1
|
Bye BA, Jack JL, Pierce A, Walsh RM, Eades AE, Chalise P, Olou A, VanSaun MN. Combined Omipalisib and MAPK Inhibition Suppress PDAC Growth. Cancers (Basel) 2025; 17:1152. [PMID: 40227649 PMCID: PMC11987824 DOI: 10.3390/cancers17071152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/14/2025] [Accepted: 03/26/2025] [Indexed: 04/15/2025] Open
Abstract
Background: Oncogenic KRAS mutations are nearly ubiquitous in pancreatic ductal adenocarcinoma (PDAC), yet therapeutic attempts to target KRAS, as well as downstream MAPK pathway effectors, have shown limited clinical success. While KRAS canonically drives MAPK signaling via RAF-MEK-ERK, it is also known to play a role in PI3K-AKT signaling. Methods: Our therapeutic study targeted the PI3K pathway with the drug Omipalisib (p110α/β/δ/γ and mTORC1/2 inhibitor) in combination with two different MAPK pathway inhibitors: Trametinib (MEK1/2 inhibitor) or SHP099-HCL (SHP099; SHP2 inhibitor). Western blot analysis demonstrated that the application of Trametinib or SHP099 alone selectively blocked ERK phosphorylation (pERK) but failed to suppress phosphorylated AKT (pAKT). Conversely, Omipalisib alone successfully inhibited pAKT but failed to suppress pERK. Therefore, we hypothesized that a combination therapeutic comprised of Omipalisib with either Trametinib or SHP099 would inhibit two prominent mitogenic pathways, MAPK and PI3K-AKT, and effectively suppress PDAC growth. Results: In vitro studies demonstrated that, in several cell lines, both Omipalisib/Trametinib and Omipalisib/SHP099 combination therapeutic strategies were more effective than treatment with each drug individually at reducing proliferation, colony formation, and cell migration compared to vehicle controls. In vivo oral administration of combined Omipalisib/Trametinib treatment was significantly more effective than Omipalisib/SHP099 in reducing implanted tumor growth, and the Omipalisib/Trametinib treatment more effectively reduced tumor progression and prolonged survival in an aggressive genetically engineered mouse model of PDAC than either Omipalisib or Trametinib alone. Conclusions: Altogether, our data support a rationale for a dual treatment strategy targeting both PI3K and MAPK pathways in pancreatic cancers.
Collapse
Affiliation(s)
- Bailey A. Bye
- Department of Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160, USA
| | - Jarrid L. Jack
- Department of Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160, USA
| | - Alexandra Pierce
- Department of Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160, USA
| | - Richard McKinnon Walsh
- Department of Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160, USA
| | - Austin E. Eades
- Department of Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160, USA
| | - Prabhakar Chalise
- Department of Biostatistics and Data Science, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160, USA
| | - Appolinaire Olou
- Department of Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160, USA
| | - Michael N. VanSaun
- Department of Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160, USA
| |
Collapse
|
2
|
Zimmerman SP, DeGraw LB, Counter CM. The essential clathrin adapter protein complex-2 is tumor suppressive specifically in vivo. Nat Commun 2025; 16:2254. [PMID: 40050266 PMCID: PMC11885535 DOI: 10.1038/s41467-025-57521-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 02/26/2025] [Indexed: 03/09/2025] Open
Abstract
The microenvironment is a rich source of new cancer targets. We thus used a targeted single-guide RNA library to screen a panel of human pancreatic cancer lines for genes uniquely affecting tumorigenesis. Here we show inactivation of the Adapter Protein complex-2 of clathrin-mediated endocytosis reduces cell growth in vitro, but completely oppositely, promotes tumor growth in vivo. In culture, loss of the complex reduces transferrin endocytosis and iron import required for cell fitness. In tumors, alternative iron transport pathways allow pro-tumor effects of Adapter Protein complex-2 loss to manifest. In the most sensitive case, this is attributed to reprogramming the plasma membrane proteome, retaining integrins on the surface leading to Focal Adhesion Kinase phosphorylation and induction of proliferative signals. Adapter Protein complex-2 function in tumorigenesis is thus dependent upon the microenvironment, behaving as a common essential gene in culture via iron import, but as a tumor suppressor in tumors via integrin trafficking.
Collapse
Affiliation(s)
- Seth P Zimmerman
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC, USA
| | - Lili B DeGraw
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC, USA
| | - Christopher M Counter
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC, USA.
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
3
|
Ouissam AJ, Hind C, Sami Aziz B, Said A. Inhibition of the PI3K/AKT/mTOR pathway in pancreatic cancer: is it a worthwhile endeavor? Ther Adv Med Oncol 2024; 16:17588359241284911. [PMID: 39399412 PMCID: PMC11468005 DOI: 10.1177/17588359241284911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 09/03/2024] [Indexed: 10/15/2024] Open
Abstract
Pancreatic cancer (PC) is an aggressive disease that is challenging to treat and is associated with a high mortality rate. The most common type of PC is pancreatic ductal adenocarcinoma (PDAC), and the existing treatment options are insufficient for PDAC patients. Due to the complexity and heterogeneity of PDAC, personalized medicine is necessary for effectively treating this illness. To achieve this, it is essential to understand the mechanism of PDAC carcinogenesis. Targeted therapies are a promising strategy to improve patient outcomes. Aberrant activation of the phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) signaling pathway plays a crucial role in PC pathogenesis, from initiation to progression. This review provides a comprehensive overview of the current state of knowledge regarding the PI3K pathway in PDAC, summarizes clinical data on PI3K pathway inhibition in PDAC, and explores potential effective combinations that are a promising direction requiring further investigation in PDAC.
Collapse
Affiliation(s)
- Al Jarroudi Ouissam
- Department of Medical Oncology, Mohammed VI University Hospital, Oujda, Morocco
- Faculty of Medicine and Pharmacy, Mohammed Ist University, Oujda, Morocco
| | - Chibani Hind
- Department of Medical Oncology, Mohammed VI University Hospital, Oujda, Morocco
- Faculty of Medicine and Pharmacy, Mohammed Ist University, Oujda, Morocco
| | - Brahmi Sami Aziz
- Department of Medical Oncology, Mohammed VI University Hospital, Oujda, Morocco
- Faculty of Medicine and Pharmacy, Mohammed Ist University, Oujda, Morocco
| | - Afqir Said
- Department of Medical Oncology, Mohammed VI University Hospital, Oujda, Morocco
- Faculty of Medicine and Pharmacy, Mohammed Ist University, Oujda, Morocco
| |
Collapse
|
4
|
Xiang S, Zhu C, Zhou Y, Wu W, Zhang Y, Chen C, Wang F. Facile Generation of Neutralizing Antibodies on Tyrosine Phosphorylated IRS1 by Epitope-Directed Elicitation. ACS Chem Biol 2024; 19:2050-2059. [PMID: 39137393 DOI: 10.1021/acschembio.4c00382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Generating antibodies specific to the functional epitope containing phosphotyrosine remains highly challenging. Here, we create an "epitope-directed immunogen" by incorporating fluorosulfate-l-tyrosine (FSY) with cross-linking activities into a specific tyrosine phosphorylation site of insulin receptor substrate 1 (IRS1) and immunizing mice to elicit site-specific antibody responses. By taking advantage of antibody clonal selection and evolution in vivo, we efficiently identified antibodies that target the IRS1 Y612 epitope and are capable of neutralizing the binding interactions between IRS1 and p85α mediated by the phosphorylation of Y612. This epitope-directed antibody elicitation by encoding the cross-linking reactivity in the immunogen potentially enables a general method for facile generation of neutralizing antibodies to protein tyrosine phosphorylation sites.
Collapse
Affiliation(s)
- Shuqin Xiang
- Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100408, China
| | - Chaoyang Zhu
- Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100408, China
| | - Yinjian Zhou
- Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China
| | - Weiping Wu
- Suzhou Institute for Biomedical Research, Suzhou 215028, Jiangsu, China
| | - Yuhan Zhang
- Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China
| | - Chen Chen
- Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100408, China
| | - Feng Wang
- Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China
- Suzhou Institute for Biomedical Research, Suzhou 215028, Jiangsu, China
- Beijing Translational Center for Biopharmaceuticals, Beijing 100101, China
| |
Collapse
|
5
|
Saadh MJ, Pallathadka H, Abed HS, Menon SV, Sivaprasad GV, Hjazi A, Rizaev J, Suri S, Jawad MA, Husseen B. Detailed role of SR-A1 and SR-E3 in tumor biology, progression, and therapy. Cell Biochem Biophys 2024; 82:1735-1750. [PMID: 38884861 DOI: 10.1007/s12013-024-01350-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2024] [Indexed: 06/18/2024]
Abstract
The first host defense systems are the innate immune response and the inflammatory response. Among innate immune cells, macrophages, are crucial because they preserve tissue homeostasis and eradicate infections by phagocytosis, or the ingestion of particles. Macrophages exhibit phenotypic variability contingent on their stimulation state and tissue environment and may be detected in several tissues. Meanwhile, critical inflammatory functions are played by macrophage scavenger receptors, in particular, SR-A1 (CD204) and SR-E3 (CD206), in a variety of pathophysiologic events. Such receptors, which are mainly found on the surface of multiple types of macrophages, have different effects on processes, including atherosclerosis, innate and adaptive immunity, liver and lung diseases, and, more recently, cancer. Although macrophage scavenger receptors have been demonstrated to be active across the disease spectrum, conflicting experimental findings and insufficient signaling pathways have hindered our comprehension of the molecular processes underlying its array of roles. Herein, as SR-A1 and SR-E3 functions are often binary, either protecting the host or impairing the pathophysiology of cancers has been reviewed. We will look into their function in malignancies, with an emphasis on their recently discovered function in macrophages and the possible therapeutic benefits of SR-A1 and SR-E3 targeting.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | | | - Hussein Salim Abed
- Department of Medical Laboratory Techniques, Al-Maarif University College, Al-Anbar, Ramadi, Iraq.
| | - Soumya V Menon
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - G V Sivaprasad
- Department of Basic Science & Humanities, Raghu Engineering College, Visakhapatnam, India
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Jasur Rizaev
- Department of Public health and Healthcare management, Rector, Samarkand State Medical University, 18, Amir Temur Street, Samarkand, Uzbekistan
| | - Sahil Suri
- Centre of Research Impact and Outcome, Chitkara University, Rajpura, 140417, Punjab, India
| | | | - Beneen Husseen
- Medical Laboratory Technique College, The Islamic University, Najaf, Iraq
- Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
6
|
Alimohammadi M, Rahimzadeh P, Khorrami R, Bonyadi M, Daneshi S, Nabavi N, Raesi R, Farani MR, Dehkhoda F, Taheriazam A, Hashemi M. A comprehensive review of the PTEN/PI3K/Akt axis in multiple myeloma: From molecular interactions to potential therapeutic targets. Pathol Res Pract 2024; 260:155401. [PMID: 38936094 DOI: 10.1016/j.prp.2024.155401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/02/2024] [Accepted: 06/09/2024] [Indexed: 06/29/2024]
Abstract
Phosphatase and tensin homolog (PTEN), phosphatidylinositol 3-kinase (PI3K), and protein kinase B (Akt) signaling pathways contribute to the development of several cancers, including multiple myeloma (MM). PTEN is a tumor suppressor that influences the PI3K/Akt/mTOR pathway, which in turn impacts vital cellular processes like growth, survival, and treatment resistance. The current study aims to present the role of PTEN and PI3K/Akt/mTOR signaling in the development of MM and its response to treatment. In addition, the molecular interactions in MM that underpin the PI3K/Akt/mTOR pathway and address potential implications for the development of successful treatment plans are also discussed in detail. We investigate their relationship to both upstream and downstream regulators, highlighting new developments in combined therapies that target the PTEN/PI3K/Akt axis to overcome drug resistance, including the use of PI3K and mitogen-activated protein kinase (MAPK) inhibitors. We also emphasize that PTEN/PI3K/Akt pathway elements may be used in MM diagnosis, prognosis, and therapeutic targets.
Collapse
Affiliation(s)
- Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran.
| | - Payman Rahimzadeh
- Surgical Research Society (SRS), Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Islamic Republic of Iran
| | - Mojtaba Bonyadi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Islamic Republic of Iran
| | - Salman Daneshi
- Department of Public Health, School of Health, Jiroft University of Medical Sciences, Jiroft, Islamic Republic of Iran
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia V8V 1P7, Canada
| | - Rasoul Raesi
- Department of Health Services Management, Mashhad University of Medical Sciences, Mashhad, Islamic Republic of Iran; Department of Nursing, Torbat Jam Faculty of Medical Sciences, Torbat Jam, Iran
| | - Marzieh Ramezani Farani
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Incheon 22212, Republic of Korea
| | - Farshid Dehkhoda
- Department of Orthopedics, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran.
| |
Collapse
|
7
|
Kosinski J, Sechi A, Hain J, Villwock S, Ha SA, Hauschulz M, Rose M, Steib F, Ortiz‐Brüchle N, Heij L, Maas SL, van der Vorst EPC, Knoesel T, Altendorf‐Hofmann A, Simon R, Sauter G, Bednarsch J, Jonigk D, Dahl E. ITIH5 as a multifaceted player in pancreatic cancer suppression, impairing tyrosine kinase signaling, cell adhesion and migration. Mol Oncol 2024; 18:1486-1509. [PMID: 38375974 PMCID: PMC11161730 DOI: 10.1002/1878-0261.13609] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 01/19/2024] [Accepted: 02/06/2024] [Indexed: 02/21/2024] Open
Abstract
Inter-alpha-trypsin inhibitor heavy chain 5 (ITIH5) has been identified as a metastasis suppressor gene in pancreatic cancer. Here, we analyzed ITIH5 promoter methylation and protein expression in The Cancer Genome Atlas (TCGA) dataset and three tissue microarray cohorts (n = 618), respectively. Cellular effects, including cell migration, focal adhesion formation and protein tyrosine kinase activity, induced by forced ITIH5 expression in pancreatic cancer cell lines were studied in stable transfectants. ITIH5 promoter hypermethylation was associated with unfavorable prognosis, while immunohistochemistry demonstrated loss of ITIH5 in the metastatic setting and worsened overall survival. Gain-of-function models showed a significant reduction in migration capacity, but no alteration in proliferation. Focal adhesions in cells re-expressing ITIH5 exhibited a smaller and more rounded phenotype, typical for slow-moving cells. An impressive increase of acetylated alpha-tubulin was observed in ITIH5-positive cells, indicating more stable microtubules. In addition, we found significantly decreased activities of kinases related to focal adhesion. Our results indicate that loss of ITIH5 in pancreatic cancer profoundly affects its molecular profile: ITIH5 potentially interferes with a variety of oncogenic signaling pathways, including the PI3K/AKT pathway. This may lead to altered cell migration and focal adhesion formation. These cellular alterations may contribute to the metastasis-inhibiting properties of ITIH5 in pancreatic cancer.
