1
|
Lyall M, Kamdar A, Sykes R, Aekbote BL, Gadegaard N, Berry C. Measuring contractile forces in vascular smooth muscle cells. Vascul Pharmacol 2025; 159:107488. [PMID: 40097082 DOI: 10.1016/j.vph.2025.107488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 03/06/2025] [Accepted: 03/14/2025] [Indexed: 03/19/2025]
Abstract
Vascular smooth muscle cell (VSMC) contractility mediates blood vessel tone. Abnormalities in VSMC function and in blood vessel tone can contribute to a variety of cardiovascular diseases. This review examines the role of VSMC contractile force in vascular disease, divided into two primary sections. The first section introducing VSMC mechanical contraction and detailing the molecular mechanisms of VSMC contractility in normal and pathological states. The second section exploring methods of measuring contraction in VSMCs, such as Ca2+ imaging, myography, and traction force microscopy, and highlighting where each method is of best use. Understanding the mechanical properties and contractile profiles of VSMCs offers valuable insights into disease mechanisms. By investigating these aspects, this review describes the potential of VSMC contractile forces as diagnostic markers and therapeutic targets in vascular disease.
Collapse
Affiliation(s)
- Maia Lyall
- School of Cardiovascular and Metabolic Health, University of Glasgow, G12 8TA, UK; Division of Biomedical Engineering, James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK
| | - Anna Kamdar
- School of Cardiovascular and Metabolic Health, University of Glasgow, G12 8TA, UK; West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, Glasgow G81 4DY, UK
| | - Robert Sykes
- School of Cardiovascular and Metabolic Health, University of Glasgow, G12 8TA, UK; West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, Glasgow G81 4DY, UK
| | - Badri L Aekbote
- Division of Biomedical Engineering, James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK
| | - Nikolaj Gadegaard
- Division of Biomedical Engineering, James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK.
| | - Colin Berry
- School of Cardiovascular and Metabolic Health, University of Glasgow, G12 8TA, UK; West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, Glasgow G81 4DY, UK; Department of Cardiology, Queen Elizabeth University Hospital, NHS Greater Glasgow and Clyde Health Board, Glasgow G51 4TF, UK.
| |
Collapse
|
2
|
Maxey AP, Wheeler SJ, Travis JM, McCain ML. Contractile responses of engineered human μmyometrium to prostaglandins and inflammatory cytokines. APL Bioeng 2024; 8:046115. [PMID: 39734362 PMCID: PMC11672207 DOI: 10.1063/5.0233737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 12/05/2024] [Indexed: 12/31/2024] Open
Abstract
Preterm labor is a prevalent public health problem and occurs when the myometrium, the smooth muscle layer of the uterus, begins contracting before the fetus reaches full term. Abnormal contractions of the myometrium also underlie painful menstrual cramps, known as dysmenorrhea. Both disorders have been associated with increased production of prostaglandins and cytokines, yet the functional impacts of inflammatory mediators on the contractility of human myometrium have not been fully established, in part due to a lack of effective model systems. To address this, we engineered human myometrial microtissues (μmyometrium) on compliant hydrogels designed for traction force microscopy. We then measured μmyometrium contractility in response to a panel of compounds with known contractile effects and inflammatory mediators. We observed that prostaglandin F2α, interleukin 6, and interleukin 8 induced contraction, while prostaglandin E1 and prostaglandin E2 induced relaxation. Our data suggest that inflammation may be a key factor modulating uterine contractility in conditions including, but not limited to, preterm labor or dysmenorrhea. More broadly, our μmyometrium model can be used to systematically identify the functional impact of many small molecules on human myometrium.
Collapse
Affiliation(s)
- Antonina P. Maxey
- Laboratory for Living Systems Engineering, Alfred E. Mann Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, California, 90089, USA
| | - Sage J. Wheeler
- Laboratory for Living Systems Engineering, Alfred E. Mann Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, California, 90089, USA
| | - Jaya M. Travis
- Laboratory for Living Systems Engineering, Alfred E. Mann Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, California, 90089, USA
| | | |
Collapse
|
3
|
Gargalionis AN, Papavassiliou KA, Basdra EK, Papavassiliou AG. Advances in non-small cell lung cancer mechanomedicine: deciphering the signaling networks that govern tumor-TME interactions. J Exp Clin Cancer Res 2024; 43:316. [PMID: 39616383 PMCID: PMC11608457 DOI: 10.1186/s13046-024-03242-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 11/28/2024] [Indexed: 03/21/2025] Open
Abstract
Cells from the tumor microenvironment (TME) interact with tumor cells in non-small cell lung cancer (NSCLC) to form a reciprocal crosstalk which influences tumor growth, proliferation, metastasis and multidrug response. This crosstalk is modulated by TME mechanical inputs, which elicit the processes of mechanosensing and mechanotransduction. Recent advances in unveiling these signaling networks establish the interdisciplinary field of mechanomedicine to exploit emerging diagnostic, predictive and therapeutic tools for more effective NSCLC treatments.
Collapse
Affiliation(s)
- Antonios N Gargalionis
- Laboratory of Clinical Biochemistry, Medical School, 'Attikon' University General Hospital, National and Kapodistrian University of Athens, 12462, Athens, Greece
| | - Kostas A Papavassiliou
- First University Department of Respiratory Medicine, Medical School, 'Sotiria' Chest Hospital, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Efthimia K Basdra
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece.
| |
Collapse
|
4
|
Li J, Yang D, Lin L, Yu L, Chen L, Lu K, Lan J, Zeng Y, Xu Y. Important functions and molecular mechanisms of aquaporins family on respiratory diseases: potential translational values. J Cancer 2024; 15:6073-6085. [PMID: 39440058 PMCID: PMC11493008 DOI: 10.7150/jca.98829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/25/2024] [Indexed: 10/25/2024] Open
Abstract
Aquaporins (AQPs) are a subgroup of small transmembrane transporters that are distributed in various types of tissues, including the lung, kidney, heart and central nervous system. It is evident that respiratory diseases represent a significant global health concern, with a considerable number of deaths occurring worldwide. Recent researches have demonstrated that AQPs play a pivotal role in respiratory diseases, including chronic obstructive pulmonary disease (COPD), asthma, acute respiratory distress syndrome (ARDS), and particularly non-small cell lung cancer (NSCLC). In the context of NSCLC, the overexpression of AQP1, AQP3, AQP4, and AQP5 has been demonstrated to facilitate tumor angiogenesis, as well as the proliferation, migration, and invasiveness of tumor cells. This review concisely explores the role of AQP family on respiratory diseases, to assess their clinical and translational significance for understanding molecular pathogenesis. However, the potential translation of AQPs biomarkers into clinical applications is promising and the understanding of the precise mechanisms influencing respiratory diseases is still ongoing. Addressing the challenges and outlining the future perspectives in AQPs development is essential for clinical progress in a concise manner.
