1
|
Runer A, Schneider F, Wawer K, Gruber K, Arora R, Nagl M, Schmoelz W. N-chlorotaurine does not alter structural tendon properties: a comparative biomechanical study. Arch Orthop Trauma Surg 2025; 145:223. [PMID: 40186777 PMCID: PMC11972176 DOI: 10.1007/s00402-025-05851-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 03/25/2025] [Indexed: 04/07/2025]
Abstract
INTRODUCTION N-chlorotaurine (NCT) is a well-tolerated antiseptic with broad-spectrum microbicidal activity and could therefore be a promising alternative to vancomycin, the current standard of care for the prevention of postoperative septic arthritis (PSA) after anterior cruciate ligament reconstruction (ACLR). MATERIALS AND METHODS The aim of this study was to evaluate whether soaking bovine extensor tendons in N-chlorotaurine (NCT), vancomycin, or 0.9% saline influences structural tendon properties. In this controlled biomechanical study, fifty bovine extensor tendons were randomized into groups and soaked for 10 min in distilled water solutions containing either 1% vancomycin, 1% NCT, 5% NCT, 5% NCT with 0.1% ammonium chloride, or 0.9% saline. Tendons were then mounted in cryo-clamps and subjected to uniaxial tensile testing until failure. Failure mode, ultimate load, ultimate elongation, and stiffness of the linear region from the load-elongation curve were extracted and compared for each graft. RESULTS No statistically significant differences were detected across all measured parameters (p > 0.05) and solutions. The mean ultimate load, ultimate elongation, stiffness and elastic modulus were not statistically significantly different between all five tested solutions. CONCLUSIONS Both NCT and vancomycin even at high concentrations do not impair structural tendon properties compared to 0.9% saline. NCT appears to be safe for clinical use from a biomechanical perspective.
Collapse
Affiliation(s)
- Armin Runer
- Medical University of Innsbruck, Dept. of Orthopedics and Trauma Surgery, Innsbruck, Austria.
- Technical University of Munich, Dept of Sports Orthopedics, Munich, Germany.
| | - Friedemann Schneider
- Medical University of Innsbruck, Dept. of Orthopedics and Trauma Surgery, Innsbruck, Austria.
| | - Karl Wawer
- Medical University of Innsbruck, Dept. of Orthopedics and Trauma Surgery, Innsbruck, Austria
| | - Kerstin Gruber
- Medical University of Innsbruck, Dept. of Orthopedics and Trauma Surgery, Innsbruck, Austria
| | - Rohit Arora
- Medical University of Innsbruck, Dept. of Orthopedics and Trauma Surgery, Innsbruck, Austria
| | - Markus Nagl
- Medical University of Innsbruck, Institute of Hygiene and Medical Microbiology, Innsbruck, Austria
| | - Werner Schmoelz
- Medical University of Innsbruck, Dept. of Orthopedics and Trauma Surgery, Innsbruck, Austria.
| |
Collapse
|
2
|
Smit TH. On growth and scoliosis. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2024; 33:2439-2450. [PMID: 38705903 DOI: 10.1007/s00586-024-08276-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/15/2024] [Accepted: 04/15/2024] [Indexed: 05/07/2024]
Abstract
PURPOSE To describe the physiology of spinal growth in patients with adolescent idiopathic scoliosis (AIS). METHODS Narrative review of the literature with a focus on mechanisms of growth. RESULTS In his landmark publication On Growth and Form, D'Arcy Thompson wrote that the anatomy of an organism reflects the forces it is subjected to. This means that mechanical forces underlie the shape of tissues, organs and organisms, whether healthy or diseased. AIS is called idiopathic because the underlying cause of the deformation is unknown, although many factors are associated. Eventually, however, any deformity is due to mechanical forces. It has long been shown that the typical curvature and rotation of the scoliotic spine could result from vertebrae and intervertebral discs growing faster than the ligaments attached to them. This raises the question why in AIS the ligaments do not keep up with the speed of spinal growth. The spine of an AIS patient deviates from healthy spines in various ways. Growth is later but faster, resulting in higher vertebrae and intervertebral discs. Vertebral bone density is lower, which suggests less spinal compression. This also preserves the notochordal cells and the swelling pressure in the nucleus pulposus. Less spinal compression is due to limited muscular activity, and low muscle mass indeed underlies the lower body mass index (BMI) in AIS patients. Thus, AIS spines grow faster because there is less spinal compression that counteracts the force of growth (Hueter-Volkmann Law). Ligaments consist of collagen fibres that grow by tension, fibrillar sliding and the remodelling of cross-links. Growth and remodelling are enhanced by dynamic loading and by hormones like estrogen. However, they are opposed by static loading. CONCLUSION Increased spinal elongation and reduced ligamental growth result in differential strain and a vicious circle of scoliotic deformation. Recognising the physical and biological cues that contribute to differential growth allows earlier diagnosis of AIS and prevention in children at risk.
Collapse
Affiliation(s)
- Theodoor H Smit
- Department of Orthopaedic Surgery and Sports Medicine, Amsterdam University Medical Centres, Amsterdam Movement Sciences, Amsterdam, The Netherlands.
- Department of Medical Biology, Amsterdam University Medical Centres, Meibergdreef 9, Room K2-140, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|
3
|
Hirst GS, Sarker S, Terry BS. Differences in the mechanical properties of intestinal tissue based on preservation freezing duration and temperature. J Mech Behav Biomed Mater 2024; 152:106440. [PMID: 38340478 DOI: 10.1016/j.jmbbm.2024.106440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 09/28/2023] [Accepted: 01/26/2024] [Indexed: 02/12/2024]
Abstract
In this study, tissue samples were stress tested to determine if freezing duration and temperature alter their mechanical properties. Tissue samples taken from the small intestine of pigs were assigned to 5 groups: fresh tissue, -28.9 °C for 7 days, -62.2 °C for 7 days, -28.9 °C for 30 days, and -62.2 °C for 30 days. Tissue was stored in PBS for the assigned temperature and duration until testing occurred with the exception of fresh tissue which was tested at sample collection. Before testing, samples were thawed in a room temperature bath, and the thickness was measured. Samples were then mounted in a biaxial test system using four anchoring rakes. Each sample was pulled to a strain of 0.2 with the corresponding forces recorded. This cycle of relaxation to 0.2 strain was repeated 5 times per sample. The thickness and force values were used to find the first Piola-Kirchhoff stress experienced at 0.2 strain and the strain energy. The average stress values in the circumferential direction were: fresh tissue: 22.3 ± 9.85 kPa; -28.9 °C for 7 days: 37.8 ± 14.1 kPa; -62.2 °C for 7 days: 46.5 ± 19.0 kPa; -28.9 °C for 30 days: 46.4 ± 22.7 kPa; -62.2 °C for 30 days: 40.1 ± 19.5 kPa. The stress and strain energy values of frozen tissue were statistically higher than the fresh tissue, although no statistical difference was found by varying duration or temperature. Based on this result, we determined that freezing tissue at any of the tested temperatures or durations increases the stiffness of the thawed tissue. This possibly occurs due to the directional formation of ice, which increases ion concentrations and glycosaminoglycan (GAG) interactions near collagen fibrils.
Collapse
|
4
|
Ostadi Moghaddam A, Arshee MR, Lin Z, Sivaguru M, Phillips H, McFarlin BL, Toussaint KC, Wagoner Johnson AJ. An indentation-based framework for probing the glycosaminoglycan-mediated interactions of collagen fibrils. J Mech Behav Biomed Mater 2023; 140:105726. [PMID: 36827935 PMCID: PMC10061372 DOI: 10.1016/j.jmbbm.2023.105726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/01/2023] [Accepted: 02/11/2023] [Indexed: 02/17/2023]
Abstract
Microscale deformation processes, such as reorientation, buckling, and sliding of collagen fibrils, determine the mechanical behavior and function of collagenous tissue. While changes in the structure and composition of tendon have been extensively studied, the deformation mechanisms that modulate the interaction of extracellular matrix (ECM) constituents are not well understood, partly due to the lack of appropriate techniques to probe the behavior. In particular, the role of glycosaminoglycans (GAGs) in modulating collagen fibril interactions has remained controversial. Some studies suggest that GAGs act as crosslinkers between the collagen fibrils, while others have not found such evidence and postulate that GAGs have other functions. Here, we introduce a new framework, relying on orientation-dependent indentation behavior of tissue and computational modeling, to evaluate the shear-mediated function of GAGs in modulating the collagen fibril interactions at a length scale more relevant to fibrils compared to bulk tests. Specifically, we use chondroitinase ABC to enzymatically deplete the GAGs in tendon; measure the orientation-dependent indentation response in transverse and longitudinal orientations; and infer the microscale deformation mechanisms and function of GAGs from a microstructural computational model and a modified shear-lag model. We validate the modeling approach experimentally and show that GAGs facilitate collagen fibril sliding with minimal crosslinking function. We suggest that the molecular reconfiguration of GAGs is a potential mechanism for their microscale, strain-dependent viscoelastic behavior. This study reveals the mechanisms that control the orientation-dependent indentation response by affecting the shear deformation and provides new insights into the mechanical function of GAGs and collagen crosslinkers in collagenous tissue.