Collapse
Affiliation(s)
- Jennifer Kosinski
- Institute of PathologyMedical Faculty of RWTH Aachen UniversityGermany
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD)Germany
| | - Antonio Sechi
- Department of Cell and Tumor BiologyRWTH Aachen UniversityGermany
| | - Johanna Hain
- Institute of PathologyMedical Faculty of RWTH Aachen UniversityGermany
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD)Germany
| | - Sophia Villwock
- Institute of PathologyMedical Faculty of RWTH Aachen UniversityGermany
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD)Germany
| | - Stefanie Anh Ha
- Institute of PathologyMedical Faculty of RWTH Aachen UniversityGermany
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD)Germany
| | - Maximilian Hauschulz
- Institute of PathologyMedical Faculty of RWTH Aachen UniversityGermany
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD)Germany
| | - Michael Rose
- Institute of PathologyMedical Faculty of RWTH Aachen UniversityGermany
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD)Germany
| | - Florian Steib
- Institute of PathologyMedical Faculty of RWTH Aachen UniversityGermany
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD)Germany
| | - Nadina Ortiz‐Brüchle
- Institute of PathologyMedical Faculty of RWTH Aachen UniversityGermany
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD)Germany
| | - Lara Heij
- Institute of PathologyUniversity Hospital EssenGermany
- Department of Surgery and Transplantation, Medical FacultyRWTH Aachen UniversityGermany
- Department of PathologyErasmus Medical Center RotterdamThe Netherlands
- NUTRIM School of Nutrition and Translational Research in MetabolismMaastricht UniversityThe Netherlands
| | - Sanne L. Maas
- Interdisciplinary Center for Clinical Research (IZKF), Institute for Molecular Cardiovascular Research (IMCAR)Medical Faculty of RWTH Aachen UniversityGermany
| | - Emiel P. C. van der Vorst
- Interdisciplinary Center for Clinical Research (IZKF), Institute for Molecular Cardiovascular Research (IMCAR)Medical Faculty of RWTH Aachen UniversityGermany
- Institute for Cardiovascular Prevention (IPEK)Ludwig‐Maximilians‐University MunichGermany
| | - Thomas Knoesel
- Institute of PathologyLudwig‐Maximilians‐University MunichGermany
| | | | - Ronald Simon
- Institute of PathologyUniversity Medical Center Hamburg‐EppendorfGermany
| | - Guido Sauter
- Institute of PathologyUniversity Medical Center Hamburg‐EppendorfGermany
| | - Jan Bednarsch
- Department of Surgery and Transplantation, Medical FacultyRWTH Aachen UniversityGermany
| | - Danny Jonigk
- Institute of PathologyMedical Faculty of RWTH Aachen UniversityGermany
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD)Germany
- RWTH centralized Biomaterial Bank (RWTH cBMB)Medical Faculty of the RWTH Aachen UniversityGermany
- German Center for Lung Research (DZL), BREATHHanoverGermany
| | - Edgar Dahl
- Institute of PathologyMedical Faculty of RWTH Aachen UniversityGermany
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD)Germany
- RWTH centralized Biomaterial Bank (RWTH cBMB)Medical Faculty of the RWTH Aachen UniversityGermany
| |
Collapse
|
8
|
Cheng K, Zhou Z, Chen Q, Chen Z, Cai Y, Cai H, Wu S, Gao P, Cai Y, Zhou J, Wang X, Wu Z, Peng B. CDK4/6 inhibition sensitizes MEK inhibition by inhibiting cell cycle and proliferation in pancreatic ductal adenocarcinoma. Sci Rep 2024; 14:8389. [PMID: 38600093 PMCID: PMC11006845 DOI: 10.1038/s41598-024-57417-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/18/2024] [Indexed: 04/12/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is not sensitive to most chemotherapy drugs, leading to poor chemotherapy efficacy. Recently, Trametinib and Palbociclib have promising prospects in the treatment of pancreatic cancer. This article aims to explore the effects of Trametinib on pancreatic cancer and address the underlying mechanism of resistance as well as its reversal strategies. The GDSC (Genomics of Drug Sensitivity in Cancer) and CTD2 (Cancer Target Discovery and Development) were utilized to screen the potential drug candidate in PDAC cell lines. The dose-increase method combined with the high-dose shock method was applied to induce the Trametinib-resistant PANC-1 and MIA PaCa-2 cell lines. The CCK8 proliferation assay, colony formation assay, flow cytometry, and western blot were conducted to verify the inhibitory effect of Trametinib and Palbociclib. RNA-seq was performed in resistant PDAC cell lines to find the differential expression genes related to drug resistance and predict pathways leading to the reversal of Trametinib resistance. The GDSC and CTD2 database screening revealed that Trametinib demonstrates a significant inhibitory effect on PDAC. We found that Trametinib has a lower IC50 than Gemcitabine in PDAC cell lines. Both Trametinib and Gemcitabine can decrease the proliferation capacity of pancreatic cells, induce cell cycle arrest, and increase apoptosis. Simultaneously, the phosphorylation of the AKT and ERK pathways were inhibited by the treatment of Trametinib. In addition, the RNA-seq of Trametinib-induced resistance PDAC cell lines reveals that the cyclin-dependent kinase (CDK)-RB-E2F regulatory axis and G2/M DNA damage checkpoint might lead the drug resistance. Besides, the combination of Trametinib with Palbociclib could inhibit the proliferation and cell cycle of both resistant cells lines and also restore the sensitivity of drug-resistant cells to Trametinib. Last but not least, the interferon-α and interferon-γ expression were upregulated in resistance cell lines, which might lead to the reversal of drug resistance. The study shows Trametinib has a critical inhibitory effect on PDAC. Besides, the combination of Trametinib with Palbociclib can inhibit the proliferation of PDAC-resistant cells.
Collapse
Affiliation(s)
- Ke Cheng
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Zijian Zhou
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Qiangxing Chen
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Zixin Chen
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Yu Cai
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - He Cai
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Shangdi Wu
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Pan Gao
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Yunqiang Cai
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Jin Zhou
- Division of Liver Surgery, Department of General Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Xin Wang
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Zhong Wu
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital of Sichuan University, Chengdu, China.
| | - Bing Peng
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
9
|
Elhariri A, Alhaj A, Ahn D, Sonbol MB, Bekaii-Saab T, Wu C, Rutenberg MS, Stauffer J, Starr J, Majeed U, Jones J, Borad M, Babiker H. Targeting KRAS in pancreatic adenocarcinoma: Progress in demystifying the holy grail. World J Clin Oncol 2023; 14:285-296. [PMID: 37700806 PMCID: PMC10494558 DOI: 10.5306/wjco.v14.i8.285] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/05/2023] [Accepted: 07/27/2023] [Indexed: 08/22/2023] Open
Abstract
Pancreatic cancer (PC) remains one of the most challenging diseases, with a very poor 5-year overall survival of around 11.5%. Kirsten rat sarcoma virus (KRAS) mutation is seen in 90%-95% of PC patients and plays an important role in cancer cell proliferation, differentiation, metabolism, and survival, making it an essential mutation for targeted therapy. Despite extensive efforts in studying this oncogene, there has been little success in finding a drug to target this pathway, labelling it for decades as "undruggable". In this article we summarize some of the efforts made to target the KRAS pathway in PC, discuss the challenges, and shed light on promising clinical trials.
Collapse
Affiliation(s)
- Ahmed Elhariri
- Division of Hematology-Oncology, Department of Medicine, Mayo Clinic Florida, Mayo Clinic Cancer Center, Jacksonville, FL 32224, United States
| | - Ahmed Alhaj
- Division of Hematology-Oncology, Department of Medicine, Mayo Clinic Florida, Mayo Clinic Cancer Center, Jacksonville, FL 32224, United States
| | - Daniel Ahn
- Division of Hematology-Oncology, Department of Medicine, Mayo Clinic Arizona, Mayo Clinic Cancer Center, Phoenix, AZ 85054, United States
| | - Mohamad Bassam Sonbol
- Division of Hematology-Oncology, Department of Medicine, Mayo Clinic Arizona, Mayo Clinic Cancer Center, Phoenix, AZ 85054, United States
| | - Tanios Bekaii-Saab
- Division of Hematology-Oncology, Department of Medicine, Mayo Clinic Arizona, Mayo Clinic Cancer Center, Phoenix, AZ 85054, United States
| | - Christina Wu
- Division of Hematology-Oncology, Department of Medicine, Mayo Clinic Arizona, Mayo Clinic Cancer Center, Phoenix, AZ 85054, United States
| | - Michael Scott Rutenberg
- Department of Radiation-Oncology, Mayo Clinic Florida, Mayo Clinic Cancer Center, Jacksonville, FL 32224, United States
| | - John Stauffer
- Department of Surgical Oncology, Hepatopancreatobiliary Surgery, Mayo Clinic Florida, Jacksonville, FL 32224, United States
| | - Jason Starr
- Division of Hematology-Oncology, Department of Medicine, Mayo Clinic Florida, Mayo Clinic Cancer Center, Jacksonville, FL 32224, United States
| | - Umair Majeed
- Division of Hematology-Oncology, Department of Medicine, Mayo Clinic Florida, Mayo Clinic Cancer Center, Jacksonville, FL 32224, United States
| | - Jeremy Jones
- Division of Hematology-Oncology, Department of Medicine, Mayo Clinic Florida, Mayo Clinic Cancer Center, Jacksonville, FL 32224, United States
| | - Mitesh Borad
- Division of Hematology-Oncology, Department of Medicine, Mayo Clinic Arizona, Mayo Clinic Cancer Center, Phoenix, AZ 85054, United States
| | - Hani Babiker
- Division of Hematology-Oncology, Department of Medicine, Mayo Clinic Florida, Mayo Clinic Cancer Center, Jacksonville, FL 32224, United States
| |
Collapse
|
10
|
Dobre M, Poenaru RC, Niculae AM, Vladut C, Herlea V, Milanesi E, Hinescu ME. Increased Levels of miR-15b-5p and miR-20b-5p in Pancreatic Ductal Adenocarcinoma with Hepatic Metastases. Genes (Basel) 2023; 14:1577. [PMID: 37628628 PMCID: PMC10454474 DOI: 10.3390/genes14081577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive and lethal forms of cancer. The symptoms appear in advanced stages, and diagnostic and prognostic tests for the early detection of PDAC and disease evolution are not available. The dysregulation of microRNAs (miRNAs) has been associated with cancer development and progression, and some miRNAs have been reported to promote specific metastasis. In this study we aimed to identify the miRNAs dysregulated in PDAC tumoral tissues and a subset of miRNAs associated with tumoral characteristics, mainly metastasis presence and site. For this, the expression of 84 miRNAs was evaluated by qPCR in 30 tumoral tissues and 16 samples of non-tumoral pancreatic tissues. The comparison revealed 32 dysregulated miRNAs (19 upregulated and 13 downregulated) in the PDAC group. Reactome pathway over-representation analysis revealed that these miRNAs are involved in several biological pathways, including "ESR-mediated signaling", "PIP3 activates AKT signaling", and "Regulation of PTEN", among others. Moreover, our study identified an upregulation of miR-15b-5p and miR-20b-5p in the tumoral tissues of patients with hepatic metastasis, outlining these miRNAs as potential markers for hepatic metastasis. No significant difference in miRNA expression was observed in relation to anatomic location, lymphovascular invasion, lung metastasis, and the presence of diabetes.
Collapse
Affiliation(s)
- Maria Dobre
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (M.D.); (A.M.N.); (M.E.H.)
| | - Radu Cristian Poenaru
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (R.C.P.); (C.V.)
| | - Andrei Marian Niculae
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (M.D.); (A.M.N.); (M.E.H.)
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (R.C.P.); (C.V.)
| | - Catalina Vladut
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (R.C.P.); (C.V.)
- Department of Gastroenterology, “Prof. Dr. Agrippa Ionescu” Clinical Emergency Hospital, 011356 Bucharest, Romania
| | - Vlad Herlea
- Fundeni Clinical Institute, 022328 Bucharest, Romania;
| | - Elena Milanesi
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (M.D.); (A.M.N.); (M.E.H.)
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (R.C.P.); (C.V.)
| | - Mihail Eugen Hinescu
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (M.D.); (A.M.N.); (M.E.H.)
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (R.C.P.); (C.V.)
| |
Collapse
|
11
|
Marstrand-Daucé L, Lorenzo D, Chassac A, Nicole P, Couvelard A, Haumaitre C. Acinar-to-Ductal Metaplasia (ADM): On the Road to Pancreatic Intraepithelial Neoplasia (PanIN) and Pancreatic Cancer. Int J Mol Sci 2023; 24:9946. [PMID: 37373094 PMCID: PMC10298625 DOI: 10.3390/ijms24129946] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Adult pancreatic acinar cells show high plasticity allowing them to change in their differentiation commitment. Pancreatic acinar-to-ductal metaplasia (ADM) is a cellular process in which the differentiated pancreatic acinar cells transform into duct-like cells. This process can occur as a result of cellular injury or inflammation in the pancreas. While ADM is a reversible process allowing pancreatic acinar regeneration, persistent inflammation or injury can lead to the development of pancreatic intraepithelial neoplasia (PanIN), which is a common precancerous lesion that precedes pancreatic ductal adenocarcinoma (PDAC). Several factors can contribute to the development of ADM and PanIN, including environmental factors such as obesity, chronic inflammation and genetic mutations. ADM is driven by extrinsic and intrinsic signaling. Here, we review the current knowledge on the cellular and molecular biology of ADM. Understanding the cellular and molecular mechanisms underlying ADM is critical for the development of new therapeutic strategies for pancreatitis and PDAC. Identifying the intermediate states and key molecules that regulate ADM initiation, maintenance and progression may help the development of novel preventive strategies for PDAC.
Collapse
Affiliation(s)
- Louis Marstrand-Daucé
- INSERM UMR1149, Inflammation Research Center (CRI), Université Paris Cité, 75018 Paris, France; (L.M.-D.); (D.L.); (A.C.); (P.N.); (A.C.)
| | - Diane Lorenzo
- INSERM UMR1149, Inflammation Research Center (CRI), Université Paris Cité, 75018 Paris, France; (L.M.-D.); (D.L.); (A.C.); (P.N.); (A.C.)
| | - Anaïs Chassac
- INSERM UMR1149, Inflammation Research Center (CRI), Université Paris Cité, 75018 Paris, France; (L.M.-D.); (D.L.); (A.C.); (P.N.); (A.C.)
- Department of Pathology, Bichat Hospital, Université Paris Cité, 75018 Paris, France
| | - Pascal Nicole
- INSERM UMR1149, Inflammation Research Center (CRI), Université Paris Cité, 75018 Paris, France; (L.M.-D.); (D.L.); (A.C.); (P.N.); (A.C.)
| | - Anne Couvelard
- INSERM UMR1149, Inflammation Research Center (CRI), Université Paris Cité, 75018 Paris, France; (L.M.-D.); (D.L.); (A.C.); (P.N.); (A.C.)
