1
|
Russell McEvoy GM, Wells BN, Kiley ME, Shogan H, Fraser GM. Skeletal muscle microvascular hemodynamic responses during hyperinsulinemic-euglycemic clamp in a Zucker Diabetic Sprague Dawley rat model of type 2 diabetes. Front Physiol 2025; 16:1568145. [PMID: 40337247 PMCID: PMC12055766 DOI: 10.3389/fphys.2025.1568145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 03/21/2025] [Indexed: 05/09/2025] Open
Abstract
Objective We sought to measure skeletal muscle microvascular hemodynamic responses in Sprague Dawley (SD) and Zucker Diabetic Sprague Dawley (ZDSD) rat model of type 2 diabetes (T2D) at rest and during a hyperinsulinemic-euglycemic clamp under resting conditions and during acute changes in local tissue oxygen concentration [(O2)]. Methods Male SD and ZDSD rats were fed a high-fat diet, transitioned to a high-fat high-sugar diet from 16-19 weeks old to induce T2D in the ZDSD strain, then returned to the high-fat diet until intravital video microscopy (IVVM). At 27 weeks of age animals were fasted overnight, and on the morning of the IVVM experiment animals were anaesthetized, instrumented, and mechanically ventilated. The extensor digitorum longus muscle was blunt dissected, isolated, and reflected over a glass coverslip or a gas exchange chamber (GEC) fitted in the stage of an inverted microscope. Microvascular hemodynamic responses were recorded during baseline and hyperinsulinemic-euglycemic clamp without perturbation (Protocol 1) and during sequential changes in GEC [O2] (7%-12%-2%-7%) (Protocol 2). Results In protocol 1, SD rats had a significant increase in red blood cell (RBC) velocity, RBC supply rate (SR), and RBC oxygen saturation (SO2) between baseline and euglycemia. However, ZDSD animals had no significant difference in hemodynamic responses and RBC SO2 between baseline and during hyperinsulinemic-euglycemic clamp. RBC SO2 was significantly higher in ZDSD than SD rats at baseline. In protocol 2, ZDSD rats had significantly higher RBC SO2 than their SD counterparts at 7% and 2% [O2]. RBC velocity, SR and capillary hematocrit showed no change from 7% in response to increased or decreased [O2] in either animal group. ZDSD rats had a significant increase between baseline and clamp in RBC SR at 12% as well as at 2% GEC [O2]. Conclusion SD rats had a robust increase in capillary hemodynamics during hyperinsulinemic-euglycemic clamp whereas the capillary hemodynamics in ZDSD rats did not significantly change. Additionally, SD and ZDSD rats lacked expected hemodynamic responses in response to local [O2] changes during baseline and hyperinsulinemic-euglycemic clamp. This finding suggests that hyperglycemia in T2D and high-fat feeding alter microvascular hemodynamic responses to acute changes in muscle [O2].
Collapse
Affiliation(s)
| | | | | | | | - Graham M. Fraser
- Division of BioMedical Sciences, Memorial University, St. John’s, NL, Canada
| |
Collapse
|
2
|
Magerle R, Zech P, Dehnert M, Bendixen A, Otto A. Rate-independent hysteretic energy dissipation in collagen fibrils. SOFT MATTER 2024; 20:2831-2839. [PMID: 38456340 DOI: 10.1039/d3sm01625k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Nanoindentation cycles measured with an atomic force microscope on hydrated collagen fibrils exhibit a rate-independent hysteresis with return point memory. This previously unknown energy dissipation mechanism describes in unified form elastoplastic indentation, capillary adhesion, and surface leveling at indentation velocities smaller than 1 μm s-1, where viscous friction is negligible. A generic hysteresis model, based on force-distance data measured during one large approach-retract cycle, predicts the force (output) and the dissipated energy for arbitrary indentation trajectories (input). While both quantities are rate independent, they do depend nonlinearly on indentation history and on indentation amplitude.
Collapse
Affiliation(s)
- Robert Magerle
- Fakultät für Naturwissenschaften, Technische Universität Chemnitz, 09107 Chemnitz, Germany.
| | - Paul Zech
- Fakultät für Naturwissenschaften, Technische Universität Chemnitz, 09107 Chemnitz, Germany.
| | - Martin Dehnert
- Fakultät für Naturwissenschaften, Technische Universität Chemnitz, 09107 Chemnitz, Germany.
| | - Alexandra Bendixen
- Fakultät für Naturwissenschaften, Technische Universität Chemnitz, 09107 Chemnitz, Germany.
| | - Andreas Otto
- Fakultät für Naturwissenschaften, Technische Universität Chemnitz, 09107 Chemnitz, Germany.
| |
Collapse
|
3
|
Mehta D, Sihota P, Tikoo K, Kumar S, Kumar N. Type 2 diabetes alters the viscoelastic behavior and macromolecular composition of vertebra. Bone Rep 2023; 18:101680. [PMID: 37187573 PMCID: PMC10176031 DOI: 10.1016/j.bonr.2023.101680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 04/01/2023] [Accepted: 04/19/2023] [Indexed: 05/17/2023] Open
Abstract
Type 2 diabetes (T2D) affects the functional behavior of vertebra bone by altering its structural and mechanical properties. The vertebral bones are responsible to carry the body weight and it remains under prolonged constant load which results to viscoelastic deformation. The effect of T2D on the viscoelastic behavior of vertebral bone is not well explored yet. In this study, the effects of T2D on the creep and stress relaxation behavior of vertebral bone are investigated. Also, this study established a correlation between T2D associated alteration in macromolecular structure and viscoelastic behavior of vertebra. In this study T2D female rat SD model was used. The obtained results demonstrated a significant reduction in the amount of creep strain (p ≤ 0.05) and stress relaxation (p ≤ 0.01) in T2D specimens than the control. Also, the creep rate was found significantly lower in T2D specimens. On the other hand, molecular structural parameters such as mineral-to-matrix ratio (control vs T2D: 2.93 ± 0.78 vs 3.72 ± 0.53; p = 0.02), and non-enzymatic cross link ratio (NE-xL) (control vs T2D: 1.53 ± 0.07 vs 3.84 ± 0.20; p = 0.01) were found significantly altered in T2D specimens. Pearson linear correlation tests show a significant correlation; between creep rate and NE-xL (r = -0.94, p < 0.01), and between stress relaxation and NE-xL (r = -0.946, p < 0.01). Overall this study explored the understanding about the disease associated alteration in viscoelastic response of vertebra and its correlation with macromolecular composition which can help to understand the disease related impaired functioning of the vertebrae body.
Collapse
Affiliation(s)
- Deepak Mehta
- Department of Mechanical Engineering Indian Institute of Technology Ropar, India
| | - Praveer Sihota
- Department of Mechanical Engineering Indian Institute of Technology Ropar, India
| | - Kulbhushan Tikoo
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research Mohali, India
| | - Sachin Kumar
- Department of Mechanical Engineering Indian Institute of Technology Ropar, India
| | - Navin Kumar
- Department of Mechanical Engineering Indian Institute of Technology Ropar, India
| |
Collapse
|
4
|
Dwivedi KK, Lakhani P, Sihota P, Tikoo K, Kumar S, Kumar N. The multiscale characterization and constitutive modeling of healthy and type 2 diabetes mellitus Sprague Dawley rat skin. Acta Biomater 2023; 158:324-346. [PMID: 36565785 DOI: 10.1016/j.actbio.2022.12.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/26/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
In type 2 diabetes mellitus (T2DM), elevated glucose level impairs the biochemistry of the skin which may result in alteration of its mechanical and structural properties. The several aspects of structural and mechanical changes in skin due to T2DM remain poorly understood. To fill these research gaps, we developed a non-obese T2DM rat (Sprague Dawley (SD)) model for investigating the effect of T2DM on the in vivo strain stress state, mechanical and structural properties of skin. In vivo strain and mechanical anisotropy of healthy and T2DM skin were measured using the digital imaging correlation (DIC) technique and DIC coupled bulge experiment, respectively. Fluorescence microscopy and histology were used to assess the collagen and elastin fibers microstructure whereas nanoscale structure was captured through atomic force microscopy (AFM). Based on the microstructural observations, skin was modeled as a multilayer membrane where in and out of plane distribution of collagen fibers and planar distribution of elastin fibers were cast in constitutive model. Further, the state of in vivo stresses of healthy and T2DM were measured using model parameters and in vivo strain in the constitutive model. The results showed that T2DM causes significant loss in in vivo stresses (p < 0.01) and increase in anisotropy (p < 0.001) of skin. These changes were found in good correlation with T2DM associated alteration in skin microstructure. Statistical analysis emphasized that increase in blood glucose concentration (HbA1c) was the main cause of impaired biomechanical properties of skin. The presented data in this study can help to understand the skin pathology and to simulate the skin related clinical procedures. STATEMENT OF SIGNIFICANCE: Our study is significant as it presents findings related to the effect of T2DM on the physiologic stress strain, structural and mechanical response of SD rat skin. In this study, we developed a non-obese T2DM SD rat model which mimics the phenotype of Asian type 2 diabetics (non-obese). Several structural and mechanical characterization techniques were explored for multiscale characterization of healthy and T2DM skin. Further, based on microstructural information, we presented the constitutive models that incorporate the real microstructure of skin. The presented results can be helpful to simulate the realistic mechanical response of skin during various clinical trials.