Collapse
Affiliation(s)
- Jinshan Li
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China
- Fujian Provincial Key Laboratory of Lung Stem Cells, Quanzhou, Fujian Province, 362000, China
- Fujian Provincial Clinical Research Center of Interventional Respirology, Quanzhou, Fujian Province, 362000, China
| | - Dongyong Yang
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China
| | - Lanlan Lin
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China
- Fujian Provincial Key Laboratory of Lung Stem Cells, Quanzhou, Fujian Province, 362000, China
- Fujian Provincial Clinical Research Center of Interventional Respirology, Quanzhou, Fujian Province, 362000, China
| | - Liying Yu
- Central Laboratory, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China
| | - Luyang Chen
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China
- Fujian Provincial Key Laboratory of Lung Stem Cells, Quanzhou, Fujian Province, 362000, China
- Fujian Provincial Clinical Research Center of Interventional Respirology, Quanzhou, Fujian Province, 362000, China
| | - Kaiqiang Lu
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China
- Fujian Provincial Key Laboratory of Lung Stem Cells, Quanzhou, Fujian Province, 362000, China
- Fujian Provincial Clinical Research Center of Interventional Respirology, Quanzhou, Fujian Province, 362000, China
| | - Jieli Lan
- Clinical Research Unit, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Yiming Zeng
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China
- Fujian Provincial Key Laboratory of Lung Stem Cells, Quanzhou, Fujian Province, 362000, China
- Fujian Provincial Clinical Research Center of Interventional Respirology, Quanzhou, Fujian Province, 362000, China
| | - Yuan Xu
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China
- Fujian Provincial Key Laboratory of Lung Stem Cells, Quanzhou, Fujian Province, 362000, China
- Fujian Provincial Clinical Research Center of Interventional Respirology, Quanzhou, Fujian Province, 362000, China
- School of Public Health, Fujian Medical University, Fuzhou, Fujian Province, 350000, China
| |
Collapse
|
5
|
Jipp M, Wagner BD, Egbringhoff L, Teichmann A, Rübeling A, Nieschwitz P, Honigmann A, Chizhik A, Oswald TA, Janshoff A. Cell-substrate distance fluctuations of confluent cells enable fast and coherent collective migration. Cell Rep 2024; 43:114553. [PMID: 39150846 DOI: 10.1016/j.celrep.2024.114553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/18/2024] [Accepted: 07/12/2024] [Indexed: 08/18/2024] Open
Abstract
Collective cell migration is an emergent phenomenon, with long-range cell-cell communication influenced by various factors, including transmission of forces, viscoelasticity of individual cells, substrate interactions, and mechanotransduction. We investigate how alterations in cell-substrate distance fluctuations, cell-substrate adhesion, and traction forces impact the average velocity and temporal-spatial correlation of confluent monolayers formed by either wild-type (WT) MDCKII cells or zonula occludens (ZO)-1/2-depleted MDCKII cells (double knockdown [dKD]) representing highly contractile cells. The data indicate that confluent dKD monolayers exhibit decreased average velocity compared to less contractile WT cells concomitant with increased substrate adhesion, reduced traction forces, a more compact shape, diminished cell-cell interactions, and reduced cell-substrate distance fluctuations. Depletion of basal actin and myosin further supports the notion that short-range cell-substrate interactions, particularly fluctuations driven by basal actomyosin, significantly influence the migration speed of the monolayer on a larger length scale.
Collapse
Affiliation(s)
- Marcel Jipp
- University of Göttingen, Institute of Physical Chemistry, Tammannstrasse 6, 37077 Göttingen, Germany
| | - Bente D Wagner
- University of Göttingen, Institute of Physical Chemistry, Tammannstrasse 6, 37077 Göttingen, Germany
| | - Lisa Egbringhoff
- University of Göttingen, Institute of Physical Chemistry, Tammannstrasse 6, 37077 Göttingen, Germany
| | - Andreas Teichmann
- University of Göttingen, Institute of Physical Chemistry, Tammannstrasse 6, 37077 Göttingen, Germany
| | - Angela Rübeling
- University of Göttingen, Institute of Organic and Biomolecular Chemistry, Tammannstrasse 2, 37077 Göttingen, Germany
| | - Paul Nieschwitz
- University of Göttingen, Institute of Physical Chemistry, Tammannstrasse 6, 37077 Göttingen, Germany
| | - Alf Honigmann
- Biotechnology Center, Technische Universität Dresden, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Alexey Chizhik
- University of Göttingen, Third Institute of Physics, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Tabea A Oswald
- University of Göttingen, Institute of Organic and Biomolecular Chemistry, Tammannstrasse 2, 37077 Göttingen, Germany.
| | - Andreas Janshoff
- University of Göttingen, Institute of Physical Chemistry, Tammannstrasse 6, 37077 Göttingen, Germany.
| |
Collapse
|
6
|
Marvin Tan XH, Wang Y, Zhu X, Mendes FN, Chung PS, Chow YT, Man T, Lan H, Lin YJ, Zhang X, Zhang X, Nguyen T, Ardehali R, Teitell MA, Deb A, Chiou PY. Massive field-of-view sub-cellular traction force videography enabled by Single-Pixel Optical Tracers (SPOT). Biosens Bioelectron 2024; 258:116318. [PMID: 38701538 DOI: 10.1016/j.bios.2024.116318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 05/05/2024]
Abstract
We report a massive field-of-view and high-speed videography platform for measuring the sub-cellular traction forces of more than 10,000 biological cells over 13 mm2 at 83 frames per second. Our Single-Pixel Optical Tracers (SPOT) tool uses 2-dimensional diffraction gratings embedded into a soft substrate to convert cells' mechanical traction force into optical colors detectable by a video camera. The platform measures the sub-cellular traction forces of diverse cell types, including tightly connected tissue sheets and near isolated cells. We used this platform to explore the mechanical wave propagation in a tightly connected sheet of Neonatal Rat Ventricular Myocytes (NRVMs) and discovered that the activation time of some tissue regions are heterogeneous from the overall spiral wave behavior of the cardiac wave.