Collapse
Affiliation(s)
- A Ostadi Moghaddam
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - M R Arshee
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Z Lin
- School of Engineering, Brown University, Providence, RI, 02912, USA
| | - M Sivaguru
- Flow Cytometry and Microscopy to Omics, Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Champaign, IL, 61820, USA
| | - H Phillips
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - B L McFarlin
- Department of Women, Children and Family Health Science, University of Illinois College of Nursing, Chicago, IL, 60612, USA
| | - K C Toussaint
- School of Engineering, Brown University, Providence, RI, 02912, USA
| | - A J Wagoner Johnson
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Champaign, IL, 61820, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
5
|
Fang J, Ma Z, Liu D, Wang Z, Cheng S, Zheng S, Wu H, Xia P, Chen X, Yang R, Hao L, Zhang Y. Co-expression of recombinant human collagen α1(III) chain with viral prolyl 4-hydroxylase in Pichia pastoris GS115. Protein Expr Purif 2022; 201:106184. [PMID: 36191842 DOI: 10.1016/j.pep.2022.106184] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/16/2022] [Accepted: 09/27/2022] [Indexed: 10/07/2022]
Abstract
The Collagen α1(Ш) chain (COL3A1) is an important structural protein on the surface of human skin. The activity of prolyl 4-hydroxylase (P4H) is crucial to maintaining the stable triple-helix structure and function of human COL3A1. To obtain hydroxylated human COL3A1, virus-derived P4H A085R was co-expressed with human COL3A1 in Pichia pastoris GS115. Colony PCR analysis and sequencing after transfection confirmed that the target gene was successfully inserted. Quantitative reverse transcription PCR (RT-qPCR) indicated that human COL3A1 and P4H A085R were expressed at mRNA levels in the clones. SDS-PAGE and Western blot analysis of supernatant from the recombinant methylotrophic yeast culture showed that recombinant human COL3A1 (rhCOL3A1) was secreted into the culture medium with an apparent molecular mass of approximately 130 kDa. It was observed that the amount of secreted rhCOL3A1 was highest at 120 h after induction. Furthermore, mass spectrometry analysis demonstrated that rhCOL3A1 was successfully expressed in P. pastoris. The His-tagged rhCOL3A1 protein was purified by Ni-affinity column chromatography.
Collapse
Affiliation(s)
- Jiayuan Fang
- College of Animal Science, Jilin University, 5333 Xi'an Road, Changchun, Jilin, 130062, China
| | - Ze Ma
- College of Animal Science, Jilin University, 5333 Xi'an Road, Changchun, Jilin, 130062, China
| | - Dongyue Liu
- Jilin Province Guoda Biological Engineering Co. LTD, 3999 Air Street, Changchun, Jilin, 130102, China
| | - Zhaoguo Wang
- College of Animal Science, Jilin University, 5333 Xi'an Road, Changchun, Jilin, 130062, China
| | - Shuqin Cheng
- College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin, 130062, China
| | - Shuo Zheng
- College of Animal Science, Jilin University, 5333 Xi'an Road, Changchun, Jilin, 130062, China
| | - Hongyan Wu
- College of Animal Science, Jilin University, 5333 Xi'an Road, Changchun, Jilin, 130062, China
| | - Peijun Xia
- College of Animal Science, Jilin University, 5333 Xi'an Road, Changchun, Jilin, 130062, China
| | - Xi Chen
- College of Animal Science, Jilin University, 5333 Xi'an Road, Changchun, Jilin, 130062, China
| | - Rui Yang
- College of Animal Science, Jilin University, 5333 Xi'an Road, Changchun, Jilin, 130062, China
| | - Linlin Hao
- College of Animal Science, Jilin University, 5333 Xi'an Road, Changchun, Jilin, 130062, China.
| | - Ying Zhang
- College of Animal Science, Jilin University, 5333 Xi'an Road, Changchun, Jilin, 130062, China
| |
Collapse
|
6
|
Eisner LE, Rosario R, Andarawis-Puri N, Arruda EM. The Role of the Non-Collagenous Extracellular Matrix in Tendon and Ligament Mechanical Behavior: A Review. J Biomech Eng 2022; 144:1128818. [PMID: 34802057 PMCID: PMC8719050 DOI: 10.1115/1.4053086] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Indexed: 12/26/2022]
Abstract
Tendon is a connective tissue that transmits loads from muscle to bone, while ligament is a similar tissue that stabilizes joint articulation by connecting bone to bone. The 70-90% of tendon and ligament's extracellular matrix (ECM) is composed of a hierarchical collagen structure that provides resistance to deformation primarily in the fiber direction, and the remaining fraction consists of a variety of non-collagenous proteins, proteoglycans, and glycosaminoglycans (GAGs) whose mechanical roles are not well characterized. ECM constituents such as elastin, the proteoglycans decorin, biglycan, lumican, fibromodulin, lubricin, and aggrecan and their associated GAGs, and cartilage oligomeric matrix protein (COMP) have been suggested to contribute to tendon and ligament's characteristic quasi-static and viscoelastic mechanical behavior in tension, shear, and compression. The purpose of this review is to summarize existing literature regarding the contribution of the non-collagenous ECM to tendon and ligament mechanics, and to highlight key gaps in knowledge that future studies may address. Using insights from theoretical mechanics and biology, we discuss the role of the non-collagenous ECM in quasi-static and viscoelastic tensile, compressive, and shear behavior in the fiber direction and orthogonal to the fiber direction. We also address the efficacy of tools that are commonly used to assess these relationships, including enzymatic degradation, mouse knockout models, and computational models. Further work in this field will foster a better understanding of tendon and ligament damage and healing as well as inform strategies for tissue repair and regeneration.
Collapse
Affiliation(s)
- Lainie E Eisner
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109; Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853
| | - Ryan Rosario
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109
| | - Nelly Andarawis-Puri
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853
| | - Ellen M Arruda
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109; Professor Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109; Professor Program in Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
7
|
An ultrastructural 3D reconstruction method for observing the arrangement of collagen fibrils and proteoglycans in the human aortic wall under mechanical load. Acta Biomater 2022; 141:300-314. [PMID: 35065266 DOI: 10.1016/j.actbio.2022.01.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/10/2022] [Accepted: 01/14/2022] [Indexed: 12/31/2022]
Abstract
An insight into changes of soft biological tissue ultrastructures under loading conditions is essential to understand their response to mechanical stimuli. Therefore, this study offers an approach to investigate the arrangement of collagen fibrils and proteoglycans (PGs), which are located within the mechanically loaded aortic wall. The human aortic samples were either fixed directly with glutaraldehyde in the load-free state or subjected to a planar biaxial extension test prior to fixation. The aortic ultrastructure was recorded using electron tomography. Collagen fibrils and PGs were segmented using convolutional neural networks, particularly the ESPNet model. The 3D ultrastructural reconstructions revealed a complex organization of collagen fibrils and PGs. In particular, we observed that not all PGs are attached to the collagen fibrils, but some fill the spaces between the fibrils with a clear distance to the collagen. The complex organization cannot be fully captured or can be severely misinterpreted in 2D. The approach developed opens up practical possibilities, including the quantification of the spatial relationship between collagen fibrils and PGs as a function of the mechanical load. Such quantification can also be used to compare tissues under different conditions, e.g., healthy and diseased, to improve or develop new material models. STATEMENT OF SIGNIFICANCE: The developed approach enables the 3D reconstruction of collagen fibrils and proteoglycans as they are embedded in the loaded human aortic wall. This methodological pipeline comprises the knowledge of arterial mechanics, imaging with transmission electron microscopy and electron tomography, segmentation of 3D image data sets with convolutional neural networks and finally offers a unique insight into the ultrastructural changes in the aortic tissue caused by mechanical stimuli.
Collapse
|
8
|
Al Makhzoomi AK, Kirk TB, Dye DE, Allison GT. Contribution of glycosaminoglycans to the structural and mechanical properties of tendons - A multiscale study. J Biomech 2021; 128:110796. [PMID: 34649066 DOI: 10.1016/j.jbiomech.2021.110796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/17/2021] [Accepted: 10/03/2021] [Indexed: 11/18/2022]
Abstract
Tendinopathy of the Achilles tendon contributes to a large range of disorders, including mechanical damage and degenerative diseases. Glycosaminoglycans (GAGs), are thought to play a role in the mechanical strength of tendons by forming cross-links between collagen molecules and allowing the transmission of forces between fibrils. This study assessed the response of GAG-depleted tendons to damage induced by fatigue loading, investigating the mechanical damage (stiffness, hysteresis and maximum load), macrostructural changes (tenocyte morphology, fiber anisotropy and waviness) assessed by confocal imaging and nanostructural changes (fibril D-periodicity length) within the same non-viable intact tendons. Changes in fiber waviness and tenocyte shape are strongly correlated to mechanical and nano-structural (D-periodicity elongation) properties in both Control and GAG-depleted tendons. This study supports firstly, the vital role GAGs play as mechanical connectors facilitating the load transfer between the fibrils and their hydrophilic role in facilitating fibril sliding. Secondly, that observed changes in tenocyte shape and fiber waviness correlate with tendon stiffness and other mechanical profiles.
Collapse
Affiliation(s)
- Anas K Al Makhzoomi
- School of Allied Health, Faculty of Health Science, Curtin University, Perth, Western Australia, Australia.
| | - Thomas B Kirk
- School of Science, Engineering and Technology, RMIT University Vietnam, Ho Chi Minh City, Vietnam
| | - Danielle E Dye
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Perth, Western Australia, Australia
| | - Garry T Allison
- Research Office, Curtin University, Perth, Western Australia, Australia
| |
Collapse
|
9
|
Xu Q, Torres JE, Hakim M, Babiak PM, Pal P, Battistoni CM, Nguyen M, Panitch A, Solorio L, Liu JC. Collagen- and hyaluronic acid-based hydrogels and their biomedical applications. MATERIALS SCIENCE & ENGINEERING. R, REPORTS : A REVIEW JOURNAL 2021; 146:100641. [PMID: 34483486 PMCID: PMC8409465 DOI: 10.1016/j.mser.2021.100641] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Hydrogels have been widely investigated in biomedical fields due to their similar physical and biochemical properties to the extracellular matrix (ECM). Collagen and hyaluronic acid (HA) are the main components of the ECM in many tissues. As a result, hydrogels prepared from collagen and HA hold inherent advantages in mimicking the structure and function of the native ECM. Numerous studies have focused on the development of collagen and HA hydrogels and their biomedical applications. In this extensive review, we provide a summary and analysis of the sources, features, and modifications of collagen and HA. Specifically, we highlight the fabrication, properties, and potential biomedical applications as well as promising commercialization of hydrogels based on these two natural polymers.
