1
|
Guo X, Yang Y, Li Y, Chen B, Li H, Zhang C, Ma J, Zhao M, Zhu J. Nitrogen-dependent regulation of extracellular and intracellular polysaccharide content in Ganoderma lucidum via the transcription factor AreA. Microbiol Res 2025; 297:128197. [PMID: 40315552 DOI: 10.1016/j.micres.2025.128197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 04/13/2025] [Accepted: 04/25/2025] [Indexed: 05/04/2025]
Abstract
Fungal polysaccharides serve as vital components and hold significant value in food and medicinal applications. Nitrogen plays a crucial role in the biosynthesis of fungal polysaccharides, yet our comprehension of its specific influence on fungal polysaccharides biosynthesis remains limited. In this study, we analyzed the transcriptomic profiles of Ganoderma lucidum cultured under ammonium or nitrate sources, revealing an enrichment of the polysaccharide synthesis pathway. Further studies revealed that ammonium nitrogen promotes the synthesis of extracellular polysaccharides (EPS), while nitrate enhances that of intracellular polysaccharides (IPS). Subsequently, the role of AreA, a key transcription factor in nitrogen metabolism, in polysaccharide synthesis was investigated. Under nitrate conditions, compared to the wild-type (WT), EPS content increased by approximately 33 %, whereas IPS, chitin, and β-1,3-glucan content in the areA-silenced strains were significantly reduced by 24 %, 20 %, and 20 %-25 %, respectively. Changes in the content of chitin and β-1,3-glucan affect the cell wall's structure and integrity. Compared to ammonium conditions, under nitrate conditions, the cell wall thinned by approximately 23 % following areA silencing, and sensitivity to cell wall perturbing agents increased by approximately 20 %-30 %. In summary, this study elucidates the impact of nitrogen sources on polysaccharide synthesis, providing valuable insights into strategies for enhancing polysaccharide content in G.lucidum.
Collapse
Affiliation(s)
- Xiaoyu Guo
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Yuzhen Yang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Yanqiu Li
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Bin Chen
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Huajun Li
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Chen Zhang
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang, Jiangxi, PR China
| | - Jiping Ma
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang, Jiangxi, PR China
| | - Mingwen Zhao
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Jing Zhu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China.
| |
Collapse
|
2
|
Fang Y, Zhang Q, Yu C, Xu X, Lei P, Xu H, Li S. In vitro digestion and fecal fermentation of Tremella fuciformis exopolysaccharides from basidiospore-derived submerged fermentation. Food Res Int 2024; 196:115019. [PMID: 39614542 DOI: 10.1016/j.foodres.2024.115019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/19/2024] [Accepted: 09/01/2024] [Indexed: 12/01/2024]
Abstract
Tremella fuciformis polysaccharides (TFPS) belong to natural bioactive macromolecule with both edible and medicinal value, possessing much bioactivities such as anti-tumor, antioxidant, antidiabetics, and immunomodulatory. Currently, the production of TFPS through submerged fermentation (TFPS-1) is gradually replacing the polysaccharides extracted from the fruiting body due to improved fermentation efficiency and reduced separation costs. However, it is still unclear about the effect of TFPS-1 on gastrointestinal digestion and gut microbial fermentation, which is directly related to the function of its biological activity. This study aimed to illustrate the effect of TFPS-1 on digestive process through in vitro digestion and fecal fermentation. TFPS-1 was indigestible during the simulated gastrointestinal tract. But TFPS-1 can be digested by intestinal flora leading to alterations in the total polysaccharides content, molecular weight, and apparent viscosity. Moreover, TFPS-1 regulated the composition of gut microbial, lowering the proportion of Firmicutes to Bacteroidetes and enhancing the abundances of Parabacteroides and Bacteroides. The change of intestinal flora produced more short chain fatty acids and lowered the pH. The KEGG metabolic pathway analysis indicated that TFPS-1 enriched lipid metabolism, glycan biosynthesis and metabolism, and biosynthesis of other secondary metabolites. This study demonstrated that T. fuciformis fermented polysaccharide can be a potential prebiotic to optimize intestinal flora homeostasis and maintain host intestinal health.
Collapse
Affiliation(s)
- Yan Fang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Qi Zhang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Caiyuan Yu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Xiaoqi Xu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Peng Lei
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Hong Xu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Sha Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
3
|
Zhou Y, Zhang Z, He Y, Gao P, Zhang H, Ma X. Integration of electronic nose, electronic tongue, and colorimeter in combination with chemometrics for monitoring the fermentation process of Tremella fuciformis. Talanta 2024; 274:126006. [PMID: 38569371 DOI: 10.1016/j.talanta.2024.126006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/05/2024]
Abstract
This study proposes an efficient method for monitoring the submerged fermentation process of Tremella fuciformis (T. fuciformis) by integrating electronic nose (e-nose), electronic tongue (e-tongue), and colorimeter sensors using a data fusion strategy. Chemometrics was employed to establish qualitative identification and quantitative prediction models. The Pearson correlation analysis was applied to extract features from the e-nose and tongue sensor arrays. The optimal sensor arrays for monitoring the submerged fermentation process of T. fuciformis were obtained, and four different data fusion methods were developed by incorporating the colorimeter data features. To achieve qualitative identification, the physicochemical data and principal component analysis (PCA) results were utilized to determine three stages of the fermentation process. The fusion signal based on full features proved to be the optimal data fusion method, exhibiting the highest accuracy across different models. Notably, random forest (RF) was shown to be the most accurate pattern recognition method in this paper. For quantitative prediction, partial least squares regression (PLSR) and support vector regression (SVR) were employed to predict the sugar content and dry cell weight during fermentation. The best respective predictive R2 values for reducing sugar, tremella polysaccharide and dry cell weight were found to be 0.965, 0.988, and 0.970. Furthermore, due to its ability to capture nonlinear data relationships, SVR had superior performance in prediction modeling than PLSR. The results demonstrated that the combination of electronic sensor fusion signals and chemometrics provided a promising method for effectively monitoring T. fuciformis fermentation.
Collapse
Affiliation(s)
- Yefeng Zhou
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai, 201418, China.
| | - Zilong Zhang
- Shanghai International Travel Healthcare Center, Shanghai Customs District P. R, Shanghai, 200335, China.
| | - Yan He
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai, 201418, China.
| | - Ping Gao
- IVC Nutrition Corporation, No. 20 Jiangshan Road, Jingjiang, Jiangsu Province, 214500, China.
| | - Hua Zhang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai, 201418, China.
| | - Xia Ma
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai, 201418, China.
| |
Collapse
|
4
|
Yu C, Zhu H, Fang Y, Qiu Y, Lei P, Xu H, Zhang Q, Li S. Efficient conversion of cane molasses into Tremella fuciformis polysaccharides with enhanced bioactivity through repeated batch culture. Int J Biol Macromol 2024; 264:130536. [PMID: 38432273 DOI: 10.1016/j.ijbiomac.2024.130536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/20/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
Tremella fuciformis polysaccharide (TFPS) is a natural mushroom mucopolysaccharide widely used in health foods, medical care, cosmetic and surgical materials. In this study, we developed an efficient strategy for the repeated batch production of highly bioactive TFPS from the agro-industrial residue cane molasses. Cane molasses contained 39.92 % sucrose (w/w), 6.36 % fructose and 3.53 % glucose, all of which could be utilized by T. fuciformis spores, whereas, the TFPS production efficiency only reached 0.74 g/L/d. Corn cobs proved to be the best immobilized carrier that could tightly absorb spores and significantly shorten the fermentation lag period. The average yield of TFPS in eight repeated batch culture was 5.52 g/L with a production efficiency of 2.04 g/L/d. The average fermentation cycle after optimization was reduced by 61.61 % compared with the initial conditions. Compared to glucose as a carbon source, cane molasses significantly increased the proportion of low-molecular-weight TFPS (TFPS-2) in total polysaccharides from 3.54 % to 17.25 % (w/w). Moreover, TFPS-2 exhibited potent antioxidant capacity against four free radicals (O2-, ABTS+, OH, and DPPH). In conclusion, this study lays the foundation for the efficient conversion of cane molasses and production of TFPS with high bioactivity.