Collapse
Affiliation(s)
- Krashn Kr Dwivedi
- Department of Biomedical Engineering, Indian institute of Technology Ropar, India
| | - Piyush Lakhani
- Department of Mechanical Engineering, Indian institute of Technology Ropar, India
| | - Praveer Sihota
- Department of Mechanical Engineering, Indian institute of Technology Ropar, India
| | - Kulbhushan Tikoo
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Mohali, India
| | - Sachin Kumar
- Department of Mechanical Engineering, Indian institute of Technology Ropar, India.
| | - Navin Kumar
- Department of Biomedical Engineering, Indian institute of Technology Ropar, India; Department of Mechanical Engineering, Indian institute of Technology Ropar, India.
| |
Collapse
|
5
|
Yoshikawa T, Mifune Y, Inui A, Nishimoto H, Yamaura K, Mukohara S, Shinohara I, Kuroda R. Quercetin treatment protects the Achilles tendons of rats from oxidative stress induced by hyperglycemia. BMC Musculoskelet Disord 2022; 23:563. [PMID: 35689230 PMCID: PMC9188208 DOI: 10.1186/s12891-022-05513-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/01/2022] [Indexed: 11/18/2022] Open
Abstract
Background Quercetin, a flavonoid abundantly in vegetables and fruits, exerts antioxidant and anti-inflammatory effects. We investigated the protective effects of quercetin against oxidative stress in the Achilles tendons of diabetic rats. Methods Cells were collected from the Achilles tendons of Sprague–Dawley rats and cultured under four conditions: regular glucose (RG) without quercetin (Quer-), RG with quercetin (Quer +), high-glucose (HG) Quer-, and HG Quer + . The expression of genes related to NADPH oxidase (NOX) and inflammation, reactive oxygen species accumulation, and apoptosis rates was analyzed. Additionally, diabetic rats were divided into two groups and subjected to quercetin (group Q) or no quercetin (group C) treatment. Histological evaluation and expression analysis of relevant genes in the Achilles tendon were performed. Results In rat tendon-derived cells, the expression of Nox1, Nox4, and Il6; reactive oxygen species accumulation; and apoptosis rates were significantly decreased by quercetin treatment in the HG group. The collagen fiber arrangement was significantly disorganized in the diabetic rat Achilles tendons in group C compared with that in group Q. The mRNA and protein expression levels of NOX1 and NOX4 were significantly decreased upon quercetin treatment. Furthermore, the expression of Il6, type III collagen, Mmp2, and Timp2 was significantly decreased, whereas that of type I collagen was significantly increased in group Q compared with that in group C. Conclusions Quercetin treatment decreases NOX expression and thus exerts antioxidant and anti-inflammatory effects in the Achilles tendons of diabetic rats. Quercetin treatment may be effective against diabetic tendinopathy.
Collapse
Affiliation(s)
- Tomoya Yoshikawa
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Yutaka Mifune
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan.
| | - Atsuyuki Inui
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Hanako Nishimoto
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Kohei Yamaura
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Shintaro Mukohara
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Issei Shinohara
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Ryosuke Kuroda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| |
Collapse
|
6
|
Yoshikawa T, Mifune Y, Inui A, Nishimoto H, Yamaura K, Mukohara S, Shinohara I, Kuroda R. Influence of Diabetes-Induced Glycation and Oxidative Stress on the Human Rotator Cuff. Antioxidants (Basel) 2022; 11:antiox11040743. [PMID: 35453426 PMCID: PMC9032678 DOI: 10.3390/antiox11040743] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 11/16/2022] Open
Abstract
Most shoulder rotator cuff tears (RCTs) are caused by non-traumatic age-related rotator cuff degeneration, of which hyperglycemia is a risk factor due to its glycation reaction and oxidative stress. We aimed to identify the influence of diabetes-induced glycation and oxidative stress in patients with non-traumatic shoulder RCTs. Twenty patients, aged over 50 years, with non-traumatic shoulder RCTs participated in this study. Patients with a history of diabetes mellitus or preoperative HbA1c ≥ 6.5% were assigned to the diabetic group (n = 10), and the rest to the non-diabetic group (n = 10). Cell proliferation; expression of genes related to oxidative stress, glycation reaction, inflammation, and collagen; intracellular reactive oxygen species (ROS) levels; and apoptosis rates were analyzed. The diabetic group had significantly lower cell proliferation than the non-diabetic group. In the diabetic group, the mRNA expression levels of NOX1, NOX4, IL6, RAGE, type III collagen, MMP2, TIMP1, and TIMP2 were significantly higher; type I collagen expression was significantly lower; and the rate of ROS-positive cells and apoptotic cells, as well as the expression of advanced glycation end-products (AGEs) and the receptor for AGEs (RAGE), was significantly higher. In conclusion, hyperglycemia caused by diabetes mellitus increased AGE and RAGE expression, and led to increased NOX expression, ROS production, and apoptosis in the human rotator cuff. This provides scope to find a preventive treatment for non-traumatic RCTs by inhibiting glycation and oxidative stress.
Collapse
Affiliation(s)
| | - Yutaka Mifune
- Correspondence: ; Tel.: +81-78-382-5985; Fax: +81-78-351-6944
| | | | | | | | | | | | | |
Collapse
|
7
|
Wang AN, Carlos J, Fraser GM, McGuire JJ. Zucker Diabetic Sprague Dawley rat (ZDSD): type 2 diabetes translational research model. Exp Physiol 2022; 107:265-282. [PMID: 35178802 PMCID: PMC9314054 DOI: 10.1113/ep089947] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 02/02/2022] [Indexed: 11/30/2022]
Abstract
New Findings What is the topic of this review? The Zucker Diabetic‐Sprague Dawley (ZDSD) rat is in the early adoption phase of use by researchers in the fields of diabetes, including prediabetes, obesity and metabolic syndrome. It is essential that physiology researchers choose preclinical models that model human type 2 diabetes appropriately and are aware of the limitations on experimental design. What advances does it highlight? Our review of the scientific literature finds that although sex, age and diets contribute to variability, the ZDSD phenotype and disease progression model the characteristics of humans who have prediabetes and diabetes, including co‐morbidities.
Abstract Type 2 diabetes (T2D) is a prevalent disease and a significant concern for global population health. For persons with T2D, clinical treatments target not only the characteristics of hyperglycaemia and insulin resistance, but also co‐morbidities, such as obesity, cardiovascular and renal disease, neuropathies and skeletal bone conditions. The Zucker Diabetic‐Sprague Dawley (ZDSD) rat is a rodent model developed for experimental studies of T2D. We reviewed the scientific literature to highlight the characteristics of T2D development and the associated phenotypes, such as metabolic syndrome, cardiovascular complications and bone and skeletal pathologies in ZDSD rats. We found that ZDSD phenotype characteristics are independent of leptin receptor signalling. The ZDSD rat develops prediabetes, then progresses to overt diabetes that is accelerated by introduction of a timed high‐fat diet. In male ZDSD rats, glycated haemoglobin (HbA1c) increases at a constant rate from 7 to >30 weeks of age. Diabetic ZDSD rats are moderately hypertensive compared with other rat strains. Diabetes in ZDSD rats leads to endothelial dysfunction in specific vasculatures, impaired wound healing, decreased systolic and diastolic cardiac function, neuropathy and nephropathy. Changes to bone composition and the skeleton increase the risk of bone fractures. Zucker Diabetic‐Sprague Dawley rats have not yet achieved widespread use by researchers. We highlight sex‐related differences in the ZDSD phenotype and gaps in knowledge for future studies. Overall, scientific data support the premise that the phenotype and disease progression in ZDSD rats models the characteristics in humans. We conclude that ZDSD rats are an advantageous model to advance understanding and discovery of treatments for T2D through preclinical research.