Collapse
Affiliation(s)
- Qinghua Xu
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jessica E Torres
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Mazin Hakim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| | - Paulina M Babiak
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Pallabi Pal
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Carly M Battistoni
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Michael Nguyen
- Department of Biomedical Engineering, University of California Davis, Davis, California 95616, United States
| | - Alyssa Panitch
- Department of Biomedical Engineering, University of California Davis, Davis, California 95616, United States
| | - Luis Solorio
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| | - Julie C Liu
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| |
Collapse
|
10
|
Al Makhzoomi AK, Kirk TB, Dye DE, Allison GT. The influence of glycosaminoglycan proteoglycan side chains on tensile force transmission and the nanostructural properties of Achilles tendons. Microsc Res Tech 2021; 85:233-243. [PMID: 34390286 DOI: 10.1002/jemt.23899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 07/16/2021] [Accepted: 07/25/2021] [Indexed: 01/13/2023]
Abstract
This study investigates the nanostructural mechanisms that lie behind load transmission in tendons and the role of glycosaminoglycans (GAGs) in the transmission of force in the tendon extracellular matrix. The GAGs in white New Zealand rabbit Achilles tendons were enzymatically depleted, and the tendons subjected to cyclic loading at 6% strain for up to 2 hr. A nanoscale morphometric assessment of fibril deformation under strain was linked with the decline in the tendon macroscale mechanical properties. An atomic force microscope (AFM) was employed to characterize the D-periodicity within and between fibril bundles (WFB and BFB, respectively). By the end of the second hour of the applied strain, the WFB and BFB D-periodicities had significantly increased in the GAG-depleted group (29% increase compared with 15% for the control, p < .0001). No statistically significant differences were found between WFB and BFB D-periodicities in either the control or GAG-depleted groups, suggesting that mechanical load in Achilles tendons is uniformly distributed and fairly homogenous among the WFB and BFB networks. The results of this study have provided evidence of a cycle-dependent mechanism of damage accumulation. The accurate quantification of fibril elongation (measured as the WFB and BFB D-periodicity lengths) in response to macroscopic applied strain has assisted in assessing the complex structure-function relationship in Achilles tendon.
Collapse
Affiliation(s)
- Anas K Al Makhzoomi
- School of Allied Health, Faculty of Health Science, Curtin University, Perth, Western Australia, Australia
| | - Thomas B Kirk
- Dean, School of Science, Engineering and Technology, RMIT University Vietnam, Ho Chi Minh City, Vietnam
| | - Danielle E Dye
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Perth, Western Australia, Australia
| | - Garry T Allison
- Associate Deputy Vice-Chancellor -Research Excellence - Curtin University, Perth, Western Australia, Australia, Member Board of Directors; Sports Medicine Australia, Perth
| |
Collapse
|
11
|
Yan LJ, Sun LC, Cao KY, Chen YL, Zhang LJ, Liu GM, Jin T, Cao MJ. Type I collagen from sea cucumber (Stichopus japonicus) and the role of matrix metalloproteinase-2 in autolysis. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.100959] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
12
|
Luo F, Zhong X, Gao M, Peng B, Long Z. Progress and mechanism of breaking glycoconjugates by glycosidases in skin for promoting unhairing and fiber opening-up in leather manufacture. A review. JOURNAL OF LEATHER SCIENCE AND ENGINEERING 2020. [DOI: 10.1186/s42825-020-00025-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Abstract
The glycoconjugates, herein glyco-proteins, existing in animal skins are closely related to the effectiveness of unhairing and fiber opening-up. Glycosidases have been used in leather making processes to reduce pollutants and improve leather quality. But the selection of glycosidases is still blind because the related mechanisms are not well understood yet. Hence, the animal skin structures and glycoconjugates components, the advances in the methods and mechanisms of removing glycoconjugates related to unhairing and fiber opening-up in leather manufacture, the kinds, compositions, structures and functions of typical glycoconjugates in skin are summarized. Then the approaches to destroy them, possible glycosidases suitable for leather making and their acting sites are analyzed based on the recognition of glycoconjugates in skin and the specificities of glycosidases toward substrates. It is expected to provide useful information for the optimization of glycosidases and the development of new enzymes and the cleaner technologies of unhairing and opening up fiber bundles assisted by glycosidases.
Graphical abstract
Collapse
|
13
|
Zappia J, Joiret M, Sanchez C, Lambert C, Geris L, Muller M, Henrotin Y. From Translation to Protein Degradation as Mechanisms for Regulating Biological Functions: A Review on the SLRP Family in Skeletal Tissues. Biomolecules 2020; 10:E80. [PMID: 31947880 PMCID: PMC7023458 DOI: 10.3390/biom10010080] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/19/2019] [Accepted: 12/26/2019] [Indexed: 12/27/2022] Open
Abstract
The extracellular matrix can trigger cellular responses through its composition and structure. Major extracellular matrix components are the proteoglycans, which are composed of a core protein associated with glycosaminoglycans, among which the small leucine-rich proteoglycans (SLRPs) are the largest family. This review highlights how the codon usage pattern can be used to modulate cellular response and discusses the biological impact of post-translational events on SLRPs, including the substitution of glycosaminoglycan moieties, glycosylation, and degradation. These modifications are listed, and their impacts on the biological activities and structural properties of SLRPs are described. We narrowed the topic to skeletal tissues undergoing dynamic remodeling.
Collapse
Affiliation(s)
- Jérémie Zappia
- Bone and Cartilage Research Unit, Arthropôle Liège, Center for Interdisciplinary research on Medicines (CIRM) Liège, Liège University, Institute of Pathology, CHU Sart-Tilman, 4000 Liège, Belgium; (J.Z.); (C.S.); (C.L.)
| | - Marc Joiret
- Biomechanics Research Unit, B34 GIGA-R, In Silico Medicine, Liège University, CHU Sart-Tilman, 4000 Liège, Belgium; (M.J.); (L.G.)
| | - Christelle Sanchez
- Bone and Cartilage Research Unit, Arthropôle Liège, Center for Interdisciplinary research on Medicines (CIRM) Liège, Liège University, Institute of Pathology, CHU Sart-Tilman, 4000 Liège, Belgium; (J.Z.); (C.S.); (C.L.)
| | - Cécile Lambert
- Bone and Cartilage Research Unit, Arthropôle Liège, Center for Interdisciplinary research on Medicines (CIRM) Liège, Liège University, Institute of Pathology, CHU Sart-Tilman, 4000 Liège, Belgium; (J.Z.); (C.S.); (C.L.)
| | - Liesbet Geris
- Biomechanics Research Unit, B34 GIGA-R, In Silico Medicine, Liège University, CHU Sart-Tilman, 4000 Liège, Belgium; (M.J.); (L.G.)
| | - Marc Muller
- Laboratory for Organogenesis and Regeneration (LOR), GIGA-Research, Liège University, Avenue de l’Hôpital, B-4000 Liège, Belgium;
| | - Yves Henrotin
- Bone and Cartilage Research Unit, Arthropôle Liège, Center for Interdisciplinary research on Medicines (CIRM) Liège, Liège University, Institute of Pathology, CHU Sart-Tilman, 4000 Liège, Belgium; (J.Z.); (C.S.); (C.L.)
- Physical therapy and Rehabilitation department, Princess Paola Hospital, Vivalia, B-6900 Marche-en-Famenne, Belgium
- Artialis SA, GIGA Tower, Level 3, CHU Sart-Tilman, 4000 Liège, Belgium
| |
Collapse
|
14
|
Rigoglio NN, Rabelo ACS, Borghesi J, de Sá Schiavo Matias G, Fratini P, Prazeres PHDM, Pimentel CMMM, Birbrair A, Miglino MA. The Tumor Microenvironment: Focus on Extracellular Matrix. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1245:1-38. [PMID: 32266651 DOI: 10.1007/978-3-030-40146-7_1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The extracellular matrix (ECM) regulates the development and maintains tissue homeostasis. The ECM is composed of a complex network of molecules presenting distinct biochemical properties to regulate cell growth, survival, motility, and differentiation. Among their components, proteoglycans (PGs) are considered one of the main components of ECM. Its composition, biomechanics, and anisotropy are exquisitely tuned to reflect the physiological state of the tissue. The loss of ECM's homeostasis is seen as one of the hallmarks of cancer and, typically, defines transitional events in tumor progression and metastasis. In this chapter, we discuss the types of proteoglycans and their roles in cancer. It has been observed that the amount of some ECM components is increased, while others are decreased, depending on the type of tumor. However, both conditions corroborate with tumor progression and malignancy. Therefore, ECM components have an increasingly important role in carcinogenesis and this leads us to believe that their understanding may be a key in the discovery of new anti-tumor therapies. In this book, the main ECM components will be discussed in more detail in each chapter.
Collapse
Affiliation(s)
- Nathia Nathaly Rigoglio
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| | - Ana Carolina Silveira Rabelo
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| | - Jessica Borghesi
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| | - Gustavo de Sá Schiavo Matias
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| | - Paula Fratini
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| | | | | | - Alexander Birbrair
- Department of Radiology, Columbia University Medical Center, New York, NY, USA
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Maria Angelica Miglino
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil.