Collapse
Affiliation(s)
- Caiyuan Yu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Haipeng Zhu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Yan Fang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Yibin Qiu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Peng Lei
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Hong Xu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Qi Zhang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Sha Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
5
|
Xv W, Zheng Q, Ye ZW, Wei T, Guo LQ, Lin JF, Zou Y. Submerged Culture of Edible and Medicinal Mushroom Mycelia and Their Applications in Food Products: A Review. Int J Med Mushrooms 2024; 26:1-13. [PMID: 38505899 DOI: 10.1615/intjmedmushrooms.2023052039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Edible mushrooms have rich nutrition (e.g., proteins, dietary fibers, polysaccharides) and they can be potential sources of important ingredients in food processing. However, the cultivation of mushroom fruiting bodies needs a relatively long time, and they can be easily polluted during the growth process. At the same time, a lot of labor and larger planting areas are also required. As we all know, submerged fermentation is a good way to produce edible mushroom mycelia with less environmental pollution and small footprint, which are also rich in nutrition and bioactive components that are used as dietary supplements or health care products in the food industry. Therefore, it can be considered that the replacement of edible mushroom fruiting bodies with edible mushroom mycelia produced through submerged fermentation has great application potential in food production. At present, most of the research about edible mushroom mycelia focuses on the production of bioactive metabolites in fermentation liquid, but there are few reports that concentrate on their applications in food. This paper reviews the research progress of submerged culture of edible mushroom mycelia and their applications in food products.
Collapse
Affiliation(s)
| | - Qianwang Zheng
- Institute of Food Biotechnology and College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510640, China; Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| | - Zhi-Wei Ye
- Department of Bioengineering, College of Food Science, South China Agricultural University, Guangzhou, P.R. China; Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, P.R. China
| | - Tao Wei
- Department of Bioengineering, College of Food Science, South China Agricultural University, Guangzhou, P.R. China; Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, P.R. China
| | - Li-Qiong Guo
- Department of Bioengineering, College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou 510640, China; Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510640, China
| | - Jun-Fang Lin
- Department of Bioengineering, College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou 510640, China; Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510640, China
| | - Yuan Zou
- South China Agricultural University
| |
Collapse
|
6
|
Wu S, Huo H, Shi Y, Zhang F, Gu T, Li Z. Extraction and application of extracellular polymeric substances from fungi. ADVANCES IN APPLIED MICROBIOLOGY 2023; 125:79-106. [PMID: 38783725 DOI: 10.1016/bs.aambs.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Extracellular polymeric substances (EPS) are extracellular metabolites of microorganisms, highly associated with microbial function, adaptation, and growth. The main compounds in EPS have been revealed to be proteins, polysaccharides, nucleic acids, humic substances, lipids, etc. EPS are not only biomass, but also a biogenic material. EPS have high specific surface, abundant functional groups, and excellent degradability. In addition, they are more extensible to the environment than the microbial cells themselves, which exhibits their huge advantages. Therefore, they have been applied in many fields, such as the environment, ecosystem, basic commodities, and medicine. However, the functions of EPS highly depend on the suitable extraction process, as different extraction methods have different effects on their composition, structure, and function. There are many types of EPS extraction methods, in which physical and chemical methods have been widely utilized. This review summarizes the extraction methods and applications of EPS. In addition, it considers some important gaps in current knowledge, and indicates perspectives of EPS for their future study.
Collapse
Affiliation(s)
- Sijia Wu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, P.R. China
| | - Hongxun Huo
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, P.R. China
| | - Yixiao Shi
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, P.R. China
| | - Feiran Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, P.R. China
| | - Tingting Gu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, P.R. China
| | - Zhen Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, P.R. China; Ministry of Natural Resources National Research Center for Geoanalysis, Key Laboratory of Eco-geochemistry, Beijing, P.R. China; Jiangsu Provincial Key Lab of Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, P.R. China.
| |
Collapse
|
7
|
Aguiar MM, Wadt LC, Vilar DS, Hernández-Macedo ML, Kumar V, Monteiro RTR, Mulla SI, Bharagava RN, Iqbal HMN, Bilal M, Ferreira LFR. Vinasse bio-valorization for enhancement of Pleurotus biomass productivity: chemical characterization and carbohydrate analysis. BIOMASS CONVERSION AND BIOREFINERY 2023; 13:10031-10040. [DOI: 10.1007/s13399-021-02198-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 11/22/2021] [Accepted: 12/03/2021] [Indexed: 02/05/2023]
|
8
|
Preparation and Antioxidant Activity In Vitro of Fermented Tremella fuciformis Extracellular Polysaccharides. FERMENTATION 2022. [DOI: 10.3390/fermentation8110616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
This study was aimed at increasing the capacity of fermented Tremella fuciformis extracellular polysaccharides (TEPS) for possible functional food applications. Thus, strain varieties, fermentation parameters and purification conditions, and the in vitro antioxidant activities of purified EPS fractions were investigated. An EPS high-yield strain Tf526 was selected, and the effects of seven independent fermentation factors (time, temperature, initial pH, inoculum size, shaking speed, carbon, and nitrogen source) on the EPS yield were evaluated. By single factor optimization test, yeast extract and glucose were chosen as nitrogen sources and carbon sources, respectively, and with initial pH of 6.0, inoculum size of 8%, shaking speed of 150 rpm, and culture at 25 °C for 72 h, the optimal yield of TEPS reached 0.76 ± 0.03 mg/mL. Additionally, A-722MP resin showed the most efficient decoloration ratio compared to six other tested resins. Furthermore, optimal decoloration parameters of A-722MP resin were obtained as follows: decoloration time of 2 h, resins dosage of 2 g, and temperature of 30 °C. Decoloration ratio, deproteinization ratio, and polysaccharide retention ratio were 62.14 ± 2.3%, 81.21 ± 2.13%, and 73.42 ± 1.96%, respectively. Furthermore, the crude TEPS was extracted and four polysaccharide fractions were isolated and purified as Tf1-a, Tf1-b, Tf2, and Tf3 by the DEAE-Sepharose FF column and the Sephasryl S100 column. In general, the antioxidant activities of the Lf1-a and Lf1-b were lower compared with Vc at the concentration of 0.1 to 3 mg/mL, but the FRAP assay, DPPH scavenging activity, and hydroxyl radical scavenging activity analysis still revealed that Tf1-a and Tf1-b possess significant antioxidant activities in vitro. At the concentration of 3 mg/mL, the reducing power of Lf1-a and Lf1-b reached 0.86 and 0.70, the maximum DPPH radical were 54.23 ± 1.68% and 61.62 ± 2.73%, and the maximum hydroxyl radicals scavenging rates were 58.76 ± 2.58% and 45.81 ± 1.79%, respectively. Moreover, there were significant correlations (r > 0.8) among the selected concentrations and antioxidant activities of TEPS major fractions Tf1-a and Tf1-b. Therefore, it is expected that Tf1-a and Tf1-b polysaccharide fractions from fermented TEPS may serve as active ingredients in functional foods.