- Department of Pathology, Bichat Hospital, Université Paris Cité, 75018 Paris, France
| | - Cécile Haumaitre
- INSERM UMR1149, Inflammation Research Center (CRI), Université Paris Cité, 75018 Paris, France; (L.M.-D.); (D.L.); (A.C.); (P.N.); (A.C.)
| |
Collapse
|
12
|
Lobo V, Rocha A, Castro TG, Carvalho MA. Synthesis of Novel 2,9-Disubstituted-6-morpholino Purine Derivatives Assisted by Virtual Screening and Modelling of Class I PI3K Isoforms. Polymers (Basel) 2023; 15:polym15071703. [PMID: 37050317 PMCID: PMC10096987 DOI: 10.3390/polym15071703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/21/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
The phosphatidylinositol-3 kinase (PI3K) pathway is one of the most frequently activated pathogenic signalling cascades in a wide variety of cancers. In the last 15 years, there has been an increase in the search for selective inhibitors of the four class I isoforms of PI3K, as they demonstrate better specificity and reduced toxicity in comparison to existing inhibitors. A ligand-based and target-based rational drug design strategy was employed to build a virtual library of 105 new compounds. Through this strategy, the four isoforms were compared regarding their activity pocket availability, amino acid sequences, and prone interactions. Additionally, a known active scaffold was used as a molecular base to design new derivatives. The virtual screening of the resultant library toward the four isoforms points to the obtention of 19 selective inhibitors for the PI3Kα and PI3Kγ targets. Three selective ligands, one for α-isoform and two for γ-isoform, present a ∆ (∆Gbinding) equal or greater than 1.5 Kcal/mol and were identified as the most promising candidates. A principal component analysis was used to establish correlations between the affinity data and some of the physicochemical and structural properties of the ligands. The binding modes and interactions established by the selective ligands in the active centre of the α and γ isoforms of PI3K were also investigated. After modelling studies, a synthetic approach to generate selective ligands was developed and applied in synthesising a set of derivatives that were obtained in good to excellent yield.
Collapse
|
13
|
Peng SQ, Zhu XR, Zhao MZ, Zhang YF, Wang AR, Chen MB, Ye ZY. Identification of matrix-remodeling associated 5 as a possible molecular oncotarget of pancreatic cancer. Cell Death Dis 2023; 14:157. [PMID: 36828810 PMCID: PMC9958022 DOI: 10.1038/s41419-023-05684-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/11/2023] [Accepted: 02/14/2023] [Indexed: 02/26/2023]
Abstract
Pancreatic cancer has an extremely poor prognosis. Here we examined expression, potential functions and underlying mechanisms of MXRA5 (matrix remodeling associated 5) in pancreatic cancer. Bioinformatics studies revealed that MXRA5 transcripts are significantly elevated in pancreatic cancer tissues, correlating with the poor overall survival, high T-stage, N1 and pathologic stage of the patients. MXRA5 mRNA and protein expression is significantly elevated in microarray pancreatic cancer tissues and different pancreatic cancer cells. In primary and immortalized (BxPC-3 and PANC-1 lines) pancreatic cancer cells, shRNA-induced MXRA5 silencing or CRISPR/Cas9-mediated MXRA5 knockout suppressed cell survival, proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT), while provoking cell apoptosis. Conversely, forced overexpression of MXRA5 further promoted pancreatic cancer cell progression and EMT. Bioinformatics studies and the protein chip analyses revealed that differentially expressed genes (DEGs) and differentially expressed proteins (DEPs) in MXRA5-overexpressed primary pancreatic cancer cells were enriched in the PI3K-Akt-mTOR cascade. Indeed, Akt-mTOR activation in primary human pancreatic cancer cells was inhibited by MXRA5 shRNA or knockout, but was augmented following MXRA5 overexpression. In vivo, the growth of MXRA5 KO PANC-1 xenografts was largely inhibited in nude mice. Moreover, intratumoral injection of adeno-associated virus-packed MXRA5 shRNA potently inhibited primary pancreatic cancer cell growth in nude mice. Akt-mTOR activation was also largely inhibited in the MXRA5-depleted pancreatic cancer xenografts. Contrarily MXRA5 overexpression promoted primary pancreatic cancer cell growth in nude mice. Together, overexpressed MXRA5 is important for pancreatic cancer cell growth possibly through promoting EMT and Akt-mTOR activation. MXRA5 could be a potential therapeutic oncotarget for pancreatic cancer.
Collapse
Affiliation(s)
- Shi-Qing Peng
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Xiao-Ren Zhu
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Ming-Zhi Zhao
- Clinical Research Center of Neurological Disease and Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yi-Fan Zhang
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - An-Ran Wang
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Min-Bin Chen
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China.
| | - Zhen-Yu Ye
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
14
|
Targeting PI3K/AKT/mTOR Signaling Pathway in Pancreatic Cancer: From Molecular to Clinical Aspects. Int J Mol Sci 2022; 23:ijms231710132. [PMID: 36077529 PMCID: PMC9456549 DOI: 10.3390/ijms231710132] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/01/2022] [Accepted: 09/01/2022] [Indexed: 02/06/2023] Open
Abstract
Although pancreatic cancer (PC) was considered in the past an orphan cancer type due to its low incidence, it may become in the future one of the leading causes of cancer death. Pancreatic ductal adenocarcinoma (PDAC) is the most frequent type of PC, being a highly aggressive malignancy and having a 5-year survival rate of less than 10%. Non-modifiable (family history, age, genetic susceptibility) and modifiable (smoking, alcohol, acute and chronic pancreatitis, diabetes mellitus, intestinal microbiota) risk factors are involved in PC pathogenesis. Chronic inflammation induced by various factors plays crucial roles in PC development from initiation to metastasis. In multiple malignant conditions such as PC, cytokines, chemokines, and growth factors activate the class I phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) (PI3K/AKT/mTOR) signaling pathway, which plays key roles in cell growth, survival, proliferation, metabolism, and motility. Currently, mTOR, AKT, and PI3K inhibitors are used in clinical studies. Moreover, PI3K/mTOR dual inhibitors are being tested in vitro and in vivo with promising results for PC patients. The main aim of this review is to present PC incidence, risk factors, tumor microenvironment development, and PI3K/AKT/mTOR dysregulation and inhibitors used in clinical, in vivo, and in vitro studies.
Collapse
|
15
|
Linderalactone Suppresses Pancreatic Cancer Development In Vitro and In Vivo via Negatively Regulating PI3K/AKT Signaling Pathway. JOURNAL OF ONCOLOGY 2022; 2022:8675096. [PMID: 35966890 PMCID: PMC9371883 DOI: 10.1155/2022/8675096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/02/2022] [Accepted: 06/30/2022] [Indexed: 11/18/2022]
Abstract
Linderalactone is one of the main extracts of Linderae Radix, which is widely used in traditional Chinese medicine. There have been few studies on the antitumor effect of linderalactone in the past. In this study, we explored the anti-pancreatic cancer activity of linderalactone in vitro and in vivo. The results showed that linderalactone inhibited the proliferation of pancreatic cancer cells in a time- and dose-dependent manner. Cell migration and invasion were significantly inhibited by linderalactone. The cell cycle was arrested in the G2/M phase, and the expression levels of cell cycle-associated proteins changed significantly with linderalactone treatment. In addition, linderalactone induced cell apoptosis and altered the expression of apoptotic markers, such as caspase 3 and PARP1. Mechanistically, linderalactone suppressed the PI3K/AKT signaling pathway by downregulating the phosphorylation of PI3K and AKT. The xenograft study results were consistent with the in vitro results, and there was no obvious chemical toxicity. Thus, our research demonstrated that linderalactone exhibits antitumor activity against pancreatic cancer and may be developed as a potential anti-pancreatic cancer agent in the future.
Collapse
|
16
|
Koltai T, Reshkin SJ, Carvalho TMA, Di Molfetta D, Greco MR, Alfarouk KO, Cardone RA. Resistance to Gemcitabine in Pancreatic Ductal Adenocarcinoma: A Physiopathologic and Pharmacologic Review. Cancers (Basel) 2022; 14:2486. [PMID: 35626089 PMCID: PMC9139729 DOI: 10.3390/cancers14102486] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a very aggressive tumor with a poor prognosis and inadequate response to treatment. Many factors contribute to this therapeutic failure: lack of symptoms until the tumor reaches an advanced stage, leading to late diagnosis; early lymphatic and hematic spread; advanced age of patients; important development of a pro-tumoral and hyperfibrotic stroma; high genetic and metabolic heterogeneity; poor vascular supply; a highly acidic matrix; extreme hypoxia; and early development of resistance to the available therapeutic options. In most cases, the disease is silent for a long time, andwhen it does become symptomatic, it is too late for ablative surgery; this is one of the major reasons explaining the short survival associated with the disease. Even when surgery is possible, relapsesare frequent, andthe causes of this devastating picture are the low efficacy ofand early resistance to all known chemotherapeutic treatments. Thus, it is imperative to analyze the roots of this resistance in order to improve the benefits of therapy. PDAC chemoresistance is the final product of different, but to some extent, interconnected factors. Surgery, being the most adequate treatment for pancreatic cancer and the only one that in a few selected cases can achieve longer survival, is only possible in less than 20% of patients. Thus, the treatment burden relies on chemotherapy in mostcases. While the FOLFIRINOX scheme has a slightly longer overall survival, it also produces many more adverse eventsso that gemcitabine is still considered the first choice for treatment, especially in combination with other compounds/agents. This review discusses the multiple causes of gemcitabine resistance in PDAC.
Collapse
Affiliation(s)
| | - Stephan Joel Reshkin
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (T.M.A.C.); (D.D.M.); (M.R.G.); (R.A.C.)
| | - Tiago M. A. Carvalho
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (T.M.A.C.); (D.D.M.); (M.R.G.); (R.A.C.)
| | - Daria Di Molfetta
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (T.M.A.C.); (D.D.M.); (M.R.G.); (R.A.C.)
| | - Maria Raffaella Greco
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (T.M.A.C.); (D.D.M.); (M.R.G.); (R.A.C.)
| | - Khalid Omer Alfarouk
- Zamzam Research Center, Zamzam University College, Khartoum 11123, Sudan;
- Alfarouk Biomedical Research LLC, Temple Terrace, FL 33617, USA
| | - Rosa Angela Cardone
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (T.M.A.C.); (D.D.M.); (M.R.G.); (R.A.C.)
| |
Collapse
|
17
|
Cao W, Lei S, Zeng Z, Xiao C, Sun B, Xie P, Li Y, Luo D, Yu W. Transformer 2 alpha homolog is a downstream gene of hypoxia-inducible factor 1 subunit alpha and is involved in the progression of pancreatic cancer. Bioengineered 2022; 13:13238-13251. [PMID: 35635094 PMCID: PMC9275993 DOI: 10.1080/21655979.2022.2079243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 11/06/2022] Open
Abstract
Intratumoral hypoxia is a common feature of pancreatic cancer (PC) and also plays a role in its progression. However, hypoxia-regulated signatures in PC are still not completely understood. This study aimed to identify core hypoxia-associated genes and determine their underlying molecular mechanisms in PC cells. Transformer 2 alpha homolog (TRA2A) was found to be an important hypoxia-associated gene, which was upregulated in PC tissues and in PC cells cultured under hypoxia. High TRA2A expression was associated with advanced stage, poor differentiation, and lymph node metastasis. Under normoxic and hypoxic conditions, knockdown of TRA2A both markedly suppressed PC cell proliferation and motility in vitro and in vivo, as well as activation of the AKT pathway. Hypoxia-inducible factor 1 subunit alpha (HIF1α) upregulated the transcription of TRA2A by directly binding to its promoter. TRA2A showed a co-expression relationship with HIF1α in PC tissues. Overexpression of TRA2A alleviated the pro-inhibitive functions of HIF1α-inhibition on PC cell proliferation and motility under hypoxia. In conclusion, TRA2A is a crucial downstream gene of HIF1α that accelerates the proliferation and motility of PC cells. TRA2A may be a novel and practical molecular target for investigating the hypoxic response of PC cells.Abbreviations: TRA2A, transformer 2A protein; PC, pancreatic cancer; HIF1α, hypoxia-inducible factor 1-alpha; GEO, Gene Expression Omnibus; IHC, immunohistochemical staining.
Collapse
Affiliation(s)
- Wenpeng Cao
- Department of Anatomy, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Shan Lei
- Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Zhirui Zeng
- Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Chaolun Xiao
- Department of Anatomy, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Baofei Sun
- Department of Anatomy, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Peng Xie
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, School of Basic Medical, Guizhou Medical University, Guiyang, Guizhou, China
- Key Laboratory of Medical Molecular Biology, School of Basic Medical, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yumei Li
- Department of Anatomy, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Daopeng Luo
- Department of Anatomy, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Wenfeng Yu
- Department of Anatomy, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, School of Basic Medical, Guizhou Medical University, Guiyang, Guizhou, China
- Key Laboratory of Medical Molecular Biology, School of Basic Medical, Guizhou Medical University, Guiyang, Guizhou, China
| |
Collapse
|
18
|
Zheng B, Zheng Y, Zhang N, Zhang Y, Zheng B. Rhoifolin from Plumula Nelumbinis exhibits anti-cancer effects in pancreatic cancer via AKT/JNK signaling pathways. Sci Rep 2022; 12:5654. [PMID: 35383226 PMCID: PMC8983741 DOI: 10.1038/s41598-022-09581-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 03/25/2022] [Indexed: 02/07/2023] Open
Abstract
This study aimed to evaluate the anti-pancreatic cancer effects of flavonoids in Plumula Nelumbinis. High-performance liquid chromatography/quadrupole time-of-flight mass spectrometry showed that apiin, rhoifolin, and vitexin were three principal components in total flavonoids derived from Plumula Nelumbinis, with vitexin being the most abundant component. Cell viability assay revealed that apiin, rhoifolin, and vitexin could inhibit proliferation of PANC-1 and ASPC-1, with rhoifolin showing the maximum inhibitory effect. Rhoifolin inhibited cell proliferation and promoted apoptosis of pancreatic cancer cells, which was associated with up-regulated JNK and p-JNK as well as down-regulated p-AKT. Rhoifolin also inhibited cell migration and invasion, and increased the antioxidant capacity in PANC-1 and ASPC-1. Besides, AKT activator (SC79) or JNK inhibitor (SP600125) effectively reversed the anticancer effects of rhoifolin in pancreatic cancer. Quantitative proteomics analysis showed that rhoifolin altered proteomic profiles in pancreatic cancer cells. Western blot analysis showed that rhoifolin down-regulated transforming growth factor beta 2 (TGF-β2), the regulator of proteoglycan synthesis, with the concomitant down-regulation of phosphorylated SMAD family member 2 (SMAD2), the downstream effector of TGF-β2. In conclusion, rhoifolin regulates the AKT/JNK/caspase-3 and TGF-β2/SMAD2 signaling pathways, which may contribute to its anti-pancreatic cancer effects.