Collapse
Affiliation(s)
- Andrea N Wang
- Departments of Medical Biophysics, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Joselia Carlos
- Departments of Medical Biophysics, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Graham M Fraser
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John's, Newfoundland, Canada
| | - John J McGuire
- Departments of Medical Biophysics, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada.,Physiology & Pharmacology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| |
Collapse
|
8
|
Zellers JA, Eekhoff JD, Walk RE, Hastings MK, Tang SY, Lake SP. Human Achilles tendon mechanical behavior is more strongly related to collagen disorganization than advanced glycation end-products content. Sci Rep 2021; 11:24147. [PMID: 34921194 PMCID: PMC8683434 DOI: 10.1038/s41598-021-03574-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 12/03/2021] [Indexed: 12/25/2022] Open
Abstract
Diabetes is associated with impaired tendon homeostasis and subsequent tendon dysfunction, but the mechanisms underlying these associations is unclear. Advanced glycation end-products (AGEs) accumulate with diabetes and have been suggested to alter tendon function. In vivo imaging in humans has suggested collagen disorganization is more frequent in individuals with diabetes, which could also impair tendon mechanical function. The purpose of this study was to examine relationships between tendon tensile mechanics in human Achilles tendon with accumulation of advanced glycation end-products and collagen disorganization. Achilles tendon specimens (n = 16) were collected from individuals undergoing lower extremity amputation or from autopsy. Tendons were tensile tested with simultaneous quantitative polarized light imaging to assess collagen organization, after which AGEs content was assessed using a fluorescence assay. Moderate to strong relationships were observed between measures of collagen organization and tendon tensile mechanics (range of correlation coefficients: 0.570-0.727), whereas no statistically significant relationships were observed between AGEs content and mechanical parameters (range of correlation coefficients: 0.020-0.210). Results suggest that the relationship between AGEs content and tendon tensile mechanics may be masked by multifactorial collagen disorganization at larger length scales (i.e., the fascicle level).
Collapse
Affiliation(s)
- Jennifer A Zellers
- Program in Physical Therapy, Washington University School of Medicine in St. Louis, 4444 Forest Park Ave, St. Louis, MO, 63108, USA.
| | - Jeremy D Eekhoff
- Department of Biomedical Engineering, Washington University in St. Louis, 1 Brookings Drive, St. Louis, MO, 63130, USA
| | - Remy E Walk
- Department of Orthopaedic Surgery, Washington University School of Medicine in St. Louis, 425 S. Euclid Ave, St. Louis, MO, 63110, USA
| | - Mary K Hastings
- Program in Physical Therapy, Washington University School of Medicine in St. Louis, 4444 Forest Park Ave, St. Louis, MO, 63108, USA
| | - Simon Y Tang
- Department of Orthopaedic Surgery, Washington University School of Medicine in St. Louis, 425 S. Euclid Ave, St. Louis, MO, 63110, USA
| | - Spencer P Lake
- Department of Orthopaedic Surgery, Washington University School of Medicine in St. Louis, 425 S. Euclid Ave, St. Louis, MO, 63110, USA
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, 1 Brookings Drive, St. Louis, MO, 63130, USA
| |
Collapse
|
9
|
White S, McCullough MBA, Akangah PM. The Structural Effects of Diabetes on Soft Tissues: A Systematic Review. Crit Rev Biomed Eng 2021; 49:11-27. [PMID: 35993948 DOI: 10.1615/critrevbiomedeng.2022043200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Hyperglycemia, which is associated with diabetes, increases the production of advanced glycation end products. Advanced glycation end products lead to the structural degradation of soft tissues. The structural degradation of diabetic soft tissues has been investigated in humans, rodents, and canines. Therefore, the objective of this review is to unify the various contributions to diabetes research through the mechanical properties and geometric characteristics of soft tissues. A systematic review was performed and identified the effects of diabetes on mechanical and geometric properties of soft tissues via experimental testing or in vivo - driven finite element analysis. The literature concludes that diabetes contributes to major structural changes in soft tissues but does not cause the same structural changes in all soft tissues (e.g., diabetic tendons are weaker and diabetic plantar tissues are tougher). Diabetes stiffens and toughens soft tissues, thus altering viscoelastic behavior (e.g., poor strain and stress response). However, diabetes management routines can prevent or minimize the effects of diabetes on the mechanical and geometric properties of soft tissues. Unification of the structural effects of diabetes on soft tissues will contribute to the pathophysiology of diabetes.
Collapse
Affiliation(s)
- Shunafrica White
- Department of Mechanical Engineering, North Carolina Agricultural and Technical State University
| | - Matthew B A McCullough
- Department of Chemical, Biological, and Bioengineering at North Carolina Agricultural and Technical State University
| | - Paul M Akangah
- Department of Mechanical Engineering, North Carolina Agricultural and Technical State University
| |
Collapse
|
10
|
Zellers JA, Eekhoff JD, Tang SY, Hastings MK, Lake SP. Clinical complications of tendon tissue mechanics due to collagen cross-linking in diabetes. THE SCIENCE, ETIOLOGY AND MECHANOBIOLOGY OF DIABETES AND ITS COMPLICATIONS 2021:201-226. [DOI: 10.1016/b978-0-12-821070-3.00009-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
11
|
Lu PP, Chen MH, Dai GC, Li YJ, Shi L, Rui YF. Understanding cellular and molecular mechanisms of pathogenesis of diabetic tendinopathy. World J Stem Cells 2020; 12:1255-1275. [PMID: 33312397 PMCID: PMC7705468 DOI: 10.4252/wjsc.v12.i11.1255] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/19/2020] [Accepted: 09/10/2020] [Indexed: 02/06/2023] Open
Abstract
There is accumulating evidence of an increased incidence of tendon disorders in people with diabetes mellitus. Diabetic tendinopathy is an important cause of chronic pain, restricted activity, and even tendon rupture in individuals. Tenocytes and tendon stem/progenitor cells (TSPCs) are the dominant cellular components associated with tendon homeostasis, maintenance, remodeling, and repair. Some previous studies have shown alterations in tenocytes and TSPCs in high glucose or diabetic conditions that might cause structural and functional variations in diabetic tendons and even accelerate the development and progression of diabetic tendinopathy. In this review, the biomechanical properties and histopathological changes in diabetic tendons are described. Then, the cellular and molecular alterations in both tenocytes and TSPCs are summarized, and the underlying mechanisms involved are also analyzed. A better understanding of the underlying cellular and molecular pathogenesis of diabetic tendinopathy would provide new insight for the exploration and development of effective therapeutics.
Collapse
Affiliation(s)
- Pan-Pan Lu
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing 210009, Jiangsu Province, China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
- School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Min-Hao Chen
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing 210009, Jiangsu Province, China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
- School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Guang-Chun Dai
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing 210009, Jiangsu Province, China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
- School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Ying-Juan Li
- School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
- Department of Geriatrics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
- China Orthopedic Regenerative Medicine Group, Hangzhou 310000, Zhejiang Province, China
| | - Liu Shi
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing 210009, Jiangsu Province, China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
- China Orthopedic Regenerative Medicine Group, Hangzhou 310000, Zhejiang Province, China
| | - Yun-Feng Rui
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing 210009, Jiangsu Province, China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
- School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
- China Orthopedic Regenerative Medicine Group, Hangzhou 310000, Zhejiang Province, China.
| |
Collapse
|
12
|
Magerle R, Dehnert M, Voigt D, Bernstein A. Nanomechanical 3D Depth Profiling of Collagen Fibrils in Native Tendon. Anal Chem 2020; 92:8741-8749. [PMID: 32484331 DOI: 10.1021/acs.analchem.9b05582] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Connective tissue displays a large compositional and structural complexity that involves multiple length scales. In particular, on the molecular and the nanometer level, the elementary processes that determine the biomechanics of collagen fibrils in connective tissues are still poorly understood. Here, we use atomic force microscopy (AFM) to determine the three-dimensional (3D) depth profiles of the local nanomechanical properties of collagen fibrils and their embedding interfibrillar matrix in native (unfixed), hydrated Achilles tendon of sheep and chickens. AFM imaging in air with controlled humidity preserves the tissue's water content, allowing the assembly of collagen fibrils to be imaged in high resolution beneath an approximately 5-10 nm thick layer of the fluid components of the interfibrillar matrix. We collect pointwise force-distance (FD) data and amplitude-phase-distance (APD) data, from which we construct 3D depth profiles of the local tip-sample interaction forces. The 3D images reveal the nanomechanical morphology of unfixed, hydrated collagen fibrils in native tendon with a 0.1 nm depth resolution and a 10 nm lateral resolution. We observe a diversity in the nanomechanical properties among individual collagen fibrils in their adhesive and in their repulsive, viscoelastic mechanical response as well as among the contact points between adjacent collagen fibrils. This sheds new light on the role of interfibrillar bonds and the mechanical properties of the interfibrillar matrix in the biomechanics of tendon.
