RepúblicaMontevideoUruguay
| | | | - Martín Fló
- Laboratorio de InmunovirologíaInstitut Pasteur de MontevideoMontevideoUruguay
- Facultad de Medicina, Departamento de InmunobiologíaUniversidad de la RepúblicaMontevideoUruguay
| | - María Magdalena Portela
- Unidad de Bioquímica y Proteómica Analíticas, Institut Pasteur de Montevideo & Instituto de Investigaciones Biológicas Clemente EstableMontevideoUruguay
- Facultad de CienciasUniversidad de la RepúblicaMontevideoUruguay
| | - Analía Lima
- Unidad de Bioquímica y Proteómica Analíticas, Institut Pasteur de Montevideo & Instituto de Investigaciones Biológicas Clemente EstableMontevideoUruguay
| | - Rosario Durán
- Unidad de Bioquímica y Proteómica Analíticas, Institut Pasteur de Montevideo & Instituto de Investigaciones Biológicas Clemente EstableMontevideoUruguay
| | - Otto Pritsch
- Laboratorio de InmunovirologíaInstitut Pasteur de MontevideoMontevideoUruguay
- Facultad de Medicina, Departamento de InmunobiologíaUniversidad de la RepúblicaMontevideoUruguay
| | - Sergio Bianchi
- Departamento de Fisiopatología, Laboratorio de Biomarcadores Moleculares, Hospital de ClínicasUniversidad de la RepúblicaMontevideoUruguay
- Laboratorio de Genómica FuncionalInstitut Pasteur de MontevideoMontevideoUruguay
| |
Collapse
|
12
|
Rivera M, Burgos‐Bravo F, Engelberger F, Asor R, Lagos‐Espinoza MIA, Figueroa M, Kukura P, Ramírez‐Sarmiento CA, Baez M, Smith SB, Wilson CAM. Effect of temperature and nucleotide on the binding of BiP chaperone to a protein substrate. Protein Sci 2023; 32:e4706. [PMID: 37323096 PMCID: PMC10303699 DOI: 10.1002/pro.4706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 06/01/2023] [Accepted: 06/12/2023] [Indexed: 06/17/2023]
Abstract
BiP (immunoglobulin heavy-chain binding protein) is a Hsp70 monomeric ATPase motor that plays broad and crucial roles in maintaining proteostasis inside the cell. Structurally, BiP is formed by two domains, a nucleotide-binding domain (NBD) with ATPase activity connected by a flexible hydrophobic linker to the substrate-binding domain. While the ATPase and substrate binding activities of BiP are allosterically coupled, the latter is also dependent on nucleotide binding. Recent structural studies have provided new insights into BiP's allostery; however, the influence of temperature on the coupling between substrate and nucleotide binding to BiP remains unexplored. Here, we study BiP's binding to its substrate at the single molecule level using thermo-regulated optical tweezers which allows us to mechanically unfold the client protein and explore the effect of temperature and different nucleotides on BiP binding. Our results confirm that the affinity of BiP for its protein substrate relies on nucleotide binding, by mainly regulating the binding kinetics between BiP and its substrate. Interestingly, our findings also showed that the apparent affinity of BiP for its protein substrate in the presence of nucleotides remains invariable over a wide range of temperatures, suggesting that BiP may interact with its client proteins with similar affinities even when the temperature is not optimal. Thus, BiP could play a role as a "thermal buffer" in proteostasis.
Collapse
Affiliation(s)
- Maira Rivera
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological SciencesPontificia Universidad Católica de ChileSantiagoChile
- ANID–Millennium Science Initiative Program–Millennium Institute for Integrative Biology (iBio)SantiagoChile
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y FarmacéuticasUniversidad de ChileSantiagoChile
| | - Francesca Burgos‐Bravo
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y FarmacéuticasUniversidad de ChileSantiagoChile
- Institute for Quantitative BiosciencesUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Felipe Engelberger
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological SciencesPontificia Universidad Católica de ChileSantiagoChile
- ANID–Millennium Science Initiative Program–Millennium Institute for Integrative Biology (iBio)SantiagoChile
| | - Roi Asor
- Physical and Theoretical Chemistry Laboratory, Department of ChemistryUniversity of OxfordOxfordUK
- The Kavli Institute for Nanoscience DiscoveryOxfordUK
| | - Miguel I. A. Lagos‐Espinoza
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y FarmacéuticasUniversidad de ChileSantiagoChile
| | - Maximiliano Figueroa
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias BiológicasUniversidad de ConcepciónConcepciónChile
| | - Philipp Kukura
- Physical and Theoretical Chemistry Laboratory, Department of ChemistryUniversity of OxfordOxfordUK
- The Kavli Institute for Nanoscience DiscoveryOxfordUK
| | - César A. Ramírez‐Sarmiento
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological SciencesPontificia Universidad Católica de ChileSantiagoChile
- ANID–Millennium Science Initiative Program–Millennium Institute for Integrative Biology (iBio)SantiagoChile
| | - Mauricio Baez
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y FarmacéuticasUniversidad de ChileSantiagoChile
| | | | - Christian A. M. Wilson
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y FarmacéuticasUniversidad de ChileSantiagoChile
| |
Collapse
|
13
|
Klestova Z. Possible spread of SARS-CoV-2 in domestic and wild animals and body temperature role. Virus Res 2023; 327:199066. [PMID: 36754290 PMCID: PMC9911306 DOI: 10.1016/j.virusres.2023.199066] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/03/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023]
Abstract
The COVID-19 pandemic was officially announced in March 2020 and is still moving around the world. Virus strains, their pathogenicity and infectivity are changing, but the ability is fast to spread and harm people's health remained, despite the seasonality seasons and other circumstances. Most likely, humanity is doomed for a long time to coexistence with this emergent pathogen, since it is already circulating not only among the human population, but and among fauna, especially among wild animals in different regions of the planet. Thus, the range the virus has expanded, the material and conditions for its evolution are more than enough. The detection of SARS-CoV-2 in known infected fauna species is analyzed and possible spread and ongoing circulation of the virus in domestic and wild animals are discussed. One of the main focus of the article is the role of animal body temperature, its fluctuations and the presence of entry receptors in the susceptibility of different animal species to SARS-CoV-2 infection and virus spreading in possible new ecological niches. The possibility of long-term circulation of the pathogen among susceptible organisms is discussed.
Collapse
Affiliation(s)
- Zinaida Klestova
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Elfriede-Aulhorn-Straße 6, Tübingen 72076, Germany.
| |
Collapse
|
14
|
Tauzin A, Nicolas A, Ding S, Benlarbi M, Medjahed H, Chatterjee D, Dionne K, Gong SY, Gendron-Lepage G, Bo Y, Perreault J, Goyette G, Gokool L, Arlotto P, Morrisseau C, Tremblay C, Martel-Laferrière V, De Serres G, Levade I, Kaufmann DE, Côté M, Bazin R, Finzi A. Spike recognition and neutralization of SARS-CoV-2 Omicron subvariants elicited after the third dose of mRNA vaccine. Cell Rep 2023; 42:111998. [PMID: 36656710 PMCID: PMC9826988 DOI: 10.1016/j.celrep.2023.111998] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/28/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Several severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron subvariants have recently emerged, becoming the dominant circulating strains in many countries. These variants contain a large number of mutations in their spike glycoprotein, raising concerns about vaccine efficacy. In this study, we evaluate the ability of plasma from a cohort of individuals that received three doses of mRNA vaccine to recognize and neutralize these Omicron subvariant spikes. We observed that BA.4/5 and BQ.1.1 spikes are markedly less recognized and neutralized compared with the D614G and other Omicron subvariant spikes tested. Also, individuals who have been infected before or after vaccination present better humoral responses than SARS-CoV-2-naive vaccinated individuals, thus indicating that hybrid immunity generates better humoral responses against these subvariants.