Collapse
Affiliation(s)
- Bingxin Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, People's Republic of China
| | - Yixin Zheng
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fuzhou, 350002, Fujian, People's Republic of China
| | - Ningning Zhang
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fuzhou, 350002, Fujian, People's Republic of China
| | - Yi Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, People's Republic of China.
| | - Baodong Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, People's Republic of China.
| |
Collapse
|
19
|
Hussain N, Das D, Pramanik A, Pandey MK, Joshi V, Pramanik KC. Targeting the complement system in pancreatic cancer drug resistance: a novel therapeutic approach. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2022; 5:317-327. [PMID: 35800364 PMCID: PMC9255240 DOI: 10.20517/cdr.2021.150] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/22/2022] [Accepted: 03/09/2022] [Indexed: 11/28/2022]
Abstract
Pancreatic cancer is ranked as the fourth leading cause of cancer-related mortality and is predicted to become the second leading cause of cancer-related death by 2030. The cause of this high mortality rate is due to pancreatic ductal adenocarcinoma's rapid progression and metastasis, and development of drug resistance. Today, cancer immunotherapy is becoming a strong candidate to not only treat various cancers but also to combat against chemoresistance. Studies have suggested that complement system pathways play an important role in cancer progression and chemoresistance, especially in pancreatic cancer. A recent report also suggested that several signaling pathways play an important role in causing chemoresistance in pancreatic cancer, major ones including nuclear factor kappa B, signal transducer and activator of transcription 3, c-mesenchymal-epithelial transition factor, and phosphoinositide-3-kinase/protein kinase B. In addition, it has also been proven that the complement system has a very active role in establishing the tumor microenvironment, which would aid in promoting tumorigenesis, progression, metastasis, and recurrence. Interestingly, it has been shown that the downstream products of the complement system directly upregulate inflammatory mediators, which in turn activate these chemo-resistant pathways. Therefore, targeting complement pathways could be an innovative approach to combat against pancreatic cancer drugs resistance. In this review, we have discussed the role of complement system pathways in pancreatic cancer drug resistance and a special focus on the complement as a therapeutic target in pancreatic cancer.
Collapse
Affiliation(s)
- Naushair Hussain
- Department of Biomedical Sciences, Kentucky College of Osteopathic Medicine, University of Pikeville, Pikeville, KY 41501, USA
| | - Deea Das
- Department of Biomedical Sciences, Kentucky College of Osteopathic Medicine, University of Pikeville, Pikeville, KY 41501, USA
| | - Atreyi Pramanik
- Department of Education, South College, Knoxville, TN 37902, USA
| | - Manoj K Pandey
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA
| | - Vivek Joshi
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Wyomissing, PA 19610, USA
| | - Kartick C. Pramanik
- Department of Biomedical Sciences, Kentucky College of Osteopathic Medicine, University of Pikeville, Pikeville, KY 41501, USA
| |
Collapse
|
20
|
Gong GW, Tang WH, Zhou Z, Jiang YW, Wang CZ, Cheng H, Cao Y, Jiang ZW. Potential Efficacious Materials Investigation of Yi-Yi Mixture Based on Metabolome-oriented Network Pharmacology Strategy. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1197:123199. [DOI: 10.1016/j.jchromb.2022.123199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/13/2022] [Accepted: 02/24/2022] [Indexed: 02/07/2023]
|
21
|
Segraves NL, Koenig SG, Stults J, Ma S, DiPasquale AG, Robinson SJ, Russell DJ. Challenges in the structure determination of a dimeric impurity found during development of GDC-0326. J Pharm Biomed Anal 2022; 213:114627. [DOI: 10.1016/j.jpba.2022.114627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 11/16/2022]
|
22
|
Faleiro I, Roberto VP, Demirkol Canli S, Fraunhoffer NA, Iovanna J, Gure AO, Link W, Castelo-Branco P. DNA Methylation of PI3K/AKT Pathway-Related Genes Predicts Outcome in Patients with Pancreatic Cancer: A Comprehensive Bioinformatics-Based Study. Cancers (Basel) 2021; 13:cancers13246354. [PMID: 34944974 PMCID: PMC8699150 DOI: 10.3390/cancers13246354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/02/2021] [Accepted: 12/07/2021] [Indexed: 11/19/2022] Open
Abstract
Simple Summary Pancreatic cancer is a highly lethal malignancy. Dysregulation of epigenetic mechanisms leads to abnormal patterns of gene expression contributing to the development and progression of cancer. We explored the ability of DNA methylation of PI3K-related genes to differentiate between malignant and healthy pancreatic tissue using distinct pancreatic cancer cohorts, and found that the methylation levels of the ITGA4, SFN, ITGA2, and PIK3R1 genes are altered in tumour samples since the early stages of malignant transformation and could serve as new diagnostic tools. We also demonstrate that these alterations correlate with overall survival and recurrence-free survival of the patients suggesting that its assessment can serve as independent prognostic indicators of patients’ survival with higher sensitivity and specificity than the currently implemented biomarkers. Therefore, the methylation profile of genes involved in this pathway may be an alternative method for predicting cell malignancy and help doctors’ decisions on patient care. Abstract Pancreatic cancer (PCA) is one of the most lethal malignancies worldwide with a 5-year survival rate of 9%. Despite the advances in the field, the need for an earlier detection and effective therapies is paramount. PCA high heterogeneity suggests that epigenetic alterations play a key role in tumour development. However, only few epigenetic biomarkers or therapeutic targets have been identified so far. Here we explored the potential of distinct DNA methylation signatures as biomarkers for early detection and prognosis of PCA. PI3K/AKT-related genes differentially expressed in PCA were identified using the Pancreatic Expression Database (n = 153). Methylation data from PCA patients was obtained from The Cancer Genome Atlas (n = 183), crossed with clinical data to evaluate the biomarker potential of the epigenetic signatures identified and validated in independent cohorts. The majority of selected genes presented higher expression and hypomethylation in tumour tissue. The methylation signatures of specific genes in the PI3K/AKT pathway could distinguish normal from malignant tissue at initial disease stages with AUC > 0.8, revealing their potential as PCA diagnostic tools. ITGA4, SFN, ITGA2, and PIK3R1 methylation levels could be independent prognostic indicators of patients’ survival. Methylation status of SFN and PIK3R1 were also associated with disease recurrence. Our study reveals that the methylation levels of PIK3/AKT genes involved in PCA could be used to diagnose and predict patients’ clinical outcome with high sensitivity and specificity. These results provide new evidence of the potential of epigenetic alterations as biomarkers for disease screening and management and highlight possible therapeutic targets.
Collapse
Affiliation(s)
- Inês Faleiro
- Faculty of Medicine and Biomedical Sciences (FMCB), Campus de Gambelas, University of Algarve, 8005-139 Faro, Portugal;
- Algarve Biomedical Center Research Institute (ABC-RI), 8005-139 Faro, Portugal
- Instituto de Medicina Molecular João Lobo Antunes (IMM), Faculty of Medicine, University of Lisbon, 1649-028 Lisbon, Portugal
| | - Vânia Palma Roberto
- Faculty of Medicine and Biomedical Sciences (FMCB), Campus de Gambelas, University of Algarve, 8005-139 Faro, Portugal;
- Algarve Biomedical Center Research Institute (ABC-RI), 8005-139 Faro, Portugal
- Champalimaud Research Program, Champalimaud Center for the Unknown, 1400-038 Lisbon, Portugal
- Centre of Marine Sciences (CCMAR), University of Algarve, 8005-139 Faro, Portugal
- Correspondence: (V.P.R.); (P.C.-B.)
| | - Secil Demirkol Canli
- Molecular Pathology Application and Research Center, Hacettepe University, 06100 Ankara, Turkey;
| | - Nicolas A. Fraunhoffer
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix-Marseille Université, Parc Scientifique et Technologique de Luminy, 13288 Marseille, France; (N.A.F.); (J.I.)
| | - Juan Iovanna
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix-Marseille Université, Parc Scientifique et Technologique de Luminy, 13288 Marseille, France; (N.A.F.); (J.I.)
| | - Ali Osmay Gure
- Department of Medical Biology, Acibadem University, 34684 Istanbul, Turkey;
| | - Wolfgang Link
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain;
| | - Pedro Castelo-Branco
- Faculty of Medicine and Biomedical Sciences (FMCB), Campus de Gambelas, University of Algarve, 8005-139 Faro, Portugal;
- Algarve Biomedical Center Research Institute (ABC-RI), 8005-139 Faro, Portugal
- Champalimaud Research Program, Champalimaud Center for the Unknown, 1400-038 Lisbon, Portugal
- Correspondence: (V.P.R.); (P.C.-B.)
| |
Collapse
|
23
|
Zhu XR, Peng SQ, Wang L, Chen XY, Feng CX, Liu YY, Chen MB. Identification of phosphoenolpyruvate carboxykinase 1 as a potential therapeutic target for pancreatic cancer. Cell Death Dis 2021; 12:918. [PMID: 34620839 PMCID: PMC8497628 DOI: 10.1038/s41419-021-04201-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/27/2021] [Accepted: 09/22/2021] [Indexed: 01/26/2023]
Abstract
Pancreatic cancer is the third leading cause of cancer-related mortalities and is characterized by rapid disease progression. Identification of novel therapeutic targets for this devastating disease is important. Phosphoenolpyruvate carboxykinase 1 (PCK1) is the rate-limiting enzyme of gluconeogenesis. The current study tested the expression and potential functions of PCK1 in pancreatic cancer. We show that PCK1 mRNA and protein levels are significantly elevated in human pancreatic cancer tissues and cells. In established and primary pancreatic cancer cells, PCK1 silencing (by shRNA) or CRISPR/Cas9-induced PCK1 knockout potently inhibited cell growth, proliferation, migration and invasion, and induced robust apoptosis activation. Conversely, ectopic overexpression of PCK1 in pancreatic cancer cells accelerated cell proliferation and migration. RNA-seq analyzing of differentially expressed genes (DEGs) in PCK1-silenced pancreatic cancer cells implied that DEGs were enriched in the PI3K-Akt-mTOR cascade. In pancreatic cancer cells, Akt-mTOR activation was largely inhibited by PCK1 shRNA, but was augmented after ectopic PCK1 overexpression. In vivo, the growth of PCK1 shRNA-bearing PANC-1 xenografts was largely inhibited in nude mice. Akt-mTOR activation was suppressed in PCK1 shRNA-expressing PANC-1 xenograft tissues. Collectively, PCK1 is a potential therapeutic target for pancreatic cancer.
Collapse
Affiliation(s)
- Xiao-Ren Zhu
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Shi-Qing Peng
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Le Wang
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Xiao-Yu Chen
- Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, China
| | - Chun-Xia Feng
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Yuan-Yuan Liu
- Clinical Research and Lab Center, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Min-Bin Chen
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China.
| |
Collapse
|
24
|
Cintas C, Douche T, Dantes Z, Mouton-Barbosa E, Bousquet MP, Cayron C, Therville N, Pont F, Ramos-Delgado F, Guyon C, Garmy-Susini B, Cappello P, Burlet-Schiltz O, Hirsch E, Gomez-Brouchet A, Thibault B, Reichert M, Guillermet-Guibert J. Phosphoproteomics Identifies PI3K Inhibitor-selective Adaptive Responses in Pancreatic Cancer Cell Therapy and Resistance. Mol Cancer Ther 2021; 20:2433-2445. [PMID: 34552006 DOI: 10.1158/1535-7163.mct-20-0981] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 05/28/2021] [Accepted: 09/14/2021] [Indexed: 11/16/2022]
Abstract
The PI3K pathway is highly active in human cancers. The four class I isoforms of PI3K are activated by distinct mechanisms leading to a common downstream signaling. Their downstream redundancy is thought to be responsible for treatment failures of PI3K inhibitors. We challenged this concept, by mapping the differential phosphoproteome evolution in response to PI3K inhibitors with different isoform-selectivity patterns in pancreatic cancer, a disease currently without effective therapy. In this cancer, the PI3K signal was shown to control cell proliferation. We compared the effects of LY294002 that inhibit with equal potency all class I isoenzymes and downstream mTOR with the action of inhibitors with higher isoform selectivity toward PI3Kα, PI3Kβ, or PI3Kγ (namely, A66, TGX-221 and AS-252424). A bioinformatics global pathway analysis of phosphoproteomics data allowed us to identify common and specific signals activated by PI3K inhibitors supported by the biological data. AS-252424 was the most effective treatment and induced apoptotic pathway activation as well as the highest changes in global phosphorylation-regulated cell signal. However, AS-252424 treatment induced reactivation of Akt, therefore decreasing the treatment outcome on cell survival. Reversely, AS-252424 and A66 combination treatment prevented p-Akt reactivation and led to synergistic action in cell lines and patient organoids. The combination of clinically approved α-selective BYL-719 with γ-selective IPI-549 was more efficient than single-molecule treatment on xenograft growth. Mapping unique adaptive signaling responses to isoform-selective PI3K inhibition will help to design better combinative treatments that prevent the induction of selective compensatory signals.
Collapse
Affiliation(s)
- Célia Cintas
- INSERM, CNRS, Université Paul Sabatier, U1037, CRCT, Toulouse, France.,Labex TouCAN, Toulouse, France
| | - Thibault Douche
- INSERM, CNRS, Université Paul Sabatier, U1037, CRCT, Toulouse, France.,Labex TouCAN, Toulouse, France
| | - Zahra Dantes
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Center for Protein Assemblies (CPA), Technische Universität München, Garching, Germany.,German Cancer Consortium (DKTK), partner site Munich, Germany
| | - Emmanuelle Mouton-Barbosa
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS UMR 5089, UPS, Toulouse, France
| | - Marie-Pierre Bousquet
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS UMR 5089, UPS, Toulouse, France
| | - Coralie Cayron
- INSERM, CNRS, Université Paul Sabatier, U1037, CRCT, Toulouse, France.,Labex TouCAN, Toulouse, France
| | - Nicole Therville
- INSERM, CNRS, Université Paul Sabatier, U1037, CRCT, Toulouse, France.,Labex TouCAN, Toulouse, France
| | - Frédéric Pont
- INSERM, CNRS, Université Paul Sabatier, U1037, CRCT, Toulouse, France
| | - Fernanda Ramos-Delgado
- INSERM, CNRS, Université Paul Sabatier, U1037, CRCT, Toulouse, France.,Labex TouCAN, Toulouse, France
| | - Camille Guyon
- INSERM, CNRS, Université Paul Sabatier, U1037, CRCT, Toulouse, France.,Labex TouCAN, Toulouse, France
| | | | - Paola Cappello
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy.,Molecular Biotechnology Center (MBC), Turin, Italy
| | - Odile Burlet-Schiltz
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS UMR 5089, UPS, Toulouse, France
| | - Emilio Hirsch
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy.,Molecular Biotechnology Center (MBC), Turin, Italy
| | - Anne Gomez-Brouchet
- IUCT-O, Institut Claudius Regaud, Hopitaux de Toulouse, Biobank, Toulouse, France
| | - Benoît Thibault
- INSERM, CNRS, Université Paul Sabatier, U1037, CRCT, Toulouse, France.,Labex TouCAN, Toulouse, France
| | - Maximilian Reichert
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Center for Protein Assemblies (CPA), Technische Universität München, Garching, Germany.,German Cancer Consortium (DKTK), partner site Munich, Germany
| | - Julie Guillermet-Guibert
- INSERM, CNRS, Université Paul Sabatier, U1037, CRCT, Toulouse, France. .,Labex TouCAN, Toulouse, France
| |
Collapse
|
25
|
Cherri S, Noventa S, Zaniboni A. Pancreatic adenocarcinoma: Beyond first line, where are we? World J Gastroenterol 2021; 27:1847-1863. [PMID: 34007126 PMCID: PMC8108033 DOI: 10.3748/wjg.v27.i17.1847] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/09/2021] [Accepted: 04/13/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is considered one of the most aggressive cancers, with an increasing incidence in recent years. To date, chemotherapy is still the standard of care for advanced metastatic disease, unfortunately providing only a slight advantage in terms of survival. The molecular and cellular characteristics of pancreatic cancer cells, as well as the cells that characterize the pancreatic tumour microenvironment, are the basis of the mechanisms of resistance to treatment. After progression during first-line treatment, few patients are eligible for second-line treatment due to the loss of performance status. To date, a clear survival advantage has not yet been demonstrated for second-line chemotherapy. Precision medicine could be the key to increasing responses to cancer treatment and finally impacting survival in this difficult-to-treat disease. In this review, we analyze current recommendations in the second-line setting and potential future prospects.