Collapse
Affiliation(s)
- Robert Magerle
- Fakultät für Naturwissenschaften, Technische Universität Chemnitz, 09107 Chemnitz, Germany
| | - Martin Dehnert
- Fakultät für Naturwissenschaften, Technische Universität Chemnitz, 09107 Chemnitz, Germany
| | - Diana Voigt
- Fakultät für Naturwissenschaften, Technische Universität Chemnitz, 09107 Chemnitz, Germany
| | - Anke Bernstein
- G.E.R.N. Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center-Albert-Ludwigs-University of Freiburg and Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany
| |
Collapse
|
13
|
Nichols AE, Oh I, Loiselle AE. Effects of Type II Diabetes Mellitus on Tendon Homeostasis and Healing. J Orthop Res 2020; 38:13-22. [PMID: 31166037 PMCID: PMC6893090 DOI: 10.1002/jor.24388] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 05/28/2019] [Indexed: 02/06/2023]
Abstract
Over 300,000 tendon repairs are performed annually in the United States to repair damage to tendons as a result of either acute trauma or chronic tendinopathy. Individuals with type II diabetes mellitus (T2DM) are four times more likely to experience tendinopathy, and up to five times more likely to experience a tendon tear or rupture than non-diabetics. As nearly 10% of the US population is diabetic, with an additional 33% pre-diabetic, this is a particularly problematic health care challenge. Tendon healing in general is challenging and often unsatisfactory due to the formation of mechanically inferior scar-tissue rather than regeneration of native tendon structure. In T2DM tendons, there is evidence of an amplified scar tissue response, which may be associated with the increased the risk of rupture or impaired restoration of range of motion. Despite the dramatic effect of T2DM on tendon function and outcomes following injury, there are few therapies available to promote improved healing in these patients. Several recent studies have enhanced our understanding of the pro-inflammatory environment of T2DM healing and have assessed potential treatment approaches to mitigate pathological progression in pre-clinical models of diabetic tendinopathy. This review discusses the current state of knowledge of diabetic tendon healing from molecular to mechanical disruptions and identifies promising approaches and critical knowledge gaps as the field moves toward identification of novel therapeutic strategies to maintain or restore tendon function in diabetic patients. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:13-22, 2020.
Collapse
Affiliation(s)
- Anne E.C. Nichols
- Center for Musculoskeletal Research, Department of Orthopaedics & Rehabilitation, University of Rochester Medical Center, Rochester, NY 14642
| | - Irvin Oh
- Center for Musculoskeletal Research, Department of Orthopaedics & Rehabilitation, University of Rochester Medical Center, Rochester, NY 14642
| | - Alayna E. Loiselle
- Center for Musculoskeletal Research, Department of Orthopaedics & Rehabilitation, University of Rochester Medical Center, Rochester, NY 14642,Corresponding Author Alayna E. Loiselle, PhD, Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Ave, Box 665, Rochester, NY, 14642, Phone: (585) 275-7239, Fax: (585) 276-2177,
| |
Collapse
|
14
|
Abstract
The hierarchical structure of tendon allows for attenuation of mechanical strain down decreasing length scales. While reorganization of collagen fibers accounts for microscale strain attenuation, cross-linking between collagen molecules contributes to deformation mechanisms at the fibrillar and molecular scales. Divalent and trivalent enzymatic cross-links form during the development of collagen fibrils through the enzymatic activity of lysyl oxidase (LOX). By establishing connections between telopeptidyl and triple-helical domains of adjacent molecules within collagen fibrils, these cross-links stiffen the fibrils by resisting intermolecular sliding. Ultimately, greater enzymatic cross-linking leads to less compliant and stronger tendon as a result of stiffer fibrils. In contrast, nonenzymatic cross-links such as glucosepane and pentosidine are not produced during development but slowly accumulate through glycation of collagen. Therefore, these cross-links are only expected to be present in significant quantities in advanced age, where there has been sufficient time for glycation to occur, and in diabetes, where the presence of more free sugar in the extracellular matrix increases the rate of glycation. Unlike enzymatic cross-links, current evidence suggests that nonenzymatic cross-links are at least partially isolated to the surface of collagen fibers. As a result, glycation has been proposed to primarily impact tendon mechanics by altering molecular interactions at the fiber interface, thereby diminishing sliding between fibers. Thus, increased nonenzymatic cross-linking decreases microscale strain attenuation and the viscous response of tendon. In conclusion, enzymatic and nonenzymatic collagen cross-links have demonstrable and distinct effects on the mechanical properties of tendon across different length scales.
Collapse
Affiliation(s)
- Jeremy D Eekhoff
- a Department of Biomedical Engineering , Washington University in St. Louis , St. Louis , USA
| | - Fei Fang
- b Department of Orthopedic Surgery , Columbia University , New York , USA
| | - Spencer P Lake
- a Department of Biomedical Engineering , Washington University in St. Louis , St. Louis , USA.,c Department of Mechanical Engineering and Materials Science , Washington University in St. Louis , St. Louis , USA.,d Department of Orthopaedic Surgery , Washington University in St. Louis , St. Louis , USA
| |
Collapse
|
15
|
Svensson RB, Smith ST, Moyer PJ, Magnusson SP. Effects of maturation and advanced glycation on tensile mechanics of collagen fibrils from rat tail and Achilles tendons. Acta Biomater 2018; 70:270-280. [PMID: 29447959 DOI: 10.1016/j.actbio.2018.02.005] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 01/24/2018] [Accepted: 02/06/2018] [Indexed: 02/06/2023]
Abstract
Connective tissues are ubiquitous throughout the body and consequently affect the function of many organs. In load bearing connective tissues like tendon, the mechanical functionality is provided almost exclusively by collagen fibrils that in turn are stabilized by covalent cross-links. Functionally distinct tendons display different cross-link patterns, which also change with maturation, but these differences have not been studied in detail at the fibril level. In the present study, a custom built nanomechanical test platform was designed and fabricated to measure tensile mechanics of individual fibrils from rat tendons. The influence of animal maturity (4 vs. 16 week old rats) and functionally different tendons (tail vs. Achilles tendons) were examined. Additionally the effect of methylglyoxal (MG) treatment in vitro to form advanced glycation end products (AGEs) was investigated. Age and tissue type had no significant effect on fibril mechanics, but MG treatment increased strength and stiffness without inducing brittleness and gave rise to a distinct three-phase mechanical response corroborating that previously reported in human patellar tendon fibrils. That age and tissue had little mechanical effect, tentatively suggest that variations in enzymatic cross-links may play a minor role after initial tissue formation. STATEMENT OF SIGNIFICANCE Tendons are connective tissues that connect muscle to bone and carry some of the greatest mechanical loads in the body, which makes them common sites of injury. A tendon is essentially a biological rope formed by thin strands called fibrils made of the protein collagen. Tendon function relies on the strength of these fibrils, which in turn depends on naturally occurring cross-links between collagen molecules, but the mechanical influence of these cross-links have not been measured before. It is believed that beneficial cross-linking occurs with maturation while additional cross-linking with aging may lead to brittleness, but this study provides evidence that maturation has little effect on mechanical function and that age-related cross-linking does not result in brittle collagen fibrils.