| |
Collapse
|
15
|
Liu ZQ, Liu YX, Zhou DY, Liu XY, Dong XP, Li DM, Shahidi F. The role of matrix metalloprotease (MMP) to the autolysis of sea cucumber (Stichopus japonicus). JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:5752-5759. [PMID: 31162681 DOI: 10.1002/jsfa.9843] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/11/2019] [Accepted: 05/30/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Sea cucumber (Stichopus japonicus) is easy to autolysis in response to a variety of environmental and mechanical factors. In the current study, collagen fibres were extracted from fresh sea cucumber body wall and then incubated with endogenous matrix metalloprotease (MMP) of sea cucumber. Scanning electron microscopy (SEM), differential scanning calorimetry (DSC), chemical analysis and sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) analysis were utilized to demonstrate the changes in collagen fibres, collagen fibrils and collagen proteins. Moreover, a verification experiment was also carried out to confirm the contribution of MMP to the autolysis of sea cucumber. RESULTS Endogenous MMP caused complete depolymerization of collagen fibres into smaller collagen fibril bundles and collagen fibrils due to the fracture of proteoglycan interfibrillar bridges. Meanwhile, endogenous MMP also caused partial degradation of collagen fibrils by releasing soluble hydroxyproline and pyridinium cross-links. Furthermore, the treatment with MMP inhibitor (1,10-phenanthroline) prevented the autolysis of tissue blocks from S. japonicus dermis. CONCLUSION Endogenous MMP was the key enzyme in the autolysis of sea cucumber, while its action still focused on high-level structures of collagens especially collagen fibres. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zi-Qiang Liu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
| | - Yu-Xin Liu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
- National Engineering Research Center of Seafood, Dalian, P. R. China
| | - Da-Yong Zhou
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
- National Engineering Research Center of Seafood, Dalian, P. R. China
| | - Xiao-Yang Liu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
- National Engineering Research Center of Seafood, Dalian, P. R. China
| | - Xiu-Ping Dong
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
- National Engineering Research Center of Seafood, Dalian, P. R. China
| | - Dong-Mei Li
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
- National Engineering Research Center of Seafood, Dalian, P. R. China
| | - Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St John's, Canada
| |
Collapse
|
16
|
Effects of collagenase type I on the structural features of collagen fibres from sea cucumber (Stichopus japonicus) body wall. Food Chem 2019; 301:125302. [PMID: 31387034 DOI: 10.1016/j.foodchem.2019.125302] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 07/30/2019] [Accepted: 07/30/2019] [Indexed: 11/23/2022]
Abstract
The autolysis of sea cucumber is caused by depolymerisation of collagen fibres and unfolding of fibrils. In order to highlight the role of collagenase in sea cucumber autolysis, collagen fibres from sea cucumber were hydrolysed with collagenase type I. Electron microscopy (EM) results indicated the collagenase caused partial depolymerisation of collagen fibres into fibrils due to the fracture of proteoglycan interfibrillar bridges, as well as uncoiling of collagen fibrils. Chemical analysis and SDS-PAGE both indicated collagenase induced a time-dependent release of glycosaminoglycans (GAGs) and soluble proteins, which further demonstrated the degradation of proteoglycan interfibrillar bridges. Collagenase also degraded collagens by releasing soluble hydroxyproline (Hpy), with the dissolution rate of Hyp reaching 11.11% after 72 h. Fourier transform infrared analysis showed that collagenase caused the reduction of intermolecular interactions and structural order of collagen. Hence, collagenase participated in the autolysis of sea cucumber by deteriorating both macromolecular and monomeric collagens.
Collapse
|
17
|
Linka K, Hillgärtner M, Itskov M. Fatigue of soft fibrous tissues: Multi-scale mechanics and constitutive modeling. Acta Biomater 2018; 71:398-410. [PMID: 29550441 DOI: 10.1016/j.actbio.2018.03.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 02/21/2018] [Accepted: 03/05/2018] [Indexed: 10/17/2022]
Abstract
In recent experimental studies a possible damage mechanism of collagenous tissues mainly caused by fatigue was disclosed. In this contribution, a multi-scale constitutive model ranging from the tropocollagen (TC) molecule level up to bundles of collagen fibers is proposed and utilized to predict the elastic and inelastic long-term tissue response. Material failure of collagen fibrils is elucidated by a permanent opening of the triple helical collagen molecule conformation, triggered either by overstretching or reaction kinetics of non-covalent bonds. This kinetics is described within a probabilistic framework of adhesive detachments of molecular linkages providing collagen fiber integrity. Both intramolecular and interfibrillar linkages are considered. The final constitutive equations are validated against recent experimental data available in literature for both uniaxial tension to failure and the evolution of fatigue in subsequent loading cycles. All material parameters of the proposed model have a clear physical interpretation. STATEMENT OF SIGNIFICANCE Irreversible changes take place at different length scales of soft fibrous tissues under supra-physiological loading and alter their macroscopic mechanical properties. Understanding the evolution of those histologic pathologies under loading and incorporating them into a continuum mechanical framework appears to be crucial in order to predict long-term evolution of various diseases and to support the development of tissue engineering.
Collapse
|
18
|
Structural and biochemical changes in dermis of sea cucumber (Stichopus japonicus) during autolysis in response to cutting the body wall. Food Chem 2018; 240:1254-1261. [DOI: 10.1016/j.foodchem.2017.08.071] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 07/19/2017] [Accepted: 08/21/2017] [Indexed: 12/11/2022]
|
19
|
Fang F, Lake SP. Experimental evaluation of multiscale tendon mechanics. J Orthop Res 2017; 35:1353-1365. [PMID: 27878999 DOI: 10.1002/jor.23488] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 11/16/2016] [Indexed: 02/04/2023]
Abstract
Tendon's primary function is a mechanical link between muscle and bone. The hierarchical structure of tendon and specific compositional constituents are believed to be critical for proper mechanical function. With increased appreciation for tendon importance and the development of various technological advances, this review paper summarizes recent experimental approaches that have been used to study multiscale tendon mechanics, includes an overview of studies that have evaluated the role of specific tissue constituents, and also proposes challenges/opportunities facing tendon study. Tendon has been demonstrated to have specific structural characteristics (e.g., multi-level hierarchy, crimp pattern, helix) and complex mechanical properties (e.g., non-linearity, anisotropy, viscoelasticity). Physical mechanisms including uncrimping, fiber sliding, and collagen reorganization have been shown to govern tendon mechanical responses under both static and dynamic loading. Several tendon constituents with relatively small quantities have been suggested to play a role in its mechanics, although some results are conflicting. Further research should be performed to understand the interplay and communication of tendon mechanical properties across levels of the hierarchical structure, and further show how each of these components contribute to tendon mechanics. The studies summarized and discussed in this review have helped elucidate important aspects of multiscale tendon mechanics, which is a prerequisite for analyzing stress/strain transfer between multiple scales and identifying key principles of mechanotransduction. This information could further facilitate interpreting the functional diversity of tendons from different species, different locations, and even different developmental stages, and then better understand and identify fundamental concepts related to tendon degeneration, disease, and healing. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1353-1365, 2017.
Collapse
Affiliation(s)
- Fei Fang
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, 1 Brookings Drive, Campus Box 1185, St. Louis, Missouri, 63130
| | - Spencer P Lake
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, 1 Brookings Drive, Campus Box 1185, St. Louis, Missouri, 63130.,Department of Biomedical Engineering, Washington University in St. Louis, 1 Brookings Drive, Campus Box 1185, St. Louis, Missouri, 63130.,Department of Orthopaedic Surgery, Washington University in St. Louis, 1 Brookings Drive, Campus Box 1185, St. Louis, Missouri, 63130
| |
Collapse
|
20
|
Effects of endogenous cysteine proteinases on structures of collagen fibres from dermis of sea cucumber (Stichopus japonicus). Food Chem 2017; 232:10-18. [PMID: 28490052 DOI: 10.1016/j.foodchem.2017.03.155] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 02/10/2017] [Accepted: 03/29/2017] [Indexed: 11/20/2022]
Abstract
Autolysis of sea cucumber, caused by endogenous enzymes, leads to postharvest quality deterioration of sea cucumber. However, the effects of endogenous proteinases on structures of collagen fibres, the major biologically relevant substrates in the body wall of sea cucumber, are less clear. Collagen fibres were prepared from the dermis of sea cucumber (Stichopus japonicus), and the structural consequences of degradation of the collagen fibres caused by endogenous cysteine proteinases (ECP) from Stichopus japonicus were examined. Scanning electron microscopic images showed that ECP caused partial disaggregation of collagen fibres into collagen fibrils by disrupting interfibrillar proteoglycan bridges. Differential scanning calorimetry and Fourier transform infrared analysis revealed increased structural disorder of fibrillar collagen caused by ECP. SDS-PAGE and chemical analysis indicated that ECP can liberate glycosaminoglycan, hydroxyproline and collagen fragments from collagen fibres. Thus ECP can cause disintegration of collagen fibres by degrading interfibrillar proteoglycan bridges.
Collapse
|
21
|
Patel D, Sharma S, Bryant SJ, Screen HRC. Recapitulating the Micromechanical Behavior of Tension and Shear in a Biomimetic Hydrogel for Controlling Tenocyte Response. Adv Healthc Mater 2017; 6. [PMID: 28026126 PMCID: PMC5469035 DOI: 10.1002/adhm.201601095] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 11/21/2016] [Indexed: 12/11/2022]
Abstract
A fiber composite system is presented which recapitulates the fiber-composite-like nature of tissues and generates similar modes of shear and tension. The shear/tension ratio can be customized during composite manufacture and incorporates viable cells. The system is a valuable tool for mechanotransduction research, providing a platform with physiologically relevant conditions for investigating cell behavior in different tissue types.
Collapse
Affiliation(s)
- Dharmesh Patel
- School of Engineering and Materials Science; Queen Mary University of London; Mile End Road London E1 4NS UK
| | - Sadhana Sharma
- Department of Chemical and Biological Engineering; University of Colorado Boulder; Boulder CO 80303 USA
| | - Stephanie J. Bryant
- Department of Chemical and Biological Engineering; Material Science and Engineering Program; BioFrontiers Institute; University of Colorado; Boulder CO 80303 USA
| | - Hazel R. C. Screen
- School of Engineering and Materials Science; Queen Mary University of London; Mile End Road London E1 4NS UK
| |
Collapse
|
22
|
Watanabe T, Kametani K, Koyama YI, Suzuki D, Imamura Y, Takehana K, Hiramatsu K. Ring-Mesh Model of Proteoglycan Glycosaminoglycan Chains in Tendon based on Three-dimensional Reconstruction by Focused Ion Beam Scanning Electron Microscopy. J Biol Chem 2016; 291:23704-23708. [PMID: 27624935 DOI: 10.1074/jbc.m116.733857] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Indexed: 11/06/2022] Open
Abstract
Tendons are composed of collagen fibrils and proteoglycan predominantly consisting of decorin. Decorin is located on the d-band of collagen fibrils, and its glycosaminoglycan (GAG) chains have been observed between collagen fibrils with transmission electron microscopy. GAG chains have been proposed to interact with each other or with collagen fibrils, but its three-dimensional organization remains unclear. In this report, we used focused ion beam scanning electron microscopy to examine the three-dimensional organization of the GAG chain in the Achilles tendon of mature rats embedded in epoxy resin after staining with Cupromeronic blue, which specifically stains GAG chains. We used 250 serial back-scattered electron images of longitudinal sections with a 10-nm interval for reconstruction. Three-dimensional images revealed that GAG chains form a ring mesh-like structure with each ring surrounding a collagen fibril at the d-band and fusing with adjacent rings to form the planar network. This ring mesh model of GAG chains suggests that more than two GAG chains may interact with each other around collagen fibrils, which could provide new insights into the roles of GAG chains.