Collapse
Affiliation(s)
- Alexandra Tauzin
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada,Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Alexandre Nicolas
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada,Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Shilei Ding
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
| | - Mehdi Benlarbi
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada,Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | | | | | - Katrina Dionne
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada,Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Shang Yu Gong
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada,Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
| | | | - Yuxia Bo
- Department of Biochemistry, Microbiology and Immunology, and Centre for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Josée Perreault
- Héma-Québec, Affaires Médicales et Innovation, Quebec, QC G1V 5C3, Canada
| | | | - Laurie Gokool
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
| | | | | | - Cécile Tremblay
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada,Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Valérie Martel-Laferrière
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada,Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Gaston De Serres
- Institut National de Santé Publique du Québec, Quebec, QC H2P 1E2, Canada
| | - Inès Levade
- Laboratoire de Santé Publique du Québec, Institut National de Santé Publique du Québec, Sainte-Anne-de-Bellevue, QC H9X 3R5, Canada
| | - Daniel E. Kaufmann
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada,Département de Médecine, Université de Montréal, Montreal, QC H3T 1J4, Canada,Division of Infectious Diseases, Department of Medicine, University Hospital of Lausanne and University of Lausanne, 1011 Lausanne, Switzerland
| | - Marceline Côté
- Department of Biochemistry, Microbiology and Immunology, and Centre for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Renée Bazin
- Héma-Québec, Affaires Médicales et Innovation, Quebec, QC G1V 5C3, Canada
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada,Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada,Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada,Corresponding author
| |
Collapse
|
15
|
Vergara NG, Gatchel M, Abrams CF. Entropic Overcompensation of the N501Y Mutation on SARS-CoV-2 S Binding to ACE2. J Chem Inf Model 2023; 63:633-642. [PMID: 36584335 PMCID: PMC9843633 DOI: 10.1021/acs.jcim.2c01246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Indexed: 12/31/2022]
Abstract
Recent experimental work has shown that the N501Y mutation in the SARS-CoV-2 S glycoprotein's receptor binding domain (RBD) increases binding affinity to the angiotensin-converting enzyme 2 (ACE2), primarily by overcompensating for a less favorable enthalpy of binding by greatly reducing the entropic penalty for complex formation, but the basis for this entropic overcompensation is not clear [Prévost et al. J. Biol. Chem.2021, 297, 101151]. We use all-atom molecular dynamics simulations and free-energy calculations to qualitatively assess the impact of the N501Y mutation on the enthalpy and entropy of binding of RBD to ACE2. Our calculations correctly predict that N501Y causes a less favorable enthalpy of binding to ACE2 relative to the original strain. Furthermore, we show that this is overcompensated for by a more entropically favorable increase in large-scale quaternary flexibility and intraprotein root mean square fluctuations of residue positions upon binding in both RBD and ACE2. The enhanced quaternary flexibility stems from N501Y's ability to remodel the inter-residue interactions between the two proteins away from interactions central to the epitope and toward more peripheral interactions. These findings suggest that an important factor in determining protein-protein binding affinity is the degree to which fluctuations are distributed throughout the complex and that residue mutations that may seem to result in weaker interactions than their wild-type counterparts may yet result in increased binding affinity thanks to their ability to suppress unfavorable entropy changes upon binding.
Collapse
Affiliation(s)
- Natasha Gupta Vergara
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Megan Gatchel
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, 19716, United States
| | - Cameron F. Abrams
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
16
|
Humoral Responses against BQ.1.1 Elicited after Breakthrough Infection and SARS-CoV-2 mRNA Vaccination. Vaccines (Basel) 2023; 11:vaccines11020242. [PMID: 36851122 PMCID: PMC9963157 DOI: 10.3390/vaccines11020242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
The Omicron BQ.1.1 variant is now the major SARS-CoV-2 circulating strain in many countries. Because of the many mutations present in its Spike glycoprotein, this variant is resistant to humoral responses elicited by monovalent mRNA vaccines. With the goal to improve immune responses against Omicron subvariants, bivalent mRNA vaccines have recently been approved in several countries. In this study, we measure the capacity of plasma from vaccinated individuals, before and after a fourth dose of mono- or bivalent mRNA vaccine, to recognize and neutralize the ancestral (D614G) and the BQ.1.1 Spikes. Before and after the fourth dose, we observe a significantly better recognition and neutralization of the ancestral Spike. We also observe that fourth-dose vaccinated individuals who have been recently infected better recognize and neutralize the BQ.1.1 Spike, independently of the mRNA vaccine used, than donors who have never been infected or have an older infection. Our study supports that hybrid immunity, generated by vaccination and a recent infection, induces higher humoral responses than vaccination alone, independently of the mRNA vaccine used.
Collapse
|
17
|
Wu J, Zhang HX, Zhang J. Investigation on the interaction mechanism of different SARS-CoV-2 spike variants with hACE2: insights from molecular dynamics simulations. Phys Chem Chem Phys 2023; 25:2304-2319. [PMID: 36597957 DOI: 10.1039/d2cp04349a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Since the COVID-19 pandemic caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), SARS-CoV-2 has evolved by acquiring genomic mutations, resulting in the recent emergence of several SARS-CoV-2 variants with improved transmissibility and infectivity relative to the original strain. An underlying mechanism may be the increased ability of the mutants to bind the receptor proteins and infect the host cell. In this work, we implemented all-atom molecular dynamics (MD) simulations to study the binding and interaction of the receptor binding domain (RBD) of the SARS-CoV-2 spike protein singly (D614G), doubly (D614G + L452R and D614G + N501Y), triply (D614G + N501Y + E484K), and quadruply (D614G + N501Y + E484K + K417T) mutated variants with the human angiotensin-converting enzyme 2 (hACE2) receptor protein in the host cell. A combination of multiple analysis approaches elucidated the effects of mutations and the extent of molecular divergence from multiple perspectives, including the dynamic correlated motions, interaction patterns, dominant motions, free energy landscape, and charge distribution on the electrostatic potential surface between the hACE2 and all RBD variants. Moreover, free energy calculations using the MM/PBSA method evaluated the binding affinity between these RBD variants and hACE2. The results showed that the D614G + N501Y + E484K variant possessed the lowest free energy value (highest affinity) compared to the D614G + N501Y + E484K + K417T, D614G + L452R, D614G + N501Y, and D614G mutants. The residue-based energy decomposition also indicated that the energy contribution of residues at the mutation site to the total binding energy was highly variable. The interaction mechanisms between the different RBD variants and hACE2 elucidated in this study will provide some insights into the development of drugs targeting the new SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Jianhua Wu
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, Jilin, People's Republic of China.
| | - Hong-Xing Zhang
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, Jilin, People's Republic of China.
| | - Jilong Zhang
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, Jilin, People's Republic of China.
| |
Collapse
|
18
|
Planchais C, Reyes‐Ruiz A, Lacombe R, Zarantonello A, Lecerf M, Revel M, Roumenina LT, Atanasov BP, Mouquet H, Dimitrov JD. Evolutionary trajectory of receptor binding specificity and promiscuity of the spike protein of SARS-CoV-2. Protein Sci 2022; 31:e4447. [PMID: 36305765 PMCID: PMC9597384 DOI: 10.1002/pro.4447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 01/27/2023]
Abstract
SARS-CoV-2 infects cells by attachment to its receptor-the angiotensin converting enzyme 2 (ACE2). Regardless of the wealth of structural data, little is known about the physicochemical mechanism of interactions of the viral spike (S) protein with ACE2 and how this mechanism has evolved during the pandemic. Here, we applied experimental and computational approaches to characterize the molecular interaction of S proteins from SARS-CoV-2 variants of concern (VOC). Data on kinetics, activation-, and equilibrium thermodynamics of binding of the receptor binding domain (RBD) from VOC with ACE2 as well as data from computational protein electrostatics revealed a profound remodeling of the physicochemical characteristics of the interaction during the evolution. Thus, as compared to RBDs from Wuhan strain and other VOC, Omicron RBD presented as a unique protein in terms of conformational dynamics and types of non-covalent forces driving the complex formation with ACE2. Viral evolution resulted in a restriction of the RBD structural dynamics, and a shift to a major role of polar forces for ACE2 binding. Further, we investigated how the reshaping of the physicochemical characteristics of interaction affects the binding specificity of S proteins. Data from various binding assays revealed that SARS-CoV-2 Wuhan and Omicron RBDs manifest capacity for promiscuous recognition of unrelated human proteins, but they harbor distinct reactivity patterns. These findings might contribute for mechanistic understanding of the viral tropism and capacity to evade immune responses during evolution.