Collapse
Affiliation(s)
- Rene B Svensson
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Stuart T Smith
- Department of Mechanical Engineering and Engineering Science, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Patrick J Moyer
- Department of Physics and Optical Science, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - S Peter Magnusson
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Musculoskeletal Rehabilitation Research Unit, Bispebjerg Hospital, University Hospital of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
16
|
Subramaniam A, Landstrom M, Luu A, Hayes KC. The Nile Rat (Arvicanthis niloticus) as a Superior Carbohydrate-Sensitive Model for Type 2 Diabetes Mellitus (T2DM). Nutrients 2018; 10:nu10020235. [PMID: 29463026 PMCID: PMC5852811 DOI: 10.3390/nu10020235] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/13/2018] [Accepted: 02/13/2018] [Indexed: 02/06/2023] Open
Abstract
Type II diabetes mellitus (T2DM) is a multifactorial disease involving complex genetic and environmental interactions. No single animal model has so far mirrored all the characteristics or complications of diabetes in humans. Since this disease represents a chronic nutritional insult based on a diet bearing a high glycemic load, the ideal model should recapitulate the underlying dietary issues. Most rodent models have three shortcomings: (1) they are genetically or chemically modified to produce diabetes; (2) unlike humans, most require high-fat feeding; (3) and they take too long to develop diabetes. By contrast, Nile rats develop diabetes rapidly (8-10 weeks) with high-carbohydrate (hiCHO) diets, similar to humans, and are protected by high fat (with low glycemic load) intake. This review describes diabetes progression in the Nile rat, including various aspects of breeding, feeding, and handling for best experimental outcomes. The diabetes is characterized by a striking genetic permissiveness influencing hyperphagia and hyperinsulinemia; random blood glucose is the best index of disease progression; and kidney failure with chronic morbidity and death are outcomes, all of which mimic uncontrolled T2DM in humans. Non-alcoholic fatty liver disease (NAFLD), also described in diabetic humans, results from hepatic triglyceride and cholesterol accumulation associated with rising blood glucose. Protection is afforded by low glycemic load diets rich in certain fibers or polyphenols. Accordingly, the Nile rat provides a unique opportunity to identify the nutritional factors and underlying genetic and molecular mechanisms that characterize human T2DM.
Collapse
Affiliation(s)
| | | | - Alice Luu
- Department of Biology, Brandeis University, Waltham, MA 02454, USA.
| | - K C Hayes
- Department of Biology, Brandeis University, Waltham, MA 02454, USA.
| |
Collapse
|
17
|
Fang F, Lake SP. Experimental evaluation of multiscale tendon mechanics. J Orthop Res 2017; 35:1353-1365. [PMID: 27878999 DOI: 10.1002/jor.23488] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 11/16/2016] [Indexed: 02/04/2023]
Abstract
Tendon's primary function is a mechanical link between muscle and bone. The hierarchical structure of tendon and specific compositional constituents are believed to be critical for proper mechanical function. With increased appreciation for tendon importance and the development of various technological advances, this review paper summarizes recent experimental approaches that have been used to study multiscale tendon mechanics, includes an overview of studies that have evaluated the role of specific tissue constituents, and also proposes challenges/opportunities facing tendon study. Tendon has been demonstrated to have specific structural characteristics (e.g., multi-level hierarchy, crimp pattern, helix) and complex mechanical properties (e.g., non-linearity, anisotropy, viscoelasticity). Physical mechanisms including uncrimping, fiber sliding, and collagen reorganization have been shown to govern tendon mechanical responses under both static and dynamic loading. Several tendon constituents with relatively small quantities have been suggested to play a role in its mechanics, although some results are conflicting. Further research should be performed to understand the interplay and communication of tendon mechanical properties across levels of the hierarchical structure, and further show how each of these components contribute to tendon mechanics. The studies summarized and discussed in this review have helped elucidate important aspects of multiscale tendon mechanics, which is a prerequisite for analyzing stress/strain transfer between multiple scales and identifying key principles of mechanotransduction. This information could further facilitate interpreting the functional diversity of tendons from different species, different locations, and even different developmental stages, and then better understand and identify fundamental concepts related to tendon degeneration, disease, and healing. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1353-1365, 2017.
Collapse
Affiliation(s)
- Fei Fang
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, 1 Brookings Drive, Campus Box 1185, St. Louis, Missouri, 63130
| | - Spencer P Lake
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, 1 Brookings Drive, Campus Box 1185, St. Louis, Missouri, 63130.,Department of Biomedical Engineering, Washington University in St. Louis, 1 Brookings Drive, Campus Box 1185, St. Louis, Missouri, 63130.,Department of Orthopaedic Surgery, Washington University in St. Louis, 1 Brookings Drive, Campus Box 1185, St. Louis, Missouri, 63130
| |
Collapse
|
18
|
Lui PPY. Tendinopathy in diabetes mellitus patients-Epidemiology, pathogenesis, and management. Scand J Med Sci Sports 2017; 27:776-787. [PMID: 28106286 DOI: 10.1111/sms.12824] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2016] [Indexed: 12/15/2022]
Abstract
Chronic tendinopathy is a frequent and disabling musculo-skeletal problem affecting the athletic and general populations. The affected tendon is presented with local tenderness, swelling, and pain which restrict the activity of the individual. Tendon degeneration reduces the mechanical strength and predisposes it to rupture. The pathogenic mechanisms of chronic tendinopathy are not fully understood and several major non-mutually exclusive hypotheses including activation of the hypoxia-apoptosis-pro-inflammatory cytokines cascade, neurovascular ingrowth, increased production of neuromediators, and erroneous stem cell differentiation have been proposed. Many intrinsic and extrinsic risk/causative factors can predispose to the development of tendinopathy. Among them, diabetes mellitus is an important risk/causative factor. This review aims to appraise the current literature on the epidemiology and pathology of tendinopathy in diabetic patients. Systematic reviews were done to summarize the literature on (a) the association between diabetes mellitus and tendinopathy/tendon tears, (b) the pathological changes in tendon under diabetic or hyperglycemic conditions, and (c) the effects of diabetes mellitus or hyperglycemia on the outcomes of tendon healing. The potential mechanisms of diabetes mellitus in causing and exacerbating tendinopathy with reference to the major non-mutually exclusive hypotheses of the pathogenic mechanisms of chronic tendinopathy as reported in the literature are also discussed. Potential strategies for the management of tendinopathy in diabetic patients are presented.
Collapse
Affiliation(s)
- P P Y Lui
- Headquarter, Hospital Authority, Hong Kong SAR, China
| |
Collapse
|
19
|
Experimental Diabetes Alters the Morphology and Nano-Structure of the Achilles Tendon. PLoS One 2017; 12:e0169513. [PMID: 28095484 PMCID: PMC5240962 DOI: 10.1371/journal.pone.0169513] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 12/19/2016] [Indexed: 01/21/2023] Open
Abstract
Although of several studies that associate chronic hyperglycemia with tendinopathy, the connection between morphometric changes as witnessed by magnetic resonance (MR) images, nanostructural changes, and inflammatory markers have not yet been fully established. Therefore, the present study has as a hypothesis that the Achilles tendons of rats with diabetes mellitus (DM) exhibit structural changes. The animals were randomly divided into two experimental groups: Control Group (n = 06) injected with a vehicle (sodium citrate buffer solution) and Diabetic Group (n = 06) consisting of rats submitted to intraperitoneal administration of streptozotocin. MR was performed 24 days after the induction of diabetes and images were used for morphometry using ImageJ software. Morphology of the collagen fibers within tendons was examined using Atomic Force microscopy (AFM). An increase in the dimension of the coronal plane area was observed in the diabetic group (8.583 ± 0.646 mm2/100g) when compared to the control group (4.823 ± 0.267 mm2/100g) resulting in a significant difference (p = 0.003) upon evaluating the Achilles tendons. Similarly, our analysis found an increase in the size of the transverse section area in the diabetic group (1.328 ± 0.103 mm2/100g) in comparison to the control group (0.940 ± 0.01 mm2/100g) p = 0.021. The tendons of the diabetic group showed great irregularity in fiber bundles, including modified grain direction and jagged junctions and deformities in the form of collagen fibrils bulges. Despite the morphological changes observed in the Achilles tendon of diabetic animals, IL1 and TNF-α did not change. Our results suggest that DM promotes changes to the Achilles tendon with important structural modifications as seen by MR and AFM, excluding major inflammatory changes.