Collapse
Affiliation(s)
- Takafumi Watanabe
- From the Faculty of Agriculture, Shinshu University, Minami-minowa, Kami-ina, Nagano 399-4598, Japan,
| | - Kiyokazu Kametani
- Department of Instrumental Analysis, Research Center for Human and Environmental Science, Shinshu University, Asahi, Matsumoto, Nagano 390-8621, Japan
| | - Yoh-Ichi Koyama
- Research Institute of Biomatrix, Nippi Inc., Kuwabara, Toride, Ibaraki 302-0017, Japan
| | - Daisuke Suzuki
- Department of Musculoskeletal Biomechanics and Surgical Development, School of Medicine, Sapporo Medical University, Sapporo, Hokkaido 060-8556, Japan
| | - Yasutada Imamura
- Department of Chemistry and Life Science, School of Advanced Engineering, Kogakuin University, Hachioji, Tokyo 192-0015, Japan, and
| | - Kazushige Takehana
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| | - Kohzy Hiramatsu
- From the Faculty of Agriculture, Shinshu University, Minami-minowa, Kami-ina, Nagano 399-4598, Japan
| |
Collapse
|
23
|
Abstract
Tendon exhibits anisotropic, inhomogeneous and viscoelastic mechanical properties that are determined by its complicated hierarchical structure and varying amounts/organization of different tissue constituents. Although extensive research has been conducted to use modelling approaches to interpret tendon structure-function relationships in combination with experimental data, many issues remain unclear (i.e. the role of minor components such as decorin, aggrecan and elastin), and the integration of mechanical analysis across different length scales has not been well applied to explore stress or strain transfer from macro- to microscale. This review outlines mathematical and computational models that have been used to understand tendon mechanics at different scales of the hierarchical organization. Model representations at the molecular, fibril and tissue levels are discussed, including formulations that follow phenomenological and microstructural approaches (which include evaluations of crimp, helical structure and the interaction between collagen fibrils and proteoglycans). Multiscale modelling approaches incorporating tendon features are suggested to be an advantageous methodology to understand further the physiological mechanical response of tendon and corresponding adaptation of properties owing to unique in vivo loading environments.
Collapse
Affiliation(s)
- Fei Fang
- Department of Mechanical Engineering and Materials Science , Washington University in St Louis , St Louis, MO 63130 , USA
| | - Spencer P Lake
- Department of Mechanical Engineering and Materials Science, Washington University in St Louis, St Louis, MO 63130, USA; Department of Biomedical Engineering, Washington University in St Louis, St Louis, MO 63130, USA; Department of Orthopaedic Surgery, Washington University in St Louis, St Louis, MO 63130, USA
| |
Collapse
|
24
|
Theocharis AD, Skandalis SS, Gialeli C, Karamanos NK. Extracellular matrix structure. Adv Drug Deliv Rev 2016; 97:4-27. [PMID: 26562801 DOI: 10.1016/j.addr.2015.11.001] [Citation(s) in RCA: 1554] [Impact Index Per Article: 172.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 10/30/2015] [Accepted: 11/02/2015] [Indexed: 12/12/2022]
Abstract
Extracellular matrix (ECM) is a non-cellular three-dimensional macromolecular network composed of collagens, proteoglycans/glycosaminoglycans, elastin, fibronectin, laminins, and several other glycoproteins. Matrix components bind each other as well as cell adhesion receptors forming a complex network into which cells reside in all tissues and organs. Cell surface receptors transduce signals into cells from ECM, which regulate diverse cellular functions, such as survival, growth, migration, and differentiation, and are vital for maintaining normal homeostasis. ECM is a highly dynamic structural network that continuously undergoes remodeling mediated by several matrix-degrading enzymes during normal and pathological conditions. Deregulation of ECM composition and structure is associated with the development and progression of several pathologic conditions. This article emphasizes in the complex ECM structure as to provide a better understanding of its dynamic structural and functional multipotency. Where relevant, the implication of the various families of ECM macromolecules in health and disease is also presented.
Collapse
Affiliation(s)
- Achilleas D Theocharis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26500 Patras, Greece
| | - Spyros S Skandalis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26500 Patras, Greece
| | - Chrysostomi Gialeli
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26500 Patras, Greece; Division of Medical Protein Chemistry, Department of Translational Medicine Malmö, Lund University, S-20502 Malmö, Sweden
| | - Nikos K Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26500 Patras, Greece.
| |
Collapse
|
25
|
Kamma-Lorger CS, Pinali C, Martínez JC, Harris J, Young RD, Bredrup C, Crosas E, Malfois M, Rødahl E, Meek KM, Knupp C. Role of Decorin Core Protein in Collagen Organisation in Congenital Stromal Corneal Dystrophy (CSCD). PLoS One 2016; 11:e0147948. [PMID: 26828927 PMCID: PMC4734740 DOI: 10.1371/journal.pone.0147948] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 01/11/2016] [Indexed: 11/18/2022] Open
Abstract
The role of Decorin in organising the extracellular matrix was examined in normal human corneas and in corneas from patients with Congenital Stromal Corneal Dystrophy (CSCD). In CSCD, corneal clouding occurs due to a truncating mutation (c.967delT) in the decorin (DCN) gene. Normal human Decorin protein and the truncated one were reconstructed in silico using homology modelling techniques to explore structural changes in the diseased protein. Corneal CSCD specimens were also examined using 3-D electron tomography and Small Angle X-ray diffraction (SAXS), to image the collagen-proteoglycan arrangement and to quantify fibrillar diameters, respectively. Homology modelling showed that truncated Decorin had a different spatial geometry to the normal one, with the truncation removing a major part of the site that interacts with collagen, compromising its ability to bind effectively. Electron tomography showed regions of abnormal stroma, where collagen fibrils came together to form thicker fibrillar structures, showing that Decorin plays a key role in the maintenance of the order in the normal corneal extracellular matrix. Average diameter of individual fibrils throughout the thickness of the cornea however remained normal.
Collapse
Affiliation(s)
- Christina S. Kamma-Lorger
- NCD-BL11, ALBA Synchrotron Light Source, Cerdanyola del Vallés, 08290, Barcelona, Spain
- Structural Biophysics Research Group, School of Optometry and Vision Sciences, Cardiff University, Cardiff, CF24 4HQ, United Kingdom
| | - Christian Pinali
- Structural Biophysics Research Group, School of Optometry and Vision Sciences, Cardiff University, Cardiff, CF24 4HQ, United Kingdom
| | - Juan Carlos Martínez
- NCD-BL11, ALBA Synchrotron Light Source, Cerdanyola del Vallés, 08290, Barcelona, Spain
| | - Jon Harris
- Structural Biophysics Research Group, School of Optometry and Vision Sciences, Cardiff University, Cardiff, CF24 4HQ, United Kingdom
| | - Robert D. Young
- Structural Biophysics Research Group, School of Optometry and Vision Sciences, Cardiff University, Cardiff, CF24 4HQ, United Kingdom
| | - Cecilie Bredrup
- Department of Ophthalmology, Haukeland University Hospital, 5021 Bergen, Norway
| | - Eva Crosas
- NCD-BL11, ALBA Synchrotron Light Source, Cerdanyola del Vallés, 08290, Barcelona, Spain
| | - Marc Malfois
- NCD-BL11, ALBA Synchrotron Light Source, Cerdanyola del Vallés, 08290, Barcelona, Spain
| | - Eyvind Rødahl
- Department of Ophthalmology, Haukeland University Hospital, 5021 Bergen, Norway
- Department of Clinical Medicine, University of Bergen, 5020 Bergen, Norway
| | - Keith M. Meek
- Structural Biophysics Research Group, School of Optometry and Vision Sciences, Cardiff University, Cardiff, CF24 4HQ, United Kingdom
| | - Carlo Knupp
- Structural Biophysics Research Group, School of Optometry and Vision Sciences, Cardiff University, Cardiff, CF24 4HQ, United Kingdom
| |
Collapse
|
26
|
Federico S, Pierce BF, Piluso S, Wischke C, Lendlein A, Neffe AT. Design von Decorin-basierten Peptiden, die an Kollagen I binden, und ihr Potenzial als Adhäsionssequenzen in Biomaterialien. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201505227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
27
|
Federico S, Pierce BF, Piluso S, Wischke C, Lendlein A, Neffe AT. Design of Decorin-Based Peptides That Bind to Collagen I and their Potential as Adhesion Moieties in Biomaterials. Angew Chem Int Ed Engl 2015. [PMID: 26216251 DOI: 10.1002/anie.201505227] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Mimicking the binding epitopes of protein-protein interactions by using small peptides is important for generating modular biomimetic systems. A strategy is described for the design of such bioactive peptides without accessible structural data for the targeted interaction, and the effect of incorporating such adhesion peptides in complex biomaterial systems is demonstrated. The highly repetitive structure of decorin was analyzed to identify peptides that are representative of the inner and outer surface, and it was shown that only peptides based on the inner surface of decorin bind to collagen. The peptide with the highest binding affinity for collagen I, LHERHLNNN, served to slow down the diffusion of a conjugated dye in a collagen gel, while its dimer could physically crosslink collagen, thereby enhancing the elastic modulus of the gel by one order of magnitude. These results show the potential of the identified peptides for the design of biomaterials for applications in regenerative medicine.