Collapse
Affiliation(s)
- Cyril Planchais
- Laboratory of Humoral ImmunologyInstitut Pasteur, Université Paris Cité, INSERM U1222ParisFrance
| | - Alejandra Reyes‐Ruiz
- Centre de Recherche des CordeliersINSERM, CNRS, Sorbonne Université, Université de ParisParisFrance
| | - Robin Lacombe
- Centre de Recherche des CordeliersINSERM, CNRS, Sorbonne Université, Université de ParisParisFrance
| | - Alessandra Zarantonello
- Centre de Recherche des CordeliersINSERM, CNRS, Sorbonne Université, Université de ParisParisFrance
| | - Maxime Lecerf
- Centre de Recherche des CordeliersINSERM, CNRS, Sorbonne Université, Université de ParisParisFrance
| | - Margot Revel
- Centre de Recherche des CordeliersINSERM, CNRS, Sorbonne Université, Université de ParisParisFrance
| | - Lubka T. Roumenina
- Centre de Recherche des CordeliersINSERM, CNRS, Sorbonne Université, Université de ParisParisFrance
| | - Boris P. Atanasov
- Institute of Organic Chemistry, Bulgarian Academy of SciencesSofiaBulgaria
| | - Hugo Mouquet
- Laboratory of Humoral ImmunologyInstitut Pasteur, Université Paris Cité, INSERM U1222ParisFrance
| | - Jordan D. Dimitrov
- Centre de Recherche des CordeliersINSERM, CNRS, Sorbonne Université, Université de ParisParisFrance
| |
Collapse
|
19
|
Gong SY, Ding S, Benlarbi M, Chen Y, Vézina D, Marchitto L, Beaudoin-Bussières G, Goyette G, Bourassa C, Bo Y, Medjahed H, Levade I, Pazgier M, Côté M, Richard J, Prévost J, Finzi A. Temperature Influences the Interaction between SARS-CoV-2 Spike from Omicron Subvariants and Human ACE2. Viruses 2022; 14:2178. [PMID: 36298733 PMCID: PMC9607596 DOI: 10.3390/v14102178] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/22/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
SARS-CoV-2 continues to infect millions of people worldwide. The subvariants arising from the variant-of-concern (VOC) Omicron include BA.1, BA.1.1, BA.2, BA.2.12.1, BA.4, and BA.5. All possess multiple mutations in their Spike glycoprotein, notably in its immunogenic receptor-binding domain (RBD), and present enhanced viral transmission. The highly mutated Spike glycoproteins from these subvariants present different degrees of resistance to recognition and cross-neutralisation by plasma from previously infected and/or vaccinated individuals. We have recently shown that the temperature affects the interaction between the Spike and its receptor, the angiotensin converting enzyme 2 (ACE2). The affinity of RBD for ACE2 is significantly increased at lower temperatures. However, whether this is also observed with the Spike of Omicron and sub-lineages is not known. Here we show that, similar to other variants, Spikes from Omicron sub-lineages bind better the ACE2 receptor at lower temperatures. Whether this translates into enhanced transmission during the fall and winter seasons remains to be determined.
Collapse
Affiliation(s)
- Shang Yu Gong
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Shilei Ding
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
| | - Mehdi Benlarbi
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Yaozong Chen
- Infectious Disease Division, Department of Medicine of Uniformed Services, University of the Health Sciences, Bethesda, MD 20814-4712, USA
| | - Dani Vézina
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Lorie Marchitto
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Guillaume Beaudoin-Bussières
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | | | | | - Yuxia Bo
- Department of Biochemistry, Microbiology and Immunology, Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | | | - Inès Levade
- Laboratoire de Santé Publique du Québec, Institut National de Santé Publique du Québec, Sainte-Anne-de-Bellevue, QC H9X 3R5, Canada
| | - Marzena Pazgier
- Infectious Disease Division, Department of Medicine of Uniformed Services, University of the Health Sciences, Bethesda, MD 20814-4712, USA
| | - Marceline Côté
- Department of Biochemistry, Microbiology and Immunology, Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Jonathan Richard
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Jérémie Prévost
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| |
Collapse
|
20
|
A Temperature-Sensitive Recombinant of Avian Coronavirus Infectious Bronchitis Virus Provides Complete Protection against Homologous Challenge. J Virol 2022; 96:e0110022. [PMID: 35972294 PMCID: PMC9472628 DOI: 10.1128/jvi.01100-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Avian coronavirus infectious bronchitis virus (IBV) is the etiological agent of infectious bronchitis, an acute highly contagious economically relevant respiratory disease of poultry. Vaccination is used to control IBV infections, with live-attenuated vaccines generated via serial passage of a virulent field isolate through embryonated hens' eggs. A fine balance must be achieved between attenuation and the retention of immunogenicity. The exact molecular mechanism of attenuation is unknown, and vaccines produced in this manner present a risk of reversion to virulence as few consensus level changes are acquired. Our previous research resulted in the generation of a recombinant IBV (rIBV) known as M41-R, based on a pathogenic strain M41-CK. M41-R was attenuated in vivo by two amino acid changes, Nsp10-Pro85Leu and Nsp14-Val393Leu; however, the mechanism of attenuation was not determined. Pro85 and Val393 were found to be conserved among not only IBV strains but members of the wider coronavirus family. This study demonstrates that the same changes are associated with a temperature-sensitive (ts) replication phenotype at 41°C in vitro, suggesting that the two phenotypes may be linked. Vaccination of specific-pathogen-free chickens with M41-R induced 100% protection against clinical disease, tracheal ciliary damage, and challenge virus replication following homologous challenge with virulent M41-CK. Temperature sensitivity has been used to rationally attenuate other viral pathogens, including influenza, and the identification of amino acid changes that impart both a ts and an attenuated phenotype may therefore offer an avenue for future coronavirus vaccine development. IMPORTANCE Infectious bronchitis virus is a pathogen of economic and welfare concern for the global poultry industry. Live-attenuated vaccines against are generated by serial passage of a virulent isolate in embryonated eggs until attenuation is achieved. The exact mechanisms of attenuation are unknown, and vaccines produced have a risk of reversion to virulence. Reverse genetics provides a method to generate vaccines that are rationally attenuated and are more stable with respect to back selection due to their clonal origin. Genetic populations resulting from molecular clones are more homogeneous and lack the presence of parental pathogenic viruses, which generation by multiple passage does not. In this study, we identified two amino acids that impart a temperature-sensitive replication phenotype. Immunogenicity is retained and vaccination results in 100% protection against homologous challenge. Temperature sensitivity, used for the development of vaccines against other viruses, presents a method for the development of coronavirus vaccines.
Collapse
|
21
|
Erausquin E, Glaser F, Fernández-Recio J, López-Sagaseta J. Structural bases for the higher adherence to ACE2 conferred by the SARS-CoV-2 spike Q498Y substitution. Acta Crystallogr D Struct Biol 2022; 78:1156-1170. [PMID: 36048155 PMCID: PMC9435600 DOI: 10.1107/s2059798322007677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 07/28/2022] [Indexed: 11/18/2022] Open
Abstract
A remarkable number of SARS-CoV-2 variants and other as yet unmonitored lineages harbor amino-acid substitutions with the potential to modulate the interface between the spike receptor-binding domain (RBD) and its receptor ACE2. The naturally occurring Q498Y substitution, which is present in currently circulating SARS-CoV-2 variants, has drawn the attention of several investigations. While computational predictions and in vitro binding studies suggest that Q498Y increases the binding affinity of the spike protein for ACE2, experimental in vivo models of infection have shown that a triple mutant carrying the Q498Y replacement is fatal in mice. To accurately characterize the binding kinetics of the RBD Q498Y-ACE2 interaction, biolayer interferometry analyses were performed. A significant enhancement of the RBD-ACE2 binding affinity relative to a reference SARS-CoV-2 variant of concern carrying three simultaneous replacements was observed. In addition, the RBD Q498Y mutant bound to ACE2 was crystallized. Compared with the structure of its wild-type counterpart, the RBD Q498Y-ACE2 complex reveals the conservation of major hydrogen-bond interactions and a more populated, nonpolar set of contacts mediated by the bulky side chain of Tyr498 that collectively lead to this increase in binding affinity. In summary, these studies contribute to a deeper understanding of the impact of a relevant mutation present in currently circulating SARS-CoV-2 variants which might lead to stronger host-pathogen interactions.
Collapse
Affiliation(s)
- Elena Erausquin
- NavarrabiomedUnit of Protein Crystallography and Structural ImmunologyPamplona31008Spain
- Public University of Navarra (UPNA)Pamplona31008Spain
- Navarra University HospitalPamplona31008Spain
| | - Fabian Glaser
- Technion – Israel Institute of TechnologyThe Lorry I. Lokey Center for Life Sciences and EngineeringHaifaIsrael
| | - Juan Fernández-Recio
- CSIC–UR–Gobierno de La RiojaInstituto de Ciencias de la Vid y del Vino (ICVV)LogroñoSpain
| | - Jacinto López-Sagaseta
- NavarrabiomedUnit of Protein Crystallography and Structural ImmunologyPamplona31008Spain
- Public University of Navarra (UPNA)Pamplona31008Spain
- Navarra University HospitalPamplona31008Spain
| |
Collapse
|
22
|
Laumaea AE, Lewin A, Chatterjee D, Marchitto L, Ding S, Gendron‐Lepage G, Goyette G, Allard M, Simard C, Tremblay T, Perreault J, Duerr R, Finzi A, Bazin R. COVID-19 vaccine humoral response in frequent platelet donors with plateletpheresis-associated lymphopenia. Transfusion 2022; 62:1779-1790. [PMID: 35919021 PMCID: PMC9539235 DOI: 10.1111/trf.17037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Plateletpheresis involves platelet separation and collection from whole blood while other blood cells are returned to the donor. Because platelets are replaced faster than red blood cells, as many as 24 donations can be done annually. However, some frequent apheresis platelet donors (>20 donations annually) display severe plateletpheresis-associated lymphopenia; in particular, CD4+ T but not B cell numbers are decreased. COVID-19 vaccination thereby provides a model to assess whether lymphopenic platelet donors present compromised humoral immune responses. STUDY DESIGN AND METHODS We assessed vaccine responses following 2 doses of COVID-19 vaccination in a cohort of 43 plateletpheresis donors with a range of pre-vaccination CD4+ T cell counts (76-1537 cells/μl). In addition to baseline T cell measurements, antibody binding assays to full-length Spike and the Receptor Binding Domain (RBD) were performed pre- and post-vaccination. Furthermore, pseudo-particle neutralization and antibody-dependent cellular cytotoxicity assays were conducted to measure antibody functionality. RESULTS Participants were stratified into two groups: <400 CD4/μl (n = 27) and ≥ 400 CD4/μl (n = 16). Following the first dose, 79% seroconverted within the <400 CD4/μl group compared to 87% in the ≥400 CD4/μl group; all donors were seropositive post-second dose with significant increases in antibody levels. Importantly differences in CD4+ T cell levels minimally impacted neutralization, Spike recognition, and IgG Fc-mediated effector functions. DISCUSSION Overall, our results indicate that lymphopenic plateletpheresis donors do not exhibit significant immune dysfunction; they have retained the T and B cell functionality necessary for potent antibody responses after vaccination.