Collapse
|
20
|
Canelón SP, Wallace JM. β-Aminopropionitrile-Induced Reduction in Enzymatic Crosslinking Causes In Vitro Changes in Collagen Morphology and Molecular Composition. PLoS One 2016; 11:e0166392. [PMID: 27829073 PMCID: PMC5102343 DOI: 10.1371/journal.pone.0166392] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 10/27/2016] [Indexed: 01/04/2023] Open
Abstract
Type I collagen morphology can be characterized using fibril D-spacing, a metric which describes the periodicity of repeating bands of gap and overlap regions of collagen molecules arranged into collagen fibrils. This fibrillar structure is stabilized by enzymatic crosslinks initiated by lysyl oxidase (LOX), a step which can be disrupted using β-aminopropionitrile (BAPN). Murine in vivo studies have confirmed effects of BAPN on collagen nanostructure and the objective of this study was to evaluate the mechanism of these effects in vitro by measuring D-spacing, evaluating the ratio of mature to immature crosslinks, and quantifying gene expression of type I collagen and LOX. Osteoblasts were cultured in complete media, and differentiated using ascorbic acid, in the presence or absence of 0.25mM BAPN-fumarate. The matrix produced was imaged using atomic force microscopy (AFM) and 2D Fast Fourier transforms were performed to extract D-spacing from individual fibrils. The experiment was repeated for quantitative reverse transcription polymerase chain reaction (qRT-PCR) and Fourier Transform infrared spectroscopy (FTIR) analyses. The D-spacing distribution of collagen produced in the presence of BAPN was shifted toward higher D-spacing values, indicating BAPN affects the morphology of collagen produced in vitro, supporting aforementioned in vivo experiments. In contrast, no difference in gene expression was found for any target gene, suggesting LOX inhibition does not upregulate the LOX gene to compensate for the reduction in aldehyde formation, or regulate expression of genes encoding type I collagen. Finally, the mature to immature crosslink ratio decreased with BAPN treatment and was linked to a reduction in peak percent area of mature crosslink hydroxylysylpyridinoline (HP). In conclusion, in vitro treatment of osteoblasts with low levels of BAPN did not induce changes in genes encoding LOX or type I collagen, but led to an increase in collagen D-spacing as well as a decrease in mature crosslinks.
Collapse
Affiliation(s)
- Silvia P. Canelón
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, United States of America
| | - Joseph M. Wallace
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, United States of America
- Department of Biomedical Engineering, Indiana University-Purdue University at Indianapolis, Indianapolis, Indiana, United States of America
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- * E-mail:
| |
Collapse
|
21
|
Hammond MA, Laine TJ, Berman AG, Wallace JM. Treadmill Exercise Improves Fracture Toughness and Indentation Modulus without Altering the Nanoscale Morphology of Collagen in Mice. PLoS One 2016; 11:e0163273. [PMID: 27655444 PMCID: PMC5031456 DOI: 10.1371/journal.pone.0163273] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 09/05/2016] [Indexed: 01/22/2023] Open
Abstract
The specifics of how the nanoscale properties of collagen (e.g., the crosslinking profile) affect the mechanical integrity of bone at larger length scales is poorly understood despite growing evidence that collagen’s nanoscale properties are altered with disease. Additionally, mass independent increases in postyield displacement due to exercise suggest loading-induced improvements in bone quality associated with collagen. To test whether disease-induced reductions in bone quality driven by alterations in collagen can be rescued or prevented via exercise-mediated changes to collagen’s nanoscale morphology and mechanical properties, the effects of treadmill exercise and β-aminopropionitrile treatment were investigated. Eight week old female C57BL/6 mice were given a daily subcutaneous injection of either 164 mg/kg β-aminopropionitrile or phosphate buffered saline while experiencing either normal cage activity or 30 min of treadmill exercise for 21 consecutive days. Despite differences in D-spacing distribution (P = 0.003) and increased cortical area (tibial: P = 0.005 and femoral: P = 0.015) due to β-aminopropionitrile treatment, an overt mechanical disease state was not achieved as there were no differences in fracture toughness or 4 point bending due to β-aminopropionitrile treatment. While exercise did not alter (P = 0.058) the D-spacing distribution of collagen or prevent (P < 0.001) the β-aminopropionitrile-induced changes present in the unexercised animals, there were differential effects in the distribution of the reduced elastic modulus due to exercise between control and β-aminopropionitrile-treated animals (P < 0.001). Fracture toughness was increased (P = 0.043) as a main effect of exercise, but no significant differences due to exercise were observed using 4 point bending. Future studies should examine the potential for sex specific differences in the dose of β-aminopropionitrile required to induce mechanical effects in mice and the contributions of other nanoscale aspects of bone (e.g., the mineral–collagen interface) to elucidate the mechanism for the exercise-based improvements in fracture toughness observed here and the increased postyield deformation observed in other studies.
Collapse
Affiliation(s)
- Max A. Hammond
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States of America
| | - Tyler J. Laine
- Department of Biomedical Engineering, Indiana University–Purdue University Indianapolis, Indianapolis, IN, United States of America
| | - Alycia G. Berman
- Department of Biomedical Engineering, Indiana University–Purdue University Indianapolis, Indianapolis, IN, United States of America
| | - Joseph M. Wallace
- Department of Biomedical Engineering, Indiana University–Purdue University Indianapolis, Indianapolis, IN, United States of America
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, United States of America
- * E-mail:
| |
Collapse
|
22
|
Oliva F, Piccirilli E, Berardi AC, Frizziero A, Tarantino U, Maffulli N. Hormones and tendinopathies: the current evidence. Br Med Bull 2016; 117:39-58. [PMID: 26790696 DOI: 10.1093/bmb/ldv054] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/30/2015] [Indexed: 12/17/2022]
Abstract
BACKGROUND Tendinopathies negatively affect the quality of life of millions of people, but we still do not know the factors involved in the development of tendon conditions. SOURCES OF DATA Published articles in English in PubMed and Google Scholar up to June 2015 about hormonal influence on tendinopathies onset. One hundred and two papers were included following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. AREAS OF AGREEMENT In vitro and in vivo, tenocytes showed changes in their morphology and in their functional properties according to hormonal imbalances. AREAS OF CONTROVERSY Genetic pattern, sex, age and comorbidities can influence the hormonal effect on tendons. GROWING POINTS The increasing prevalence of metabolic disorders prompts to investigate the possible connection between metabolic problems and musculoskeletal diseases. AREAS TIMELY FOR DEVELOPING RESEARCH The influence of hormones on tendon structure and metabolism needs to be further investigated. If found to be significant, multidisciplinary preventive and therapeutic strategies should then be developed.
Collapse
Affiliation(s)
- Francesco Oliva
- Department of Orthopaedics and Traumatology, University of Rome 'Tor Vergata', Roma, Italy
| | - Eleonora Piccirilli
- School of Specialization of Orthopaedics and Traumatology, University of Rome 'Tor Vergata', Roma, Italy
| | - Anna C Berardi
- UOC Immunohematology and Transfusion Medicine Laboratories, Laboratory of Stem Cells, Spirito Santo Hospital, Pescara, Italy
| | - Antonio Frizziero
- Department of Physical and Rehabilitation Medicine, University of Padua, Padua, Italy
| | - Umberto Tarantino
- Department of Orthopaedics and Traumatology, University of Rome 'Tor Vergata', Roma, Italy
| | - Nicola Maffulli
- Centre for Sports and Exercise Medicine, Queen Mary University of London Barts, London, UK The London School of Medicine and Dentistry, Mile End Hospital London, London, UK Department of Physical and Rehabilitation Medicine, University of Salerno, Fisciano, Italy
| |
Collapse
|
23
|
Blum KM, Novak T, Watkins L, Neu CP, Wallace JM, Bart ZR, Voytik-Harbin SL. Acellular and cellular high-density, collagen-fibril constructs with suprafibrillar organization. Biomater Sci 2016; 4:711-23. [PMID: 26902645 DOI: 10.1039/c5bm00443h] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Collagen is used extensively for tissue engineering due to its prevalence in connective tissues and its role in defining tissue biophysical and biological signalling properties. However, traditional collagen-based materials fashioned from atelocollagen and telocollagen have lacked collagen densities, multi-scale organization, mechanical integrity, and proteolytic resistance found within tissues in vivo. Here, highly interconnected low-density matrices of D-banded fibrils were created from collagen oligomers, which exhibit fibrillar as well as suprafibrillar assembly. Confined compression then was applied to controllably reduce the interstitial fluid while maintaining fibril integrity. More specifically, low-density (3.5 mg mL(-1)) oligomer matrices were densified to create collagen-fibril constructs with average concentrations of 12.25 mg mL(-1) and 24.5 mg mL(-1). Control and densified constructs exhibited nearly linear increases in ultimate stress, Young's modulus, and compressive modulus over the ranges of 65 to 213 kPa, 400 to 1.26 MPa, and 20 to 150 kPa, respectively. Densification also increased construct resistance to collagenase degradability. Finally, this process was amenable to creating high-density cellularized tissues; all constructs maintained high cell viability (at least 97%) immediately following compression as well as after 1 day and 7 days of culture. This method, which integrates the suprafibrillar assembly capacity of oligomers and controlled fluid reduction by confined compression, supports the rational and scalable design of a broad range of collagen-fibril materials and cell-encapsulated tissue constructs for tissue engineering applications.