Collapse
Affiliation(s)
- Xing Haw Marvin Tan
- Department of Mechanical and Aerospace Engineering, University of California Los Angeles, Westwood Plaza, Los Angeles, CA, 90095, United States; Department of Bioengineering, University of California Los Angeles, Westwood Plaza, Los Angeles, CA, 90095, United States; Department of Electronics and Photonics, Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, 138632, Singapore
| | - Yijie Wang
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, 675 Charles E Young Dr S, Los Angeles, CA, 90095, United States
| | - Xiongfeng Zhu
- Department of Mechanical and Aerospace Engineering, University of California Los Angeles, Westwood Plaza, Los Angeles, CA, 90095, United States
| | - Felipe Nanni Mendes
- Department of Mechanical and Aerospace Engineering, University of California Los Angeles, Westwood Plaza, Los Angeles, CA, 90095, United States
| | - Pei-Shan Chung
- Department of Mechanical and Aerospace Engineering, University of California Los Angeles, Westwood Plaza, Los Angeles, CA, 90095, United States; Department of Bioengineering, University of California Los Angeles, Westwood Plaza, Los Angeles, CA, 90095, United States
| | - Yu Ting Chow
- Department of Mechanical and Aerospace Engineering, University of California Los Angeles, Westwood Plaza, Los Angeles, CA, 90095, United States
| | - Tianxing Man
- Department of Mechanical and Aerospace Engineering, University of California Los Angeles, Westwood Plaza, Los Angeles, CA, 90095, United States
| | - Hsin Lan
- Department of Mechanical and Aerospace Engineering, University of California Los Angeles, Westwood Plaza, Los Angeles, CA, 90095, United States
| | - Yen-Ju Lin
- Department of Electrical and Computer Engineering, University of California at Los Angeles, Westwood Plaza, Los Angeles, CA, 90095, United States
| | - Xiang Zhang
- Department of Mechanical and Aerospace Engineering, University of California Los Angeles, Westwood Plaza, Los Angeles, CA, 90095, United States
| | - Xiaohe Zhang
- Department of Mathematics, University of California Los Angeles, 520 Portola Plaza, Los Angeles, CA, 90095, United States
| | - Thang Nguyen
- Department of Bioengineering, University of California Los Angeles, Westwood Plaza, Los Angeles, CA, 90095, United States
| | - Reza Ardehali
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, 675 Charles E Young Dr S, Los Angeles, CA, 90095, United States
| | - Michael A Teitell
- Department of Bioengineering, University of California Los Angeles, Westwood Plaza, Los Angeles, CA, 90095, United States; Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, 675 Charles E Young Dr S, Los Angeles, CA, 90095, United States
| | - Arjun Deb
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, 675 Charles E Young Dr S, Los Angeles, CA, 90095, United States
| | - Pei-Yu Chiou
- Department of Mechanical and Aerospace Engineering, University of California Los Angeles, Westwood Plaza, Los Angeles, CA, 90095, United States; Department of Bioengineering, University of California Los Angeles, Westwood Plaza, Los Angeles, CA, 90095, United States.
| |
Collapse
|
7
|
Aydin H, Ozcelikkale A, Acar A. Exploiting Matrix Stiffness to Overcome Drug Resistance. ACS Biomater Sci Eng 2024; 10:4682-4700. [PMID: 38967485 PMCID: PMC11322920 DOI: 10.1021/acsbiomaterials.4c00445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 07/06/2024]
Abstract
Drug resistance is arguably one of the biggest challenges facing cancer research today. Understanding the underlying mechanisms of drug resistance in tumor progression and metastasis are essential in developing better treatment modalities. Given the matrix stiffness affecting the mechanotransduction capabilities of cancer cells, characterization of the related signal transduction pathways can provide a better understanding for developing novel therapeutic strategies. In this review, we aimed to summarize the recent advancements in tumor matrix biology in parallel to therapeutic approaches targeting matrix stiffness and its consequences in cellular processes in tumor progression and metastasis. The cellular processes governed by signal transduction pathways and their aberrant activation may result in activating the epithelial-to-mesenchymal transition, cancer stemness, and autophagy, which can be attributed to drug resistance. Developing therapeutic strategies to target these cellular processes in cancer biology will offer novel therapeutic approaches to tailor better personalized treatment modalities for clinical studies.
Collapse
Affiliation(s)
- Hakan
Berk Aydin
- Department
of Biological Sciences, Middle East Technical
University, 06800, Ankara, Turkey
| | - Altug Ozcelikkale
- Department
of Mechanical Engineering, Middle East Technical
University, 06800, Ankara, Turkey
- Graduate
Program of Biomedical Engineering, Middle
East Technical University, 06800, Ankara, Turkey
| | - Ahmet Acar
- Department
of Biological Sciences, Middle East Technical
University, 06800, Ankara, Turkey
| |
Collapse
|
8
|
Booth JH, Meek AT, Kronenberg NM, Pulver SR, Gather MC. Optical mapping of ground reaction force dynamics in freely behaving Drosophila melanogaster larvae. eLife 2024; 12:RP87746. [PMID: 39042447 PMCID: PMC11265794 DOI: 10.7554/elife.87746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024] Open
Abstract
During locomotion, soft-bodied terrestrial animals solve complex control problems at substrate interfaces, but our understanding of how they achieve this without rigid components remains incomplete. Here, we develop new all-optical methods based on optical interference in a deformable substrate to measure ground reaction forces (GRFs) with micrometre and nanonewton precision in behaving Drosophila larvae. Combining this with a kinematic analysis of substrate-interfacing features, we shed new light onto the biomechanical control of larval locomotion. Crawling in larvae measuring ~1 mm in length involves an intricate pattern of cuticle sequestration and planting, producing GRFs of 1-7 µN. We show that larvae insert and expand denticulated, feet-like structures into substrates as they move, a process not previously observed in soft-bodied animals. These 'protopodia' form dynamic anchors to compensate counteracting forces. Our work provides a framework for future biomechanics research in soft-bodied animals and promises to inspire improved soft-robot design.