Collapse
Affiliation(s)
- Annemarie Eare Laumaea
- Centre de Recherche du CHUMMontréalCanada
- Département de Microbiologie, Infectiologie et ImmunologieUniversité de MontréalMontréalQuébecCanada
- Héma‐QuébecAffaires Médicales et InnovationQuébecCanada
| | - Antoine Lewin
- Héma‐QuébecAffaires Médicales et InnovationMontréalQuébecCanada
| | | | - Lorie Marchitto
- Centre de Recherche du CHUMMontréalCanada
- Département de Microbiologie, Infectiologie et ImmunologieUniversité de MontréalMontréalQuébecCanada
| | | | | | | | | | - Carl Simard
- Héma‐QuébecAffaires Médicales et InnovationQuébecCanada
| | - Tony Tremblay
- Héma‐QuébecAffaires Médicales et InnovationQuébecCanada
| | | | - Ralf Duerr
- Department of MicrobiologyNew York University School of MedicineNew York CityNew YorkUSA
| | - Andrés Finzi
- Centre de Recherche du CHUMMontréalCanada
- Département de Microbiologie, Infectiologie et ImmunologieUniversité de MontréalMontréalQuébecCanada
| | - Renée Bazin
- Héma‐QuébecAffaires Médicales et InnovationQuébecCanada
| |
Collapse
|
23
|
Stewart PDS, Bach JL. The natural thermal sensitivity of SARS-CoV-2. INFECTIOUS MEDICINE 2022; 1:227-228. [PMID: 38014365 PMCID: PMC9419432 DOI: 10.1016/j.imj.2022.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/23/2022] [Indexed: 11/22/2022]
|
24
|
Vergara NG, Gatchel M, Abrams CF. Entropic overcompensation of the N501Y mutation on SARS-CoV-2 S binding to ACE2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.08.30.505841. [PMID: 36093356 PMCID: PMC9460971 DOI: 10.1101/2022.08.30.505841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Recent experimental work has shown that the N501Y mutation in the SARS-CoV-2 S glycoprotein's receptor binding domain (RBD) increases binding affinity to the angiotensin-converting enzyme 2 (ACE2), primarily by overcompensating for a less favorable enthalpy of binding by a greatly reducing the entropic penalty for complex formation, but the basis for this entropic overcompensation is not clear [Prévost et al., J. Biol. Chem . (2021) 297;101151]. We use all-atom molecular dynamics simulations and free-energy calculations to qualitatively assess the impact of the N501Y mutation on enthalpy and entropy of binding of RBD to ACE2. Our calculations correctly predict that N501Y causes a less favorable enthalpy of binding to ACE2 relative to the original strain. Further, we show that this is overcompensated for by a more entropically favorable increase in large-scale quaternary flexibility and intra-protein root-mean squared fluctuations of residue positions upon binding in both RBD and ACE2. The enhanced quaternary flexibility stems from N501Y's ability to remodel the interresidue interactions between the two proteins away from interactions central to the epitope and toward more peripheral interactions. These findings suggest that an important factor in determining protein-protein binding affinity is the degree to which fluctuations are distributed throughout the complex, and that residue mutations that may seem to result in weaker interactions than their wild-type counterparts may yet result increased binding affinity thanks to their ability to suppress unfavorable entropy changes upon binding.
Collapse
|
25
|
Ding S, Ullah I, Gong SY, Grover JR, Mohammadi M, Chen Y, Vézina D, Beaudoin-Bussières G, Verma VT, Goyette G, Gaudette F, Richard J, Yang D, Smith AB, Pazgier M, Côté M, Abrams C, Kumar P, Mothes W, Uchil PD, Finzi A, Baron C. VE607 stabilizes SARS-CoV-2 Spike in the "RBD-up" conformation and inhibits viral entry. iScience 2022; 25:104528. [PMID: 35677392 PMCID: PMC9164512 DOI: 10.1016/j.isci.2022.104528] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/11/2022] [Accepted: 05/30/2022] [Indexed: 10/26/2022] Open
Abstract
SARS-CoV-2 infection of host cells starts by binding the Spike glycoprotein (S) to the ACE2 receptor. The S-ACE2 interaction is a potential target for therapies against COVID-19 as demonstrated by the development of immunotherapies blocking this interaction. VE607 - a commercially available compound composed of three stereoisomers - was described as an inhibitor of SARS-CoV-1. Here, we show that VE607 broadly inhibits pseudoviral particles bearing the Spike from major VOCs (D614G, Alpha, Beta, Gamma, Delta, Omicron - BA.1, and BA.2) as well as authentic SARS-CoV-2 at low micromolar concentrations. In silico docking, mutational analysis, and smFRET revealed that VE607 binds to the receptor binding domain (RBD)-ACE2 interface and stabilizes RBD in its "up" conformation. Prophylactic treatment with VE607 did not prevent SARS-CoV-2-induced mortality in K18-hACE2 mice, but it did reduce viral replication in the lungs by 37-fold. Thus, VE607 is an interesting lead for drug development for the treatment of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Shilei Ding
- Centre de recherche du CHUM, Montréal, QC, Canada
| | - Irfan Ullah
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Shang Yu Gong
- Centre de recherche du CHUM, Montréal, QC, Canada,Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Jonathan R. Grover
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Mohammadjavad Mohammadi
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, PA 19104, USA
| | - Yaozong Chen
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4712, USA
| | - Dani Vézina
- Centre de recherche du CHUM, Montréal, QC, Canada,Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
| | - Guillaume Beaudoin-Bussières
- Centre de recherche du CHUM, Montréal, QC, Canada,Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
| | - Vijay Tailor Verma
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC, Canada
| | | | | | - Jonathan Richard
- Centre de recherche du CHUM, Montréal, QC, Canada,Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
| | - Derek Yang
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Amos B. Smith
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Marzena Pazgier
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4712, USA
| | - Marceline Côté
- Department of Biochemistry, Microbiology and Immunology, Center for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Cameron Abrams
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, PA 19104, USA
| | - Priti Kumar
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Walther Mothes
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Pradeep D. Uchil
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Andrés Finzi
- Centre de recherche du CHUM, Montréal, QC, Canada,Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada,Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada,Corresponding author
| | - Christian Baron
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC, Canada,Corresponding author
| |
Collapse
|
26
|
Inaida S, Paul RE, Matsuno S. Viral transmissibility of SARS-CoV-2 accelerates in the winter, similarly to influenza epidemics. Am J Infect Control 2022; 50:1070-1076. [PMID: 35605752 PMCID: PMC9121648 DOI: 10.1016/j.ajic.2022.05.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/09/2022] [Accepted: 05/13/2022] [Indexed: 02/06/2023]
Abstract
The transmissibility of SARS-CoV-2 is anticipated to increase in the winter because of increased viral survival in cold damp air and thus would exacerbate viral spread in community. Analysis to capture the seasonal trend is needed to be prepared for future epidemics. We compared regression models for the 5-week case prior to each epidemic peak week for both the COVID-19 and influenza epidemics in winter and summer. The weekly case increase ratio was compared, using non-paired t tests between seasons. In order to test the robustness of seasonal transmission patterns, the normalized weekly case numbers of COVID-19 and influenza case rates of all seasons were assessed in a combined quadratic regression analysis. In winter, the weekly case increase ratio accelerated before epidemic peaks, similarly, for both COVID-19 and influenza. The quadratic regression models of weekly cases were observed to be convex curves in the winter and concave curves in the spring/summer for both COVID-19 and influenza. A significant increase of case increase ratio (3.19 [95%CI:0.01-6.37, P = .049]) of the COVID-19 and influenza epidemics was observed in winter as compared to spring/summer before the epidemic peak. The epidemic of COVID-19 was found to mirror that of influenza, suggesting a strong underlying seasonal transmissibility. Influenza epidemics can potentially be a useful reference for the COVID-19 epidemics.