Collapse
Affiliation(s)
- Stefania Federico
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Helmholtz-Zentrum Geesthacht, Kantstrasse 55, 14513 Teltow (Germany).,Institute of Chemistry, University of Potsdam, 14476 Potsdam-Golm (Germany)
| | - Benjamin F Pierce
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Helmholtz-Zentrum Geesthacht, Kantstrasse 55, 14513 Teltow (Germany)
| | - Susanna Piluso
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Helmholtz-Zentrum Geesthacht, Kantstrasse 55, 14513 Teltow (Germany).,Institute of Chemistry, University of Potsdam, 14476 Potsdam-Golm (Germany)
| | - Christian Wischke
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Helmholtz-Zentrum Geesthacht, Kantstrasse 55, 14513 Teltow (Germany)
| | - Andreas Lendlein
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Helmholtz-Zentrum Geesthacht, Kantstrasse 55, 14513 Teltow (Germany).,Institute of Chemistry, University of Potsdam, 14476 Potsdam-Golm (Germany)
| | - Axel T Neffe
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Helmholtz-Zentrum Geesthacht, Kantstrasse 55, 14513 Teltow (Germany). .,Institute of Chemistry, University of Potsdam, 14476 Potsdam-Golm (Germany).
| |
Collapse
|
28
|
Böl M, Ehret AE, Leichsenring K, Ernst M. Tissue-scale anisotropy and compressibility of tendon in semi-confined compression tests. J Biomech 2015; 48:1092-8. [DOI: 10.1016/j.jbiomech.2015.01.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 01/16/2015] [Accepted: 01/20/2015] [Indexed: 01/22/2023]
|
29
|
He J, Ma X, Zhang F, Li L, Deng J, Xue W, Zhu C, Fan D. New strategy for expression of recombinant hydroxylated human collagen α1(III) chains in Pichia pastoris GS115. Biotechnol Appl Biochem 2015; 62:293-9. [PMID: 24953863 DOI: 10.1002/bab.1264] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 06/16/2014] [Indexed: 11/10/2022]
Abstract
Type III collagen is one of the most abundant proteins in the human body, which forms collagen fibrils and provides the stiff, resilient characteristics of many tissues. In this paper, a new method for secretory expression of recombinant hydroxylated human collagen α1(III) chain in Pichia pastoris GS115 was applied. The gene encoding for full-length human collagen α1(III) chain (COL3A1) without N-terminal propeptide and C-terminal propeptide was cloned in the pPIC9K expression vector. The prolyl 4-hydroxylase (P4H, EC 1.14.11.2) α-subunit (P4Hα) and β-subunit (P4Hβ) genes were cloned in the same expression vector, pPICZB. Fluorogenic quantitative PCR indicates that COL3A1 and P4H genes have been expressed in mRNA level. SDS-PAGE shows that secretory expression of recombinant human collagen α1(III) chain was successfully achieved in P. pastoris GS115. In addition, the result of amino acids composition analysis shows that the recombinant human collagen α1(III) chain contains hydroxyproline by coexpression with the P4H. Furthermore, liquid chromatography coupled with tandem mass spectrometry analysis demonstrates that proline residues of the recombinant human collagen α1(III) chain were hydroxylated in the X or Y positions of Gly-X-Y triplets.
Collapse
Affiliation(s)
- Jing He
- Shaanxi R&D Centre of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, People's Republic of China
| | - Xiaoxuan Ma
- Shaanxi R&D Centre of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, People's Republic of China
| | - Fenglong Zhang
- Shaanxi R&D Centre of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, People's Republic of China
| | - Linbo Li
- Shaanxi R&D Centre of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, People's Republic of China
| | - Jianjun Deng
- Shaanxi R&D Centre of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, People's Republic of China
| | - Wenjiao Xue
- Shaanxi R&D Centre of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, People's Republic of China
| | - Chenhui Zhu
- Shaanxi R&D Centre of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, People's Republic of China
| | - Daidi Fan
- Shaanxi R&D Centre of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, People's Republic of China
| |
Collapse
|
30
|
Iozzo RV, Schaefer L. Proteoglycan form and function: A comprehensive nomenclature of proteoglycans. Matrix Biol 2015; 42:11-55. [PMID: 25701227 PMCID: PMC4859157 DOI: 10.1016/j.matbio.2015.02.003] [Citation(s) in RCA: 850] [Impact Index Per Article: 85.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 02/09/2015] [Indexed: 02/07/2023]
Abstract
We provide a comprehensive classification of the proteoglycan gene families and respective protein cores. This updated nomenclature is based on three criteria: Cellular and subcellular location, overall gene/protein homology, and the utilization of specific protein modules within their respective protein cores. These three signatures were utilized to design four major classes of proteoglycans with distinct forms and functions: the intracellular, cell-surface, pericellular and extracellular proteoglycans. The proposed nomenclature encompasses forty-three distinct proteoglycan-encoding genes and many alternatively-spliced variants. The biological functions of these four proteoglycan families are critically assessed in development, cancer and angiogenesis, and in various acquired and genetic diseases where their expression is aberrant.
Collapse
Affiliation(s)
- Renato V Iozzo
- Department of Pathology, Anatomy and Cell Biology and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | - Liliana Schaefer
- Pharmazentrum Frankfurt/ZAFES, Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany.
| |
Collapse
|
31
|
A new strategy for secretory expression and mixed fermentation of recombinant human collagen α1 (III) chain in Pichia pastoris. BIOTECHNOL BIOPROC E 2014. [DOI: 10.1007/s12257-014-0234-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
32
|
Bertassoni LE, Swain MV. The contribution of proteoglycans to the mechanical behavior of mineralized tissues. J Mech Behav Biomed Mater 2014; 38:91-104. [DOI: 10.1016/j.jmbbm.2014.06.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 06/12/2014] [Accepted: 06/14/2014] [Indexed: 10/25/2022]
|
33
|
Li Y, Qiao C, Shi L, Jiang Q, Li T. Viscosity of Collagen Solutions: Influence of Concentration, Temperature, Adsorption, and Role of Intermolecular Interactions. J MACROMOL SCI B 2014. [DOI: 10.1080/00222348.2013.852059] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
34
|
Pritchard RH, Huang YYS, Terentjev EM. Mechanics of biological networks: from the cell cytoskeleton to connective tissue. SOFT MATTER 2014; 10:1864-84. [PMID: 24652375 DOI: 10.1039/c3sm52769g] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
From the cell cytoskeleton to connective tissues, fibrous networks are ubiquitous in metazoan life as the key promoters of mechanical strength, support and integrity. In recent decades, the application of physics to biological systems has made substantial strides in elucidating the striking mechanical phenomena observed in such networks, explaining strain stiffening, power law rheology and cytoskeletal fluidisation - all key to the biological function of individual cells and tissues. In this review we focus on the current progress in the field, with a primer into the basic physics of individual filaments and the networks they form. This is followed by a discussion of biological networks in the context of a broad spread of recent in vitro and in vivo experiments.
Collapse
Affiliation(s)
- Robyn H Pritchard
- Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, UK.
| | | | | |
Collapse
|
35
|
Computational Study of a Heterostructural Model of Type I Collagen and Implementation of an Amino Acid Potential Method Applicable to Large Proteins. Polymers (Basel) 2014. [DOI: 10.3390/polym6020491] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
36
|
Ahmadzadeh H, Connizzo BK, Freedman BR, Soslowsky LJ, Shenoy VB. Determining the contribution of glycosaminoglycans to tendon mechanical properties with a modified shear-lag model. J Biomech 2013; 46:2497-503. [PMID: 23932185 DOI: 10.1016/j.jbiomech.2013.07.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 07/04/2013] [Indexed: 01/30/2023]
Abstract
Tendon has a complex hierarchical structure composed of both a collagenous and a non-collagenous matrix. Despite several studies that have aimed to elucidate the mechanism of load transfer between matrix components, the roles of glycosaminoglycans (GAGs) remain controversial. Thus, this study investigated the elastic properties of tendon using a modified shear-lag model that accounts for the structure and non-linear mechanical response of the GAGs. Unlike prior shear-lag models that are solved either in two dimensions or in axially symmetric geometries, we present a closed-form analytical model for three-dimensional periodic lattices of fibrils linked by GAGs. Using this approach, we show that the non-linear mechanical response of the GAGs leads to a distinct toe region in the stress-strain response of the tendon. The critical strain of the toe region is shown to decrease inversely with fibril length. Furthermore, we identify a characteristic length scale, related to microstructural parameters (e.g. GAG spacing, stiffness, and geometry) over which load is transferred from the GAGs to the fibrils. We show that when the fibril lengths are significantly larger than this length scale, the mechanical properties of the tendon are relatively insensitive to deletion of GAGs. Our results provide a physical explanation for the insensitivity for the mechanical response of tendon to the deletion of GAGs in mature tendons, underscore the importance of fibril length in determining the elastic properties of the tendon, and are in excellent agreement with computationally intensive simulations.
Collapse
Affiliation(s)
- Hossein Ahmadzadeh
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | | |
Collapse
|
37
|
Thorpe CT, Birch HL, Clegg PD, Screen HRC. The role of the non-collagenous matrix in tendon function. Int J Exp Pathol 2013; 94:248-59. [PMID: 23718692 DOI: 10.1111/iep.12027] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 04/16/2013] [Indexed: 01/26/2023] Open
Abstract
Tendon consists of highly ordered type I collagen molecules that are grouped together to form subunits of increasing diameter. At each hierarchical level, the type I collagen is interspersed with a predominantly non-collagenous matrix (NCM) (Connect. Tissue Res., 6, 1978, 11). Whilst many studies have investigated the structure, organization and function of the collagenous matrix within tendon, relatively few have studied the non-collagenous components. However, there is a growing body of research suggesting the NCM plays an important role within tendon; adaptations to this matrix may confer the specific properties required by tendons with different functions. Furthermore, age-related alterations to non-collagenous proteins have been identified, which may affect tendon resistance to injury. This review focuses on the NCM within the tensional region of developing and mature tendon, discussing the current knowledge and identifying areas that require further study to fully understand structure-function relationships within tendon. This information will aid in the development of appropriate techniques for tendon injury prevention and treatment.