Collapse
|
9
|
Wu Y, Liu Y, Wu J, Ou K, Huang Q, Cao J, Duan T, Zhou L, Pan Y. Chemical profile and antioxidant activity of bidirectional metabolites from Tremella fuciformis and Acanthopanax trifoliatus as assessed using response surface methodology. Front Nutr 2022; 9:1035788. [DOI: 10.3389/fnut.2022.1035788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 10/20/2022] [Indexed: 11/10/2022] Open
Abstract
This study aimed to establish a bidirectional fermentation system using Tremella fuciformis and Acanthopanax trifoliatus to promote the transformation and utilization of the synthesized antioxidant metabolites from fermentation supernatant. The effect of fermentation conditions on the total phenolic content was investigated using response surface methodology in terms of three factors, including temperature (22–28°C), pH (6–8), and inoculum size (2–8%, v/v). The optimized fermentation parameters were: 28°C, pH 8, and an inoculum size of 2%, which led to a maximum total phenolic content of 314.79 ± 6.89 μg/mL in the fermentation supernatant after 24 h culture. The content of total flavonoids and polysaccharides reached 78.65 ± 0.82 μg/mL and 9358.08 ± 122.96 μg/mL, respectively. In addition, ABTS+, DPPH⋅, and ⋅OH clearance rates reached 95.09, 88.85, and 85.36% at 24 h under optimized conditions, respectively. The content of total phenolics, flavonoids and polysaccharides in the optimized fermentation supernatant of T. fuciformis–Acanthopanax trifoliatus increased by 0.88 ± 0.04, 0.09 ± 0.02, and 33.84 ± 1.85 times that of aqueous extracts from A. trifoliatus, respectively. Simultaneously, 0.30 ± 0.00, 0.26 ± 0.01, and 1.19 ± 0.12 times increase of antioxidant activity against ABTS+, DPPH⋅, and ⋅OH clearance rates were observed, respectively. Additionally, the metabolite composition changes caused by fermentation were analyzed using ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) based on untargeted metabolomics and the phytochemical profile of fermentation supernatant differentiated significantly based on unsupervised principal component analysis (PCA) during fermentation from 24 to 96 h. Furthermore, a significant increase in antioxidant phenolic and flavonoid compounds, such as ellagic acid, vanillin, luteolin, kaempferol, myricetin, isorhamnetin, and (+)-gallocatechin, was observed after fermentation. Thus, these results indicated that the fermentation broth of T. fuciformis and A. trifoliatus had significant antioxidant activity, and may have potential application for health products such as functional beverages, cosmetics, and pharmaceutical raw materials.
Collapse
|
10
|
Liu L, Feng J, Gao K, Zhou S, Yan M, Tang C, Zhou J, Liu Y, Zhang J. Influence of carbon and nitrogen sources on structural features and immunomodulatory activity of exopolysaccharides from Ganoderma lucidum. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Qin L, Su G, Wu C, Zhou Q, Peng X, Hu L, Liu Y, Wang R, Xu Q, Fang Z, Lin Y, Xu S, Feng B, Li J, Wu D, Che L. Effects of Tremella fuciformis extract on growth performance, biochemical and immunological parameters of weaned piglets challenged with lipopolysaccharide. ANIMAL PRODUCTION SCIENCE 2022. [DOI: 10.1071/an20425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Jo MH, Kim B, Ju JH, Heo SY, Ahn KH, Lee HJ, Yeom HS, Jang H, Kim MS, Kim CH, Oh BR. Tremella fuciformis TFCUV5 Mycelial Culture-derived Exopolysaccharide Production and Its Anti-aging Effects on Skin Cells. BIOTECHNOL BIOPROC E 2021. [DOI: 10.1007/s12257-020-0361-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Ma X, Yang M, He Y, Zhai C, Li C. A review on the production, structure, bioactivities and applications of Tremella polysaccharides. Int J Immunopathol Pharmacol 2021; 35:20587384211000541. [PMID: 33858263 PMCID: PMC8172338 DOI: 10.1177/20587384211000541] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Tremella polysaccharide is known to be structurally unique and biologically
active natural products, abundant and versatile in activities and applications
in food industry, daily chemical industry and medicine industry. In order to
improve the industrialisation of Tremella polysaccharide, the limitations of
preparation and structure-activity relationship of Tremella polysaccharide were
reviewed in this paper. The research progress of Tremella polysaccharide in the
past 20 years was summarized from the sources, preparation methods, molecular
structure, activity and application, and the research trend in the future was
also prospected. The application prospect of Tremella polysaccharide in against
multiple sub-health states was worth expecting.
Collapse
Affiliation(s)
- Xia Ma
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China.,State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Shanghai, China
| | - Meng Yang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| | - Yan He
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| | - Chuntao Zhai
- Laibo Pharmaceutical Technology (Shanghai) Co. Ltd, Shanghai, China
| | - Chengliang Li
- Laibo Pharmaceutical Technology (Shanghai) Co. Ltd, Shanghai, China
| |
Collapse
|
14
|
Zhang C, Jiang L, Wang Z. Effect of coix seed on exopolysaccharide production of Cordyceps militaris in liquid culture. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.102999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
15
|
A critical review on submerged production of mushroom and their bioactive metabolites. 3 Biotech 2020; 10:337. [PMID: 32670737 DOI: 10.1007/s13205-020-02333-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 07/02/2020] [Indexed: 01/11/2023] Open
Abstract
Mushrooms are ubiquitous in nature. Even though humankind has been consuming mushrooms for ages, their medicinal and nutraceutical properties are not used to its fullest potential in the present market. Edible mushrooms are not only a cheap and nutritious option to mitigate malnutrition, but they also produce effective biomass. Submerged fermentation (SmF) is not only a cost-effective method to produce biomass along with exquisite bioactive metabolites but it also reduces the chances of contamination and the time of production. Therefore, this study unveils the bioactive metabolites being produced by mushrooms. Moreover, it also showcases the recent advances in the areas of bio-active compounds and their judicious implementations in daily life and pharmaceutical industries. Moreover, there is a distinct lack in utilizing the potential benefits of bioactive compounds from mushroom unless in vivo and in vitro studies are demonstrated.
Collapse
|
16
|
Lu H, Lou H, Hu J, Liu Z, Chen Q. Macrofungi: A review of cultivation strategies, bioactivity, and application of mushrooms. Compr Rev Food Sci Food Saf 2020; 19:2333-2356. [DOI: 10.1111/1541-4337.12602] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 05/31/2020] [Accepted: 06/05/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Hongyun Lu
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food ScienceZhejiang University Hangzhou Zhejiang China
| | - Hanghang Lou
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food ScienceZhejiang University Hangzhou Zhejiang China
| | - Jingjin Hu
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food ScienceZhejiang University Hangzhou Zhejiang China
| | - Zhengjie Liu
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food ScienceZhejiang University Hangzhou Zhejiang China
| | - Qihe Chen
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food ScienceZhejiang University Hangzhou Zhejiang China
| |
Collapse
|
17
|
Deng Y, Zhang X, Xie B, Lin L, Hsiang T, Lin X, Lin Y, Zhang X, Ma Y, Miao W, Ming R. Intra-specific comparison of mitochondrial genomes reveals host gene fragment exchange via intron mobility in Tremella fuciformis. BMC Genomics 2020; 21:426. [PMID: 32580700 PMCID: PMC7315562 DOI: 10.1186/s12864-020-06846-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 06/17/2020] [Indexed: 01/21/2023] Open
Abstract
Background Mitochondrial genomic sequences are known to be variable. Comparative analyses of mitochondrial genomes can reveal the nature and extent of their variation. Results Draft mitochondrial genomes of 16 Tremella fuciformis isolates (TF01-TF16) were assembled from Illumina and PacBio sequencing data. Mitochondrial DNA contigs were extracted and assembled into complete circular molecules, ranging from 35,104 bp to 49,044 bp in size. All mtDNAs contained the same set of 41 conserved genes with identical gene order. Comparative analyses revealed that introns and intergenic regions were variable, whereas genic regions (including coding sequences, tRNA, and rRNA genes) were conserved. Among 24 introns detected, 11 were in protein-coding genes, 3 in tRNA genes, and the other 10 in rRNA genes. In addition, two mobile fragments were found in intergenic regions. Interestingly, six introns containing N-terminal duplication of the host genes were found in five conserved protein-coding gene sequences. Comparison of genes with and without these introns gave rise to the following proposed model: gene fragment exchange with other species can occur via gain or loss of introns with N-terminal duplication of the host genes. Conclusions Our findings suggest a novel mechanism of fungal mitochondrial gene evolution: partial foreign gene replacement though intron mobility.