Collapse
|
27
|
Biswas S, Mahmud S, Mita MA, Afrose S, Hasan MR, Paul GK, Shimu MSS, Uddin MS, Zaman S, Park MN, Siyadatpanah A, Obaidullah AJ, Saleh MA, Simal-Gandara J, Kim B. The Emergence of SARS-CoV-2 Variants With a Lower Antibody Response: A Genomic and Clinical Perspective. Front Med (Lausanne) 2022; 9:825245. [PMID: 35602477 PMCID: PMC9121733 DOI: 10.3389/fmed.2022.825245] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/21/2022] [Indexed: 12/19/2022] Open
Abstract
The emergence of several novel SARS-CoV-2 variants regarded as variants of concern (VOCs) has exacerbated pathogenic and immunologic prominences, as well as reduced diagnostic sensitivity due to phenotype modification-capable mutations. Furthermore, latent and more virulent strains that have arisen as a result of unique mutations with increased evolutionary potential represent a threat to vaccine effectiveness in terms of incoming and existing variants. As a result, resisting natural immunity, which leads to higher reinfection rates, and avoiding vaccination-induced immunization, which leads to a lack of vaccine effectiveness, has become a crucial problem for public health around the world. This study attempts to review the genomic variation and pandemic impact of emerging variations of concern based on clinical characteristics management and immunization effectiveness. The goal of this study is to gain a better understanding of the link between genome level polymorphism, clinical symptom manifestation, and current vaccination in the instance of VOCs.
Collapse
Affiliation(s)
- Suvro Biswas
- Miocrobiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
| | - Shafi Mahmud
- Miocrobiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
| | - Mohasana Akter Mita
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
| | - Shamima Afrose
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
| | - Md. Robiul Hasan
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
| | - Gobindo Kumar Paul
- Miocrobiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
| | | | - Md. Salah Uddin
- Miocrobiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
| | - Shahriar Zaman
- Miocrobiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
| | - Moon Nyeo Park
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Abolghasem Siyadatpanah
- Ferdows School of Paramedical and Health, Birjand University of Medical Sciences, Birjand, Iran
| | - Ahmad J. Obaidullah
- Drug Exploration and Development Chair (DEDC), Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Md. Abu Saleh
- Miocrobiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, University of Vigo, Ourense, Spain
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
28
|
Flores-Vega VR, Monroy-Molina JV, Jiménez-Hernández LE, Torres AG, Santos-Preciado JI, Rosales-Reyes R. SARS-CoV-2: Evolution and Emergence of New Viral Variants. Viruses 2022; 14:653. [PMID: 35458383 PMCID: PMC9025907 DOI: 10.3390/v14040653] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 12/15/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the etiological agent responsible for the coronavirus disease 2019 (COVID-19). The high rate of mutation of this virus is associated with a quick emergence of new viral variants that have been rapidly spreading worldwide. Several mutations have been documented in the receptor-binding domain (RBD) of the viral spike protein that increases the interaction between SARS-CoV-2 and its cellular receptor, the angiotensin-converting enzyme 2 (ACE2). Mutations in the spike can increase the viral spread rate, disease severity, and the ability of the virus to evade either the immune protective responses, monoclonal antibody treatments, or the efficacy of current licensed vaccines. This review aimed to highlight the functional virus classification used by the World Health Organization (WHO), Phylogenetic Assignment of Named Global Outbreak (PANGO), Global Initiative on Sharing All Influenza Data (GISAID), and Nextstrain, an open-source project to harness the scientific and public health potential of pathogen genome data, the chronological emergence of viral variants of concern (VOCs) and variants of interest (VOIs), the major findings related to the rate of spread, and the mutations in the spike protein that are involved in the evasion of the host immune responses elicited by prior SARS-CoV-2 infections and by the protection induced by vaccination.
Collapse
Affiliation(s)
- Verónica Roxana Flores-Vega
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 06726, Mexico; (V.R.F.-V.); (J.V.M.-M.); (J.I.S.-P.)
- Escuela de Ciencias de la Salud, Campus Coyoacán, Universidad del Valle de México, Calzada de Tlalpan 3000, Alcaldía Coyoacán, Mexico City 04910, Mexico;
| | - Jessica Viridiana Monroy-Molina
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 06726, Mexico; (V.R.F.-V.); (J.V.M.-M.); (J.I.S.-P.)
- Escuela de Ciencias de la Salud, Campus Coyoacán, Universidad del Valle de México, Calzada de Tlalpan 3000, Alcaldía Coyoacán, Mexico City 04910, Mexico;
| | - Luis Enrique Jiménez-Hernández
- Escuela de Ciencias de la Salud, Campus Coyoacán, Universidad del Valle de México, Calzada de Tlalpan 3000, Alcaldía Coyoacán, Mexico City 04910, Mexico;
| | - Alfredo G. Torres
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA;
| | - José Ignacio Santos-Preciado
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 06726, Mexico; (V.R.F.-V.); (J.V.M.-M.); (J.I.S.-P.)
| | - Roberto Rosales-Reyes
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 06726, Mexico; (V.R.F.-V.); (J.V.M.-M.); (J.I.S.-P.)
| |
Collapse
|
29
|
Mandal CC, Panwar MS, Yadav CP, Tripathi V, Bandyopadhayaya S. Combinatorial influence of environmental temperature, obesity and cholesterol on SARS-CoV-2 infectivity. Sci Rep 2022; 12:4796. [PMID: 35314722 PMCID: PMC8935894 DOI: 10.1038/s41598-022-08485-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 03/03/2022] [Indexed: 01/27/2023] Open
Abstract
The continuing evolution of SARS-CoV-2 variants not only causes a long-term global health concerns but also encounters the vaccine/drug effectiveness. The degree of virus infectivity and its clinical outcomes often depend on various biological parameters (e.g., age, genetic factors, diabetes, obesity and other ailments) of an individual along with multiple environmental factors (e.g., air temperature, humidity, seasons). Thus, despite the extensive search for and use of several vaccine/drug candidates, the combinative influence of these various extrinsic and intrinsic risk factors involved in the SARS-CoV-2 virus infectivity has yet to be explored. Previous studies have reported that environment temperature is negatively associated with virus infectivity for SARS-CoV-2. This study elaborates on our previous findings, investigating the link between environmental temperature and other metabolic parameters, such as average total cholesterol and obesity, with the increase in COVID-19 cases. Statistical analysis conducted on a per country basis not only supports the existence of a significant negative correlation between environmental temperature and SARS-CoV-2 infections but also found a strong positive correlation between COVID-19 cases and these metabolic parameters. In addition, a multiphase growth curve model (GCM) was built to predict the contribution of these covariates in SARS-CoV-2 infectivity. These findings, for first time, support the idea that there might be a combinatorial impact of environmental temperature, average total cholesterol, and obesity in the inflation of the SARS-CoV-2 infectivity.
Collapse
Affiliation(s)
- Chandi C Mandal
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India.
| | - Mahaveer S Panwar
- Department of Statistics, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Chandra P Yadav
- Department of Statistics, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Vaishnavi Tripathi
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India
| | - Shreetama Bandyopadhayaya
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India
| |
Collapse
|
30
|
Chatterjee D, Tauzin A, Marchitto L, Gong SY, Boutin M, Bourassa C, Beaudoin-Bussières G, Bo Y, Ding S, Laumaea A, Vézina D, Perreault J, Gokool L, Morrisseau C, Arlotto P, Fournier É, Guilbault A, Delisle B, Levade I, Goyette G, Gendron-Lepage G, Medjahed H, De Serres G, Tremblay C, Martel-Laferrière V, Kaufmann DE, Bazin R, Prévost J, Moreira S, Richard J, Côté M, Finzi A. SARS-CoV-2 Omicron Spike recognition by plasma from individuals receiving BNT162b2 mRNA vaccination with a 16-week interval between doses. Cell Rep 2022; 38:110429. [PMID: 35216664 PMCID: PMC8823958 DOI: 10.1016/j.celrep.2022.110429] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/25/2022] [Accepted: 02/02/2022] [Indexed: 11/22/2022] Open
Abstract
Continuous emergence of SARS-CoV-2 variants of concern (VOCs) is fueling the COVID-19 pandemic. Omicron (B.1.1.529) rapidly spread worldwide. The large number of mutations in its Spike raise concerns about a major antigenic drift that could significantly decrease vaccine efficacy and infection-induced immunity. A long interval between BNT162b2 mRNA doses elicits antibodies that efficiently recognize Spikes from different VOCs. Here, we evaluate the recognition of Omicron Spike by plasma from a cohort of SARS-CoV-2 naive and previously infected individuals who received their BNT162b2 mRNA vaccine 16 weeks apart. Omicron Spike is recognized less efficiently than D614G, Alpha, Beta, Gamma, and Delta Spikes. We compare with plasma activity from participants receiving a short (4 weeks) interval regimen. Plasma from individuals of the long-interval cohort recognize and neutralize better the Omicron Spike compared with those who received a short interval. Whether this difference confers any clinical benefit against Omicron remains unknown.