Collapse
Affiliation(s)
- Jonathan H Booth
- SUPA, School of Physics and Astronomy, University of St AndrewsSt AndrewsUnited Kingdom
- Humboldt Centre for Nano- and Biophotonics, Department of Chemistry, University of CologneCologneGermany
- School of Psychology and Neuroscience, University of St AndrewsSt AndrewsUnited Kingdom
- Centre of Biophotonics, University of St AndrewsSt AndrewsUnited Kingdom
| | - Andrew T Meek
- SUPA, School of Physics and Astronomy, University of St AndrewsSt AndrewsUnited Kingdom
- Humboldt Centre for Nano- and Biophotonics, Department of Chemistry, University of CologneCologneGermany
- Centre of Biophotonics, University of St AndrewsSt AndrewsUnited Kingdom
| | - Nils M Kronenberg
- SUPA, School of Physics and Astronomy, University of St AndrewsSt AndrewsUnited Kingdom
- Humboldt Centre for Nano- and Biophotonics, Department of Chemistry, University of CologneCologneGermany
- Centre of Biophotonics, University of St AndrewsSt AndrewsUnited Kingdom
| | - Stefan R Pulver
- School of Psychology and Neuroscience, University of St AndrewsSt AndrewsUnited Kingdom
- Centre of Biophotonics, University of St AndrewsSt AndrewsUnited Kingdom
| | - Malte C Gather
- SUPA, School of Physics and Astronomy, University of St AndrewsSt AndrewsUnited Kingdom
- Humboldt Centre for Nano- and Biophotonics, Department of Chemistry, University of CologneCologneGermany
- Centre of Biophotonics, University of St AndrewsSt AndrewsUnited Kingdom
| |
Collapse
|
9
|
Kandasamy A, Yeh YT, Serrano R, Mercola M, Del Álamo JC. Uncertainty-Aware Traction Force Microscopy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.05.602172. [PMID: 39026786 PMCID: PMC11257441 DOI: 10.1101/2024.07.05.602172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Traction Force Microscopy (TFM) is a versatile tool to quantify cell-exerted forces by imaging and tracking fiduciary markers embedded in elastic substrates. The computations involved in TFM are ill-conditioned, and data smoothing or regularization is required to avoid overfitting the noise in the tracked substrate displacements. Most TFM calculations depend critically on the heuristic selection of regularization (hyper)parameters affecting the balance between overfitting and smoothing. However, TFM methods rarely estimate or account for measurement errors in substrate deformation to adjust the regularization level accordingly. Moreover, there is a lack of tools to quantify how these errors propagate to the recovered traction stresses. These limitations make it difficult to interpret TFM readouts and hinder comparing different experiments. This manuscript presents an uncertainty-aware TFM technique that estimates the variability in the magnitude and direction of the traction stress vector recovered at each point in space and time of each experiment. In this technique, substrate deformation and its uncertainty are quantified using a non-parametric bootstrap PIV method by resampling the microscopy image pixels (PIV-UQ). This information is passed to a hierarchical Bayesian framework that automatically selects its hyperparameters to perform spatially adaptive regularization conditioned on image quality and propagates the uncertainty to the traction stress readouts (TFM-UQ). We validate the performance of PIV-UQ and TFM-UQ using synthetic datasets with prescribed image quality variations and demonstrate the application of PIV-UQ and TFM-UQ to experimental datasets. These studies show that TFM-UQ locally adapts the level of smoothing, outperforming traditional regularization methods. They also illustrate how uncertainty-aware TFM tools can be used to objectively choose key image analysis parameters like PIV-UQ interrogation window size. We anticipate that these tools will allow for decoupling biological heterogeneity from measurement variability and facilitate automating the analysis of large datasets by parameter-free, input data-based regularization.
Collapse
|
10
|
Kołodziej T, Mrózek M, Sengottuvel S, Głowacki MJ, Ficek M, Gawlik W, Rajfur Z, Wojciechowski AM. Multimodal analysis of traction forces and the temperature dynamics of living cells with a diamond-embedded substrate. BIOMEDICAL OPTICS EXPRESS 2024; 15:4024-4043. [PMID: 39022544 PMCID: PMC11249686 DOI: 10.1364/boe.524293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/30/2024] [Accepted: 04/30/2024] [Indexed: 07/20/2024]
Abstract
Cells and tissues are constantly exposed to chemical and physical signals that regulate physiological and pathological processes. This study explores the integration of two biophysical methods: traction force microscopy (TFM) and optically detected magnetic resonance (ODMR) to concurrently assess cellular traction forces and the local relative temperature. We present a novel elastic substrate with embedded nitrogen-vacancy microdiamonds that facilitate ODMR-TFM measurements. Optimization efforts focused on minimizing sample illumination and experiment duration to mitigate biological perturbations. Our hybrid ODMR-TFM technique yields TFM maps and achieves approximately 1 K precision in relative temperature measurements. Our setup employs a simple wide-field fluorescence microscope with standard components, demonstrating the feasibility of the proposed technique in life science laboratories. By elucidating the physical aspects of cellular behavior beyond the existing methods, this approach opens avenues for a deeper understanding of cellular processes and may inspire the development of diverse biomedical applications.
Collapse
Affiliation(s)
- Tomasz Kołodziej
- Jagiellonian University Medical School, Faculty of Pharmacy, Kraków, Poland
- Jagiellonian University , Faculty of Physics, Astronomy, and Applied Computer Science, Kraków, Poland
| | - Mariusz Mrózek
- Jagiellonian University , Faculty of Physics, Astronomy, and Applied Computer Science, Kraków, Poland
| | - Saravanan Sengottuvel
- Jagiellonian University , Faculty of Physics, Astronomy, and Applied Computer Science, Kraków, Poland
- Jagiellonian University, Doctoral School of Exact and Natural Sciences, Kraków, Poland
| | - Maciej J Głowacki
- Gdansk University of Technology, Faculty of Electronics, Telecommunications, and Informatics, Department of Metrology and Optoelectronics, Gdańsk, Poland
| | - Mateusz Ficek
- Gdansk University of Technology, Faculty of Electronics, Telecommunications, and Informatics, Department of Metrology and Optoelectronics, Gdańsk, Poland
| | - Wojciech Gawlik
- Jagiellonian University , Faculty of Physics, Astronomy, and Applied Computer Science, Kraków, Poland
| | - Zenon Rajfur
- Jagiellonian University , Faculty of Physics, Astronomy, and Applied Computer Science, Kraków, Poland
| | - Adam M Wojciechowski
- Jagiellonian University , Faculty of Physics, Astronomy, and Applied Computer Science, Kraków, Poland
| |
Collapse
|
11
|
Cheung BCH, Abbed RJ, Wu M, Leggett SE. 3D Traction Force Microscopy in Biological Gels: From Single Cells to Multicellular Spheroids. Annu Rev Biomed Eng 2024; 26:93-118. [PMID: 38316064 DOI: 10.1146/annurev-bioeng-103122-031130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Cell traction force plays a critical role in directing cellular functions, such as proliferation, migration, and differentiation. Current understanding of cell traction force is largely derived from 2D measurements where cells are plated on 2D substrates. However, 2D measurements do not recapitulate a vital aspect of living systems; that is, cells actively remodel their surrounding extracellular matrix (ECM), and the remodeled ECM, in return, can have a profound impact on cell phenotype and traction force generation. This reciprocal adaptivity of living systems is encoded in the material properties of biological gels. In this review, we summarize recent progress in measuring cell traction force for cells embedded within 3D biological gels, with an emphasis on cell-ECM cross talk. We also provide perspectives on tools and techniques that could be adapted to measure cell traction force in complex biochemical and biophysical environments.