Collapse
Affiliation(s)
- Youjin Deng
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Department of Plant Biology, University of Illinois at Urbana-Champaign, 1201 W. Gregory Drive, Urbana, IL, 61801, USA
| | - Xunxiao Zhang
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Baogui Xie
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Longji Lin
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Tom Hsiang
- Environmental Sciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Xiangzhi Lin
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yiying Lin
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xingtan Zhang
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yanhong Ma
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wenjing Miao
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ray Ming
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China. .,Department of Plant Biology, University of Illinois at Urbana-Champaign, 1201 W. Gregory Drive, Urbana, IL, 61801, USA.
| |
Collapse
|
18
|
Antunes F, Marçal S, Taofiq O, M. M. B. Morais A, Freitas AC, C. F. R. Ferreira I, Pintado M. Valorization of Mushroom By-Products as a Source of Value-Added Compounds and Potential Applications. Molecules 2020; 25:molecules25112672. [PMID: 32526879 PMCID: PMC7321189 DOI: 10.3390/molecules25112672] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/27/2020] [Accepted: 06/03/2020] [Indexed: 01/08/2023] Open
Abstract
Nowadays, the food sector is highly concerned with environmental issues and foreseen to develop strategies to reduce waste and losses resulting from activities developed in the food system. An approach is to increment added value to the agro-industrial wastes, which might provide economic growth and environmental protection, contributing to a circular economy. Mushroom by-products represent a disposal problem, but they are also promising sources of important compounds, which may be used due to their functional and nutritional properties. Research has been developed in different fields to obtain value added solutions for the by-products generated during mushroom production and processing. Bioactive compounds have been obtained and applied in the development of nutraceutical and pharmaceutical formulations. Additionally, other applications have been explored and include animal feed, fertilizer, bioremediation, energy production, bio-based materials, cosmetics and cosmeceuticals. The main purpose of this review is to highlight the relevant composition of mushroom by-products and discuss their potential as a source of functional compounds and other applications. Future research needs to explore pilot and industrial scale extraction methods to understand the technological feasibility and the economic sustainability of the bioactive compounds extraction and valorization towards different applications.
Collapse
Affiliation(s)
- Filipa Antunes
- CBQF–Centro de Biotecnologia e Química Fina–Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (F.A.); (S.M.); (A.M.M.B.M.); (A.C.F.)
| | - Sara Marçal
- CBQF–Centro de Biotecnologia e Química Fina–Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (F.A.); (S.M.); (A.M.M.B.M.); (A.C.F.)
| | - Oludemi Taofiq
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (O.T.); (I.C.F.R.F.)
| | - Alcina M. M. B. Morais
- CBQF–Centro de Biotecnologia e Química Fina–Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (F.A.); (S.M.); (A.M.M.B.M.); (A.C.F.)
| | - Ana Cristina Freitas
- CBQF–Centro de Biotecnologia e Química Fina–Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (F.A.); (S.M.); (A.M.M.B.M.); (A.C.F.)
| | - Isabel C. F. R. Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (O.T.); (I.C.F.R.F.)
| | - Manuela Pintado
- CBQF–Centro de Biotecnologia e Química Fina–Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (F.A.); (S.M.); (A.M.M.B.M.); (A.C.F.)
- Correspondence:
| |
Collapse
|
19
|
Yao Q, Yan SA, Chen H, Li J, Lin Q. Dietary risk assessment of pesticide residues on Tremella fuciformis Berk (snow fungus) from Fujian Province of China. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2020; 37:1289-1299. [DOI: 10.1080/19440049.2020.1766119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Qinghua Yao
- Fujian Key Laboratory of Agro-Products Quality and Safety, Institute of Quality Standards Testing Technology for Agro-products, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Sun-an Yan
- Fujian Key Laboratory of Agro-Products Quality and Safety, Institute of Quality Standards Testing Technology for Agro-products, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Hanzhen Chen
- Fujian Key Laboratory of Agro-Products Quality and Safety, Institute of Quality Standards Testing Technology for Agro-products, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Jie Li
- Inspection and Quarantine Technique Center of Fujian Entry-Exit Inspection and Quarantine Bureau, Fuzhou, China
| | - Qiu Lin
- Fujian Key Laboratory of Agro-Products Quality and Safety, Institute of Quality Standards Testing Technology for Agro-products, Fujian Academy of Agricultural Sciences, Fuzhou, China
| |
Collapse
|
20
|
Production, structure, and bioactivity of polysaccharide isolated from Tremella fuciformis XY. Int J Biol Macromol 2020; 148:173-181. [DOI: 10.1016/j.ijbiomac.2020.01.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/02/2020] [Accepted: 01/03/2020] [Indexed: 11/17/2022]
|
21
|
Nguyen VB, Nguyen TH, Doan CT, Tran TN, Nguyen AD, Kuo YH, Wang SL. Production and Bioactivity-Guided Isolation of Antioxidants with α-Glucosidase Inhibitory and Anti-NO Properties from Marine Chitinous Materials. Molecules 2018; 23:E1124. [PMID: 29747410 PMCID: PMC6100624 DOI: 10.3390/molecules23051124] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 05/06/2018] [Accepted: 05/08/2018] [Indexed: 12/26/2022] Open
Abstract
Natural and bioactive products have been of great interest due to their benefit as health foods and drugs to prevent various diseases. The aim of this study is to efficiently reuse marine chitinous materials (CMs), abundant and low-cost fishery by-products, for the bio-synthesis, isolation, and identification of antioxidant compounds possessing some other beneficial bioactivities. Paenibacillus sp. was used to convert CMs to antioxidants. Among various tested CMs, squid pen powder (SPP) gave the best results when used as the sole carbon/nitrogen source. Fermented SPP (FSPP) had comparable antioxidant activity (IC50 = 124 µg/mL) to that of α-tocopherol (IC50 = 30 µg/mL). The antioxidant productivity increased 1.83-fold after culture optimization. The use of multiple techniques, including Diaion, silica, and preparative HPLC columns coupled with a bioassay resulted in the isolation of two major antioxidants characterized as exopolysaccharides and homogentisic acid. These isolated compounds showed great maximum activity and low IC50 values (96%, 30 µg/mL and 99%, 5.4 µg/mL, respectively) which were comparable to that of α-tocopherol (95%, 24 µg/mL). The crude sample, fractions, and isolated compounds also demonstrated α-glucosidase inhibition and anti⁻inflammatory activity. Notably, homogentisic acid was found as a non-sugar-based moiety α-glucosidase inhibitor which show much higher inhibition (IC50 = 215 µg/mL) than that of acarbose (IC50 = 1324 µg/mL) and also possessed acceptable anti⁻inflammatory activity (IC50 = 9.8 µg/mL). The results highlighted the value of using seafood processing by-products, like squid pens, for the production of several compounds possessing multi-benefit bioactivities and no cytotoxicity.