Collapse
Affiliation(s)
- Sara Cherri
- Department of Oncology, Fondazione Poliambulanza, Brescia 25124, Italy
| | - Silvia Noventa
- Department of Oncology, Fondazione Poliambulanza, Brescia 25124, Italy
| | - Alberto Zaniboni
- Department of Oncology, Fondazione Poliambulanza, Brescia 25124, Italy
| |
Collapse
|
26
|
Indini A, Rijavec E, Ghidini M, Cortellini A, Grossi F. Targeting KRAS in Solid Tumors: Current Challenges and Future Opportunities of Novel KRAS Inhibitors. Pharmaceutics 2021; 13:pharmaceutics13050653. [PMID: 34064352 PMCID: PMC8147792 DOI: 10.3390/pharmaceutics13050653] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/25/2021] [Accepted: 04/30/2021] [Indexed: 12/12/2022] Open
Abstract
Activating mutations in RAS family proteins are found in ~25% of all human cancers. Different solid tumors are correlated with mutations in certain isoforms of RAS, with Kirsten RAS (KRAS) being the most frequently mutated isoform. Historically, KRAS has been acknowledged as “undruggable”, largely because the RAS proteins do not appear to present suitable pockets to which small inhibitory molecules can bind. However, this scenario has changed over the last years with the advent of novel KRAS inhibitors. In this review, we describe the role of KRAS mutation across different solid tumors, providing data on novel KRAS inhibitors currently under development and an updated overview of ongoing research in this field. A literature search was performed to select papers, abstracts, and oral presentation on KRAS inhibitory strategies in KRAS mutated solid tumors. Overall, the most promising therapeutic results have been obtained with molecules targeting KRAS G12C, thus paving the way for a significant therapeutic improvement in non-small cell lung cancer. Unfortunately, KRAS G12C mutation is rather uncommon in other solid tumors, namely pancreatic ductal adenocarcinoma and colorectal cancer. Several combination strategies are currently under evaluation in clinical trials, in order to bypass the resistance mechanisms responsible for the intrinsic resistance of mutated KRAS to the main therapeutic strategies adopted to date. Results suggest that the therapeutic scenario of KRAS has started to change, and further research will bring therapeutic results in this field.
Collapse
Affiliation(s)
- Alice Indini
- Medical Oncology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (A.I.); (E.R.); (M.G.)
| | - Erika Rijavec
- Medical Oncology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (A.I.); (E.R.); (M.G.)
| | - Michele Ghidini
- Medical Oncology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (A.I.); (E.R.); (M.G.)
| | - Alessio Cortellini
- Department of Biotechnology and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
- Department of Surgery and Cancer, Imperial College London, Faculty of Medicine, Hammersmith Hospital, Du Cane Road, London W120NN, UK
| | - Francesco Grossi
- Medical Oncology Unit, Department of Medicine and Surgery, University of Insubria, ASST dei Sette Laghi, 21100 Varese, Italy
- Correspondence: or
| |
Collapse
|
27
|
Daniel-García L, Vergara P, Navarrete A, González RO, Segovia J. Simultaneous Treatment with Soluble Forms of GAS1 and PTEN Reduces Invasiveness and Induces Death of Pancreatic Cancer Cells. Onco Targets Ther 2020; 13:11769-11779. [PMID: 33235464 PMCID: PMC7680188 DOI: 10.2147/ott.s260671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 09/06/2020] [Indexed: 12/14/2022] Open
Abstract
Introduction Pancreatic carcinoma cells exhibit a pronounced tendency to invade along and through intra and extrapancreatic nerves, even during the early stages of the disease, a phenomenon called perineural invasion (PNI). Thus, we sought to determine the effects of the simultaneous expression of soluble forms of GAS1 and PTEN (tGAS1 and PTEN-L) inhibiting tumor growth and invasiveness. Materials and Methods We employed a lentiviral system to simultaneously express tGAS1 and PTEN-L; in order to determine the effects of the treatments, cell viability and apoptosis as well as the expression of the transgenes by ELISA and intracellular signaling as ascertained by the activation of AKT and ERK1/2 were measured; cell invasiveness was determined using a Boyden chamber assay; and the effects of the treatment were measured in vivo in a mouse model. Results In the present work, we show that the combined treatment with tGAS1 and PTEN-L inhibits the growth of pancreatic cancer cells, by reducing the activities of both AKT and ERK 1/2, decreases cell invasiveness, and restrains tumor growth in a mouse model. Conclusion The combined administration of tGAS1 and PTEN-L could be a valuable adjunct therapy for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Lizbeth Daniel-García
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City 07300, Mexico
| | - Paula Vergara
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City 07300, Mexico
| | - Araceli Navarrete
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City 07300, Mexico
| | - Rosa O González
- Departamento de Matemáticas, Universidad Autónoma Metropolitana-Iztapala, Mexico City 09340, México
| | - Jose Segovia
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City 07300, Mexico
| |
Collapse
|
28
|
Mansour MA, Lasheen DS, Gaber HM, Abouzid KAM. Elaborating piperazinyl-furopyrimidine based scaffolds as phosphoinositol-3-kinase enzyme alpha (PI3Kα) inhibitors to combat pancreatic cancer. RSC Adv 2020; 10:32103-32112. [PMID: 35518146 PMCID: PMC9056536 DOI: 10.1039/d0ra06428a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 08/21/2020] [Indexed: 12/19/2022] Open
Abstract
Phosphoinositol-3-kinase enzyme (PI3K) plays a crucial role in driving oncogenic growth in various mammalian cells, particularly pancreatic cells. In the current study a series of novel furo[2,3-d]pyrimidine based-compounds were designed and synthesized as potential PI3K-α inhibitors. In accordance to the structure–activity relationship (SAR) studies of known PI3K-α inhibitors, different linkers including amide, urea and ether were attached to a piperazinyl furo[2,3-d]pyrimidine core. The synthesized compounds that revealed moderate PI3K-α inhibitory activity were tested for their anti-proliferative activities against pancreatic carcinoma on the PANC-1 cell line. Compounds 7b and 8a showed the highest anti-proliferative activity with IC50 values of 4.5 μM and 6 μM, respectively and relatively, the best in vitro PI3K inhibition ability within the newly synthesized compounds. Additionally, all the newly synthesized final compounds were tested on 60 human cancer cell lines. A docking study was carried out on the PI3K-α active site showing a comparable binding mode to that of FDA approved PI3K-α inhibitors. These newly discovered lipid kinase inhibitors could be considered as potential candidates for the development of new targeted anticancer agents. Phosphoinositol-3-kinase alpha (PI3K-α) enzyme inhibition to combat pancreatic cancer.![]()
Collapse
Affiliation(s)
- Mai A Mansour
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Badr University in Cairo Egypt
| | - Deena S Lasheen
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University Abbassia Cairo 11566 Egypt
| | - Hatem M Gaber
- National Organization for Drug Control and Research Egypt
| | - Khaled A M Abouzid
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University Abbassia Cairo 11566 Egypt .,Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Sadat City Sadat City Menoufia Egypt
| |
Collapse
|
29
|
Principe DR, Rana A. Updated risk factors to inform early pancreatic cancer screening and identify high risk patients. Cancer Lett 2020; 485:56-65. [PMID: 32389710 DOI: 10.1016/j.canlet.2020.04.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/06/2020] [Accepted: 04/23/2020] [Indexed: 02/07/2023]
Abstract
Pancreatic adenocarcinoma (PDAC) is associated with poor clinical outcomes and incomplete responses to conventional therapy. Therefore, there is an unmet clinical need to better understand the predisposing factors for pancreatic cancer in hopes of providing early screening to high-risk patients. While select risk factors such as age, race, and family history, or predisposing syndromes are unavoidable, there are several new and established risk factors that allow for intervention, namely by counseling patients to make the appropriate lifestyle modifications. Here, we discuss the best-studied risk factors for PDAC such as tobacco use and chronic pancreatitis, as well as newly emerging risk factors including select nutritional deficits, bacterial infections, and psychosocial factors. As several of these risk factors appear to be additive or synergistic, by understanding their relationships and offering coordinated, multidisciplinary care to high-risk patients, it may be possible to reduce pancreatic cancer incidence and improve clinical outcomes through early detection.
Collapse
Affiliation(s)
- Daniel R Principe
- Medical Scientist Training Program, University of Illinois College of Medicine, Chicago, IL, USA; Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL, USA.
| | - Ajay Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL, USA; Jesse Brown VA Medical Center, Chicago, IL, USA.
| |
Collapse
|
30
|
Buscail L, Bournet B, Cordelier P. Role of oncogenic KRAS in the diagnosis, prognosis and treatment of pancreatic cancer. Nat Rev Gastroenterol Hepatol 2020; 17:153-168. [PMID: 32005945 DOI: 10.1038/s41575-019-0245-4] [Citation(s) in RCA: 443] [Impact Index Per Article: 88.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/21/2019] [Indexed: 02/08/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is predicted to be the second most common cause of death within the next 10 years. The prognosis for this disease is poor despite diagnostic progress and new chemotherapeutic regimens. The oncogenic KRAS mutation is the major event in pancreatic cancer; it confers permanent activation of the KRAS protein, which acts as a molecular switch to activate various intracellular signalling pathways and transcription factors inducing cell proliferation, migration, transformation and survival. Several laboratory methods have been developed to detect KRAS mutations in biological samples, including digital droplet PCR (which displays high sensitivity). Clinical studies have revealed that a KRAS mutation assay in fine-needle aspiration material combined with cytopathology increases the sensitivity, accuracy and negative predictive value of cytopathology for a positive diagnosis of pancreatic cancer. In addition, the presence of KRAS mutations in serum and plasma (liquid biopsies) correlates with a worse prognosis. The presence of mutated KRAS can also have therapeutic implications, whether at the gene level per se, during its post-translational maturation, interaction with nucleotides and after activation of the various oncogenic signals. Further pharmacokinetic and toxicological studies on new molecules are required, especially small synthetic molecules, before they can be used in the therapeutic arsenal for pancreatic ductal adenocarcinoma.
Collapse
Affiliation(s)
- Louis Buscail
- Department of Gastroenterology, University of Toulouse III, Rangueil Hospital, Toulouse, France. .,INSERM UMR 1037, Toulouse Centre for Cancer Research, University of Toulouse III, Toulouse, France.
| | - Barbara Bournet
- Department of Gastroenterology, University of Toulouse III, Rangueil Hospital, Toulouse, France.,INSERM UMR 1037, Toulouse Centre for Cancer Research, University of Toulouse III, Toulouse, France
| | - Pierre Cordelier
- INSERM UMR 1037, Toulouse Centre for Cancer Research, University of Toulouse III, Toulouse, France
| |
Collapse
|
31
|
Zhu Z, Xiao S, Hao H, Hou Q, Fu X. Kirsten Rat Sarcoma Viral Oncogene Homologue (KRAS) Mutations in the Occurrence and Treatment of Pancreatic Cancer. Curr Top Med Chem 2019; 19:2176-2186. [PMID: 31456520 DOI: 10.2174/1568026619666190828160804] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 03/08/2019] [Accepted: 04/08/2019] [Indexed: 12/29/2022]
Abstract
Pancreatic cancer is a highly malignant tumor with a 5-year survival rate of less than 6%, and incidence increasing year by year globally. Pancreatic cancer has a poor prognosis and a high recurrence rate, almost the same as the death rate. However, the available effective prevention and treatment measures for pancreatic cancer are still limited. The genome variation is one of the main reasons for the development of pancreatic cancer. In recent years, with the development of gene sequencing technology, in-depth research on pancreatic cancer gene mutation presents that a growing number of genetic mutations are confirmed to be in a close relationship with invasion and metastasis of pancreatic cancer. Among them, KRAS mutation is a special one. Therefore, it is particularly important to understand the mechanism of the KRAS mutation in the occurrence and development of pancreatic cancer, and to explore the method of its transformation into clinical tumor molecular targeted treatment sites, to further improve the therapeutic effect on pancreatic cancer. Therefore, to better design chemical drugs, this review based on the biological functions of KRAS, summarized the types of KRAS mutations and their relationship with pancreatic cancer and included the downstream signaling pathway Raf-MEK-ERK, PI3K-AKT, RalGDS-Ral of KRAS and the current medicinal treatment methods for KRAS mutations. Moreover, drug screening and clinical treatment for KRAS mutated cell and animal models of pancreatic cancer are also reviewed along with the prospect of targeted medicinal chemistry therapy for precision treatment of pancreatic cancer in the future.
Collapse
Affiliation(s)
- Ziying Zhu
- Institute of Basic Medical Science, Wound Healing and Cell Biology Laboratory, Chinese PLA General Hospital, 100039 Beijing, China
| | - Saisong Xiao
- Department of Anesthesia, Dongzhimen Hospital, Beijing University of Chinese Medicine, 100700 Beijing, China
| | - Haojie Hao
- Institute of Basic Medical Science, Wound Healing and Cell Biology Laboratory, Chinese PLA General Hospital, 100039 Beijing, China
| | - Qian Hou
- Institute of Basic Medical Science, Wound Healing and Cell Biology Laboratory, Chinese PLA General Hospital, 100039 Beijing, China
| | - Xiaobing Fu
- Institute of Basic Medical Science, Wound Healing and Cell Biology Laboratory, Chinese PLA General Hospital, 100039 Beijing, China
| |
Collapse
|
32
|
Kamath SD, Kalyan A, Kircher S, Nimeiri H, Fought AJ, Benson A, Mulcahy M. Ipilimumab and Gemcitabine for Advanced Pancreatic Cancer: A Phase Ib Study. Oncologist 2019; 25:e808-e815. [PMID: 31740568 DOI: 10.1634/theoncologist.2019-0473] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 10/16/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) remains resistant to chemotherapy and immunotherapy individually because of its desmoplastic stroma and immunosuppressive tumor microenvironment. Synergizing cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) immune checkpoint blockade with chemotherapy could overcome these barriers. Here we present results of a phase Ib trial combining ipilimumab and gemcitabine in advanced PDAC. MATERIALS AND METHODS This was a single-institution study with a 3 + 3 dose-escalation design. The primary objective was to determine the maximum tolerated dose (MTD). Secondary objectives included determining the toxicity profile, objective response rate (ORR), median progression-free survival (PFS), and overall survival (OS). RESULTS Twenty-one patients were enrolled, 13 during dose escalation and 8 at the MTD. The median age was 66 years, 62% were female, 95% had stage IV disease, and 67% had received at least one prior line of therapy. The primary objective to establish the MTD was achieved at doses of ipilimumab 3 mg/kg and gemcitabine 1,000 mg/m2 . The most common grade 3 or 4 adverse events were anemia (48%), leukopenia (48%), and neutropenia (43%). The ORR was 14% (3/21), and seven patients had stable disease. Median response duration for the three responders was 11 months, with one response duration of 19.8 months. Median PFS was 2.78 months (95% confidence interval [CI], 1.61-4.83 months), and median OS was 6.90 months (95% CI, 2.63-9.57 months). CONCLUSION Gemcitabine and ipilimumab is a safe and tolerable regimen for PDAC with a similar response rate to gemcitabine alone. As in other immunotherapy trials, responses were relatively durable in this study. IMPLICATIONS FOR PRACTICE Gemcitabine and ipilimumab is a safe and feasible regimen for treating advanced pancreatic cancer. Although one patient in this study had a relatively durable response of nearly 20 months, adding ipilimumab to gemcitabine does not appear to be more effective than gemcitabine alone in advanced pancreatic cancer.