Collapse
Affiliation(s)
- Brian C H Cheung
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York, USA;
| | - Rana J Abbed
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, Illinois, USA;
| | - Mingming Wu
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York, USA;
| | - Susan E Leggett
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, Illinois, USA;
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
12
|
Jazwinska DE, Cho Y, Zervantonakis IK. Enhancing PKA-dependent mesothelial barrier integrity reduces ovarian cancer transmesothelial migration via inhibition of contractility. iScience 2024; 27:109950. [PMID: 38812549 PMCID: PMC11134878 DOI: 10.1016/j.isci.2024.109950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/25/2024] [Accepted: 05/07/2024] [Indexed: 05/31/2024] Open
Abstract
Cancer-mesothelial cell interactions are critical for multiple solid tumors to colonize the surface of peritoneal organs. Understanding mechanisms of mesothelial barrier dysfunction that impair its protective function is critical for discovering mesothelial-targeted therapies to combat metastatic spread. Here, we utilized a live cell imaging-based assay to elucidate the dynamics of ovarian cancer spheroid transmesothelial migration and mesothelial-generated mechanical forces. Treatment of mesothelial cells with the adenylyl cyclase agonist forskolin strengthens cell-cell junctions, reduces actomyosin fibers, contractility-driven matrix displacements, and cancer spheroid transmigration in a protein kinase A (PKA)-dependent mechanism. We also show that inhibition of the cytoskeletal regulator Rho-associated kinase in mesothelial cells phenocopies the anti-metastatic effects of forskolin. Conversely, upregulation of contractility in mesothelial cells disrupts cell-cell junctions and increases the clearance rates of ovarian cancer spheroids. Our findings demonstrate the critical role of mesothelial cell contractility and mesothelial barrier integrity in regulating metastatic dissemination within the peritoneal microenvironment.
Collapse
Affiliation(s)
- Dorota E. Jazwinska
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Youngbin Cho
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Ioannis K. Zervantonakis
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232, USA
| |
Collapse
|
13
|
Jakob R, Britt BR, Giampietro C, Mazza E, Ehret AE. Discrete network models of endothelial cells and their interactions with the substrate. Biomech Model Mechanobiol 2024; 23:941-957. [PMID: 38351427 PMCID: PMC11101350 DOI: 10.1007/s10237-023-01815-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/30/2023] [Indexed: 05/18/2024]
Abstract
Endothelial cell monolayers line the inner surfaces of blood and lymphatic vessels. They are continuously exposed to different mechanical loads, which may trigger mechanobiological signals and hence play a role in both physiological and pathological processes. Computer-based mechanical models of cells contribute to a better understanding of the relation between cell-scale loads and cues and the mechanical state of the hosting tissue. However, the confluency of the endothelial monolayer complicates these approaches since the intercellular cross-talk needs to be accounted for in addition to the cytoskeletal mechanics of the individual cells themselves. As a consequence, the computational approach must be able to efficiently model a large number of cells and their interaction. Here, we simulate cytoskeletal mechanics by means of molecular dynamics software, generally suitable to deal with large, locally interacting systems. Methods were developed to generate models of single cells and large monolayers with hundreds of cells. The single-cell model was considered for a comparison with experimental data. To this end, we simulated cell interactions with a continuous, deformable substrate, and computationally replicated multistep traction force microscopy experiments on endothelial cells. The results indicate that cell discrete network models are able to capture relevant features of the mechanical behaviour and are thus well-suited to investigate the mechanics of the large cytoskeletal network of individual cells and cell monolayers.
Collapse
Affiliation(s)
- Raphael Jakob
- Institute for Mechanical Systems, ETH Zurich, CH-8092, Zürich, Switzerland
| | - Ben R Britt
- Institute for Mechanical Systems, ETH Zurich, CH-8092, Zürich, Switzerland
- Empa, Swiss Federal Laboratories for Materials Science and Technology, CH-8600, Dübendorf, Switzerland
| | - Costanza Giampietro
- Institute for Mechanical Systems, ETH Zurich, CH-8092, Zürich, Switzerland
- Empa, Swiss Federal Laboratories for Materials Science and Technology, CH-8600, Dübendorf, Switzerland
| | - Edoardo Mazza
- Institute for Mechanical Systems, ETH Zurich, CH-8092, Zürich, Switzerland
- Empa, Swiss Federal Laboratories for Materials Science and Technology, CH-8600, Dübendorf, Switzerland
| | - Alexander E Ehret
- Institute for Mechanical Systems, ETH Zurich, CH-8092, Zürich, Switzerland.
- Empa, Swiss Federal Laboratories for Materials Science and Technology, CH-8600, Dübendorf, Switzerland.
| |
Collapse
|
14
|
Li M. Harnessing atomic force microscopy-based single-cell analysis to advance physical oncology. Microsc Res Tech 2024; 87:631-659. [PMID: 38053519 DOI: 10.1002/jemt.24467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/07/2023]
Abstract
Single-cell analysis is an emerging and promising frontier in the field of life sciences, which is expected to facilitate the exploration of fundamental laws of physiological and pathological processes. Single-cell analysis allows experimental access to cell-to-cell heterogeneity to reveal the distinctive behaviors of individual cells, offering novel opportunities to dissect the complexity of severe human diseases such as cancers. Among the single-cell analysis tools, atomic force microscopy (AFM) is a powerful and versatile one which is able to nondestructively image the fine topographies and quantitatively measure multiple mechanical properties of single living cancer cells in their native states under aqueous conditions with unprecedented spatiotemporal resolution. Over the past few decades, AFM has been widely utilized to detect the structural and mechanical behaviors of individual cancer cells during the process of tumor formation, invasion, and metastasis, yielding numerous unique insights into tumor pathogenesis from the biomechanical perspective and contributing much to the field of cancer mechanobiology. Here, the achievements of AFM-based analysis of single cancer cells to advance physical oncology are comprehensively summarized, and challenges and future perspectives are also discussed. RESEARCH HIGHLIGHTS: Achievements of AFM in characterizing the structural and mechanical behaviors of single cancer cells are summarized, and future directions are discussed. AFM is not only capable of visualizing cellular fine structures, but can also measure multiple cellular mechanical properties as well as cell-generated mechanical forces. There is still plenty of room for harnessing AFM-based single-cell analysis to advance physical oncology.