Collapse
Affiliation(s)
- Van Bon Nguyen
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam.
| | - Thi Hanh Nguyen
- Department of Science and Technology, Tay Nguyen University, Buon Ma Thuot City 630000, Vietnam.
| | - Chien Thang Doan
- Department of Science and Technology, Tay Nguyen University, Buon Ma Thuot City 630000, Vietnam.
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan.
| | - Thi Ngoc Tran
- Department of Science and Technology, Tay Nguyen University, Buon Ma Thuot City 630000, Vietnam.
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan.
| | - Anh Dzung Nguyen
- Institute of Biotechnology and Environment, Tay Nguyen University, Buon Ma Thuot City 630000, Vietnam.
| | - Yao-Haur Kuo
- Division of Chinese Materia Medica Development, National Research Institute of Chinese Medicine, Taipei 11221, Taiwan.
| | - San-Lang Wang
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan.
- Life Science Development Center, Tamkang University, New Taipei City 25137, Taiwan.
| |
Collapse
|
22
|
Li P, Jiang Z, Sun T, Wang C, Chen Y, Yang Z, Du B, Liu C. Comparison of structural, antioxidant and immuno-stimulating activities of polysaccharides from Tremella fuciformis
in two different regions of China. Int J Food Sci Technol 2018. [DOI: 10.1111/ijfs.13782] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Pan Li
- College of Food Science; South China Agricultural University; Wushan Road 483 Guangzhou 510642 China
| | - Zhuo Jiang
- College of Food Science; South China Agricultural University; Wushan Road 483 Guangzhou 510642 China
| | - Tian Sun
- Infinitus (China) Company Ltd; 11 Xiancun Road Guangzhou 510623 China
| | - Chao Wang
- Infinitus (China) Company Ltd; 11 Xiancun Road Guangzhou 510623 China
| | - Yiyong Chen
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany; South China Botanical Garden; Chinese Academy of Sciences; Xingke Road 723 Guangzhou 510650 China
| | - Ziyin Yang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany; South China Botanical Garden; Chinese Academy of Sciences; Xingke Road 723 Guangzhou 510650 China
| | - Bing Du
- College of Food Science; South China Agricultural University; Wushan Road 483 Guangzhou 510642 China
| | - Chunyang Liu
- College of Food Science; South China Agricultural University; Wushan Road 483 Guangzhou 510642 China
| |
Collapse
|
23
|
Xu F, Wang S, Li Y, Zheng M, Xi X, Cao H, Cui X, Guo H, Han C. Yield enhancement strategies of rare pharmaceutical metabolites from endophytes. Biotechnol Lett 2018; 40:797-807. [PMID: 29605937 DOI: 10.1007/s10529-018-2531-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 02/28/2018] [Indexed: 11/25/2022]
Abstract
Endophytes are barely untapped as vital sources in the medicine. They are microorganisms which mostly exist in plants. As they are exploited, it is accepted that endophytes can produce active metabolites that possess same function as their hosts such as taxol, podophyllotoxin, hypericin, and azadirachtin. These metabolites have been promising potential usefulness in safety and human health concerns. We are supposed to adopt measures to raise production for the low yield of metabolites. This paper summarizes the latest advances in various bioprocess optimization strategies. These techniques can overcome the limitations associated with rare pharmaceutical metabolite-producing endophytic fungi. These strategies include strain improvement, genome shuffling, medium optimization, fermentation conditions optimization, addition of specific factor, addition of solid sorbent, and co-culturing. It will enable endophytes to produce high and sustainable production of rare pharmaceutical metabolites.
Collapse
Affiliation(s)
- Fangxue Xu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Shiyuan Wang
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Yujuan Li
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Mengmeng Zheng
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Xiaozhi Xi
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Hui Cao
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Xiaowei Cui
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Hong Guo
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Chunchao Han
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China.
| |
Collapse
|
24
|
Domingos M, Souza-Cruz PBD, Ferraz A, Prata AMR. A new bioreactor design for culturing basidiomycetes: Mycelial biomass production in submerged cultures of Ceriporiopsis subvermispora. Chem Eng Sci 2017. [DOI: 10.1016/j.ces.2017.04.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
Process Parameters Affecting the Synthesis of Natural Flavors by Shiitake (Lentinula edodes) during the Production of a Non-Alcoholic Beverage. BEVERAGES 2017. [DOI: 10.3390/beverages3020020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
26
|
Optimization and Scale-up of Extracellular b-glucan Production by Ophiocordyceps dipterigena BCC 2073 in Low-Cost Media. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2017. [DOI: 10.22207/jpam.11.1.08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
27
|
Zhang L, Wang M. Polyethylene glycol-based ultrasound-assisted extraction and ultrafiltration separation of polysaccharides from Tremella fuciformis (snow fungus). FOOD AND BIOPRODUCTS PROCESSING 2016. [DOI: 10.1016/j.fbp.2016.09.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Kirsch LDS, de Macedo AJP, Teixeira MFS. Production of mycelial biomass by the Amazonian edible mushroom Pleurotus albidus. Braz J Microbiol 2016; 47:658-64. [PMID: 27266626 PMCID: PMC4927658 DOI: 10.1016/j.bjm.2016.04.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 11/09/2015] [Indexed: 11/29/2022] Open
Abstract
Edible mushroom species are considered as an adequate source of food in a healthy diet due to high content of protein, fiber, vitamins, and a variety of minerals. The representatives of Pleurotus genus are characterized by distinct gastronomic, nutritional, and medicinal properties among the edible mushrooms commercialized worldwide. In the present study, the growth of mycelial biomass of Pleurotus albidus cultivated in submerged fermentation was evaluated. Saccharose, fructose, and maltose were the three main carbon sources for mycelial biomass formation with corresponding yields of 7.28 g L−1, 7.07 g L−1, and 6.99 g L−1. Inorganic nitrogen sources did not stimulate growth and the optimal yield was significantly higher with yeast extract (7.98 g L−1). The factorial design used to evaluate the influence of saccharose and yeast extract concentration, agitation speed, and initial pH indicated that all variables significantly influenced the production of biomass, especially the concentration of saccharose. The greater amount of saccharose resulted in the production of significantly more biomass. The highest mycelial biomass production (9.81 g L−1) was reached in the medium formulated with 30.0 g L−1 saccharose, 2.5 g L−1 yeast extract, pH 7.0, and a speed of agitation at 180 rpm. Furthermore, P. albidus manifested different aspects of morphology and physiology under the growth conditions employed. Media composition affected mycelial biomass production indicating that the diversification of carbon sources promoted its improvement and can be used as food or supplement.