Collapse
MESH Headings
- Adult
- Aged
- Antibodies, Neutralizing/analysis
- Antibodies, Neutralizing/blood
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/analysis
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- BNT162 Vaccine/administration & dosage
- BNT162 Vaccine/immunology
- Cohort Studies
- Female
- HEK293 Cells
- Humans
- Immunization Schedule
- Immunization, Secondary/methods
- Male
- Middle Aged
- Quebec
- SARS-CoV-2/immunology
- SARS-CoV-2/pathogenicity
- Spike Glycoprotein, Coronavirus/immunology
- Time Factors
- Vaccination/methods
- Vaccine Potency
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/immunology
- Young Adult
- mRNA Vaccines/administration & dosage
- mRNA Vaccines/immunology
Collapse
Affiliation(s)
| | - Alexandra Tauzin
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Lorie Marchitto
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Shang Yu Gong
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Marianne Boutin
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | | | - Guillaume Beaudoin-Bussières
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Yuxia Bo
- Department of Biochemistry, Microbiology and Immunology, Center for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Shilei Ding
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
| | - Annemarie Laumaea
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Dani Vézina
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Josée Perreault
- Héma-Québec, Affaires Médicales et Innovation, Quebec, QC G1V 5C3, Canada
| | - Laurie Gokool
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
| | | | | | - Éric Fournier
- Laboratoire de Santé Publique du Québec, Institut Nationale de Santé Publique du Québec, Sainte-Anne-de-Bellevue, QC H9X 3R5, Canada
| | - Aurélie Guilbault
- Laboratoire de Santé Publique du Québec, Institut Nationale de Santé Publique du Québec, Sainte-Anne-de-Bellevue, QC H9X 3R5, Canada
| | - Benjamin Delisle
- Laboratoire de Santé Publique du Québec, Institut Nationale de Santé Publique du Québec, Sainte-Anne-de-Bellevue, QC H9X 3R5, Canada
| | - Inès Levade
- Laboratoire de Santé Publique du Québec, Institut Nationale de Santé Publique du Québec, Sainte-Anne-de-Bellevue, QC H9X 3R5, Canada
| | | | | | | | - Gaston De Serres
- Institut National de Santé Publique du Québec, Quebec, QC H2P 1E2, Canada
| | - Cécile Tremblay
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Valérie Martel-Laferrière
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Daniel E Kaufmann
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Médecine, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Renée Bazin
- Héma-Québec, Affaires Médicales et Innovation, Quebec, QC G1V 5C3, Canada
| | - Jérémie Prévost
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Sandrine Moreira
- Laboratoire de Santé Publique du Québec, Institut Nationale de Santé Publique du Québec, Sainte-Anne-de-Bellevue, QC H9X 3R5, Canada
| | - Jonathan Richard
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada.
| | - Marceline Côté
- Department of Biochemistry, Microbiology and Immunology, Center for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada; Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada.
| |
Collapse
|
31
|
Mariam SH. The Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) Pandemic: Are Africa's Prevalence and Mortality Rates Relatively Low? Adv Virol 2022; 2022:3387784. [PMID: 35256885 PMCID: PMC8898136 DOI: 10.1155/2022/3387784] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/14/2022] [Accepted: 01/28/2022] [Indexed: 12/13/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the cause of coronavirus disease 19 (COVID-19), has been rapidly spreading since December 2019, and within a few months, it turned out to be a global pandemic. The disease affects primarily the lungs, but its pathogenesis spreads to other organs as well. However, its mortality rates vary, and in the majority of infected people, there are no serious consequences. Many factors including advanced age, preexisting health conditions, and genetic predispositions are believed to exacerbate outcomes of COVID-19. The virus contains several structural proteins including the spike (S) protein with subunits for binding, fusion, and internalization into host cells following interaction with host cell receptors and proteases (ACE2 and TMPRSS2, respectively) to cause the subsequent pathology. Although the pandemic has spread into all countries, most of Africa is thought of as having relatively less prevalence and mortality. Several hypotheses have been forwarded as reasons for this and include warmer weather conditions, vaccination with BCG (i.e., trained immunity), and previous malaria infection. From genetics or metabolic points of view, it has been proposed that most African populations could be protected to some degree because they lack some genetic susceptibility risk factors or have low-level expression of allelic variants, such as ACE2 and TMPRSS2 that are thought to be involved in increased infection risk or disease severity. The frequency of occurrence of α-1 antitrypsin (an inhibitor of a tissue-degrading protease, thereby protecting target host tissues including the lung) deficiency is also reported to be low in most African populations. More recently, infections in Africa appear to be on the rise. In general, there are few studies on the epidemiology and pathogenesis of the disease in African contexts, and the overall costs and human life losses due to the pandemic in Africa will be determined by all factors and conditions interacting in complex ways.
Collapse
Affiliation(s)
- Solomon H. Mariam
- Infectious Diseases Program, Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
32
|
Ding S, Gong SY, Grover J, Mohammadi M, Chen Y, Vézina D, Beaudoin-Bussières G, Verma VT, Goyette G, Richard J, Yang D, Smith AB, Pazgier M, Côté M, Abrams C, Mothes W, Finzi A, Baron C. VE607 Stabilizes SARS-CoV-2 Spike In the "RBD-up" Conformation and Inhibits Viral Entry. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.02.03.479007. [PMID: 35233570 PMCID: PMC8887069 DOI: 10.1101/2022.02.03.479007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
SARS-CoV-2 infection of host cells starts by binding of the Spike glycoprotein (S) to the ACE2 receptor. The S-ACE2 interaction is a potential target for therapies against COVID-19 as demonstrated by the development of immunotherapies blocking this interaction. Here, we present the commercially available VE607, comprised of three stereoisomers, that was originally described as an inhibitor of SARS-CoV-1. We show that VE607 specifically inhibits infection of SARS-CoV-1 and SARS-CoV-2 S-expressing pseudoviral particles as well as authentic SARS-CoV-2. VE607 stabilizes the receptor binding domain (RBD) in its "up" conformation. In silico docking and mutational analysis map the VE607 binding site at the RBD-ACE2 interface. The IC 50 values are in the low micromolar range for pseudoparticles derived from SARS-CoV-2 Wuhan/D614G as well as from variants of concern (Alpha, Beta, Gamma, Delta and Omicron), suggesting that VE607 has potential for the development of drugs against SARS-CoV-2 infections.
Collapse
|
33
|
Chatterjee D, Tauzin A, Laumaea A, Gong SY, Bo Y, Guilbault A, Goyette G, Bourassa C, Gendron-Lepage G, Medjahed H, Richard J, Moreira S, Côté M, Finzi A. Antigenicity of the Mu (B.1.621) and A.2.5 SARS-CoV-2 Spikes. Viruses 2022; 14:v14010144. [PMID: 35062348 PMCID: PMC8780535 DOI: 10.3390/v14010144] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 02/04/2023] Open
Abstract
The rapid emergence of SARS-CoV-2 variants is fueling the recent waves of the COVID-19 pandemic. Here, we assessed ACE2 binding and antigenicity of Mu (B.1.621) and A.2.5 Spikes. Both these variants carry some mutations shared by other emerging variants. Some of the pivotal mutations such as N501Y and E484K in the receptor-binding domain (RBD) detected in B.1.1.7 (Alpha), B.1.351 (Beta) and P.1 (Gamma) are now present within the Mu variant. Similarly, the L452R mutation of B.1.617.2 (Delta) variant is present in A.2.5. In this study, we observed that these Spike variants bound better to the ACE2 receptor in a temperature-dependent manner. Pseudoviral particles bearing the Spike of Mu were similarly neutralized by plasma from vaccinated individuals than those carrying the Beta (B.1.351) and Delta (B.1.617.2) Spikes. Altogether, our results indicate the importance of measuring critical parameters such as ACE2 interaction, plasma recognition and neutralization ability of each emerging variant.
Collapse
Affiliation(s)
- Debashree Chatterjee
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; (D.C.); (A.T.); (A.L.); (S.Y.G.); (G.G.); (C.B.); (G.G.-L.); (H.M.); (J.R.)
| | - Alexandra Tauzin
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; (D.C.); (A.T.); (A.L.); (S.Y.G.); (G.G.); (C.B.); (G.G.-L.); (H.M.); (J.R.)
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Annemarie Laumaea
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; (D.C.); (A.T.); (A.L.); (S.Y.G.); (G.G.); (C.B.); (G.G.-L.); (H.M.); (J.R.)
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Shang Yu Gong
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; (D.C.); (A.T.); (A.L.); (S.Y.G.); (G.G.); (C.B.); (G.G.-L.); (H.M.); (J.R.)