Collapse
Affiliation(s)
- Mi Li
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
15
|
Abstract
The elastic properties of conductance arteries are one of the most important hemodynamic functions in the body, and data continue to emerge regarding the importance of their dysfunction in vascular aging and a range of cardiovascular diseases. Here, we provide new insight into the integrative physiology of arterial stiffening and its clinical consequence. We also comprehensively review progress made on pathways/molecules that appear today as important basic determinants of arterial stiffness, particularly those mediating the vascular smooth muscle cell (VSMC) contractility, plasticity and stiffness. We focus on membrane and nuclear mechanotransduction, clearance function of the vascular wall, phenotypic switching of VSMCs, immunoinflammatory stimuli and epigenetic mechanisms. Finally, we discuss the most important advances of the latest clinical studies that revisit the classical therapeutic concepts of arterial stiffness and lead to a patient-by-patient strategy according to cardiovascular risk exposure and underlying disease.
Collapse
|
16
|
Bock F, Dong X, Li S, Viquez OM, Sha E, Tantengco M, Hennen EM, Plosa E, Ramezani A, Brown KL, Whang YM, Terker AS, Arroyo JP, Harrison DG, Fogo A, Brakebusch CH, Pozzi A, Zent R. Rac1 promotes kidney collecting duct repair by mechanically coupling cell morphology to mitotic entry. SCIENCE ADVANCES 2024; 10:eadi7840. [PMID: 38324689 PMCID: PMC10849615 DOI: 10.1126/sciadv.adi7840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 01/03/2024] [Indexed: 02/09/2024]
Abstract
Prolonged obstruction of the ureter, which leads to injury of the kidney collecting ducts, results in permanent structural damage, while early reversal allows for repair. Cell structure is defined by the actin cytoskeleton, which is dynamically organized by small Rho guanosine triphosphatases (GTPases). In this study, we identified the Rho GTPase, Rac1, as a driver of postobstructive kidney collecting duct repair. After the relief of ureteric obstruction, Rac1 promoted actin cytoskeletal reconstitution, which was required to maintain normal mitotic morphology allowing for successful cell division. Mechanistically, Rac1 restricted excessive actomyosin activity that stabilized the negative mitotic entry kinase Wee1. This mechanism ensured mechanical G2-M checkpoint stability and prevented premature mitotic entry. The repair defects following injury could be rescued by direct myosin inhibition. Thus, Rac1-dependent control of the actin cytoskeleton integrates with the cell cycle to mediate kidney tubular repair by preventing dysmorphic cells from entering cell division.
Collapse
Affiliation(s)
- Fabian Bock
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Veterans Affairs Hospital, Tennessee Valley Healthcare System, Nashville, TN, USA
- Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xinyu Dong
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Shensen Li
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Olga M. Viquez
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Eric Sha
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Matthew Tantengco
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Elizabeth M. Hennen
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Erin Plosa
- Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alireza Ramezani
- Interdisciplinary Center for Quantitative Modeling in Biology, University of California, Riverside, CA, USA
- Department of Physics and Astronomy, University of California, Riverside, CA, USA
| | - Kyle L. Brown
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Young Mi Whang
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Andrew S. Terker
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Juan Pablo Arroyo
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Veterans Affairs Hospital, Tennessee Valley Healthcare System, Nashville, TN, USA
- Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, TN, USA
| | - David G. Harrison
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Agnes Fogo
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Cord H. Brakebusch
- Biotech Research Center, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Ambra Pozzi
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Veterans Affairs Hospital, Tennessee Valley Healthcare System, Nashville, TN, USA
- Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Physiology and Molecular Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Roy Zent
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Veterans Affairs Hospital, Tennessee Valley Healthcare System, Nashville, TN, USA
- Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
17
|
Kim M, Panagiotakopoulou M, Chen C, Ruiz SB, Ganesh K, Tammela T, Heller DA. Micro-engineering and nano-engineering approaches to investigate tumour ecosystems. Nat Rev Cancer 2023; 23:581-599. [PMID: 37353679 PMCID: PMC10528361 DOI: 10.1038/s41568-023-00593-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/25/2023] [Indexed: 06/25/2023]
Abstract
The interactions among tumour cells, the tumour microenvironment (TME) and non-tumour tissues are of interest to many cancer researchers. Micro-engineering approaches and nanotechnologies are under extensive exploration for modelling these interactions and measuring them in situ and in vivo to investigate therapeutic vulnerabilities in cancer and extend a systemic view of tumour ecosystems. Here we highlight the greatest opportunities for improving the understanding of tumour ecosystems using microfluidic devices, bioprinting or organ-on-a-chip approaches. We also discuss the potential of nanosensors that can transmit information from within the TME or elsewhere in the body to address scientific and clinical questions about changes in chemical gradients, enzymatic activities, metabolic and immune profiles of the TME and circulating analytes. This Review aims to connect the cancer biology and engineering communities, presenting biomedical technologies that may expand the methodologies of the former, while inspiring the latter to develop approaches for interrogating cancer ecosystems.
Collapse
Affiliation(s)
- Mijin Kim
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY, USA
| | | | - Chen Chen
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY, USA
- Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
- Tri-Institutional PhD Program in Chemical Biology, Sloan Kettering Institute, New York, NY, USA
| | - Stephen B Ruiz
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY, USA
- Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Karuna Ganesh
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY, USA
- Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Tuomas Tammela
- Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
- Cancer Biology and Genetics Program, Sloan Kettering Institute, New York, NY, USA
| | - Daniel A Heller
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY, USA.
- Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
18
|
Delanoë-Ayari H, Hiraiwa T, Marcq P, Rieu JP, Saw TB. 2.5D Traction Force Microscopy: Imaging three-dimensional cell forces at interfaces and biological applications. Int J Biochem Cell Biol 2023; 161:106432. [PMID: 37290687 DOI: 10.1016/j.biocel.2023.106432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 05/30/2023] [Accepted: 06/04/2023] [Indexed: 06/10/2023]
Abstract
The forces that cells, tissues, and organisms exert on the surface of a soft substrate can be measured using Traction Force Microscopy (TFM), an important and well-established technique in Mechanobiology. The usual TFM technique (two-dimensional, 2D TFM) treats only the in-plane component of the traction forces and omits the out-of-plane forces at the substrate interfaces (2.5D) that turn out to be important in many biological processes such as tissue migration and tumour invasion. Here, we review the imaging, material, and analytical tools to perform "2.5D TFM" and explain how they are different from 2D TFM. Challenges in 2.5D TFM arise primarily from the need to work with a lower imaging resolution in the z-direction, track fiducial markers in three-dimensions, and reliably and efficiently reconstruct mechanical stress from substrate deformation fields. We also discuss how 2.5D TFM can be used to image, map, and understand the complete force vectors in various important biological events of various length-scales happening at two-dimensional interfaces, including focal adhesions forces, cell diapedesis across tissue monolayers, the formation of three-dimensional tissue structures, and the locomotion of large multicellular organisms. We close with future perspectives including the use of new materials, imaging and machine learning techniques to continuously improve the 2.5D TFM in terms of imaging resolution, speed, and faithfulness of the force reconstruction procedure.
Collapse
Affiliation(s)
- Hélène Delanoë-Ayari
- University of Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622 Villeurbanne, France.
| | - Tetsuya Hiraiwa
- Mechanobiology Institute, National University of Singapore, Singapore; Institute of Physics, Academia Sinica, Taipei, Taiwan.
| | - Philippe Marcq
- Laboratoire Physique et Mécanique des Milieux Hétérogènes, Sorbonne Université, CNRS UMR 7636, ESPCI, Université Paris Cité, Paris, France.
| | - Jean-Paul Rieu
- University of Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622 Villeurbanne, France.
| | - Thuan Beng Saw
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
| |
Collapse
|
19
|
Bucki R, Iwamoto DV, Shi X, Kerr KE, Byfield FJ, Suprewicz Ł, Skłodowski K, Sutaria J, Misiak P, Wilczewska AZ, Ramachandran S, Wolfe A, Thanh MTH, Whalen E, Patteson AE, Janmey PA. Extracellular vimentin is sufficient to promote cell attachment, spreading, and motility by a mechanism involving N-acetyl glucosamine-containing structures. J Biol Chem 2023; 299:104963. [PMID: 37356720 PMCID: PMC10392088 DOI: 10.1016/j.jbc.2023.104963] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 05/29/2023] [Accepted: 06/06/2023] [Indexed: 06/27/2023] Open
Abstract
Vimentin intermediate filaments form part of the cytoskeleton of mesenchymal cells, but under pathological conditions often associated with inflammation, vimentin filaments depolymerize as the result of phosphorylation or citrullination, and vimentin oligomers are secreted or released into the extracellular environment. In the extracellular space, vimentin can bind surfaces of cells and the extracellular matrix, and the interaction between extracellular vimentin and cells can trigger changes in cellular functions, such as activation of fibroblasts to a fibrotic phenotype. The mechanism by which extracellular vimentin binds external cell membranes and whether vimentin alone can act as an adhesive anchor for cells is largely uncharacterized. Here, we show that various cell types (normal and vimentin null fibroblasts, mesenchymal stem cells, and A549 lung carcinoma cells) attach to and spread on polyacrylamide hydrogel substrates covalently linked to vimentin. Using traction force microscopy and spheroid expansion assays, we characterize how different cell types respond to extracellular vimentin. Cell attachment to and spreading on vimentin-coated surfaces is inhibited by hyaluronic acid degrading enzymes, hyaluronic acid synthase inhibitors, soluble heparin or N-acetyl glucosamine, all of which are treatments that have little or no effect on the same cell types binding to collagen-coated hydrogels. These studies highlight the effectiveness of substrate-bound vimentin as a ligand for cells and suggest that carbohydrate structures, including the glycocalyx and glycosylated cell surface proteins that contain N-acetyl glucosamine, form a novel class of adhesion receptors for extracellular vimentin that can either directly support cell adhesion to a substrate or fine-tune the glycocalyx adhesive properties.
Collapse
Affiliation(s)
- Robert Bucki
- Department of Physiology, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Białystok, Poland.
| | - Daniel V Iwamoto
- Department of Physiology, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Xuechen Shi
- Department of Physiology, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Katherine E Kerr
- Department of Physiology, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Fitzroy J Byfield
- Department of Physiology, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Łukasz Suprewicz
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Białystok, Poland
| | - Karol Skłodowski
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Białystok, Poland
| | - Julian Sutaria
- Department of Physiology, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Paweł Misiak
- Faculty of Chemistry, University of Białystok, Białystok, Poland
| | | | | | - Aaron Wolfe
- Ichor Life Sciences, Inc, LaFayette, New York, USA; Lewis School of Health Sciences, Clarkson University, Potsdam, New York, USA
| | - Minh-Tri Ho Thanh
- Physics Department, BioInspired Institute, Syracuse University, Syracuse, New York, USA
| | - Eli Whalen
- Physics Department, BioInspired Institute, Syracuse University, Syracuse, New York, USA
| | - Alison E Patteson
- Physics Department, BioInspired Institute, Syracuse University, Syracuse, New York, USA.
| | - Paul A Janmey
- Department of Physiology, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
20
|
Marvin Tan XH, Wang Y, Zhu X, Mendes FN, Chung PS, Chow YT, Man T, Lan H, Lin YJ, Zhang X, Zhang X, Nguyen T, Ardehali R, Teitell MA, Deb A, Chiou PY. Massively Concurrent Sub-Cellular Traction Force Videography enabled by Single-Pixel Optical Tracers (SPOTs). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.25.550454. [PMID: 37546726 PMCID: PMC10402113 DOI: 10.1101/2023.07.25.550454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
We report a large field-of-view and high-speed videography platform for measuring the sub-cellular traction forces of more than 10,000 biological cells over 13mm 2 at 83 frames per second. Our Single-Pixel Optical Tracers (SPOT) tool uses 2-dimensional diffraction gratings embedded into a soft substrate to convert cells' mechanical traction stress into optical colors detectable by a video camera. The platform measures the sub-cellular traction forces of diverse cell types, including tightly connected tissue sheets and near isolated cells. We used this platform to explore the mechanical wave propagation in a tightly connected sheet of Neonatal Rat Ventricular Myocytes (NRVMs) and discovered that the activation time of some tissue regions are heterogeneous from the overall spiral wave behavior of the cardiac wave. One-Sentence Summary An optical platform for fast, concurrent measurements of cell mechanics at 83 frames per second, over a large area of 13mm 2 .