Collapse
Affiliation(s)
- Kevin M Blum
- Weldon School of Biomedical Engineering, College of Engineering, Purdue University, West Lafayette, IN 47907, USA.
| | | | | | | | | | | | | |
Collapse
|
24
|
Couppé C, Svensson RB, Kongsgaard M, Kovanen V, Grosset JF, Snorgaard O, Bencke J, Larsen JO, Bandholm T, Christensen TM, Boesen A, Helmark IC, Aagaard P, Kjaer M, Magnusson SP. Human Achilles tendon glycation and function in diabetes. J Appl Physiol (1985) 2015; 120:130-7. [PMID: 26542519 DOI: 10.1152/japplphysiol.00547.2015] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 10/30/2015] [Indexed: 02/06/2023] Open
Abstract
Diabetic patients have an increased risk of foot ulcers, and glycation of collagen may increase tissue stiffness. We hypothesized that the level of glycemic control (glycation) may affect Achilles tendon stiffness, which can influence gait pattern. We therefore investigated the relationship between collagen glycation, Achilles tendon stiffness parameters, and plantar pressure in poorly (n = 22) and well (n = 22) controlled diabetic patients, including healthy age-matched (45-70 yr) controls (n = 11). There were no differences in any of the outcome parameters (collagen cross-linking or tendon stiffness) between patients with well-controlled and poorly controlled diabetes. The overall effect of diabetes was explored by collapsing the diabetes groups (DB) compared with the controls. Skin collagen cross-linking lysylpyridinoline, hydroxylysylpyridinoline (136%, 80%, P < 0.01) and pentosidine concentrations (55%, P < 0.05) were markedly greater in DB. Furthermore, Achilles tendon material stiffness was higher in DB (54%, P < 0.01). Notably, DB also demonstrated higher forefoot/rearfoot peak-plantar-pressure ratio (33%, P < 0.01). Overall, Achilles tendon material stiffness and skin connective tissue cross-linking were greater in diabetic patients compared with controls. The higher foot pressure indicates that material stiffness of tendon and other tissue (e.g., skin and joint capsule) may influence foot gait. The difference in foot pressure distribution may contribute to the development of foot ulcers in diabetic patients.
Collapse
Affiliation(s)
- Christian Couppé
- IOC Sports Medicine, Department of Orthopedic Surgery M, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Physical Therapy, Musculoskeletal Rehabilitation Research Unit, Bispebjerg Hospital, Copenhagen, Denmark;
| | - Rene Brüggebusch Svensson
- IOC Sports Medicine, Department of Orthopedic Surgery M, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mads Kongsgaard
- IOC Sports Medicine, Department of Orthopedic Surgery M, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Vuokko Kovanen
- Department of Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Jean-Francois Grosset
- CNRS UMR 7338, Biomécanique et Bioingénierie, Université de Technologie de Compiègne, Compiègne, France; Université Paris 13, Sorbonne Paris Cité, UFR Santé Médecine et Biologie Humaine, Paris, France
| | - Ole Snorgaard
- Department of Endocrinology, Hvidovre University Hospital, Hvidovre, Denmark
| | - Jesper Bencke
- Gait Analysis Laboratory, Department of Orthopaedics, Copenhagen University Hospital, Hvidovre, Denmark
| | - Jytte Overgaard Larsen
- Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Bandholm
- Physical Medicine and Rehabilitation Research-Copenhagen, Department of Physical Therapy, Copenhagen, Denmark; Department of Orthopedic Surgery, Hvidovre Hospital, University of Copenhagen, Hvidovre, Denmark; Clinical Research Centre, Hvidovre Hospital, University of Copenhagen, Hvidovre, Denmark
| | | | - Anders Boesen
- IOC Sports Medicine, Department of Orthopedic Surgery M, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ida Carøe Helmark
- IOC Sports Medicine, Department of Orthopedic Surgery M, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Per Aagaard
- Institute of Sports Science and Clinical Biomechanics, SDU Muscle Research Cluster, University of Southern Denmark, Odense, Denmark
| | - Michael Kjaer
- IOC Sports Medicine, Department of Orthopedic Surgery M, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Stig Peter Magnusson
- IOC Sports Medicine, Department of Orthopedic Surgery M, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Physical Therapy, Musculoskeletal Rehabilitation Research Unit, Bispebjerg Hospital, Copenhagen, Denmark
| |
Collapse
|
25
|
Wells HC, Sizeland KH, Kirby N, Hawley A, Mudie S, Haverkamp RG. Collagen Fibril Structure and Strength in Acellular Dermal Matrix Materials of Bovine, Porcine, and Human Origin. ACS Biomater Sci Eng 2015; 1:1026-1038. [PMID: 33429533 DOI: 10.1021/acsbiomaterials.5b00310] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Strength is an important characteristic of acellular dermal matrix (ADM) materials used for surgical scaffolds. Strength depends on the material's structure, which may vary with the source from which the product is produced, including species and animal age. Here, variations in the physical properties and structures of ADM materials from three species are investigated: bovine (fetal and neonatal), porcine, and human materials. Thickness normalized, the bovine materials have a similar strength (tear strength of 75-124 N/m) to the human material (79 N/m), and these are both stronger than the porcine material (43 N/m). Thickness-normalized tensile strengths were similar among all species (18-34 N/mm2 for bovine although higher in fetal material, 18 N/mm2 for human and 21 N/mm2 for porcine). Structure is investigated with synchrotron-based small-angle X-ray scattering (SAXS) for collagen fibril orientation index (OI) and scanning electron microscopy (SEM). SEM reveals a more open structure in bovine ADM than in the porcine and human material. A correlation is found between OI and thickness-normalized tear strength in neonatal bovine material measured with the X-rays edge-on to the sample, but this relationship does not extend across species. The collagen fibril arrangement, viewed perpendicular to the surface, varies between species, with the human material having a unimodal distribution and rather isotropic (OI 0.08), the porcine being strongly bimodal and rather highly oriented (OI 0.61), the neonatal bovine between these two extremes with a bimodal distribution tending toward isotropic (OI 0.14-0.21) and the fetal bovine material being bimodal and less isotropic than neonatal (OI 0.24). The OI varies less through the thickness of the porcine and human materials than through the bovine materials. The similarities and differences in structure may inform the suitability of these materials for particular surgical applications.
Collapse
Affiliation(s)
- Hannah C Wells
- School of Engineering and Advanced Technology, Massey University, Private Bag 11222, Palmerston North, New Zealand
| | - Katie H Sizeland
- School of Engineering and Advanced Technology, Massey University, Private Bag 11222, Palmerston North, New Zealand
| | - Nigel Kirby
- Australian Synchrotron, 800 Blackburn Road, Clayton, Melbourne, Victoria, Australia
| | - Adrian Hawley
- Australian Synchrotron, 800 Blackburn Road, Clayton, Melbourne, Victoria, Australia
| | - Stephen Mudie
- Australian Synchrotron, 800 Blackburn Road, Clayton, Melbourne, Victoria, Australia
| | - Richard G Haverkamp
- School of Engineering and Advanced Technology, Massey University, Private Bag 11222, Palmerston North, New Zealand
| |
Collapse
|
26
|
Wallace JM. Effects of fixation and demineralization on bone collagen D-spacing as analyzed by atomic force microscopy. Connect Tissue Res 2015; 56:68-75. [PMID: 25634588 DOI: 10.3109/03008207.2015.1005209] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE/AIM Collagen's role in bone is often considered secondary. As increased attention is paid to collagen, understanding the impact of tissue preservation is important in interpreting experimental results. The goal of this study was to test the hypothesis that bone fixation prior to demineralization would maintain its collagen ultrastructure in an undisturbed state when analyzed using Atomic Force Microscopy (AFM). MATERIALS/METHODS The anterior diaphysis of a pig femur was cut into 6 mm pieces along its length. Samples were mounted, polished and randomly assigned to control or fixation groups (n = 5/group). Fixation samples were fixed for 24 h prior to demineralization. All samples were briefly demineralized to expose collagen, and imaged using AFM. Mouse tail tendons were also analyzed to explore effects of dehydration and fixation. Measurements from each bone sample were averaged and compared using a Mann-Whitney U-test. Tendon sample means were compared using RMANOVA. To investigate differences in D-spacing distributions, Kolmogorov-Smirnov tests were used. RESULTS Fixation decreased D-spacing variability within and between bone samples and induced or maintained a higher average D-spacing versus control by shifting the D-spacing population upward. Tendon data indicate that fixing and drying samples leaves collagen near its undisturbed and hydrated native state. DISCUSSION Fixation in bone prior to demineralization decreased D-spacing variability. D-spacing was shifted upward in fixed samples, indicating that collagen is stretched with mineral present and relaxes upon its removal. The ability to decrease variability in bone suggests that fixation might increase the power to detect changes in collagen due to disease or other pressures.