Collapse
Affiliation(s)
- Suneel D Kamath
- Division of Hematology and Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, USA
| | - Aparna Kalyan
- Division of Hematology and Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Developmental Therapeutics Program, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, USA
| | - Sheetal Kircher
- Division of Hematology and Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, USA
| | - Halla Nimeiri
- Division of Hematology and Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, USA
| | - Angela J Fought
- Division of Biostatistics, Department of Preventative Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Al Benson
- Division of Hematology and Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, USA
| | - Mary Mulcahy
- Division of Hematology and Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
33
|
Parkin A, Man J, Timpson P, Pajic M. Targeting the complexity of Src signalling in the tumour microenvironment of pancreatic cancer: from mechanism to therapy. FEBS J 2019; 286:3510-3539. [PMID: 31330086 PMCID: PMC6771888 DOI: 10.1111/febs.15011] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 05/26/2019] [Accepted: 07/19/2019] [Indexed: 02/06/2023]
Abstract
Pancreatic cancer, a disease with extremely poor prognosis, has been notoriously resistant to virtually all forms of treatment. The dynamic crosstalk that occurs between tumour cells and the surrounding stroma, frequently mediated by intricate Src/FAK signalling, is increasingly recognised as a key player in pancreatic tumourigenesis, disease progression and therapeutic resistance. These important cues are fundamental for defining the invasive potential of pancreatic tumours, and several components of the Src and downstream effector signalling have been proposed as potent anticancer therapeutic targets. Consequently, numerous agents that block this complex network are being extensively investigated as potential antiinvasive and antimetastatic therapeutic agents for this disease. In this review, we will discuss the latest evidence of Src signalling in PDAC progression, fibrotic response and resistance to therapy. We will examine future opportunities for the development and implementation of more effective combination regimens, targeting key components of the oncogenic Src signalling axis, and in the context of a precision medicine-guided approach.
Collapse
Affiliation(s)
- Ashleigh Parkin
- The Kinghorn Cancer CentreThe Garvan Institute of Medical ResearchSydneyAustralia
| | - Jennifer Man
- The Kinghorn Cancer CentreThe Garvan Institute of Medical ResearchSydneyAustralia
| | - Paul Timpson
- The Kinghorn Cancer CentreThe Garvan Institute of Medical ResearchSydneyAustralia
- Faculty of MedicineSt Vincent's Clinical SchoolUniversity of NSWSydneyAustralia
| | - Marina Pajic
- The Kinghorn Cancer CentreThe Garvan Institute of Medical ResearchSydneyAustralia
- Faculty of MedicineSt Vincent's Clinical SchoolUniversity of NSWSydneyAustralia
| |
Collapse
|
34
|
Zeng C, Zhang Z, Wang J, Chiu BCH, Hou L, Zhang W. Application of the High-throughput TAB-Array for the Discovery of Novel 5-Hydroxymethylcytosine Biomarkers in Pancreatic Ductal Adenocarcinoma. EPIGENOMES 2019; 3:16. [PMID: 31413874 PMCID: PMC6693877 DOI: 10.3390/epigenomes3030016] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 08/08/2019] [Indexed: 02/06/2023] Open
Abstract
The clinical outcomes of pancreatic ductal adenocarcinoma (PDAC) remain dismal, with an estimated five-year survival rate less than 5%. Early detection and prognostic approaches, including robust biomarkers for PDAC are critical for improving patient survival. Our goal was to explore the biomarker potential of 5-hydroxymethylcytosines (5hmC), an emerging epigenetic marker with a distinct role in cancer pathobiology, yet under-investigated due largely to technical constraints, for PDAC. We used the TAB-Array assay, a state-of-the-art technology to directly profile 5hmC at single base resolution with the Illumina EPIC array (~850,000 cytosine modification sites) in 17 pairs of tumor/adjacent tissue samples from US patients collected at the University of Chicago Medical Center. The TAB-Array data were analyzed to explore the genomic distribution of 5hmC and evaluate whether 5hmC markers were differentially modified between tumors and adjacent tissues. We demonstrated distinctive distribution patterns of 5hmC in tissue samples from PDAC patients relative to gene regulatory elements (e.g., histone modification marks for enhancers), indicating their potential gene regulatory relevance. Substantial differences in 5hmC-modified CpG sites, involving those genes related to cancer pathobiology, were detected between tumors and adjacent tissues. The detected 5hmC-contaning marker genes also showed prognostic value for patient survival in the US patients with PDAC from the Cancer Genome Atlas Project. This study demonstrated the technical feasibility of the TAB-Array approach in cancer biomarker discovery and the biomarker potential of 5hmC for PDAC. Future studies using tissues and/or liquid biopsies may include 5hmC as potential epigenetic biomarker targets for PDAC.
Collapse
Affiliation(s)
- Chang Zeng
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Driskill Graduate Program in Life Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Zhou Zhang
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jun Wang
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Brian C-H Chiu
- Department of Public Health Sciences, the University of Chicago, Chicago, IL 60637, USA
| | - Lifang Hou
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Wei Zhang
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
35
|
Therville N, Arcucci S, Vertut A, Ramos-Delgado F, Da Mota DF, Dufresne M, Basset C, Guillermet-Guibert J. Experimental pancreatic cancer develops in soft pancreas: novel leads for an individualized diagnosis by ultrafast elasticity imaging. Am J Cancer Res 2019; 9:6369-6379. [PMID: 31588223 PMCID: PMC6771236 DOI: 10.7150/thno.34066] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 07/11/2019] [Indexed: 01/24/2023] Open
Abstract
Rapid, easy and early pancreatic cancer diagnosis and therapeutic follow up continue to necessitate an increasing attention towards the development of effective treatment strategies for this lethal disease. The non invasive quantitative assessment of pancreatic heterogeneity is limited. Here, we report the development of a preclinical imaging protocol using ultrasonography and shear wave technology in an experimental in situ pancreatic cancer model to measure the evolution of pancreatic rigidity. Methods: Intrapancreatic tumors were genetically induced by mutated Kras and p53 in KPC mice. We evaluated the feasiblity of a live imaging protocol by assessing pancreas evolution with Aixplorer technology accross 36 weeks. Lethality induced by in situ pancreatic cancer was heterogeneous in time. Results: The developed method successfully detected tumor mass from 26 weeks onwards at minimal 0.029 cm3 size. Elastography measurements using shear wave methodology had a wide detection range from 4.7kPa to 166.1kPa. Protumorigenic mutations induced a significant decrease of the rigidity of pancreatic tissue before tumors developed in correlation with the detection of senescent marker p16-positive cells. An intratumoral increased rigidity was quantified and found surprisingly heterogeneous. Tumors also presented a huge inter-individual heterogeneity in their rigidity parameters; tumors with low and high rigidity at detection evolve very heterogeneously in their rigidity parameters, as well as in their volume. Increase in rigidity in tumors detected by ultrafast elasticity imaging coincided with detection of tumors by echography and with the detection of the inflammatory protumoral systemic condition by non invasive follow-up and of collagen fibers by post-processing tumoral IHC analysis. Conclusion: Our promising results indicate the potential of the shear wave elastography to support individualization of diagnosis in this most aggressive disease.
Collapse
|
36
|
Fang C, Guo X, Lv X, Yin R, Lv X, Wang F, Zhao J, Bai Q, Yao X, Chen Y. Dysbindin promotes progression of pancreatic ductal adenocarcinoma via direct activation of PI3K. J Mol Cell Biol 2019; 9:504-515. [PMID: 29040676 DOI: 10.1093/jmcb/mjx043] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 10/05/2017] [Indexed: 12/26/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) represents a biggest challenge in clinic oncology due to its invasiveness and lack of targeted therapeutics. Our recent study showed that schizophrenia susceptibility factor dysbindin exhibited significant higher level in serum of PDAC patients. However, the functional relevance of dysbindin in PDAC is still unclear. Here, we show that dysbindin promotes tumor growth both in vitro and in vivo by accelerating the G1/S phase transition in cell cycle via PI3K/AKT signaling pathway. Mechanistically, dysbindin interacts with PI3K and stimulates the kinase activity of PI3K. Moreover, overexpression of dysbindin in PDAC is correlated with clinicopathological characteristics significantly, such as histological differentiation (P = 0.011) and tumor size (P = 0.007). Kaplan-Meier survival curves show that patients with high dysbindin expression exhibit poorer overall survival, compared to those with low dysbindin expression (P < 0.001). Multivariate analysis reveals that dysbindin is an independent prognostic factor for pancreatic ductal adenocarcinoma (P = 0.001). Thus, our findings reveal that dysbindin is a novel PI3K activator and promotes PDAC progression via stimulation of PI3K/AKT. Dysbindin therefore represents a potential target for prognosis and therapy of PDAC.
Collapse
Affiliation(s)
- Cheng Fang
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xin Guo
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xing Lv
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Ruozhe Yin
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiaohui Lv
- Department of Gynecology and Obstetrics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Fengsong Wang
- Department of Biology, School of Life Science, Anhui Medical University, Hefei, China
| | - Jun Zhao
- Department of Pathology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Quan Bai
- Institute of Modern Separation Science, College of Chemistry & Materials Science, Northwest University, Xi'an, China
| | - Xuebiao Yao
- Department of Hefei Laboratory for Physical Sciences at Microscale, School of Life Science, University of Science and Technology of China, Hefei, China
| | - Yong Chen
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
37
|
Sivaram N, McLaughlin PA, Han HV, Petrenko O, Jiang YP, Ballou LM, Pham K, Liu C, van der Velden AW, Lin RZ. Tumor-intrinsic PIK3CA represses tumor immunogenecity in a model of pancreatic cancer. J Clin Invest 2019; 129:3264-3276. [PMID: 31112530 PMCID: PMC6668699 DOI: 10.1172/jci123540] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 05/16/2019] [Indexed: 12/27/2022] Open
Abstract
The presence of tumor-infiltrating T cells is associated with favorable patient outcomes, yet most pancreatic cancers are immunologically silent and resistant to currently available immunotherapies. Here we show using a syngeneic orthotopic implantation model of pancreatic cancer that Pik3ca regulates tumor immunogenicity. Genetic silencing of Pik3ca in KrasG12D/Trp53R172H-driven pancreatic tumors resulted in infiltration of T cells, complete tumor regression, and 100% survival of immunocompetent host mice. By contrast, Pik3ca-null tumors implanted in T cell-deficient mice progressed and killed all of the animals. Adoptive transfer of tumor antigen-experienced T cells eliminated Pik3ca-null tumors in immunodeficient mice. Loss of PIK3CA or inhibition of its effector, AKT, increased the expression of MHC Class I and CD80 on tumor cells. These changes contributed to the increased susceptibility of Pik3ca-null tumors to T cell surveillance. Our results indicate that tumor cell PIK3CA-AKT signaling limits T cell recognition and clearance of pancreatic cancer cells. Strategies that target this pathway may yield an effective immunotherapy for this cancer.
Collapse
Affiliation(s)
- Nithya Sivaram
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, New York, USA
- Molecular and Cellular Biology Graduate Program, Stony Brook University, Stony Brook, New York, USA
| | - Patrick A. McLaughlin
- Department of Molecular Genetics and Microbiology and Center for Infectious Diseases, Stony Brook University, Stony Brook, New York, USA
| | - Han V. Han
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, New York, USA
- Biomedical Engineering Graduate Program, Stony Brook University, Stony Brook, New York, USA
| | - Oleksi Petrenko
- Department of Molecular Genetics and Microbiology and Center for Infectious Diseases, Stony Brook University, Stony Brook, New York, USA
| | - Ya-Ping Jiang
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, New York, USA
| | - Lisa M. Ballou
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, New York, USA
| | - Kien Pham
- Department of Pathology and Laboratory Medicine, New Jersey Medical School and Robert Wood Johnson Medical School, Rutgers University School of Medicine, Newark, New Jersey, USA
| | - Chen Liu
- Department of Pathology and Laboratory Medicine, New Jersey Medical School and Robert Wood Johnson Medical School, Rutgers University School of Medicine, Newark, New Jersey, USA
| | - Adrianus W.M. van der Velden
- Department of Molecular Genetics and Microbiology and Center for Infectious Diseases, Stony Brook University, Stony Brook, New York, USA
| | - Richard Z. Lin
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, New York, USA
- Medical Service, Northport VA Medical Center, Northport, New York, USA
| |
Collapse
|
38
|
Wang Q, Wang J, Niu S, Wang S, Liu Y, Wang X. MicroRNA-664 targets paired box protein 6 to inhibit the oncogenicity of pancreatic ductal adenocarcinoma. Int J Oncol 2019; 54:1884-1896. [PMID: 30896829 DOI: 10.3892/ijo.2019.4759] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 02/20/2019] [Indexed: 11/06/2022] Open
Abstract
The abnormal expression of microRNAs (miRNAs or miRs) with oncogenic or tumor‑suppressive roles in pancreatic ductal adenocarcinoma (PDAC) has been widely reported in recent years, and these dysregulated miRNAs are implicated in the formation and progression of PDAC. Therefore, an investigation into the functional roles of miRNAs in PDAC may facilitate the identification of effective therapeutic targets. miRNA‑664 (miR‑664) has been found to be aberrantly expressed and to play crucial roles in several human cancer types. However, the expression pattern and functional roles of miR‑664 in the malignant capacity of PDAC have yet to be elucidated. In this study, the results revealed that miR‑664 was clearly downregulated in PDAC tissues and cell lines. The low miR‑664 expression was strongly associated with pathological T stage and lymph node metastasis of the patients with PDAC. Patients with PDAC with a low miR‑664 expression had a poorer overall survival and a worse disease‑free survival than those patients with a high miR‑664 level. Functional experiments suggested that exogenous miR‑664 expression suppressed the growth and metastasis of PDAC cells in vitro, whereas miR‑664 downregulation exerted the opposite effects. In addition, miR‑664 suppressed the tumor growth of PDAC cells in vivo. Mechanistically, paired box protein 6 (PAX6) was identified as a direct target gene of miR‑664 in PDAC cells. Furthermore, PAX6 was upregulated in PDAC tissues, and its upregulation inversely correlated with miR‑664 levels. Moreover, the silencing of PAX6 mimicked the effects of miR‑664 upregulation in PDAC cells, and the recovered expression of PAX6 eliminated the effects of miR‑664 on PDAC cells. Notably, miR‑664 could inhibit the activation of PI3K/Akt pathway in PDAC cells in vitro and in vivo. Cumulatively, these results indicate an important role of the miR‑664/PAX6 pathway in suppressing the aggressiveness of PDAC cells, suggesting that miR‑664 may be an attractive therapeutic target for the treatment of patients with this fatal disease.