Collapse
Affiliation(s)
- Larissa de Souza Kirsch
- Culture Collection DPUA (Parasitology Department of Amazonas University) / Federal University of Amazonas, Manaus, Amazonas, Brazil
| | - Ana Júlia Porto de Macedo
- Culture Collection DPUA (Parasitology Department of Amazonas University) / Federal University of Amazonas, Manaus, Amazonas, Brazil
| | - Maria Francisca Simas Teixeira
- Culture Collection DPUA (Parasitology Department of Amazonas University) / Federal University of Amazonas, Manaus, Amazonas, Brazil.
| |
Collapse
|
29
|
Li Y, Guo S, Zhu H. Statistical optimization of culture medium for production of exopolysaccharide from endophytic fungus Bionectria ochroleuca and its antitumor effect in vitro. EXCLI JOURNAL 2016; 15:211-20. [PMID: 27330527 PMCID: PMC4908664 DOI: 10.17179/excli2016-154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 02/03/2016] [Indexed: 11/23/2022]
Abstract
Endophytic fungi have been recognized as possible useful sources of bioactive metabolites. However, exopolysaccharide (EPS) production from endophytic fungi and its antitumor activity have been less explored. In the present study, endophtic fungus Bionectria ochroleuca M21 was exploited for the production of EPS in submerged culture. Among tested medium components, glucose, yeast extract, MgSO4 and Tween80 were found to be effective and significant on EPS production. Response surface methodology (RSM) was employed to optimize medium composition. The results showed that the significant factors were glucose, yeast extract and Tween80. The optimal medium was observed at the composition of glucose 55.7 g/L, yeast extract 6.04 g/L, MgSO4 0.25g/L and Tween80 0.1 % (v/v). Using the optimized medium, EPS production was achieve at 2.65 ± 0.16 g/L after 4 days fermentation in a 5L bioreactor. Examination of cytotoxicity showed that the EPS from B. ochroleuca M21 did not have cytotoxic activity on human liver HL-7702 cells at concentration 0.025-1.6 mg/mL. In contrast, the EPS exhibited antiproliferative activities against cell lines of liver cancer (HepG2), gastric cancer (SGC-7901) and colon cancer (HT29) in a dose- and time-dependent manner in the concentration ranges of 0.1-0.45 mg/mL.
Collapse
Affiliation(s)
- Yun Li
- School of Life Sciences and Food Technology, Hanshan Normal University, Chaozhou, Guangdong 521041, China
| | - Shoujun Guo
- School of Life Sciences and Food Technology, Hanshan Normal University, Chaozhou, Guangdong 521041, China
| | - Hui Zhu
- School of Life Sciences and Food Technology, Hanshan Normal University, Chaozhou, Guangdong 521041, China
| |
Collapse
|
30
|
Liang TW, Tseng SC, Wang SL. Production and Characterization of Antioxidant Properties of Exopolysaccharide(s) from Peanibacillus mucilaginosus TKU032. Mar Drugs 2016; 14:md14020040. [PMID: 26907304 PMCID: PMC4771993 DOI: 10.3390/md14020040] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 01/29/2016] [Accepted: 02/02/2016] [Indexed: 11/30/2022] Open
Abstract
Natural polysaccharides have received much attention due to their wide range of applications. Although most microbial exopolysaccharides (EPSs) use sugars as the major carbon source, such as glucose or sucrose, in this study, EPSs were induced from a squid pen powder (SPP)-containing medium by Paenibacillus mucilaginosus TKU032, a bacterial strain isolated from Taiwanese soil. Under the optimal culture conditions, the maximum EPS yield (14.8 g/L) was obtained. MALDI-TOF MS analysis of an EPS fraction purified by gel filtration revealed two mass peaks with molecular weights of ∼1.05 × 104 and ∼1.35 × 104 Da, respectively. The analysis of the hydrolysates of TKU032 EPS with cellulase, pectinase or α-amylase indicated that the glycosidic bond of TKU032 EPS is most likely an α-1,4 glycosidic bond and the hydrolysates are similar to those of starch. In addition, the purified EPS demonstrated strong antioxidant abilities.
Collapse
Affiliation(s)
- Tzu-Wen Liang
- Life Science Development Center, Tamkang University, No. 151, Yingchuan Rd., Tamsui, New Taipei City 25137, Taiwan.
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan.
| | - Shih-Chun Tseng
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan.
| | - San-Lang Wang
- Life Science Development Center, Tamkang University, No. 151, Yingchuan Rd., Tamsui, New Taipei City 25137, Taiwan.
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan.
| |
Collapse
|
31
|
|
32
|
Production and structural elucidation of exopolysaccharide from endophytic Pestalotiopsis sp. BC55. Int J Biol Macromol 2016; 82:182-91. [DOI: 10.1016/j.ijbiomac.2015.11.035] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 11/02/2015] [Accepted: 11/12/2015] [Indexed: 11/21/2022]
|
33
|
Padmanaban S, Balaji N, Muthukumaran C, Tamilarasan K. Statistical optimization of process parameters for exopolysaccharide production by Aureobasidium pullulans using sweet potato based medium. 3 Biotech 2015; 5:1067-1073. [PMID: 28324414 PMCID: PMC4624145 DOI: 10.1007/s13205-015-0308-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 05/12/2015] [Indexed: 11/06/2022] Open
Abstract
Statistical experimental designs were applied to optimize the fermentation medium for exopolysaccharide (EPS) production. Plackett–Burman design was applied to identify the significance of seven medium variables, in which sweet potato and yeast extract were found to be the significant variables for EPS production. Central composite design was applied to evaluate the optimum condition of the selected variables. Maximum EPS production of 9.3 g/L was obtained with the predicted optimal level of sweet potato 10 %, yeast extract 0.75 %, 5.5 pH, and time 100 h. The determined (R2) value was 0.97, indicating a good fitted model for EPS production. Results of this study showed that sweet potato can be utilized as a low-cost effective substrate for pullulan production in submerged fermentation.
Collapse
|
34
|
Recent advances in exopolysaccharides from Paenibacillus spp.: production, isolation, structure, and bioactivities. Mar Drugs 2015; 13:1847-63. [PMID: 25837984 PMCID: PMC4413190 DOI: 10.3390/md13041847] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 03/23/2015] [Accepted: 03/25/2015] [Indexed: 12/02/2022] Open
Abstract
This review provides a comprehensive summary of the most recent developments of various aspects (i.e., production, purification, structure, and bioactivity) of the exopolysaccharides (EPSs) from Paenibacillus spp. For the production, in particular, squid pen waste was first utilized successfully to produce a high yield of inexpensive EPSs from Paenibacillus sp. TKU023 and P. macerans TKU029. In addition, this technology for EPS production is prevailing because it is more environmentally friendly. The Paenibacillus spp. EPSs reported from various references constitute a structurally diverse class of biological macromolecules with different applications in the broad fields of pharmacy, cosmetics and bioremediation. The EPS produced by P. macerans TKU029 can increase in vivo skin hydration and may be a new source of natural moisturizers with potential value in cosmetics. However, the relationships between the structures and activities of these EPSs in many studies are not well established. The contents and data in this review will serve as useful references for further investigation, production, structure and application of Paenibacillus spp. EPSs in various fields.