Collapse
Affiliation(s)
- Chavaunne T Thorpe
- Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK.
| | | | | | | |
Collapse
|
38
|
Rigozzi S, Müller R, Stemmer A, Snedeker J. Tendon glycosaminoglycan proteoglycan sidechains promote collagen fibril sliding—AFM observations at the nanoscale. J Biomech 2013; 46:813-8. [DOI: 10.1016/j.jbiomech.2012.11.017] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 11/02/2012] [Accepted: 11/03/2012] [Indexed: 10/27/2022]
|
39
|
Panwar P, Du X, Sharma V, Lamour G, Castro M, Li H, Brömme D. Effects of cysteine proteases on the structural and mechanical properties of collagen fibers. J Biol Chem 2013; 288:5940-50. [PMID: 23297404 DOI: 10.1074/jbc.m112.419689] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Excessive cathepsin K (catK)-mediated turnover of fibrillar type I and II collagens in bone and cartilage leads to osteoporosis and osteoarthritis. However, little is known about how catK degrades compact collagen macromolecules. The present study is aimed to explore the structural and mechanical consequences of collagen fiber degradation by catK. Mouse tail type I collagen fibers were incubated with either catK or non-collagenase cathepsins. Methods used include scanning electron microscopy, protein electrophoresis, atomic force microscopy, and tensile strength testing. Our study revealed evidence of proteoglycan network degradation, followed by the progressive disassembly of macroscopic collagen fibers into primary structural elements by catK. Proteolytically released GAGs are involved in the generation of collagenolytically active catK-GAG complexes as shown by AFM. In addition to their structural disintegration, a decrease in the tensile properties of fibers was observed due to the action of catK. The Young's moduli of untreated collagen fibers versus catK-treated fibers in dehydrated conditions were 3.2 ± 0.68 GPa and 1.9 ± 0.65 GPa, respectively. In contrast, cathepsin L, V, B, and S revealed no collagenase activity, except the disruption of proteoglycan-GAG interfibrillar bridges, which slightly decreased the tensile strength of fibers.
Collapse
Affiliation(s)
- Preety Panwar
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, British Columbia V6T1Z3, Canada
| | | | | | | | | | | | | |
Collapse
|
40
|
Martufi G, Gasser TC. Turnover of fibrillar collagen in soft biological tissue with application to the expansion of abdominal aortic aneurysms. J R Soc Interface 2012; 9:3366-77. [PMID: 22896562 DOI: 10.1098/rsif.2012.0416] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A better understanding of the inherent properties of vascular tissue to adapt to its mechanical environment is crucial to improve the predictability of biomechanical simulations. Fibrillar collagen in the vascular wall plays a central role in tissue adaptation owing to its relatively short lifetime. Pathological alterations of collagen turnover may fail to result in homeostasis and could be responsible for abdominal aortic aneurysm (AAA) growth at later stages of the disease. For this reason our previously reported multiscale constitutive framework (Martufi, G. & Gasser, T. C. 2011 J. Biomech. 44, 2544-2550 (doi:10.1016/j.jbiomech.2011.07.015)) has been enriched by a collagen turnover model. Specifically, the framework's collagen fibril level allowed a sound integration of vascular wall biology, and the impact of collagen turnover on the macroscopic properties of AAAs was studied. To this end, model parameters were taken from the literature and/or estimated from clinical follow-up data of AAAs (on average 50.7 mm-large). Likewise, the in vivo stretch of the AAA wall was set, such that 10 per cent of collagen fibres were engaged. Results showed that the stretch spectrum, at which collagen fibrils are deposed, is the most influential parameter, i.e. it determines whether the vascular geometry grows, shrinks or remains stable over time. Most importantly, collagen turnover also had a remarkable impact on the macroscopic stress field. It avoided high stress gradients across the vessel wall, thus predicted a physiologically reasonable stress field. Although the constitutive model could be successfully calibrated to match the growth of small AAAs, a rigorous validation against experimental data is crucial to further explore the model's descriptive and predictive capabilities.
Collapse
Affiliation(s)
- Giampaolo Martufi
- Department of Solid Mechanics, School of Engineering Sciences, Royal Institute of Technology (KTH), Osquars Backe 1, 100 44 Stockholm, Sweden.
| | | |
Collapse
|
41
|
Fessel G, Gerber C, Snedeker JG. Potential of collagen cross-linking therapies to mediate tendon mechanical properties. J Shoulder Elbow Surg 2012; 21:209-17. [PMID: 22244064 DOI: 10.1016/j.jse.2011.10.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 10/14/2011] [Indexed: 02/01/2023]
Abstract
Collagen cross-links are fundamental to the mechanical integrity of tendon, with orderly and progressive enzymatic cross-linking being central to healthy development and injury repair. However, the nonenzymatic cross-links that form as we age are associated with increased tendon brittleness, diminished mechanical resistance to injury, and impaired matrix remodeling. Collagen cross-linking thus sits at the center of tendon structure and function, with important implications to age, disease, injury, and therapy. The current review touches on these aspects from the perspective of their potential relevance to the shoulder surgeon. We first introduce the most well-characterized endogenous collagen cross-linkers that enable fibrillogenesis in development and healing. We also discuss the glycation-mediated cross-links that are implicated in age- and diabetes-related tendon frailty and summarize work toward therapies against these disadvantageous cross-links. Conversely, we discuss the introduction of exogenous collagen cross-links to augment the mechanical properties of collagen-based implants or native tendon tissue. We conclude with a summary of our early results using exogenous collagen cross-linkers to prevent tendon tear enlargement and eventual failure in an in vitro model of partial tendon tear.
Collapse
Affiliation(s)
- Gion Fessel
- Department of Orthopedics, University of Zurich, Zürich, Switzerland
| | | | | |
Collapse
|
42
|
Watanabe T, Imamura Y, Suzuki D, Hosaka Y, Ueda H, Hiramatsu K, Takehana K. Concerted and adaptive alignment of decorin dermatan sulfate filaments in the graded organization of collagen fibrils in the equine superficial digital flexor tendon. J Anat 2011; 220:156-63. [PMID: 22122012 DOI: 10.1111/j.1469-7580.2011.01456.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The equine superficial digital flexor tendon (SDFT) has a graded distribution of collagen fibril diameters, with predominantly small-diameter fibrils in the region of the myotendinous junction (MTJ), a gradual increase in large-diameter fibrils toward the osteotendinous junction (OTJ), and a mixture of small- and large-diameter fibrils in the middle metacarpal (MM) region. In this study, we investigated the ultrastructure of the SDFT, to correlate the spatial relationship of the collagen fibrils with the graded distribution. The surface-to-surface distances of pairs of fibrils were found to be almost constant over the entire tendon. However, the center-to-center distances varied according to fibril diameter. Decorin is the predominant proteoglycan in normal mature tendons, and has one dermatan sulfate (DS) or chondroitin sulfate (CS) filament as a side chain which is associated with the surfaces of the collagen fibrils via its core protein. We identified a coordinated arrangement of decorin DS filaments in the equine SDFT. The sizes of the decorin DS filaments detected by Cupromeronic blue staining showed a unique regional variation; they were shortest in the MM region and longer in the MTJ and OTJ regions, and a considerable number of filaments were arranged obliquely to adjacent collagen fibrils in the MTJ region. This regional variation of the filaments may be an adaptation to lubricate the interfibrillar space in response to local mechanical requirements. The results of this study suggest that the MTJ region, which receives the muscular contractile force first, acts as a buffer for mechanical forces in the equine SDFT.
Collapse
Affiliation(s)
- Takafumi Watanabe
- Laboratory of Animal Functional Anatomy, Department of Food Production Science, Faculty of Agriculture, Shinshu University, Nagano, Japan
| | | | | | | | | | | | | |
Collapse
|
43
|
Sanchez-Adams J, Willard VP, Athanasiou KA. Regional variation in the mechanical role of knee meniscus glycosaminoglycans. J Appl Physiol (1985) 2011; 111:1590-6. [PMID: 21903884 DOI: 10.1152/japplphysiol.00848.2011] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
High compressive properties of cartilaginous tissues are commonly attributed to the sulfated glycosaminoglycan (GAG) fraction of the extracellular matrix (ECM), but this relationship has not been directly measured in the knee meniscus, which shows regional variation in GAG content. In this study, biopsies from each meniscus region (outer, middle, and inner) were either subjected to chondroitinase ABC (CABC) to remove all sulfated GAGs or not. Compressive testing revealed that GAG depletion in the inner and middle meniscus regions caused a significant decrease in modulus of relaxation (58% and 41% decreases, respectively, at 20% strain), and all regions exhibited a significant decrease in viscosity (outer: 29%; middle: 58%; inner: 62% decrease). Tensile properties following CABC treatment were unaffected for outer and middle meniscus specimens, but the inner meniscus displayed significant increases in Young's modulus (41% increase) and ultimate tensile stress (40% increase) following GAG depletion. These findings suggest that, in the outer meniscus, GAGs contribute to increasing tissue viscosity, whereas in the middle and inner meniscus, where GAGs are most abundant, these molecules also enhance the tissue's ability to withstand compressive loads. GAGs in the inner meniscus also contribute to reducing the circumferential tensile properties of the tissue, perhaps due to the pre-stress on the collagen network from increased hydration of the ECM. Understanding the mechanical role of GAGs in each region of the knee meniscus is important for understanding meniscus structure-function relationships and creating design criteria for functional meniscus tissue engineering efforts.
Collapse
|
44
|
e Silva EDM, Lopes Filho GDJ, Nader HB, Gonçalves RDO, Kobayashi EY, Dreyfuss JL. Biochemical study of dermatan sulfate glycosaminoglycan in adult male patients with Nyhus type II inguinal hernia. Rev Col Bras Cir 2011; 38:167-71. [PMID: 21789454 DOI: 10.1590/s0100-69912011000300005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Accepted: 06/09/2010] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVE To compare the amount of the dermatan sulfate glycosaminoglycan between male patients with Nyhus type II inguinal hernias and subjects without inguinal hernia, aged between 20 and 40 years. METHODS Two groups were formed: One with 15 male patients with Nyhus type II inguinal hernia and aged between 20 and 40 years with ASA risk I and II, and a control group of ten individuals, also males between 20 and 40, who had died up to 24 h before. We excluded female patients, diabetic patients with connective tissue disease, smokers and surgical risk ASA III and IV. We resected a sample of 1 cm² of the transversalis fascia in the middle of the inguinal trigone, and 1 cm² of the anterior sheath of the rectus abdominis muscle in the groin for the quantification of dermatan sulfate glycosaminoglycans by densitometry after agarose gel electrophoresis. RESULTS The amount of dermatan sulfate showed no statistically significant difference between patients with inguinal hernia and individuals without inguinal hernia in both the transverse fascia (p = 0.108) and anterior sheath of the rectus abdominis muscle (p = 0.292). CONCLUSION There was no difference in the amount of the dermatan sulfate glycosaminoglycan among patients with Nyhus type II inguinal hernias and subjects without inguinal hernia in adult males.