Collapse
Affiliation(s)
- Joseph M Wallace
- Department of Biomedical Engineering, Indiana University-Purdue University at Indianapolis , Indianapolis, IN , USA and
| |
Collapse
|
27
|
Hammond MA, Wallace JM. Exercise prevents β-aminopropionitrile-induced morphological changes to type I collagen in murine bone. BONEKEY REPORTS 2015; 4:645. [PMID: 25798234 DOI: 10.1038/bonekey.2015.12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 01/27/2015] [Indexed: 01/22/2023]
Abstract
This study evaluated the effects of reduced enzymatic crosslinking, exercise and the ability of exercise to prevent the deleterious impact of reduced crosslinking on collagen D-spacing. Eight-week-old female mice were divided into four weight-matched groups receiving daily injections of either phosphate-buffered saline (PBS) or 300 mg kg(-1) β-aminopropionitrile (BAPN) while undergoing normal cage activity (Sed) or 30 min per day of treadmill exercise (Ex) for 21 consecutive days. BAPN caused a downward shift in the D-spacing distribution in Sed BAPN compared with Sed PBS (P<0.001) but not in Ex BAPN (P=0.429), indicating that exercise can prevent changes in collagen morphology caused by BAPN. Exercise had no effect on D-spacing in PBS control mice (P=0.726), which suggests that exercise-induced increases in lysyl oxidase may be a possible mechanism for preventing BAPN-induced changes in D-spacing. The D-spacing changes were accompanied by an increase in mineral crystallinity/maturity due to the main effect of BAPN (P=0.016). However, no changes in nanoindentation, reference point indentation or other Raman spectroscopy parameters were observed. The ability of exercise to rescue BAPN-driven changes in collagen morphology necessitates further research into the use of mechanical stimulation as a preventative therapy for collagen-based diseases.
Collapse
Affiliation(s)
- Max A Hammond
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette , Indianapolis, IN, USA
| | - Joseph M Wallace
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette , Indianapolis, IN, USA ; Department of Biomedical Engineering, Indiana University-Purdue University at Indianapolis , Indianapolis, IN, USA ; Department of Orthopaedic Surgery, Indiana University School of Medicine , Indianapolis, IN, USA
| |
Collapse
|
28
|
Peterson RG, Jackson CV, Zimmerman K, de Winter W, Huebert N, Hansen MK. Characterization of the ZDSD Rat: A Translational Model for the Study of Metabolic Syndrome and Type 2 Diabetes. J Diabetes Res 2015; 2015:487816. [PMID: 25961053 PMCID: PMC4415477 DOI: 10.1155/2015/487816] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 09/05/2014] [Accepted: 09/16/2014] [Indexed: 12/16/2022] Open
Abstract
Metabolic syndrome and T2D produce significant health and economic issues. Many available animal models have monogenic leptin pathway mutations that are absent in the human population. Development of the ZDSD rat model was undertaken to produce a model that expresses polygenic obesity and diabetes with an intact leptin pathway. A lean ZDF rat with the propensity for beta-cell failure was crossed with a polygenetically obese Crl:CD (SD) rat. Offspring were selectively inbred for obesity and diabetes for >30 generations. In the current study, ZDSD rats were followed for 6 months; routine clinical metabolic endpoints were included throughout the study. In the prediabetic metabolic syndrome phase, ZDSD rats exhibited obesity with increased body fat, hyperglycemia, insulin resistance, dyslipidemia, glucose intolerance, and elevated HbA1c. As disease progressed to overt diabetes, ZDSD rats demonstrated elevated glucose levels, abnormal oral glucose tolerance, increases in HbA1c levels, reductions in body weight, increased insulin resistance with decreasing insulin levels, and dyslipidemia. The ZDSD rat develops prediabetic metabolic syndrome and T2D in a manner that mirrors the development of metabolic syndrome and T2D in humans. ZDSD rats will provide a novel, translational animal model for the study of human metabolic diseases and for the development of new therapies.
Collapse
Affiliation(s)
- Richard G. Peterson
- PreClinOmics, Inc., 7918 Zionsville Road, Indianapolis, IN 46268, USA
- *Richard G. Peterson:
| | | | - Karen Zimmerman
- PreClinOmics, Inc., 7918 Zionsville Road, Indianapolis, IN 46268, USA
| | - Willem de Winter
- Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Norman Huebert
- Janssen Research & Development, LLC, Spring House, PA 19477, USA
| | | |
Collapse
|
29
|
Connizzo BK, Bhatt PR, Liechty KW, Soslowsky LJ. Diabetes alters mechanical properties and collagen fiber re-alignment in multiple mouse tendons. Ann Biomed Eng 2014; 42:1880-8. [PMID: 24833253 DOI: 10.1007/s10439-014-1031-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 05/07/2014] [Indexed: 01/21/2023]
Abstract
Tendons function to transfer load from muscle to bone through their complex composition and hierarchical structure, consisting mainly of type I collagen. Recent evidence suggests that type II diabetes may cause alterations in collagen structure, such as irregular fibril morphology and density, which could play a role in the mechanical function of tendons. Using the db/db mouse model of type II diabetes, the diabetic skin was found to have impaired biomechanical properties when compared to the non-diabetic group. The purpose of this study was to assess the effect of diabetes on biomechanics, collagen fiber re-alignment, and biochemistry in three functionally different tendons (Achilles, supraspinatus, patellar) using the db/db mouse model. Results showed that cross-sectional area and stiffness, but not modulus, were significantly reduced in all three tendons. However, the tendon response to load (transition strain, collagen fiber re-alignment) occurred earlier in the mechanical test, contrary to expectations. In addition, the patellar tendon had an altered response to diabetes when compared to the other two tendons, with no changes in fiber re-alignment and decreased collagen content at the midsubstance of the tendon. Overall, type II diabetes alters tendon mechanical properties and the dynamic response to load.
Collapse
Affiliation(s)
- Brianne K Connizzo
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, 424 Stemmler Hall, 36th and Hamilton Walk, Philadelphia, PA, 19104-6081, USA
| | | | | | | |
Collapse
|
30
|
Fajardo RJ, Karim L, Calley VI, Bouxsein ML. A review of rodent models of type 2 diabetic skeletal fragility. J Bone Miner Res 2014; 29:1025-40. [PMID: 24585709 PMCID: PMC5315418 DOI: 10.1002/jbmr.2210] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 02/21/2014] [Accepted: 02/25/2014] [Indexed: 12/21/2022]
Abstract
Evidence indicating that adult type 2 diabetes (T2D) is associated with increased fracture risk continues to mount. Unlike osteoporosis, diabetic fractures are associated with obesity and normal to high bone mineral density, two factors that are typically associated with reduced fracture risk. Animal models will likely play a critical role in efforts to identify the underlying mechanisms of skeletal fragility in T2D and to develop preventative treatments. In this review we critically examine the ability of current rodent models of T2D to mimic the skeletal characteristics of human T2D. We report that although there are numerous rodent models of T2D, few have undergone thorough assessments of bone metabolism and strength. Further, we find that many of the available rodent models of T2D have limitations for studies of skeletal fragility in T2D because the onset of diabetes is often prior to skeletal maturation and bone mass is low, in contrast to what is seen in adult humans. There is an urgent need to characterize the skeletal phenotype of existing models of T2D, and to develop new models that more closely mimic the skeletal effects seen in adult-onset T2D in humans.
Collapse
Affiliation(s)
- Roberto J. Fajardo
- Department of Orthopaedics, University of Texas Health Science Center at San Antonio
| | - Lamya Karim
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center and Harvard Medical School
| | - Virginia I. Calley
- Department of Orthopaedics, University of Texas Health Science Center at San Antonio
| | - Mary L. Bouxsein
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center and Harvard Medical School
| |
Collapse
|