Collapse
|
35
|
Biosynthesis of Resveratrol in Blastospore of the Macrofungus Tremella fuciformis. Mol Biotechnol 2015; 57:675-84. [DOI: 10.1007/s12033-015-9858-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
36
|
Mohamad SA, Awang MR, Ibrahim R, Keong CY, Hamzah MY, Abdul Rashid R, Hussein S, Abdul Rahim K, Daud F, Hamid AA, Wan Yusoff WM. Production of Endopolysaccharides from Malaysia’s Local Mushrooms in Air-Lift Bioreactor. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/abb.2015.67046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
37
|
Serrano-Carreón L, Galindo E, Rocha-Valadéz JA, Holguín-Salas A, Corkidi G. Hydrodynamics, Fungal Physiology, and Morphology. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2015; 149:55-90. [PMID: 25652005 DOI: 10.1007/10_2015_304] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Filamentous cultures, such as fungi and actinomycetes, contribute substantially to the pharmaceutical industry and to enzyme production, with an annual market of about 6 billion dollars. In mechanically stirred reactors, most frequently used in fermentation industry, microbial growth and metabolite productivity depend on complex interactions between hydrodynamics, oxygen transfer, and mycelial morphology. The dissipation of energy through mechanically stirring devices, either flasks or tanks, impacts both microbial growth through shearing forces on the cells and the transfer of mass and energy, improving the contact between phases (i.e., air bubbles and microorganisms) but also causing damage to the cells at high energy dissipation rates. Mechanical-induced signaling in the cells triggers the molecular responses to shear stress; however, the complete mechanism is not known. Volumetric power input and, more importantly, the energy dissipation/circulation function are the main parameters determining mycelial size, a phenomenon that can be explained by the interaction of mycelial aggregates and Kolmogorov eddies. The use of microparticles in fungal cultures is also a strategy to increase process productivity and reproducibility by controlling fungal morphology. In order to rigorously study the effects of hydrodynamics on the physiology of fungal microorganisms, it is necessary to rule out the possible associated effects of dissolved oxygen, something which has been reported scarcely. At the other hand, the processes of phase dispersion (including the suspended solid that is the filamentous biomass) are crucial in order to get an integral knowledge about biological and physicochemical interactions within the bioreactor. Digital image analysis is a powerful tool for getting relevant information in order to establish the mechanisms of mass transfer as well as to evaluate the viability of the mycelia. This review focuses on (a) the main characteristics of the two most common morphologies exhibited by filamentous microorganisms; (b) how hydrodynamic conditions affect morphology and physiology in filamentous cultures; and (c) techniques using digital image analysis to characterize the viability of filamentous microorganisms and mass transfer in multiphase dispersions. Representative case studies of fungi (Trichoderma harzianum and Pleurotus ostreatus) exhibiting different typical morphologies (disperse mycelia and pellets) are discussed.
Collapse
Affiliation(s)
- L Serrano-Carreón
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, 62210, Cuernavaca, Mor, México,
| | | | | | | | | |
Collapse
|
38
|
Oral vaccination of mice with Tremella fuciformis yeast-like conidium cells expressing HBsAg. Biotechnol Lett 2014; 37:539-44. [PMID: 25374008 DOI: 10.1007/s10529-014-1720-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 10/28/2014] [Indexed: 10/24/2022]
Abstract
Tremella fuciformis yeast-like conidium (YLC) cells were transformed by co-cultivation with Agrobacterium cells harboring the hepatitis B surface antigen (HBsAg) gene construct under the control of the CaMV35S promoter. Integration of HBsAg DNA into the YLC genome was confirmed by PCR and dot-blot hybridization. Immunoblotting verified expression of the recombinant protein. Oral administration of YLC cells expressing HBsAg in mice significantly increased anti-HBsAg antibody titer levels using a double prime-boost strategy that combined parenteral and oral HBsAg boosters.
Collapse
|
39
|
Free-radical degradation by Fe2+/Vc/H2O2 and antioxidant activity of polysaccharide from Tremella fuciformis. Carbohydr Polym 2014; 112:578-82. [DOI: 10.1016/j.carbpol.2014.06.030] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Revised: 06/02/2014] [Accepted: 06/11/2014] [Indexed: 11/19/2022]
|
40
|
Kim JE, Park SJ, Yu MH, Lee SP. Effect of Ganoderma applanatum Mycelium Extract on the Inhibition of Adipogenesis in 3T3-L1 Adipocytes. J Med Food 2014; 17:1086-94. [DOI: 10.1089/jmf.2013.3036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Ji-Eun Kim
- Department of Food Science and Technology, Keimyung University, Daegu, Korea
| | - Sung-Jin Park
- Department of Food Science and Technology, Keimyung University, Daegu, Korea
| | - Mi-Hee Yu
- Department of Food Science and Technology, Keimyung University, Daegu, Korea
| | - Sam-Pin Lee
- Department of Food Science and Technology, Keimyung University, Daegu, Korea
| |
Collapse
|
41
|
Que Y, Sun S, Xu L, Zhang Y, Zhu H. High-level coproduction, purification and characterisation of laccase and exopolysaccharides by Coriolus versicolor. Food Chem 2014; 159:208-13. [DOI: 10.1016/j.foodchem.2014.03.063] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 02/05/2014] [Accepted: 03/11/2014] [Indexed: 10/25/2022]
|
42
|
Zheng JQ, Wang JZ, Shi CW, Mao DB, He PX, Xu CP. Characterization and antioxidant activity for exopolysaccharide from submerged culture of Boletus aereus. Process Biochem 2014. [DOI: 10.1016/j.procbio.2014.03.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
43
|
Extraction optimization and bioactivities of an extracellular polysaccharide produced by Aspergillus fumigatus. Int J Biol Macromol 2014; 68:13-7. [PMID: 24769212 DOI: 10.1016/j.ijbiomac.2014.04.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Revised: 04/09/2014] [Accepted: 04/12/2014] [Indexed: 01/17/2023]
Abstract
Aspergillus fumigatus produces an extracellular polysaccharide, AFEPS, when grew in NaOH solution pretreated rice-straw medium. A three-level, three-factor Box-Behnken design (BBD) response surface methodology (RSM) was applied to optimize the extraction parameters of AFEPS. RSM analysis indicated good correspondence between experimental and predicted values. The optimal conditions for polysaccharide were: precipitation time 10.9h, pH 5.2 and ethanol concentration 90%. AFEPS was composed of arabinose, xylose and glucose in a molar ratio of 1.05:5.36:10.83, its average molecular weight was estimated to be about 36.2kDa. Evaluation of the antioxidant activity in vitro suggested that AFEPS had high scavenging activity for superoxide anion and hydroxyl radicals. AFEPS exhibited excellent antitumor activities both in vitro and in vivo while showing no damage to normal cells.
Collapse
|
44
|
Sun X, Hao L, Ma H, Li T, Zheng L, Ma Z, Zhai G, Wang L, Gao S, Liu X, Jia M, Jia L. Extraction and in vitro antioxidant activity of exopolysaccharide by Pleurotus eryngii SI-02. Braz J Microbiol 2014; 44:1081-8. [PMID: 24688496 PMCID: PMC3958172 DOI: 10.1590/s1517-83822013000400009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 11/13/2012] [Indexed: 11/22/2022] Open
Abstract
The extraction parameters for Pleurotus eryngii SI-02 exopolysaccharide (EPS) produced during submerged culture were optimized using response surface methodology (RSM). The optimum conditions for EPS extraction were predicted to be, precipitation time 20.24 h, ethanol concentration 89.62% and pH 8.17, and EPS production was estimated at 7.27 g/L. The actual yield of EPS under these conditions was 7.21 g/L. The in vitro antioxidant results of the EPS showed that the inhibition effects of EPS at a dosage of 400 mg/L on hydroxyl, superoxide anion and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals were 59.63 ± 3.72%, 38.69 ± 2.59%, and 66.36 ± 4.42%, respectively, which were 12.74 ± 1.03%, 8.01 ± 0.56%, and 12.19 ± 1.05% higher than that of butylated hydroxytoluene (BHT), respectively. The reducing power of EPS of P. eryngii SI-02 was 0.98 ± 0.05, 60.66 ± 5.14% higher than that of BHT. The results provide a reference for large-scale production of EPS by P. eryngii SI-02 in industrial fermentation and the EPS can be used as a potential antioxidant which enhances adaptive immune responses.