Collapse
Affiliation(s)
- Qi Wang
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Jiaqi Wang
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Songtao Niu
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Songsong Wang
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Yibin Liu
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Xiaoya Wang
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| |
Collapse
|
39
|
Zhang H, Pan YZ, Cheung M, Cao M, Yu C, Chen L, Zhan L, He ZW, Sun CY. LAMB3 mediates apoptotic, proliferative, invasive, and metastatic behaviors in pancreatic cancer by regulating the PI3K/Akt signaling pathway. Cell Death Dis 2019; 10:230. [PMID: 30850586 PMCID: PMC6408539 DOI: 10.1038/s41419-019-1320-z] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 12/08/2018] [Accepted: 12/17/2018] [Indexed: 12/19/2022]
Abstract
The poor prognosis of patients with pancreatic ductal adenocarcinoma (PDAC) is partially attributed to the invasive and metastatic behavior of this disease. Laminin subunit beta-3 (LAMB3) encodes one of the three subunits of LM-332, an extracellular matrix protein secreted by cultured human keratinocytes. In addition, LAMB3 is involved in the invasive and metastatic abilities of some types of cancer, including colon, pancreas, lung, cervix, stomach, and prostate cancer, but the role and mechanism of LAMB3 in PDAC have not been previously determined. Herein, we tentatively investigated the role of LAMB3 in the malignant biological behavior of PDAC. In this study, we demonstrated that LAMB3 is upregulated in PDAC. Inhibition of LAMB3 abrogated the tumorigenic outcomes of PI3K/Akt signaling pathway activation, including those involving cell cycle arrest, cell apoptosis, proliferation, invasion and migration in vitro, and tumor growth and liver metastasis in vivo. Our results showed that LAMB3 could mediate cell cycle arrest and apoptosis in PDAC cells and alter the proliferative, invasive, and metastatic behaviors of PDAC by regulating the PI3K/Akt signaling pathway. LAMB3 may be a novel therapeutic target for the treatment of PDAC in the future.
Collapse
Affiliation(s)
- Hong Zhang
- Guizhou Medical University, Guiyang, Guizhou, China
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
- Key Laboratory of Hepatobiliary-Pancreas-Spleen Surgery of Guizhou Medical University, Guiyang, Guizhou, China
- Ontario Cancer Institute, Princess Margaret Cancer Centre, University of Toronto, Toronto, ON, Canada
| | - Yao-Zhen Pan
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
- Key Laboratory of Hepatobiliary-Pancreas-Spleen Surgery of Guizhou Medical University, Guiyang, Guizhou, China
| | - May Cheung
- Ontario Cancer Institute, Princess Margaret Cancer Centre, University of Toronto, Toronto, ON, Canada
| | - Mary Cao
- Ontario Cancer Institute, Princess Margaret Cancer Centre, University of Toronto, Toronto, ON, Canada
| | - Chao Yu
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
- Key Laboratory of Hepatobiliary-Pancreas-Spleen Surgery of Guizhou Medical University, Guiyang, Guizhou, China
| | - Ling Chen
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
- Key Laboratory of Hepatobiliary-Pancreas-Spleen Surgery of Guizhou Medical University, Guiyang, Guizhou, China
| | - Lei Zhan
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
- Key Laboratory of Hepatobiliary-Pancreas-Spleen Surgery of Guizhou Medical University, Guiyang, Guizhou, China
| | - Zhi-Wei He
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
- Key Laboratory of Hepatobiliary-Pancreas-Spleen Surgery of Guizhou Medical University, Guiyang, Guizhou, China
| | - Cheng-Yi Sun
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China.
- Key Laboratory of Hepatobiliary-Pancreas-Spleen Surgery of Guizhou Medical University, Guiyang, Guizhou, China.
| |
Collapse
|
40
|
Wolfe AR, Williams TM. Altering the response to radiation: radiosensitizers and targeted therapies in pancreatic ductal adenocarcinoma: preclinical and emerging clinical evidence. ACTA ACUST UNITED AC 2018; 1. [PMID: 32656528 DOI: 10.21037/apc.2018.08.02] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Radiation therapy continues to have an evolving role in pancreatic ductal adenocarcinoma. While metastatic failure likely contributes to the majority of patient mortality, achieving local control through surgery and/or radiation appears to be important as certain studies suggest that mortality is contributed by local failure. Many studies support that pancreatic cancer is a relatively radiation resistant tumor type. In addition, the ability to further improve radiation through dose escalation strategies in the non-metastatic setting is hampered by closeness of normal organs, including small bowel and stomach, to the tumor. Thus subverting molecular pathways that promote radiation resistance will be critical to further success of radiation in this disease. There is a wealth of preclinical data supporting the targeting of various molecular pathways in combination with radiation therapy, including DNA repair, cell cycle checkpoint proteins, receptor tyrosine kinases, oncoproteins, stem cells, and immunomodulation. A number of clinical trials have been completed or are on-going with novel molecular inhibitors. In this review, we summarize existing preclinical and clinical molecular strategies for improving the efficacy of radiation in pancreatic cancer, and highlight recent and ongoing clinical trials combining radiation and various targeted therapies.
Collapse
Affiliation(s)
- Adam R Wolfe
- Department of Radiation Oncology, The Ohio State University Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, OH 43210, USA
| | - Terence M Williams
- Department of Radiation Oncology, The Ohio State University Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, OH 43210, USA
| |
Collapse
|
41
|
Le Naour A, Mevel R, Thibault B, Courtais E, Chantalat E, Delord JP, Couderc B, Guillermet-Guibert J, Martinez A. Effect of combined inhibition of p110 alpha PI3K isoform and STAT3 pathway in ovarian cancer platinum-based resistance. Oncotarget 2018; 9:27220-27232. [PMID: 29930760 PMCID: PMC6007481 DOI: 10.18632/oncotarget.25513] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 04/07/2018] [Indexed: 12/13/2022] Open
Abstract
Background Ovarian cancer is associated with poor prognostic outcome due to late diagnosis and to intrinsic and acquired resistance to platinum-based chemotherapy in a large number of patients. This chemoresistance is acquired through the peritoneal and ascites microenvironment by several released factors, such as IL-6,. Preclinical studies have implicated the activation of PI3K pathway in chemoresistance, showing it to extend tumor cell survival and modulate multidrug resistance. We aimed to evaluate the implication of the p110 alpha PI3K subunit in ovarian cancer chemoresistance acquisition, and to evaluate whether the STAT3 pathway can mediate resistance to PI3K inhibitors through secretion of IL6. Results Human ovarian adenocarcinoma IGROV-1 and JHOC-5 cells cultured in ascites showed an increase in carboplatinum-based resistance. Level of chemoresistance was associated to IL6 concentration in ascites. Activation of PI3K/Akt, STAT and MAPK pathways was observed after IGROV-1 incubation with ascites and treatment with carboplatin. Neither IGROV-1 nor JHOC-5 cells exposed to ascites treated with additional IL-6 directed antibody showed any reversion of the chemoresistance. Conclusion IL6-related resistance was not abolished by the selective inhibition of PI3K alpha subunit coupled with the anti-IL6-receptor antibody tocilizumab. This dual inhibition requires further exploration in other ovarian cancer models such as clear cell carcinoma.
Collapse
Affiliation(s)
- Augustin Le Naour
- Centre de Recherches en Cancérologie de Toulouse (CRCT), UMR 1037 INSERM, University Toulouse III, Toulouse, France
| | - Renaud Mevel
- Centre de Recherches en Cancérologie de Toulouse (CRCT), UMR 1037 INSERM, University Toulouse III, Toulouse, France
| | - Benoit Thibault
- Centre de Recherches en Cancérologie de Toulouse (CRCT), UMR 1037 INSERM, University Toulouse III, Toulouse, France
| | - Elise Courtais
- Centre de Recherches en Cancérologie de Toulouse (CRCT), UMR 1037 INSERM, University Toulouse III, Toulouse, France
| | - Elodie Chantalat
- Department Surgical Oncology, Institut Claudius Regaud, Institut Universitaire du Cancer Toulouse-Oncopole, Toulouse, France
| | - Jean Pierre Delord
- Centre de Recherches en Cancérologie de Toulouse (CRCT), UMR 1037 INSERM, University Toulouse III, Toulouse, France.,Department Medical Oncology, Institut Claudius Regaud, Institut Universitaire du Cancer Toulouse-Oncopole, Toulouse, France
| | - Bettina Couderc
- Centre de Recherches en Cancérologie de Toulouse (CRCT), UMR 1037 INSERM, University Toulouse III, Toulouse, France.,Department Biology, Institut Claudius Regaud, Institut Universitaire du Cancer, Toulouse, France
| | - Julie Guillermet-Guibert
- Centre de Recherches en Cancérologie de Toulouse (CRCT), UMR 1037 INSERM, University Toulouse III, Toulouse, France.,Laboratoire d'excellence LABEX TouCAN, Toulouse, France
| | - Alejandra Martinez
- Centre de Recherches en Cancérologie de Toulouse (CRCT), UMR 1037 INSERM, University Toulouse III, Toulouse, France.,Department Surgical Oncology, Institut Claudius Regaud, Institut Universitaire du Cancer Toulouse-Oncopole, Toulouse, France
| |
Collapse
|
42
|
Signal-Targeted Therapies and Resistance Mechanisms in Pancreatic Cancer: Future Developments Reside in Proteomics. Cancers (Basel) 2018; 10:cancers10060174. [PMID: 29865155 PMCID: PMC6025626 DOI: 10.3390/cancers10060174] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 05/29/2018] [Accepted: 05/30/2018] [Indexed: 12/18/2022] Open
Abstract
For patients with metastatic pancreatic cancer that are not eligible for surgery, signal-targeted therapies have so far failed to significantly improve survival. These therapeutic options have been tested in phase II/III clinical trials mostly in combination with the reference treatment gemcitabine. Innovative therapies aim to annihilate oncogenic dependency, or to normalize the tumoural stroma to allow immune cells to function and/or re-vascularisation to occur. Large scale transcriptomic and genomic analysis revealed that pancreatic cancers display great heterogeneity but failed to clearly delineate specific oncogene dependency, besides oncogenic Kras. Beyond these approaches, proteomics appears to be an appropriate approach to classify signal dependency and to identify specific alterations at the targetable level. However, due to difficulties in sampling, proteomic data for this pathology are scarce. In this review, we will discuss the current state of clinical trials for targeted therapies against pancreatic cancer. We will then highlight the most recent proteomic data for pancreatic tumours and their metastasis, which could help to identify major oncogenic signalling dependencies, as well as provide future leads to explain why pancreatic tumours are intrinsically resistant to signal-targeted therapies. We will finally discuss how studies on phosphatidylinositol-3-kinase (PI3K) signalling, as the paradigmatic pro-tumoural signal downstream of oncogenic Kras in pancreatic cancer, would benefit from exploratory proteomics to increase the efficiency of targeted therapies.
Collapse
|
43
|
Adamska A, Elaskalani O, Emmanouilidi A, Kim M, Abdol Razak NB, Metharom P, Falasca M. Molecular and cellular mechanisms of chemoresistance in pancreatic cancer. Adv Biol Regul 2018; 68:77-87. [PMID: 29221990 DOI: 10.1016/j.jbior.2017.11.007] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 11/21/2017] [Indexed: 02/07/2023]
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC) is one of the most chemoresistant cancers, and current therapies targeting cancer-associated molecular pathways have not given satisfactory results, owing in part to rapid upregulation of alternative compensatory pathways. Most of the available treatments are palliative, focussing on improving the quality of life. At present, available options are surgery, embolization, radiation, chemotherapy, immunotherapy and use of other more targeted drugs. In this review, we describe the cellular and molecular effects of current chemotherapy drugs such as gemcitabine, FOLFIRINOX (5-fluorouracil [5-FU], oxaliplatin, irinotecan, and leucovorin) and ABRAXANE (nab-Paclitaxel), which have shown a survival benefit, although modest, for pancreatic cancer patients. Nevertheless, gemcitabine remains the standard first-line option for advanced-stage pancreatic cancer patients and, as resistance to the drug has attracted an increasing scientific interest, we deliberate on the main intracellular processes and proteins vital in acquired chemoresistance to gemcitabine. Lastly, our review examines various microenvironmental factors capable of instigating PDAC to develop resistance to chemotherapeutic drugs.
Collapse
Affiliation(s)
- Aleksandra Adamska
- Metabolic Signalling Group, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Perth, Western Australia 6102, Australia
| | - Omar Elaskalani
- Platelet Research Laboratory, Curtin Health Innovation and Research Institute, Faculty of Health Sciences, Curtin University, Perth, Western Australia 6102, Australia
| | - Aikaterini Emmanouilidi
- Metabolic Signalling Group, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Perth, Western Australia 6102, Australia
| | - Minkyoung Kim
- Metabolic Signalling Group, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Perth, Western Australia 6102, Australia
| | - Norbaini Binti Abdol Razak
- Platelet Research Laboratory, Curtin Health Innovation and Research Institute, Faculty of Health Sciences, Curtin University, Perth, Western Australia 6102, Australia
| | - Pat Metharom
- Platelet Research Laboratory, Curtin Health Innovation and Research Institute, Faculty of Health Sciences, Curtin University, Perth, Western Australia 6102, Australia
| | - Marco Falasca
- Metabolic Signalling Group, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Perth, Western Australia 6102, Australia.
| |
Collapse
|
44
|
Tsai WC, Bai LY, Chen YJ, Chu PC, Hsu YW, Sargeant AM, Weng JR. OSU-A9 inhibits pancreatic cancer cell lines by modulating p38-JAK-STAT3 signaling. Oncotarget 2018; 8:29233-29246. [PMID: 28418923 PMCID: PMC5438726 DOI: 10.18632/oncotarget.16450] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 02/27/2017] [Indexed: 12/12/2022] Open
Abstract
Pancreatic cancer is an aggressive malignancy that is the fourth leading cause of death worldwide. Since there is a dire need for novel and effective therapies to improve the poor survival rates of advanced pancreatic cancer patients, we analyzed the antitumor effects of OSU-A9, an indole-3-carbinol derivative, on pancreatic cancer cell lines in vitro and in vivo. OSU-A9 exhibited a stronger antitumor effect than gemcitabine on two pancreatic cancer cell lines, including gemcitabine-resistant PANC-1 cells. OSU-A9 treatment induced apoptosis, the down-regulation of Akt phosphorylation, up-regulation of p38 phosphorylation and decreased phosphorylation of JAK and STAT3. Cell migration and invasiveness assays showed that OSU-A9 reduced cancer cell aggressiveness and inhibited BxPC-3 xenograft growth in nude mice. These results suggest that OSU-A9 modulates the p38-JAK-STAT3 signaling module, thereby inducing cytotoxicity in pancreatic cancer cells. Continued evaluation of OSU-A9 as a potential therapeutic agent for pancreatic cancer thus appears warrented.