Collapse
|
45
|
Goulam Houssen Y, Gusachenko I, Schanne-Klein MC, Allain JM. Monitoring micrometer-scale collagen organization in rat-tail tendon upon mechanical strain using second harmonic microscopy. J Biomech 2011; 44:2047-52. [PMID: 21636086 DOI: 10.1016/j.jbiomech.2011.05.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 05/04/2011] [Accepted: 05/06/2011] [Indexed: 11/30/2022]
Abstract
We continuously monitored the microstructure of a rat-tail tendon during stretch/relaxation cycles. To that purpose, we implemented a new biomechanical device that combined SHG imaging and mechanical testing modalities. This multi-scale experimental device enabled simultaneous visualization of the collagen crimp morphology at the micrometer scale and measurement of macroscopic strain-stress response. We gradually increased the ultimate strain of the cycles and showed that preconditioning mostly occurs in the first stretching. This is accompanied by an increase of the crimp period in the SHG image. Our results indicate that preconditioning is due to a sliding of microstructures at the scale of a few fibrils and smaller, that changes the resting length of the fascicle. This sliding can reverse on long time scales. These results provide a proof of concept that continuous SHG imaging performed simultaneously with mechanical assay allows analysis of the relationship between macroscopic response and microscopic structure of tissues.
Collapse
Affiliation(s)
- Y Goulam Houssen
- Ecole Polytechnique, Laboratory for Optics and Biosciences, 91128 Palaiseau, France
| | | | | | | |
Collapse
|
46
|
Fessel G, Snedeker JG. Equivalent stiffness after glycosaminoglycan depletion in tendon — an ultra-structural finite element model and corresponding experiments. J Theor Biol 2011; 268:77-83. [DOI: 10.1016/j.jtbi.2010.10.007] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Revised: 08/26/2010] [Accepted: 10/06/2010] [Indexed: 11/15/2022]
|
47
|
Desrochers J, Duncan NA. Strain transfer in the annulus fibrosus under applied flexion. J Biomech 2010; 43:2141-8. [PMID: 20478561 DOI: 10.1016/j.jbiomech.2010.03.045] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Revised: 03/26/2010] [Accepted: 03/31/2010] [Indexed: 11/19/2022]
Abstract
A detailed understanding of the anatomical and mechanical environment in the intervertebral disc at the scale of the cell is necessary for the design of tissue engineering repair strategies and to elucidate the role of mechanical factors in pathology. The objective of this study was to measure and compare the macroscale to microscale strains in the outer annulus fibrosus in various cellular regions of intact discs over a range of applied flexion. Macroscale strains were measured on the annulus fibrosus surface, and contrasted to in situ microscale strains using novel confocal microscopy techniques for dual labeling of the cell and the extracellular matrix. Fiber oriented surface strains were significantly higher than in situ fiber strains, which implies a mechanism of load redistribution that minimizes strain along the fibers. Non-uniformity of the strains and matrix distortion occurred immediately and most interestingly varied little with increase in flexion (3-16 degrees), suggesting that inter-fiber shear is important in the initial stages of strain redistribution. Fiber oriented intercellular strains were significantly larger and compressive compared to in situ strains in other regions of the extracellular matrix indicating that the mechanical environment in this region may be unique. Further examination of the structural morphology in this pericellular region is needed to fully understand the pathway of strain transfer from the tissue to the cell. This study provides new knowledge on the complex in situ micro-mechanical environment of the annulus fibrosus that is essential to understanding the mechanobiological behavior of this tissue.
Collapse
Affiliation(s)
- Jane Desrochers
- Department of Civil Engineering, McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alta., Canada T2N 1N4
| | | |
Collapse
|
48
|
Fritsch A, Hellmich C, Dormieux L. Ductile sliding between mineral crystals followed by rupture of collagen crosslinks: experimentally supported micromechanical explanation of bone strength. J Theor Biol 2009; 260:230-52. [PMID: 19497330 DOI: 10.1016/j.jtbi.2009.05.021] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Revised: 05/12/2009] [Accepted: 05/16/2009] [Indexed: 11/24/2022]
Abstract
There is an ongoing discussion on how bone strength could be explained from its internal structure and composition. Reviewing recent experimental and molecular dynamics studies, we here propose a new vision on bone material failure: mutual ductile sliding of hydroxyapatite mineral crystals along layered water films is followed by rupture of collagen crosslinks. In order to cast this vision into a mathematical form, a multiscale continuum micromechanics theory for upscaling of elastoplastic properties is developed, based on the concept of concentration and influence tensors for eigenstressed microheterogeneous materials. The model reflects bone's hierarchical organization, in terms of representative volume elements for cortical bone, for extravascular and extracellular bone material, for mineralized fibrils and the extrafibrillar space, and for wet collagen. In order to get access to the stress states at the interfaces between crystals, the extrafibrillar mineral is resolved into an infinite amount of cylindrical material phases oriented in all directions in space. The multiscale micromechanics model is shown to be able to satisfactorily predict the strength characteristics of different bones from different species, on the basis of their mineral/collagen content, their intercrystalline, intermolecular, lacunar, and vascular porosities, and the elastic and strength properties of hydroxyapatite and (molecular) collagen.
Collapse
Affiliation(s)
- Andreas Fritsch
- Institute for Mechanics of Materials and Structures, Vienna University of Technology (TU Wien), 1040 Vienna, Austria.
| | | | | |
Collapse
|
49
|
Hall ML, Krawczak DA, Simha NK, Lewis JL. Effect of dermatan sulfate on the indentation and tensile properties of articular cartilage. Osteoarthritis Cartilage 2009; 17:655-61. [PMID: 19036614 PMCID: PMC2717628 DOI: 10.1016/j.joca.2008.10.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Accepted: 10/22/2008] [Indexed: 02/02/2023]
Abstract
OBJECTIVE This paper examines the hypothesis that the dermatan sulfate (DS) chain on decorin is a load carrying element in cartilage and that its damage or removal will alter the material properties. METHODS To test this hypothesis, indentation and tensile testing of cartilage from bovine patella were performed before and after digestion with chondroitinase B (cB). Removal of significant amounts of DS by cB digestion was verified by Western blot analysis of proteoglycans extracted from whole and sectioned specimens. Specimens (control and treated) were subjected to a series of step-hold displacements. Elastic modulus during the step rise (rapid modulus) and at equilibrium (equilibrium modulus), and the relaxation function during each step was measured for test (cB and buffer) and control (buffer alone) conditions. RESULTS cB had no effect on any of the viscoelastic mechanical properties measured, either in indentation or tension. CONCLUSION Removing or damaging approximately 50% of the DS had no effect on the mechanical properties, strongly suggesting that DS either carries very low load or no load.
Collapse
Affiliation(s)
- M L Hall
- Department of Orthopaedic Surgery, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
50
|
Henninger HB, Maas SA, Shepherd JH, Joshi S, Weiss JA. Transversely isotropic distribution of sulfated glycosaminoglycans in human medial collateral ligament: a quantitative analysis. J Struct Biol 2009; 165:176-83. [PMID: 19126431 PMCID: PMC2649716 DOI: 10.1016/j.jsb.2008.11.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Revised: 11/17/2008] [Accepted: 11/26/2008] [Indexed: 10/21/2022]
Abstract
Decorin and its associated glycosaminoglycan (GAG) side chain, dermatan sulfate (DS), play diverse roles in soft tissue formation and potentially aid in the mechanical integrity of the tissue. Deeper understanding of the distribution and orientation of the GAGs on a microscopic level may help elucidate the structure/function relationship of these important molecules. The hypothesis of the present study was that sulfated GAGs are aligned with transversely isotropic material symmetry in human medial collateral ligament (MCL) with the collagen acting as the axis of symmetry. To test the hypothesis, sulfated GAGs were visualized using transmission electron microscopy (TEM). Three orthogonal anatomical planes were examined to evaluate GAG distributions against symmetry criteria. GAG populations were differentiated using targeted enzyme digestion. Results suggest that sulfated GAGs including DS, chondroitin sulfates A and C, as well as other sub-populations assume transversely isotropic distributions in human MCL. Sulfated GAGs in the plane normal to the collagen axis were found to be isotropic with no preferred orientation. GAGs in the two planes along the collagen axis did not statistically differ and exhibited apparent bimodal distributions, favoring orthogonal distributions with over half at other angles with respect to collagen. A previously developed model, GAGSim3D, was used to interpret potential TEM artifacts. The data collected herein provide refined inputs to micro-scale models of the structure/function relationship of sulfated GAGs in soft tissues.
Collapse
Affiliation(s)
- Heath B. Henninger
- Department of Bioengineering, University of Utah, 50 S Central Campus Drive, Rm. 2480, Salt Lake City, UT 84112
- Scientific Computing and Imaging Institute, University of Utah, 72 S. Central Campus Drive, Room 3750, Salt Lake City, UT 84112
| | - Steve A. Maas
- Department of Bioengineering, University of Utah, 50 S Central Campus Drive, Rm. 2480, Salt Lake City, UT 84112
- Scientific Computing and Imaging Institute, University of Utah, 72 S. Central Campus Drive, Room 3750, Salt Lake City, UT 84112
| | - Jonathan H. Shepherd
- Department of Bioengineering, University of Utah, 50 S Central Campus Drive, Rm. 2480, Salt Lake City, UT 84112
| | - Sarang Joshi
- Department of Bioengineering, University of Utah, 50 S Central Campus Drive, Rm. 2480, Salt Lake City, UT 84112
- Scientific Computing and Imaging Institute, University of Utah, 72 S. Central Campus Drive, Room 3750, Salt Lake City, UT 84112
| | - Jeffrey A. Weiss
- Department of Bioengineering, University of Utah, 50 S Central Campus Drive, Rm. 2480, Salt Lake City, UT 84112
- Scientific Computing and Imaging Institute, University of Utah, 72 S. Central Campus Drive, Room 3750, Salt Lake City, UT 84112
- Department of Orthopaedics, University of Utah, 30 North 1900 East, Rm. 3B165, Salt Lake City, UT 84132
| |
Collapse
|