Collapse
|
21
|
Pawlak MR, Smiley AT, Ramirez MP, Kelly MD, Shamsan GA, Anderson SM, Smeester BA, Largaespada DA, Odde DJ, Gordon WR. RAD-TGTs: high-throughput measurement of cellular mechanotype via rupture and delivery of DNA tension probes. Nat Commun 2023; 14:2468. [PMID: 37117218 PMCID: PMC10147940 DOI: 10.1038/s41467-023-38157-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 04/19/2023] [Indexed: 04/30/2023] Open
Abstract
Mechanical forces drive critical cellular processes that are reflected in mechanical phenotypes, or mechanotypes, of cells and their microenvironment. We present here "Rupture And Deliver" Tension Gauge Tethers (RAD-TGTs) in which flow cytometry is used to record the mechanical history of thousands of cells exerting forces on their surroundings via their propensity to rupture immobilized DNA duplex tension probes. We demonstrate that RAD-TGTs recapitulate prior DNA tension probe studies while also yielding a gain of fluorescence in the force-generating cell that is detectable by flow cytometry. Furthermore, the rupture propensity is altered following disruption of the cytoskeleton using drugs or CRISPR-knockout of mechanosensing proteins. Importantly, RAD-TGTs can differentiate distinct mechanotypes among mixed populations of cells. We also establish oligo rupture and delivery can be measured via DNA sequencing. RAD-TGTs provide a facile and powerful assay to enable high-throughput mechanotype profiling, which could find various applications, for example, in combination with CRISPR screens and -omics analysis.
Collapse
Affiliation(s)
- Matthew R Pawlak
- Departments of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Adam T Smiley
- Departments of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Maria Paz Ramirez
- Departments of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Marcus D Kelly
- Departments of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Ghaidan A Shamsan
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Sarah M Anderson
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | | | | | - David J Odde
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Wendy R Gordon
- Departments of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
22
|
Reflections on the Biology of Cell Culture Models: Living on the Edge of Oxidative Metabolism in Cancer Cells. Int J Mol Sci 2023; 24:ijms24032717. [PMID: 36769044 PMCID: PMC9916950 DOI: 10.3390/ijms24032717] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
Nowadays, the study of cell metabolism is a hot topic in cancer research. Many studies have used 2D conventional cell cultures for their simplicity and the facility to infer mechanisms. However, the limitations of bidimensional cell cultures to recreate architecture, mechanics, and cell communication between tumor cells and their environment, have forced the development of other more realistic in vitro methodologies. Therefore, the explosion of 3D culture techniques and the necessity to reduce animal experimentation to a minimum has attracted the attention of researchers in the field of cancer metabolism. Here, we revise the limitations of actual culture models and discuss the utility of several 3D culture techniques to resolve those limitations.
Collapse
|
23
|
Issler M, Colin-York H, Fritzsche M. Quantifying Immune Cell Force Generation Using Traction Force Microscopy. Methods Mol Biol 2023; 2654:363-373. [PMID: 37106194 DOI: 10.1007/978-1-0716-3135-5_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Immune cells rely on the generation of mechanical force to carry out their function. Consequently, there is a pressing need for quantitative methodologies that permit the probing of the spatio-temporal distribution of mechanical forces generated by immune cells. In this chapter, we provide a guide to quantify immune cell force generation using traction force microscopy (TFM), with a specific focus on its application to the study of the T-cell immunological synapse.
Collapse
Affiliation(s)
- Marcel Issler
- Kennedy Institute for Rheumatology, University of Oxford, Oxford, UK
- Institute of Biology, Humboldt Universität zu Berlin, Berlin, Germany
| | - Huw Colin-York
- Kennedy Institute for Rheumatology, University of Oxford, Oxford, UK
| | - Marco Fritzsche
- Kennedy Institute for Rheumatology, University of Oxford, Oxford, UK.
- Rosalind Franklin Institute, Harwell Campus, Didcot, UK.
| |
Collapse
|
24
|
Joshi R, Han SB, Cho WK, Kim DH. The role of cellular traction forces in deciphering nuclear mechanics. Biomater Res 2022; 26:43. [PMID: 36076274 PMCID: PMC9461125 DOI: 10.1186/s40824-022-00289-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/28/2022] [Indexed: 11/10/2022] Open
Abstract
Cellular forces exerted on the extracellular matrix (ECM) during adhesion and migration under physiological and pathological conditions regulate not only the overall cell morphology but also nuclear deformation. Nuclear deformation can alter gene expression, integrity of the nuclear envelope, nucleus-cytoskeletal connection, chromatin architecture, and, in some cases, DNA damage responses. Although nuclear deformation is caused by the transfer of forces from the ECM to the nucleus, the role of intracellular organelles in force transfer remains unclear and a challenging area of study. To elucidate nuclear mechanics, various factors such as appropriate biomaterial properties, processing route, cellular force measurement technique, and micromanipulation of nuclear forces must be understood. In the initial phase of this review, we focused on various engineered biomaterials (natural and synthetic extracellular matrices) and their manufacturing routes along with the properties required to mimic the tumor microenvironment. Furthermore, we discussed the principle of tools used to measure the cellular traction force generated during cell adhesion and migration, followed by recently developed techniques to gauge nuclear mechanics. In the last phase of this review, we outlined the principle of traction force microscopy (TFM), challenges in the remodeling of traction forces, microbead displacement tracking algorithm, data transformation from bead movement, and extension of 2-dimensional TFM to multiscale TFM.
Collapse
Affiliation(s)
- Rakesh Joshi
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, South Korea
| | - Seong-Beom Han
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, South Korea
| | - Won-Ki Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
| | - Dong-Hwee Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, South Korea.
- Department of Integrative Energy Engineering, College of Engineering, Korea University, Seoul, South Korea.
| |
Collapse
|