Collapse
Affiliation(s)
- Xinyi Sun
- College of Life Science, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Long Hao
- College of Life Science, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Hua Ma
- The Central Hospital of Taian, Shandong, PR China
| | - Tong Li
- College of Mathematics and Applied Mathematics, Fudan University, Shanghai, PR China
| | - Lan Zheng
- College of Life Science, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Zhao Ma
- College of Life Science, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Guoyin Zhai
- College of Life Science, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Liqin Wang
- College of Life Science, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Shanglong Gao
- College of Life Science, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Xiaonan Liu
- College of Life Science, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Mengshi Jia
- The Second High of Taian, Shandong, PR China
| | - Le Jia
- College of Life Science, Shandong Agricultural University, Taian, Shandong 271018, PR China
| |
Collapse
|
45
|
Borges GM, De Barba FFM, Schiebelbein AP, Pereira BP, Chaves MB, Silveira MLL, Pinho MSL, Furlan SA, Wisbeck E. Extracellular polysaccharide production by a strain of Pleurotus djamor isolated in the south of Brazil and antitumor activity on Sarcoma 180. Braz J Microbiol 2014; 44:1059-65. [PMID: 24688493 PMCID: PMC3958169 DOI: 10.1590/s1517-83822014005000019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 04/04/2013] [Indexed: 12/15/2022] Open
Abstract
Polysaccharides with medicinal properties can be obtained from fruiting bodies, mycelium and culture broth of several fungus species. This work was carried out in batch culture using a stirred tank reactor with two different initial glucose concentrations (40-50 g/L) and pH values (3.0-4.0) to enhance extracellular polysaccharides production by Pleurotus djamor UNIVILLE 001 and evaluate antitumor effect of intraperitonial administration of Pleurotus djamor extract on sarcoma 180 animal model. According to factorial design, the low pH value (pH 3.0) led to a gain of 1.6 g/L on the extracellular polysaccharide concentration, while glucose concentration in the tested range had no significant effect on the concentration of polysaccharide. With 40 g/L initial glucose concentration and pH 3.0, it was observed that yield factor of extracellular polysaccharide on substrate (YP/S = 0.072) and maximum extracellular polysaccharide productivity (Q(Pmax) = 11.26 mg/L.h) were about 188% and 321% respectively higher than those obtained in the experiment performed at pH 4.0. Under these conditions, the highest values of the yield factor of biomass on substrate (YX/S = 0.24) and maximal biomass productivity (Q(Xmax) = 32.2 mg/L.h) were also reached. In tumor response study, mean tumor volume on the 21th day was 35.3 cm(3) in untreated group and 1.6 cm(3) in treated group (p = 0.05) with a tumor inhibition rate of 94%. These impressive results suggests an inhibitory effect of P.djamor extract on cancer cells.
Collapse
Affiliation(s)
- Gisele Martini Borges
- Mestrado em Saúde e Meio Ambiente, Universidade da Região de Joinville, Univille, Joinville, SC, Brazil
| | | | - Ana Paula Schiebelbein
- Departamento de Engenharia Ambiental, Universidade da Região de Joinville, Univille, Joinville, SC, Brazil
| | | | - Mariane Bonatti Chaves
- Departamento de Engenharia Química, Universidade da Região de Joinville, Univille, Joinville, SC, Brazil
| | | | - Mauro Souza Leite Pinho
- Mestrado em Saúde e Meio Ambiente, Universidade da Região de Joinville, Univille, Joinville, SC, Brazil
| | - Sandra Aparecida Furlan
- Mestrado em Saúde e Meio Ambiente, Universidade da Região de Joinville, Univille, Joinville, SC, Brazil. ; Departamento de Engenharia Ambiental, Universidade da Região de Joinville, Univille, Joinville, SC, Brazil. ; Departamento de Engenharia Química, Universidade da Região de Joinville, Univille, Joinville, SC, Brazil. ; Mestrado em Engenharia de Processos, Universidade da Região de Joinville, Univille, Joinville, SC, Brazil
| | - Elisabeth Wisbeck
- Departamento de Engenharia Ambiental, Universidade da Região de Joinville, Univille, Joinville, SC, Brazil. ; Departamento de Engenharia Química, Universidade da Região de Joinville, Univille, Joinville, SC, Brazil. ; Mestrado em Engenharia de Processos, Universidade da Região de Joinville, Univille, Joinville, SC, Brazil
| |
Collapse
|
46
|
Mao DB, Shi CW, Wu JY, Xu CP. Optimization of exopolysaccharide production in submerged culture of Daedalea dickinsii and its antioxidant activity. Bioprocess Biosyst Eng 2013; 37:1401-9. [PMID: 24352860 DOI: 10.1007/s00449-013-1111-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 12/06/2013] [Indexed: 11/26/2022]
Abstract
The major nutrients, pH and temperature were evaluated for the exopolysaccharide (EPS) production by Daedalea dickinsii in submerged culture to derive an optimal medium composition and conditions as follows: 50 g/L maltose, 5 g/L soy peptone, 5 mM CaCl(2), at pH 6.0 and 28 °C. A purified EPS fraction was attained from gel filtration chromatography and its major molecular characteristics were determined. FT-IR spectral analysis revealed the prominent characteristic groups of polyhydric alcohols. GC analysis and NMR spectrum showed its major molecular composition of glucose and galactose. Furthermore, thermogravimetric analysis indicated its degradation temperature (T(d)) of 189 °C. The antioxidant activity of the EPS fraction showed a correlation with the molecular properties. It might be attributed to the functional groups in the EPS fraction, which can donate electrons to reduce the radicals to a more stable form or react with the free radicals to terminate the radical chain reaction.
Collapse
Affiliation(s)
- Duo-Bin Mao
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, Henan, People's Republic of China
| | | | | | | |
Collapse
|
47
|
Jonczyk P, Takenberg M, Hartwig S, Beutel S, Berger RG, Scheper T. Cultivation of shear stress sensitive microorganisms in disposable bag reactor systems. J Biotechnol 2013; 167:370-6. [DOI: 10.1016/j.jbiotec.2013.07.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 07/12/2013] [Accepted: 07/12/2013] [Indexed: 02/08/2023]
|
48
|
Mahapatra S, Banerjee D. Optimization of a bioactive exopolysaccharide production from endophytic Fusarium solani SD5. Carbohydr Polym 2013; 97:627-34. [DOI: 10.1016/j.carbpol.2013.05.039] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 04/29/2013] [Accepted: 05/19/2013] [Indexed: 11/16/2022]
|
49
|
Jin X, Ning Y. Extraction optimization and bioactivity of polysaccharides from Aspergillus fumigatus AF1. Carbohydr Polym 2013; 96:411-6. [DOI: 10.1016/j.carbpol.2013.04.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 03/30/2013] [Accepted: 04/10/2013] [Indexed: 12/16/2022]
|
50
|
Housseiny MM, Abo-Elmagd HI, Ibrahim GE. Preliminary studies on microbial polysaccharides from different Penicilliumspecies as flavour stabiliser in cloudy apple juice. Int J Food Sci Technol 2013. [DOI: 10.1111/ijfs.12216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Manal M. Housseiny
- Biological and Geological Sciences Department; Faculty of Education; Ain Shams University; Heliopolis; Roxy; Cairo; 11757; Egypt
| | - Heba I. Abo-Elmagd
- Biological and Geological Sciences Department; Faculty of Education; Ain Shams University; Heliopolis; Roxy; Cairo; 11757; Egypt
| | - Gamil E. Ibrahim
- Chemistry of Flavour & aroma department; National Research center; Egypt
| |
Collapse
|