Collapse
Affiliation(s)
- Wan-Chi Tsai
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.,Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Li-Yuan Bai
- College of Medicine, China Medical University, Taichung 40402, Taiwan.,Division of Hematology and Oncology, Department of Internal Medicine, China Medical University Hospital, Taichung 40447, Taiwan
| | - Yi-Jin Chen
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Po-Chen Chu
- Institute of Biological Chemistry, Academia Sinica, Taipei 11574, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Ya-Wen Hsu
- Department of Hospital and Health Care Administration, Chia Nan University of Pharmacy & Science, Tainan 71745, Taiwan
| | - Aaron M Sargeant
- Charles River Laboratories, Safety Assessment, Spencerville, OH 45887, USA
| | - Jing-Ru Weng
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| |
Collapse
|
45
|
Li W, Jiang Z, Xiao X, Wang Z, Wu Z, Ma Q, Cao L. Curcumin inhibits superoxide dismutase-induced epithelial-to-mesenchymal transition via the PI3K/Akt/NF-κB pathway in pancreatic cancer cells. Int J Oncol 2018; 52:1593-1602. [PMID: 29512729 DOI: 10.3892/ijo.2018.4295] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 02/21/2018] [Indexed: 11/05/2022] Open
Abstract
Curcumin is a natural polyphenol compound derived from turmeric. It possesses multiple pharmacological properties, including antioxidant, anti-inflammatory and anti-tumor progression properties. Our recent study demonstrated that superoxide dismutase (SOD)-dependent production of hydrogen peroxide (H2O2) promoted the invasive and migratory activity of pancreatic cancer cells. However, whether curcumin suppresses SOD-induced cancer progression and the related mechanisms remains unclear. Since epithelial‑to-mesenchymal transition (EMT) plays a key role in tumor metastasis, the aim of the present study was to examine whether curcumin intervenes with SOD-induced EMT in pancreatic cancer and the underlying mechanism. The human pancreatic cancer cells BxPC-3 and Panc-1 were exposed to SOD in the presence or absence of curcumin, catalase (CAT, a scavenger of H2O2), or LY 294002 [a phosphoinositide-3 kinase (PI3K) inhibitor]. Intracellular reactive oxygen species (ROS) and H2O2 were evaluated by 2,7-dichlorodihydrofluorecein diacetate and H2O2 assay, respectively. The activation of p-Akt and p-nuclear factor (NF)-κB were examined by western blotting. The migratory and invasive abilities of pancreatic cancer cells were tested by the wound healing and Transwell invasion assays. The expression of E-cadherin, N-cadherin and vimentin (EMT-related genes) were measured by reverse transcription-quantitative polymerase chain reaction and western blotting at the mRNA and protein levels, respectively. The findings of the present study demonstrated that curcumin decreased SOD-induced production of ROS and H2O2 in BxPC-3 and Panc-1 cells. Curcumin was able to suppress SOD-induced invasion and migration, and it also regulated the expression of the above‑mentioned EMT-related genes and cell morphology. SOD-induced cell invasion was also inhibited by catalase and LY 294002. Furthermore, the levels of p-Akt and p-NF-κB caused by SOD could be offset by treatment with curcumin and LY 294002. To summarize, these results demonstrated that curcumin was able to prevent SOD-driven H2O2-induced pancreatic cancer metastasis by blocking the PI3K/Akt/NF-κB signaling pathway. The use of curcumin to inhibit the H2O2/Akt/NF-κB axis may be a promising therapeutic approach to the treatment of patients with pancreatic cancer.
Collapse
Affiliation(s)
- Wei Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Zhengdong Jiang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xue Xiao
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, P.R. China
| | - Zheng Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Zheng Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Qingyong Ma
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Lei Cao
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
46
|
McCubrey JA, Abrams SL, Lertpiriyapong K, Cocco L, Ratti S, Martelli AM, Candido S, Libra M, Murata RM, Rosalen PL, Lombardi P, Montalto G, Cervello M, Gizak A, Rakus D, Steelman LS. Effects of berberine, curcumin, resveratrol alone and in combination with chemotherapeutic drugs and signal transduction inhibitors on cancer cells-Power of nutraceuticals. Adv Biol Regul 2018; 67:190-211. [PMID: 28988970 DOI: 10.1016/j.jbior.2017.09.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 09/29/2017] [Indexed: 06/07/2023]
Abstract
Over the past fifty years, society has become aware of the importance of a healthy diet in terms of human fitness and longevity. More recently, the concept of the beneficial effects of certain components of our diet and other compounds, that are consumed often by different cultures in various parts of the world, has become apparent. These "healthy" components of our diet are often referred to as nutraceuticals and they can prevent/suppress: aging, bacterial, fungal and viral infections, diabetes, inflammation, metabolic disorders and cardiovascular diseases and have other health-enhancing effects. Moreover, they are now often being investigated because of their anti-cancer properties/potentials. Understanding the effects of various natural products on cancer cells may enhance their usage as anti-proliferative agents which may be beneficial for many health problems. In this manuscript, we discuss and demonstrate how certain nutraceuticals may enhance other anti-cancer drugs to suppress proliferation of cancer cells.
Collapse
Affiliation(s)
- James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA.
| | - Stephen L Abrams
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | - Kvin Lertpiriyapong
- Department of Comparative Medicine, Brody School of Medicine at East Carolina University, USA; Center of Comparative Medicine and Pathology, Memorial Sloan-Kettering Cancer Center, Weill Cornell Medicine and the Hospital for Special Surgery, New York City, New York, USA
| | - Lucio Cocco
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Stefano Ratti
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Alberto M Martelli
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Saverio Candido
- Department of Biomedical and Biotechnological Sciences - Oncological, Clinical and General Pathology Section, University of Catania, Catania, Italy
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences - Oncological, Clinical and General Pathology Section, University of Catania, Catania, Italy
| | - Ramiro M Murata
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA; Department of Foundational Sciences, School of Dental Medicine, East Carolina University, USA
| | - Pedro L Rosalen
- Department of Physiological Sciences, Piracicaba Dental School, State University of Campinas, Piracicaba, Brazil
| | - Paolo Lombardi
- Naxospharma, Via Giuseppe Di Vittorio 70, Novate Milanese 20026, Italy
| | - Giuseppe Montalto
- Biomedical Department of Internal Medicine and Specialties, University of Palermo, Palermo, Italy; Consiglio Nazionale Delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Melchiorre Cervello
- Consiglio Nazionale Delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Agnieszka Gizak
- Department of Molecular Physiology and Neurobiology, Wroclaw University, Wroclaw, Poland
| | - Dariusz Rakus
- Department of Molecular Physiology and Neurobiology, Wroclaw University, Wroclaw, Poland
| | - Linda S Steelman
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| |
Collapse
|
47
|
Drug-resistance in doxorubicin-resistant FL5.12 hematopoietic cells: elevated MDR1, drug efflux and side-population positive and decreased BCL2-family member expression. Oncotarget 2017; 8:113013-113033. [PMID: 29348885 PMCID: PMC5762570 DOI: 10.18632/oncotarget.22956] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 11/20/2017] [Indexed: 12/20/2022] Open
Abstract
Chemotherapeutic drug treatment can result in the emergence of drug-resistant cells. By culturing an interleukin-3 (IL-3)-dependent cell line, FL5.12 cells in the presence of the chemotherapeutic drug doxorubicin, we isolated FL/Doxo cells which are multi-drug resistant. Increased levels of drug efflux were detected in FL/Doxo cells which could be inhibited by the MDR1 inhibitor verapamil but not by the MRP1 inhibitor MK571. The effects of TP53 and MEK1 were examined by infection of FL/Doxo cells with retroviruses encoding either a dominant negative TP-53 gene (FL/Doxo+ TP53 (DN) or a constitutively-activated MEK-1 gene (FL/Doxo + MEK1 (CA). Elevated MDR1 but not MRP1 mRNA transcripts were detected by quantitative RT-PCR in the drug-resistant cells while transcripts encoding anti-apoptotic genes such as: BCL2, BCLXL and MCL1 were observed at higher levels in the drug-sensitive FL5.12 cells. The percentage of cells that were side-population positive was increased in the drug-resistant cells compared to the parental line. Drug-resistance and side-positive population cells have been associated with cancer stem cells (CSC). Our studies suggest mechanisms which could allow the targeting of these molecules to prevent drug-resistance.
Collapse
|
48
|
Basset C, Guillermet-Guibert J. Attenuating PI3K isoforms in pancreatic cancer: Focus on immune PI3Kγ. Clin Res Hepatol Gastroenterol 2017; 41:351-353. [PMID: 28583586 DOI: 10.1016/j.clinre.2017.04.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 04/28/2017] [Indexed: 02/04/2023]
Abstract
Phosphoinositide 3-kinases PI3Ks are major drug targets in oncology. Their role is far from being completely understood in pancreatic ductal adenocarcinoma. Pancreatic cancer is a dismal disease with limited therapeutic options except for surgery. We highlight here two elegant works demonstrating the role of PI3Kγ in cancer-associated macrophages applied in particular to pancreatic tumors. These data open new avenues for the use of PI3K-targetting drugs in cancer as anti-stroma therapies. Amongst the classI PI3K isoforms, PI3Kγ and PI3Kδ, are highly expressed in immune cells. Isoform-specific or pan-class I PI3K inhibitors which target all classI PI3Ks could be used as a targeted therapy towards cancer cell signaling but also as immunotherapies. Research on immunoregulation of human pancreatic cancer by the other ubiquitous α- or β-isoforms of PI3K needs to be performed.
Collapse
Affiliation(s)
- C Basset
- Centre de recherches en cancérologie de Toulouse CRCT, Inserm UMR1037, Toulouse, France; Université Toulouse III Paul Sabatier, Toulouse, France; Laboratoire d'excellence LABEX TouCAN, Toulouse, France; Service d'anatomo-pathologie, IUCT-Oncopole, hopitaux de Toulouse, Toulouse, France
| | - J Guillermet-Guibert
- Centre de recherches en cancérologie de Toulouse CRCT, Inserm UMR1037, Toulouse, France; Université Toulouse III Paul Sabatier, Toulouse, France; Laboratoire d'excellence LABEX TouCAN, Toulouse, France.
| |
Collapse
|
49
|
Ma Q, Wu X, Wu J, Wu H, Xiao Y, Wang L, Liang Z, Liu T. PDZ-containing 1 acts as a suppressor of pancreatic cancer by regulating PTEN phosphorylation. Oncotarget 2017; 8:72893-72909. [PMID: 29069834 PMCID: PMC5641177 DOI: 10.18632/oncotarget.20552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 07/31/2017] [Indexed: 01/26/2023] Open
Abstract
Phosphorylation is a recently established cause of phosphatase and tensin homolog (PTEN) gene inactivation, which leads to defect tumour-suppressor function. In pancreatic cancer, this phenomenon has not been reported. Based on database and clinical sample analyses, we found that PTEN phosphorylation occurs in pancreatic ductal adenocarcinoma patient tissues and cell lines, and we aimed to find a method for dephosphorylation. PDZ-containing 1 (PDZK1), a tumour-associated protein that shares its PDZ-binding sequence with the carboxyl-terminal domain of PTEN, was significantly down-regulated in pancreatic cancer as compared to adjacent non-tumour tissues. In vitro, PDZK1 overexpression reversed the proliferation and migration abilities of pancreatic cancer cells and led to significantly decreased PTEN phosphorylation and AKT phosphorylation by interacting with wild-type PTEN. In addition, a transcription factor-activation assay supported that PDZK1 overexpression enhanced the anti-oncogene function of PTEN by regulating the activities of its downstream transcription factors, including p53, NF-κB, and FOXO1. In vivo, nude mice stably over-expressing PDZK1 had lower tumour weights and volumes and showed significantly down-regulated PTEN phosphorylation in xenograft tumour tissues as compared to the control group. Moreover, low PDZK1 expression strongly correlated with advanced stage and poor prognosis of patients with pancreatic ductal adenocarcinoma. In conclusion, our study elucidated the tumour-suppressor role of PDZK1 in pancreatic cancer through down-regulating PTEN phosphorylation, and established PDZK1 as a potential novel prognostic marker for pancreatic cancer.
Collapse
Affiliation(s)
- Qiang Ma
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P. R. China
| | - Xiuxiu Wu
- Department of Respiratory Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P. R. China
| | - Jing Wu
- Department of Medical Imaging, Beijing Huairou Hospital, University of Chinese Academy of Science, Beijing, 101400, P.R. China
| | - Huanwen Wu
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P. R. China
| | - Ying Xiao
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P. R. China
| | - Lili Wang
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P. R. China
| | - Zhiyong Liang
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P. R. China
| | - Tonghua Liu
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P. R. China
| |
Collapse
|
50
|
Ricciardi MR, Mirabilii S, Licchetta R, Piedimonte M, Tafuri A. Targeting the Akt, GSK-3, Bcl-2 axis in acute myeloid leukemia. Adv Biol Regul 2017; 65:36-58. [PMID: 28549531 DOI: 10.1016/j.jbior.2017.05.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 05/16/2017] [Accepted: 05/16/2017] [Indexed: 06/07/2023]
Abstract
Over the last few decades, there has been significant progress in the understanding of the pathogenetic mechanisms of the Acute Myeloid Leukemia (AML). However, despite important advances in elucidating molecular mechanisms, the treatment of AML has not improved significantly, remaining anchored at the standard chemotherapy regimen "3 + 7", with the prognosis of patients remaining severe, especially for the elderly and for those not eligible for transplant procedures. The biological and clinical heterogeneity of AML represents the major obstacle that hinders the improvement of prognosis and the identification of new effective therapeutic approaches. To date, abundant information has been collected on the genetic and molecular alterations of AML carrying prognostic significance. However, not enough is known on how AML progenitors regulate proliferation and survival by redundant and cross-talking signal transduction pathways (STP). Furthermore, it remains unclear how such complicated network affects prognosis and therapeutic treatment options, although many of these molecular determinants are potentially attractive for their druggable characteristics. In this review, some of the key STP frequently deregulated in AML, such as PI3k/Akt/mTOR pathway, GSK3 and components of Bcl-2 family of proteins, are summarized, highlighting in addition their interplay. Based on this information, we reviewed new targeted therapeutic approaches, focusing on the aberrant networks that sustain the AML blast proliferation, survival and drug resistance, aiming to improve disease treatment. Finally, we reported the approaches aimed at disrupting key signaling cross-talk overcoming resistances based on the combination of different targeting therapeutic strategies.
Collapse
Affiliation(s)
- Maria Rosaria Ricciardi
- Hematology, "Sant'Andrea" Hospital-Sapienza, University of Rome, Department of Clinical and Molecular Medicine, Rome, Italy
| | - Simone Mirabilii
- Hematology, "Sant'Andrea" Hospital-Sapienza, University of Rome, Department of Clinical and Molecular Medicine, Rome, Italy.
| | - Roberto Licchetta
- Hematology, "Sant'Andrea" Hospital-Sapienza, University of Rome, Department of Clinical and Molecular Medicine, Rome, Italy
| | - Monica Piedimonte
- Hematology, "Sant'Andrea" Hospital-Sapienza, University of Rome, Department of Clinical and Molecular Medicine, Rome, Italy
| | - Agostino Tafuri
- Hematology, "Sant'Andrea" Hospital-Sapienza, University of Rome, Department of Clinical and Molecular Medicine, Rome, Italy
| |
Collapse
|