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 0G4, Canada
| | - Yuxia Bo
- Department of Biochemistry, Microbiology and Immunology, and Center for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (Y.B.); (M.C.)
| | - Aurélie Guilbault
- Laboratoire de Santé Publique du Québec, Institut Nationale de Santé Publique du Québec, Sainte-Anne-de-Bellevue, QC H9X 3R5, Canada; (A.G.); (S.M.)
| | - Guillaume Goyette
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; (D.C.); (A.T.); (A.L.); (S.Y.G.); (G.G.); (C.B.); (G.G.-L.); (H.M.); (J.R.)
| | - Catherine Bourassa
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; (D.C.); (A.T.); (A.L.); (S.Y.G.); (G.G.); (C.B.); (G.G.-L.); (H.M.); (J.R.)
| | - Gabrielle Gendron-Lepage
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; (D.C.); (A.T.); (A.L.); (S.Y.G.); (G.G.); (C.B.); (G.G.-L.); (H.M.); (J.R.)
| | - Halima Medjahed
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; (D.C.); (A.T.); (A.L.); (S.Y.G.); (G.G.); (C.B.); (G.G.-L.); (H.M.); (J.R.)
| | - Jonathan Richard
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; (D.C.); (A.T.); (A.L.); (S.Y.G.); (G.G.); (C.B.); (G.G.-L.); (H.M.); (J.R.)
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Sandrine Moreira
- Laboratoire de Santé Publique du Québec, Institut Nationale de Santé Publique du Québec, Sainte-Anne-de-Bellevue, QC H9X 3R5, Canada; (A.G.); (S.M.)
| | - Marceline Côté
- Department of Biochemistry, Microbiology and Immunology, and Center for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (Y.B.); (M.C.)
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; (D.C.); (A.T.); (A.L.); (S.Y.G.); (G.G.); (C.B.); (G.G.-L.); (H.M.); (J.R.)
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 0G4, Canada
- Correspondence:
| |
Collapse
|
34
|
Tauzin A, Gong SY, Beaudoin-Bussières G, Vézina D, Gasser R, Nault L, Marchitto L, Benlarbi M, Chatterjee D, Nayrac M, Laumaea A, Prévost J, Boutin M, Sannier G, Nicolas A, Bourassa C, Gendron-Lepage G, Medjahed H, Goyette G, Bo Y, Perreault J, Gokool L, Morrisseau C, Arlotto P, Bazin R, Dubé M, De Serres G, Brousseau N, Richard J, Rovito R, Côté M, Tremblay C, Marchetti GC, Duerr R, Martel-Laferrière V, Kaufmann DE, Finzi A. Strong humoral immune responses against SARS-CoV-2 Spike after BNT162b2 mRNA vaccination with a 16-week interval between doses. Cell Host Microbe 2022; 30:97-109.e5. [PMID: 34953513 PMCID: PMC8639412 DOI: 10.1016/j.chom.2021.12.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/08/2021] [Accepted: 11/29/2021] [Indexed: 12/21/2022]
Abstract
The standard regimen of the BNT162b2 mRNA vaccine for SARS-CoV-2 includes two doses administered three weeks apart. However, some public health authorities spaced these doses, raising questions about efficacy. We analyzed longitudinal humoral responses against the D614G strain and variants of concern for SARS-CoV-2 in a cohort of SARS-CoV-2-naive and previously infected individuals who received the BNT162b2 mRNA vaccine with sixteen weeks between doses. While administering a second dose to previously infected individuals did not significantly improve humoral responses, these responses significantly increased in naive individuals after a 16-week spaced second dose, achieving similar levels as in previously infected individuals. Comparing these responses to those elicited in individuals receiving a short (4-week) dose interval showed that a 16-week interval induced more robust responses among naive vaccinees. These findings suggest that a longer interval between vaccine doses does not compromise efficacy and may allow greater flexibility in vaccine administration.
Collapse
Affiliation(s)
- Alexandra Tauzin
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Shang Yu Gong
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Guillaume Beaudoin-Bussières
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Dani Vézina
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
| | - Romain Gasser
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Lauriane Nault
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Lorie Marchitto
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Mehdi Benlarbi
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
| | | | - Manon Nayrac
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Annemarie Laumaea
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Jérémie Prévost
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Marianne Boutin
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Gérémy Sannier
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Alexandre Nicolas
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | | | | | | | | | - Yuxia Bo
- Department of Biochemistry, Microbiology and Immunology, and Center for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa ON K1H 8M5, Canada
| | - Josée Perreault
- Héma-Québec, Affaires Médicales et Innovation, Quebec QC G1V 5C3, Canada
| | - Laurie Gokool
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
| | | | | | - Renée Bazin
- Héma-Québec, Affaires Médicales et Innovation, Quebec QC G1V 5C3, Canada
| | - Mathieu Dubé
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
| | - Gaston De Serres
- Institut National de Santé Publique du Québec, Quebec QC H2P 1E2, Canada
| | - Nicholas Brousseau
- Institut National de Santé Publique du Québec, Quebec QC H2P 1E2, Canada
| | - Jonathan Richard
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Roberta Rovito
- Clinic of Infectious Diseases, Department of Health Sciences, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Marceline Côté
- Department of Biochemistry, Microbiology and Immunology, and Center for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa ON K1H 8M5, Canada
| | - Cécile Tremblay
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Giulia C Marchetti
- Clinic of Infectious Diseases, Department of Health Sciences, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Ralf Duerr
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | - Valérie Martel-Laferrière
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada.
| | - Daniel E Kaufmann
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Médecine, Université de Montréal, Montreal, QC H3T 1J4, Canada.
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada; Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada.
| |
Collapse
|
35
|
Ding S, Adam D, Beaudoin-Bussières G, Tauzin A, Gong SY, Gasser R, Laumaea A, Anand SP, Privé A, Bourassa C, Medjahed H, Prévost J, Charest H, Richard J, Brochiero E, Finzi A. SARS-CoV-2 Spike Expression at the Surface of Infected Primary Human Airway Epithelial Cells. Viruses 2021; 14:5. [PMID: 35062211 PMCID: PMC8778294 DOI: 10.3390/v14010005] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 12/17/2022] Open
Abstract
Different serological assays were rapidly generated to study humoral responses against the SARS-CoV-2 Spike glycoprotein. Due to the intrinsic difficulty of working with SARS-CoV-2 authentic virus, most serological assays use recombinant forms of the Spike glycoprotein or its receptor binding domain (RBD). Cell-based assays expressing different forms of the Spike, as well as pseudoviral assays, are also widely used. To evaluate whether these assays recapitulate findings generated when the Spike is expressed in its physiological context (at the surface of the infected primary cells), we developed an intracellular staining against the SARS-CoV-2 nucleocapsid (N) to distinguish infected from uninfected cells. Human airway epithelial cells (pAECs) were infected with authentic SARS-CoV-2 D614G or Alpha variants. We observed robust cell-surface expression of the SARS-CoV-2 Spike at the surface of the infected pAECs using the conformational-independent anti-S2 CV3-25 antibody. The infected cells were also readily recognized by plasma from convalescent and vaccinated individuals and correlated with several serological assays. This suggests that the antigenicity of the Spike present at the surface of the infected primary cells is maintained in serological assays involving expression of the native full-length Spike.
Collapse
Affiliation(s)
- Shilei Ding
- Centre de Recherche du CHUM (CRCHUM), Montréal, QC H2X 0A9, Canada; (S.D.); (D.A.); (G.B.-B.); (A.T.); (S.Y.G.); (R.G.); (A.L.); (S.P.A.); (A.P.); (C.B.); (H.M.); (J.P.); (J.R.); (E.B.)
| | - Damien Adam
- Centre de Recherche du CHUM (CRCHUM), Montréal, QC H2X 0A9, Canada; (S.D.); (D.A.); (G.B.-B.); (A.T.); (S.Y.G.); (R.G.); (A.L.); (S.P.A.); (A.P.); (C.B.); (H.M.); (J.P.); (J.R.); (E.B.)
- Département de Médicine, Université de Montréal, Montréal, QC H2X 0A9, Canada
| | - Guillaume Beaudoin-Bussières
- Centre de Recherche du CHUM (CRCHUM), Montréal, QC H2X 0A9, Canada; (S.D.); (D.A.); (G.B.-B.); (A.T.); (S.Y.G.); (R.G.); (A.L.); (S.P.A.); (A.P.); (C.B.); (H.M.); (J.P.); (J.R.); (E.B.)
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H2X 0A9, Canada
| | - Alexandra Tauzin
- Centre de Recherche du CHUM (CRCHUM), Montréal, QC H2X 0A9, Canada; (S.D.); (D.A.); (G.B.-B.); (A.T.); (S.Y.G.); (R.G.); (A.L.); (S.P.A.); (A.P.); (C.B.); (H.M.); (J.P.); (J.R.); (E.B.)
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H2X 0A9, Canada
| | - Shang Yu Gong
- Centre de Recherche du CHUM (CRCHUM), Montréal, QC H2X 0A9, Canada; (S.D.); (D.A.); (G.B.-B.); (A.T.); (S.Y.G.); (R.G.); (A.L.); (S.P.A.); (A.P.); (C.B.); (H.M.); (J.P.); (J.R.); (E.B.)
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Romain Gasser
- Centre de Recherche du CHUM (CRCHUM), Montréal, QC H2X 0A9, Canada; (S.D.); (D.A.); (G.B.-B.); (A.T.); (S.Y.G.); (R.G.); (A.L.); (S.P.A.); (A.P.); (C.B.); (H.M.); (J.P.); (J.R.); (E.B.)
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H2X 0A9, Canada
| | - Annemarie Laumaea
- Centre de Recherche du CHUM (CRCHUM), Montréal, QC H2X 0A9, Canada; (S.D.); (D.A.); (G.B.-B.); (A.T.); (S.Y.G.); (R.G.); (A.L.); (S.P.A.); (A.P.); (C.B.); (H.M.); (J.P.); (J.R.); (E.B.)
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H2X 0A9, Canada
| | - Sai Priya Anand
- Centre de Recherche du CHUM (CRCHUM), Montréal, QC H2X 0A9, Canada; (S.D.); (D.A.); (G.B.-B.); (A.T.); (S.Y.G.); (R.G.); (A.L.); (S.P.A.); (A.P.); (C.B.); (H.M.); (J.P.); (J.R.); (E.B.)
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Anik Privé
- Centre de Recherche du CHUM (CRCHUM), Montréal, QC H2X 0A9, Canada; (S.D.); (D.A.); (G.B.-B.); (A.T.); (S.Y.G.); (R.G.); (A.L.); (S.P.A.); (A.P.); (C.B.); (H.M.); (J.P.); (J.R.); (E.B.)
| | - Catherine Bourassa
- Centre de Recherche du CHUM (CRCHUM), Montréal, QC H2X 0A9, Canada; (S.D.); (D.A.); (G.B.-B.); (A.T.); (S.Y.G.); (R.G.); (A.L.); (S.P.A.); (A.P.); (C.B.); (H.M.); (J.P.); (J.R.); (E.B.)
| | - Halima Medjahed
- Centre de Recherche du CHUM (CRCHUM), Montréal, QC H2X 0A9, Canada; (S.D.); (D.A.); (G.B.-B.); (A.T.); (S.Y.G.); (R.G.); (A.L.); (S.P.A.); (A.P.); (C.B.); (H.M.); (J.P.); (J.R.); (E.B.)
| | - Jérémie Prévost
- Centre de Recherche du CHUM (CRCHUM), Montréal, QC H2X 0A9, Canada; (S.D.); (D.A.); (G.B.-B.); (A.T.); (S.Y.G.); (R.G.); (A.L.); (S.P.A.); (A.P.); (C.B.); (H.M.); (J.P.); (J.R.); (E.B.)
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H2X 0A9, Canada
| | - Hugues Charest
- Laboratoire de Santé Publique du Québec, Institut Nationale de Santé Publique du Québec, Sainte-Anne-de-Bellevue, QC H9X 3R5, Canada;
| | - Jonathan Richard
- Centre de Recherche du CHUM (CRCHUM), Montréal, QC H2X 0A9, Canada; (S.D.); (D.A.); (G.B.-B.); (A.T.); (S.Y.G.); (R.G.); (A.L.); (S.P.A.); (A.P.); (C.B.); (H.M.); (J.P.); (J.R.); (E.B.)
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H2X 0A9, Canada
| | - Emmanuelle Brochiero
- Centre de Recherche du CHUM (CRCHUM), Montréal, QC H2X 0A9, Canada; (S.D.); (D.A.); (G.B.-B.); (A.T.); (S.Y.G.); (R.G.); (A.L.); (S.P.A.); (A.P.); (C.B.); (H.M.); (J.P.); (J.R.); (E.B.)
- Département de Médicine, Université de Montréal, Montréal, QC H2X 0A9, Canada
| | - Andrés Finzi
- Centre de Recherche du CHUM (CRCHUM), Montréal, QC H2X 0A9, Canada; (S.D.); (D.A.); (G.B.-B.); (A.T.); (S.Y.G.); (R.G.); (A.L.); (S.P.A.); (A.P.); (C.B.); (H.M.); (J.P.); (J.R.); (E.B.)
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H2X 0A9, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
| |
Collapse
|
36
|
Gong SY, Chatterjee D, Richard J, Prévost J, Tauzin A, Gasser R, Bo Y, Vézina D, Goyette G, Gendron-Lepage G, Medjahed H, Roger M, Côté M, Finzi A. Contribution of single mutations to selected SARS-CoV-2 emerging variants spike antigenicity. Virology 2021. [PMID: 34536797 DOI: 10.1101/2021.08.04.455140v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Towards the end of 2020, multiple variants of concern (VOCs) and variants of interest (VOIs) have arisen from the original SARS-CoV-2 Wuhan-Hu-1 strain. Mutations in the Spike protein are highly scrutinized for their impact on transmissibility, pathogenesis and vaccine efficacy. Here, we contribute to the growing body of literature on emerging variants by evaluating the impact of single mutations on the overall antigenicity of selected variants and their binding to the ACE2 receptor. We observe a differential contribution of single mutants to the global variants phenotype related to ACE2 interaction and antigenicity. Using biolayer interferometry, we observe that enhanced ACE2 interaction is mostly modulated by a decrease in off-rate. Finally, we made the interesting observation that the Spikes from tested emerging variants bind better to ACE2 at 37°C compared to the D614G variant. Whether improved ACE2 binding at higher temperature facilitates emerging variants transmission remain to be demonstrated.
Collapse
Affiliation(s)
- Shang Yu Gong
- Centre de Recherche du CHUM, QC, H2X 0A9, Canada; Department of Microbiology and Immunology, McGill University, Montreal, QC, H3A 0G4, Canada
| | | | - Jonathan Richard
- Centre de Recherche du CHUM, QC, H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, H2X 0A9, Canada
| | - Jérémie Prévost
- Centre de Recherche du CHUM, QC, H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, H2X 0A9, Canada
| | - Alexandra Tauzin
- Centre de Recherche du CHUM, QC, H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, H2X 0A9, Canada
| | - Romain Gasser
- Centre de Recherche du CHUM, QC, H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, H2X 0A9, Canada
| | - Yuxia Bo
- Department of Biochemistry, Microbiology and Immunology, and Center for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Dani Vézina
- Centre de Recherche du CHUM, QC, H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, H2X 0A9, Canada
| | | | | | | | - Michel Roger
- Centre de Recherche du CHUM, QC, H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, H2X 0A9, Canada; Laboratoire de Santé Publique du Québec, Institut Nationale de Santé Publique du Québec, Sainte-Anne-de-Bellevue, QC, H9X 3R5, Canada
| | - Marceline Côté
- Department of Biochemistry, Microbiology and Immunology, and Center for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Andrés Finzi
- Centre de Recherche du CHUM, QC, H2X 0A9, Canada; Department of Microbiology and Immunology, McGill University, Montreal, QC, H3A 0G4, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, H2X 0A9, Canada.
| |
Collapse
|
37
|
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) harbor mutations in the spike (S) glycoprotein that confer more efficient transmission and dampen the efficacy of COVID-19 vaccines and antibody therapies. S mediates virus entry and is the primary target for antibody responses, with structural studies of soluble S variants revealing an increased propensity toward conformations accessible to the human angiotensin-converting enzyme 2 (hACE2) receptor. However, real-time observations of conformational dynamics that govern the structural equilibriums of the S variants have been lacking. Here, we report single-molecule Förster resonance energy transfer (smFRET) studies of critical mutations observed in VOCs, including D614G and E484K, in the context of virus particles. Investigated variants predominately occupied more open hACE2-accessible conformations, agreeing with previous structures of soluble trimers. Additionally, these S variants exhibited slower transitions in hACE2-accessible/bound states. Our finding of increased S kinetic stability in the open conformation provides a new perspective on SARS-CoV-2 adaptation to the human population. IMPORTANCE SARS-CoV-2 surface S glycoprotein-the target of antibodies and vaccines-is responsible for binding to the cellular receptor hACE2. The interactions between S and hACE2 trigger structural rearrangements of S from closed to open conformations prerequisite for virus entry. Under the selection pressure imposed by adaptation to the human host and increasing vaccinations and convalescent patients, SARS-CoV-2 is evolving and has adopted numerous mutations on S variants. These promote virus spreading and immune evasion, partially by increasing the propensity of S to adopt receptor-binding competent open conformations. Here, we determined a time dimension, using smFRET to delineate the temporal prevalence of distinct structures of S in the context of virus particles. We present the first experimental evidence of decelerated transition dynamics from the open state, revealing increased stability of S open conformations to be part of the SARS-CoV-2 adaption strategies.
Collapse
|